

A Study of Best Practice Adoption by Defense Acquisition Programs
This article presents the results of one study to measure the degree to which best practice
adoption is used in existing defense acquisitions.
by Dr. Richard Turner

Achieving CMMI Level 5 Improvements with MBASE and the CeBASE
Method
When the spiral model and MBASE are combined with the Experience Factory, the result
is the unified Center for Empirically Based Software Engineering method.
by Dr. Barry Boehm, Dr. Daniel Port, Apurva Jain, and Dr. Victor Basili

U.S. Defense Department Requirements for Information Security
To protect against cyberattacks, the DoD needs secure information management systems for increasingly
sensitive shared data, while also protecting critical infrastructures.
by Kevin J. Fitzgerald

What is Software Quality Assurance?
This article paints the entire picture of software quality assurance, including safety, reliability, independent
verification and validation, and metrics.
by Dr. Linda H. Rosenberg

Surviving the Top 10 Challenges of Software Test Automation
This article examines trouble spots in capture/playback test automation tools in an effort to mitigate the
risks of tool abandonment.
by Randall W. Rice

Information Security System Rating and Ranking
Readers learn how to better apply measures or metrics to reliably depict the assurance associated with a
specific hardware and software architecture.
by Dr. Rayford B. Vaughn Jr., Ambareen Sira, and Dr. David A. Dampier

Defeating the Forces of Nature:Two Workshops on Spiral Development
These workshops recommend a number of steps to aid in Department of Defense acquisitions.
by Dr. Wilfred J. Hansen

Cover Design by
Kent Bingham.

3

8

16

25

33

34

35

DeparDepar tmentstments

Best Best PracticesPractices

ON THE COVER

2 CROSSTALK The Journal of Defense Software Engineering May 2002

4

9

17

22

26

30

33

SoftwarSoftware e EngineeringEngineering TTechnoloechnologgyy

From the Publisher

Call for Articles

Coming Events

JOVIAL Services

Web Sites

Letters to the Editor

IEEE Certification

BackTalk

CrossTalk Article Submissions:We welcome articles of interest to the
defense software community.Articles must be approved by the
CROSSTALK editorial board prior to publication. Please fol-
low the Author Guidelines, available at www.stsc.hill.af.mil/
crosstalk/xtlkguid.pdf. CROSSTALK does not pay for submis-
sions. Articles published in CROSSTALK remain the proper-
ty of the authors and may be submitted to other publications.
Reprints and Permissions: Requests for reprints must be
requested from the author or the copyright holder. Please
coordinate your request with CROSSTALK.
Trademarks and Endorsements: This DoD journal is an
authorized publication for members of the Department of
Defense. Contents of CROSSTALK are not necessarily the
official views of, or endorsed by, the government, the
Department of Defense, or the Software Technology Support
Center. All product names referenced in this issue are trade-
marks of their companies.
Coming Events:We often list conferences, seminars, sympo-
siums, etc. that are of interest to our readers.There is no fee
for this service, but we must receive the information at least
90 days before registration. Send an announcement to the
CROSSTALK Editorial Department.
STSC Online Services: www.stsc.hill.af.mil
Call (801) 777-7026, e-mail: randy.schreifels@hill.af.mil
Back Issues Available:The STSC sometimes has extra copies
of back issues of CROSSTALK available free of charge.
The Software Technology Support Center was established
at Ogden Air Logistics Center (AFMC) by Headquarters U.S.
Air Force to help Air Force software organizations identify,
evaluate, and adopt technologies to improve the quality of their
software products, efficiency in producing them, and their abil-
ity to accurately predict the cost and schedule of their deliv-
ery.

SPONSOR

PUBLISHER

ASSOCIATE
PUBLISHER

MANAGING EDITOR

ASSOCIATE EDITOR

ARTICLE
COORDINATOR

CREATIVE SERVICES
COORDINATOR

PHONE

FAX

E-MAIL

CROSSTALK ONLINE

CRSIP ONLINE

Lt. Col. Glenn A. Palmer

Tracy Stauder

Elizabeth Starrett

Pamela Bowers

Julie B. Jenkins

Nicole Kentta

Janna Kay Jensen

(801) 586-0095
(801) 777-8069
crosstalk.staff@hill.af.mil
www.stsc.hill.af.mil/
crosstalk

www.crsip.hill.af.mil

Subscriptions: Send correspondence concerning
subscriptions and changes of address to the following
address.You may e-mail or use the form on p. 25.

Ogden ALC/TISE
7278 Fourth St.
Hill AFB, UT 84056-5205

Open Open FForumorum

Online Online ArArticleticle

2 May, Track 7

30 April, Track 130 April, Track 1

30 April, Track 1

1 May, Industry Plenary

2 May, Track 8

1 May, Track 5

From the Publisher

As this issue of CrossTalk goes to print, the Software Technology Support Center
(STSC) and Utah State University are busy working the final details of the 14th Annual

Software Technology Conference 2002 – “Forging the Future of Defense Through
Technology.” With abstract submittals up dramatically from the past year and a slate of dis-
tinguished keynote speakers, we are confident this year’s conference will be as strong as ever.

What is the future of software technology? As military departments transform opera-
tions, commands define new methods of force employment, and industry develops the next

generation of advanced weapons, the prognosis of many software technocrats is unfolding –
increased demand for quality, rising importance of information assurance, and new requirements
demanding interoperability and exchange of data across systems. These technical challenges must be
met while competing for talent, training a new workforce, and developing more mature organizations
that can consistently deliver new products on schedule while increasing efficiency. The articles in this
month’s CrossTalk explore some of these challenges.

First we present the results of a study by Dr. Richard Turner, faculty member of The George
Washington University and assistant deputy director for the Software Intensive Systems Office of the
Under Secretary of Defense. In A Study of Best Practice Adoption by Defense Acquisition Programs,
Dr. Turner states that a survey of 14 software centers involving 150 programs indicated that despite
demonstrated effectiveness and awareness, only about 25 percent of programs fully adopt any given
best practice. He also explores barriers to implementation. The data show that with regard to soft-
ware development and acquisition practices, leadership must focus on implementation.

How can organizations develop a culture and practices to achieve success? Dr. Barry Boehm,
Dr. Daniel Port, and Apurva Jain of the University of Southern California and Dr. Victor Basili of
the University of Maryland address this question in part four of a series of articles for CrossTalk.
Building on the project-level benefits of Model-Based (system) Architecting and Software
Engineering (MBASE), and Schedule as Independent Variable (SAIV) approaches in the previous
article, this month’s work, Achieving CMMI Level 5 Improvements with MBASE and the CeBASE Method,
describes how to address the CMMI organization-level process areas, particularly those of achieving
continuous improvement.

The need for cooperation and data sharing among intelligence, military, and law enforcement
organizations is the backdrop for U.S. Defense Department Requirements for Information Security by Kevin
J. Fitzgerald of Oracle Corporation. Information security and multi-level security requirements are
becoming primary considerations for the design of any major system (weapon or information).
Fitzgerald outlines the basic requirements and information security terminology and makes a case for
secure, independently evaluated solutions that incorporate security into the entire computing infra-
structure.

Following this, Dr. Linda H. Rosenberg, Goddard Space Flight Center, NASA, in her article, What
is Software Quality Assurance? defines the link between system safety and mission success to software
quality assurance.

As the size of software products grows, effective test automation becomes necessary. In our next
article, Surviving the Top 10 Challenges of Software Test Automation, Randall W. Rice discusses common
problems with test automation and describes strategies for improvement. Making test automation an
integral part of the organization and engineering process is necessary to gain its benefits.

Lastly, Information Security System Rating and Ranking by Dr. Rayford B. Vaughn Jr., Ambareen Sira,
and Dr. David A. Dampier all of Mississippi State University summarizes information gathered from
a joint workshop conducted with both government and commercial sector engineers. The result was
a characterization of information security metrics, and a case that processes, procedures, tools, and
people all interact to produce assurance in systems. An effective set of measures must incorporate all
these areas.

These topics – best practices, implementing organizational change, metrics, quality assurance, test
automation, and information security – are but a few of those to be presented and displayed at this
year’s Software Technology Conference, April 29-May 2, 2002. We hope to see you there as we all
share ideas that will carry us into the future of software technology.

What Are the Future Challenges
of Software Technology?

Lt. Col. Glenn A. Palmer
Director, Computer Resources Support Improvement Program

May 2002 www.stsc.hill.af.mil 3

The United States Department of
Defense (DoD) spends an estimated

$20 billion a year on software to support
its infrastructure; operate its weapons sys-
tems; and provide command, control,
communications, computing, intelligence,
surveillance, and reconnaissance func-
tions. DoD acquires the large majority of
this software from contractor sources.

There have been significant cost over-
runs and schedule delays experienced in
DoD software-intensive system acquisi-
tions, resulting in numerous audits and
evaluations of acquisition programs by
independent government and industry
organizations. Such evaluations have con-
sistently indicated that programs are at
risk partially because of failure to imple-
ment best practices. The evaluations have
recommended the implementation of a
variety of practices to improve perform-
ance [1-8].

A study by Anderson and Rebentisch
[9] of 23 military programs found that
practice implementation for eight recom-
mended commercial practices1 ranged
from 17 percent to 83 percent with essen-
tially half of the practices implemented
under 40 percent of the time and half
over 50 percent of the time.

This article reports on research con-
ducted to estimate how broadly acquisi-
tion best practices are implemented with-
in DoD. The study involved developing
and conducting a survey to establish the
implementation and perceived effective-
ness of a set of best practices.

Study Methods
The first critical issue was deciding whom
to survey. It was desirable to obtain as
wide a sample as possible with the least
amount of interference in the acquisition
program activities. For this reason, it was
determined that the most effective way to
access a wide variety of projects was to
contact the various military software cen-

ters that provide software expertise to the
programs. These centers act as intramili-
tary consultants or centers of excellence
to provide expert resources to the acquisi-
tion program offices. Their personnel are
in a position to provide informed judg-
ments without any political bias from pro-
gram loyalty.

The second critical decision was
selecting the best practices for evaluating
adoption. Since one of the objectives of
this research was to determine how to
support the implementation of best prac-
tices, it was decided to use the most wide-
ly known and oldest set of practices as the
baseline for the adoption study. This
would maximize the odds that program
managers would have heard of the prac-
tices and that the acquisition personnel
would have encountered them in use.
Therefore, the original nine Airlie prac-
tices2 were used in the survey.

The following definitions of the
Airlie practices are derived from the
Software Program Managers Network
(SPMN) materials [10, 11]. Copies of the
SPMN material defining the practices
were included in the materials sent to the
survey participants. They are as follows:
1. Formal Risk Management. A formal

risk management process requires
acceptance of risk as a major consider-

ation; commitment of program
resources to managing risk; and use of
planned, documented methods for
identifying, monitoring, and managing
risks.

2. Agreement on Interfaces. A baseline
interface specification must be estab-
lished and agreed to by all stakeholders
before implementation activities begin.
A separate software specification must
be developed with explicit and com-
plete interface information. This is
particularly critical with human/
machine interfaces and where system
interoperability is a requirement.

3. Formal Inspections. Inspections of all
acquisition and development docu-
mentation should be conducted
according to planned, documented
processes and the results placed under
configuration control, tracked, and
resolved.

4. Metrics-Based Scheduling and Man-
agement. Statistical quality control of
costs and schedules should be main-
tained. Reasonable cost and schedule
projections should be made before
program start, and specific measure-
ment processes should be put in place
early in the program and rigorously
followed. Measurement results should
figure prominently in program reviews
and management decisions.

5. Binary Quality Gates at the Inch-
Pebble Level. Status should be tracked
through binary completion of relative-
ly small tasks. Activities are either
incomplete or complete. This is to pre-
vent the “80-percent-complete” syn-
drome where the estimated comple-
tion figure is reported without particu-
lar rigor.

6. Program-Wide Visibility of Progress
vs. Plan. Core indicators of project
health and performance should be
readily available to all project partici-
pants. Anonymous feedback channels

Best Practices

4 CROSSTALK The Journal of Defense Software Engineering May 2002

A Study of Best Practice Adoption by
Defense Acquisition Programs

Dr. Richard Turner
The George Washington University

Best practices are often recommended as a way to improve the success and quality of soft-
ware-intensive system acquisitions within the Department of Defense. However, one of the
primary questions raised by this recommendation is, “To what degree have existing projects,
in fact, adopted the best practices?” While the assumption is that most programs are not
using best practices, there are few specific studies available. This article presents the results
of a study that measured best practice adoption in defense acquisitions.

Tuesday, 30 April 2002
Track 1: 3:00 - 3:40

Ballroom A

“... evaluations have
consistently indicated
that programs are

at risk partially
because of failure

to implement
best practices.”

May 2002 www.stsc.hill.af.mil 5

A Study of Best Practice Adoption by Defense Acquisition Programs

should be provided to enable bad news
to be propagated up and down the
project hierarchy without fear of
reprisal for truth telling.

7. Defect Tracking Against Quality
Targets. Defects should be tracked
according to a planned, documented
process; measured against established
targets; and systematically tracked
through removal or resolution.

8. Configuration Management. A plan-
ned, documented process is followed
to identify, document, monitor, evalu-
ate, control, and approve changes
made during the system life cycle to
any system-related artifact that is
shared by more than one individual or
organization.

9. People-Aware Management Account-
ability. Management should treat per-
sonnel as their principle resource by
staffing qualified people, encouraging
continuous improvement, and foster-
ing an environment conducive to low
voluntary personnel turnover.

Survey Instrument
In developing the instrument, we found it
useful to think of adoption as having two
components: awareness and implementa-
tion. Awareness, as defined by Hilburn
[12], represents a level of individual
knowledge about the practice that
includes the following:
• Understanding of the existence and

context of the practice within the con-
text of software acquisition.

• A general, informal explanation of the
practice.

• Identification of references (human/
written) that provides greater depth of
knowledge about the practice.
The other component, implementa-

tion, requires that the organization put
into place the requisite infrastructure,
training, resources, and policy to effec-
tively utilize the practice in doing busi-
ness.

The adoption survey instrument was
designed to provide data that addressed
both awareness and adoption. It collected
data in the following areas:
1. The number of programs supported

by the respondent to establish the
overall program sample.

2. The size of those programs as desig-
nated by Acquisition Category
(ACAT): ACAT I, ACAT II, ACAT
III, or Other.3

3. The quality of practice adoption for
each program as measured by the
compliance with the practice defini-
tion in the Airlie material. This was
captured by having each participant

differentiate between full compliance
and partial compliance for each of the
projects. Partial compliance would be
a surrogate for awareness, while full
compliance would represent implemen-
tation. Obviously, this is not a perfect
surrogate. However, since partial com-
pliance does, in fact, capture aware-
ness, the worst error would be that of
underestimating awareness. It was
decided that such an error could be
dealt with by considering it in the
analysis. The data were gathered for
each Airlie practice as the following:
• The number of programs in each

size category that fully implement-
ed the practice.

• The number of programs in each
size category that implemented
some facet of the practice.

4. An evaluation of the perceived overall
effectiveness of the practice as
observed by the center personnel
measured on a five-point scale: Highly
Effective (5), Very Effective (4),
Moderately Effective (3), Somewhat
Effective (2), Negligibly Effective (1).
This scale was chosen to reflect that
as best practices, the practices were, at
worse, ineffective.

Results
Of the 14 centers asked to participate,
seven responded to the data call. Six of
the seven provided the requested data:
1. Army TACOM TARDEC
2. Army CECOM
3. Navy NAVSEA
4. Navy NUWC
5. Navy NAVAIR
6. Air Force ESC

The seventh respondent, Air Force
ASC, provided narrative comments only.
The responses covered 150 software
acquisition programs broken out as
shown in Tables 1 through 3.

Airlie Practice Adoption Data
The responses to the survey resulted in
1,350 possible program-practice pairs (150
programs times nine practices) where a
particular Airlie practice could be adopted
by a particular program. Table 4 shows the
summarized results of the survey when
calculated against this full complement of
program-practice pairs. The terms partial
and full refer to whether the respondent
indicated that the program partially or fully
implemented the practice.

Table 5 presents the adoption data by
practice. The percentages represent the

Service ACAT I ACAT II ACAT III Other Total
Air Force 1 0 16 62 79
Army 9 11 13 6 39
Navy 2 6 7 17 32
Total 12 17 36 85 150

ACAT I ACAT II ACAT III Other
8% 11% 24% 57%

Overall ACAT I ACAT II ACAT III Other Total
Partial 67% 52% 38% 69% 59%
Full 13% 29% 31% 24% 25%
Total 80% 80% 69% 93% 84%

Air Force ACAT I ACAT II ACAT III Other Total
Partial 44% None 56% 78% 73%
Full 56% None 12% 21% 20%
Total 100% None 68% 99% 93%
Army ACAT I ACAT II ACAT III Other Total
Partial 64% 45% 21% 13% 36%
Full 9% 24% 50% 67% 36%
Total 73% 70% 70% 80% 72%
Navy ACAT I ACAT II ACAT III Other Total
Partial 89% 63% 29% 54% 52%
Full 11% 37% 40% 18% 26%
Total 100% 100% 68% 72% 78%
Note: Numbers may not sum due to rounding

Air Force Army Navy
53% 26% 21%

Table 1: Programs Reported by Service and ACAT Designation

Table 2: Percentage of Programs Represented
by ACAT Designation

Table 3: Percentage of Programs Represented
by Service

Table 4: Overall Results of Adoption Study (Percent of Possible Program/Practice Pairs)

Best Practices

6 CROSSTALK The Journal of Defense Software Engineering May 2002

number of projects reporting the particu-
lar value divided by the total number in
the ACAT designation category.

Airlie Practice Effectiveness Data
Table 6 presents the effectiveness ratings
by practice as percentages of respondents
rating the practice in the particular cate-
gories from Highly Effective (HE), Very
Effective (VE), Moderately Effective
(ME), Somewhat Effective (SE), through
Negligibly Effective (NE). The effective-
ness value is the mean of the scores
received using five as the value for HE,
four for VE, three for ME, two for SE,
and one for NE. Table 7 shows the over-
all results with the practices ranked by
effectiveness.

Common barriers reported were as
follows:
• Lack of Resources. In general, program

offices lack sufficient software-educat-
ed staff to implement many of the
practices. Some lack sufficient core
staff and are too busy fighting everyday
fires to even consider best practices.

• Inadequate Contracts. Some contracts
do not allow the flexibility needed to
implement practices that require devel-
oper support without costly time- and
energy-consuming modifications.

• Data Accuracy, Availability, and
Latency. Practices often depend on
accurate, timely data that are simply not
available to many DoD programs. The
lack or unavailability of valid, useful

historical data often stymies estimation
practices.

• Management Awareness and Commit-
ment. Several comments were made
about managers who did not under-
stand that there was a problem or who
did not want to spend the resources on
a practice that might actually add risk
rather than reduce it. Management
must be willing to expend resources
and perhaps political capital to institute
practices.

• Lack of Credible Evidence. Comments
were received concerning the need to
prove that the benefits of practices
were worth the cost of practice imple-
mentation.

Analysis
The first observation is that the practices
are widely recognized across the programs
as indicated by the high percentage (84 per-
cent) of either partial or full implementa-
tions. Any particular practice was imple-
mented in some form for at least 69 per-
cent of the projects reporting. Three of the
practices were implemented in around
95 percent of the projects. However, when
only considering full implementations,
those figures drop dramatically to an aver-
age of 25 percent across all programs with
the lowest rate for a specific practice adop-
tion of 15 percent and the highest rate of
38 percent.

Across services, adoption rates were
generally consistent. The Army had a gen-
erally higher percentage of full implemen-
tation. Figure 1 illustrates the relationships
between the services.

The practices were evaluated as relative-
ly effective, with the majority of responses
falling in the moderately effective to very effective
range. The practice considered least effec-
tive (binary quality gates) still had a mean
score of 3.27, placing it in the moderately
effective category.

If we look at the adoption and effec-
tiveness data together, there is some corre-
lation between the perceived effectiveness
of a practice and its adoption. This seems
logical, since in budget- and schedule-con-
strained programs, the practices with the
highest effectiveness would seem more
likely to be implemented.

Conclusions
As stated earlier, we have used partial com-
pliance as a surrogate that implies aware-
ness and full compliance to imply imple-
mentation. Therefore, the primary finding
from the adoption research is that despite
the widespread awareness of the best prac-
tices (the average of programs implement-
ing practices was 85 percent, which as we

 Effectiveness*Best Practice
HE VE ME SE NE

Effectiveness
 Score*

Formal risk management 14% 50% 29% 7% 0%
Agreement on interfaces 36% 43% 21% 0% 0%
Formal inspections 21% 36% 14% 21% 7%
Metric-based scheduling and management 15% 38% 46% 0% 0%
Binary quality gates at the inch-pebble level 18% 18% 36% 27% 0%
Program-wide visibility of progress vs. plan 15% 69% 8% 8% 0%
Defect tracking against quality targets 23% 38% 38% 0% 0%
Configuration management 33% 47% 20% 0% 0%
People-aware management accountability 14% 21% 43% 21% 0%

*5=Highly Effective (HE), 4=Very Effective (VE), 3=Moderately Effective (ME), 2=Somewhat Effective (SE),
1=Negligibly Effective (NE).

3.71

4.14

3.43

3.69
3.27

3.92

3.85

4.13

3.29

Overall P+F* F* Only Effectiveness**
Agreement on interfaces 94% 34% 4.14
Configuration management 96% 38% 4.13
Programwide visibility of progress vs. plan 94% 30% 3.92
Defect tracking against quality targets 83% 32% 3.85
Formal risk management 84% 22% 3.71
Metric-based scheduling and management 81% 18% 3.69
Formal inspections 76% 19% 3.43
People-aware management accountability 83% 19% 3.29
Binary quality gates at the inch-pebble level 69% 15% 3.27

*P+F = Partial and full implementations combined; F Only = Full implementations only.
**5=Highly Effective, 4=Very Effective, 3=Moderately Effective, 2=Somewhat Effective, 1=Negligibly Effective.

Best Practice ACAT I ACAT II ACAT III Other
Partial Full Partial Full Partial Full Partial Full

Formal risk management 92% 8% 41% 29% 39% 31% 72% 19%
Agreement on interfaces 75% 25% 41% 59% 47% 36% 67% 29%
Formal inspections 50% 8% 71% 0% 36% 28% 65% 20%
Metric-based scheduling
and management 83% 8% 59% 12% 44% 22% 69% 19%

Binary quality gates at the
inch-pebble level 33% 0% 65% 6% 14% 22% 71% 16%

Program-wide visibility
of progress vs. plan 83% 8% 47% 53% 47% 36% 72% 26%

Defect tracking against
quality targets 25% 17% 29% 41% 31% 36% 68% 31%

Configuration management 67% 33% 47% 53% 42% 42% 66% 34%
People-aware management
accountability 92% 8% 65% 6% 42% 25% 68% 21%

Table 5: Adoption Results by Practice

Table 6: Effectiveness Results by Practice

Table 7: Overall Adoption and Effectiveness (Practices in Order of Effectiveness Ranking)

A Study of Best Practice Adoption by Defense Acquisition Programs

May 2002 www.stsc.hill.af.mil 7

previously noted, is probably an under-
statement of true awareness), there is very
little actual implementation (average 25
percent). If we assume that the practice
must be fully implemented to gain substan-
tial benefit, little value is being realized.

In general, full implementation is not
required; however, when coupled with the
environment of defense acquisition, full
(and possibly formal) implementation is the
only way that a practice can expect to main-
tain focus and resources long enough to
achieve benefits. This is particularly true of
practices that have longer benefit latency.

Judging by the effectiveness ratings, the
Airlie practices have stood the test of time
and represent valid best practices. Within
the Airlie practices, configuration manage-
ment, agreement on interfaces, and risk
management are essentially fundamental
project management activities.

As one respondent pointed out, “A
number of the things promoted by the
SPMN are simply established good prac-
tices that were known and practiced before
the Airlie group documented them as best
practices.” That said, there are still many
programs that do not implement these
practices effectively and so should be
reminded of their importance.

The research as conducted describes an
environment where managers are aware of
the benefits of acquisition practices, but
they do not implement them. Either the
barriers that prevent full implementation
are sufficiently high to deter action, or the
program managers simply choose not to
implement the practices. The research sup-
ported both of these possibilities.

To reap the benefits of the Airlie prac-
tices, or any best practices or other acquisi-
tion technology, the software-intensive sys-
tem acquisition environment needs to be
changed. The Software Intensive Systems
(SIS) office within the Acquisition
Resources and Analysis Directorate of the
Under Secretary of Defense for
Acquisition, Technology, and Logistics is
working to improve policy, transition new
acquisition technology into programs,
coordinate independent expert program
reviews, gather empirical data on best prac-
tices, and support broader software-related
education across the acquisition workforce.

SIS has completed additional research
in the area of best practices in the last year.
I will be writing another article that will
describe the consolidation of more than
100 published practices into 32 candidate
practices. Those practices were evaluated
for effectiveness by a panel of experts, and
an analysis of their impact on software-
intensive, system-acquisition risk areas was
performed. Further research on better ways

of describing practices in a way more suit-
able to selection and evaluation by acquisi-
tion personnel is in the final stages. The
results will be briefed in the SIS track dur-
ing the 2002 Software Technology
Conference. The best practice research will
be combined with other SIS efforts, includ-
ing the TriService Assessment Initiative
and the CeBASE Experience Factory
pilots, to support better decision making
and improved processes in software-inten-
sive system acquisitions across DoD.
Further work on documenting and dissem-
inating best practices is being performed in
collaboration with the Data and Analysis
Center for Software in Rome, N.Y.◆

References
1. Department of Defense. Defense

Software: Review of Defense Report
on Software Development Best Prac-
tices. Washington, D.C.: General Ac-
counting Office, 2000.

2. Department of Defense. Major
Management Challenges and Program
Risks: Department of Defense. Wash-
ington, D.C.: General Accounting
Office, 2001.

3. Department of Defense. Best Practices:
Successful Application to Weapon Ac-
quisitions Requires Changes in DoD’s

Environment. Washington, D.C.: Gen-
eral Accounting Office, 1998.

4. Department of Defense, Office of the
Inspector General. Summary of Audits
of Acquisition of Information Tech-
nology. Washington, D.C.: General
Accounting Office, 2000.

5. Charette, R., and J. J. McGarry. Tri-
Service Assessment Initiative Phase 1
Systemic Analysis Executive Report.
Washington, DC.: Tri-Service Assess-
ment Initiative, 2001.

6. Department of Defense, Defense
Science Board. Report of the Defense
Science Board Task Force on Defense
Software. Washington, D.C.: 2000.

7. Glennan Jr., T.K., et al. Barriers to
Managing Risk in Large Scale Weapons
System Development Programs. Santa
Monica, Calif.: RAND, 1993: 30.

8. Eslinger, S. Software Acquisition and
Software Engineering Best Practices.
Los Angeles: The Aerospace Corpora-
tion, 1999: 40.

9. Anderson, M.H., and E. Rebentisch.
“Commercial Practices – Dilemma or
Opportunity?” Program Manager 27.2
(1998): 16-21.

10. Software Program Managers Network.
“Program Managers Guide to Software
Acquisition Best Practices.” Ver. 5.

0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

Percent Projects Reporting Practice Use

Formal risk management

Agreement on interfaces

Formal inspections

Metric-based scheduling
 and management

Binary quality gates at
the inch-pebble level

Programwide visibility
of progress vs. plan

Defect tracking against
quality targets

Configuration management

People-aware management
accountability

Army full

Army any

Air Force full

Air Force any

Navy full

Navy any

Figure 1: Comparison of Service Adoption Rates

Best Practices

8 CROSSTALK The Journal of Defense Software Engineering May 2002

Integrated Computer Engineering 1999.
11. Software Program Managers Network.

“16 Critical Software Practices For
Performance-based Management.” Ver.
5.1. Integrated Computer Engineering
1999.

12. Hilburn, T., et al. FAA-ARA Software
Engineering Competency Study: Final
Report. Daytona Beach, Fla.: Embry-
Riddle Aeronautical University, 1998.

Notes
1. The eight practices studied were past

performance, best value, commercial
warranties, government/contractor rela-
tionship, performance-based specifica-
tions, commercial specifications and
standards, streamlined contract adminis-
tration, and use of commercial off-the-
shelf/non-developmental item compo-
nents. The study also found consider-
able benefits with few drawbacks for
using the practices.

2. The nine Airlie Practices were estab-
lished in 1995 by a group of experts
convened by the Navy’s Software
Program Manager’s Network at the
Airlie Center outside Warrenton, Va.

(now historically referred to as “The
Airlie Council”).

3. ACAT I is defined as an acquisition
program that is not a highly sensitive
classified program, and that is designat-
ed as a Major Defense Acquisition
Program; or estimated to require an
eventual total expenditure for research,
development, test, and evaluation of
more than $355 million in fiscal year
(FY) 1996 constant dollars; or for pro-
curement of more than $2.135 billion
in FY 1996 constant dollars. ACAT II is
defined as those acquisition programs
that do not meet the criteria for an
ACAT I program, but are estimated to
require an eventual total expenditure
for research, development, test, and
evaluation of more than $135 million in
FY 1996 constant dollars; or for pro-
curement of more than $640 million in
FY 1996 constant dollars; or if desig-
nated as major by the DoD component
head. ACAT III is defined as those
acquisition programs that do not meet
the criteria for an ACAT I or ACAT II.
Other is defined as any acquisitions not
designated with an ACAT level.

About the Author

Richard Turner, D. Sc.,
is a member of the
Engineering Manage-
ment and Systems En-
gineering Faculty at
The George Washing-

ton University in Washington, DC.
Currently, Dr. Turner is the assistant
deputy director for Software Engi-
neering and Acquisition in the
Software Intensive Systems Office of
the Under Secretary of Defense
(Acquisition, Technology & Logist-
ics). Dr. Turner is co-author of the
book CMMI Distilled published by
Addison Wesley.

1931 Jefferson Davis Highway
Ste. 104
Arlington,VA 22202
Phone: (703) 602-0851 ext. 124
E-mail: rich.turner@osd.mil

ur experience or research has produced information that could
seful to others, CrossTalk can get the word out. We are
cially looking for articles in several specific, high-interest areas.

es of CrossTalk will have special, yet non-
es on the following tentative themes:

Call for Articles

Please follow sTalk, available on the Internet at:
www.stsc.hill.af.mil/crosstalk/xtlkguid.pdf

We accept article submissions on all software-related topics at any time,
along with Open Forum articles, letters to the editor, and BackTalk.

Agile Software Development
October 2002

Submission Deadline: May 20, 2002

Programming Languages
November 2002

Submission Deadline: June 17, 2002

Year of the Engineer and Scientist
December 2002

Submission Deadline: July 15, 2002

Back to the Basics
January 2003

Submission Deadline: August 19, 2002

e to visit us at Booth 509 at the Software TechnologyBe sure
ence in Salt Lake City.Confere

Please followPlease followPlease follow h h id li fw the Author Guidelines for TsTalksTalkCrosCros , available on the Internet at:
www.stsc.hill.af.mil/crosstalk/xtlkguid.pdfwww.stsc.hill.af.mil/crosstalk/xtlkguid.pdfwww.stsc.hill.af.mil/crosstalk/xtlkguid.pdfwww.stsc.hill.af.mil/crosstawww.stsc.hill.af.mil/crossta

We accept article submissions on all software-related topics at any time,
along with Open Forum articles, letters to the editor, and BackTalk.

May 2002 www.stsc.hill.af.mil 9

Recent events in Afghanistan have con-
vincingly demonstrated the value of

software and information technology in
achieving military superiority. Each of the
Department of Defense (DoD) services has
major initiatives to pursue even more
advanced software-intensive systems con-
cepts involving network-centric warfare
with self-adaptive networks and cooperating
human and autonomous agents.

However, there are tremendous chal-
lenges in providing the software product
and process capabilities necessary to realize
these concepts. These challenges include
security, scalability, interoperability, legacy
systems transition, uncontrollable commer-
cial off-the-shelf (COTS) products, and syn-
chronizing dozens if not hundreds of inde-
pendently evolving systems in a world of
increasingly rapid change.

In particular, the processes for managing
these complex systems of systems will
require both highly disciplined methods to
ensure dependable operations and highly
flexible methods to adapt to change.

Fortunately, DoD’s new 5000-series
policies on evolutionary acquisition and spi-
ral development provide the acquisition and
program management framework to achieve
this balance of discipline and flexibility.
Also, the recent Capability Maturity Model®

(CMM®) IntegrationSM (CMMISM) provides a
development framework for integrating
software and systems consideration with
degrees of freedom for tailoring develop-
ment processes to achieve appropriate bal-
ances of discipline and flexibility. However,
these initiatives fall short of providing spe-

cific techniques for achieving and maintain-
ing the right balance of discipline and flexi-
bility for a particular program’s evolving sit-
uation.

In our previous three CrossTalk arti-
cles, we provided some specific methods
that programs can use to achieve this bal-
ance. In “Understanding the Spiral Model as
a Tool For Evolutionary Acquisition [1],” we

showed how appropriate use of the spiral
model enables programs to achieve the flex-
ibility needed for evolutionary acquisition,
while applying risk-management principles
to retain an appropriate level of program
discipline.

In “Balancing Discipline and Flexibility
with the Spiral Model and MBASE [2],” we
showed how risk considerations could be
used to realize appropriate but different
process models for different program situa-
tions. We also elaborated on some of the
specific practices in Model-Based (system)
Architecting and Software Engineering
(MBASE) such as the use of life-cycle
anchor-point milestones to keep the pro-
gram on track during its evolution.

In “Using the Spiral Model and MBASE
to Generate New Acquisition Process
Models: SAIV, CAIV and SCQAIV [3],” we
showed how programs could use MBASE
risk management techniques to avoid many
overruns of fixed schedules and budgets.
This is done by prioritizing desired features
and inverting the development process to
deliver the most important features within
the available schedule or budget.

MBASE and the CeBASE
Method
However, the spiral, MBASE, and Schedule
as Independent Variable (SAIV) approaches
all operate at the individual project level.
This still leaves open the coverage of the
counterpart CMMI organization-level pro-
cess areas, particularly those of achieving
continuous improvement of the organiza-
tion’s processes.

In this article, we show how MBASE has
been integrated with the University of
Maryland’s (UMD) organization-level Qual-
ity Improvement Paradigm (QIP), Exper-
ience Factory (EF), and Goal-Question-
Metric (GQM) approaches into a Center for
Empirically Based Software Engineering
(CeBASE) method, which successfully
addresses these challenges. CeBASE is
sponsored by the National Science Foun-
dation, NASA, and the DoD, and jointly led
by the UMD and the University of
Southern California (USC).

As we explored the details of
Maryland’s QIP, EF, and GQM approaches
and USC’s MBASE approach, we found that
they were expressing very similar principles
and practices. The Spiral Model’s initial
focus on system objectives was consistent
with the QIP’s initial focus on organization-
al and project-specific goals expressed in

Achieving CMMI Level 5 Improvements with
MBASE and the CeBASE Method

Dr. Barry Boehm, Dr. Daniel Port, and Apurva Jain
University of Southern California

Each branch of service in the Department of Defense has major initiatives to pursue more
advanced software-intensive systems concepts involving network-centric warfare with self-
adaptive networks and cooperating human and autonomous agents. The ability to balance
discipline and flexibility is critically important to developing such highly dependable soft-
ware-intensive systems in an environment of rapid change. Risk-management orientation
enables users of Capability Maturity Model® IntegrationSM (CMMISM) to apply risk con-
siderations to determine how much discipline and how much flexibility is enough in a given
situation. The risk-driven nature of the spiral model and MBASE enables them to achieve
a similar balance of discipline and flexibility. When these project-level approaches are com-
bined with the organization-level approaches in the Experience Factory, the result is the
unified Center for Empirically Based Software Engineering (CeBASE) method described
in this article.

Dr. Victor Basili
University of Maryland

Tuesday, 30 April 2002
Track 1: 1:00 - 1:40

Ballroom A

® Capability Maturity Model, CMM, Software Capability
Maturity Model, and SW-CMM are registered in the U.S.
Patent and Trademark Office.

SM CMM Integration and CMMI are service marks of
Carnegie Mellon University.

“... the opportunity is
here for other

organizations to use
the Experience Factory
approach to achieve

CMMI Level 5 benefits
well before reaching

Level 4.”

Best Practices

10 CROSSTALK The Journal of Defense Software Engineering May 2002

context using the GQM approach. The EF’s
focus on organizational learning to under-
stand a system’s operational stakeholders
and their goals corresponds strongly with
MBASE’s stakeholder win-win approach to
mutual stakeholder understanding and
development of a shared system vision.

In the next section of this article, we
summarize the key principles and practices
of the QIP, the EF, and the GQM
approaches; provide evidence of their suc-
cessful application over 25 years of practice
in the NASA Goddard-University of
Maryland-Computer Science Corp. (CSC)
Software Engineering Laboratory (SEL);
and provide an example of their application
at a systems as well as software level. In the
section “The CeBASE method and CMMI,”
we present the CeBASE method and show
how its process elements cover the process
areas of the CMMI. In “Using the CeBASE
Method,” we show a version of the
CeBASE method that has been successfully
applied to more than 100 electronic services
applications over six years’ practice at USC.

Our conclusions include a diagram sum-
marizing the process model distinctions
among traditional approaches such as the
Waterfall Model and Software Capability
Maturity Model® (SW-CMM®); project-ori-
ented approaches such as the spiral model,
MBASE, and the Rational Unified Process
(RUP); and integrated project/organization
approaches such as the CMMI and CeBASE
Method.

The QIP, GQM, and EF
Approach
Framework and Methods
Since 1976, the UMD has been collaborat-
ing with NASA-Goddard and CSC on the
SEL. The UMD and the SEL have devel-
oped and refined a series of closed-loop

feedback processes that have resulted in
significant improvements in software quali-
ty across more than 100 large software
applications in the last 25 years.

The formulation of these feedback
processes is called the QIP [4]. It uses six
steps to provide an organized approach to
continuous software quality improvement:
1) characterizing the organization, 2) setting
goals, 3) choosing and instrumenting an
appropriate process, 4) executing and moni-
toring the process, 5) analyzing the data to
identify improvements, and 6) packaging the
experience and improvements for future
use.

The QIP makes use of the GQM
approach, which is a mechanism for defin-
ing and evaluating a set of operational goals
using measurement [5]. It ensures that your
general goals are elaborated into specific
questions and metrics for tracking progress
and evaluating success, and that your people
do not waste effort collecting and analyzing
data weakly related to your goals.

The GQM approach can be applied at
both the project level and the organization
level. The EF [6] provides a consistent way
of operating at both levels, as shown in
Figure 1. Organization and project goals are
determined by involving the relevant suc-
cess-critical stakeholders in negotiating
mutually satisfactory (win-win) and achiev-
able goals.

For example, the organization may set a
goal to reduce its projects’ software cycle
time by 50 percent. The initial implementing
project may set goals and plans to have each
project activity reduce its calendar time by
50 percent. As the project proceeds, its
progress is monitored for progress/plan/
goal mismatches, as shown at the bottom of
Figure 1. While design, code, and test plan-
ning may finish in 50 percent less time, inte-

gration and test may start showing a 50 per-
cent increase rather than decrease in dura-
tion. Analyzing this progress/plan/goal
mismatch would determine the root cause
to be delays due to inadequate test planning
and preparation of test tools, test drivers,
and test data. Further, shortening the test
plan activity had produced no cycle timesav-
ing, as test planning was not on the project’s
critical path.

The results of this analysis would be fed
into the organization’s experience base:
Future cycle-time reduction strategies
should focus on reducing the duration of
critical path activities, and options for doing
this include increasing the thoroughness and
duration of noncritical-path activities.
Overall then, as shown in the center of
Figure 1, the EF analyzes and synthesizes
such kinds of experience, acts as a reposito-
ry for the experiences, and supplies relevant
experience to the organization on demand.
The EF packages experience by building
informal and formal models and measures
of various processes, products, and other
forms of knowledge via people, documents,
and automated support.

QIP, GQM, and EF in Practice
The application of the integrated set of
these methods is referred to as the
Experience Factory Organization, which
resulted in a continuous improvement in
software quality and cost reduction during
the quarter-century life span of the SEL.
When measured during three baseline peri-
ods in 1987, 1991, and 1995 (each repre-
senting about three years of development
efforts), the demonstrated improvements
included a 75 percent decrease in develop-
ment defect rates from 1987 to 1991, and a
37 percent decrease from 1991 to 1995. We
also observed a reduced development cost
of 55 percent from 1987 to 1991 and of 42
percent from 1991 to 1995 [7, 8].

A more detailed example of improve-
ment over time, in Figure 2, shows the
defect rates in defects per thousand deliv-
ered lines of code (K-DLOC) for similar
classes of projects at CSC during the appli-
cation of the EF concepts. Over time, the
defect models became well established and
the range of variation (indicated by the
upper and lower lines) narrowed, allowing
managers to better manage quality [9]. Thus,
the EF approach enabled the SEL portion
of CSC to achieve SW-CMM Level 5
improvements well before CSC became a
Level 5 organization in 1998. With the
CMMI’s emphasis on measurement and
analysis as early as Level 2, the opportunity
is here for other organizations to use the EF
approach to achieve CMMI Level 5 benefits
well before reaching Level 4.

Initiatives

Planning Context

Progress/Plan/Goal
Mismatches

Experience Base

Analyzed
Experience,
Updated Models

Achievables,
Opportunities

• Org. Improvement Goals
– Goal-related questions, metrics

• Org. Improvement Strategies
– Goal achievement models

• Initiative Plans
– Initiative -related questions,

metrics

• Initiative Monitoring and
Control

– Experience-base analysis

Org. Shared Vision &
Improvement Strategy

Project Shared
Vision and Strategy

Planning Context

Models and Data

Project
Experience

Org.
Goals

Project Planning
and Control

Models and
Data

Progress/Plan/Goal/Mismatches

Org. Improvement Initiative
Planning & Control

Figure 1: Experience Factory Framework

Achieving CMMI Level 5 Improvements with MBASE and the CeBASE Method

May 2002 www.stsc.hill.af.mil 11

Various EF concepts have been success-
fully applied in other organizations, includ-
ing Daimler Chrysler, Robert Bosch, TRW,
and Allianz.

Applying EF Concepts at the Systems
Level
Systems-Level Goals and Questions
Many software organizations interpret the
EF concepts at just the software level. They
miss many opportunities to reap much
more significant returns on investment at
the systems level. For example, suppose
that your software intensive project has a
proposed goal for an improvement initia-
tive to reduce the project’s software defect
rates. What should be your next step?
Usually it would be to look down from the
software goal into the software details. How
will we define defect? What are the count-
ing rules for overlapping defects? What are
our current defect rates?

With EF at the systems level, your next
step is to look upward and sideways from
the software and ask system-level questions:
Why do we want to reduce software defect
rates? What system goals are being frustrat-
ed by software defects? Where are the frus-
trations the greatest?

For example, in an operational order-
processing system, the answers may be that
the software defects are causing 1) too
much downtime in the operation’s critical
path, 2) too many defects in the system’s
operational plans, and 3) too many new-
release operational problems.

These insights enable you to reformu-
late your improvement initiative goal to
decrease the organization’s software defect-
related losses in operational cost effective-
ness. Items one through three become ini-
tial high-payoff target sub-goals for the ini-
tiative. Given this new goal and context,
what should be your next step?

Sub-Goal Level Questions, Models, and
Metrics
Again, a good next step is to ask why the
software defects are causing operational
problems, often with the help of models.
For example, Figure 3 shows a critical-path
model for analyzing the order-processing
downtime and delays caused by software
defects. Analyzing this model may lead to
several valuable insights, improvement
strategies, and system payoffs:
1. Often, major sources of delay are addi-

tional manual processing delays caused
by software or non-software problems,
as with the Scientific American order
processing system discussed in Boehm
[10].

2. The logic for packaging and delivery
scheduling can become quite complex

when only part of an order is in stock.
(It is generally okay to send a partial
shipment at Amazon.com, however, not
for jet engine repair spare parts.)
Software defects can again cause consid-
erable operational delays.

3. “Produce status reports” defects should
not be on the operational critical path.
This module was probably put on the
critical path by a programmer’s detailed
design coupling and cohesion decision
without considering its potential system
effect, resulting in status-report defects
causing order-delivery delays.

4. The overall legacy order-processing sys-
tem may just be too slow and difficult to
modify and should be replaced down-
stream by a new Web-based order-pro-
cessing system. It is generally good to be
asking why not as well and why questions.

Putting It All Together
Each of these sub-goal-related initiatives
needs to be monitored and controlled with
respect to improvement-related metrics
such as order-processing cycle time and
user satisfaction. The results need to be
integrated with other ongoing improve-
ment initiatives to ensure synergy and inte-
gration with the overall organizational
experience base discussed earlier in the
“framework and methods” section. The
sidebar on page 12 shows the resulting sys-
tems-level EF-GQM initiative steps.

These system-level EF-GQM ap-
proaches are already being practiced by
leading-edge software organizations. Two

of the recent Institute of Electrical and
Electronics Engineers’ Software Process
Achievement Award winners, Advanced
Information Services, Inc. (AIS) and Tinker
Air Force Base, are good examples [11, 12].

AIS uses Balanced Scorecard tech-
niques to integrate its software, systems,
project, and organizational goals in such
areas as customer satisfaction, financial per-
formance, employee growth, process
improvement, and organizational learning
capability. Specifically, AIS periodically
assesses its performance and rate of
progress in these areas on a Balanced
Scorecard form and uses the results to
adjust its improvement efforts in each area.
Tinker has used its software insights to
stimulate systems-level initiatives with its
counterpart hardware and test organiza-
tions to improve system-level cycle time
and to deliver quality in such areas as B-2
Test Program Sets.

This kind of approach is what transi-
tioning from the software CMM to the
CMMI is all about. It requires software
organizations to be more pro-active than
reactive in interacting with the operational
system stakeholders. It gets software peo-
ple applying their necessary expertise to
system issues. It results in much larger bot-
tom-line payoffs for the operational system
stakeholders. The next two sections discuss
how the CeBASE method integrates soft-
ware and system-level activities as well as
project- and organizational-level activities
and how its practices map to the process
areas and practices in the CMMI.

14

12

10

8

6

4

2

0

1986 1988 1990 1992 1994 1996 2000

Project Midpoint

E
rr

o
rs

 P
er

 K
-D

L
O

C
Lower Data Points

All Data Points

Upper Data Points

FORTRAN

Non-FORTRAN

Validate
order

Validate
items in
stock

Order
items

Schedule
packaging,

delivery

Produce
status
reports

Prepare
delivery

packages

Deliver
order

Figure 2: Defect Rate Improvements in Software Engineering Laboratory/Computer Science
Corporation Projects

Figure 3: Order-Processing System Critical Path Model

Best Practices

12 CROSSTALK The Journal of Defense Software Engineering May 2002

The CeBASE Method and the
CMMI
The CeBASE Method Framework
Overall, we found that both EF-GQM and
MBASE could be integrated into a com-
mon CeBASE method. Its framework is
organized around a trio of common strate-
gic themes, shown by the vertical pairs in
Figure 4. These three themes are the stake-
holders’ shared vision for the organization or
project; risk-driven plans for process, prod-
uct, and people; and continuous monitoring
and control. As seen in Figure 4, these
themes express both the operation of EF-
GQM at the organizational level and the
operation of MBASE-GQM at the project
level. Within a large diverse organization,
we may wish to consider a particular set of
projects within a portfolio or product line of
related products or services.

To start at the upper left of Figure 4,
the organization’s value propositions are
often contained in an organizational mis-

sion statement. This will cover the organi-
zational stakeholders’ agreed-upon win
conditions and will be expressed in terms
of such Balanced Scorecard elements as
customer satisfaction, financial perform-
ance, employee growth, process improve-
ment, and organizational learning capa-
bility.

Improvement goals and priorities will
come from Balanced Scorecard assess-
ments. These might include such goals as
reducing software development cycle time
or reducing average order-delivery time.
The specific quantitative goals, e.g., reduce
software development cycle time by 50 per-
cent, would be based on initial cost/value
analyses. These are developed using such
techniques as the DMR Consulting
Group’s Results Chains linking improve-
ment initiatives to contributions and ben-
efits-realized outcomes [13] and associated
business-case models linking the value of
benefits realized to the costs invested in
the initiatives.

The CeBASE Method at the
Organizational Level
The resulting organization (or portfolio)
shared vision (OSV) (Figure 4) drives two
sets of initiatives. Horizontally in Figure 4,
it drives initiatives to improve software
cycle time or to reduce order-delivery time
across the organization. These initiatives
will have strategy elements and their asso-
ciated organization-level improvement
plans (OP) such as reducing delays in
order-delivery time due to software
defects.

Following the GQM paradigm, the goal
of reducing order-delivery time is related
to organization plan questions such as,
“What is our current record on delivery
times?” “What distinguishes orders with
significantly better or worse delivery
times?” “What are the costs and benefits
resulting from an improvement initiative?”

These questions are related to metrics
such as overall order-delivery time, critical-
path task times, costs and benefits of elim-
inating related software defects, and cus-
tomer order-delivery satisfaction ratings.
These are used to monitor and control
organization-level progress (OMC), and to
adjust the strategies and goals based on
the organizational feedback of progress/
plan/goal achievements and mismatches.

The CeBASE Method at the Project
Level
Vertically in Figure 4, the OSV drives the
nature of each project’s shared vision (PSV)
and its associated goals and priorities. Thus,
for example, an organizational improve-
ment goal to reduce software development
cycle time by 50 percent will be reflected in
the project’s value propositions and
improvement goals or the organization
project shared vision (O-PSV) (see arrow in
Figure 4). This will lead to project-level
goals, models, questions, and metrics such
as reducing the duration of each project
task by 50 percent.

This in turn leads horizontally across the
bottom of Figure 4 to project-level plans
(PP), project monitoring and control activi-
ties (PMC), and to the determination and
feedback of project-level progress/plan/
goal mismatches. This mismatch feedback
could be negative such as increased integra-
tion and test task durations or it could be
positive. For example, the project might
incorporate a new in-transit-visibility COTS
package for order delivery tracking that
both helps in delay diagnosis and improves
customer satisfaction by answering ques-
tions about delivery delays.

This project feedback propagates up-
ward to the organizational level along all
three lines of traceability. The shortfalls or

1. Org. value propositions
(VP's)

a - Stakeholder values

2. Current situation w.r.t. VP's

3. Improvement goals, priorities
4. Global scope, results chain
5. Value/business case models

Org-Portfolio Shared Vision (OSV)

1. Strategy elements

2. Evaluation criteria/questions

3. Improvement plans

a. Progress metrics
b. Experience base

Org. Plans (OP)
Organization/

portfolio:
Experience

Factory,
GQM

1. Monitor environment
a - Update models

2. Implement plans
3. Evaluate progress

-w.r.t. goals, models
4. Determine, apply

corrective actions
5. Update experience base

Org. Monitoring & Control (OMC)

Monitoring

& control

contex t

1.

Project value propositions

a -Stakeholder values

2.

Current situation w.r.t. VP's

3.

Improvement goals, priorities

4.

Project scope, results chain

5.

Value/business case models

Project Shared Vision (PSV)

Pro ject:
MBASE

Planning
context

Plan/goal mismatches

1. LCO/LCA package
-Ops concept, prototypes,

rqts, architecture,

LC plan, rationale
2. IOC/transition/support package

-Design, increment plans,
quality plans, T/S plans

3. Evaluation criteria/questions

4. Progress metrics

Project Plans (PP)

Planning
context

Initiatives

OFB:
 -shortfalls, opportunities, risks

Pro ject

vision,

 goals:

O-PSV

Short falls,
opportunities,
risks; P-OSV

Scoping

context

Short falls,
opportunities,

risks: P-OP

Planning
context:

O-PP

1. Monitor environment

a - Update models

2. Implement plans

3. Evaluate progress

-w.r.t. goals, models, plans

4. Determine, apply

corrective actions

5. Update experience base

Proj. Monitoring & Control (PMC)

Monitoring
& control
context

PFB:
-shortfalls, opportunities, risks

Plan/goal

mismatches

Monitor ing
& control
context

Project
experience,

progress w.r.t.

plans, goals

LCA: Life-Cycle Architecture
IOC: Initial Operational Capability
GQM: Goal-Question- Metric Paradigm
MBASE: Model-Based (System) Architecting and Software Engineering

Applies to organizations and projects people, processes, and products

w.r.t.: with respect to
T/S: Transition/Support

LCO: Life-Cycle Objectives

Progress/plan/goal mismatches

Progress/plan/goal mismatches

Figure 4: The CeBASE Method Framework

Systems-Level Experience Factory
Goal-Question-Metric Initiative Steps

1. Identify a software-related improvement initiative goal.
2. Relate this to system-level goals: Ask questions about why the initiative is

needed.
3. Use the results to identify the related system-level improvement initiative goal

and high-payoff sub-goal initiatives.
4. Perform a systems-level root-cause analysis: Construct relevant models, ask

questions about why the current-system shortfalls cause problems and whether
or not to try alternative system approaches.

5. Identify the system improvement initiative’s key stakeholders; achieve a shared
vision of and commitment to the initiative goals and strategies.

6. Establish improvement initiative plans and progress metrics for each sub-goal
initiative and the overall initiative.

7. Execute, monitor, and control the initiative plans with key stakeholder partici-
pation. Feed the resulting experiences into the organization’s experience base
for future benefits.

Achieving CMMI Level 5 Improvements with MBASE and the CeBASE Method

May 2002 www.stsc.hill.af.mil 13

opportunities with respect to organizational
shared vision and goals are fed back along
the project OSV (P-OSV) arrow at the left.
The corresponding plan-context feedback
occurs along the project OP (P-OP) arrow
in the center, and the monitoring and con-
trol feedback at the right is used to update
the organization’s detailed experience base
on best practices for achieving goals.

As a final observation, note that the
content of the PP element consists of the
Spiral/MBASE Life-Cycle Objectives
(LCO), Life-Cycle Architecture (LCA), and
Initial Operational Capability (IOC) anchor-
point milestone content that we discussed
in our May 2001 and December 2001
CrossTalk articles [1, 2]. Thus, the
Spiral/MBASE guidelines in those articles
have become the project-level guidelines for
the CeBASE method. A detailed example of
these guidelines is shown next.

CeBASE Guidelines Example: Shared
Vision
The CeBASE project-level and organiza-
tion-level shared vision guidelines are
quite similar. Their main difference is one
of context: The project-level shared
vision has the organization-level shared
vision as context and shows traceability to
it, but not vice versa. Figure 5 shows the
table of contents and example text from
the project-level shared vision guidelines.
In the CeBASE method, it is the first item
to be drafted by the project’s Integrated
Product Team of success-critical stake-
holders or its equivalent. It sets the stage
for subsequent Inception Phase prototyp-
ing and stakeholder win-win requirements
negotiation.

The shared vision guidelines are adopt-
ed from best commercial practices in ways
that apply to public service applications as
well. The system capability “elevator”
description comes from Geoffrey Moore’s
classic Crossing the Chasm [13]. The “Benefits
Realized” and “Results Chain” sections are
adapted from the DMR Consulting Group’s
Benefits Realization Approach [14]. The
Results Chain identifies the full set of initia-
tives necessary to realize the proposed sys-
tem’s benefits; this also identifies the full set
of success-critical stakeholders who should
be involved in the system’s definition. The
current version of the guidelines is at
<http://cebase.org/cebase method>.

CeBASE Method Coverage of the
CMMI
Example Mapping: Requirements
Development
To test its coverage of critical issues, we
have done a mapping of the CeBASE

method onto the CMMI’s 24 process
areas using the CMMI summary tables in
Ahern, et al. [15]. A mapping example is
provided in a longer version of this paper
available at <http://www.cebase.org>.

Overall, the mapping indicated that
the CeBASE method covered the CMMI
goals and practices well. It provided the
CeBASE team with some action items to
address missing elements covered in the
CMMI. Most significantly, though, it iden-
tified items that we have found important
to software and systems engineering that
were missing in the CMMI. These includ-
ed a business case justifying the need for
required features, having a stakeholder
win-win prioritization of requirements
(for coping with new requirements and
fixed budgets or schedules), coverage of
project requirements (required platforms,
resource constraints), level of service
requirements (the -ilities), and evolution
requirements (to avoid point-solution
architectures).

Overall CeBASE Method Coverage of
the CMMI
Overall, we found not only a strong cor-

respondence but also an almost complete
coverage of the CMMI’s practices by the
organizational and project components
of the CeBASE method. We are extend-
ing the CeBASE method to cover the
specific CMMI processes not currently
covered. A summary of the percentage
of the CMMI process areas covered by
the CeBASE method is shown in Table 1
(see page 14). The “+” annotations in
Table 1 indicate that the CeBASE
method’s coverage goes considerably
beyond that of the CMMI. For example,
it covers not just an organizational
process focus but also an organizational
product and people focus. The “-” anno-
tations in Table 1 indicate that some
areas in the CeBASE method still remain
to be fleshed out, such as detailed guide-
lines for organizational training plans,
although they are covered in principle.

The CeBASE method also provides a
prescriptive approach for an organization to
use in tailoring the CMMI’s generic practices
to its particular culture, environment, and
value propositions. Thus, an e-commerce
organization’s value propositions (rapid time
to market, rapid adaptation to change) will

Table of Contents
2. Shared Vision

2.1. System Capability Description
2.1.1. Benefits Realized
2.1.2. Results Chain

2.2. Key Stakeholders
2.3. System Boundary and Environment
2.4. Major Project Constraints
2.5. Top-Level Business Case
2.6. Inception Phase Plan and Required Resources
2.7. Initial Spiral Objectives, Constraints, Alternatives, and Risks

2.1 System Capability Description
A concise description of the system that can pass the “elevator test” described in Geoffrey Moore’s Crossing the Chasm
[13]. This would enable you to explain why the system should be built to an executive while riding up or down an ele-
vator. It should take the following form:

• For (target customer)
• Who (statement of the need or opportunity)
• The (product name) is a (product category)
• That (statement of key benefit-that is, compelling reason to buy)
• Unlike (primary competitive alternative)
• Our product (statement of primary differentiation)

Here is an example for a corporate order-entry system: “Our sales people need a faster, more integrated order-entry
system to increase sales and customer satisfaction. Our proposed Web order system would give us an e-commerce
order-entry system similar to Amazon.com’s that will fit the special needs of ordering mobile homes and their after-
market components. Unlike the template-based system our main competitor bought, ours would be faster, more user
friendly, and better integrated with our order fulfillment system.”

Common Pitfalls:
• Not relating the need or opportunity to the goals in the organization’s Shared Vision.
• Being too verbose about “our product” or its key benefits.

2.2 Key Stakeholders
Identify each stakeholder by their home organization, their authorized representative for project activities, and their
relation to the Results Chain. The four classic stakeholders are the software/IT system’s users, customers, developers
and maintainers. Additional stakeholders may be system interfacers, subcontractors, suppliers, venture capitalists, inde-
pendent testers, and the general public (where safety or information protection issues may be involved).

Common Pitfalls:
• Being too pushy or not pushy enough in getting your immediate clients to involve the other success-critical stake-

holders. Often, this involves fairly delicate negotiations among operational organizations. If things are going slow-
ly and you are on a tight schedule, seek the help of your higher-level managers.

• Accepting just anybody as an authorized stakeholder representative. You don’t want the stakeholder organization to
give you somebody they feel they can live without. Some good criteria for effective stakeholder representatives are
that they be empowered, representative, knowledgeable, collaborative, and committed.

Figure 5: Example CeBASE System-Level Shared Vision Content

Best Practices

14 CROSSTALK The Journal of Defense Software Engineering May 2002

cause it to adopt more flexible processes.
However, such elements as the anchor-point
milestones will balance this flexibility with
sufficient discipline to keep the overall
process under control. The value proposi-
tions of an organization developing safety-
critical products or services will cause it to
emphasize more rigorous specifications,
processes, and practices, but in ways that
enable it to cope with rapid change.
Examples include capturing evolution
requirements, designing systems to accom-
modate future change, building in buffer
periods to synchronize and stabilize
processes [16], or to adapt to potential
schedule or budget slips by dropping lower-
priority product features [3].

Another point worth emphasizing is that
the EF component of the CeBASE method
supports a continuous vs. staged approach
to process improvement. You do not need
to be a CMM Level 4 organization to begin
realizing significant benefits from organiza-
tional innovation or causal analysis.

Using the CeBASE Method
Since 1996, we have been applying the EF
and GQM approaches to improve the proj-
ect-oriented MBASE aspects of the
CeBASE method by using them to
improve an annual series of USC electron-
ic services projects. These are developed
using annually improved MBASE guide-
lines by teams of five master’s-level stu-
dents as developers and staff members of

USC’s Information Services Division as
clients (customers, users or user represen-
tatives, and maintainers). Each year, we
have 15 to 20 teams execute the MBASE
inception and elaboration phases in the fall
semester to develop and validate life-cycle
architecture packages for USC electronic
services applications’ candidates. The top
six to 10 of these applications are then
selected for spring semester teams who
execute the MBASE construction and tran-
sition phases and deliver initial operational
capability application systems.

Our shared vision for the USC Center
for Software Engineering’s research and
education goals incorporates the win con-
ditions of not only our students and their
project clients, but also other stakeholders
such as the center’s staff and prospective
technology users, represented by our 35
industry and government affiliate organiza-
tions [17]. Our questions and metrics
include stakeholder critiques of each proj-
ect and extensive instrumentation of the
projects’ effort, schedule, quality, produc-
tivity, and behavioral characteristics [18, 19,
and 20].

Table 2 summarizes four years’ experi-
ence to date in applying and refining
CeBASE on an annual selection of real-
client projects.

A few explanatory comments on Table
2 are in order. The number of LCA teams
is larger than the number of IOC teams
because USC’s fall course is a core course
for the USC master’s of science degree in

computer science and has a much larger
enrollment than the spring course, which is
only required for a few specialization areas.
In 1996-97, the subset of projects to be
continued in the spring was primarily those
having students continuing from the fall
course. After we found that most of the
1996-97 products went unused, we per-
formed a critical success factor analysis and
determined a set of spring project selection
criteria (e.g., library commitment to prod-
uct use, empowered clients) that increased
the project adoption rate. Even then,
unforeseen circumstances such as the
inevitable changes in library infrastructure
and organizational responsibilities have
caused some applications’ usage commit-
ments to be overtaken by events. This is a
frequent phenomenon for electronic serv-
ices applications [21].

In general, the EF improvements on
MBASE have effected a uniform improve-
ment in outcome, but there are some
anomalies. For example, the 12 percent of
projects failing IOC in 1999-2000 were due
to a team who botched their product tran-
sition when their client was unexpectedly
called out of town during the transition
period. Another example was our introduc-
tion of midcourse client briefings on core
capability expectations in 1999-2000 as
part of our SAIV process [3]. SAIV only
guarantees the delivery of a highest-priori-
ty core capability set of features, with fur-
ther features added as time is available.
While this resulted in early client disap-
pointments at LCA where client success
scores dropped from 4.74 in 1998-1999 to
4.48 in 1999-2000, there was a dramatic
increase in the clients’ success score for the
delivered product (4.3 in 1998-1999 to 4.75
in 1999-2000).

The 1998-1999 improvement in the
“Failing LCO” criterion shown in Table 2
resulted primarily from our introduction
of a simplifier and complicator (S&C)
expectations management activity. This
helped the developers to have a better
understanding of the system and the stake-
holders by leveraging an experience base
of designs that help simplify the architec-
ture (the simplifiers) and apply a risk-driven
approach to the architectural areas that
may cause significant complications (the
complicators). Involving the clients in risk
management activities throughout the
process clearly contributed to their rating
virtually all delivered applications as highly
satisfactory.

Conclusions
Figure 6 summarizes the distinctions
among maturity models such as the SW-

1996-1997 1997-1998 1998-1999 1999-2000

LCA Teams 15 16 19 22

Failing LCO 27% 25% 5% 5%

Failing LCA 0% 0% 0% 0%

LCA Client Score 4.46 4.67 4.74 4.48

IOC Teams 6 5 6 8
Failing IOC 16% 0% 0% 12%

IOC Client Score n/a 4.15 4.3 4.75

IOC Regularly Used 16% 60% 50% 62%

Table 2: Annual University of Southern California E-Services Project Outcomes

Process Management
• Organizational Process Focus: 100+
• Organizational Process Definition: 100+
• Organizational Training: 100-
• Organizational Process Performance: 100-
• Organizational Innovation and Deployment: 100+

Project Management
• Project Planning: 100
• Project Monitoring and Control: 100+
• Supplier Agreement Management: 50-
• Integrated Project Management: 100-
• Risk Management: 100
• Integrated Teaming: 100
• Quantitative Project Management: 70-

Engineering
• Requirements Management: 100
• Requirements Development: 100+
• Technical Solution: 60+
• Product Integration: 70+
• Verification: 70-
• Validation: 80+

Support
• Configuration Management: 70-
• Process/Product Quality Assurance: 70-
• Measurement and Analysis: 100-
• Decision Analysis and Resolution: 100-
• Organizational Environment for Integration: 80-
• Causal Analysis and Resolution: 100

Note: All amounts are percentages.

Table 1: CeBASE Method Coverage of CMMI

Achieving CMMI Level 5 Improvements with MBASE and the CeBASE Method

May 2002 www.stsc.hill.af.mil 15

CMM and the CMMI; process models such
as the waterfall model; and process model
generators such as MBASE, RUP, and the
CeBASE method. It shows where each
model fits with respect to organizational
focus (project vs. organization), application
focus (software vs. system), and operational
focus (practice vs. assessment).

From Figure 6, we can see that the SW-
CMM covers both project and organization
considerations, but it has shortfalls in both
applications focus (software, not systems)
and operational focus (assessment, not
practice). We can also see that solutions
focused on redressing one of the two short-
fall dimensions will still have shortfalls of
their own in another dimension. Thus, the
CMMI redresses the systems shortfall in the
SW-CMM, but it still has the shortfall of
providing explicit guidelines for assessment
but not for project practices. While MBASE
and RUP provide explicit guidelines for
project practices, they do not provide coun-
terparts for an organization’s practices.
However, the combination of CMMI and
the CeBASE method covers all aspects of
operational, organizational, and application
focus.

In terms of future software-intensive
system challenges, the ability to balance dis-
cipline and flexibility is critically important
to the development of highly dependable
software-intensive systems in an environ-
ment of rapid change. The CMMI’s risk-
management orientation enables its users to
apply risk considerations to determine how
much discipline and how much flexibility is
enough in a given situation. The risk-driven
nature of the spiral model and MBASE
enables them to achieve a similar balance of
discipline and flexibility. When these proj-
ect-level approaches are combined with the
organization-level approaches in the EF, the
result is the unified CeBASE method sum-
marized in the section “The CeBASE
Method and the CMMI.” It currently imple-
ments most of the CMMI, is being extend-
ed to cover the full CMMI, and has a strong
track record of continuous process
improvement at USC’s and UMD’s
Software Engineering Laboratories and
industry adapters elsewhere.◆

Acknowledgements
We would like to acknowledge the support
of the National Science Foundation in
establishing CeBASE, the DoD Software
Intensive Systems Directorate in support-
ing its application to DoD projects and
organizations, and the affiliates of the USC
Center for Software Engineering and the
University of Maryland’s software engi-
neering program for their contributions to

MBASE and CeBASE.

References
1. Boehm, B., and W. Hansen. “Under-

standing the Spiral Model as a Tool for
Evolutionary Acquisition.” CrossTalk
May 2001.

2. Boehm, B., and D. Port. “Balanc-
ing Discipline and Flexibility with
the Spiral Model and MBASE.”
CrossTalk Dec. 2001.

3. Boehm, B., D. Port, L. Huang, and A.
W. Brown. “Using the Spiral Model and
MBASE to Generate New Acquisition
Process Models: SAIV, CAIV, and
SCQAIV.” CrossTalk Jan. 2002.

4. Basili, Victor R., and Gianluigi Caldiera.
“Improve Software Quality by Reusing
Knowledge and Experience.” Sloan
Management Review 37.1 (1995).

5. Basili, Victor R., Gianluigi Caldeira, and
H. D. Rombach. “The Goal Question
Metric Approach.” Encyclopedia of
Software Engineering. Ed. J. Marciniak.
Wiley, 1994.

6. Basili, Victor R., Gianluigi Caldeira, and
H. D. Rombach. “The Experience
Factory.” Encyclopedia of Software
Engineering. Ed. J. Marciniak. Wiley,
1994.

7. Basili, Victor R., Gianluigi Caldiera,
Frank McGarry, Rose Pajersky, Gerald
Page, and Sharon Waligora. “The
Software Engineering Laboratory – An
Operational Software Experience
Factory.” 14th International Confer-
ence on Software Engineering. May
1992.

8. Basili, Victor R., Marvin Zelkowitz,
Frank McGarry, Jerry Page, Sharon
Waligora, and Rose Pajerski. “Special
Report: SEL’s Software Process-
Improvement Program.” IEEE
Software 12.6 (1995): 83-87.

9. McGarry, F. “What Is A Level 5
Organization? Lessons from 10 Years
of Process Improvement Experiences
at CSC.” Proceedings of the Twenty-
Sixth NASA Software Engineering
Workshop. Nov. 2001.

10. Boehm, B. Software Engineering Eco-
nomics. Prentice Hall, 1981.

11. Ferguson, P., et al. “Software Process
Improvement Works!” Advanced
Information Services, Inc. CMU/SEI-
99-TR-027, Nov. 1999.

12. Butler, K., and W. Lipke, “Software
Process Achievement at Tinker Air
Force Base, Oklahoma.” CMU/SEI-
2000-TR-014, Sept. 2000.

13. Moore, Geoffrey. Crossing the Chasm:
Marketing and Selling High-Tech Pro-
ducts to Mainstream Customers. New
York: Harper Business, 1991: 161.

14. Thorp, J., and DMR Consulting Group.
The Information Paradox, McGraw
Hill, 1998.

15. Ahern, D., A. Clouse, and R. Turner.
CMMI Distilled. Addison Wesley,
2001.

16. Cusumano, Michael A., and Richard W.
Selby. Microsoft Secrets: How the
World’s Most Powerful Software
Company Creates Technology, Shapes
Markets, and Manages People. New
York: Simon & Schuster, 1996.

17. Boehm, B., A. Egyed, D. Port, A. Shah,
J. Kwan, and R. Madachy. “A
Stakeholder Win-Win Approach to
Software Engineering Education.”
Annuals of Software Engineering 6
(1998): 295-321.

18. Egyed, A., and B. Boehm. “Comparing
Software System Requirements Ne-
gotiation Patterns.” Systems Engineer-
ing 2.1 (1999): 1-14.

19. Port, D., and B. Boehm. “Introducing
Risk Management Techniques Within
Project-Based Software Engineering
Courses.” Computer Science Edu-
cation 2002 (to appear).

20. Majchrzak, A., and C. Beath. “A
Framework for Studying Learning and
Participation in Software Develop-
ment Projects.” Management Infor-
mational Systems Quarterly, under
review.

21. Boehm, B., “Project Termination
Doesn’t Equal Project Failure.” IEEE
Computer Sept. 2000: 94-96.

Operational Focus: Organizational Focus
Assessment

Practice
Project Organization

Software Software CMM
Waterfall,

Incremental

Software CMM
Early EF, GQM

Application
Focus

Systems CMMI
Spiral, MBASE,

RUP

CMMI
CeBASE Method

Figure 6: Process Model Coverage Distinctions

16 CROSSTALK The Journal of Defense Software Engineering May 2002

About the Authors

Barry Boehm, Ph.D.,
is the TRW professor
of software engineer-
ing and director of the
Center for Software
Engineering at the

University of Southern California. He
was previously in technical and man-
agement positions at General Dynam-
ics, Rand Corp., TRW, Defense
Advanced Research Projects Agency,
and the Office of the Secretary of
Defense as the director of Defense
Research and Engineering Software
and Computer Technology Office.
Dr. Boehm originated the spiral
model, the Constructive Cost Model,
and the stakeholder win-win approach
to software management and require-
ments negotiation.

University of Southern California
Center for Software Engineering
Los Angeles, CA 90089-0781
Phone: (213) 740-8163
Fax: (213) 740-4927
E-mail: boehm@sunset.usc.edu

Daniel Port, Ph.D., is
a research assistant
professor of Com-
puter Science and an
associate of the Center
for Software Engi-

neering at the University of Southern
California (USC). Dr. Port’s previous
positions were assistant professor of
Computer Science at Columbia
University, director of Technology at
the USC Annenburg Center EC2
Technology Incubator, co-founder of
Tech Tactics, Inc., and a project lead
and technology trainer for NeXT
Computers, Inc. He received a doctor-
ate from the Massachusetts Institute
of Technology in applied mathemat-
ics with an emphasis on theoretical
computer science in 1994 and a bach-
elor’s degree in mathematics from the
University of California in Los
Angeles.

University of Southern California
Center for Software Engineering
Los Angeles, CA 90089-0781
Phone: (213) 740-7275
Fax: (213)740-4927
E-mail: dport@sunset.usc.edu

Apurva Jain is a doc-
toral student at the
University of Southern
California’s Center for
Software Engineering.
Previously he was a

project manager at SpruceSoft Inc.
His research interests are software
process management and pervasive
computing. He received a bachelor’s
degree from Curtin University of
Technology, Perth, Australia and a
professional honors diploma from
Informatics, Singapore.

University of Southern California
Center for Software Engineering
941 W. 37th Place, SAL 329
Los Angeles, CA 90089-0781
Phone: (213) 740-6505
Fax: (213) 740-4927
E-mail: apurvaj@sunset.usc.edu

Victor R. Basili,
Ph.D., is a professor
of Computer Science
at the University of
Maryland, the Execu-
tive Director of the

Fraunhofer Center, Maryland, and
one of the founders and principals in
the Software Engineering Laboratory.
He works on measuring, evaluating,
and improving the software develop-
ment process and product and has
consulted for many organizations. Dr.
Basili is a recipient of a 1989 NASA
Group Achievement Award, a 1990
NASA/GSFC Productivity Improve-
ment and Quality Enhancement
Award, the 1997 Award for Out-
standing Achievement in Mathematics
and Computer Science by the
Washington Academy of Sciences,
and the 2000 Outstanding Research
Award from ACM Special Interest
Group on Software Engineering.

Computer Science Department
4111 AV Williams Building
University of Maryland
College Park, MD 20742
Phone: (301) 405-2668
Fax: (301) 405-2691
E-mail: basili@cs.umd.edu

Best Practices

May 13-17
Software Testing Analysis and Review

(STAREAST 2002)

Orlando, FL
www.sqe.com/stareast

June 3-6
Combat Identification Systems

Conference

Colorado Springs, CO
www.usasymposium.com

July 18-20
Shareware Industry Conference

St. Louis, MO
www.sic.org

July 22-25
Joint Advanced Weapons Systems Sensors,

Simulation, and Support Symposium
(JAWS S3)

Colorado Springs, CO
www.jawswg.hill.af.mil

August 19-22
The Second Software Product

Line Conference
San Diego, CA

www.sei.cmu.edu/SPLC2/

September 9-13
International Conference on Practical

Software Quality Techniques and
International Conference on Practical

Software Testing Techniques 2002 North
St. Paul, MN

www.softdim.cim/psqt/

April 28-May 1, 2003
Software Technology Conference 2003

Salt Lake City, UT
www.stc-online.org

COMING EVENTS

May 2002 www.stsc.hill.af.mil 17

Software Engineering Technology

The importance of information securi-
ty has increased substantially in the

past few years, primarily due to the
growth of the Internet. The events of
9/11 have resulted in a heightened aware-
ness of the importance of information
security in several key ways.

There is a greater need for informa-
tion sharing than ever before to enable
disparate intelligence, military, and law
enforcement groups to selectively share
information, yet maintain “need-to-
know” provisions required by national
security. There is an increased awareness
of the threats posed by information war-
fare; without ever firing a shot, enemy
forces could launch a cyberattack on a
nation’s critical infrastructure, thus ren-
dering a foe helpless.

The importance of information secu-
rity to the U.S. armed forces is thus both
old and new. Its importance is old in that
the problems of information security are,
as they have always been, related to the
confidentiality, integrity, and availability
of information (the “CIA” of traditional
information security). Its importance is
new in response to cyberwarfare threats,
the sheer volume of computerized infor-
mation, and the numbers of people
accessing it. U.S. Department of Defense
(DoD) requirements for information
security include all of the following:
• Large diverse worldwide user commu-

nity.
• Coalition forces’ need for interoper-

ability.
• Enforce “need-to-know” while en-

abling greater data sharing.
• Highly secure communications.
• Stringent auditing requirements.
• Users access to multiple systems to

carry out their mission.
• Critical nature of many defense sys-

tems requires 100 percent uptime.

• Independent measures of assurance
as required by federal directives.
An explanation of each information

security requirement follows below.

DoD Information Security
Requirements
Large User Communities
The DoD represents an extremely large
diverse worldwide user community. The
sheer size of the user community access-
ing defense systems via the Web not
only increases the risk to those systems,
but also constrains the solutions that can
be deployed to address that risk. Moving
applications to the Web creates chal-
lenges in terms of scalability of security

mechanisms, management of those
mechanisms, and the need to make them
standard and interoperable. Whereas the
largest traditional enterprise systems
typically supported hundreds of users,
many Web-enabled defense systems
have potentially thousands of users.

Interoperability
Unlike traditional defense systems where
a command or program owns and con-
trols all components of the system, Web-
enabled systems must exchange data with

systems owned and controlled by others,
e.g., other commands, suppliers, coalition
forces, partners, etc. Security mecha-
nisms deployed in these systems must
therefore be standards based, flexible,
and interoperable to ensure that they
work with others’ systems. They must
support thin clients and work in multitier
architectures.

Enforce Need to Know
Allowing greater access to data while
enforcing need to know means that
access control must be enforced on the
data to ensure that the same security pol-
icy is enforced regardless of the method
of data access. This requires a high
degree of granularity in traditional access
control mechanisms, as well as the ability
to compartmentalize data access based
on an application-specific security classi-
fication. (Application-specific meaning that
organizations may have different data
labeling requirements, and thus cannot
necessarily use a fixed-labeling scheme
across every organization that needs
access to the same data). Real-time infor-
mation sharing requires real-time or near
real-time reclassification of data, so that,
as threats change, information can be
both shared and segmented among the
multiple constituencies who need access
to it.

Secure Communications
The sensitive nature of communications
within the armed forces requires that even
ordinary communications provide
encryption for confidentiality and data
integrity to ensure that communications
are neither intercepted nor modified in
transmission. Furthermore, large-scale
encryption of stored data is generally a bad
idea (as it does not address access control
issues, gives users a false sense of security,

U.S. Defense Department Requirements
for Information Security

Kevin J. Fitzgerald
Oracle Corporation

The events of 9/11 have resulted in a heightened awareness of the importance of infor-
mation security. Paradoxically, there is a greater requirement than ever before for military,
intelligence, and law enforcement entities to share increasingly sensitive data, yet enforce
stringent information security policies to protect their critical infrastructure. The security of
these information systems must meet the technical challenges of a diverse user community:
need-to-know enforcement, interoperability, secure communications, and high availability, as
well as offering independent measures of assurance required by federal directives (e.g.,
National Security Telecommunications and Information Systems Security Policy No. 11).

Wednesday, 1 May 2002
Industry Plenary: 8:00 - 8:45

Ballroom

“Without ever firing
a shot, enemy forces

could launch a
cyberattack on a nation’s

critical infrastructure,
thus rendering a
foe helpless.”

and slows down system performance).
However, there is a requirement for selec-
tive encryption of some stored data as an
extra layer of protection, for defense-in-
depth.

Stringent Auditing
The more sensitive the data, and the more
users with access to that data, the greater
the requirement to hold users accountable
through auditing. Unfortunately, a num-
ber of serious security breaches involving
national security might have been pre-
vented had proper auditing mechanisms
been enforced. Auditing must be granular
enough to focus upon a particular activi-
ty, user, or object, and comprehensive
enough to record all user activity of inter-
est, yet have minimal impact on perform-
ance. Auditing must also be tied into an
alert mechanism to provide administra-
tors with timely information.

User Access to Multiple Systems
Traditional mechanisms used to identify
users and manage their access like grant-
ing each user an account and password on
each system they access are not practical
in a large interconnected environment
such as organizational intranets or the
Internet. It rapidly becomes too difficult
and expensive for system administrators
to manage separate accounts for each user
on every system. There is a greater
requirement for both strong user authen-
tication – due to the increased amount of
information users are able to access – and
central identification and management of
users due to the prohibitive cost of man-
aging access for thousands if not hun-
dreds of thousands of users across multi-
ple systems. Furthermore, in the case of
non-centralized account and privilege
administration, shutting down or restrict-
ing a user’s access in the event of a suspi-
cious security event or security breach is
time consuming. It also exposes the sys-
tems to additional breaches while the
administrator is required to access and
modify each separate system.

Availability
System availability is critical due to the
nature of the mission of the U.S. armed
forces. More than perhaps any other con-
sumers of information technology, DoD
systems require 100 percent uptime. For
most commercial organizations, informa-
tion unavailability during system down-
time may be inconvenient and costly but
not life threatening. For the armed forces,
information availability may literally be
the difference between mission success or
failure and life or death.

Information Assurance
U.S. federal directives such as the
National Security Telecommunications
and Information Systems Security Policy
(NSTISSP) No. 11, (see <www.nstissc.
gov/Assets/pdf/nstissp11.pdf>) require
information systems that access or man-
age information related to national securi-
ty to have independent measures of infor-
mation assurance, as evidenced by formal,
independent (third-party) security evalua-
tions. Acceptable criteria against which
products may be evaluated include the
Common Criteria ISO-15408 (see
<http://csrc.nist.gov/cc/ccv20/ccv2list.
htm>), the de facto worldwide evaluation
criteria, and the Federal Information
Processing Standard (FIPS)-140 (see
<http://csrc.nist.gov/cryptval>), which
attest to the correctness of cryptographic
mechanisms.

In the past, procurement vehicles
specified formal security evaluations.
Many requiring a solution compliant with
the Trusted Computer Security

Evaluation Criteria (see <www.radium.
ncsc.mil/tpep/library/tcsec>) or an
Evaluation Assurance Level 4 (EAL4), as
defined in the Common Criteria, were
often granted waivers for this require-
ment based on functionality requirements
that were not supported in the evaluated
versions. Procurement waivers (from
NSTISSP No. 11 requirements) will like-
ly – and rightly – be much harder to
acquire in a security environment after
9/11. Security will play a stronger role in
the tradeoff analysis between security and
functionality.

This article describes both the appro-
priate technical measures as well as spe-
cific security mechanisms that can address
the above requirements (in general
terms). Since many Web-based informa-
tion-processing systems are built on data-
base management systems, the technical
solutions will be presented in terms of

the protection of information stored in
database systems.

Technical Solutions
Large User Communities
Most organizations face daunting obsta-
cles in user management. Users within an
organization often have far too many user
accounts, with each system that controls
sensitive material having a separate
authentication procedure. This problem
has been exacerbated by the growth in
Web-based self-service applications –
every other week, users have a new user
account and password to remember.
Organizations who want per-user data
access and accountability do not want the
administrative nightmare of managing
users in each database or application users
access. An organization opening its mis-
sion-critical systems to partners and cus-
tomers does not want to create an
account for each partner in each database
the partner accesses; yet per-partner priv-
ilege and per-partner accountability is
highly desired.

An increasing number of products
view directories as the best mechanism to
make enterprise information available to
multiple different systems within an
enterprise. The trend toward directories
has been accelerated by the growth in use
of the Lightweight Directory Access
Protocol. These directories contain the
user’s identity information, as well as their
roles and privileges to perform opera-
tions. Enterprise roles, roles that are
defined across an enterprise and that
apply to multiple applications, enable
strong centralized user authorization.
Also, an administrator can add capabilities
to enterprise roles (granted to multiple
users) without having to update each
user’s authorizations independently.

Storing this information in a central
repository allows the administrator to
grant and remove privileges that impact
all of the organizational resources.
Directory information that specifies
users’ privileges or access attributes is
sensitive since unauthorized modification
of this information can result in unautho-
rized granting or denial of user privileges
or access. A directory that maintains this
organizational information must ensure
that only authorized system security
administrators can modify privileges or
access directory information.

Secure Communications
Communication mechanisms must sup-
port both confidentiality and data integrity
requirements. It is important to secure the
communications against network snooping

Software Engineering Technology

18 CROSSTALK The Journal of Defense Software Engineering May 2002

“The more sensitive
the data, and the
more users with

access to that data,
the greater the

requirement to hold
users accountable
through auditing.”

U.S. Defense Department Requirements for Information Security

May 2002 www.stsc.hill.af.mil 19

and data replay or modification (altering
data on the wire or removing information
during transmission). Network encryption,
including both confidentiality and integrity
algorithms, is a standard method for ensur-
ing secure communications.

In the case of client-server Web-based
applications, it is important to support
encryption from the client browser to the
middle-tier Web application server. Using
Secure Sockets Layer Version 3 (SSL V3)
has become accepted technology for this
purpose. SSL provides authentication,
integrity, and encryption services using
public-key encryption.

It is also important to support encryp-
tion from the middle tier to the database.
This can be provided through a variety of
mechanisms, including both native encryp-
tion technology in database products and
using SSL. Because different algorithms
provide different features and assurance, it
is important to support a variety of indus-
try-standard encryption algorithms to pro-
tect the confidentiality of data: for exam-
ple, the Data Encryption Standard (DES,
see <www.itl.nist.gov/fipspubs/fip46-2.
htm>); triple DES (see <http://csrc.
nist.gov/cryptval/des.htm>); and RC4
(see <www.rsasecurity.com/rsalabs/faq/
3-6-3.html>). Also, use integrity algo-
rithms to verify that data have not been
modified, including Secure Hash Algo-
rithm (SHA)-1 (see <http://csrc.nist.gov/
cryptval/shs.html>) and MD5 (see <www.
rsasecuri ty.com/rsalabs/faq/3-6-6.
html>).

The Federal Information Processing
Standard (FIPS) 140-1, Security Require-
ments for Cryptographic Modules, was
established to validate encryption products
purchased by the U.S. government.
Products are validated against FIPS 140-1
at security levels ranging from level one
(lowest) through level four (highest). A
FIPS validation ensures that the implemen-
tation of an encryption algorithm has been
properly tested.

Auditing
A critical aspect of any security policy is
maintaining a record of system activity to
ensure that users are held accountable for
their actions and that they do not abuse
their privileges. Auditing implementations
can and do vary by vendor; the following
describes Oracle’s auditing capabilities.
Auditing options need to be highly granu-
lar to target the user actions of interest, to
minimize the performance overhead of
auditing, and to avoid analysis paralysis, in
which there are too many auditing records
to facilitate meaningful inspection. Ideally,
audit records include enough granularity

that an administrator can determine what
the user requested as well as what was
returned to the user at the time of the orig-
inal request.

A robust database audit facility will
allow organizations to audit database activ-
ity by statement, by use of system privilege,
by object, or by user. One can also audit
only successful or unsuccessful operations.
For example, auditing unsuccessful
SELECT statements may catch users on
fishing expeditions for data they are not
privileged to see. Database system logs that
capture all changes to the database
(required for recoverability of data) can be
accessed for this purpose. The granularity
and scope of these audit options allow cus-
tomers to record and monitor specific
database activity without incurring the per-
formance overhead that more general
auditing entails.

A needed auditing capability is one that
enables organizations to define specific
audit policies that can alert administrators
to misuse of legitimate data access rights.
What is desired is the ability to define audit
policies, which specify the data access con-
ditions that trigger the audit event and are
tied to a flexible event handler to notify
administrators (e.g., via a page) that the
triggering event has occurred. An Oracle
implementation of this feature captures
the exact text of the statement the user
executed in audit tables. In conjunction
with other database features that recon-
struct the result of a query at a past time,
this auditing capability can be used to
recreate the exact records returned to a
user. A flashback or temporal query allows
the recreation of the data a user accessed at
the time of the original operation. This is
an important feature for customers who
have especially sensitive information they
wish to share that requires strict accounta-
bility such as federal organizations selec-
tively sharing information for counterter-
rorism purposes.

Many three-tier applications authenti-
cate users to the middle tier, and then the
transaction-processing monitor or applica-
tion server connects as a super-privileged
user and does all activity on behalf of all
users. The user on whose behalf the mid-
dle tier is operating needs to be known to
the database system. This allows the data-
base to authenticate the real client, enforce
access control based on least privilege, and
audit actions taken on behalf of the user
by the middle tier. To provide full account-
ability, the audit records should capture
both the logged-in user (e.g., the middle
tier) who initiated the connection and the
user on whose behalf an action is taken.
Auditing user activity, whether users are

connected through a middle tier or directly
to the data server, enhances user accounta-
bility and thus the overall security of mul-
titier systems.

Need-to-Know Protection
The U.S. armed forces, as with many mil-
itary and intelligence organizations, has a
requirement to separate unclassified (but
sensitive) information from classified
information and to compartmentalize
access to classified information. This
includes the ability to limit data access
based on an arbitrary, hierarchical data
level (e.g., Secret, Top Secret), compart-
ments (e.g., Project X), and control of its
release (e.g., Releasable to United
Kingdom).

During the 1990s, many vendors deliv-
ered products that provided multilevel
security (MLS): the ability to enforce
mandatory access control based on the
comparison of a user’s clearance to a label
on the data. For example, a database con-
taining products required for a joint mili-
tary exercise with coalition partners could
contain data that were viewable only by the
United States, particular coalition partners,
or all parties. The database would both
separate the data and control access based
on user clearance. However, MLS systems
had a very low rate of adoption even
among the user communities (DoD) who
had the requirement for such systems.

At the same time, MLS systems were
failing to be adopted by the markets that
had demanded them; commercial organi-
zations were taking advantage of the
accessibility of the Internet to become e-
businesses. Many commercial companies
that wanted to open mission-critical sys-
tems to partners and customers over the
Internet had an increased requirement for
granular access control to the user or cus-
tomer.

Companies offering application-host-
ing services also faced unique security chal-
lenges such as keeping data from different
hosted user communities separate. The
simplest way of doing this is to create
physically separate systems for each hosted
community; the disadvantage of this
approach is that it requires a separate com-
puter with separately installed, managed,
and configured software for each hosted
user community, providing little economies
of scale to a hosting company. Business-
to-business exchanges also faced require-
ments for both data separation and data
sharing.

To address both the Internet require-
ments for data separation and data sharing
and government requirements for granular
access control, Oracle introduced the abil-

Software Engineering Technology

20 CROSSTALK The Journal of Defense Software Engineering May 2002

ity to provide programmable row-level
access control. This capability called
Virtual Private Database (VPD) is server-
enforced, fine-grained access control
together with a secure application context,
enabling multiple customers and partners
to have secure direct access to mission-
critical data. VPD enables, within a single
database, per-user or per-customer data
access with the assurance that enforcement
is not able to be bypassed. The result is
lower cost of ownership in deploying
applications since security can be built
once in the data server rather than in each
application that accesses the data. Security
is stronger because it is enforced by the
database: No matter how a user accesses
data, security policies cannot be bypassed.

VPD can be built upon to support spe-
cific application policies. One such policy
implementation developed by Oracle
addresses the DoD and intelligence com-
munity requirement to automatically pro-
vide labeled data management and enforce
label-based and compartmentalized data
access. This policy implementation allows
organizations to assign sensitivity labels to
information, control access to that data
based on those labels, and ensure that data
are marked with the appropriate sensitivity
label. For example, a counterterrorism
application may separate data for “need-
to-know” purposes based on selected
agencies or groups within agencies (e.g.,
Secret: CIA, Defense Intelligence Agency).
The ability to natively manage labeled data
is a tremendous advantage for organiza-
tions managing data of different sensitivi-
ty levels by being able to provide the right
information to the right people at the right
level of secure data access.

Standards
The existence of and adherence to stan-
dards enable stronger security of an inte-
grated system. Security standards are
especially important since security gener-
ally needs to be integrated to work; there
are very few security bolt-ons that can
enhance or enable security that do not
already exist in the underlying compo-
nents. Security standards also facilitate the
secure integration of disparate technology
components.

Standards also usually result in a lower
cost of ownership because integration
costs are lower (more things work togeth-
er out of the box), and component costs
are generally lower if the products are dif-
ferentiated on something other than pro-
prietary, lock-in technology. In general,
the price is high, and the quality (especial-
ly security, which tends to be costly to
build) is lower in a monopoly or near-

monopoly market.
It is especially important for the DoD

to ensure interoperability between entities
within one of the armed forces, among
the various armed forces, and with coali-
tion partners’ systems.

Another benefit of standards is that
there tends to be less security by obscuri-
ty; the security mechanisms, if they com-
ply with a standard, are well-known rather
than hidden and can also be certified or
evaluated against the standard, thus pro-
viding consumers with confidence in the
security of the resulting products.

Standards can include two types of
technical interfaces. The first is the Public
Key Certificate Standards (PKCS, see
<www.rsasecurity.com/rsalabs/pkcs>),
and Public Key Infrastructure X.509
(PKIX, see <www.ietf.org/html.charters/
pkix-charter.html>). Second, are the inde-
pendent measures of assurance for secu-
rity components such as FIPS-140, which

speaks to cryptographic module valida-
tion and the international Common
Criteria, which is a formal security evalua-
tion standard.

Public Key Infrastructure
In an effort to provide more secure com-
puting environments, many customers are
pursuing rapid adoption and deployment
of public key encryption technologies.
Public key infrastructure (PKI) describes
the application of public key technologies
to a computing infrastructure to ensure
data privacy and to protect systems from
unauthorized access.

PKI itself is a basic encryption tech-
nique that has many important applications
for secure systems. One application is SSL.
For example, a secure implementation of
SSL requires at least a server-side certificate
attesting to the identity of the server with
which a user is attempting to connect. PKI
can also enable strong client authentica-
tion, provided that the PKI credentials
themselves are securely contained and
accessed (for example, via a smart card).

PKI is also very scalable technology; in
theory, a user who has been given a set of
PKI credentials attesting to his/her digital
identity can authenticate to servers and
systems that he/she has never connected
to before because the user’s identity can be
validated through PKI mechanisms. While
this portability of credentials has limited
practical application in many commercial
organizations (realistically, Bank A will not
accept user credentials issued by Bank B),
the applicability within DoD is much
more apparent. Each service member has
precisely one identity as far as the U.S.
armed forces is concerned. Once creden-
tials are issued for that identity, they can
be reused in multiple DoD systems.

The following are features that are
important in database products to sup-
port PKI Infrastructure implementa-
tions:
• Client-based authentication using

X.509 certificates stored in PKCS No.
12 containers. PKCS No. 12, titled
Personal Information Exchange
Format, specifies a standard for the
transfer of identity information
including private keys, certificates, etc.

• Wallets (PKI credential container)
interoperable with third-party appli-
cations and portability across operat-
ing systems.

• Support for multiple certificates for
each wallet, including Secure Multi-
purpose Internet Mail Extensions
(S/MIME, see <www.rsasecurity.
com/standards/smime>) signing cer-
tificates, S/MIME encryption certifi-
cates, and code-signing certificates.

• Client authentication using SSL.
Since PKI at best provides a single set

of credentials, but not single sign on, it is
helpful to use PKI in conjunction with
single sign-on services as described
below.

Single Sign On
In client-server database applications,
strong authentication, and single sign on
(SSO) are important features. A variety of
different user authentication mechanisms
are used depending on the application
requirements. These can include user
passwords, smart cards, token cards, and
biometric authentication devices. SSO is
provided by technologies such as Ker-
beros (see <http://web.mit.edu/kerberos/
www>), Distributed Computing Environ-
ment (see <www.osf.org/dce>), and SSL.

Web-based SSO encompasses a differ-
ent set of security issues than client-serv-
er SSO due to the stateless nature of Web-
based connections. One approach to deal-
ing with this problem is to use a central-

“... a counterterrorism
application may

separate data for
‘need-to-know’ purposes

based on selected
agencies or groups
within agencies ...”

May 2002 www.stsc.hill.af.mil 21

ized server to authenticate and pass
authenticated identity securely to partner
applications. With this approach, a log-in
page is displayed to the user requesting a
username and password. Once the user
has done so, his/her password is verified
and an SSO cookie is set in the user’s
browser. The client sends this encrypted
cookie along with all subsequent HTTP
interactions to the partner applications,
authenticating the client with the central-
ized authentication server and avoiding
the need for the client to re-authenticate
as long as the cookie is valid.

Coupling this authentication technolo-
gy with PKI allows a user to strongly
authenticate to the centralized authentica-
tion server via SSL while obtaining the
benefit of Web-based SSO after PKI-
based authentication.

Availability
Databases and the Internet have enabled
worldwide collaboration and information
sharing by extending the reach of data-
base applications throughout organiza-
tions and communities. This reach fur-
ther highlights the importance of high
availability in data management solutions.
Small businesses and global enterprises
alike – let alone the U.S. armed forces
with their obvious need for high avail-
ability to support national security mis-
sions – have users all over the world
requiring access to data 24 hours per day.
Data availability includes the capacity to
recover from unplanned outages, allow
planned database maintenance while the
database is in production and available to
users, improve system manageability and
serviceability, and provide enterprise-
class disaster planning. Highly available
solutions have three basic characteristics:
• Reliability: Reliable solutions are

made of components that seldom fail.
• Recoverability: In the event a compo-

nent does fail, a highly available solu-
tion quickly recovers without human
intervention.

• Continuous Operation: Highly avail-
able solutions continue to provide
service, even during maintenance
activities.
Each component in a system should

be designed to provide high availability,
which means each component is reliable.
In addition, each component must be
able to recover from failures of support-
ing components in the stack. The fre-
quency of failures and the speed of
recovery determine the amount of
unplanned downtime and application
experiences. However, unplanned down-
time is not the complete story. Each

component must be able to provide con-
tinuous operation to meet an acceptable
planned downtime target. This may
require designing and building the system
so that preventative maintenance can be
performed while the application is online
and users are accessing data. It is also
important to plan for unforeseen inci-
dents such as earthquakes and power out-
ages that may prevent recovery for an
extended period of time.

One of the true challenges in design-
ing a highly available solution is examin-
ing and addressing all the possible causes
of downtime. It is important to consider
causes of both unplanned and planned
downtime, including middleware, applica-
tion, and network failures. Unplanned
downtime can include component failure;
hardware failures include system, periph-
eral, network, and power failures. Human
error, a leading cause of failures, includes
errors by an operator, user, database
administrator, or system administrator.
Another type of human error that can
cause unplanned downtime is sabotage.
The final category is disasters. Although
infrequent, these causes of downtime can
have extreme impacts on enterprises
because of their prolonged effect on
operations. Possible causes of disasters
include fires, floods, earthquakes, power
failures, and bombings. A well-designed,
high-availability solution will account for
all these factors in preventing unplanned
downtime. Planned downtime can be just
as disruptive to operations, especially in
the DoD, which must support users in
multiple time zones up to 24 hours per
day. In these cases, it is important to
design a system to minimize planned
interruptions.

Databases systems are designed to
address the causes of unplanned and
planned downtime. In the event of a fail-
ure, a database can quickly and automati-
cally recover. No committed data are lost.
In addition, database systems support
features that obviate the need for planned
downtime, allowing administrators to
perform many management and mainte-
nance tasks while the system is online and
data are fully accessible. Management
tools are available that identify potential
problems and rectify them before they
affect data availability.

Assurance
It is important not only to support secu-
rity features but also to have validation
that the features have been implemented
in a correct and secure manner. This is
provided by formal and independent
security evaluations. A commitment to

past and continuing product evaluation
of new releases against the Common
Criteria (ISO-15048) and encryption
technology against FIPS 140-1 is a
proven measure of a product vendor’s
commitment to security. This level of
commitment should be a requirement for
use by the most security-conscious cus-
tomers in the world: governments,
defense, and intelligence agencies. The
database, however, is only part of an
enterprise-wide, end-to-end security
model. A comprehensive approach to
security, i.e., a multitiered distributed
enterprise, is important to satisfying the
mission of large government customers
like the U.S. armed forces.

Conclusion
The DoD has a requirement for secure,
interoperable, and available systems.
While additional technical research and
advancement will improve available secu-
rity technology, much of the security tech-
nology needed to meet the DoD security
requirements exists today. What is
required is a commitment to use the secu-
rity technology that exists, to demand
secure and independently evaluated solu-
tions, and to incorporate security into the
entire computing infrastructure.◆

About the Author
Kevin J. Fitzgerald is
senior vice president,
Oracle Corporation Gov-
ernment, Education and
Healthcare. He has
been a leader in infor-

mation technology sales and sales man-
agement for more than 25 years.
Fitzgerald previously worked for
Oracle from 1987-97 as vice president
and general manager of the public sec-
tor sales group. During his initial
tenure, he served in a number of sales
roles and also helped initiate new prod-
uct development areas and product
enhancements, enabling Oracle to meet
specialized government requirements.
Fitzgerald served in the U.S. Air Force
and has a bachelor’s degree from
Boston College.

Point of Contact:Tracy Strelser
1910 Oracle Way
Reston,VA 20190
Phone: (703) 364-6118
Fax: (703) 364-3026
E-mail: tracy.strelser@oracle.com

U.S. Defense Department Requirements for Information Security

Within the complex systems devel-
oped throughout the aerospace

industry, software is playing an increasing-
ly important role in mission success.
Methods for developing and assuring
software are often not well understood
by program managers and, thus, are
often simply ignored. In such a case,
ignorance is far from bliss; it is danger-
ous. During the past few years, NASA has
emphasized the faster, better, and cheap-
er approach to developing missions,
thereby making it more important than
ever to ensure the quality of its software
products. It is this imperative that makes
the role of Software Quality Assurance
(SQA) critical in the short term, but also
linked to mission success in the long
term.

Assuring software quality requires
that engineering knowledge and disci-
pline be applied at all phases of the devel-
opment life cycle. And just as with hard-
ware, the final step in developing quality
products culminates in rigorous testing
before release. Quality assurance engi-
neers are also required to possess suffi-
cient domain knowledge to evaluate the
completeness and correctness of system
requirements, and they must have the
ability to determine whether the design
has incorporated all requirements accu-
rately. Ultimately, these specialists are
responsible for advising management
when or whether a product is reliable and
meets quality standards.

This article starts by discussing what
is meant by SQA. It then discusses the
aspects of how software quality assur-
ance is applied to both the products and
the process. The article continues with
some of the major components of soft-
ware assurance. Software metrics are used
to help numerically determine the quality
of the products, noting they are underuti-
lized and often poorly understood.
Another area of quality assurance not
well understood is independent verifica-
tion and validation (IV&V); this article

will touch briefly on the role it plays in
quality assurance. Finally, it discusses the
ways in which software safety and relia-
bility are assessed from a quality perspec-
tive. These two areas are often neglected
despite their critical role in mission suc-
cess.

Definitions
Software quality assurance is a combina-
tion of three concepts: quality, software
quality, and software quality assurance.

While the terms are often used inter-
changeably, we need to understand the
basics of quality before we can under-
stand the components and problems of
software quality assurance.

Quality Defined
Before defining software quality, we need
to define what is meant by quality. The
Institute of Electrical and Electronics
Engineers’ (IEEE) Standard Glossary of
Software Engineering Terminology defines
quality as “the degree to which a system,
component, or process meets (1) speci-
fied requirements, and (2) customer or
user needs or expectations [1].” The
International Standards Organization
(ISO) defines quality as “the totality of
features and characteristics of a product
or service that bear on its ability to satis-
fy specified or implied needs [2].” IEEE
and ISO definitions associate quality

with the ability of the product or service
to fulfill its function. This is achieved
through the features and characteristics
of the product.

While this definition seems to be
clear and unambiguous, the concept of
quality really is not. Kitchenham states
quality is “hard to define, impossible to
measure, easy to recognize [3].” Gillies
states that “Quality is generally transpar-
ent when present, but easily recognized
in its absence [4].”

Therefore, while we can define quali-
ty in theory, in practice, and in use, an
absolute definition is elusive.

Software Quality Defined
Software quality is defined in the
Handbook of Software Quality Assurance in
multiple ways but concludes with this
definition: “Software quality is the fitness
for use of the software product [5].” This
definition implies the evaluation of soft-
ware quality related to the specification
and application of software quality.
There are, however, criteria that help in
the evaluation of software quality. For
each project, the appropriate criteria
need to be identified for the environ-
ment.

Two of the most often-cited models
applying the criteria are the GE model
proposed by McCall, which was later
adapted by Watts, and the Boehm model
[4]. Below is a combined list of defini-
tions of quality criteria for software.
• Correctness: extent to which a pro-

gram fulfills its specifications.
• Efficiency: use of resources execu-

tion and storage.
• Flexibility: ease of making changes

required by changes in the operating
environment.

• Integrity: protection of the program
from unauthorized access.

• Interoperability: effort required to
couple the system to another system.

• Maintainability: effort required to
locate and fix a fault in the program
within its operating environment.

22 CROSSTALK The Journal of Defense Software Engineering May 2002

What is Software Quality Assurance?

Dr. Linda H. Rosenberg
NASA

Software directly impacts not only mission success but also mission safety. Software
Quality Assurance (SQA) is critical to the success of every mission at NASA, but the
roles and responsibilities are often misunderstood. SQA covers all phases of the software
development process, including safety, reliability, independent verification and validation,
and metrics. The purpose of this article is to help the reader understand software quality
assurance.

Thursday, 2 May 2002
Track 7: 9:00 - 9:40

Room 251 A - C

“In the real work of
software development,

criteria for quality
are identified and
applied to differing

extents as a result of
trade-off decisions.”

• Portability: effort required to transfer
a program from one environment to
another.

• Reliability: ability not to fail.
• Reusability: ease of re-using software

in a different context.
• Testability: ease of testing the pro-

gram to ensure that it is error-free
and meets its specification.

• Usability: ease of use of the software.
In a perfect world all of these criteria

would be met, but software is not devel-
oped or run in such a world, and trade-
offs are a part of all development proj-
ects. Often the most efficient software is
not portable, as portability would require
additional code, decreasing the efficiency.
Usability is subjective and varies depend-
ing on the system users. When using the
above criteria to define the assurance
objectives of a software system, the pur-
pose and use of the system must be
taken into account. In the real work of
software development, criteria for quality
are identified and applied to differing
extents as a result of trade-off decisions.

Software Quality Assurance Defined
Again referencing IEEE, quality assur-
ance is defined as “a planned and system-
atic pattern of all actions necessary to
provide adequate confidence that an item
or product conforms to established tech-
nical requirements [1].” This definition
needs to be adapted to software taking
into account that, unlike hardware sys-
tems, software is not subject to wear or
physical breakage; consequently, its use-
fulness over time remains unchanged
from its condition at delivery. Software
quality assurance must be a systematic
effort to improve the delivery condition.
In the Handbook of Software Quality
Assurance, the following definition is
given: “Software quality assurance is the
set of systematic activities providing evi-
dence of the ability of the software
process to produce a software product
that is fit to use [5].” These activities are
evaluated in part against the above criteria
and measured as described in a later sec-
tion of this article.

Software Quality Assurance
Applied
The focus, therefore, of SQA is to mon-
itor continuously throughout the soft-
ware development life cycle to ensure the
quality of the delivered product. This
requires monitoring both the processes
and the products. In process assurance,
SQA provides management with objec-
tive feedback regarding compliance to

approved plans, procedures, standards,
and analyses. Product assurance activities
focus on the changing level of product
quality within each phase of the life
cycle, such as the requirements, design,
code, and test plan. The objective is to
identify and eliminate defects throughout
the life cycle as early as possible, thus
reducing test and maintenance costs.

Process Assurance
It has been proven that the use of stan-
dards and process models has a positive
impact on the quality of the final soft-
ware. The purpose of standardization of
SQA ensures that there is discipline and
control in the software development
process via independent evaluation [5].
ISO 9000 provided a way to gain external
accreditation for a quality management
system. Many companies have used the
application of ISO to software, but the
complaint is that it tends to fossilize pro-
cedures rather than encourage process
improvement [4].

One of the most common software
development models is the Software

Engineering Institute’s Capability
Maturity Model® (CMM®), which has
recently developed into the CMM
IntegrationSM (CMMISM). The basic prem-
ise underlying both CMM and CMMI is
that the quality of the software product
is largely determined by the quality of
the software development and mainte-
nance processes used to build it [6].

Many commercial standards are also
found in common practice for software
development. Many organizations such
as The Department of Defense and
NASA have, in the past, developed their
own standards for software develop-
ment, but recently have embraced the
use of commercial standards instead. It
is now NASA’s policy to use commercial
standards whenever possible, thus
encouraging more standardization not
only across NASA but within industry
also.

Product Assurance
At NASA’s Goddard Space Flight Center
(GSFC), software quality assurance is
carried out by an independent group of
people whose sole function is to monitor
quality implementation. The Assurance
Management Office recently created a
list of tasks that SQA should perform
during each phase of the software devel-
opment life cycle. This list is comprehen-
sive and starts in the concept phase of a
proposed project and concludes with the
operations and maintenance phase. For
example, in the concept phase, SQA
should generate and/or assist in the
development/review of various pro-
gram/project plans, including but not
limited to project management plans,
subcontract management, etc. In the
requirements phase, SQA should obvi-
ously generate and/or assist in the gener-
ation of requirements, but it should also
do activities such as observing, witness-
ing and/or participating in prototyping
activities.

To accomplish all of these tasks
would be an ideal set of SQA activities
on a project, but projects rarely have suf-
ficient funds or need to perform them
all. For most projects, the amount of
SQA to be applied is negotiated based on
the purpose, degree of mission risk, and
the funding level of the project. This
negotiation is critical to the success of
SQA. In the following sections, I will dis-
cuss four activities in which SQA must
participate during all phases: metrics,
IV&V, safety, and reliability.

Metrics
Software metrics are often ignored dur-
ing the early software development life-
cycle phases and are not an activity gen-
erally associated with SQA – but should
be. For SQA practitioners, with their
responsibility for assuring both the
processes and products of the software
development, measurement is critical.
Throughout each of the life-cycle phases,
metrics can be used to help in the evalu-
ation.

The Software Assurance Technology
Center (SATC) at GSFC has identified
relevant metrics that can help projects
better evaluate the quality of their prod-
ucts at fixed points within their develop-
ment. For example, SATC developed a
tool that derives metric information by
analyzing requirement specification doc-
uments. Known as Automated Require-
ments Measurement,1 this tool provides
indicators of the quality of the require-
ments set. The tool’s objective is to iden-
tify terms within the text that may cause

What is Software Quality Assurance?

May 2002 www.stsc.hill.af.mil 23

“It has been proven
that the use of

standards and process
models has a

positive impact on the
quality of the

final software.”

requirements to be ambiguous and hence
difficult to test and to identify any
requirements that are incomplete [7].

It is up to the SQA organization to be
cognizant of available and relevant met-
rics that help evaluate and assure prod-
ucts. When projects consistently use soft-
ware metrics as part of their develop-
ment, the SQA team needs only to vali-
date the metrics and ensure the correct
data interpretation. If a project is not
employing metrics, however, then it is the
responsibility of SQA to encourage, and
perhaps facilitate, their use or to develop
an independent metrics program for suf-
ficient insight into the development.

Independent Verification and Validation
IV&V is defined by three components; it
must be independent technically, manage-
rially, and financially. IV&V must priori-
tize its own efforts, identifying where to
focus its activities. It must have a clear
reporting route to the program manage-
ment, and the budget for these efforts
must be allocated and controlled by the
program. Control must occur at a level
that is independent of the development
organization such that the effectiveness
of the IV&V activity is not compromised.

Verification is defined as the process
of determining whether or not the prod-
ucts of a given phase of the software
development cycle fulfill the requirements
established during the previous phase, i.e.,
whether or not it is internally complete,
consistent, and correct enough to support
the next phase. Validation is the process
of evaluating software throughout its
development process to ensure compli-
ance with software requirements.
Verification often asks the question, “Are
we building the product right?” Validation
asks, “Are we building the right product?”

NASA has a facility in West Virginia
whose primary purpose is the accom-
plishment of IV&V. Without SQA, IV&V
is expensive and often less effective.
Where SQA is a broad blanket across the
project, overseeing all process and prod-
uct activities, including software, IV&V
focuses on only those processes and
products determined to have the highest
risk and does an in-depth evaluation of
them.

Safety
Safety is a team effort and is everyone’s
responsibility. Software is a vital part of
the system. Project managers, systems
engineers, software leads and engineers,
software assurance or quality assurance
(QA), and system safety personnel all play
a part in creating a safe system. Safety-crit-

ical software is defined by the NASA
Software Safety Standard as “Software
that directly, or indirectly, contributes to
the occurrence of a hazardous system
state, controls or monitors safety critical
functions, runs on the same system as
safety critical software or impacts systems
that run safety critical software, or handles
safety critical data [8].” The goal is for the
QA activity to ensure that software con-
tributes to the safety and functionality of
the whole system.

When a device or system could possi-
bly lead to injury, death, or the loss of
vital (and expensive) equipment, system
safety is always involved. Often hardware
devices are used to mitigate the hazard
potential or to provide a fail-safe mecha-
nism should the worst happen. As soft-
ware becomes a larger part of electro-
mechanical systems, hardware hazard

controls are being replaced or backed up
by software controls. Software has the
ability not only to detect certain types of
error conditions more quickly than hard-
ware but also to respond more intelli-
gently, thereby avoiding a potentially haz-
ardous state. The increased reliance on
software means that the safety and relia-
bility of the software become vital com-
ponents in a safe system [8].

Reliability
IEEE defines software reliability as “The
probability that software will not cause
the failure of a system for a specified time
under specified conditions. The probabil-
ity is a function of the inputs to and use
of the system, as well as a function of the
existence of faults in the software [9].”
Using this definition, expectations of reli-
ability must be based on how the system
is to be used and for what length of time.
At NASA, many of our satellites fly for

multiple years; the reliability of their soft-
ware must support the expected lifetime.
The conditions of that software’s use will
be specified by the satellite’s mission.

IEEE continues to define software
reliability management as “The process of
optimizing the reliability of software
through a program that emphasizes soft-
ware error prevention, fault protection
and removal, and the use of measure-
ments to maximize reliability in light of
project constraints such as resources,
schedule, and performance [9].” This def-
inition puts the burden of reliability not
just on the testing phase, but on the entire
life cycle to ensure errors are prevented
starting in the requirements phase deter-
mining the quality of such attributes as
phrasing, completeness, and clarity.
Throughout the life cycle, errors should
be detected and removed using such tech-
niques as code walkthroughs and inspec-
tions. Relevant measurements should be
used at all phases to ensure the effective-
ness of all assurance activities. In the test-
ing phase, reliability can be evaluated
using one of the many reliability models.
These models, however, must be applied
with very strict rigor to ensure accuracy.

It is the responsibility of the SQA
organization to ensure that reliability is
continuously promoted and evaluated
throughout the life cycle as specified
above. Quality cannot be tested in at the
end of a project; it must be built in as the
software is being developed. Reliability
also impacts safety – a system cannot be
deemed safe if it is not reliable.

Conclusion
SQA is faced with many challenges start-
ing with the method of defining quality
for software. There needs to be a common
understanding as to what is high-quality
software, but the software usage environ-
ment usually influences the final defini-
tion. There are many aspects of SQA,
from those within the phases of the soft-
ware development life cycle to those that
span multiple phases, i.e., safety, reliability,
and IV&V. SQA is a very complex area
that is critical to the ultimate success of a
project; it is also one that requires a rather
diverse set of skills. New knowledge areas
such as software safety and reliability are
now being added to the core set of
required skills. Finally, SQA must be inde-
pendent from development organizations
to be successful.◆

References
1. IEEE Std 610.12-1990. Glossary of

Software Engineering Terminology.
Institute of Electrical and Electronics

Software Engineering Technology

24 CROSSTALK The Journal of Defense Software Engineering May 2002

“When projects
consistently use software
metrics as part of their
development, the Soft-
ware Quality Assurance

team needs only to
validate the metrics and

ensure the correct
data interpretation.”

May 2002 www.stsc.hill.af.mil 25

Engineers, Inc., 1990.
2. ISO 9003-3-1991. Quality Manage-

ment and Quality Assurance Stan-
dards, Part 3: Guidelines for the
Application of ISO 9001 to the
Development, Supply and Mainten-
ance of Software. International
Standards Organization, 1991.

3. Kitchenham, Barbara, and Shari
Lawrence Pfleeger. “Software Quality:
The Elusive Target.” IEEE Software
13, 1, Jan. 1996: 12-21.

4. Gillies, Alan C. Software Quality,
Theory and Management. Inter-
national Thomson Computer Press,
1997.

5. Schulmeyer, G. Gordon, and James I.
McManus. Handbook of Software
Quality Assurance, 3rd ed. Prentice
Hall PRT, 1998.

6. Software Engineering Institute. Capa-
bility Maturity Model. Carnegie Mellon
University, 1991.

7. Wilson, W., L. Rosenberg, and L.
Hyatt. “Automated Quality Analysis of
Natural Language Requirement Speci-
fications.” Proceedings of the 14th
Annual Pacific Northwest Software
Quality Conference, Portland, Ore.,
1996.

8. NASA-STD-8719.13A. NASA Soft-
ware Safety Standard. NASA, 2001.

9. IEEE Std 982.2-1988. Guide for the
Use of Standard Dictionary of
Measures to Produce Reliable Soft-

ware. Institute of Electrical and
Electronics Engineers, Inc., 1988.

Note
1. Available on the SATC Web site at

no cost, see <http://satc.gsfc.nasa.
gov>.

About the Author
Linda H. Rosenberg,
Ph.D., serves as the
chief scientist for Soft-
ware Assurance for
Goddard Space Flight
Center, NASA. She is a

recognized international expert in the
areas of software assurance, software
metrics, requirements, and reliability.
Dr. Rosenberg has a doctorate degree
in computer science, a master’s of engi-
neering science degree in computer sci-
ence, and a bachelor’s of science
degree in mathematics.

Office of Systems Safety and
Mission Assurance
Goddard Space Flight Center,NASA
Building 6 Code 300
Greenbelt, MD 20771
Phone: (301) 286-0087
Fax: (301) 286-1667
E-mail: linda.h.rosenberg@

gsfc.nasa.gov

What is Software Quality Assurance?

Get Your Free Subscription

Fill out and send us this form.

OO-ALC/TISE

7278 Fourth Street

Hill AFB, UT 84056-5205

Fax: (801) 777-8069 DSN: 777-8069

Phone: (801) 775-5555 DSN: 775-5555

Or request online at www.stsc.hill.af.mil

NAME:__

RANK/GRADE:___

POSITION/TITLE:__

ORGANIZATION:___

ADDRESS:__

__

BASE/CITY:__

STATE:___________________________ZIP:___________________________________

PHONE:(_____)___

FAX:(_____)___

E-MAIL:___@_________________________

CHECK BOX(ES) TO REQUEST BACK ISSUES:

MAY2000 " THE F-22

JUN2000 " PSP & TSP

APR2001 " WEB-BASED APPS

JUL2001 " TESTING & CM

AUG2001 " SW AROUND THE WORLD

SEP2001 " AVIONICS MODERNIZATION

DEC2001 " SW LEGACY SYSTEMS

JAN2002 " TOP 5 PROJECTS

MAR2002 " SOFTWARE BY NUMBERS

APR2002 " RISKY REQUIREMENTS

STSC JOVIAL Services Can Help You
Put the Pieces Together With:
• SPARC Hosted-MIPS R4000 Targeted JOVIAL Compiler
• SPARC Hosted-PowerPC Targeted JOVIAL Compiler
• Windows 95/98/ME/NT (WinX) Compiler
• Use of Licensed Software for Qualified Users
• 1750A JOVIAL ITS Products
• Computer Based Training
• On-Line Support

Our services are free to members of the Department
of the Defense and all supporting contractors. Just give
us a call.

If you have any questions, or require more information,
please contact the Software Technology Support Center.

JOVIAL Program Office
Kasey Thompson, Program Manager • 801 775 5732 • DSN 775 5732
Dave Berg, Deputy Program Manager • 801 777 4396 • DSN 777 4396
Fax • 801 777 8069 • DSN 777 8069 • Web Site • www.jovial.hill.af.mil

JOVIAL GOT
YOU PUZZLED?

Capture/playback tools capture or
record the actions performed during

a test session into software-like scripts
that can be replayed against the same or
an updated version of the software,
allowing a comparison of identical test
results. A difference in test results may
indicate the presence of a regression
defect.

For the past six years, I have been
asking training and conference audi-
ences, “How many of your organizations
own some type of automated
capture/playback test tool?” Typically, 80
percent to 90 percent of the audience
will raise their hands. However, the typi-
cal response drops to about 10 percent to
20 percent of that group when I next
ask, “How many of you who just raised
your hand would consider automated test
tools an integral part of your testing
effort?”

Obviously, there is a large gap
between the people who own automated
test tools and people who actually bene-
fit from test automation. Also, my survey
findings have not changed significantly
during the past six years. The observa-
tion that automated test tools account
for a lot of shelfware is not new or all that
insightful. In fact, the shelfware problem
is shared with many types of software
tools.

When faced with the dynamic world
of automated test tools, many organiza-
tions make the best choice they can and
then try to make the tool work in their
environment. They hope the rest of the
organization will embrace the tool as
well.

The purpose of this article is to out-
line the 10 major challenges that I see
most often in organizations struggling to
make effective test automation a reality.
The earlier these challenges are under-
stood, the better prepared an organiza-
tion will be to deal with them. Plus, the
more an organization understands the
issues of test automation, the less risk it

incurs in time and money when acquiring
a tool.

These challenges are presented in
order from the least to highest impact on
the overall test automation effort. It is
also important to understand that even
organizations that have developed core
competencies in working with test
automation struggle at times with these
challenges.

1. Lack of Tool Availability
The lack of tool availability is usually the
result of the following:
1. The tool is available, but you cannot

get the funding for it.
2. There does not seem to be a tool on

the market that does what you need
or fits in your environment.
The first issue is based in manage-

ment’s understanding of testing and the
priority it is given in terms of funding.
While the cost of automated test tools is
high compared with more common soft-
ware packages such as office automation
products and software development
suites, the anticipated value of the tools
is in reduced time and greater testing pre-
cision. Test automation promises
increased productivity and accuracy,
which is where the business case must be

made. The cost of a single defect in most
organizations can offset the price of one
or more tool licenses. It is all a matter of
where management chooses to spend the
money – in defect detection or post-pro-
duction rework, which is many times
more costly than early defect detection.

Not having tools available in a partic-
ular environment is more troublesome.
Although there is now automated tool
support in most environments, this does
not mean the support in every environ-
ment is great. In older environments,
tool support is very limited.

If funding is the issue, consider the
following:
• Measure the current cost of defects,

especially in post-implementation
rework. Use this information to help
build a case for faster and more reli-
able testing using tools.

• Show the value of automated test
tools for other groups besides testers
such as the value of developers using
the tools.
If getting a good technical fit is the

issue, consider the following:
• Network with other testers to find

information about lesser-known test
tools. Online quality assurance
forums are also good places to query
people about tools in lesser-support-
ed environments.

• Try to find tools that will work
between platforms. This will likely
require the use of PC-based emula-
tors as opposed to host-based tools.

• Investigate the possibility of building
your own tools or, at least, achieving
a level of test automation using com-
mon scripting commands and com-
parison programs.

2. Lack of Tool Compatibility
and Interoperability
Tool incompatibility and lack of inter-
operability are seen in organizations that
have diverse technologies and applica-
tions. The desire is to be able to auto-

26 CROSSTALK The Journal of Defense Software Engineering May 2002

Surviving the Top 10
Challenges of Software Test Automation

Randall W. Rice
Rice Consulting Services, Inc.

Capture/playback tools make it possible to repeat two or more tests identically and com-
pare the results. This article focuses on capture/playback tools, which hold the largest mar-
ket share of any test tool category, and on examining trouble spots in test automation, deal-
ing with them proactively and perhaps mitigating the risks of tool abandonment. The pur-
pose of this article is to outline the 10 major challenges that the author sees most often in
organizations struggling to make effective test automation a reality.

“Test automation
promises increased

productivity and
accuracy, which is where
the business case must
be made.The cost of
a single defect ... can
offset the price of one
or more tool licenses.”

Thursday, 2 May 2002
Track 8: 1:00 - 1:40

Room 251 D - F

mate tests that bridge applications and
platforms. This is a big challenge
because most automated test tools have
proprietary scripting languages and
approaches, and, for the most part,
competing vendor tools are not interop-
erable.

A related challenge is to automate
identical tests on a number of different
platforms. This requires tool compati-
bility among various computing plat-
forms and the ability to share scripts
between tools and platforms.

If compatibility and interoperability
are the issues, consider the following:
• Select tools that have cross-platform

capability to the greatest extent pos-
sible.

• Consider writing shell scripts and
bridging scripts, perhaps in non-pro-
prietary scripting languages such as
Tcl.

• Evaluate critically whether the ability
to perform cross-platform testing is
a firm requirement.

3. Lack of Configuration
Management Processes
Test automation is using software to test
software. This means that items created
using the automated test tools should be
subject to the same level of control as
any other software asset.

When software configuration man-
agement (SCM) is not in place for auto-
mated testing, the discipline is missing to
work with the tools. The following
occurs without SCM for automated test
tools:
• Effort is duplicated because different

people may each be building similar
test scripts.

• Reuse is not realized because people
are all creating test scripts for single-
use purposes.

• Existing automated test scripts are at
risk of corruption if they are modi-
fied without the knowledge of the
original author.
Here is what is required for effective

SCM for test automation:
• A workable process that everyone

using the tool can understand and fol-
low.

• A tool to manage the ownership, ver-
sions, and organization of the auto-
mated test scripts.

• Someone to own the SCM process
and ensure that people are following
it.
Many of the popular automated test

tools have integrated test case and test
script management applications. How-

ever, you still need the process and the
people to make the SCM effort work.
You can also build your own test man-
agement tool using a database and basic
file organization to group related tests
into suites.

A related issue is keeping up with
changes to applications that are under
test. This has been one of the biggest
challenges in test automation since its
inception. The degree of difficulty in
dealing with application changes in auto-
mated testing software depends on the
tool and the technologies involved. In the
object-based world, the more robust
tools can be configured to ignore user
interface changes as long as the objects
still behave the same. However, if the
tool uses row-and-column positioning,
then each application change will require
a change (or many changes) to the auto-
mated test scripts.

In character-based applications such
as mainframe Customer Information
Control System applications, all of the

changes that impact the user interface
will most likely require maintenance to
the automated test scripts that test those
interfaces.

Here are solution strategies for this
challenge:
• During your tool search, consider the

people and processes that will be
required to manage the automated test
cases and test scripts.

• If you are in the object-based environ-
ment (such as graphical user inter-
faces), look for tools that accommo-
date changes to the user interface
gracefully. These tools cost more than
those that do not offer such flexibility.
However, many people have found
that the added cost is small compared
with the cost on continued manual
maintenance of the test software.

• Consider automated test scripts as part
of an application’s configuration set.

• Involve the prospective test automa-
tion SCM person in evaluating test
tools and their respective test man-
agement offerings.

• Investigate the use of existing SCM
tools currently owned by your organ-
ization.

• Trace your automated test scripts to
functional requirements and defects.

4. Lack of a Basic Test Process
or Understanding of What to
Test
Most automated test tools do not tell you
what to test. Even the tools that have test-
case generation features do so at a user-
interface level and not at the functional-
requirements level.

If you do not know which tests are the
most important and which tests are the
most applicable for automation, the tool
will only help perform a bad test faster.
This is a universal principle that I often
illustrate with the example of a power
tool.

Let us say that I want to build a book-
case. I try cutting the wood with a hand-
saw, but it is far too slow and laborious.
So, I decide to go to the hardware store
and buy a power saw. After the purchase
of the tool that I can afford, that looks
good, or that the salesperson convinces
me to buy, I go home and start cutting
wood. However, if I do not have book-
case plans or a very good understanding
of how to build a bookcase, the saw will
just help me make my mistakes faster! To
be successful, I will need to first learn
enough woodworking skills to understand
not only the “what” and “when,” but the
“why” and “how” of building the book-
case. Then, I’m ready to use the tool
effectively.

The tool vendors can train you to use
the tool with all of its functionality, but
the burden is on you to examine your own
applications and determine which func-
tions should be tested and to what extent.

Here are solution strategies for this
challenge:
• Create a set of evaluation criteria for

functions that you will want to consid-
er when using the automated test tool.
These criteria may include the follow-
ing:
• Test repeatability.
• Criticality/risk of applications.
• Operational simplicity.
• Ease of automation.
• Level of documentation of the

function (requirements, etc.).
• Examine your existing set of test cases

and test scripts to see which ones are

Surviving the Top 10 Challenges of Software Test Automation

May 2002 www.stsc.hill.af.mil 27

“If you do not know
which tests are the most

important and which
tests are the most

applicable for
automation, the tool

will only help perform
a bad test faster.”

most applicable for test automation.
• Examine your current testing process

and determine where it needs to be
adjusted for using automated test
tools.

• Be prepared to make changes in the
current ways you perform testing.

• Involve people who will be using the
tool to help design the automated test-
ing process.

• Train people in basic test-planning
skills.

5. Lack of Tool Ownership and
Acceptance
The challenge with lack of tool owner-
ship and acceptance is that the tool is not
applied or is ignored. This is often the
result of someone’s good intention of
buying a tool to make life easier, but the
rest of the people do not use it. The fol-
lowing are some of the reasons for lack
of tool ownership and acceptance:
• Difficulty using the tool.
• Not enough time to learn the tool and

still perform normal work levels.
• Lack of tool training.
• Lack of management support for tool

use.
• Lack of tool support, either internally

or from the vendor.
• Tool obsolescence.

Here are solution strategies for this
challenge:
• Do not cut the tool training. Training

does not guarantee success, but with-
out it you are at risk of tool abandon-
ment.

• Have someone in your organization in
the role of a tool smith. This person’s
job is to be the resident expert on the
tools used for testing.

• Management needs to emphasize that
the tool effort is important to them,
and that tool usage is a required part
of the testing process.

6. Inadequate Tool Training
We discussed the training issue previously
in “Lack of Tool Ownership and
Acceptance,” but this challenge carries its
own set of concerns. Some of the key
issues are as follows:
• Skipping the vendor’s training. The

main motivation for this is lack of time
and/or money. You will spend more of
both without the training!

• Not getting the right training due to
the incorrect selection of topics. For
example, some tool users will need to
learn in detail the tool’s test scripting
language, while other users will need to
learn only the basic tool functionality.

• Inability to apply the training to your
environment. This is where you learn
to use the tool on the vendor’s canned
example but have difficulty getting the
tool to work on your own applica-
tions.

• Trying to learn by self-study. Yes, it
can be done, but it takes time and ded-
ication. More often than not, people
tend to spend time with only the basic
functions and do not gain the benefit
of learning the lesser known and per-
haps more powerful tool features.

• Not enough time for training. This
goes along with the “dive-right-in”
approach often seen in information
technology groups. When time is
scarce, people tend to gravitate toward
the easy and basic functions at the
expense of not learning the more dif-
ficult but more powerful ones.

Here are solution strategies for this
challenge:
• Include money in the tool proposal

for training at least a core group of
people.

• Match people to the most applicable
training topics.

• Have tool training performed by the
vendor at your location using some of
your own applications as exercises.

• Find a skilled local consultant experi-
enced with the tool to sit with your
team for about three to four weeks to
help get you started in creating auto-
mated tests. It is very important that
your team does most of the work to
accomplish the transfer of knowledge!

7. Incomplete Coverage of
Test Types
As you profile your tests and defect types,
you will often find a wide variety of test

types that need to be performed. These
include tests for the following:
• Correctness.
• Reliability.
• Security.
• Performance.
• Usability.
• Interoperability.
• Compatibility.
• Data Conversion.

Although the tool may be very adept
at automating many of these tests, there
may be test types that the tool simply
cannot support. In fact, most organiza-
tions are very happy with a coverage level
of 80 percent of their existing test case
libraries.

Here are solution strategies for this
challenge:
• During tool evaluation, prioritize

which test types are the most critical
to your success and judge the candi-
date tools on those criteria.

• Understand the tools and their trade-
offs. You may need to use a multi-tool
solution to get higher levels of test-
type coverage. For example, you will
need to combine the capture/play-
back tool with a load-test tool to
cover your performance test cases.

• Manage expectations by reminding
people that 100 percent test type cov-
erage is not likely. However, by
automating 80 percent of the tests,
you have time to deal with the rest
manually.

8. Lack of Management
Support
Management support is needed in
designing and deploying test processes
that will support the effective use of test
tools, reinforce the role and use of auto-
mated test tools in the organization, and
allow time for tools to be integrated in
the testing process.

Without management support, the
entire test automation effort is at risk. If
management does not clearly and consis-
tently show their support for test
automation, people will be less inclined
to show interest in using the tools. This is
a major concern, especially considering
that overcoming the learning curve of
some tools requires dedication.

Perhaps the greatest challenge seen in
management support is balancing high
expectations of tool benefits against the
time, effort, and discipline it takes to
implement the tool. Management may
become impatient about the lack of tool
progress and shift their support to other
initiatives.

The pressure is on the people who

Software Engineering Technology

28 CROSSTALK The Journal of Defense Software Engineering May 2002

“Perhaps the greatest
challenge seen in

management support
is balancing high

expectations of tool
benefits against the

time, effort, and
discipline it takes to
implement the tool.”

made the business case for the tools to
show progress in a given timeframe. The
problem is there are many unforeseen
things that can delay or derail a tool ini-
tiative. In reality, if people fully knew all
of the future problems with any given
effort, they would be very reluctant to
proceed. While there is a place for opti-
mism in acquiring tools, a heavy dose of
realism is also needed to keep expecta-
tions in line with what is achievable.

Here are solution strategies for this
challenge:
• Communicate that it takes time and

planning to build a firm foundation
of people, processes, and the right
tools.

• When making the case to manage-
ment for acquiring test tools, present
the challenges as well as the benefits.

• Reinforce to management that they
carry a great deal of influence in how
people will accept automated test
tools.

• Keep management informed of tool
progress and issues that arise.

9. Inadequate Test Team
Organization
Most test organizations learn that auto-
mated testing is a new world in terms of
how tests are designed and maintained.
Most tests require more than just cap-
ture/playback. The tool user must also be
able to work with the tool’s scripting lan-
guage to accurately replay the test ses-
sion. It helps if the tool user is comfort-
able working with coding languages, oth-
erwise, there is a risk that the tool will not
be used.

Here are solution strategies for this
challenge:
• Add a person to the test team who is

a test scriptor. This person should be
comfortable in working with code
and be able to take the basic test that
has been designed by a test analyst
and convert it into an automated
script.

• Start simple with basic scripting con-
cepts and add complexity later.

10. Buying the Wrong Tool
Buying the wrong tool is listed as the No.
1 challenge in test automation because
no matter what kind of process or
organization you have, if the tool is not
a good technical or business fit, people
will not be able to apply it.

We know that a good process and
organization are also essential for test
automation. However, if the tool will
not function at a basic level, people

using the tool will simply give up trying
to use it.

Unfortunately, too few people do
adequate research before buying a test
tool. Adequate research includes defin-
ing a set of tool requirements based on
what the intended users of the tool need
to accomplish, developing a set of eval-
uation criteria by which candidate tools
will be judged, and taking the experience
of other people who have used the tools
under consideration.

Here are solution strategies for this
challenge:
• Take time to define the tool require-

ments in terms of technology,
process, applications, people skills,
and organization.

• Involve potential users in the defini-
tion of tool requirements and evalu-
ation criteria.

• Build an evaluation scorecard to com-
pare each tool’s performance against a
common set of criteria. Rank the cri-
teria in terms of relative importance to
the organization.

• Perform a proof of concept (POC) as
opposed to an evaluation. In a POC,
the vendor often sends their technical
team to your site to automate tests
using your applications in your envi-
ronment. Usually, a POC takes about
one day to perform. The planning of
the POC should be based on the eval-
uation scorecard. Testers should iden-

tify and define the most critical and
most common tests they currently per-
form manually. These tests are often
the ones that consume the most time
and are the ones that offer the highest
payback in test automation.

Summary
These 10 challenges are certainly not the
only ones that are seen in test automation,
but they are very common and have been
the cause for many test automation proj-
ect failures.

Successful software test automation is
possible if fundamental issues are
addressed and managed. Success depends
on multiple factors that require the coordi-
nation of efforts between various groups
in an organization. Automated software
testing is truly a different way of testing
and requires adjustments to current test
methods and organizational structures.
However, the payback from test automa-
tion can far outweigh the costs.◆

Additional Reading
1. Perry, William E., and Randall W.

Rice. Surviving the Top Ten
Challenges of Software Testing.
Dorset House Publishing, Mar. 1998.

2. Fewster, Mark, and Dorothy Graham.
Software Test Automation. Addison
Wesley Longman, May 2000.

3. Dustin, Elfriede, Jeff Rashka, and
John Paul. Automated Software
Testing. Addison Wesley Longman,
June 1999.

Surviving the Top 10 Challenges of Software Test Automation

May 2002 www.stsc.hill.af.mil 29

About the Author
Randall W. Rice is a
leading author, speaker,
and consultant in the
field of software testing
and software quality.
Rice, a certified quality

analyst and certified software test engi-
neer, has worked with organizations
worldwide to improve the quality of
their information systems and auto-
mate their testing processes. Rice has
more than 25 years experience building
and testing mission-critical projects in a
variety of environments, including
defense and private sector projects.

Rice Consulting Services, Inc.
P.O. Box 891284
Oklahoma City, OK 73189
Phone: (405) 793-7449
Fax: (405) 793-7454
E-mail: rrice@riceconsulting.com

“Adequate research
includes defining a set
of tool requirements
based on what the

intended users of the
tool need to accomplish,

developing a set of
evaluation criteria by
which candidate tools

will be judged, and
taking the experience of
other people who have
used the tools under

consideration.”

We believe that the provision of securi-
ty in systems is a subset of the sys-

tems engineering discipline, and that it has a
heavy software-engineering component. As
software engineers, we understand that the
determination and application of measures
and metrics is not an exact science, nor is it
easily accomplished. We also realize that this
difficulty carries over to the trusted systems
world. How one measures the degree of
protection present is, today, an unsolved
question and is primarily accomplished by
craftsmanship and not science.

This issue of rating and ranking systems
in terms of their assurance characteristics
was at least partially addressed at a work-
shop on information security system ratings
and ranking in Williamsburg, Va.,2 in spring
2001. We will hereafter refer to this as the
workshop, as we reference it in support of
our belief.

Workshop Findings and
Observations
It appears that while we often claim to have
metrics that prove or indicate assurance lev-
els, we do not seem to be able to prove that
correctness, maintainability, reliability, and
other such nonfunctional system require-
ments are in the software we build. We also
tend to use empirical evidence based on his-
torical performance data in claiming system
strength. However, knowing that a particu-
lar defensive strategy has worked well in the
past for an organization really says very lit-
tle about its strength for the future.
Examples of software engineering difficul-
ties that we face in predicting a system’s
strength include the following:
• Software is not subject to the laws of

physics. In most cases, we cannot apply
mathematics to code to prove correct-
ness in the same way a bridge builder
can apply formulae to prove structural
strength characteristics.

• People who are, by nature, error prone

build software. In the end, any one of
them can intentionally or unintentional-
ly corrupt the system and greatly dimin-
ish assurance.

• Compositions of mechanisms used to
construct a security perimeter comply
with no known algebra. We remain
reliant on the expertise of our systems
administrators or security engineers.

• It is easier to attack a system today (an
assurance issue) than it was years ago.
This trend is likely to continue as attack
tools are further automated, shared,
and explored on a global basis.
The workshop attempted to address

these issues and others. Although many
specific techniques and suggestions were
proffered to the group, it was apparent to
all that some combination of measures was
essential, and that this combination could
not generically be applied across all interest
domains. Similarly, it was clear that the
measures or metrics adopted by an organi-

zation to determine assurance need to be
frequently revisited and re-validated.

Attempts to apply a single rating to a
system have been tried in the past and have
failed [1, 2]. The workshop organizers also
agreed that the problem domain might be
best viewed using a non-disjoint partition-
ing into technical, organizational, and oper-
ational categories.

Definitions agreed upon by the confer-
ence organizers in the technical category
were measures/metrics that are used to
describe and/or compare technical objects
(e.g., algorithms, products, or designs).
Organizational measures might be used
with respect to processes and programs.
Operational measures are thought to
describe as is systems, operating practices,
and specific environments.

An interesting characterization of
information security metrics came from
Deb Bodeau of The Mitre Corporation [3]
who pointed out that a proper view of
these metrics might be a cross product
involving what needs to be measured, why
you need to measure it, and for whom you
are measuring. Her characterization of this
view in Figure 1 is enlightening.

Another interesting observation made
by several attendees was that the desired
purpose for such measures and metrics
seemed to vary between the government
and commercial sectors. Government
applications seem much more likely to use
metrics and measures for upward report-
ing. Answering such questions as “What is
our current assurance posture?” “How are
we doing this month compared with last?”
and “Are we compliant with applicable reg-
ulations and directives?” seemed to be a
driver for the metrics needed by govern-
ment.

The representatives at the workshop
from the commercial world seemed less
interested in these questions and more
inclined to look for answers to the ques-

Open Forum

30 CROSSTALK The Journal of Defense Software Engineering May 2002

Information Security System
Rating and Ranking

Dr. Rayford B. Vaughn Jr., Ambareen Sira, and Dr. David A. Dampier
Mississippi State University

The term assurance has been used for decades in trusted system development to express the
notion of confidence in the strength of a specific system or system of systems. The unsolved
problem that security engineers must struggle with is the adoption of measures or metrics
that can reliably depict the assurance associated with a specific hardware and software archi-
tecture. This article reports on a recent attempt to focus needs in this area and suggests var-
ious categories of information assurance metrics that may be helpful to an organization that
is deciding which set is useful for a specific application.1

Wednesday, 1 May 2002
Track 5: 9:00 - 9:40

Room 250 A - C

“... while we often claim
to have metrics that

prove or indicate
assurance levels, we do
not seem to be able to
prove that correctness,

maintainability, reliability,
and other such

nonfunctional system
requirements are in the

software we build.”

May 2002 www.stsc.hill.af.mil 31

Information Security System Rating and Ranking

tions “How strong is my security perime-
ter?” “What is the return on my invest-
ment?” “What is my level of risk or expo-
sure?” and “How does product perform-
ance compare?” The commercial sector
seemed to have far more interest in techni-
cal and operational measures than in
process or organizational measures.

The workshop attendees had hoped to
find a number of objective, quantitative
metrics that could be applied. Although
unanimous agreement was not reached, it
was apparent to most that such metrics
were in short supply, had to be combined
with other measures or metrics in a partic-
ular context, and were generally not very
useful on their own. Many more measures
that would be considered subjective and/or
qualitative appeared more useful.

Examples of more useful measures
might include adversary work factor – a
form of penetration testing. An excellent
discussion of this topic is found in
Schuedel and Wood [4]. Although penetra-
tion techniques are not truly repeatable and
consistent, the workshop attendees agreed
that their results were meaningful and use-
ful. Risk assessments, in their various
forms, were also found to be useful meas-
ures of assurance. Such assessments are
accomplished in a variety of ways, but tend
to focus attention in the proper areas and
give a good indication of how one is pos-
tured to withstand attacks on a system.

Information Assurance (IA) metrics are
essential for measuring the goodness of IA,
and we believe that overall useful IA met-
rics are possible. There is general agree-
ment that no single system metric or any
one perfect set of IA metrics applies across all
systems. Which set will be most useful for
an organization largely depends on its IA
goals; its technical, organizational, and
operational needs; and the resources that it
can make available.

In order to help an organization inves-
tigate options for IA metrics, it is useful to
look at the different categories of IA met-
rics in general. These categories are
described as follows:3

Objective/Subjective
Objective IA metrics (e.g., mean annual
downtime for a system) are more desirable
than subjective IA metrics (e.g., amount of
training a user needs to have to securely
use the system). Since subjectivity is inher-
ent in IA, subjective IA metrics are more
available.

Quantitative/Qualitative
Quantitative IA metrics (e.g., number of
failed login attempts) are more preferable
than qualitative IA metrics (e.g., the

Federal Information Technology Security
Assessment Framework [5] self-assess-
ment levels).

Static/Dynamic
Dynamic IA metrics evolve with time, static
metrics do not. An example of static IA
metrics can be the percentage of staff who
received annual security refresher training
[3]. This metric can degrade in value if the
content of the course does not change over
time. An example of dynamic IA metrics
can be the percentage of staff who received
training on the current version of the soft-
ware package they use. Most metrics used in
penetration testing are dynamic. Dynamic
IA metrics are more useful than static
because best practices change over time
with technology. There is always need to
adapt metrics in compliance with best prac-
tices [6].

Absolute/Relative
Absolute metrics do not depend on any
other measures, and these either do or do
not exist [3]. For example, the number of
systems administrator, networking, and
security-certified security engineers in an
organization is an absolute metric. Relative
metrics are only meaningful in context. For
example, the number of vulnerabilities in a
system cannot assess the system’s IA pos-
ture alone. The type and strength of vulner-
abilities are also important in this context
for making any decision about the system’s
IA posture. The majority of IA metrics are
relative, and so they would not be good for
use as a single-system metric.

Direct/Indirect
Direct IA metrics can be generated from
observing the property that they measure.
For example, the number of invalid packets
rejected by a firewall over a certain period of
time. Indirect IA metrics are derived by
evaluation (e.g., ISO Standard 15408 The
Common Criteria) and/or assessment (e.g.,
risk assessment). Although preferred, some-
times it is not possible to measure directly.

In these cases, indirect measures are useful.
IA is a triad of cooperation between the

technology that provides assurance, the
processes that leverage that technology, and
the people who apply and make the tech-
nology work [7]. IA metrics should be all
encompassing – the product, the process,
and the people, because processes build
products that people use. If we want to be
assured that proper information protection
is in place, we need to know what it is that
we wish to protect, that we have the right
product for protection, that the product was
built correctly, and that the right people are
using it properly.

Summary
The workshop was successful in focusing
attention on the area of metrics or meas-
ures for systems that have security or assur-
ance as a requirement. It was not successful
in getting agreement on a set of measures
to be used, or even finding consensus in any
particular approach. Nonetheless, several
themes emerged from this workshop that
may be useful. These are reported below, as
taken from the draft proceedings of the
workshop at the time of this writing.
• There will be no successful single meas-

ure or metric that can quantify the
assurance present in a system. Multiple
measures will most certainly be need-
ed, and they will need to be refreshed
frequently.

• Software and systems engineering are
very much related to this problem: The
quality of the software delivered, the
architectures and designs chosen, the
tools used to build systems, the speci-
fied requirements, and more are all
related to assurance.

• Penetration testing is, today, a valid
measurement method. It is imperfect
and to some extent non-repeatable, but
nonetheless, it is used in both govern-
ment and the commercial sectors.
Several other testing measures are valu-
able: They include level of effort, num-
bers of vulnerabilities found (or not

• Technical
• Process
• Organization
• System

WHAT you need
to measure

Type of Object

• Description
• Comparison
• Prediction

WHY you need
to measure it

Purpose

WHO you are
measuring it for

• Technical experts

• Decisionmakers at various
organizational levels

• External authorities,
policymakers

Intended Audience

=

IA Organizational

Level of
Assurance

Risk Profile
Strength of
Mechanism

IA Test
IA Operational
Readiness

Posture

Crypto.
Algorithm
Robustness

Metrics

Penetrability

Figure 1: Characterization of Information Security Metrics (Bodeau)

Open Forum

32 CROSSTALK The Journal of Defense Software Engineering May 2002

found), and number of penetrations.
• There are differences between the gov-

ernment and the commercial sectors.
One is policy driven – the other is prof-
it driven. Defense in depth and breadth
is important. Knowing how to measure
this defense is also important and a valid
research area. There was no agreement
on how to accomplish this measure-
ment.

• Attempts to quantify and obtain a par-
tial ordering of the security attributes of
systems in the past have not been suc-
cessful to a large degree (e.g., the
Trusted Computer Systems Evaluation
Criteria and the Common Criteria [1,
2]).

• Processes, procedures, tools, and people
all interact to produce assurance in sys-
tems. Measures that incorporate all of
these are important. We believe Bodeau
has characterized this very well in
Figure 1 (see page 31).

References
1. Department of Defense Standard.

Department of Defense Trusted Com-
puter System Evaluation Criteria. DOD

5200.28-STD, GPO 1986-623-963,
1985.

2. ISO Standard 15408. The Common
Criteria.

3. Workshop on Information-Security-
System Rating and Ranking, Williams-
burg, Va. 21-23 May 2001. Draft
Proceedings (unpublished). <www.
acsac.org/measurement/position-
papers/index.html>.

4. Schuedel, G., and B. Wood. “Adversary
Work Factor as a Metric for Informa-
tion Assurance.” Proceedings of the
New Security Paradigm Workshop,
ACM/SIGSAC, Ballycotton, Ireland
18-22 Sept. 2000. <wnspw.org> (ACM
order number 537001).

5. National Institute of Standards and
Technology, Computer Security Divi-
sion, Systems and Network Security
Group. Federal Information Technol-
ogy Security Assessment Framework.
NIST, 2000. <http://csrc.nist.gov/
organizations/guidance/framework
final.pdf>.

6. Bartol, N. “IA Metrics Development
and Implementation.” In a position
paper submitted to the workshop on

Information-Security-System Rating
and Ranking, Williamsburg, Va. 21-23
May 2001. Booz-Allen & Hamilton,
2001.

7. McCallam, D. “The Case Against
Numerical Measures of Information
Assurance.” In a position paper submit-
ted to the Workshop on Information-
Security-System Rating and Ranking,
Williamsburg, Va. 21-23 May 2001.
Logicon, 2001.

Notes
1. This work is partially sponsored by the

National Science Foundation Grants
CCR-0085749 and CCR-9988524.

2. Sponsored by the MITRE Corporation
and the Applied Computer Security
Associates.

3. The categories outlined here are from
research at Mississippi State
University’s Center for Computer
Security Research, <www.cs.msstate.
edu/~security>, in a larger effort to
create a taxonomy for information
assurance metrics and measures. This
work can be shared by contacting the
authors of this article.

About the Authors

Rayford B. Vaughn Jr.,
Ph.D., is professor of
computer science at
Mississippi State Uni-
versity. A retired Army
Colonel, he served 26

years, including commanding the
Army’s largest software development
organization and creating the Pentagon
Single Agency Manager organization to
centrally manage all Pentagon informa-
tion technology support. After retiring
from the Army, he was vice president
of Integration Services, Electronic
Data Systems Government Systems.
Dr. Vaughn has more than 40 publica-
tions and actively contributes to soft-
ware engineering and information
security conferences and journals. He
holds a doctorate degree in computer
science from Kansas State University.

Department of Computer Science
P.O. Box 9637
Mississippi State University
Mississippi State, MS 39762
Phone: (662) 325-2756
Fax: (662) 325-8997
E-mail: vaughn@cs.msstate.edu

Ambareen Siraj is a
graduate student in the
Computer Science De-
partment at Mississippi
State University and a
member of the Com-

puter Security Research Center. She is
working toward a doctorate degree under
the direction of Dr. Rayford B. Vaughn
Jr. Her research combines the use of arti-
ficial intelligence techniques in the cre-
ation of a network-based decision engine
designed to fuse and analyze information
from multiple intrusion detection sen-
sors. She also has a strong interest in the
area of measuring the trustworthiness of
systems and in the use of metrics and
measures to do so. She has written sever-
al papers on her work and continues to be
active in that endeavor.

Department of Computer Science
P.O. Box 9637
Mississippi State University
Mississippi State, MS 39762
Phone: (662) 325-2756
Fax: (662) 325-8997
E-mail: ambareen@cs.msstate.edu

David A. Dampier,
Ph.D., served over 20
years in the U.S. Army,
the last 12 as a software
engineer and automa-
tion officer. In that

capacity, Dr. Dampier conducted
research in software prototyping and
software evolution at the Army
Research Laboratory, and he taught
software and information engineering
at the National Defense University. In
February 2000, he left the Army to join
the computer science department at
Mississippi State University where he
teaches software engineering and com-
puter science. Dr. Dampier’s research
interests are in formal methods for
software engineering and software evo-
lution, software process automation,
and computer forensics.

Department of Computer Science
P.O. Box 9637
Mississippi State University
Mississippi State, MS 39762
Phone: (662) 325-8923
Fax: (662) 325-8997
E-mail: dampier@cs.msstate.edu

Online Article

May 2002 www.stsc.hill.af.mil 33

Defeating the Forces of Nature:Two Workshops on
Spiral Development

Dr. Wilfred J. Hansen
Software Engineering Institute

Spiral Development (SD) and Evolutionary Acquisition (EA) are key strategies for Department of Defense acquisition.
Two workshops explored these techniques and recommended a number of steps to ensure widespread enjoyment of the advan-
tages they have shown in individual projects. These workshops and their findings are summarized in a recent article, which
describes how SD and EA can help defeat the “forces of nature” that deter projects from being on time, within budget, and
high quality. CrossTalk was not able to publish the article on these workshops; however, it can be viewed at
<http://www.sei.cmu.edu/cbs/spiral2000/DefeatingTheForces.html>.

Done
Sooner

Lower
Cost

Higher
Quality

Early
Cheap
Good

rcesorThe Fo
uretof Nat

WEB SITES

Software Testing Institute
www.softwaretestinginstitute.com
The Software Testing Institute (STI) provides access to quality
industry publications, research, and online services. STI offers
the following professional resources: a software testing discus-
sion forum, the STI Resource guide, the Automated Testing
Handbook, the STI Buyer’s Guide, and privileged access to
STI’s industry surveys on salaries, staffing practices, industry
trends, and more.

Software Program Managers Network
www.spmn.com
The Software Program Managers Network (SPMN) is sponsored
by the Deputy Under Secretary of Defense for Science and
Technology, Software Intensive Systems Directorate. SPMN con-
veys proven industry and government software best practices to
managers of large-scale Department of Defense (DoD) software-
intensive acquisition programs. The SPMN 16 Critical Software
Practices specifically address underlying cost and schedule drivers
that have caused software intensive systems to be delivered over
budget, behind schedule, and with significant performance short-
falls. They provide “hands-on” consulting, training, and direct
support to DoD programs in information technology project
management, requirements and risk management, and more.

Quality Assurance Institute
www.qaiusa.com
The Quality Assurance Institute (QAI) is an international organi-
zation dedicated to partnering with the enterprise-wide informa-
tion quality profession in search of effective methods for detection-
software quality control and prevention-software quality assurance.
QAI provides consulting, education services, and assessments.

Software Technology Support Center
www.stsc.hill.af.mil
The Software Technology Support Center is an Air Force organi-
zation established to help other U.S. government organizations
identify, evaluate, and adopt technologies to improve the quality
of their software products, efficiency in producing them, and their
ability to accurately predict the cost and schedule of their delivery.

Agile Modeling
www.agilemodeling.com
The Agile Modeling site was established to develop and promote
the agile modeling (AM) methodology. It contains sections that
explain AM: its goals, scope, and an overview of the values, prin-
ciples, and practices of AM.

Departments

34 CROSSTALK The Journal of Defense Software Engineering May 2002

After a rigorous three-year development process, the
Institute of Electrical and Electronics Engineers (IEEE)

Computer Society will offer its new Certified Software
Development Professional (CSDP) examination twice in 2002:
Apr. 15-June 30 and Oct. 5-26. The new CSDP credential is
intended for mid-level professionals. The 3.5-hour examination
covers topics such as software design, software requirements,
and software testing. Candidates are required to have a bac-
calaureate or equivalent university degree and a minimum of
9,000 hours of experience in at least six of 11 knowledge areas.
The CSDP is designed to elevate educational standards and
recognize those who demonstrate knowledge essential to the
practice of software engineering.

The certification examination is the first in a series to be

offered under the society’s “Doing Software Right” initiative.
The IEEE Computer Society developed the CSDP exam in con-
junction with the Chauncey Group International, a leading certi-
fication test consultant and subsidiary of the Educational Testing
Service. The exam will be offered at more than 300 testing cen-
ters in the United States and Canada, as well as in select cities in
Brazil, China, Hungary, India, Ireland, Japan, and Russia.

The Computer Society has also published a new two-volume
resource guide for the CSDP program, an updated and expand-
ed version of the best-selling CS Press tutorial, Software
Engineering. Further information about the CSDP examination
and the CSDP preparation program is found at <http://computer.
org/certification>.

First-of-Its-Kind Software Development
Certification Exam Offered

LETTERS TO THE EDITOR

Dear CrossTalk Editor:

Dr. Randall W. Jensen
President, Software Engineering, Inc.
E-mail: seisage@aol.com1. Jensen, R. “Software Estimating Model Calibration.” CrossTalk July 2001: 13-18.

Dear CrossTalk Editor:

Donald J. Reifer
Reifer Consultants, Inc.
E-mail: dreifer@ieee.org

Don Reifer states in his article [CrossTalk, Mar. 2002]
“Let the Numbers Do the Talking” that he is getting tired of
being misquoted. So am I. In my CrossTalk article,1 I
did not state or imply that an uncalibrated software cost
model would outperform a calibrated model. All estimating
models must be calibrated and validated. The point I raised
is that when a user recalibrates an instantiation of a cost
model, the instantiation must be revalidated as a new
model. The models no longer have the same characteristics.

For example, REVIC (a recalibration of COCOMO) and
COCOMO are not the same estimating model. Because of
the differences between the original and recalibrated mod-
els, one cannot compare estimates made by COCOMO and
REVIC.

Whether a cost model is calibrated or not, when they are put
in the hands of untrained, inexperienced estimators, you
still get really poor estimates.

Since my article “Let the Numbers Do the Talking” was pub-
lished in the March 2002 CrossTalk, two questions rela-
tive to Table 2 and Table 3 keep popping up in e-mails sent
to me. I hope the following clarifications will resolve the
issues for everyone interested.

Table 2 – The cost per staff month of $12,000 reflects bur-
dened labor cost exclusive of G&A and profit for typical
inexperienced labor mixes across both military and commer-
cial domains. This is the internal cost of a person. It is not
the price charged when the services of a person are sold to a
third party (another division, government customer, etc.).

The price per person-month varies greatly by industry
because of skill mix, experience, and business practices. For
example, the average price per person-month for a regular

software engineer within the aerospace industry ranges from
$21,000 to $25,000/person-month. This price reflects a
more experienced staff mix than what is normal in the com-
mercial world and additional markups to reflect the high
costs of doing business with the government.

In contrast, the internal price that organizations within the
telecommunications industry charge other parts of the same
firm for services can be as low as a base cost of $12,000 to
$15,000/person-month. When the labor mix is young, prof-
it doesn’t enter into the calculation, and only a very small
markup is charged for doing business with a sister organiza-
tion.

Table 3 – SRR in this table refers to Software Requirements
Review, not Systems Requirements Review.

BACKTALK

May 2002 www.stsc.hill.af.mil 35

The other day, I was saving some data
to my favorite backup media – which

happens to be a 128 Meg SmartMedia
card. The card is small and has the capac-
ity of 88.8888 … (Oh heck – let’s round it
off to 90) floppies. I carry the card in my
sunglass case. A friend saw me pulling the
card out of my glass case and called me a
“geek.”

Me? A geek? Probably. I’m not
ashamed of it. In fact, I think I’m a bit
proud of the title. But do I look like a
geek? In fact, how do you tell who the
geeks are? There used to be certain
indicators that you were a geek. The
best sign used to be black plastic eye-
glass frames (with white tape holding
them together at the nosepiece).
Now, thanks to laser eye surgery,
geeks don’t need to wear them any-
more. Also – thanks to retro fashions
– lots of people who are not geeks
are wearing black plastic frames,
which happen to be in fashion. (Sure,
now that I don’t wear them any-
more!)

Another sign used to be a plastic
pocket protector full of pens and
pencils. Nowadays, I own a single all-
in-one writing instrument that has a
palm stylus, black pen, red pen, and pen-
cil. No pocket protector needed. And in
the very old days, a dangling slide rule at
the belt was also a prerequisite of geek-
hood. Nowadays, slide rules dangle in the
Smithsonian.

What we need today are contemporary
indicators of being a geek. After some
thought, I submit the following list as rea-
sonable indicators of geekiness:
• You have 50 people in your online

address book, but only three have real
addresses.

• You send more e-cards than real ones.
• Some of your best friends are people

you have never actually met in person.
• When in a bookstore, you pick up an

“X for Dummies” book, you read a
bit, laugh, and say, “Nobody could
really be THAT dumb.”

• You automatically add a “com” after a
period when typing.

• When you introduce yourself, you
include your e-mail address.

• You attend a conference and automat-
ically look for a seat near an outlet, so
you can plug in your computer.

• When you travel, you already know
where outlets are located in the airline

gate areas.
• A good hotel is defined as one where

you can get a 52K bps connection
(bonus points if you know which
hotels in advance).

• You have e-mail addresses for differ-
ent facets of your personality. For
example, david.cook@hill.af.mil for
work, and brainy_stud@someISP.com
for home. (Only the first one is actual-
ly mine.)

• You frequently wish life had an undo
or back key.

• When your significant other says you
need to communicate better, you think
that means you can get DSL.

• By looking at the control panel appli-
cations, you unconsciously determine
whether the computer is running 95,
98, ME, 2000, or XP.

• You go to conferences where well-
dressed guys wear suits or sports coats
with very short high-water pants and
running or tennis shoes. Extra points
for white socks. Double points for
white socks with black or navy pants.

• You have gotten up in the middle of
the night to check the status of either
a big download or a disk defrag.

• You wonder whether you can daisy
chain USB port replicators to give you
more than four USB connections per
computer port. Extra points if you
really need more than four USB con-
nections per computer port.
Recently, I was at the Software

Engineering Process Group conference in
Phoenix. During a fine southwestern pork
lunch, I asked friends at my table to help
me focus on signs that would ping a geek
meter. The following signs were men-
tioned (thanks to John, Lisa, Les, Jim,

Janna, Nicole, Jeff, Marsha, and Kate):
• You know all the “Star Trek” plots

(with emphases on classic Trek, not
TNG). You utter such phrases as,
“He’s dead, Jim” and “I’m a doctor,
not a (fill in the blank),” and your
friends laugh.

• You live in the West or Southwest, and
the people at Fry’s electronic super-
store know you by name. (If you live
elsewhere, CompUSA will substitute.)

• You know the words to most Monty
Python songs, and you can quote sec-

tions of “Monty Python and the
Search for the Holy Grail” from
memory.
• You can also recall quotes from
The Hitchhikers Guide to the Galaxy.
• Your watch has more dials, but-
tons, and functions than a Swiss
army knife. Double extra bonus
points for having a wristwatch that
automatically synchronizes itself
with the National Bureau of
Standards via short wave. Triple
bonus points if you’re thinking,
“Cool! I want one, too!”

Do you know other signs of
being a geek? Well, the theme of the
December 2002 issue of

CrossTalk is “The Year of the
Scientist and Engineer.” If you will e-mail
me your geek stories and indicators, I will
compile them and have an appropriate
BackTalk for the December issue. Send
them to me at david.cook@hill.af.mil. We’ll
have a “Top 10” geek indicators list.

To conclude, if December 2002 marks
the “Year of the Scientist and Engineer,” I
hereby proclaim the Software Technology
Conference 2002 to be the “Week of the
Geek.” Hope I see you there.

By the way, one sign of being a geek
might be that you wrote your BackTalk
column on a palm computer while attend-
ing a computer conference. Mind you, I’ll
just call it good time management!

–David A. Cook, Geek
Software Technology Support Center

P.S. By the way, three trips
to Fry’s during a
four-day conference
is not abnormal.
And that was not
the only reason
I decided to
attend.

Week of the Geek

CrossTalk / TISE
7278 4th Street
Bldg. 100
Hill AFB, UT 84056-5205

PRSRT STD
U.S. POSTAGE PAID

Albuquerque, NM
Permit 737

Sponsored by the
Computer Resources
Support Improvement

Program (CRSIP)

Published by the
Software Technology

Support Center (STSC)

	Cover
	Index
	From the Publisher
	A Study of Best Practice Adoption by Defense Acquisition Programs
	Call for Articles
	Achieving CMMI Level 5 Improvements with MBASE and the CeBASE Method
	Coming Events
	U.S. Defense Department Requirements for Information Security
	What is Software Quality Assurance?
	JOVIAL Services
	Surviving the Top 10 Challenges of Software Test Automation
	Inforamtion Security System Rating and Ranking
	Defeating the Forces of Nature: Two Workshops on Spiral Development
	Web Sites
	Letters to the Editor
	IEEE Certification
	BackTalk
	Back Cover

