

Requirements Risks Can Drown Software Projects
This article presents several requirements risks that can impact a software project’s success,
along with strategies to help mitigate their impact.
by Theron R. Leishman and Dr. David A. Cook

Recommended Requirements Gathering Practices
Applying and using the requirements gathering practices recommended in this article
can make a significant difference in understanding, prioritizing, tracing, and changing
requirements throughout development efforts.
by Dr. Ralph R. Young

Reducing Risks Through Proper Specification of Software Requirements
The author lists 11 examples of legacy systems requirements initially specified by project
teams, followed by his critique and re-specification.
by Al Florence

Seven Characteristics of Dysfunctional Software Projects
You can use the traits listed in this article to gain insight into the causes of dysfunctional software projects
and the typical real-world risks that accompany each.
by Michael W. Evans, Alex M. Abela, and Thomas Beltz

Add Decision Analysis to Your COTS Selection Process
This article describes a decision-making process to help avoid common pitfalls associated with evaluations
and trade studies of components and particularly commercial off-the-shelf products.
by Barbara Cavanaugh Phillips and Susan M. Polen

Prerequisites for Success:Why Process Improvement Programs Fail
This author says it is not enough to have improvement tools in place. The fundamental nature of an
organization must support core business changes for successful implementation.
by David Cottengim

Cover design by
Kent Bingham.

3

8

15

20

25

31

DeparDepar tmentstments

Risky Risky RequirRequirementsements

ON THE COVER

2 CROSSTALK The Journal of Defense Software Engineering April 2002

4

9

13

16

21

26

SoftwarSoftware e EngineeringEngineering TTechnoloechnologgyy

From the Publisher

Coming Events

Mapping of the Capability
Maturity Model

2002 Airplane Contest
Announcement

Web Sites

BackTalk

CrossTalk
Article Submissions:We welcome articles of interest to the
defense software community.Articles must be approved by the
CROSSTALK editorial board prior to publication. Please fol-
low the Author Guidelines, available at www.stsc.hill.af.mil/
crosstalk/xtlkguid.pdf. CROSSTALK does not pay for submis-
sions. Articles published in CROSSTALK remain the proper-
ty of the authors and may be submitted to other publications.
Reprints and Permissions: Requests for reprints must be
requested from the author or the copyright holder. Please
coordinate your request with CROSSTALK.
Trademarks and Endorsements: This DoD journal is an
authorized publication for members of the Department of
Defense. Contents of CROSSTALK are not necessarily the
official views of, or endorsed by, the government, the
Department of Defense, or the Software Technology Support
Center. All product names referenced in this issue are trade-
marks of their companies.
Coming Events:We often list conferences, seminars, sympo-
siums, etc. that are of interest to our readers.There is no fee
for this service, but we must receive the information at least
90 days before registration. Send an announcement to the
CROSSTALK Editorial Department.
STSC Online Services: www.stsc.hill.af.mil
Call (801) 777-7026, e-mail: randy.schreifels@hill.af.mil
Back Issues Available:The STSC sometimes has extra copies
of back issues of CROSSTALK available free of charge.
The Software Technology Support Center was established
at Ogden Air Logistics Center (AFMC) by Headquarters U.S.
Air Force to help Air Force software organizations identify,
evaluate, and adopt technologies to improve the quality of their
software products, efficiency in producing them, and their abil-
ity to accurately predict the cost and schedule of their deliv-
ery.

SPONSOR

PUBLISHER

ASSOCIATE
PUBLISHER

MANAGING EDITOR

ASSOCIATE EDITOR

ARTICLE
COORDINATOR

CREATIVE SERVICES
COORDINATOR

PHONE

FAX

E-MAIL

CROSSTALK ONLINE

CRSIP ONLINE

Lt. Col. Glenn A. Palmer

Tracy Stauder

Elizabeth Starrett

Pamela Bowers

Julie B. Jenkins

Nicole Kentta

Janna Kay Jensen

(801) 586-0095
(801) 777-8069
crosstalk.staff@hill.af.mil
www.stsc.hill.af.mil/
crosstalk

www.crsip.hill.af.mil

Subscriptions: Send correspondence concerning
subscriptions and changes of address to the following
address.You may e-mail or use the form on p. 30.

Ogden ALC/TISE
7278 Fourth St.
Hill AFB, UT 84056-5205

Open Open FForumorum

From the Publisher

At the time we prepared this month’s issue, the world was coming together for
the 2002 Winter Olympics in Salt Lake City. In case you did not know, the

CrossTalk staff is located just 30 miles north of Salt Lake City at Hill Air Force
Base. For me, it has been very exciting to be in the midst of all of the Olympic activ-
ity. Most of all, I’m happy to see the world come together in peace for the games.

During the past few years, Salt Lake City and its surrounding communities have
been transformed with improved highways, sports venues, and new businesses in an

effort to support the games. As this month’s issue highlights requirements and how to avoid
the risks associated with specifying poor or invalid requirements, I could not help but think
of all of the software requirements associated with putting on the 2002 Winter Olympics.

I recently attended a conference in which an employee of a local telecommunications
firm spoke. He identified a myriad of information technologies (IT) employed around each
of the Olympic Venues. From computer terminal rooms and networks for media support, to
security support, to athlete housing support, to event-ticketing support, and to the events
themselves, the software needs associated with hosting the games is absolutely phenomenal.
Specifying good and valid requirements to meet the Olympic IT needs could not have been
a more important step in making this world event a possibility as well as a huge success.

The defense software world has its own set of challenges when it comes to gathering,
specifying, and validating weapon system requirements. Two of the Air Force’s Software
Technology Support Center’s consultants, Theron Leishman and Dr. David Cook, lead off
this month’s issue with sound advice in Requirements Risks Can Drown Software Projects. In this
article, you will find helpful tips on how to recognize requirement risks and how to mitigate
these risks to keep software projects from going “overboard and drowning” throughout their
life cycle.

Next, Dr. Ralph Young discusses Recommended Requirements Gathering Practices and explains
how requirements elicitation techniques such as interviews, workshops, and storyboards can
ensure effective requirements definition and communication among all stakeholders. And in
Reducing Risks Through Proper Specification of Software Requirements, Al Florence critiques eleven
examples of requirement specifications and suggests an improved and less risky way to state
these example requirements.

Lastly, be sure to check out our Software Engineering Technology and Open Forum sec-
tions this month for more insight into the many challenges and potential risks that defense
software projects face today.

I hope that you find this month’s issue helpful with techniques and reminders on how to
keep from specifying risky requirements. Take the time to make your software project re-
quirements as good as you can, just as if you were training and competing for a gold medal
at the Olympics. May we all be winners in the defense software community.

Gold Medal Requirements

Tracy L. Stauder
Publisher

April 2002 www.stsc.hill.af.mil 3

Risky Requirements

4 CROSSTALK The Journal of Defense Software Engineering April 2002

Afew years ago the movie “Overboard”
was released. This is a movie about a

rich woman (JoAnna) who was accus-
tomed to having everything her own way.
The movie begins with JoAnna hiring an
uncouth carpenter (Dean) to remodel the
closet of her luxurious yacht. Following
several unpleasant encounters between the
two during the remodeling project, a
major confrontation occurs as the carpen-
ter has completed work, and the yacht is
preparing to leave port.

While the carpenter is demonstrating
the features of his work, the rich, arro-
gant, JoAnna asks what the closet is made
of. In response, Dean indicates that the
closet is made of oak. His response push-
es JoAnna over the edge. She says that she
wanted the closet to be made of cedar.
The carpenter responds that if she wanted
the closet to be made out of cedar, she
should have asked for cedar. He tells her
that he would be glad to make the closet
out of cedar, but that his estimate would
be more than double because he would
have to re-do the whole project. To which
she responded, “the whole civilized world
knows that closets are made of cedar!”
She further indicates that she is not going
to pay for “his” mistake! The confronta-
tion escalates to the point that she pushes
Dean overboard.

This humorous example demon-
strates how easily requirements can be
confused between the various stakehold-
ers of any venture. Confusion, misunder-
standing, and frustration relative to
requirements are major risks to the suc-
cess of any project.

At the 5th Annual Joint Aerospace
Weapons Systems Support, Sensors, and
Simulation Symposium in 1999, the
results of a study of 1995 Department of
Defense (DoD) software spending were
presented. A summary of that study is
shown in Figure 1. As indicated, of $35.7
billion spent by the DoD for software,

only 2 percent of the software was able to
be used as delivered. The vast majority, 75
percent, of the software was either never
used or was cancelled prior to delivery.
The remaining 23 percent of the software
was used following modification [1].

A similar study conducted by the
Standish Group on non-DoD software
projects in 1994 produced very similar
results. In over 8,000 projects conducted
by 350 companies, only 16 percent of the
projects were considered successful.

Success in this study was considered soft-
ware delivered on time and within budget
[2].

More recently, an analysis of the data
gathered by the Software Engineering
Institute (SEI) on 451 Capability
Maturity Model® (CMM®) Level 1 CMM-
Based Assessments for Internal Process
Improvement conducted from 1997
through August 2001 indicates that
requirements continue to be a problem.
Of the assessments conducted, approxi-
mately 95 percent included an assessment
of the Requirements Management Key
Process Area (KPA). Of these, only 33
percent fully satisfied the Requirements
Management KPA [3].

So what does this data mean? Are we
as an industry wasting away billions of
dollars due to incompetence? What is the

reason for this dismal representation of
our capabilities? Further research by the
Standish Group indicates the following
major reasons for the high failure rate in
software development:
• Poor requirements.
• Lack of understanding that cost and

schedule are engineering parameters
based on requirements.

• Lack of understanding and following a
process and a life cycle.
Are we all like Dean, the carpenter in

“Overboard”? The above studies indicate
that the way we define, analyze, and man-
age requirements is imposing serious risk
to the success of our software projects.

Requirements Risks
But We Gave You Exactly What You
Asked For
Have you ever been disappointed when
you received exactly what you asked for?
The story is told of an executive who
when asked about his satisfaction with a
new software application indicated that he
hated it. When asked why, he responded,
“They gave me exactly what I asked for.”

The requirements definition phase of
a software project is never the self-con-
tained function implied by many software
development life-cycle models. The
requirements gathering phase is rather an
iterative process. It is not enough to
obtain the stakeholder’s requirements
once and assume that they are correct. By
so doing, the risk of giving the stakehold-
er what they ask for, rather than what they
really need, is increased.

I Know That I Think I Know What Your
Requirements Are
This requirement risk can be exemplified
by the co-author’s (Leishman’s) first soft-
ware project. Being new to the job, he was
determined to demonstrate his abilities.
Following a short meeting with the project
stakeholders, Leishman disappeared into
cubie-land to work his magic. A few weeks
later, he emerged from his cubbyhole and

Requirements Risks Can
Drown Software Projects

Theron R. Leishman and Dr. David A. Cook
Software Technology Support Center

Software requirements management is often viewed as a stand-alone task in terms of life-cycle activities. Of course, some of
the major risks to project completion are incomplete, inaccurate, or vague requirements. In this article we will present and dis-
cuss several requirements risks that may have major impacts on the success of software projects. We will then consider strate-
gies to help mitigate the impact of these requirements risks.

“In over 8,000 projects
conducted by 350
companies, only 16

percent of the
projects were considered

successful ... delivered
on time and within

budget.”

® Capability Maturity Model, CMM, Software Capability
Maturity Model, and SW-CMM are registered in the U.S.
Patent and Trademark Office.

April 2002 www.stsc.hill.af.mil 5

Requirements Risks Can Drown Software Projects

proudly presented the product of his
efforts to the stakeholders. To his dismay,
the system did not do what the stakehold-
ers required it to do. They were pleased
that their application was delivered on
time, but very upset that the application
did not do what they required.

This risk is a very common occur-
rence. It is characterized by not involving
project stakeholders throughout the devel-
opment effort. Typically this requirements
risk will not be identified until stakeholder
testing or implementation. By not taking
necessary steps to assure that we under-
stand the requirements, we are inviting
project rework that will result in schedule
delays and cost overruns.

Overboard Assumptions
This is the requirements risk we identified
in the movie example in the introduction
of this article. There are things in each of
our frames of reference that appear to be
no-brainers! In the movie, JoAnna indi-
cated that, “The whole civilized world
knows that closets are made of cedar.”
Why then was there a question of the cus-
tomer’s requirements? Because the frame
of reference of the rich and famous was
totally different than that of the country
hick carpenter.

The risk of assuming that developers
and customers have the same thoughts
about system requirements is like assum-
ing that we all agree on political or reli-
gious issues. As in the case of the carpen-
ter, these issues are often not identified
until the customer first sees the applica-
tion. At this stage of development, there
will almost certainly be negative impacts
on both project cost and schedule.

The Expectations Cloud
A few years ago, a woman responded to
an advertisement to have the carpets in
her house cleaned. The advertisement
offered three rooms of carpet cleaned for
$69.95. Seeing this as a good deal, she
contacted the company and indicated that
she would like the three-room special.
The representative came to her house and

cleaned the carpet in the three rooms
identified. Upon completion, the techni-
cian presented a bill for $249. Needless to
say, the woman was not a happy camper!
When questioned about the bill, the tech-
nician indicated that the three-room spe-
cial applied to rooms with dimensions of
10 feet by 10 feet. The three rooms
cleaned were each considerably larger
than this.

So, who was at fault in this carpet-
cleaning situation? Was it the woman’s
responsibility to assure that there was
agreement to the expectations prior to the
work being completed? Or was it the
responsibility of the service provider to
assure that he met the woman’s expecta-
tions? Regardless of where the responsi-
bility for clarification belonged, the
woman was a dissatisfied customer!

There are numerous software project
examples of stakeholder expectations not
being resolved prior to the project begin-
ning. Like the carpet example, if the cus-
tomers’ expectations are not met, future
services will not be requested.

The Never-Ending Requirements
Story
The world we live in is rapidly changing.
The business, economic, political, and mil-
itary environments are all changing and
fluctuating daily based on world condi-
tions. Technology is likewise changing at a
very rapid rate. In this environment, it is
unrealistic to assume that software require-
ments are not going to change during the
development process.

The risk of requirements changing is
that the changes will spiral out of control
and prevent an application from ever being
completed. The never-ending requirement
story is also one of the never-completing
software project. An additional risk of
constant change is the lack of common
requirements understanding by the various
stakeholders during the various iterations
of requirements. The result is confusion,
chaos, misunderstanding, and software
either never being completed, or if com-
pleted never being used.

I Don’t Know What I Want, but I’ll
Know It When I See It
There are also those occasions when
stakeholders are not interested in clearly
defining their requirements. These stake-
holders assume they have the luxury of
having developers play the development
game over and over until they get some-
thing they like.

The risk of allowing this attitude to
exist in the stakeholder environment is
that valuable development resources are
wasted playing a guessing game. Every
iteration expended and left floundering in
the dark to arrive at a solution that meets
the stakeholders’ unknown requirements
increases development costs and extends
the project schedule.

A further risk with this attitude is that
the software project is not perceived to
belong to the stakeholders. They remain
removed from the project, do not accept
ownership, and thus increase the risk of
project failure.

Rapid Development Requirements
Risks
In an attempt to increase the speed of
software development, various rapid
development approaches have been
devised. The use of Rapid Application
Development, Unified Modeling Lan-
guage Use Cases, and Extreme Program-
ming are examples of new approaches
that have been taken to speed software
development.

When conducted properly, each of
these approaches includes a process of
requirements analysis. Often these new
approaches have sought newer, better
ways to document, verify, and track stake-
holder requirements. The risk associated
with these approaches is the same old
temptation to cut corners when conduct-
ing requirements analysis that we often
find in more traditional approaches.
Often, developers who are not properly
trained in these approaches assume that
“rapid” means incomplete or haphazard.
Some do not recognize the need for ade-
quate requirements analysis and will elimi-

46%

29%
3%

2%
20%

Software paid for, but not delivered - 29%

Software used, but extensively reworked or abandoned - 20%

Software used as delivered - 2%

Software delivered, but not successfully used - 46%

Software used after changes - 3%

Total Software Costs - $35.7 billion

Figure 1: Findings of a 1995 Department of Defense Software Study

Risky Requirements

6 CROSSTALK The Journal of Defense Software Engineering April 2002

nate or minimize the requirements analy-
sis process. This is a tremendous risk to
project success.

Failure to Recognize that Faulty
Requirements Represent a Risk
According to the SEI Software Capability
Maturity Model® (SW-CMM®), “Require-
ments management involves establishing
and maintaining an agreement with the
customer on the requirements for the
software project. The agreement forms
the basis for estimating, planning, per-
forming, and tracking the software pro-
ject’s activities throughout the software
life cycle [4].” Years of experience have
revealed that errors occurring in the
requirements stage of the development
process turn out to be the most difficult
and costly to fix.

The Software Technology Support
Center has, upon the request of various
program managers, conducted Independ-
ent Expert Program Reviews. These
reviews are conducted to assist program
managers in determining the wellness of
their programs and evaluating areas of
concern to the program. A common find-
ing in many of these reviews is that
requirements elicitation, analysis, and
management is being conducted in an
inefficient manner. In several of these
cases, requirements inadequacies have
proven to be a major contributor to the
program being behind schedule and over
budget.

It is essential to understand that
requirements, or more appropriately the
lack of adequate requirements, can be a
significant risk to the success of any proj-
ect. The soundness of the organization’s
requirements management process should
be taken into consideration when evaluat-
ing the risk that requirements may have on
the success of your project.

Can’t You Read My Mind?
Failure to document requirements in a
format that promotes clear, complete, and
comprehensive understanding is a serious
risk to project success. In his article,
“When Telepathy Won’t Do:
Requirements Engineering Key Practices
[5],” Karl Wiegers indicates that the most
essential and yet often neglected practice
is to write down, or document, the
requirements. He goes on to indicate that
requirements should be documented in
some acceptable, structured format as
they are gathered and analyzed.

After all, is not the purpose of the
requirements process to communicate a
shared understanding of what the system
requires among the project stakeholders?

The need to communicate requirements is
directly connected with the need to docu-
ment requirements. If requirements are
not documented in some manner, it is
impossible for multiple individuals to
come to a common understanding and
agreement of the requirements.

Strategies to Mitigate
Requirements Risks
Develop and Follow Sound Processes
and Procedures
A software process can be defined as a
set of activities, methods, practices, and
transformations that people employ to
develop and maintain software and the
associated products [4]. The problem
comes when the process that I follow
and the process others in the organiza-
tion follow is not the same. The result is
a lack of consistency in the way software
is developed and maintained. This lack of

consistency leads to confusion, misun-
derstandings, development delays, and
cost overruns.

An important step to mitigating
requirements risks is for the organization
to develop and strictly follow sound
processes and procedures relative to
requirements engineering. These process-
es and procedures should include direc-
tion to developers in the following areas:
• Requirements elicitation.
• Requirements analysis.
• Documentation of requirements.
• Requirements verification, review, and

approval.
• Configuration control of require-

ments.
• Requirements traceability.

The organization should also ensure
that roles and responsibilities relative to
these processes and procedures are clear-
ly defined. In one aerospace software

development organization we know, the
application development manager went
to great lengths to impress upon the soft-
ware project leaders that the ultimate suc-
cess of each development project rested
upon their heads. The responsibility for
resolving assumptions, ambiguities, and
clarifying stakeholder expectations rests
upon the developers.

Incorporate Requirements into All
Software Life Cycles
By now, the need and value of having
organizationally accepted software life-
cycle models and methods should be well
established. From our research and
knowledge of various life-cycle models,
they all include a requirements analysis,
requirements management, or stakehold-
er requirements phase.

By assuring that the life cycle(s)
approved for usage within the organiza-
tion require proper levels of require-
ments administration, the risk associated
with projects relative to requirements will
be reduced.

Provide Training to Those
Responsible for Requirements
Management
Requirements elicitation, analysis, docu-
mentation, verification, and maintenance
are not simple tasks. The ability to facili-
tate the elicitation of requirements and
follow the process through to completion
requires knowledge and skill. Those with-
in the organization who are responsible
for assuring that requirements are man-
aged, must receive the training and men-
toring necessary to provide them with the
ability to fulfill this responsibility.

Require User Involvement
In their CHAOS Report of 1995, the
Standish Group indicated that informa-
tion technology (IT) projects fail because
they lack user involvement, follow
incomplete requirements and specifica-
tions, and experience confusion caused
by changing requirements and specifica-
tions. The lack of adequate user involve-
ment is a virtual guarantee of project
failure.

In the article, “13 Common Objec-
tions Against User Requirements Analy-
sis, and Why You Should Not Believe
Them [6],” the author looks at 13 excus-
es used for not involving users in the
development of Web-based projects. The
conclusion drawn is that user involve-
ment is imperative to the success of IT
projects even in the rapidly changing web
environment.

Users are the primary stakeholders in

“The need for user
involvement is

imperative. By requiring
user involvement in
the requirements

process, the risk to the
project of inadequate

requirements is
greatly reduced.”

Requirements Risks Can Drown Software Projects

April 2002 www.stsc.hill.af.mil 7

most software projects. To assume that
the primary stakeholder can be eliminated
and have the project succeed is approach-
ing lunacy. Yet as indicated in the study
conducted by the Standish Group, lack of
user involvement in requirements analysis
and verification is the root cause of many
development project problems.

The need for user involvement is
imperative. By requiring user involvement
in the requirements process, the risk to
the project of inadequate requirements is
greatly reduced. This mitigation strategy
combined with having and following
sound processes and procedures, which
are also supported by defined software
life cycles, will greatly reduce require-
ments risks.

Always Document Requirements
The need to reach a common understand-
ing of requirements among key project
stakeholders is vital to the success of a
software project. To reach common
understanding it is essential that require-
ments be documented. Any text on soft-
ware requirements will indicate that good
requirements’ characteristics include the
following:
• Correct.
• Complete.
• Consistent.
• Unambiguous.
• Verifiable.
• Understandable.
• Traceable.
• Modifiable.

Historically, requirements have been
documented in a System Requirements
Specification (SRS) or other similar docu-
ment. In recent years requirements docu-
mentation has taken on various forms.
Today there are three basic forms of doc-
umentation used for requirements: text
based, box based, and graphics based.

Text-based documentation relies on
formally defined language to describe sys-
tem requirements. This approach has been
criticized as being old fashioned, slow, and
subject to various interpretations based
on the background of the various stake-
holders.

Box-based documentation uses geo-
metric symbols to represent various
aspects of the system requirements. This
approach is designed with the software
engineer in mind and is generally more
comfortable for the software engineer to
follow and understand. This approach is
traditionally more difficult for end users
to understand because of the learning
curve associated with this type of docu-
mentation.

Graphic-based documentation is the
more recent of the three documentation
forms. It was developed to support
object-oriented development and design
techniques. This method uses geographic
symbols to represent the actual objects
within a system. As with the box-based
methods, graphic-based documentation is
tailored more toward the developer than
to the end user’s understanding.

We recommend that some combina-
tion approach be adopted. We have expe-
rience using a combination of graphics
and text. This approach helps the users
insert themselves into the process or
requirement being documented. It also is
easily understood by the developers and
serves as a useful tool to both elicit and
validate requirements.

Various programming methodologies
such as Extreme Programming and the
Unified Systems Development Process are
typically considered design and coding
aids. These approaches recommend prop-
er requirements gathering, analysis, and
validation be conducted during software
development and maintenance. These
methodologies document requirements
using models, diagrams, and text in an
environment of heavy stakeholder in-
volvement. These requirements can and
should be maintained during various iter-
ations of development and their trace-
ability maintained through the entire
development process.

Validate Software Requirements
Requirements validation is an essential
step to ensure that requirements are prop-
erly understood and documented. This
mitigation strategy goes hand in hand with
the need for dedicated stakeholder
involvement. As requirements are docu-
mented, the stakeholders should validate
them. Often the act of requirements vali-
dation will uncover requirements issues
that can be discovered in no other way.

Hold Formal Requirements Reviews
It has consistently been proven that it
costs more to correct requirements errors
that are discovered later in the life cycle.
For example, a requirement error caught
during design might cost four times more
to correct than if the error had been dis-
covered and corrected during the require-
ments phase itself [7]. Studies indicate
that document reviews greatly reduce the
errors in critical documents.

Errors, inconsistencies, ambiguities,
and confusion can be greatly reduced by
holding formal reviews of software
requirements documents. Teams perform-
ing requirements management activities

should be trained in sound review meth-
ods. Formal reviews will greatly improve
the quality of software requirements doc-
uments.

Strictly Manage Requirements
Changes
Strategies exist to help manage require-
ments “creep.” Such strategies consist of
good configuration management, formal
reviews of change requests, and a formal
change control process. Requirements
creep should be around 1 percent per
month. In fact, creep of more than 2 per-
cent a month is probably a sure sign of a
project that will never reach completion.
Without sound strategies for managing
change, a project will fail.

Even with sound strategies, stakehold-
ers must be aware of the high cost and
high risk of change. For the good of the
project, some changes are simply too
expensive or too difficult. Such changes
must be postponed until after a version of
the product is successfully delivered.

Summary
Requirements management is critical to
the success of any software development
or acquisition project. It requires the abil-
ity to deal with stakeholders of various
backgrounds with various goals, interests,
and objectives. By their very nature, there
are risks associated with the elicitation,
analysis, and validation of requirements. If
not given proper attention, these require-
ments’ risks can push software projects
overboard and result in software projects
drowning!

By recognizing the potential impact of
these requirements’ risks, steps can be
taken to turn these risks into strengths.
Instead of requirements being the source
of problems, a disciplined software re-
quirements management process can help
to assure the success of your software
projects.◆

References
1. Jarzombek, Stanley J. “The 5th Annual

Joint Aerospace Weapons Systems
Support, Sensors, and Simulation
Symposium (JAWS S3).” Proceedings,
1999.

2. The Standish Group International, Inc.
The CHAOS Report, 1994.

3. Software Engineering Institute. “Pro-
cess Maturity Profile of the Software
Community.” Mid-year Update, Aug.
2001.

4. Software Engineering Institute. The
Capability Maturity Model Guidelines
for Improving the Software Process.
Boston: Addison-Wesley, 1994.

8 CROSSTALK The Journal of Defense Software Engineering April 2002

5. Wiegers, Karl E. “When Telepathy
Won’t Do: Requirements Engineering
Key Practices.” Cutter IT Journal May
2000.

6. D’Hertefelt, Sim. “13 Common
Objections Against User Require-
ments Analysis, and Why You Should
Not Believe Them.” Interaction
Architect.com 9 June 2000.

7. Boehm, Barry, and Wilfred J. Hansen.
“The Spiral Model as a Tool for Evo-
lutionary Acquisition.” CrossTalk

May 2001.

Additional Reading
1. Dorfman, Merlin. “Requirements

Engineering.” SEI Interactive Mar.
1999.

2. Kar, Pradip, and Michelle Bailey.
“Characteristics of Good Require-
ments.” INCOSE Symposium, 1996.

3. Thomas, Bill. “Meeting the Chal-
lenges of Requirements Engineer-
ing.” SEI Interactive Mar. 1999.

4. VanBuren, Jim, and Dr. David A.
Cook. “Experiences in the Adoption
of Requirements Engineering Tech-
nologies.” CrossTalk Dec. 1998.

5. Wiegers, Karl E. Software Require-
ments. Microsoft Press, 1999.

6. Wiegers, Karl E. “Karl Wiegers
Describes 10 Requirements Traps to
Avoid.” Software Testing and Quality
Engineering Jan./Feb. 2000.

About the Authors

David A. Cook, Ph.D.,
is the principal engineer-
ing consultant, Shim
Enterprises, Inc. He is
currently assigned as a
software-engineering

consultant to the Software Technology
Support Center at Hill Air Force Base,
Utah. Dr. Cook has more than 27 years
of experience in software development
and software management. He was for-
merly an associate professor of comput-
er science at the U. S. Air Force
Academy (where he was also the depart-
ment research director) and also the
deputy department head of the
Software Professional Development
Program at the Air Force Institute of
Technology. Dr. Cook has published
numerous articles on software process
improvement, software engineering,
object-oriented software development,
programming languages, and require-
ments engineering. He has a doctorate
degree in computer science from Texas
A&M University, and he is an authorized
Personal Software Process instructor.

Software Technology Support Center
7278 4th Street
Bldg. 100
Hill AFB, UT 84056
Phone: (801) 775-3055
Fax: (801) 777-8069
E-mail: david.cook@hill.af.mil

Theron R. Leishman
is a consultant currently
on contract with the
Software Technology
Support Center at Hill
Air Force Base, Utah.

Leishman has 18 years experience in
various aspects of software develop-
ment. He has successfully managed
software projects and performed con-
sulting services for the Department of
Defense, aerospace, manufacturing,
health care, higher education, and other
industries. This experience has provid-
ed a strong background in systems
analysis, design, development, project
management, and software process
improvement. Leishman has a master’s
in business administration from the
University of Phoenix. He is a Level II
Certified International Configuration
Manager (CICM) by the International
Society of Configuration Management
(ISCM), and is employed by TRW.

Software Technology Support Center
7278 4th Street
Bldg. 100 G19
Hill AFB, UT 84056
Phone: (801) 775-5738
Fax: (801) 777-8069
E-mail: theron.leishman@hill.af.mil

COMING EVENTS

April 9-10
Southeastern Software

Engineering Conference
Huntsville, AL

www.ndia-tvc.org/SESEC2002/

April 29-May 2
Software Technology Conference 2002

“Forging the Future of Defense
Through Technology”

Salt Lake City, UT
www.stc-online.org

May 13-17
Software Testing

Analysis and Review
(STAREAST 2002)

Orlando, FL
www.sqe.com/stareast

June 3-6
Combat Identification Systems

Conference

Colorado Springs, CO
www.usasymposium.com

June 3-7
Software Quality Engineering

Test Week
Chicago, IL

www.sqe.com

June 17-19
11th Annual Executive Forum on

Modeling and Simulation
Norfolk, VA

www.dmso.mil/index.php?page=27

July 22-25
Joint Advanced Weapons Systems Sensors,

Simulation, and Support Symposium
(JAWS S3)

Colorado Springs, CO
www.jawswg.hill.af.mil

Did this article pique your
interest?
You can hear more from these authors
at the Fourteenth Annual Software
Technology Conference Apr. 29-May 2,
2002, in Salt Lake City, UT. They will
be presenting in Track 7 on Wednesday,
May 1, at 10:00 a.m.

Risky Requirements

April 2002 www.stsc.hill.af.mil 9

A“requirement” is a necessary attribute
in a system, a statement that identifies

a capability, characteristic, or quality factor
of a system in order for it to have value and
utility to a user [1]. According to Steve
McConnell in Software Project Survival Guide,
“The most difficult part of requirements
gathering is not documenting what the
users ‘want’; it is the effort of helping users
figure out what they ‘need’ that can be suc-
cessfully provided within the cost and
schedule parameters available to the devel-
opment team.”1

Each requirement should be necessary,
verifiable, attainable, unambiguous, com-
plete, consistent, traceable, concise, imple-
mentation-free, and have a unique identifier
[1]. All of these characteristics of a good
requirement should be self-evident, with
the possible exception of “implementation-
free.” The reason that a requirement should
be implementation-free is that requirements
specify “what” shall be provided and not
“how” – the how is a design aspect rather
than a requirement. Documenting the
rationale for each requirement (why it is
required) is a good technique to reduce the
number of requirements. Taking this one
step, according to industry requirements
consultant Ivy Hooks’ experience, can elim-
inate “up to half ” of the stated require-
ments [2].

Begin by understanding the organiza-
tion’s “business requirements.” This leads to
a “vision and scope” document that
describes the background leading to the
decision to develop a new or modified sys-
tem or capability and describes the system
to be developed. An agreed upon under-
standing of the capability is critical to a suc-
cessful project. Consider having iterative
scoping meetings with customers and users.
The process of requirements elicitation
itself generates more detailed and creative
thinking about the problem that in turn can
affect the scope. As the possibilities for a
solution emerge, there are numerous deci-
sion points concerning what should and
should not be included within the scope of

the system.
The next step is to gather the stated

requirements of the customers and users of
the new capability. An effective require-
ments practice distinguishes “stated”
requirements from “real” requirements [1].
Industry experience has shown that cus-
tomers and system developers should joint-
ly evaluate stated requirements to ensure
that each is a verified need.

Part of the requirements process is to
prioritize requirements.

2
This is important,

because rarely is there enough time and
money to provide everything that is want-
ed. It is also beneficial to focus on product
benefits, not features [3]. Benefits refer to

the necessary requirements. Adding unnec-
essary features adds design constraints and
increases costs.

It is estimated that 85 percent of the
defects in developed software originate in
the requirements [1]. Once defects are
embedded in the requirements, they tend to
resist removal. They are especially difficult
to find via testing. Therefore it is crucial
that training be required for requirements
analysts and engineers that explains how to
reduce the common types of requirements
errors, including incorrect assumptions (49
percent), omitted requirements (29 percent),
inconsistent requirements (13 percent), and
ambiguities (5 percent) [2].

Use peer reviews and inspections to
reduce defects in all your requirements rep-
resentations. Peer reviews and inspections
are a best practice way of eliminating
defects. I recommend a peer review of all
work products. The extent of the review
should be based on the criticality of the
work product. Peer reviews are a very effec-
tive method for reducing the costs of a
project because they identify defects earlier.
Rework is estimated at 45 percent of project
costs, industry-wide [1]. Using peer reviews,
scenarios, and walk-throughs to validate and
verify requirements results in a more accu-
rate requirements specification and higher
customer satisfaction.

Inspections are a very rigorous form of
peer reviews and should be considered for
requirements representations. Gilb and
Graham provide an excellent guide for
inspections of any type of document [4].
According to Gilb, the capability to per-
form Gilb inspections requires five days of
formal training and a lot of rigor.3 One
advantage of the Gilb approach is that he
advocates “sampling” of work products
rather than review of the entire product –
the idea is that by identifying defects in the
first few pages, the author can utilize this
feedback to address similar problems
throughout the document or work product.

Some believe that all requirements
should be listed in a requirements docu-
ment such as a Software Requirements
Specification. Experience has shown that it
is helpful to think of “several” artifacts
comprising your requirements specifica-
tion: the database in your automated
requirements tool, the vision and scope
statement for the project, the requirements
document, and other requirements lists or
descriptions provided by customers and
users. These can include lists of require-
ments met by related legacy (historical) sys-
tems and the list of system-level (real)
requirements evolved by the requirements
manager/requirements engineer. This en-
ables us to have a more comprehensive
understanding of the real requirements that

Recommended Requirements Gathering Practices

Dr. Ralph R. Young
Northrop Grumman Information Technology

This article provides suggested conditions for performing requirements gathering and recommended requirements gathering
practices. The author has conducted an extensive review of industry literature and combined this with the practical experi-
ences of a set of requirements analysts who have supported dozens of projects. The sidebar on page 10 summarizes a set of
recommended requirements gathering practices. Involving customers and users throughout the development effort results in a
better understanding of the real needs. Requirements activities should be performed throughout the development effort, not just
at the beginning of a project.

“Using peer reviews,
scenarios, and walk-

throughs to validate and
verify requirements
results in a more

accurate ... specification
and higher customer

satisfaction.”

Risky Requirements

10 CROSSTALK The Journal of Defense Software Engineering April 2002

is communicated effectively to all stake-
holders.

One of our most common problems is
taking on too much work – attempting to
exceed requirements rather than addressing
the minimum requirements to meet real
needs. Thus, meeting minimum require-
ments is in the customers’ best interests. It

helps avoid the problems of late deliveries,
budget overruns, low morale, and poor
quality [5].

Preferred Requirements
Gathering Techniques
Following are a set of recommended
requirements elicitation techniques. Among

almost 40 such techniques available [1],
only a few have proven most effective.
These techniques can be used in combina-
tion. Their advantages are that they are
effective in emerging the real requirements
for planned development efforts. Kotonya
and Sommerville [6] provide a good discus-
sion of the context for requirements elici-
tation and analysis. More detailed discus-
sions of these techniques are provided in
Leffingwell and Widrig [7] and in
Sommerville and Sawyer [8].

Interviews. Interviews are used to
gather information. However, the predis-
position, experience, understanding, and
bias of the person being interviewed influ-
ence the information obtained. The use of
context-free questions by the interviewer
helps avoid prejudicing the response [9]. A
context-free question is a question that
does not suggest a particular response. For
example, who is the client for this system?
What is the real reason for wanting to
solve this problem? What environment is
this product likely to encounter? What
kind of product precision is required?

Document Analysis. All effective
requirements elicitation involves some
level of document analysis such as busi-
ness plans, market studies, contracts, re-
quests for proposals, statements of work,
existing guidelines, analyses of existing sys-
tems, and procedures. Improved require-
ments coverage results from identifying
and consulting all likely sources of require-
ments [10].

Brainstorming. Brainstorming in-
volves both idea generation and idea reduc-
tion. The goal of the former is to identify
as many ideas as possible, while the latter
ranks the ideas into those considered most
useful by the group. Brainstorming is a
powerful technique because the most cre-
ative or effective ideas often result from
combining seemingly unrelated ideas. Also,
this technique encourages original thinking
and unusual ideas.

Requirements Workshops. Require-
ments workshops are a powerful tech-
nique for eliciting requirements because
they can be designed to encourage con-
sensus concerning the requirements of a
particular capability. They are best facili-
tated by an outside expert and are typical-
ly short (one or a few days). Other advan-
tages are often achieved – participant
commitment to the work products and
project success, teamwork, resolution of
political issues, and reaching consensus on
a host of topics. Benefits of requirements
workshops include the following:
• Workshop costs are often lower than

are those for multiple interviews.
• They help to give structure to the

Recommended Requirements
Gathering Practices

The following is a list of recommended requirements gathering practices. They
are based on the author’s extensive review of industry literature combined with

the practical experiences of requirements analysts who have supported dozens of
projects.
1. Write and iterate a project vision and scope document.
2. Initiate a project glossary that provides definitions of words that are acceptable

to and used by customers/users and the developers, and a list of acronyms to
facilitate effective communication.

3. Evolve the real requirements via a “joint” customer/user and developer effort.
Focus on product benefits (necessary requirements), not features. Address the
minimum and highest priority requirements needed to meet real customer and
user needs.

4. Document the rationale for each requirement (why it is needed).
5. Provide training for requirements analysts and selected customer/user represen-

tatives that explains the following:
• The role of the requirements analyst, e.g., to evolve real requirements work-

ing with customers and users, not to invent requirements independently or to
“gold plate.”

• How to write good requirements.
• The types of requirements errors and how these can be reduced.
• The value of investing more in the requirements process.
• The project and/or organization’s “requirements process.”
• Overview of the methods and techniques that will be used.
• How to use the project’s automated requirements tool.
• The role of validation and verification during requirements definition.

6. Establish a mechanism to control changes to requirements and new require-
ments.

7. Prioritize the real requirements to determine those that should be met in the first
release or product and those that can be addressed subsequently.

8. When the requirements are volatile (and perhaps even when they are not), con-
sider an incremental development approach. This acknowledges that some of
the requirements are “unknowable” until customers and users start using the sys-
tem.

9. Use peer reviews and inspections of all requirements work products.
10. Use an industry-strength automated requirements tool.

• Assign attributes to each requirement.
• Provide traceability.
• Maintain the history of each requirement.

11. Use requirements gathering techniques that are known, familiar, and proven in
the organization such as requirements workshops, prototyping, and storyboards.

12. Provide members of the project team (including requirements analysts) who are
domain/subject matter experts.

13. Evolve a project and organizational approach based on successful use of policy,
process, methods, techniques, and tools. Provide a mechanism such as working
groups to share information and “best practices” among projects.

14. Establish a continuous improvement ethic, teamwork approach, and a quality
culture.

15. Involve customers and users throughout the development effort.
16. Perform requirements validation and verification activities in the requirements

gathering process to ensure that each requirement is testable.

Recommended Requirements Gathering Practices

April 2002 www.stsc.hill.af.mil 11

requirements capture and analysis
process.

• They are dynamic, interactive, and
cooperative.

• They involve users and cut across
organizational boundaries.

• They help to identify and prioritize
needs and resolve contentious issues.

• When properly run, they help to man-
age user’s expectations and attitude
toward change [11].
A special category of requirements

workshop is a Joint Application Develop-
ment (JAD) workshop. JAD is a method
for developing requirements through
which customers, user representatives, and
developers work together with a facilitator
to produce a requirements specification
that both sides support. This is an effec-
tive way to define user needs early. Wood
and Silver in Joint Application Development
[12] assert that quality systems can be built
in 40 percent less time utilizing JAD. They
explain how to perform JAD and provide
diagrams, forms, and a sample JAD design
document.

Prototyping. Prototyping is a tech-
nique for building a quick and rough ver-
sion of a desired system or parts of that
system. The prototype illustrates the capa-
bilities of the system to users and design-
ers. It serves as a communications mecha-
nism to allow reviewers to understand
interactions with the system. See
Sommerville’s Software Engineering [13] for
a good discussion of prototypes and how
they can be used. Prototyping sometimes
gives an impression that developers are
further along than is actually the case, giv-
ing users an overly optimistic impression
of completion possibilities. Prototypes
can be combined effectively with other
approaches such as JAD and models.

Use Cases. A use case is a picture of
actions a system performs, depicting the
actors [14]. It should be accompanied by a
textual description and not be used in iso-
lation of other requirements gathering
techniques. Use cases should always be
supplemented with quality attributes and
other information such as interface char-
acteristics. Many developers believe that
use cases and scenarios (descriptions of
sequences of events) facilitate team com-
munication. They provide a context for
the requirements by expressing sequences
of events and a common language for end
users and the technical team.

Be cautioned that use cases alone do
not provide enough information to enable
development activities. Other require-
ments elicitation techniques should also
be used in conjunction with use cases.
Requirements consultant Ivy Hooks rec-

ommends using operational concepts as a
simple, cost-effective way to build a con-
sensus among stakeholders and to address
two large classes of requirements errors:
omitted requirements and conflicting re-
quirements [2]. Operational concepts
identify user interface issues early, provide
opportunities for early validation, and
form a foundation for testing scenarios in
product verification.

Storyboards. A storyboard is a set of
drawings depicting a set of user activities
that occur in an existing or envisioned sys-
tem or capability. Storyboards are a kind
of paper prototyping. Customers, users, or
developers start by drawing pictures of
the screens, dialogs, toolbars, and other
elements they believe the software should
provide. The group continues to evolve
these until real requirements and details
are worked out and agreed upon. Story-
boards are inexpensive and eliminate risks
and higher costs of prototyping. Another
related technique is storytelling: the writ-
ing of vignettes to envision new products
and services based on perceived user
needs and the possibilities offered by
emerging technologies.

Interfaces Analysis. Missing or
incorrect interfaces are often a major
cause of cost overruns and product fail-
ures. Identifying external interfaces early
clarifies product scope, aids risk assess-
ment, reduces product development costs,
and improves customer satisfaction. The
steps of identifying, simplifying, control-
ling, documenting, communicating, and
monitoring interfaces help to reduce the
risk of problems related to interfaces.
Hooks and Farry provide a thorough dis-
cussion and recommendations [2].

Modeling. A model is a representa-
tion of reality that is intended to facilitate
understanding. The CORE requirements
tool has behavioral modeling capabilities.
Behavior is allocated to physical compo-
nents of the planned system. See Vitech’s
Web page at <www.vtcorp.com> for
information concerning this tool and a
trial version that can be downloaded. Uses
of the tool for modeling and example
problems are described in Buede [15]. In a
recent study of 15 requirements engineer-
ing teams supporting relatively small proj-
ects (average of 10 person-years of effort
with project duration of 16.5 months), use
of prototypes and models helped elimi-
nate ambiguities and inconsistencies and
correlated with the most successful proj-
ects [10].

Performance and Capacity Analysis.
Hofmann and Lehner [10] provide an
insight based on their study of 15 require-
ments engineering efforts: Stakeholders

emphasized that concentrating on system
functions and data resulted in a lack of
attention to the total system requirements
and in incomplete performance, capacity,
and external interface requirements. Thus,
it is vital to ensure that the requirements
gathering process provides for all require-
ments (requirements coverage).

An Innovative Concept
For an innovative approach to gathering
requirements, see “A Quick, Accurate Way
to Determine Customer Needs [16].” The
authors of this article believe customers
tend to say one thing during requirements
elicitation and then do something entirely
different. They feel that this problem is
largely due to reliance on traditional re-
quirements gathering approaches such as
focus groups, surveys, and interviews that
do not deal effectively with contradictions
in peoples’ responses.

The authors advocate “a new technol-
ogy” called imprint analysis. Imprint refers
to the collection of associations and emo-
tions unconsciously linked with a word,
concept, or experience. They believe this
method produces findings that remain
consistent over time because it takes
human emotions into account. Emotion is
the trigger to action; emotions in the pres-
ent dictate peoples’ emerging needs. The
authors believe that imprint analysis can
actually forecast customer behavior.

A Cautionary Note
Everyone involved in a particular project
should use a common set of methods and
techniques. To that end, it is advisable to
have project discussions and training ses-
sions to evolve the desired “project
approach.” Projects should use methods
and techniques that have been used suc-
cessfully on previous projects in that
organization. If there is no local prece-
dent, hire staff from outside the organiza-
tion who have previous successful experi-
ence. And above all, I strongly recom-
mend that the project involve people who
have previously successfully used all meth-
ods and techniques that are to be
employed. Providing formal training for
developers who are expected to use new
methods and tools is a valuable invest-
ment.

Automated Requirements
Tools
I recommend the use of an automated
requirements tool to support a develop-
ment effort of any size. Tiny projects
might get away with using Microsoft Word
or Microsoft Excel; however, most proj-

Risky Requirements

12 CROSSTALK The Journal of Defense Software Engineering April 2002

ects require an industry-strength require-
ments tool such as DOORS, Requisite
Pro, or Caliber RM with capabilities that
extend beyond “requirements manage-
ment.”

Using a requirements tool facilitates
requirements elicitation because it enables
better understanding of the requirements
by both the customer and the developer.
Also, an effective requirements tool helps
prioritize requirements, provides require-
ments traceability throughout the devel-
opment effort, allows assignment of mul-
tiple attributes (characteristics of require-
ments) to all requirements, and facilitates
managing requirements changes [1].

Conclusions and
Recommendations
There is a wealth of information and
guidance available in back issues of
CrossTalk, books, articles, and indus-
try conference publications, and also from
the “lessons learned” on projects in our
own organizations. Much has been writ-
ten, but perhaps too little has been consci-
entiously applied on actual projects. Do
not try to do everything at once. Rather,
encourage the project team to select and
commit to a few improved practices that
make sense in your environment.

Establish a few useful metrics that
enable evaluation of implementation
effectiveness and institutionalization of
selected practices. Remember, the things
that are measured and tracked are the ones
that improve. Make a concerted effort to
improve project communications as well
as teamwork. A committed, highly moti-
vated team can accomplish most any-
thing.◆

References
1. Young, Ralph R. Effective Require-

ments Practices. Boston: Addison-
Wesley, 2001. See also <ralph young.
net>, a Web site devoted to require-
ments-related topics.

2. Hooks, Ivy F., and Kristin A. Farry.
Customer-Centered Products: Creat-
ing Successful Products Through
Smart Requirements Management.
New York: AMACOM (publishing
arm of The American Management
Association), 2001.

3. Smith, Preston G., and Donald G.
Reinertsen. Developing Products in
Half the Time. 2nd ed. New York:
John Wiley & Sons, Inc., 1998.

4. Gilb, Tom, and Dorothy Graham.
Software Inspection. Reading, Mass.:
Addison-Wesley, 1993. See also
<www.result-planning.com>.

5. Whitten, Neal. “Meet Minimum Re-
quirements: Anything More Is Too
Much.” PM Network Sept. 1998.

6. Kotonya, Gerald, and Ian Sommerville.
Requirements Engineering: Processes
and Techniques. Chichester, England:
John Wiley & Sons, 1998.

7. Leffingwell, Dean, Don Widrig, and
Edward Yourdon. Managing Software
Requirements. Boston: Addison-
Wesley, 2000.

8. Sommerville, Ian, and Pete Sawyer.
Requirements Engineering: A Good
Practice Guide. New York: John Wiley
& Sons, 1997.

9. Gause, Donald C., and Gerald M.
Weinberg. Exploring Requirements:
Quality Before Design. New York:
Dorset House Publishing, 1989.

10. Hofmann, Hubert F., and Franz
Lehner. “Requirements Engineering as
a Success Factor in Software Projects.”
IEEE Software July/Aug. 2001: 58-66.

11. Graham, Ian. Requirements Engineer-
ing and Rapid Development: An
Object-Oriented Approach. Reading,
MA: Addison-Wesley, 1998.

12. Wood, Jane, and Denise Silver. Joint
Application Development. New York:
John Wiley & Sons, 1995.

13. Sommerville, Ian. Software Engineer-
ing. 6th ed. Harlow, England:
Addison-Wesley, 2001.

14. Schneider, Geri, Jason P. Winters, and
Ivar Jacobson. Applying Use Cases: A
Practical Guide. Reading, Mass.:
Addison-Wesley, 1998.

15. Buede, Dennis M. The Engineering
Design of Systems: Models and Meth-
ods. New York: John Wiley & Sons,
2000.

16. Afors, Cristina, and Marilyn Zucker-
man Michaels. “A Quick, Accurate
Way to Determine Customer Needs.”
Quality Progress, July 2001, 82-87.

17. McConnell, Steve. Software Project
Survival Guide. Redmond, Wash.:
Microsoft Press, 1998.

18. Wiegers, Karl E. “First Things First:
Prioritizing Requirements.” Software
Development Magazine Sept. 1999:
24-30.

Notes
1. Adapted from Steve McConnell,

Software Project Survival Guide [17]. See
Chapter 8 for valuable suggestions
concerning requirements develop-
ment.

2. Visit Karl Wiegers’ Web site <process
impact.com/goodies.shtml> to down-
load a Microsoft Excel spreadsheet
useful for prioritizing requirements.

See also Wiegers’ article, First Things
First: Prioritizing Requirements [18].

3. Industry consultant Robert Sabourin
trains and facilitates Gilb inspections.
He advises that the basic training can
be accomplished in four hours,
including one example inspection. A
mentor or champion is required to
train moderators, scribes, and process
administrators. Sabourin’s experience
is that Gilb inspections provide good
value, for example, to inspect require-
ments against sources and to inspect
all downstream work from require-
ments. Performing inspections can
foster communication and gain buy-
in. Inspections can be used to test
artifacts that otherwise would be
nearly impossible to test objectively.
Inspections can be implemented with
minimal impact on the normal work-
flow. See <www. amibug.com>.

4. See Chapter 3 of Graham’s Require-
ments Engineering and Rapid Development
for a detailed discussion of organiz-
ing and running workshops.

About the Author
Ralph R. Young,
DBA, is the director of
Software Engineering,
Systems and Process
Engineering, Defense
Enterprise Solutions at

Northrop Grumman Information
Technology, a leading provider of
information technology and systems-
based solutions. Dr. Young leads a
requirements working group of re-
quirements engineers. He teaches a
10-hour Requirements Course for
Practitioners and consults frequently
concerning both requirements engi-
neering and process improvement. Dr.
Young has received awards for team-
work, leadership, continuous improve-
ment, and publishing, and is often rec-
ognized for his contributions in
process management and improve-
ment. He is the author of Effective
Requirements Practices.

Northrop Grumman
Information Technology
Mail Stop 5S3
1500 PRC Drive
McLean,VA 22102
Phone: (703) 556-1030
E-mail: young_ralph@prc.com

April 2002 www.stsc.hill.af.mil 13

This article presents several examples
that address the challenges faced by

individuals specifying software require-
ments. For instance, while redeveloping
legacy systems, a government agency
reverse engineered the existing software
requirements. With knowledge of the
application domain, several teams reverse
engineered and defined the requirements.
They represented the user, the contractors,
and the acquisition organization. This
author was assigned as a consultant to
guide the teams in the proper specification
of requirements. The requirements were
analyzed and validated against the follow-
ing critical attributes:
• Complete: Requirements should be as

complete as possible. They should
reflect system objectives and specify
the relationship between the software
and the rest of the subsystems.

• Traceable: Each requirement must be
traceable to some underlying source
such as a system-level requirement.
Each requirement should have a
unique identifier allowing the software
design, code, and test procedures to be
precisely traced back to the require-
ment.

• Testable: All requirements must be
testable to demonstrate that the soft-
ware end product satisfies its require-
ments. To be testable, requirements
must be specific, unambiguous, and
quantitative whenever possible.
Vague, general statements must be
avoided.

• Consistent: Requirements must be
consistent with each other; no require-
ment should conflict with any other
requirement. Check requirements by
examining all requirements in relation
to each other for consistency and com-
patibility.

• Feasible: It must be feasible to devel-
op software that will fulfill each soft-
ware requirement. Requirements that
have questionable feasibility should be
analyzed during requirements analysis
to prove their feasibility. If they can-

not be implemented they should be
eliminated.

• Uniquely Identified: Uniquely identi-
fying each requirement is essential if
requirements are to be traceable and
are able to be tested. Uniqueness also
helps in stating requirements in a clear
and consistent fashion.

• Design Free: Software requirements
should be specified at the require-
ments level and not at the design
level. Describe the software require-

ment functionally from a requirement
point of view, not from a software-
design point of view, i.e., describe the
system functions that the software
must satisfy. A requirement reflects
“what” the software shall accomplish
while the design reflects “how” the
requirement is implemented.

• Using “Shall” and Related Words: In
specifications, using the word “shall”
indicates a binding provision, i.e., one
that must be implemented by the
specification users. To state non-bind-
ing provisions, use “should” or
“may.” Use “will” to express a decla-
ration of purpose (e.g., “The govern-
ment will furnish ...”) or to express
future tense [1].
If projects allocate sufficient time and

effort to validate requirements against
these critical attributes during their defini-

tion and specification, projects will miti-
gate the risks associated with inadequate
requirements.

Requirement Effort Examples
The following examples represent several
legacy systems that were in the process of
redevelopment in a modernization effort.
They depict the requirements effort only
and do not reflect any other life-cycle
activities: design, implementation, test, or
operation. These examples show some of
the requirements as initially specified by
the teams, followed by this author’s cri-
tique of the requirements against the criti-
cal attributes, and finally the resulting re-
specification.

Example 1
Initial specification: Software will not be
loaded from unknown sources onto the
system without first having the software
tested and approved.
Critique: If the software is tested and
approved, can it be loaded from unknown
sources? If the source is known, can it be
loaded if it has not been tested and
approved? This requirement is ambigu-
ous, which makes it difficult to implement
and test. It is stated as a negative require-
ment making it difficult to implement. A
unique identifier is not provided, which
makes it difficult to trace. The word
“shall” is missing.
Re-specification: 3.2.5.2 Software shall
be loaded onto the operational system only
after it has been tested and approved.

Example 2
Initial specification: 3.4.6.3 The system
shall prevent the processing of duplicate
electronic files by checking a new SDATE
record. An e-mail message shall be sent.
Critique: There are two “shalls” under
one requirement number. This is a vague
requirement. What is the e-mail message?
The requirement has design implications
[SDATE record]. A requirement should
specify what the data in the record are and
not the name of the record. The name of

Reducing Risks Through Proper
Specification of Software Requirements

Al Florence
MITRE Corp.1

Requirement definition, specification, analysis, and validation and verification are some of the biggest challenges faced by soft-
ware engineers. In many software requirements documentation, the requirements are ambiguous and inconsistent. They may
not be uniquely identified, making them untraceable and difficult to test. In many cases, they are specified at a level too high
or too low at the system or at the design level, not at the software requirements level. If these challenges are addressed, the
risk of developing systems that do not satisfy requirements will be mitigated.

“Each requirement
should have a unique

identifier allowing
the software design,

code, and test
procedures to be

precisely traced back
to the requirement.”

Risky Requirements

14 CROSSTALK The Journal of Defense Software Engineering April 2002

the record should appear in the design and
code not in the requirement. As specified it
cannot be implemented or tested.
Re-specification: 3.4.6.3 The system
shall:
a. Prevent processing of duplicate elec-

tronic files by checking the date and
time of the submission.

b. Send the following e-mail message:
1. Request updated submission of

date and time, if necessary, or
2. That the processing was successful,

when successful.

Example 3
Initial specification: 3.2.5.7 The system
shall process two new fields (provides pro-
duction count balancing info to the states)
at the end of state record.
Critique: This requirement cannot be
implemented or tested. It is incomplete.
What are the two new fields? “Info”
should be spelled out.
Re-specification: 3.2.5.7 The system shall
provide the following data items (provides
production count balancing information to
the states) at the end of state record:
a. SDATE record.
b. YR-TO-DATE-COUNT.
Re-Critique: This rewrite has design
implications [SDATE record and YR-TO-
DATE-COUNT]. A requirement should
specify what the data in the record are and
not the name of the record.
Re-specification: 3.2.5.7 The system shall
provide the following data items (provides
production count balancing information to
the states) at the end of state record:
a. Submission date and time.
b. Year to date totals.

Example 4
Initial specification: 3.2.5.9 All comput-
er-resident information that is sensitive
shall have system access controls to ensure
that it is not improperly disclosed, modi-
fied, deleted, or rendered unavailable.
Access controls shall be consistent with
the information being protected and the
computer system hosting the data.
Critique: Two “shalls” under one identifi-
er thus two requirements. The require-
ment is vague and incomplete. What does
“consistent” mean? The requirement
needs to identify the sensitive information.
As specified, it cannot be implemented or
tested.
Re-specification: 3.2.5.9 All sensitive
computer-resident information shall have
system access controls consistent with the
level of protection required to ensure that
the information is not improperly dis-
closed, modified, deleted, or rendered
unavailable. (Reference Sensitive Infor-

mation Table 5.4.1 and Levels of Protec-
tion for Sensitive Information Table
5.4.2.)

Example 5
Initial specification: 3.3.2.1 The system
shall have no single point failures.
Critique: This is an ambiguous require-
ment. It needs definition and/or identifica-
tion of what components and/or func-
tions the “no single point failures” applies.
As specified it cannot be implemented or
tested.
Re-specification: 3.3.2.1 The following
system components shall have no single
point failure:
a. Host servers.
b. Networks.
c. Network routers.
d. Access servers.
e. Hubs.
f. Switches.
g. Firewalls.
h. Storage devices.

Example 6
Initial specification: 3.2.7.1 The system
shall purge state control records and files
that are older than the operator or techni-
cal user-specified retention period.
Critique: This requirement cannot be
implemented or tested as stated. It is vague
without specifying the retention period or
providing a reference as to where the infor-
mation can be obtained.
Re-specification: 3.2.7.1 The system shall
purge state control records and files that
are older than the retention period that is
input into the system by either:
a. The operator.
b. The technical user.

Example 7
Initial specification: 3.2.6.3 The system
shall receive and process state data from
the State Processing Subsystem. The sys-
tem shall provide maintenance of the state
data files and generate various reports.
Critique: There are two “shalls” under one
requirement number and multiple require-
ments in the specification. The word
“process” in the first “shall” is vague. The
requirement needs to define the processing
required. The second “shall” does not pro-
vide for valid requirements; they cannot be
implemented or tested as stated. The
requirement needs identification of
type/amount of maintenance required.
The term “various reports” is ambiguous.
Re-specification: 3.2.6.3 The system shall
receive:
a. Production data that contain data from

multiple states.
b. Financial state data for one or more

states, extracted by the State Processing
Subsystem.

3.2.6.4 The system shall parse multi-state
data to respective state files.
3.2.6.5 The system shall display a summary
screen reporting the results of processing
for each state containing:
a. State totals.
b. State generic totals, and
c. State unformatted totals

Example 8
Initial specification: 3.2.7.1 The system
shall not prevent individuals from entering
the year for which they intend the payment,
but shall provide a checkpoint for them to
ensure that they are not making a mistake
in entering the correct year.
Critique: This is a negative requirement;
negative requirements should not be speci-
fied. They cannot be implemented. A
requirement should have all conditions that
are required. If conditions are not required
they will not be implemented. There are
two “shalls” under one requirement num-
ber. I suggest that this requirement be
structured in a positive fashion.
Re-specification: 3.2.7.1 The system
shall:
a. Allow individuals to enter the payment

year.
b. Provide a checkpoint to ensure that

individuals enter the correct payment
year.

Example 9
Initial specification: 3.2.7.3 After the sys-
tem receives the validation file, the system
shall:
• Notify the individual about acceptance

or rejection.
• The acceptance file must contain the

name control and ZIP code of the
approved individual.

• Rejected validation request must
include the Reason Code.

Critique: The second and third bullets do
not make sense, try to read them without
the first bullet:
• The system shall the acceptance file

must...
• The system shall rejected validation…

The requirement uses a “shall” and a
“must.” Unique identifiers are not provid-
ed. The requirement uses bullets, which
should not be used in specifying require-
ments. Bullets cannot be traced. This
requirement is ambiguous and cannot be
implemented or tested.
Re-specification: 3.2.7.3 When the sys-
tem receives a validation file the system
shall:
a. Reject the file if it does not contain the

approved individual’s:

1. Name.
2. ZIP code.

b. Notify the individual about acceptance
or rejection with a reason code.
(Reference Reason Codes Table 5.4.8.)

Example 10
Initial specification: 3.2.8.2 The enroll-
ment process shall take from one (1) to ten
(10) calendar days to complete for all
enrollment types.
3.2.8.3 The enrollment process shall take
no more than three (3) days to complete
for:
a. Credit enrollment.
b. Note enrollment.
Critique: These two requirements are
inconsistent and in conflict with each other.
Re-specification: 3.2.8.2 The enrollment
process shall take:
a. One (1) to three (3) calendar days to

complete for:
1. Credit enrollment.
2. Note enrollment.

b. One (1) to ten (10) calendar days to
complete for all other enrollment types.

Example 11
Initial specification: 3.2.8.6 When doing
calculations the software shall produce cor-
rect results.
Critique: Really? This is not a require-
ment. This type of requirements should
not be specified. It should be deleted.
Re-specification: Requirement deleted.

Conclusion
The teams identified more than 1,000
requirements. The issues with their initial
specification represented the entire spec-
trum of the critical attributes: complete,

traceable, testable, consistent, feasible,
uniquely identified, and design free. The
teams were receptive to the critiques,
resolved issues, and implemented the rec-
ommendations willingly. The requirements
resulting from this effort were reviewed
with senior management, accepted as spec-
ified, baselined, and allocated to develop-
ment teams for implementation.

If sufficient time and proper effort is
taken to validate requirements against criti-
cal attributes during their definition and
specification, software projects will miti-
gate the risks associated with requirements
and will considerably improve their proba-
bility of success. It is a well-known fact that
if this is not done, projects pay the conse-
quences during implementation and inte-
gration and test, not to mention during
operation.◆

Reference
1. Military Standard Specification Prac-

tices. MIL-STD-490A. U.S. Depart-
ment of Defense, 4 June 1985.

Note
1. The views expressed are those of the

author and do not reflect the official
policy or position of the MITRE
Corporation.

Suggested Readings
1. IEEE Std. 830-1998. IEEE Recom-

mended Practices for Software Require-
ments Specifications. IEEE Computer
Society. 20 Oct. 1998.

2. Cook, David A., and Les Dupaix. “The
Requirements for Good Require-
ments.” Software Technology Confer-
ence Proceedings. Mar. 2001.

Reducing Risks Through Proper Specification of Software Requirements

April 2002 www.stsc.hill.af.mil 15

About the Author
Al Florence has been
employed at major
technology firms and
is currently at the
MITRE Corporation.
He has been involved

in all phases of the life cycle as a
manager and a developer, from con-
cept to retirement in different engi-
neering disciplines, including sys-
tems, software, test, configuration
management, quality assurance, and
process improvement as a developer
and as a manager. His work has
involved many diversified projects:
spacecraft, aircraft, missiles, weapon
systems, particle accelerators, simu-
lation, and information systems. He
has been involved with the defini-
tion, specification, and validation of
requirements on many of these proj-
ects. Florence has a bachelor’s of sci-
ence degree in mathematics and
physics from the University of New
Mexico, and he did graduate work in
computer science at the University
of California in Los Angeles and at
the University of Southern
California.

The MITRE Corporation
7515 Colshire Drive
McLean,VA 22102-3481
Phone: (703) 883-7476
Fax: (703) 883-1339
E-mail: florence@mitre.org

The release of any new or revised Capability Maturity Model® has always been
accompanied with the questions "What does this mean to me?" and "How does this
compare with what I am already doing with regard to an existing model?" Mappings of the
Capability Maturity Model for Software (SW-CMMSM) Version 1.1 to and from the Capability
Maturity Model IntegrationSM for Systems Engineering/Software Engineering/Integrated
Product & Process Development (CMMI-SE/SW/IPPDSM) Version 1.1 are available on the
Software Technology Support Center (STSC) Web site at www.stsc.hill.af.mil. The STSC
performed this mapping.

Mapping of the Capability Maturity Model

Please contact us if you have any questions
through our Software Process Improvement Help Desk:

Phone (801) 777-7214 DSN: 777-7214 E-mail: larry.w.smith@hill.af.mil

Software Engineering Technology

16 CROSSTALK The Journal of Defense Software Engineering April 2002

Integrated Computer Engineering (ICE),
Inc., a subsidiary of American Systems

Corporation, is experienced in identifying
and evaluating project risk in large-scale
systems acquisition and development
programs. During the last 12 years, ICE
assessed more than 280 federal, state,
Department of Defense, and commercial
software-intensive programs and projects.
These projects were responsible for the
acquisition or development of leading-
edge weapons, communications, finan-
cial, logistics, and public service automat-
ed data processing systems.

The project risks that were collected
during ICE’s 12 years of project assess-
ments began to form a substantial data-
base of useful information. Also added to
this risk database are project risks gath-
ered from risk studies conducted by the
Institute for Defense Analysis [1], risks
identified by Capers Jones [2] and Tom
DeMarco [3], and from risks identified
during risk management services ICE
performed in support of the Software
Program Managers Network [4]. To date,
the ICE risk database has grown to more
than 800 primary and secondary project
risk indicators.

What emerged from the ICE risk
database were seven predominant charac-
teristics relating directly or indirectly to
common failures observed among those
system acquisition and development proj-
ects that had the greatest difficulty deliv-
ering a quality product on time and on
budget. The seven common characteris-
tics are listed below:
1. Failure to Apply Essential Project

Management Practices. Many troubled
projects fail to apply proven project
management disciplines like cost esti-
mation, project scheduling, resource
planning, configuration management,
and proactive risk management, then
wonder why their project is in constant
turmoil.

2. Unwarranted Optimism and Unreal-
istic Management Expectations. Some
managers recognize the potential for

negative impact on their project from
potential problem areas; however, they
choose to see things through rose-col-
ored glasses, assuming that problems
will work themselves out even when all
available evidence raises the red flag.

3. Failure to Implement Effective
Software Processes. Many projects fail
to implement effective software
processes because their approach to
process application is not balanced.
Some apply minimal process and rely
on staff expertise, while others insist
on rigorous global process confor-
mance.

4. Premature Victory Declarations.
Pressures to deliver timely products
often result in premature declarations
of completion by managers. Success
cannot be declared until products have
been completed with the built-in con-
tracted quality and reliability.

5. Lack of Program Management Lead-
ership. Managing a software project
requires “courageous” and often clair-
voyant individuals who are willing to
confront today’s challenges to avoid
tomorrow’s catastrophes. We have
observed two types of problem man-
agers: those with software engineering
and no management experience, and
those with management and no soft-
ware engineering experience. Both

types lack the ideal blend of both tech-
nical and managerial know-how.

6. Untimely Decision-Making. Some
managers avoid making time-critical
decisions until it is too late, even when
they are faced with overwhelming
warning signs of impending problems.

7. Lack of Proactive Risk Management.
Many projects claim to implement risk
management but few do so effectively.
“What distinguishes the best organiza-
tions and best managers is not just
how well they do in their successful
efforts, but how well they contain their
failures [5].”

Now, let’s take a closer look at some real-
world risks that have been associated with
each of the seven characteristics.

Failure to Apply Essential
Project Management
Practices
Typical risks are as follows (risk designa-
tors are listed in Table 1, page 19):
• (A) The process being followed and

decisions being made will result in a
product that may not satisfy the critical
needs of the user and are inconsistent
with the severity of the consequences
of project failure.

• (I) Project plans do not describe how
technology will be used resulting in a
need to continuously rework inconsis-
tent products and correct resulting
problems.

• (J) Software reliability problems will
not be discovered because procedures
are not established for the collection
and analysis of error data generated
during software development.

• (C) Project plans are unrealistic or not
implemented and do not result in a
predictable development environment.

• (K) Software defects will not be found
because the contractor has neither
conducted nor planned for software
design inspections or walkthroughs.

• (L) Essential system functions do not
perform adequately or reliably due to

Seven Characteristics of
Dysfunctional Software Projects

Michael W. Evans, Alex M. Abela, and Thomas Beltz
Integrated Computer Engineering , Inc.

Taking advantage of its many years of experience in identifying and evaluating project risks in large-scale software systems
acquisition and development programs, Integrated Computer Engineering has developed a risk database. Their analysis of
this risk database has identified seven predominant characteristics that provide insight into the causes of dysfunctional soft-
ware projects. This article identifies these characteristics and the typical real-world risks that accompany each.

“Managing a software
project requires

‘courageous’ and often
clairvoyant individuals ...

willing to confront
today’s challenges to

avoid tomorrow’s
catastrophes.”

April 2002 www.stsc.hill.af.mil 17

Seven Characteristics of Dysfunctional Software Projects

testing problems or insufficient testing
of key software components.
What we repeatedly find through

assessments is that while the mainstream
software tasks have been reasonably well
planned and implemented, certain essen-
tial project management practices are not.
The practices that are routinely at the bot-
tom of list are: cost estimation, schedul-
ing, resource planning, configuration man-
agement, risk management, earned value
reporting, performance-based metrics, re-
estimation, quality assurance, and rigorous
testing.

Some managers perceive these prac-
tices as bureaucratic red tape that only gets
in the way of real engineering. Also, meth-
ods such as risk management, metrics, and
re-estimation often provide managers with
more reality than they care to know or
handle.

Unwarranted Optimism and
Unrealistic Executive
Management Expectations
Typical risks are as follows:
• (A) The process being followed and

decisions being made will result in a
product that may not satisfy the criti-
cal needs of the user and are incon-
sistent with the severity of the conse-
quences of project failure.

• (B) The staff is not capable of imple-
menting the product and applying the
technologies selected. Excessive
turnover may impact project success.

• (C) Project plans are unrealistic or not
implemented and do not result in a
predictable development environ-
ment.
In some projects there is an underly-

ing belief that all will be well. The reality
is that planning for the worst and being
surprised when it does not occur is a
much more effective way to manage a
software project. In 1995, only 16 percent
of software projects were expected to
finish on time and on budget. An esti-
mated 53 percent of projects cost nearly
190 percent of their original estimates [6].
When managing or participating in a sys-
tem acquisition or development project
there is absolutely no rationale for opti-
mism. Historical data do not support an
overly confident posture when managing
large complex high-tech programs. Why
then, is this unfettered optimism so com-
mon?

Two principal causes of unwarranted
optimism have been observed. The first
relates to the second degree of ignorance,
or “not knowing what you don’t know.”
Staff members with insufficient experi-

ence may have unrealistic optimism about
success for the following reasons:
• They are not aware of the magnitude

of the tasks or the problems they are
attempting to solve.

• They oversimplify what it will take to
achieve the required result or product.

• They attempt to implement silver-
bullet technology solutions without
having thoroughly evaluated their
effectiveness or impact on the pro-
gram.
The second cause of unwarranted

optimism stems from unrealistic execu-
tive management expectations. “There is
a major cultural barrier to accurate esti-
mation [and scheduling] that must be
highlighted … If an early estimate [or
schedule] predicts higher cost, longer
schedules, or lower quality than client or
manager expectations, there is a strong
tendency to challenge the validity of the
estimate. What often occurs in this situa-
tion is that the project manager is direct-
ed to recast the estimate so that it falls
within preset and arbitrary boundary con-
ditions [7].”

This self-imposed cultural barrier that
some executive managers place between

themselves and their program managers
forces those managers to report unrealis-
tic estimates, schedules, and project risks
to their customers and to oversight
organizations.

The cost of runaway or defective sys-
tems often gets personalized in the dis-
missal or demotion of the responsible
executive.

I don’t want yes men around me.
Tell me what you think even if it
costs you your job.

– Louis B. Mayer, legendary head
of production at MGM

With the threat of removal hanging
over their heads, many managers estab-
lish a “can-do-at-all-cost” mentality. Bad
news is not tolerated, projections of

problems are not acceptable, and any-
thing other than full steam ahead is pun-
ished in the severest manner.

Failure to Implement
Effective Software Processes
Typical risks are as follows:
• (G) The technical process being used is

inconsistent with the project’s require-
ments and the staff ’s ability to imple-
ment it.

• (D) Design and code defects will not be
discovered until late in the develop-
ment – too late to avoid cost, schedule,
or quality impacts.

• (H) The design (system or software
depending on where the indicator is
observed) may not support the applica-
tion’s critical safety or security require-
ments.

• (F) There is inefficient software devel-
opment due to failure to allocate
requirements early in the design phase.
Many software projects’ managers

assume that since trained software engi-
neers staff the project, project-specific
standards, guidelines, and common tools
are unnecessary.

There are two factors at work here that
impact the ability of the project to apply
common processes to specific projects.
The first is project uniqueness. To para-
phrase Tim Lister, each project is unique
[8]. Each has its own quirky clients, its own
unique staff, and its own expectations of
success. Could it be that adaptation of
process is 90 percent of the problem and
the common processes are marginal?
Technology and process are not a “cookie-
cutter” solution to every development
problem; the key to success is adaptation of
the technology and process to meet the
unique challenges of a specific project or
program.

“With the right people you might suc-
ceed without process maturity, but … the
best process in the world will not make you
successful without the right people [9].”

The second factor is project balance.
Technology, tools, processes, and people
must all be in balance at the project, not the
organizational level.

Premature Victory
Declarations
Typical risks are as follows:
• (L) Essential system functions do not

perform adequately or reliably due to
testing problems or insufficient testing
of key software components.

• (N) The system may not satisfy the
needs or expectations of the user when
delivered.

“The reality is that
planning for the worst
and being surprised

when it does not occur is
a much more effective

way to manage a
software project.”

Software Engineering Technology

18 CROSSTALK The Journal of Defense Software Engineering April 2002

• (O) Early release of unqualified prod-
ucts results in unexpected failures, fail-
ures in key user areas, and potentially
corrupted data, which destroys confi-
dence in future releases.
We have observed that the pressure to

deliver timely product has a tendency to
overwhelm the need for quality and conse-
quently results in an early and unwarranted
victory declaration by management.
“… Some of my staff would tinker on a
task forever, all in the name of quality. But,
in some cases the market doesn’t care that
much about quality. Instead, it’s screaming
for the product to be delivered yesterday
and is willing to accept it even in a quick and
dirty state. The decision to pressure people
into delivering a product that doesn’t meas-
ure up to their own quality standards is
almost always a mistake [9].”

A clear understanding of the customer’s
quality expectations is an essential prerequi-
site to client satisfaction. Delivery of a fault-
less solution that is significantly over-budg-
et and so late in delivery as to be obsolete
will fail to satisfy a customer as much as a
product delivered on time that does not
meet specified requirements or that has
poor reliability.

Lack of Program Management
Leadership
Typical risks are as follows:
• (C) Project plans are unrealistic or not

implemented and do not result in a pre-
dictable development environment.

• (E) The planning has not been updat-
ed recently and now is out of date with
the project environment and does not
reflect current agreements or con-
straints.

• (M) Customer relationships cause an
environment that is unstructured and
precludes successful implementation of
a product within cost and schedule.

• (B) The staff is not capable of imple-
menting the product and applying the
technologies selected. Excessive turn-
over may impact project success.
“Poor project management will defeat

good engineering, and is the most frequent
cause of project failure [10].” Too many
people who have never developed software
are making decisions about how software
should be developed. Attributes of a good
software project manager include a broad
range of technical software development
experience, the ability to manage people
and the dynamics of a team environment,
and the willingness to proactively manage
project risk and make timely decisions. To
paraphrase Tom DeMarco, “Managers …
make the craziness go away [11].”

During a recent assessment of a severe-

ly troubled software project, the managers
did not know the status of the product, the
staff was demoralized, and the project was
severely over budget and behind schedule.
What we discovered will amaze you.
Management had set a goal for this site to
become Software Engineering Institute,
Capability Maturity Model® (CMM®) Level
3 compliant by a certain deadline.
Unbelievably, they diverted 40 percent of
the experienced engineering staff to work
the CMM issue. The manager said, “We
thought the rest could take up the slack.”
This isn’t rocket science. If you want to
manage a software project you have to
hunker down and do it right: no shortcuts,
no nonsense, no silver bullets; just a laser
beam to the finish line.

Untimely Decision-Making
Typical risks are as follows:
• (D) Design and code defects will not be

discovered until late in the develop-
ment – too late to avoid cost, schedule,
or quality impacts.

• (E) The planning has not been updated
recently and now is out of date with the
project environment and does not
reflect current agreements or con-
straints.

• (F) There is inefficient software devel-
opment due to failure to allocate
requirements early in the design phase.
“Management is the art of planning

work so that it can be accomplished within
constraints of time, cost, and other
resources at a level that will be competitive
in the marketplace [12].” Delays caused by
slow decision making erode these con-
straints even further while the project team
waits for clear direction or crucial
resources. Unless plans remain current, a
project can be caught off guard when
unexpected problems arise, leaving man-
agers with insufficient controls, discipline,
and/or support facilities to make effective
and informed decisions.

A second problem results from late
decision making. Simply stated, you can fix
a bad decision, but no action occurs while
projects wait for managers to decide what
to do. During many project assessments we
conducted, engineers have stated that they
knew what actions to take and were ready
to proceed, but could not move out until
management decided the prudent course.

“Fast decision-makers often make bet-
ter decisions than slow decision-makers,”
according to a study by Kathleen
Eisenhardt of Stanford University and Jay
Bourgeois of Virginia University. Fast deci-
sion-makers “set up systems to collect a
range of information on their business and
markets constantly, and then make deci-

sions using the data available. Slow deci-
sion-makers first analyze a problem and
sort out the questions that must be
answered. Only then, do they go out and
look for that information [13].”

Lack of Proactive Risk
Management
Typical risks are as follows:
• (P) Miscellaneous risks not being

tracked make project success unlikely.
• (Q) Risk management may not prove

effective or identify key risks.
• (R) The lack of an effective risk man-

agement process results in unplanned
problems impacting the project.
“The problem of project management,

like that of most management [is] to find
an acceptable balance among time, cost,
and performance [14].” When a project
moves out of balance, a risk results. Often
schedule performance becomes the most
important issue due to customer pressures,
resulting in a loss of focus on cost and
product performance and increased proj-
ect risk. “An effective risk management
program is dynamic and ongoing through-
out the development process and requires
the participation of everyone involved
[15].”

During our assessments, a significant
amount of time is spent on determining
the effectiveness and degree to which a
project implements risk management as
part of its management structure. In our
experience, this assessment area is a bull’s-
eye indicator of the potential for overall
project risk. Projects that fail to do an
effective job of managing risk are con-
stantly reacting to problems, while those
that manage risk well anticipate rather than
react. “Your organization will be much bet-
ter once it moves away from reacting to
change, and toward proactive anticipation
and management of change [16].” To max-
imize potential for success, risk manage-
ment should play a visible and key role in
the process of project management.

“Risk management transcends modern
management theory, such as Total Quality
Management and Business Process Re-
engineering, because it is basic to decision
making. Risk management is based on the-
ories that provide different strategies for
decision making under problematic condi-
tions [17].”

Analysis
Table 1 shows each of the seven risk char-
acteristics and their respective risk designa-
tors (an upper case letter over the range A
to R). Each risk event in the ICE database
was characterized against the risk designa-
tors, and the tallied results are shown in the

Seven Characteristics of Dysfunctional Software Projects

April 2002 www.stsc.hill.af.mil 19

third column from the left. The risk desig-
nator events were accumulated for each
risk characteristic (fourth column), and the
frequency of occurrence relative to all
observed events in the database was calcu-
lated (far right column). It should be noted
that the percentages in the far right column
do not total 100 percent, as the risk desig-
nators are not unique to each characteristic.

The ranking of the characteristics is by
frequency of characteristic occurrence;
therefore, the data show what may be the
likely dysfunctional causes, but not their
relative impact on projects or programs.

Conclusion
When reviewing dysfunctional software
projects, a reasonable approach would be
to consider the risk descriptions for each of
the seven characteristics we have identified
and determine whether they apply.

Why do projects not address these
issues if they are so apparent? The first rea-
son is denial. When you are fighting the
day-to-day realities of a software project, it
is very easy to assume that the indicators of
disaster are probably wrong, and the proj-
ect will not be impacted the way the other
12 projects were. Denial is the excuse that
enables program managers to make dumb
decisions.

The second reason is cultural barriers.
Coincidentally, all of the seven factors we
identified focus on cultural, rather than
technical, issues. “Since 1979 we have been
contacting whoever is left on the project
staff to find out what went wrong. For the
overwhelming majority of the bankrupt
projects we studied, there was not a single
technological issue to explain the failure
[18].” Factors such as the seven we
addressed here do matter, and they should
be considered essential components of any
project.◆

References
1. Technical Risk Indicators for Embed-

ded Software Development. Institute
for Defense Analysis, Paper P-3027,
Oct. 1994.

2. Jones, Capers T. Assessment and Con-
trol of Software Risks. New Jersey:
Yourdon Press, Feb. 1994.

3. DeMarco, Tom. Why Does Software
Cost So Much? New York: Dorset
House Publishing, 1995.

4. Software Program Managers Network.
16 Critical Software Practices For
Implementing Performance-Based Man-
agement. Ver. 3.0, Arlington, Va.:
Integrated Computer Engineering, Inc.,
2 Aug. 2000.

5. DeMarco, Tom. Why Does Software
Cost So Much? New York: Dorset

House Publishing, 1995. 62.
6. Standish Group International. “Chaos.”

Open Computing Copyright, Mar. 1995
SPC.

7. Jones, Capers T. Assessment and Con-
trol of Software Risks. New Jersey:
Prentice Hall, Feb. 1994. 158.

8. Lister, Tim. “Software Management for
Adults.” Software Technology Confer-
ence, 1996.

9. Davis, Alan. “Software Lemmingineer-
ing.” IEEE Software Sept. 1993.

10. Humphrey, Watts. “Three Dimensions
of Process Improvement: Part I:
Process Improvement.” CrossTalk

Feb. 1998.
11. DeMarco, Tom. Why Does Software

Cost So Much? New York: Dorset
House Publishing, 1995. 66.

12. Putnam, Lawrence H., and Ware
Meyers. Industrial Strength Software,
Effective Management Using Measure-
ment. Los Alamitos, Calif.: IEEE
Computer Society Press, 1996. 1.

13. Putnam, Lawrence H., and Ware
Meyers. Industrial Strength Software,
Effective Management Using Measure-
ment. Los Alamitos, Calif.: IEEE

Computer Society Press, 1996. 13.
14. P.V. Norden. Useful Tools For Project

Management, Operations Research in
Research and Development. Edited by
B. V. Dean. New York: John Wiley &
Sons, 1963.

15. Molt, George. “Risk Management
Fundamentals in Software Devel-
opment.” CrossTalk Aug. 2000.

16. Boehm, Barry, Raymond Madachy, and
Chris Abts. “Future Trends: Implica-
tions in Cost Estimation Models.”
CrossTalk Apr. 2000.

17. Hall, Elaine. Managing Risk. Reading
Mass.: Addison-Wesley 1997. 5.

18. DeMarco, Tom, and Tim Lister. People-
ware, Productive Projects and Teams
2nd ed. New York: Dorset House
Publishing, 1999. 4.

Characteristic
Risk

Designator

Number of
risk events

applicable to
specific Risk
Designator

Number of risk
events for

Characteristic

Frequency of
occurrence relative
to all observed risk

events
(See Note 1)

A 246
I 6
J 36
C 66
K 10

1. Failure to Apply
Essential Project
Management
Practices.

L 116

480 57%

A 246
B 32

2. Unwarranted
Optimism and
Unrealistic
Executive
Management
Expectations.

C 66
344 41%

G 162
D 15
H 26

3. Failure to
Implement Effective
Software
Processes. F 45

248 30%

L 116
N 46

4. Premature
Declarations of
Victory. O 3

165 20%

C 66
E 3
M 5

5. Lack of Program
Management
Leadership.

B 32

106 13%

D 15
E 3

6. Untimely Decision-
making.

F 45
63 8%

P 4
Q 9

7. Lack of Proactive
Risk Management.

R 11
24 3%

Note 1: The total number of risk events categorized (841 events) was used as the baseline population of risk
events for frequency of occurrence calculations.

Table 1: Seven Risk Characteristics

Did this article pique your
interest?
You can hear more from Michael Evans
at the Fourteenth Annual Software
Technology Conference Apr. 29-May 2,
2002, in Salt Lake City, UT. He will
be presenting in Track 6 on Thursday,
May 2, at 1:00 p.m.

Software Engineering Technology

20 CROSSTALK The Journal of Defense Software Engineering April 2002

About the Authors

Alex M. Abela has 18
years of professional
engineering experience,
with more than seven
years experience as a
senior project leader of

major Defense programs. He has
worked in Defense Research and
Development organizations in Australia,
United Kingdom, and the United
States. His engineering experience
spans the disciplines of information
technology, electronics, electro-optics,
and telecommunications. His interests
in information technology include the
provision of technical advice on soft-
ware systems best practices. Currently
he is working for the Australian
Department of Defense as senior tech-
nical specialist in surveillance and
reconnaissance systems.

Australian Department of Defense
Land Engineering Agency
DPM-4-32,Defense Plaza
661 Bourke Street
Melbourne,Victoria
Australia 3000
Phone:+61 3 9622 2945
Fax:+61 3 9622 2782

Michael W. Evans,
former owner and pres-
ident of Integrated
Computer Engineering,
(ICE) Inc., is now a sen-
ior vice president with

American Systems Corporation,
which recently acquired ICE as a
wholly owned subsidiary. He has led
more than 250 program-risk assess-
ments of large federal, Department
of Defense (DoD), and commercial
software acquisition and development
projects and is considered an expert
in software testing, quality assurance,
and configuration management. He is
co-founder of the Software Program
Managers Network, the driving force
behind the DoD’s Software Acqui-
sition Best Practices Initiative. His
published books include Principles of
Productive Software Management, Produc-
tive Test Management, Software Quality
Assurance and Management, and The
Software Factory.

Integrated Computer Engineering,Inc.
142 North Central Avenue
Campbell, CA 95008
E-mail: candca@aol.com

Thomas Beltz serves
as executive assistant at
American Systems
Corporation. He has
more than 10 years of
experience in Depart-

ment of Defense and commercial
software acquisition, operational test
and evaluation (OT&E), and software
best practices implementation. At the
U.S. Navy OT & E Force, he authored
an OT&E Task Schedule with more
than 1,000 program-tracking controls
to determine system readiness for for-
mal operational evaluation. He co-
developed Integrated Computer
Engineering’s Software Development
Capability Evaluation Tool, providing
a quantitative assessment of a devel-
oper’s capability to build software
while meeting program life-cycle
requirements, and he has participated
in more than 25 independent risk
assessments of large-scale software
development programs.

ICE Directorate EA
Phone:(757) 463-8483,ext.21
E-mail:thomas.beltz@iceincusa.com

April 2002 www.stsc.hill.af.mil 21

How can you select commercial off-
the-shelf (COTS) software from a

market of more than 50 available
options? Which option has the best
value for your project’s features? Should
you believe everything the vendor says?
How can you account for that when
making decisions? How can you con-
vince your company that you have little
confidence in decisions made quickly
based on a few data points? When is it
valuable to follow a structured process?
What process and method should you
follow? How can you save money and
time in future evaluations?

In response to its members’ need for
a repeatable and systematic process for
evaluating and selecting components
and COTS software, the Software
Productivity Consortium (the Consor-
tium) developed the Comparative
Evaluation Process (CEP). This article
describes the Consortium’s process so
that you may add some ideas to your
own process.

It is critical to a project’s success that
the most appropriate or “right” compo-
nent be selected. Both the budget and
schedule of a project are affected if the
right component is not selected at the
start. Off-the-shelf component use and
integration are often required by clients
and are written into contracts. The CEP
is an instance of the Decision Analysis
and Resolution (DAR) process area of
the Capability Maturity Model®

IntegrationSM (CMMISM) and a structured
decision-making process. The relation-
ship between CMMI’s DAR and CEP is
discussed at the end of this article. The
process provides detailed guidance to
alleviate the typical problems that occur
during an evaluation. For example, man-
agers often find that evaluations never
end and are quite costly to the program.
CEP’s first activity is to scope the effort
and schedule the activities.

Several features separate CEP from
similar processes. One feature is a sug-
gested set of criteria that expands the
understanding and evaluation of charac-
teristics beyond commonly evaluated
characteristics such as function or cost.
Categories of criteria include basic (e.g.,
maintainability and installation), manage-
ment (e.g., vendor viability, costs, and

required training), architecture (e.g., plat-
form and framework), strategic (e.g.,
information technology goals and busi-
ness goals), and functional, which is spe-
cific to COTS class and project context.

Another feature is the contextual focus
that is explicitly part of CEP. The context
focus enables effective use of resources to
ensure a deliberate and calculated evalua-
tion. This is in contrast to generically exer-
cising an alternative’s functionality, which
provides little or no insight into how well
each alternative aligns with your needs.

Finally is the credibility feature.
Confidence in the data gathered during

the evaluation is gained by knowing and
rating the credibility of the data source.
The selection decision includes this credi-
bility factor on how well the evaluator
knows the data values.

Comparative Evaluation
Process Activities
A systematic and repeatable process for
evaluating and selecting COTS products
provides the rationale necessary to sup-
port selection decisions made (e.g., pool
of candidates, search criteria, minimum
screening thresholds, alternatives to eval-
uate in depth, detailed evaluation criteria,
and analysis). Selections are often sec-
ond-guessed. By following a systematic
process for evaluating and selecting
COTS products, such as CEP, you ade-
quately capture and document the infor-
mation necessary to defend the selection.

CEP is made up of five top-level
activities, which are explained below and
depicted in Figure 1. Each activity has
three to five sub-activities, which are
explained in detail in the technical report
[2].

Activity 1: Scope Evaluation Effort
This activity sets the expectations for the
level of effort and schedule for the
remaining activities within CEP. It pro-
vides the expected number of COTS
products to search, screen, and evaluate.
Feedback from future activities often
requires redefining the scope for one or
more of the activities. Feedback may

Add Decision Analysis to Your
COTS Selection Process

Barbara Cavanaugh Phillips and Susan M. Polen
Software Productivity Consortium

Processes for evaluating, comparing, and selecting commercial off-the-shelf (COTS) products are often nonexistent, or when
performed, are vague, poorly documented, nonrepeatable, and inconsistent. At best, these deficiencies can decrease confidence in
the selection decision; at worst, this lack of forethought leads to poor decisions that delay a project’s development, increase life-
cycle costs, and reduce quality. It is critical to a project’s success that the most appropriate COTS product is selected. This
article describes an answer to this common problem and a decision-making process specifically for COTS evaluation, and it
provides some lessons learned from the application of this process.

“Selections are often
second-guessed. By

following a systematic
process for evaluating
and selecting COTS

products, such as CEP
[Comparative Evaluation
Process], you adequately
capture and document

the information
necessary to defend

the selection.”

SM CMM Integration and CMMI are service marks of
Carnegie Mellon University.

RepositoryRepositoryRepository

Activity 4: Evaluate
Component
Alternatives

Activity 5:
Analyze

Evaluation
Results

Preserve
Evaluation Data

Activity 1: Scope
Evaluation Effort

Activity 2: Search
and Screen
Candidate

Components

Activity 3: Define
Evaluation Criteria

Activity 5:
Analyze

Evaluation
Results

Figure 1: CEP Diagram

22 CROSSTALK The Journal of Defense Software Engineering April 2002

indicate that there were too many or too
few possible candidate components
located during the search or that the
addition of criteria should change the
scope. This activity allows you to plan
resources while minimizing and identify-
ing potential overruns.

Activity 2: Search and Screen
Candidate Components
The search for candidates first requires
that the initial search criteria and thresh-
olds (the “must haves”) be defined. The
search criteria typically are based on
required functionality and key con-
straints. Keep the criteria broad so that
the search is not limited by too many
constraints. Using the search criteria,
perform a search for possible candidates
from sources both internal and external
to the project or organization. After
locating the candidates, screen them by
applying qualified minimum thresholds
to the search criteria for each candidate.
This allows the most promising candi-
dates to be evaluated fully during
Activity 4. Candidate screening is funda-
mental and cost effective because proj-
ects rarely have sufficient resources,
budget, and schedule to evaluate every
possible candidate.

Activity 3: Define Evaluation
Criteria
This activity produces the detailed crite-
ria necessary to support a repeatable and
systematic evaluation. The definition of
criteria refines, formalizes, and expands
on the search criteria and addresses
functional, architectural, management,
strategic, performance, and financial
characteristics of the candidates.
Weights are established for all of the
evaluation criteria with respect to each
project’s importance. The selection is
based on criteria priority.

Activity 4: Evaluate Component
Alternatives
The Evaluate Component Alternatives
activity is conducted to assess how well
the alternatives meet the defined criteria.
Evaluation scenarios are developed to
evaluate the alternatives within your par-
ticular context rather than generically
exercising the alternative’s functionality.
Results are documented for analysis.
While not all alternatives can or must be
evaluated in the same manner, evaluation
results are based on the available data.
The available data may be from hands-
on experience, witnessing vendor
demonstrations, observing a user, and
reading third-party literature or vendor’s
literature. Each type of data is given a
rating value (Table 1). Credibility – rating
the confidence in what the evaluator
knows about an alternative – is then
incorporated in the simple weighted
average.

Activity 5:Analyze Evaluation
Results
The evaluation produces data on how
well each alternative meets the defined
criteria. The analysis consists of activi-
ties to compare and contrast rankings of
alternatives based on the priorities.
Sensitivity analysis, using a decision-sup-
port method, is performed to determine
the impact of criteria or groupings of
criteria on the ranking of alternatives.
More confident decisions may be made
when the impact of the criteria is ana-
lyzed.

Decision Model
We developed an easy-to-use spread-
sheet called the Decision Model that you
can create yourself in a spreadsheet to
hold the decision information (e.g., crite-
ria, alternatives, priorities, ratings, and
data charts). The Decision Model aids in
decision making when comparing similar

products using discriminating criteria.
• Software – Microsoft Excel.
• Decision Theory – Simple weighted

average.
• Rows – Criteria.
• Columns – Alternatives.
• Cells – Criteria ratings for each alter-

native.
The following describes the Decision
Model’s basic features.

Decision Theory Model
The decision theory model behind the
Decision Model is simple weighted aver-
ages. Simple weighted-average theory
applies a weight to each criterion. The
global weight is determined by multiply-
ing weight, in percentages, by the weights
of the criteria in the hierarchy. Assume
the criteria hierarchy was as indicated in
Table 2. Criteria 2.2 Vendor Viability has
a local weight of 75 percent and is a sub-
criterion of 2.0 Management, which also
has a local weight of 75 percent. To
determine its global weights multiply
75 percent by 75 percent to equal 56.25
percent.

Weighting
Weights are applied to the evaluation cri-
teria so that decisions can be made based
on the results of the component evalua-
tions. The weights are subjective and
dependent on the particular project
emphases. The decision-maker must pro-
vide a set of weights that are believed to
be appropriate for the situation at hand.
For the Decision Model, the weights in a
level of the hierarchy must add up to 100
percent for normalization purposes.
Additional averaging techniques such as
dividing 100 points among the criteria or
assigning them high, medium, and low
values may be used and converted to a
normalized scale.

Credibility
The purpose of credibility value scoring,
as discussed above, is to include how well
the evaluator knows the criteria value in
the scoring equation. Often vendor-sup-
plied information is not considered as
valid as that verified through hands-on
experience. The assignment of credibility
values should reflect a level of confi-
dence of the information contained in
the criteria ratings value. To achieve this,
Table 1 shows an example of an ordered
list with the greatest confidence at the
top of the list. This is reflected in the
value assigned to each credibility scale
item. The values are based on the experi-
ence of the evaluator. It is an attempt to
quantify what is essentially qualitative.

First Hierarchy Level Criteria
(local weight)

Second Hierarchy Level Criteria
(local weight)

Global Weight

1. Basic (25%)
1.1 Usability (50%) 12.5%
1.2 Maintainability (50%) 12.5%

2. Management (75%)
2.1 Suggested Training (25%) 18.75%
2.2 Vendor Viability (75%) 56.25%

TOTAL 100%

Table 1: Ordered List of Values Assigned to Credibility

Credibility Value Description

Verified 10 Verified in-house using hands-on experience.
Demonstrated 7 Witnessed in a focused demonstration.
Observed 5 Seen but not studied.
Heard / Read About

3
Described by a user or vendor or seen in vendor or third- party
literature.

Table 2: Global Weight Calculation Example

Software Engineering Technology

Add Decision Analysis to Your COTS Selection Process

April 2002 www.stsc.hill.af.mil 23

Calculating the Result
Using simple weighted average, the
Decision Model calculates the results
based on the criteria value and credibility
ratings. Table 3 shows an example of the
values entered into the simple weighted
average.

The scoring uses a 10-point scale to
normalize the data. For simplicity, the
average is divided by 100 putting the
result on a 100-point scale. Words used in
the rating scale are converted to numbers
using the Microsoft Excel function
VLOOKUP. The set of values are named
(Insert, Name, and Define) and refer-
enced in the formula. In the example
below, Excellent_Good_Fair_Value and
Credibility_Value are defined names. The
formula below would replace cell E3 in
Table 3 if the named values are used and
need to be converted to numbers.
Alternatively, the numbers could be used
directly.

E3=B3*VLOOKUP(C3,Excellent
_Good_Fair_Value,2,FALSE)*
VLOOKUP(D3,Credibility_Value,2,
FALSE)/100

How to Interpret Results
A special alternative in the Decision
Model is the one named the Perfect. Its
criteria rating and credibility ratings are
set at the maximum values. For the bar
chart showing the cumulative scores for
each alternative, the Perfect is set at
100 percent. When the criteria are
grouped, the Perfect allows comparison
between the highest possible score and
the alternative’s score. For example,
Figure 2 shows that Alt C has the highest
ranking for the Functional Criteria
Category at 18 percent and the Perfect
score for the category is 35 percent.
Clearly, none of the alternatives per-
formed very well in this category.
Strategic criteria was not pertinent to the
evaluation and the category was dropped.
The evaluator now knows the selected
COTS product is not going to have all the
desired functionality and may consider
refining the criteria, negotiating the
requirements, or finding another source
to provide the missing functionality.

Sensitivity analysis is a method for
determining confidence in the results.
This enables decision making based on
the impact that the criteria have on the
selection of the COTS product. The sen-
sitivity analysis may include operations
such as reviewing the weights of the eval-
uation criteria, making adjustments to the
weights, and observing the effect on the
results. This activity may be performed

multiple times depending upon what is
observed or uncovered while doing the
sensitivity analysis.

Lessons Learned
Many lessons may be learned while apply-
ing CEP; all are of equal importance:
• Early and Effective Vendor Contact.

Making contact and getting results to
inquiries from vendors is a long and
laborious effort. Do not underestimate
effort and schedule for this activity.
Staying on top of the communication
flow helps prevent schedule slips.
Smart vendors see the benefit of par-
ticipating in an evaluation. The ones
who have been most responsive are
those who provided an explanation of
how well their product performed
against the criteria. We have made it a
policy not to give vendors a copy of
the evaluation report. It subjects us to
too many unnecessary questions. Our
process is focused on finding a prod-
uct to fit the specific context of the
evaluation, not a best in class, and ven-
dors have a hard time understanding
this.

• Look to Training Requirements for
Information. Training requirements
could be an indicator of the size or
scope of installation and actual hands-
on evaluation time. Typically, this

ranges from none to one week. We
attempted to install the products for
one evaluation and finding it very dif-
ficult, discovered it required a week of
administrator training.

• User Observation. Interviewing or
observing a user may be a more prac-
tical and beneficial method of data
collection over witnessing a vendor
demonstration. The credibility factor
can account for the difference in the
source of ratings.

• Use of Evaluation Scenario and Data.
To get the most out of a vendor
demonstration, request that vendors
provide a focused demonstration with
materials from your evaluation sce-
nario and data. Vendors typically have
a set of features they want to show
you, but they may not be the features
in which you are interested.

• Subject Matter Experts. By obtaining
the services of a subject matter expert
to assist with the class of COTS prod-
ucts under evaluation, you can more
efficiently identify possible candidates,
define criteria, and develop an evalua-
tion scenario and data.

• Estimation Data. Data used to esti-
mate and scope the effort along with
actual tracking data of the evaluation
should be retained within the reposito-
ry. It will provide historical data to be

A B C D E

1 ALTERNATIVE A

2 Criteria Global Weight Criteria Rating Credibility Rating
Weighted
Average

3 2.2 Vendor Viability 56.25%
Excellent

(convert to 10)
Verified

(convert to 10)
(B3*C3*D3)/100

Table 3: Calculations in the Decision Model

Rankings by Criteria Category

18%

37%

4%

13%

10%

24%

12%

7%

14%

35%
34%

24%

26%

2% 1%2%1%

7%

10%

0%

5%

10%

15%

20%

25%

30%

35%

40%

Alt A Alt B Alt C Alt D The Perfect

Alternatives

S
co

re
s

b
y

C
at

eg
o

ry

BASIC ARCHITECTURAL MANAGEMENT FUNCTIONAL

Figure 2: Ranking by Criteria Category Example

24 CROSSTALK The Journal of Defense Software Engineering January 2002

used for estimating future evaluations.
• Demo Forum. Allowing stakeholders

to learn and witness a demonstration
of the final alternatives proves an
excellent means for getting input and
buy-in. More forums could be held to
provide hands-on experience. A forum
also may be appropriate for criteria
identification.

• Advocate. Assigning an evaluation
team member to be responsible for
installing and learning a final alterna-
tive is an effective use of limited
resources. The advocate becomes an
expert in an assigned alternative and
may rate the criteria with confidence.

• Software Installation. For those tools
to be evaluated hands on, consider
borrowing a vendor-owned laptop
with the software already installed if
installation problems become over-
whelming. Capture this problem in the
criteria ratings.

• Team Size. The ideal size for the eval-
uation team is between three and five.
A smaller team may allow bias while
bigger teams make communication
complex and scheduling difficult.
Additional lessons may be learned

while applying CEP to make confident
COTS selection. Below are answers to the
questions that began this article.
• Use a systematic and repeatable

process such as CEP, which can be tai-
lored and refined with each use to
maximize its benefit.

• To ensure the best value for your
desired features, translate your features
into measurable criteria, assign priority

to your criteria, rate your alternatives
according to the criteria, and let simple
weighted averages (or other decision-
support method) provide the answer.

• Vendors are driven by current or
potential profits. They can be cooper-
ative and responsive when it is in their
perceived interest to be so [3]. Never
confuse selling with installing. Sales-
people speak of the product’s
strengths but not the weaknesses.
Factor in your data source (e.g., hands
on, vendor demonstration, and ven-
dor literature) when scoring the alter-
native criteria.

• A systematic and repeatable process
for COTS evaluation and selection
provides the rationale necessary to
support decisions. The basis for the
decision is available for review, which
increases the confidence in the
results.

• From a project management perspec-
tive, if the decision is important to the
overall success of the project, then it
should be given adequate resources.
Those resources should be used effi-
ciently and effectively, as is the case
with CEP.

• Save all documentation (e.g., pool of
candidates, search criteria, minimum
acceptable threshold values, detailed
evaluation criteria, alternatives to
evaluate in depth, and analysis). The
evaluation may need to be reviewed
because of a new entry in the market
or a new version of an existing tool.
Maintain the evaluation data in a
repository. It is helpful to see the arti-

facts from a completed evaluation
when starting a new one to get ideas
as candidate sources and criteria.

Comparative Evaluation
Process and CMMI
Table 4 compares CEP with the DAR
process area of the CMMI to show their
relationship. The purpose of DAR is to
make decisions using a structured
approach that evaluates identified alter-
natives against established criteria.

Conclusion
In collaboration with our membership,
the process has been successfully ap-
plied to select the following:
• Change Management Tools.
• Decision Analysis Tools.
• Knowledge Management Portals.
• Process Modeling and Simulation

Applications.
• Voice Recognition Software.

In summary, a systematic approach
to COTS evaluation was developed to
help avoid common pitfalls associated
with evaluations and trade studies. This
approach assists evaluators with compo-
nent selection. It is generally applicable
to components and particularly to
COTS software. It adapts decision-sup-
port methods to assist with implementa-
tion. The approach stresses the creation
and maintenance of a repository for
capturing evaluation data and lessons
learned for future use. The Consortium
has collaborated successfully with many
members to select COTS products
using CEP and is rapidly building a
repository of completed evaluations.◆

References
1. Capability Maturity Model Integra-

tion (CMMISM) for Systems Engineer-
ing/Software Engineering Integrated
Product and Process Development.
Ver. 1.1. Pittsburgh, Penn.: Software
Engineering Institute, Dec. 2001. 530.
Continuous Representation. Decision
Analysis and Resolution (DAR).

2. Polen, Susan M., Louis C. Rose, and
Barbara C. Phillips. Component
Evaluation Process (SPC-98091-
CMC, Version 01.00.02). Herndon,
Va.: Software Productivity Consor-
tium, 1999 <www.software.org/
pub/darpa/darpa.html>.

3. Lessons Learned in Developing
Commercial Off-the-Shelf (COTS)
Intensive Software Systems. Federal
Aviation Administration. Washing-
ton, D.C.: Software Engineering
Resource Center, 2000.

CEP DAR Specific Practices (SP) and
Pertinent Generic Practices (GP)

CEP The purpose of Decision Analysis and Resolution is to analyze possible decisions using a
formal evaluation process that evaluates identified alternatives against established criteria.
GP 2.3 Provide adequate resources for performing the decision analysis and resolution
process, developing the work products, and providing the services of the process.
GP 3.1 Establish and maintain the description of a defined decision analysis and resolution
process.
GP 3.2 Collect work products, measures, measurement results, and improvement
information derived from planning and performing the decision analysis and resolution
process to support the future use and improvement of the organization's processes and
process assets.

Activity 1: Scope Evaluation
Effort

SP 1.4 Select the evaluation methods.
GP 2.2 Establish and maintain the plan for performing the decision analysis and resolution
process.
GP 2.7 Identify and involve the relevant stakeholders of the decision analysis and resolution
process as planned.
GP 2.8 Monitor and control the decision analysis and resolution process against the plan for
performing the process and take appropriate corrective action.

Activity 2: Search and Screen
Candidate Component

SP 1.2 Establish and maintain the criteria for evaluating alternatives, and the relative ranking
of these criteria.
SP 1.3 Identify alternative solutions to address issues.
SP 1.5 Evaluate alternative solutions using criteria and methods.

Activity 3: Define Evaluation
Criteria

SP 1.2 Establish and maintain the criteria for evaluating alternatives, and the relative ranking
of these criteria.

Activity 4: Evaluate
Component Alternatives

SP 1.5 Evaluate alternative solutions using criteria and methods.

Activity 5: Analyze Evaluation
Result

SP 1.6 Select solutions from the alternatives based on the evaluation criteria.

Table 4: Comparison of the CEP and the CMMI DAR Process Area

Software Engineering Technology

January 2002 www.stsc.hill.af.mil 25

About the Authors

Susan M. Polen is a
senior member of the
technical staff at the
Software Productivity
Consortium. Polen is
co-author of the Con-

sortium’s Comparative Evaluation Pro-
cess (CEP) and its supporting training
courses, Web site, and Repository of
Evaluations and has worked with a
number of Consortium members to
apply CEP. She has 13 years of soft-
ware and system development experi-
ence including Motorola and Allied
Signal. Polen has a bachelor’s degree in
computer science from Mary Washing-
ton College.

Software Productivity Consortium
SPC Building
2214 Rock Hill Road
Herndon,VA 20170
Phone: (703) 742-7178
Fax: (703) 742-7200
E-mail: polen@software.org

Barbara Cavanaugh
Phillips, certified Pro-
ject Management Pro-
fessional, is a senior
member of the techni-
cal staff at the Software

Productivity Consortium. Phillips is co-
author of the Consortium’s Compara-
tive Evaluation Process (CEP) and has
worked with the Consortium’s mem-
bership to apply CEP. She has a bache-
lor’s degree in American studies from
George Washington University and a
master’s degree in information systems
from the George Mason University.
Phillips is a member of the Institute of
Electrical and Electronics Engineers.

Software Productivity Consortium
SPC Building
2214 Rock Hill Road
Herndon,VA 20170
Phone: (703) 742-7309
Fax: (703) 742-7200
E-mail: phillips@software.org

Add Decision Analysis to Your COTS Selection Process

WEB SITES

Software Technology
Support Center
www.stsc.hill.af.mil
The Software Technology Support
Center (STSC) is an Air Force organiza-
tion established to help other U.S. gov-
ernment organizations identify, evaluate,
and adopt technologies to improve the
quality and efficiency of their software
products and their ability to predict
delivery cost and schedule. The STSC
Web site now provides mappings of the
Capability Maturity Model for Software
Version 1.1 to and from the Capability
Maturity Model IntegrationSM for
Systems Engineering/Software Engineer-
ing/Integrated Product & Process Devel-
opment Version 1.1.

Risk Management
www.acq.osd.mil/io/se/risk_management/
index.htm
This is the Department of Defense
(DoD) risk management Web site. The
Systems Engineering group within the
Interoperability organization formed a
working group of representatives from
the services and other DoD agencies
involved in systems acquisition to assist
in the evaluation of the DoD’s approach
to risk management. The group will
continue to provide a forum that pro-
vides program managers with the latest
tools and advice on managing risk.

INCOSE
www.incose.org
The International Council on Systems
Engineering (INCOSE) was formed to
develop, nurture, and enhance the
interdisciplinary approach and means to
enable the realization of successful sys-
tems. INCOSE works with industry,
academia, and government in these ways:
• Provides a focal point for disseminat-

ing systems engineering knowledge.
• Promotes collaboration in systems

engineering education and research.
• Assures the establishment of profes-

sional standards for integrity and in
the practice of systems engineering.

• Encourages governmental and indus-
trial support for research and educa-
tional programs to improve the sys-
tems engineering process and its prac-
tices.

Center for Software
Engineering
http://sunset.usc.edu/index.html
Dr. Barry W. Boehm founded the
Center for Software Engineering (CSE)
in 1993. It provides an environment for
research and teaching large-scale soft-
ware design and development processes,
generic and domain-specific software
architectures, software engineering tools
and environments, cooperative system
design, and the economics of software
engineering. One of CSE’s main goals is
to research and develop software tech-
nologies that can help reduce cost, cus-
tomize designs, and improve design
quality by doing concurrent software
and systems engineering. It also aims for
research topics that will facilitate the
training and education of skilled soft-
ware leaders.

The Open Group’s
Architectural Framework
www.opengroup.org
The Open Group is a vendor-neutral,
international, member-driven stan-
dards organization. It focuses on the
development of software standards that
enable enterprise integration. The
Open Group is a global network of
information technology customers and
vendors who are developing multi-ven-
dor integration solutions through open
standards, testing, certification, and
branding. Members’ benefits include
the following:
• Advanced knowledge of technology

and standards developments.
• The opportunity to participate in or

lead the development of standards.
• Access to information on real-world

implementations and proven practices.
• Better procurement practices sup-

ported by well-defined brands and
standards.

Project Management Institute
www.pmi.org
The Project Management Institute
(PMI) claims to be the world’s leading
not-for-profit project management pro-
fessional association. PMI provides glob-
al leadership in the development of
standards for the practice of the project
management profession throughout the
world.

26 CROSSTALK The Journal of Defense Software Engineering April 2002

Open Forum

System development programs con-
tinue to fail at an alarming rate.

Failure is defined as: a) coming in late,
b) going over budget, or c) not deliver-
ing what was required [1]. Failure often
comes only after millions of dollars in
scarce resources have been invested in
the doomed venture. In spite of all the
existing research and lessons learned,
system development programs remain
recalcitrant. There is clearly a need to
improve the quality of system develop-
ment efforts [2].

The failure to accurately and com-
pletely identify the problem to be
solved (system requirements) is a root
cause of system development failures
[3]. The following definitions will pro-
vide a base of understanding for this
article:
• What is a system requirement?

System requirements encompass a
broad spectrum of capabilities and
attributes that a business system
must possess. To properly address
the risks associated with require-
ment gathering, a sufficiently inclu-
sive definition must be adopted. For
the purposes of this discussion we
use the following definition of sys-
tem requirement:

Any function, capability, char-
acteristic, constraint, or pur-
pose the software system in
question must directly or
indirectly address or satisfy
for any stakeholder [4].

• What is a system requirement risk?
There are many formal definitions
of risk. I choose to apply the fol-
lowing definition provided by the
Project Management Institute:

A risk is an uncertain condi-
tion that, if it occurs, has a
positive or negative effect on
a project objective [5].

Where Do Requirements
Originate?
System requirements should emanate
from a business need [6]. Numerous
methodologies exist for the sole purpose
of requirement elicitation, gathering, and
documentation. The impediments to suc-
cessful requirement elicitation are numer-
ous [7]. Multiple business variables con-
verge on any effort to gather the require-
ment for a perceived business need.

Business problems must be evaluated
in the context of strategic planning
beyond the system solution being devel-
oped for any individual business need.
Shortsighted solutions to immediate
business needs might cause considerable
long-term harm to the organization [8].

Stakeholder Viewpoints
Most software systems in today’s busi-
ness environment have stakeholders with
divergent and conflicting points of view
about the nature of the business prob-
lem, let alone how it should be solved.
These varied points of view manifest in

the requirement elicitation process and
must be considered before a final system
solution to a problem can be defined [9].
Figure 1 describes a basic requirement
elicitation process.

Senior management should approach
a business need from a strategic point of
view. How does this problem fit into the
organization’s larger mission? Can a link
be drawn between solving a particular
business need and a larger organizational
performance goal?

Middle management might also have
a strategic slant to their point of view, but
will generally also bring a near-term tacti-
cal point of view to what needs to be
done about a business problem. Is this
problem preventing the accomplishment
of mission-critical functions? Will solv-
ing the perceived problem provide any
benefits to their level of the organiza-
tion? How will any proposed system
solution impact their way of doing busi-
ness?

Task level action officers bring yet
another point of view to the requirement
elicitation process. At the task execution
level of an organization, there are very
real concerns about how a new software
application will impact day-to-day opera-
tions. Software systems addressing larger
organizational objectives will often place
additional workload on those at the task
execution level. Job security, job satisfac-
tion, advancement, need for training, skill
set requirement, and retention of institu-
tional knowledge are all areas of concern
at the task execution level of the organi-
zation.

Defining the Final System
Requirement
Documenting the different stakeholder
points of view is not the end of the
requirement definition process. The re-
quirements generated by all the different
points of view must be synthesized into a

Prerequisites for Success:
Why Process Improvement Programs Fail

David Cottengim
Defense Finance and Accounting Service

Why do system development programs so often fail to meet their objectives? Why do efforts to implement software process
improvement methodologies fail to yield promised results? Regardless of the improvement methodology chosen, there are fun-
damental prerequisites to success that must be present. Absent these prerequisites, any attempt to implement a structured
approach to quality improvement will fail. It is not enough to infuse the tools of improvement into an organization. The fun-
damental nature of an organization must support the core business changes required to successfully implement an improve-
ment program.

“The seeds of system
failure are often sown

at this point in the
requirements elicitation

process. Many
organizations lack the
ability to consolidate

and reconcile
multiple stakeholder

viewpoints ...”

April 2002 www.stsc.hill.af.mil 27

single system requirement. The skills
required to consolidate divergent require-
ments and to maneuver stakeholders to
agreement are elusive.

The seeds of system failure are often
sown at this point in the requirements elic-
itation process. Many organizations lack
the ability to consolidate and reconcile
multiple stakeholder viewpoints or to
resolve conflicting requirements.

The pivotal transition for organiza-
tions wishing to reduce system require-
ment risks is the implementation of an
underlying culture that facilitates the
migration from current business practices
and points of view to a new world view
and mode of thought in support of the
new system.

Requirements Elicitation
Obstacles
Figure 2 presents the typical environmen-
tal obstacles all stakeholders must face as
they try to define business requirements.

All stakeholders are impacted by four
primary sources of system requirement
risks. Each stakeholder group will build
their own personalized amalgamation of
these factors as they present what they
perceive to be the business need and the
correct system solution to address that
need.

User Procedures
• Invalid Practices: Invalid day-to-day

practices are often discovered during
requirement elicitation exercises. Over
time the end users will follow the path
of least resistance to balance demands
on their time and resources. This will
often result in long-standing practices
that are in direct violation of formal
policy, guidelines, regulations, or legis-
lation.

• Workarounds: Limitations of the cur-
rent system solution almost always
require the end users to develop work-
around procedures to accomplish mis-
sion critical activities. These
workarounds may not be documented
or even formally acknowledged by the
management of the business area.
Workarounds may go on for years
after the original need has vaporized.

• Standard Operating Procedures (SOPs):
SOPs are often documented for a
business activity. SOPs vary in degree
of relevance and accuracy for current
or future business needs. Depending
on the degree of correlation between
the SOPs, the real business need, and
how things are really accomplished,
use of the SOPs might not be a valid

approach to defining system require-
ments for a new system.

• Local Policies: Tradition and local
preference influence business prac-
tices. Local policies regarding sharing
authority, delegation of duties, cus-
tomized methods, and adherence to
formal business rules will vary.

• Antiquated Business Practices: As
technology and business practices
evolve, it is not uncommon for per-
sonnel to hold on to old and familiar
ways of doing business. Filtering out-
dated business practices out of the
requirements for a new system solu-
tion can often be in conflict with the
desire to make the system user
friendly.

Current Capabilities
• Current System Functionality: The

easiest trap to fall into is allowing cur-
rent system capabilities to dictate
future system capabilities [10]. The
connection between current system
capabilities and real business require-
ment is dubious at best. The program
manager must maintain a focus on
business needs.

• Planned Enhancements: Many current

business applications have been in a
production environment for decades.
User requested enhancements are
almost certainly planned and back-
logged. Any effort to develop a new
system will be saddled with a list of
enhancements the old system was
going to satisfy “any day now.”

• Offline Processes: Completely map-
ping current business practices is the
key to finding offline processes. End
users usually developed offline
processes to compensate for legacy
system deficiencies. If an offline
process cannot be linked to a current
business need, it should not be a
source of system requirements for a
new system.

• Rogue Applications: Advances in
desktop application capabilities have
given managers and end users in all
areas of operations the ability to build
their own unique applications to meet
their business needs [11]. The new sys-
tem solution might need to interface
with these rogue systems or absorb
their functionality.

• Current System Limitations: Business
practices are constrained by the limita-
tions of legacy systems. Relying on

Prerequisites for Success:Why Process Improvement Programs Fail

Stakeholders

Strategic Requirements

Management Requirements

Operational Requirements

Consolidation
Reconciliation

Conflict Resolution

Multiple Stakeholder
Points of View
Documented

System
Requirement

Documentation

Figure 1: Requirements Elicitation Process

User Procedures

Current Capabilities

Formal Business Rules

Gold-Plating

New System Requirements

Standard Operating
Procedures

Local
Policies

Antiquated Business
Practices

Workarounds

Invalid
Practices

Current System
Functionality

Planned
Enhancements

Offline
Processes

Rouge
Appplications

Current System
Limitations

Cutting-Edge
Technology

User Desired
Features

Management
Information

Technical Staff
Desire to Provide

Better Product

Industry
Standards

Partnering
Agreement

Local
Policy

Legislation

Regulations

Figure 2: Environmental Obstacles to Requirements Elicitation

Open Forum

28 CROSSTALK The Journal of Defense Software Engineering April 2002

current business practices as the sole
source of requirements is not the best
technique for defining current busi-
ness needs. Current business practices
might have been overly tailored to
accommodate material limitations in
the current legacy systems.

Formal Business Rules
• Legislation: Deliberative bodies at all

levels of government have attempted
to address the performance of system
acquisition programs. Numerous leg-
islative requirements influence system
solutions for government entities.

• Local Policy: Lack of standardized
implementation methods for formal
business rules and the resulting varia-
tion in business requirements will over-
whelm attempts to develop a single sys-
tem solution to a common business
need. Peer-level organizations may
lobby to have their way of doing busi-
ness included as a mandatory feature of
a new system solution to a business
need.

• Industry Standards: Industry groups
define standards for conducting busi-
ness. These standards often influence
requirements for system solutions to
business needs. The integration and
interdependence of business systems
across organizational boundaries gen-
erate the need to stay current with
applicable industry standards to assess
their impact on planned system solu-
tions.

• Partnering Agreements: Beyond the
requirements of industry standards,
there are usually requirements between
organizations regarding how industry
standards will be implemented or how
other common business practices will
be integrated. Standards only provide
templates and guidelines. Additional
work beyond what the standard pro-
vides is normally required before a
working relationship between two
organizations can be finalized.

• Regulations: Business rules for govern-
ment-related activities often manifest
in the form of published regulations.
Regulations provide further guidance
on implementation of policy or legisla-
tive requirements. Inconsistent inter-
pretation of regulations is another
source of variation in business pro-
cesses for identical business needs.

Gold-Plating
Adding features or functionality to a sys-
tem that are not required to satisfy the
minimum operational requirements is
referred to as “gold-plating” [12].
• Cutting-Edge Technology: Rapid

advances in technological capabilities
can entice businesses to introduce
unnecessary capabilities into system
requirement documentation. The
desire to work with the latest and great-
est technology is compelling.

• User Desired Features: Technologically
savvy users will attempt to dictate the
technical solution to their business
need. Organizational level strategic
goals and objectives must supercede
user-level requests for specific techni-
cal solutions to business needs.

• Management Information: The quality
and accuracy of management informa-
tion is a top priority for system solu-
tions to business needs. The presenta-
tion of the information can be a source
of gold-plating. Users prefer informa-
tion be presented in familiar formats.
This might unnecessarily increase
development costs. This is especially
true when an activity is attempting to
implement a commercial off-the-shelf
package without making significant
modifications to the core product.

• Technical Staff Desire to Provide
Better Product: System engineers are
often ingenious and will seek new and
better technical solutions for business
needs. Organizations must balance the
three primary constraints of any proj-
ect effort as depicted in Figure 3. As
schedule and cost constraints become
fixed, it is often necessary to compro-
mise on quality and accept “good
enough” system solutions [13].

Overcoming the Obstacles
What can an organization do to reduce
system requirement risks and overcome
these impediments to successful system
development?

Contemporary Wisdom
Contemporary wisdom is to implement
some version of the various process
improvement programs as a method for

reducing system requirement risks. Several
software process improvement method-
ologies have risen to the forefront. These
methodologies include the following:
1. The Capability Maturity Model® <www

.sei.cmu.edu>.
2. International standards such as

ISO/IEC 15504 (SPICE) <www.sei.
cmu.edu/iso-15504> and ISO 9001
< w w w. i s o. o r g / i s o e n / i s o 9 0 0 0 -
14000/tour/ magical.html>.

3. Joint Application Development (JAD)
[14].

4. Rapid Application Development
(RAD) [15].

5. Quality Function Deployment (QFD)
<www.qfdi.org>.

6. Six-Sigma <www.6-sigma.com>.
While each of these methodologies

and techniques has shown positive results
in specific implementations, none of them
can claim to be the silver bullet of software
process improvement [16].

Implementing these methodologies
alone will not burrow down far enough
into the core competencies of the organi-
zation. While these methodologies do
present better techniques for reconciling
and consolidating requirements and
resolving conflicting requirements, they all
share the same fundamental prerequisites
for success.

Organizations should therefore first
focus on the foundational prerequisites for
success. Only after the prerequisite condi-
tions have been secured can a methodolo-
gy or technique significantly reduce system
requirement risks.

Building the Foundation for
Success
The environment surrounding system
development will not become less com-
plex. Organizations must adapt to the
complexity of their environment.
Implementing new requirements gathering
methodologies without the attendant
examination of the organization’s underly-
ing characteristics is too often the
approach taken to address environmental
complexity. The key to successfully adapt-
ing to increased environmental complexity
is to focus management’s attention on the
characteristics of how the organization
engages complexity.

Failure to create the prerequisite orga-
nizational character to foster the success of
process improvement or risk management
programs will cause the implementation of
any methodology to be superficial and
doom it to failure. The specifics of the
process adopted are not nearly as critical as
the philosophical change required to tran-

Constraint
Balancing and

Risk Management
ScheduleCost

Quality
Figure 3: Primary Constraints

Prerequisites for Success:Why Process Improvement Programs Fail

April 2002 www.stsc.hill.af.mil 29

sition to the new paradigm [17].
Therefore management’s focus should

shift away from a particular methodology
and toward the creation of an environment
that meets the prerequisites for success
under any of the possible methodologies.
The success of any action to manage sys-
tem requirement risks will depend on the
dominating presence of several key pre-
requisites, as shown in Figure 4 [18].

Prerequisites for Success
1. Leadership: The cornerstone to any

successful process improvement or risk
management plan is leadership focused
on clearly defined goals and objectives.
This is very difficult to find even in
small organizations and woefully lack-
ing in large institutions. Leadership
ambiguity will confuse and frustrate
personnel and misdirect resources.
Organizational leaders must remove
obstacles and move the organization
toward the selected goals and objec-
tives [19]. Leadership vacuum will guar-
antee failure of any effort to materially
reduce system requirement risks.

2. Commitment: Talk is cheap. Rhetoric is
damaging. Management must be pre-
pared to show firm commitment to risk
management policies and process
improvement methods in their own
actions and in the actions they require
from personnel. Commitment is need-
ed from every member of the organi-
zation. The level of commitment
among staff will vary but management
must be committed to building teams
of individuals that are fundamentally
behind the improvement program.
Team members must be supportive of
the efforts to implement new initiatives
[20]. Retention of key personnel who
refuse to transition to the New World
view required to support a system or
methodology demonstrates a lack of
management’s commitment and will
undermine risk reduction and process
improvement efforts.

3. Honesty: Many organizations will not
face the truth of their environment.
Failures are often spun into successes.
Yardsticks of success are shortened to
declare victory when any objective eval-
uation would return a failure verdict.
Organizations that cannot be honest
about their shortcomings and failures
will be powerless to take action for
improvement. Stakeholders need to
evaluate the results of their perform-
ance against honest objectives to deter-
mine their cause and interrelationship
[21]. Pretending projects have gone
well will breed cynicism. Rewarding

failure de-motivates personnel. An
environment of dishonesty cannot take
the action required to foster improve-
ment.

4. Training (a.k.a. education): Once a
direction is chosen, the organization
must be mobilized to support it.
Training in the chosen methodology
will show personnel the behavior that
will be rewarded. Adopting behavior
that supports the organization’s risk
management objectives is the critical
path to successful process improve-
ment. Education does not teach behav-
ior. Organizations must take care to dif-
ferentiate between education on a sub-
ject and training in a specific behavior
[22]. The organization must then be
honest when evaluating performance
relative to the trained behavior.

5. Standardization: An organization can-
not afford multiple methods for achiev-
ing the same outcome. This will be the
stumbling block for many system
implementations. Non-standard busi-
ness methods will cripple system solu-
tions to business needs. Stakeholders
must insist the organization migrate
toward standard processes and over-
come resistance against transitioning to
fewer optimized business processes
[23]. Permitting multiple processes for
accomplishing the same task will add
complexity to system requirements that
cannot be overcome by improved
processes or risk management pro-
grams.

6. Professionalism: Requirement elicita-
tion, cost estimating, system engineer-
ing, system testing, and project man-
agement have become formal profes-
sions. Each of these professions has a
body of knowledge for practitioners to
acquire and master. Professional certifi-
cations exist to help measure practi-
tioner skill level. Adequately trained

and skilled personnel should be hired
and placed in these professional posi-
tions. A team of professionals commit-
ted to following proven methods in
their work will produce consistent and
predictable results that will demon-
strate sustained improvement [24]. An
honest assessment of skills will usually
reveal significant skill-set deficiencies in
personnel holding key leadership posi-
tions. Poor decisions by unskilled per-
sonnel will produce cascading impacts
throughout a program. Hard work after
the damage is done can rarely recover
the opportunity costs of poor deci-
sions.

Implications
If you choose to agree that the prerequi-
sites for success must be present before
any software process improvement or risk
management program can succeed, then
the implications of that belief are quite
severe.

The mentality that suggests the defini-
tion of a good program manager is some-
one who can achieve success in an envi-
ronment devoid of the prerequisites for
success must be abandoned. That modality
of leadership simply cannot overcome the
obstacles confronting improvement pro-
grams.

If you agree that the prerequisites I
have identified (see Figure 4) are required
for success, then the conclusion follows
naturally that some organizations are not
ready to implement software improve-
ment programs and should not be devel-
oping complex software systems.

Software improvement or risk reduc-
tion programs absent the prerequisites for
success will continue to experience dismal
performance in their attempts to develop
software intensive systems [25]. This leaves
you with the difficult task of introspection.

Before you invest the stakeholder

Leadership

Commitment

Honesty

Training

Standardization

Professionalism

SEI-CMM

ISO/IEC 15504

ISO 9001

JAD

RAD

Six Sigma

QFD

+ =

Q
u

al
it

y

Time

Prerequisites
for Success

 Software Process Improvement (SPI)
Risk Management

Methodologies

Sustained
Improvement

Figure 4: Prerequisites for Success and SPI Risk Management Methodologies

resources entrusted to you in any type of
improvement program, a difficult decision
awaits you. If you know your organization
does not foster the environment required
for success, then you have a fiduciary duty
to not waste the resources you have been
provided.

You must first take action to transform
your organizational environment to one
that provides the prerequisites for success,
or you will simply be adding to the list of
failed improvement efforts and cancelled
system programs.◆

References
1. O’Connell, Fergus. How To Run

Successful High-Tech Project-Based
Organizations. Boston: Artech House,
1999. xvii.

2. Humphrey, Watts S. Managing the
Software Process. New York: Addison-
Wesley, 1989. 13.

3. Sommerville, Ian, and Pete Sawyer.
Requirements Engineering: A Good
Practice Guide. New York: Wiley,
1998. 64.

4. Young, Ralph R. Effective Require-
ments Practices. Boston: Addison-
Wesley, 2001. 9.

5. Project Management Institute. A
Guide to the Project Management
Body of Knowledge. PMI Publishing,
2000. 127.

6. Wiley, Bill. Essential System Require-
ments: A Practical Guide to Event-
Driven Methods. Reading, Mass.:
Addison-Wesley, 2000. 15.

7. Gilb, Tom. Software Inspection.
Addison-Wesley, 1993. 253.

8. Weinberg, Gerald M. Quality Software
Management, Vol. 1, Systems Think-
ing. New York: Dorset House, 1992.
155.

9. Metzger, Philip, and John Boddie.
Managing A Programming Project.
New Jersey: Prentice Hall, 1996. 19.

10. Kotonya, Gerald, and Ian Sommerville.
Requirements Engineering Processes
and Techniques. New York, 1998. 171.

11. Jones, Capers. Assessment and Control
of Software Risks. N.J.: Yourdon,
1994. 37.

12. Wiegers, Karl E. Software Require-
ments. Microsoft Press, 1999. 13.

13. Yourdon, Edward. Death March. N.J.:
Prentice Hall, 1997. 147.

14. Wood, Jane, and Denise Silver. Joint
Application Development. New York:
John Wiley & Sons Inc., 1995.

15. McConnel, Steve. Rapid Development.
Microsoft Press, 1996. 2.

16. Kemerer, Chris F. Software Project
Management Readings and Cases.

Boston: McGraw-Hill, 1997. 591, 600.
17. Horch, John W. Practical Guide to

Software Quality Management. Boston:
Artech House, 1996. 192.

18. Schulmeyer, Gordon G., ed., and
James I. McManus. Handbook of
Software Quality Assurance, 3rd ed.
N.J.: Prentice Hall, 1999. 61.

19. Smith, Perry M. Rules & Tools for
Leaders: How to Run an Organization
Successfully. New York: Avery, 1998.
33.

20. IEE Computer Society. Software
Engineering Project Management.
IEE Computer Society, 1997. 380.

21. Aurelius, Marcus. The Meditations Of
Marcus Aurelius, Book 12. Trans.
A.S.L. Farquharson. Knopf, 1944.
Chapters 10 and 29.

22. Beer, Michael. The Critical Path to
Corporate Renewal. Harvard Business
School, 1990.

23. Harry, Mikel, and Richard Schroeder.
Six Sigma. New York: Currency, 2000.
134.

24. Humphrey, Watts S. A Discipline For
Software Engineering. Mass.: Addison-
Wesley, 1995. 474.

25. Hall, Elaine M. Managing Risk,
Methods For Software Systems Devel-
opment. Addison-Wesley, 1998. 152.

Open Forum

30 CROSSTALK The Journal of Defense Software Engineering April 2002

About the Author
David Cottengim is a
financial analyst at the
Defense Finance and
Accounting Service,
Indianapolis. He has
more than 10 years

experience in system development for
Department of Defense activities. He
is certified as a Project Management
Professional, Certified Software Test
Engineer, and Certified Government
Financial Manager. He completed his
undergraduate education in finance
and economics and his graduate educa-
tion in finance and management infor-
mation systems at the Indiana
University Kelly School of Business.

Defense Finance and Accounting
Service - Indianapolis
Building #1, Column 230F
8899 East 56th Street
Indianapolis, IN 46249
Phone: (317) 510-3121
Fax: (317) 510-3174
E-mail: david.cottengim@dfas.mil

Get Your Free Subscription

Fill out and send us this form.

OO-ALC/TISE

7278 Fourth Street

Hill AFB, UT 84056-5205

Fax: (801) 777-8069 DSN: 777-8069

Phone: (801) 775-5555 DSN: 775-5555

Or request online at www.stsc.hill.af.mil

NAME:__

RANK/GRADE:___

POSITION/TITLE:__

ORGANIZATION:___

ADDRESS:__

__

BASE/CITY:__

STATE:___________________________ZIP:___________________________________

PHONE:(_____)___

FAX:(_____)___

E-MAIL:___@_________________________

CHECK BOX(ES) TO REQUEST BACK ISSUES:

FEB2000 � RISK MANAGEMENT

MAY2000 � THE F-22

JUN2000 � PSP & TSP

APR2001 � WEB-BASED APPS

JUL2001 � TESTING & CM

AUG2001 � SW AROUND THE WORLD

SEP2001 � AVIONICS MODERNIZATION

DEC2001 � SW LEGACY SYSTEMS

JAN2002 � TOP 5 PROJECTS

MAR2002 � SOFTWARE BY NUMBERS

BACKTALK

April 2002 www.stsc.hill.af.mil 31

Ithought the theme for this issue was
risqué requirements? By definition,

that would be requirements offensive to
established standards of decency. I envi-
sioned the cover of the issue adorned by
a young Tom Cruise skating across a
hardwood floor in a pair of white socks,
oxford shirt, and his famous tight-
whites. But that was “Risky Business” –
which is what you have if requirements
are misconstrued.

Requirements are important in devel-
oping effective software, so what’s new?
Twenty years ago we knew poor require-
ments were a major cause of software
troubles. What have we done in those
years? Studied, analyzed, decomposed,
recomposed, processed, and defined the
requirements of the business of require-
ments.

We made lists. In this issue alone we
have nine lists for requirement risks,
eight strategies to mitigate requirements
risk, eight good requirements’ character-
istics, 16 recommended requirements
gathering techniques, eight critical attrib-
utes of requirements, and 19 sources of
system and requirement risks. We also
brought out the alphabet soup of reme-
dies – JAD, RAD, UML, DOORS, QFD,
SPICE, CMM, Six Sigma, etc.

With respect to the work performed
on requirements, I think the industry has
missed the main point – to understand
customer needs. The key noun is “cus-
tomer” and the key verb “understand.”

To understand a customer, we com-
municate. You think software engineers
would understand communication, as it
is the wellspring of our commerce. It’s
basic; you transmit, and you receive. We
spend the majority of our vigor amplify-
ing transmitter power while our receivers
run on vacuum tubes, or worse, are vac-
uums – absent of matter. Yet, reception
is vital in acquiring accurate and effective
requirements and entails good listening
skills. Not just to hear but to listen, pay
attention, heed, be au fait with, and com-
prehend.

I think engineers have problems lis-
tening. Don’t believe me? I have $20 for
the first reader to find the word “listen”
or “listening” in this issue on require-
ments, outside of this article.

Engineers would rather decipher the

words to the Kingsmen’s 1963 classic
party song “Louie Louie” than decipher
customer requirements. It’s time we go
beyond gathering requirements and
focus on comprehending requirements.

“ … for it remains true that those things
which make us human [engineers] are,
curiously enough, always close at hand.
Resolve then, that on this very ground,
with small flags waving and tinny blast
on tiny trumpets, we shall meet the
enemy, and not only may he be ours, he
may be us.” 1

For those in management, “We have
met the enemy ... and he is us.”

There are several reasons for this
inadequacy. First, engineers are problem-
solving mavens. We have the answers;
why would we have to listen?

Let me demonstrate. Two buckets
both two feet high and four feet in diam-
eter containing equal mass of water are
put outside on a Utah Olympic day (far
below 0 degrees Celsius). One bucket’s
water temperature is 100 C and the
other’s is 50 C. Which one freezes first?

Are you solving the problem? Do you
have the answer? You should be asking
at least one important question. What
are the buckets made of ?

If the buckets are zinc-coated iron or
steel, the 50 C bucket will freeze first. It
starts at a cooler temperature and heat
transfer is dominantly through the buck-
et’s sides. If the buckets are wooden, the
100 C bucket will likely freeze first.
Greater evaporation of the hot water
carries off more water mass so that less
water needs to be cooled. Also, evapora-
tion carries off the hottest molecules,
lowering the average kinetic energy of
those remaining. Evaporation makes up
for the temperature difference given the
volume and surface area of the water
and insulation of the wood.

Second, engineers often listen for
content void of context and intent. John
F. Kennedy’s famous statement, “Ich bin
ein Berliner,” was grammatically correct
but ambiguous and uncommon. It is like
saying “I am a Hamburger,” instead of
“I’m from Hamburg.” “Berliner”
denotes a person from Berlin and
“Pfannkuchen” denotes a jelly donut.
Outside of Berlin, a “Pfannkuchen” is a

pancake, so the term “Berliner
Pfannkuchen” was used to denote the
jelly donut in Berlin, which usually gets
shortened to “Berliner.” Berlin natives
understood Kennedy because they un-
derstood context and intent. Engineers,
on the other hand, thought he was a
gooey pastry.

Third, engineers view requirements
as constraints to creativity. The Cat in the
Hat was Ted Geisel’s response to John
Hersey’s revolutionary article “Why
Can’t Johnny Read?” Geisel used a pre-
determined list of 223 words to create
the classic alternative to Dick and Jane.
It’s rumored that Geisel wrote Green Eggs
and Ham on a bet from his publisher,
Bennet Cerf, to write a book using only
50 different words. Dr. Seuss did not see
constraints; he saw challenges.

Finally, engineers have tin ears for
prosody, discourse, and rhetoric. Take
the expression “I could care less.” My
colleagues suggest this expression of dis-
dain is illogical and should be “I couldn’t
care less.” They argue that if you could
care less than you do, you really do care,
the opposite of what you are trying to
say.

Lighten up Spock! Stop focusing on
the logic and listen to the stress and into-
nation. The original expression is pro-
nounced – I could CARE LESS. It’s not
illogical; it’s sarcastic. The point of sar-
casm is to make an assertion that is man-
ifestly false or accompanied by ostenta-
tious intonation, to deliberately imply its
opposite. I know; you could care less.

As a précis, I sense engineers have a
hard time listening because the principles,
techniques, and skills associated with lis-
tening are considered soft science. En-
gineering is based on hard science. It
would be easier to turn Luke Skywalker
to the dark side than it would to turn an
engineer on to soft science. How ironic,
we build software but we snub soft sci-
ence.

Looking at the software industry’s
record, our requirements are risqué –
offensive to established standards of lis-
tening. Are you listening?

— Gary Petersen,
Shim Enterprise, Inc.

Risqué Requirements

1. From the foreword to The Pogo Papers, Copyright 1952-53.

CrossTalk / TISE

7278 4th Street
Bldg. 100
Hill AFB, UT 84056-5205

PRSRT STD
U.S. POSTAGE PAID

Albuquerque, NM
Permit 737

Sponsored by the
Computer Resources
Support Improvement

Program (CRSIP)

	Cover
	Index
	From the Publisher
	Requirements Risks Can Drown Software Projects
	Coming Events
	Recommended Requirements Gathering Practices
	Reducing Risks Through Proper Specification of Software Requirements
	Mapping of the Capability Maturity Model
	Seven Characteristics of Dysfunctional Software Projects
	2002 CrossTalk Paper Airplane Contest
	Add Decision Analysis to Your COTS Selection Process
	WebSites
	Prerequisites for Success: Why Process Improvement Programs Fail
	BackTalk
	Back Cover

