

Software Cost Estimation in 2002
This article identifies the major features of software cost estimation tools and how they
are being used together technically with project management tools.
by Capers Jones

Early Estimation of Software Reliability in Large Telecom Systems
This article describes a number of experiences of early estimation of software reliability
for large real-time telecommunications systems.
by Alex Lubashevsky

Estimating Web Development Costs: There Are Differences
The challenges in estimating cost and duration in Web development projects prompted
one consulting firm to create a new size metric and a new cost estimation model.
by Donald J. Reifer

Estimating Software Earlier and More Accurately
The estimating model in this article provides accurate early estimates by utilizing function points to identify
project complexity modified by a value adjustment factor of 14 general system characteristics.
by David Garmus and David Herron

New Code Analyzes Fluid Flow for Better Designed Aerospace Vehicles and Components
The project in this article demonstrates a new way to develop government software using Internet-based
tools to leverage costs among organizations.
by Dr. Greg D. Power

Measuring Calculus Integration Formulas Using Function Point Analysis
The size and complexity of algorithms in general and integration formulas in particular can be measured
using function points without the need for additional patches or counting rules.
by Nancy Redgate and Dr. Charles Tichenor

Software Estimation: Perfect Practice Makes Perfect
Managers looking to initiate a software estimation process in their organization will get practical advice
from this author’s real-life experiences with estimation training methods.
by David Henry

Cover Design by
Kent Bingham.

3

26

27

31

DeparDepar tmentstments

SoftwarSoftware e EstimationEstimation

ON THE COVER

2 CROSSTALK The Journal of Defense Software Engineering June 2002

4

9

13

18

22

24

28

SoftwarSoftware e EngineeringEngineering TTechnoloechnologgyy

From the Publisher

Coming Events

Web Sites

BackTalk

CrossTalk
Article Submissions:We welcome articles of interest to the
defense software community.Articles must be approved by the
CROSSTALK editorial board prior to publication. Please fol-
low the Author Guidelines, available at www.stsc.hill.af.mil/
crosstalk/xtlkguid.pdf. CROSSTALK does not pay for submis-
sions. Articles published in CROSSTALK remain the proper-
ty of the authors and may be submitted to other publications.
Reprints and Permissions: Requests for reprints must be
requested from the author or the copyright holder. Please
coordinate your request with CROSSTALK.
Trademarks and Endorsements: This DoD journal is an
authorized publication for members of the Department of
Defense. Contents of CROSSTALK are not necessarily the
official views of, or endorsed by, the government, the
Department of Defense, or the Software Technology Support
Center. All product names referenced in this issue are trade-
marks of their companies.
Coming Events:We often list conferences, seminars, sympo-
siums, etc. that are of interest to our readers.There is no fee
for this service, but we must receive the information at least
90 days before registration. Send an announcement to the
CROSSTALK Editorial Department.
STSC Online Services: www.stsc.hill.af.mil
Call (801) 777-7026, e-mail: randy.schreifels@hill.af.mil
Back Issues Available:The STSC sometimes has extra copies
of back issues of CROSSTALK available free of charge.
The Software Technology Support Center was established
at Ogden Air Logistics Center (AFMC) by Headquarters U.S.
Air Force to help Air Force software organizations identify,
evaluate, and adopt technologies to improve the quality of their
software products, efficiency in producing them, and their abil-
ity to accurately predict the cost and schedule of their deliv-
ery.

SPONSOR

PUBLISHER

ASSOCIATE
PUBLISHER

MANAGING EDITOR

ASSOCIATE EDITOR

ARTICLE
COORDINATOR

CREATIVE SERVICES
COORDINATOR

PHONE

FAX

E-MAIL

CROSSTALK ONLINE

CRSIP ONLINE

Lt. Col. Glenn A. Palmer

Tracy Stauder

Elizabeth Starrett

Pamela Bowers

Julie B. Jenkins

Nicole Kentta

Janna Kay Jensen

(801) 586-0095
(801) 777-8069
crosstalk.staff@hill.af.mil
www.stsc.hill.af.mil/
crosstalk

www.crsip.hill.af.mil

Subscriptions: Send correspondence concerning
subscriptions and changes of address to the following
address.You may e-mail or use the form on p. 21.

Ogden ALC/TISE
7278 Fourth St.
Hill AFB, UT 84056-5205

Open Open FForumorum

Best Best PracticesPractices

From the Publisher

This month’s CrossTalk focuses on software estimation techniques used within the
industry. These articles all agree that good software estimation requires an understand-

ing of the capacity of any particular organization to deliver a software solution within their
specific environment. Such capacity evaluation must be based upon historical contexts and
good risk management techniques. These articles also provide a good perspective on the
state-of-the-art in software estimation and emphasize the importance of measuring how
well estimation is being done through each phase of your projects.

Capers Jones’ article, Software Cost Estimation in 2002, provides a good overview of the types
of functionality that are typically present in the approximately 50 commercial software estima-
tion tools marketed in the United States. He covers 10 generic features most often found in
many of these tools and conjectures about future trends in software estimation. This article is a
good tutorial on the basics of software estimation. Alex Lubashevsky’s article, Early Estimation
of Software Reliability in Large Telecom Systems, describes how using two estimation techniques
simultaneously can provide successful results. He used a U.S. Air Force Rome Laboratory model
for an early estimation of software reliability, along with a second estimating technique derived
from company-wide software process assessments based on the Software Capability Maturity
Model® (SW-CMM®).

The revolution of new business strategies employing Web technology has highlighted the
need for new ways to measure development time associated with Web projects. In his article,
Estimating Web Development Costs: There Are Differences, Donald J. Reifer describes a new size
metric, Web objects, and a new cost estimation model, WEBMO, that have been developed to
satisfy the estimation needs for Web projects. He also discusses some of the key differences
that managers must recognize between traditional software development and Web development
to be successful in accurately estimating their projects.

The article by David Garmus and David Herron, Estimating Software Earlier and More
Accurately, is a good synopsis of the function point method of software cost estimation. It claims
that utilization of a functional sizing technique such as function points provides the capability
to accurately estimate a project early in the development process.

Although not specific to software cost estimation, the article by Dr. Greg D. Power of
Sverdrup Technology, Inc., New Code Analyzes Fluid Flow for Better Designed Aerospace Vehicles and
Components, demonstrates a new way of doing software development for government aerospace
applications involving analysis of fluid flow. This article reports on a partnership between the
Air Force’s Arnold Engineering Development Center and the NASA Glenn Research Center for
development of a computational flow simulator.

Nancy Redgate and Dr. Charles Tichenor identify in their article, Measuring Calculus Integration
Formulas Using Function Point Analysis, specific steps for handling mathematical formulas using
function point analysis techniques. Such integration formulas are typically embedded in many
engineering and scientific applications. The methodology does not require any new counting
rules or patches and promises to give users a more accurate view of application size, resulting
in better forecasting of costs, schedule, and quality.

Finally, David Henry gives us some practical lessons learned in his article Software Estimation:
Perfect Practice Makes Perfect. He focuses on utilizing input from all the engineers involved in a soft-
ware development project in order to develop personal software estimation accuracy, and on
using actual historical performance data to assist in future estimation efforts. He also covers sim-
ple methods for group estimation techniques that he has found effective for creation of an
organizational estimation process.

I hope that our theme articles will provide a little more insight into your challenges in develop-
ing an accurate software estimation capability within your organization. You may want to consider
using CrossTalk to report your organization’s successes and lessons learned in cost estimation or
any other unique software development capability progress.

Good Software Estimation Requires Historical Data

Deputy Director, Computer Resources Support Improvement Program

June 2002 www.stsc.hill.af.mil 3

Software Estimation

4 CROSSTALK The Journal of Defense Software Engineering June 2002

Research on software cost estimation
started independently in a number of

companies and military organizations that
built large software systems. Formal
research into software cost estimation
became necessary when software applica-
tions and systems software began to go
beyond 100,000-source code statements in
size. This size plateau was reached by sev-
eral organizations in the 1960s.

The main issue that led to formal
research programs for software cost esti-
mation was the difficulty encountered in
completing large software applications on
time and within budget. A secondary issue
was the fact that when deployed, software
applications often contained significant
numbers of bugs or defects. The evolution
of software estimation tools is described in
articles by Boehm [1, 2] and Jones [3](each
of which describes the state-of-the-art
tools at the time of publication). A time-
line of the evolution of software estima-
tion tools is shown in Figure 1.

As of 2002, about 50 commercial soft-
ware estimation tools were marketed in the
United States. The major features of com-
mercial software estimation tools include
the following basic abilities:
• Sizing logic for specifications, source

code, and test cases.
• Phase-level, activity-level, and task-

level estimation.
• Support for both function point met-

rics and the older lines-of-code (LOC)
metrics.

• Support for specialized metrics such as
object-oriented metrics.

• Support for backfiring or conversion
between LOC and function points.

• Support for software reusability of var-
ious artifacts.

• Support for traditional languages such
as COBOL and FORTRAN.

• Support for modern languages such as
Java and Visual Basic.

• Quality and reliability estimation.
Additional features found in some but

not all software estimation tools include
the following:
• Risk and value analysis.
• Estimation templates derived from his-

torical data.
• Links to project management tools

such as Artemis or Microsoft Project.
• Cost and time-to-complete estimates

mixing historical data with projected
data.

• Currency conversions for international
projects.

• Inflation calculations for long-term
projects.

• Estimates keyed to the Software
Engineering Institute’s Capability
Maturity Model® (CMM®).
Modern software cost estimation tools

are now capable of serving a variety of
important project management functions.

However, there are still some topics that
are not yet fully supported even by state-
of-the-art software estimation tools. Some
of the topics that may require manual esti-
mation include the following:
• Conversion and nationalization costs

for international projects.
• Fees for trademark and copyright

searches.
• Acquisition costs for commercial off-

the-shelf packages.
• Deployment costs for enterprise

resource planning applications.
• Litigation expenses for breach of con-

tract if a project is late or over budget.
For ordinary software projects, auto-

mated estimation tools can now predict
more than 95 percent of the associated
effort and cost with fairly good accuracy.
But projects that must be converted for
sale in many countries, or that run on mul-
tiple hardware and software platforms, will
have expenses outside the scope of most
commercial software estimation tools. The
legal expenses are also outside their scope
if a software project is subject to litigation
such as breach of contract or theft of
intellectual property.

A Large Tool Family
The phrase project management tools has been
applied to a large family of tools whose
primary purpose is sophisticated schedul-
ing for projects with hundreds or even
thousands of overlapping and partially
interdependent tasks. These tools are able
to drop down to very detailed task levels
and can even handle the schedules of indi-
vidual workers. A few examples of tools
within the project management class
include Artemis Views, Microsoft Project,
Primavera, and the Project Manager’s
Workbench.

The software cost estimation industry
and the project management tool industry
originated as separate businesses. Project

Software Cost Estimation in 2002©

Capers Jones
Software Productivity Research Inc., Artemis Management Systems

The first automated software cost estimation tools were developed independently by researchers in major corporations and mil-
itary groups in the 1960s. Commercial software cost estimation tools began to be marketed in the 1970s. By 2002, about
50 commercial software cost estimation tools were marketed in the United States and another 25 in Europe. Although stan-
dard projects can now be estimated with fairly good accuracy, there are always new technologies that require improvements in
estimating tools.

© Copyright 2001 by Capers Jones. All Rights Reserved.
® Capability Maturity Model and CMM are registered in the

U.S. Patent and Trademark Office.

1960s 1970s 1980s 1990s 2000s

1960s First software estima-
tion tools developed.

1973 Frank Freiman develops
the PRICE-S software estima-
tion model, the first commer-
cial software estimation tool.
1973 Capers Jones and Dr.
Charles Turk develop IBM
proprietary automated esti-
mation tool.
1973 Allan Albrecht develops
function point metric at IBM.
1979 IBM puts function point
metric in public domain.
1979 Larry Putnam develops
Software Life-Cycle Manage-
ment (SLIM) tool.

1981 Dr. Barry Boehm pub-
lished COCOMO algorithms.
1983 Dr. Howard Rubin devel-
ops ESTIMACS model.
1984 Major revision of function
points becomes basis of to-
day’s standard.
1985 Capers Jones develops
the SPQR/20 estimation tool.
1986 International Function
Point Users Group (IFPUG)
emerges globally.
1986 Allan Albrecht develops
IFPUG certified course for
function point counting.
1986-2000 Huge growth in the
software estimation tool market.

2000 Dr. Barry Boehm
develops COCOMO II.
2002 Approximately 50
commercial software esti-
mation tools are marketed
in the United States and
approximately 25 in
Europe.

Figure 1: Evolution of Software Estimating Tools

June 2002 www.stsc.hill.af.mil 5

Software Cost Estimation in 2002

management tools began appearing
around the 1960s, about 10 years before
software cost estimation tools. Although
the two were originally separate businesses,
they are now starting to join together tech-
nically.

Project management tools did not orig-
inate for software, but rather originated for
handling very complex scheduling situa-
tions where hundreds or even thousands
of tasks needed to be determined and
sequenced, and where dependencies such
as task completion might affect the start of
subsequent tasks.

Project management tools have no
built-in expertise regarding software, as do
software cost estimation tools. For exam-
ple, if you wish to explore the quality and
cost impact of an object-oriented pro-
gramming language such as Smalltalk, a
standard project management tool is not
the right choice. By contrast, many soft-
ware cost estimation tools have built-in
tables of programming languages and
will automatically adjust the estimate
based on which language is selected for
the application.

Although there are scores of software
cost estimation tools on the market, there
are 10 generic features that many software
estimation tools can perform:

Feature 1: Sizing Specifications,
Source Code, and Test Cases
The first step in any software estimate is to
predict the sizes of the deliverables that
must be constructed. Before about 1985,
software cost estimation tools did not
include sizing logic. For these older tools,
the user had to provide size information.
Size data were expressed in LOC for esti-
mation tools developed before the publica-
tion of function point metrics.

After function points became available
in 1978, size could be expressed using
either function points or LOC metrics, and
converted between the two. As of 2001,
sizing is a standard feature in more than 30
commercial software cost estimation tools.

The advent of function point metrics
has eased the burden on software size esti-
mation. Function point totals can be
derived from software requirements long
before any code is written. Once the func-
tion point size of an application is known,
then many artifacts can also be sized.
These include but are not limited to the
following:
1. Specification volumes.
2. Source code volumes.
3. User documentation volumes.
4. Numbers of test cases.
5. Numbers of possible bugs or errors.

Another important sizing aspect is

dealing with the rate at which requirements
creep and hence make projects grow larger
during development. If the function point
totals for an application are measured at
the requirements phase and again at deliv-
ery, the two values can be used to calculate
the monthly rate of growth.

After the requirements are initially
defined, the observed rate of requirements
creep is from 1 percent to more than 3 per-
cent per calendar month during the design
and coding phases. The average rate of
requirements creep is about 2 percent per
month based on analysis of several thou-
sand applications during benchmark and
baseline studies.

Function points are not the only siz-
ing method available, of course. Some
estimation tools also offer templates
derived from common kinds of software
applications. Many estimation tools allow
users to provide their own size data, if
they wish, using either LOC metrics or
function points or both. Refer to Kan [4]

for a discussion of software metrics used
in estimation.

In the United States, the function point
metric by IBM, and now maintained by the
International Function Point Users Group
(IFPUG), is most commonly used for soft-
ware estimates. Version 4.1 of the IFPUG
counting rules is assumed in this article [5].
For a discussion of the accuracy of soft-
ware function point counting, refer to
Kemerer [6].

Feature 2: Selecting Project Activities
Once the initial sizes of various deliver-
ables have been approximated, the next
step is to determine which specific activi-
ties will be carried out for the project being
estimated. Activity selection is one of the
major areas where software cost estimation
tools excel. There are some 25 common
activities that might be performed for a
software project, but only large military
applications will normally perform all 25.
For a discussion of activities and how they

Activities Performed
Web MIS System Military

Projects Projects Projects Projects

01 Requirements 3% 7.5% 4% 7%
02 Prototyping 10% 2% 2% 2%
03 Architecture 0.5% 1.5% 1%
04 Project plans 1% 2% 1%
05 Initial design 8% 7% 6%
06 Detail design 7% 6% 7%
07 Design reviews 2.5% 1%
08 Coding 25% 20% 20% 16%
09 Reuse acquisition 5% 2% 2%
10 Package purchase 1% 1% 1%
11 Code inspections 1.5% 1%
12 Ind. Verif. & Valid. 1%
13 Configuration mgt. 3% 1% 1.5%
14 Formal integration 2% 2% 1.5%
15 User documentation 5% 7% 10% 10%
16 Unit testing 25% 4% 5% 3%
17 Function testing 17% 6% 5% 5%
18 Integration testing 5% 5% 5%
19 System testing 7% 5% 6%
20 Field testing 1.5% 3%
21 Acceptance testing 5% 1% 3%
22 Independent testing 1%
23 Quality assurance 2% 1%
24 Installation/training 2% 1% 1%
25 Project management 10% 12% 12% 13%

Total 100% 100% 100% 100%

Activities Performed 8 18 23 25
Table 1: Software Activity Variations – Percentage of Staff Effort by Activity (Assumes applica-
tions of about 1,000 function points in size or larger)

Software Estimation

6 CROSSTALK The Journal of Defense Software Engineering June 2002

vary, see Jones [7]. Table 1 (see page 5)
illustrates some of the variances in activity
patterns for four different types of projects.

Since variations in the activities per-
formed can affect overall costs, schedules,
and productivity rates by significant
amounts, it is important to match activities
to the project being estimated. More than
100 percent differences in work effort have
been observed for projects of exactly the
same size due to variations in the activities
performed. In general, military projects
and systems software projects perform
more activities than management informa-
tion systems or Web applications of the
same size.

Feature 3: Estimating Staffing Levels
and Specialists
Although staffing, effort, costs, and
schedules are all important for the final
estimate, a typical place to start estimat-
ing is with staffing levels. There are sig-
nificant variations in staffing levels based
on team experience, application size,
reusable materials, and other factors.

One of the trickier aspects of esti-
mating the staffing for large applications
is the fact that sometimes as many as 35
different occupation groups might be
working on a large project at the same
time. A list of 20 common software occu-
pation groups observed on large software
systems is shown in Table 2.

Since each of these specialized occu-
pations may work for only part of a pro-
ject’s life cycle, and since each form of
specialization can have very different
salary and bonus packages, it is not a triv-
ial task to handle staffing estimates for
large software applications when multiple
specialists are utilized.

Feature 4: Estimating Software Work
Effort
The term work effort defines the amount of
human work associated with a project. The
amount of effort can be expressed in any
desired metric such as work hours, work
days, work weeks, work months, or work
years. Usually small projects of up to per-
haps 1,000 function points utilize hours
for expressing effort, but the larger proj-
ects in excess of 10,000 function points
normally utilize days, weeks, or months as
the unit of measure.

For example, in the United States the
nominal workweek is five days of eight
hours each, or 40 hours total. Yet the num-
ber of effective work hours per day is usu-
ally only about six due to coffee breaks,
staff meetings, etc. The number of work-
days per year will vary with vacations and
sick leave, but averages about 220 days per
year in the United States. However, in
Europe vacation periods are longer, while
in other countries such as Mexico and
Japan vacation periods are shorter than in
the United States.

This kind of knowledge can only be
determined by accurate measurements of
many real software projects. This explains
why software estimation vendors are often
involved in measurement studies, assess-
ments, and benchmark analysis. Only
empirical data derived from thousands of
software projects can yield enough infor-
mation to create accurate estimation algo-
rithms using realistic work patterns. For
discussions of how software effort varies
in response to a number of factors, refer to
Putnam and Myers [8] or Jones [9].

Feature 5: Estimating Software Costs
The fundamental equation for estimating
the cost of a software activity is simple in
concept, but very tricky in real life:

Effort x (Salary + Burden) = Cost

A basic problem is that software staff
compensation levels vary by about a ratio
of 3-to-1 in the United States and by more
than 10-to-1 when considering global

compensation levels for any given job cat-
egory. For example, here in the United
States there are significant ranges in aver-
age compensation by industry and also by
geographic region. Programmers in a large
bank in mid-town Manhattan or San
Francisco will average more than $80,000
per year, but programmers in a retail store
environment in the rural South might aver-
age less than $45,000 per year.

There are also major variations in the
burden rates or overhead structures that
companies apply in order to recover
expenses such as rent, mortgages, taxes,
benefits, and the like. The burden rates in
the United States can vary from less than
15 percent for small home-based enter-
prises to more than 300 percent for major
corporations. When the variance in basic
staff compensation is compounded with
the variance in burden rates, the overall
cost differences are notable indeed. For a
discussion of software cost variations,
refer to Jones [10].

Feature 6: Estimating Software
Schedules
Estimating software schedules has been a
troublesome topic because most large soft-
ware projects tend to run late. Close analy-
sis of reported schedule errors indicates
three root causes for missed schedules:
1) conservative or accurate schedule pro-
jections are arbitrarily overruled by clients
or senior executives, 2) creeping require-
ments are not handled proactively, and
3) early quality control is inadequate, and
the project runs late when testing begins.

Formal schedule estimation is an area
where cost estimation tools and project
management tools frequently overlap.
Often the cost estimation tool will handle
high-level scheduling of the whole project,
but the intricate calculations involving
dependencies, staff availability, and
resource leveling will be done by the proj-
ect management tool.

A basic equation for estimating the
schedule of any given development activi-
ty follows:

Effort/Staff = Time Period

Using this general equation, an activity that
requires eight person-months of effort
and has four people assigned to it can be
finished in two calendar months, i.e.:

8 Months/4 People = 2 Calendar Months

In real life, schedule estimating is one
of the most difficult parts of the soft-
ware estimation process. Many highly

Table 2: Common Software Occupation Groups
Common Software Occupation Groups

Involved in Large Applications
1. Architects (software/systems)
2. Configuration Control Specialists
3. Cost Estimation Specialists
4. Data Base Administration Specialists
5. Function Point Specialists (certified)
6. Globalization and Nationalization

Specialists
7. Graphical User Interface Specialists
8. Integration Specialists
9. Library Specialists (for project libraries)
10. Maintenance Specialists
11. Project Managers
12. Project Planning Specialists
13. Quality Assurance Specialists
14. Systems Analysis Specialists
15. Systems Support Specialists
16. Technical Translation Specialists
17. Technical Writing Specialists
18. Testing Specialists
19. Web Development Specialists
20. Web Page Design Specialists

“In real life,
schedule estimating
is one of the most

difficult parts of the
software estimation

process.”

Software Cost Estimation in 2002

June 2002 www.stsc.hill.af.mil 7

complex topics must be dealt with such as
the following:
• An activity’s dependencies upon previ-

ous activities.
• Overlapping or concurrent activities.
• The critical path through the sequence

of activities.
• Less than full-time staff availability.
• Number of shifts worked per day.
• Number of effective work hours per

shift.
• Paid or unpaid overtime applied to the

activity.
• Interruptions such as travel, meetings,

training, or illness.
• Number of time zones for projects in

multiple cities.
It is at the point of determining soft-

ware schedules when software cost estima-
tion tools and project management tools
come together. The normal mode of oper-
ation is that the software cost estimation
tool will handle sizing, activity selection,
effort estimation, cost estimation, and
approximate scheduling by phase or activi-
ty. Then the software cost estimation tool
will export its results to the project man-
agement tool for fine tuning, critical path
analysis, and adjusting the details of indi-
vidual work assignments.

Feature 7: Estimating Defect
Potentials
One reason software projects run late and
exceed their budgets may be that they
have so many bugs they cannot be
released to users. A basic fact of software
projects is that defect removal is likely to
take more time and cost more than any
other identifiable cost element.

The fact that software defect levels
affect software project costs and schedules
is why automated software cost estimation
tools often have very powerful and sophis-
ticated quality-estimation capabilities.

Quality estimates use two key metrics
derived from empirical observations on
hundreds of software projects: defect poten-
tials and defect removal efficiency. The defect
potential of a software project is the total
number of defects that are likely to be
encountered over the development cycle
during the first 90 days of usage. Defect
removal efficiency refers to the percent-
age of defects found and removed by the
developers before release to customers.

Based on studies published in the
author’s book Applied Software Measurement
[7], the average number of software
errors in the United States is about five
per function point (Table 3). Note that
software defects are found not only in
code, but also originate in all of the major
software deliverables in the approximate

quantities listed in Table 3.
These numbers represent the total

number of defects that are found and
measured from early software require-
ments throughout the remainder of the
software life cycle. However, knowledge
of possible defects is not the complete
story. It is also necessary to predict the
percentage of possible defects that will be
removed before software deployment.

Feature 8: Estimating Defect
Removal Efficiency
Many kinds of defect removal operations
are available for software projects. The
most common types include require-
ments reviews, design reviews, code
inspections, document editing, unit test,
function test, regression test, integration
test, stress or performance test, system
test, external Beta test, and customer
acceptance test. In addition, specialized
forms of defect removal may also occur
such as independent verification and vali-
dation, independent tests, audits, and
quality assurance reviews and testing.

In general, most forms of testing are
less than 30 percent efficient. That is,
each form of testing will find less than 30
percent of the errors that are present
when testing begins. Of course a
sequence of six test stages such as unit
test, function test, regression test, per-
formance test, system test, and external
Beta test might top 80 percent in cumula-
tive efficiency.

Formal design and code inspections
have the highest defect removal efficiency
levels observed. These two inspection
methods average more than 65 percent in
defect removal efficiency and have
topped 85 percent.

Before releasing applications to cus-
tomers, various reviews, inspections, and
testing steps utilized will remove many
but not all software defects. The current
U.S. average is a defect removal efficiency
of about 85 percent, based on studies car-

ried out among the author’s client compa-
nies and published in Software Assessments,
Benchmarks, and Best Practices [9], although
the top projects approach 99 percent.

The number and efficiency of defect
removal operations have major impacts
on schedules, costs, effort, quality, and
downstream maintenance. Estimating
quality and defect removal are so impor-
tant that a case can be made that accurate
software cost and schedule estimates are
not possible unless quality is part of the
estimate.

Feature 9: Adjusting Estimates in
Response to Technologies
One of the features that separates soft-
ware estimation tools from project man-
agement tools is the way estimation tools
deal with software engineering technolo-
gies. There are scores of software design
methods, hundreds of programming lan-
guages, and numerous forms of reviews,
inspections, and tests. There are also
many levels of experience and expertise
on the part of project teams.

Many software estimation tools have
built-in assumptions that cover techno-
logical topics like the following:
• Requirements gathering methods.
• Specification and design methods.
• Software reusability impacts.
• Programming language or languages

used.
• Software inspections.
• Software testing.

Software estimation tools can auto-
matically adjust schedule, staffing, and
cost results to match the patterns
observed with various technologies. For
additional information on such topics
refer to Putnam [11], Roetzheim and
Beasley [12], and Jones [9].

Feature 10: Estimating Maintenance
Costs over Time
In 2001, more than 50 percent of the
global software population was engaged
in modifying existing applications rather
than writing new applications.

Although defect repairs and enhance-

Table 3: U.S. Averages in Terms of Defects
per Function Point (Circa 2001)

U.S. Averages:
Defects per Function Point

Defects per
Defect Origins Function Point
Requirements 1.00
Design 1.25
Coding 1.75
Document 0.60
Bad Fixes 0.40

Total 5.00

“One reason software
projects run late
and exceed their

budgets may be that
they have so many
bugs they cannot be
released to users.”

Software Estimation

8 CROSSTALK The Journal of Defense Software Engineering June 2002

ments are different in many respects, they
have one common feature. They both
involve modifying an existing application
rather than starting from scratch with a
new application.

Several metrics are used for mainte-
nance estimation. Two of the more com-
mon metrics for maintenance and enhance-
ment estimation include 1) defects repaired
per time interval and 2) assignment
scopes or quantities of software assigned
to one worker.

The defects repaired per time interval met-
ric originated within IBM circa 1960. It
was discovered that for fixing customer-
reported bugs or defects, average values
were about eight bugs or defects repaired
per staff month. There are reported vari-
ances of about 2 to 1 around this average.

The term assignment scope refers to
the amount of software one maintenance
programmer can keep operational in the
normal course of a year, assuming routine
defect repairs and minor updates.
Assignment scopes are usually expressed
in terms of function points and the
observed range is from less than 300 func-
tion points to more than 5,000 function
points with an average of around 1,000
function points.

Future Trends in Software
Estimation
Software technologies are evolving rapid-
ly, and software cost estimation tools need
constant modifications to stay current.
Some future estimating capabilities can be
hypothesized from the direction of the
overall software industry.

As corporations move toward Internet
business models, it is apparent that soft-
ware cost estimation tools need expanded
support for these applications. While the
software portions of Internet business
applications can be estimated with current
tools, the effort devoted to content is out-
side the scope of standard estimates. The
word content refers to the images and
data that are placed in Web sites.

As data warehouses, data marts, and
knowledge repositories extend the capa-
bilities of database technology, it is appar-
ent that database cost estimation lags soft-
ware cost estimation. As this article is
written, there is no data-point metric for
ascertaining the volumes of data that will
reside in a database or data warehouse.
Thus, there are no effective estimation
methods for the costs of constructing
databases or data warehouses or for eval-
uating data quality.

For companies that are adopting
enterprise resource planning (ERP), the

time and costs of deployment and tuning
are multiyear projects that may involve
scores of consultants and hundreds of
technical workers. Here too, expanded
estimating capabilities are desirable since
ERP deployment is outside the scope of
many current software cost estimation
tools.

Other features that would be useful in
the future include value estimation, litiga-
tion estimation, and enhanced support
for reusable artifacts. Refer to Jones [3],
Boehm [2], and Stutzke [13] for addition-
al thoughts on future estimation capabil-
ities.

Conclusions
Software cost estimation is simple in con-
cept, but difficult and complex in reality.
The difficulty and complexity required for
successful estimates exceed the capabili-
ties of most software project managers.
As a result, manual estimates are not suf-
ficient for large applications above rough-
ly 1,000 function points in size.

Commercial software cost estimation
tools can often outperform manual
human estimates in terms of accuracy
and always in terms of speed and cost
effectiveness. However, no method of
estimation is totally error free. The cur-
rent best practice for software cost estima-
tion is to use a combination of software
cost estimation tools coupled with soft-
ware project management tools, under
the careful guidance of experienced soft-
ware project managers and estimation
specialists.

References
1. Boehm, Barry. Software Engineering

Economics. Englewood Cliffs, NJ:
Prentice Hall, 1981.

2. Boehm, Barry, et al. “Future Trends,
Implications in Software Cost
Estimation Models.” CrossTalk

Apr. 2000: 4-8.
3. Jones, Capers. “Sizing Up Software.”

Scientific American Magazine Dec.
1998: 74-79.

4. Kan, Stephen H. Metrics and Models
in Software Quality Engineering.
Reading, Mass.: Addison-Wesley, 1995.

5. International Function Point Users
Group. Counting Practices Manual.
Release 4.1. Westerville, Ohio: IFPUG,
May 1999.

6. Kemerer, C. F. “Reliability of Function
Point Measurement – A Field Exper-
iment.” Communications of the ACM
36 (1993): 85-97.

7. Jones, Capers. Applied Software
Measurement. 2nd ed. New York:
McGraw-Hill, 1996.

8. Putnam, Lawrence H., and Ware
Myers. Industrial Strength Software –
Effective Management Using Meas-
urement. Los Alamitos, Calif.: IEEE
Press, 1997.

9. Jones, Capers. Software Assessments,
Benchmarks, and Best Practices.
Boston, Mass.: Addison Wesley Long-
man, 2000.

10. Jones, Capers. Estimating Software
Costs. New York: McGraw-Hill, 1998.

11. Putnam, Lawrence H. Measures for
Excellence – Reliable Software On
Time, Within Budget. Englewood
Cliffs, N.J.: Yourdon Press - Prentice
Hall, 1992.

12. Roetzheim, William H., and Reyna A.
Beasley. Best Practices in Software
Cost and Schedule Estimation. Saddle
River, N.J.: Prentice Hall PTR, 1998.

13. Stutzke, Richard D. “Software
Estimation: Challenges and Research.”
CrossTalk Apr. 2000: 9-12.

About the Author

Capers Jones is chief
scientist emeritus of
Artemis Management
Systems and Software
Productivity Research
Inc., Burlington, Mass.

Jones is an international consultant on
software management topics, a speaker, a
seminar leader, and an author. He is also
well known for his company’s research
programs into the following critical soft-
ware issues: Software Quality: Survey of
the State of the Art; Software Process
Improvement: Survey of the State of the
Art; Software Project Management:
Survey of the State of the Art. Formerly,
Jones was assistant director of pro-
gramming technology at the ITT
Programming Technology Center in
Stratford, Conn. Before that he was at
IBM for 12 years. He received the IBM
General Product Division’s outstanding
contribution award for his work in soft-
ware quality and productivity improve-
ment methods.

Software Productivity
Research Inc.
6 Lincoln Knoll Drive
Burlington, MA 01803
Phone: (781) 273-0140
Fax: (781) 273-5176
E-mail: cjones@spr.com

June 2002 www.stsc.hill.af.mil 9

Customers rank reliability first on their
list of most critical quality attributes,

according to a recent survey of the largest
customers of complex real-time telecom-
munications systems and data published in
the Army’s software metrics newsletter,
Insight (Spring 2000) [1]. With the cost of
some systems exceeding tens or even hun-
dreds of millions of dollars and with a
development duration of more than 12 to
18 months, early reliability estimation can
significantly contribute to the success (or
early rational cancellation) of the project.
With recent strong emphasis on speed of
development, the decisions made on the
basis of early reliability estimation can
have the greatest impact on schedules and
cost of software projects. Software relia-
bility may also be significantly improved in
an early stage by a focused review and
inspection process, early defect removal,
and thorough test effort.

Software reliability estimation provides
a solid foundation to perform meaningful
tradeoff studies at project start. It also
provides a projection of the software fail-
ure rate before systems tests begin or at
any point throughout. After estimation,
the next logical step is creating a software
reliability growth model, which covers the
period where reliability improves as the
result of thorough peer reviews, testing,
and fault correction. Reliability metrics
help to predict such critical factors as the
initial failure rate, final failure rate, fault
density, fault profile, etc.

The final outcomes of software relia-
bility estimation include the following:
• An estimation of the number of faults

expected during each phase of the life
cycle.

• A constant failure rate estimation at
system release.

• Relative measures for practical use and
management such as duration of sys-
tem test and size of the test team.
If software reliability estimation is per-

formed early in the software life cycle, it is

possible to determine what improvement,
if any, can be made to the software meth-
ods, techniques, or organizational struc-
ture. As described in this article, our expe-
rience also confirmed what many recent
articles and publications have suggested:
A successful, meaningful estimating strat-
egy must simultaneously use more than
one estimating technique [2].

For early software reliability estima-
tions, an estimation team used a number
of software reliability models. The team
compared the results of these models
with each other and with the reliability
data provided by cost/effort estimation
model KnowledgePLAN, which was
selected a few years ago after Bell Labs’
studies of more than a dozen different
estimation models (the COCOMO tool
came out a very close second). This
expert system tool contains in its database
more than 8,000 actual projects that along
with size, cost, effort, and other attributes
have data about the total number of
inherent faults, their distribution among
major phases of life cycle, the severity of
faults, and potential defect removal effi-
ciency [3].

As with any other existing cost estima-
tion tool, KnowledgePLAN had to be
fine-tuned and thoroughly calibrated for
the particular project to be consistent and
reliable. At the same time in this environ-
ment, the KnowledgePLAN question-

naires on the project/process develop-
ment activities were used as a shell for the
company-wide software process assess-
ments, together with some parts of the
Software Engineering Institute’s
Capability Maturity Model® (CMM®).
These assessments were used for internal
benchmarking of current development
practices and helped to easily identify sim-
ilar projects, which was essential for a
meaningful comparison [4].

Estimating Parameters
AT&T/Lucent’s experience in software
reliability estimation for a number of
large telecommunications projects is evi-
dence that the size of the project (in func-
tion points or sometimes in thousands of
lines of code [KLOC]) is the most signif-
icant single factor for estimating the num-
ber of inherent faults [4]. The second
most important factor is project complex-
ity, which can be represented by McCabe’s
cyclomatic complexity measure (problem,
code, and data complexity). Those com-
plexity measures strongly depend on the
application types of the project [3, 5].

The KnowledgePLAN tool uses sim-
plified McCabe’s complexity factors in its
questionnaire, as does its predecessor
Checkpoint. Also our previous independ-
ent studies found that the fault-reduction
factor is relatively stable across different
projects in the same organization, though
the fault-exposure ratio may be depend-
ent on the structure of the program and
the degree to which faults are data
dependent. However, these effects are
often averaged out for programs of sub-
stantial size such as the large projects the
estimation team often deals with [6].

To increase estimation accuracy and
our ability to better control the discovery-
of-faults process, the team concluded the
following: The software reliability estima-
tion must be performed in early phases of
the life cycle by using phase-based models
that emphasize the availability of size and

Early Estimation of Software Reliability in
Large Telecom Systems

Alex Lubashevsky
Independent Consultant

This article describes early estimation experiences with software reliability of complex real-time telecommunications systems
based on size estimation and the process assessment. It emphasizes the importance of estimation for evaluating the feasibili-
ty of proposed reliability requirements and providing a rational basis for design and allocation decisions. A number of crit-
ical factors for building a reliability estimation model are discussed along with typical sizing processes and estimation tools.
The modified U.S. Air Force’s Rome Laboratory model was selected as the best practical candidate for the early estimation
of software reliability. A data comparison of its results to a traditional estimation model is presented.

“Software reliability
estimation provides a
solid foundation to
perform meaningful
tradeoff studies at

project start.”

Software Estimation

10 CROSSTALK The Journal of Defense Software Engineering June 2002

corresponding effort for the project dur-
ing early phases. In our case, the estima-
tion team obtained the size and effort in
the early stage of development very often
by using the function point method [7].
However, for some legacy projects, the
data were derived by the analogy method
or by experts’ iterative estimations such as
Delphi analysis [5].

Also, the number of factors needed
for building reliability estimation, which
significantly relates to fault density at the
early stages such as application type,
development environment, and some
other software metrics, can be obtained
relatively easily from the results of previ-
ously performed company-wide software
process assessments. After a number of
studies and experiments with different
types of reliability models, the team
selected the U.S. Air Force’s Rome
Laboratory model [8]. The estimation
team chose this model because it allows
us to track the influence on software reli-
ability of the various application types by
different development organizations,
methods, tools, techniques, and other
software factors, and it is closely correlat-
ed to our development methodology.

Estimating Size and Reliability
Early
Size estimation consists of two phases,
called passes, which require using highly
trained and experienced estimators. After
a list of new or modified features is prior-
itized during the proposal stage, the first
pass provides a quick rough estimate of
size/effort required to develop the fea-
tures. These are then given to product
management to determine the budget for
an upcoming release.

The estimate is determined by break-
ing up the software into smaller pieces,
consulting with experts, and forming
analogies to previously developed soft-
ware with similar features. If a separate
estimation repository database updated on
a quarterly basis contains the data for a
similar feature, the preliminary data for
the size/effort estimation and often the
total number of inherent faults are readily
available. If data from the repository are
not available, one of the reliability estima-
tion models with some of the default
parameters is used. One or two members
of the planning group usually generate the
first-pass estimate with accuracy within 50
percent.

The second pass is a detailed estimate
done near the end of the requirements
process to define size/effort of a feature,
a subsystem, or system level. The develop-

ment planning group usually coordinates
the entire process. For some projects, the
second-pass estimates are based on the
judgment of experienced developers
(rather than expert estimators) who are
using a bottom-up estimation technique
based on historical data to outline and
estimate the tasks by functional area that
will be required to develop a feature.

This group meeting is used to obtain a
single estimate from a group of experts
after an open discussion. The meeting is a
forum for experts to discuss requirements
and designs, consider a tradeoff between
the reliability of the product and cost and
schedules of the project, resolve issues,
and work together to create and tune their
estimates. The Delphi technique [5] can be
combined with the group meeting
approach. The group meeting is used to
discuss estimation issues and the experts
give their opinions. These estimates are
discussed again, and the process is repeat-
ed until a consensus is reached.

Size/effort estimation and early relia-
bility estimation by analogy was the most
popular method. The technique assumes
that if two projects are alike in some
respects, other similarities can be inferred.
The current project is compared with sim-
ilar completed projects to get a ballpark
estimate; experts then factor in the differ-
ences between the projects. Estimation by
analogy can be applied to a total system, a
module, or a task. A historical database is
the best tool for estimation by analogy.
Here are sources for analog data in the
order of decreasing preferences:
• Data from a previous release of the

same project.
• Data from a similar project in the same

company.
• Data from a similar project in a differ-

ent company.
Industry data can be used if company data
are not available, but they must be cali-
brated to company data as soon as they
are available.

For a completely new project that may
have no relevant data or experience on
which to base estimates, particularly if the

project is moving to a new methodology
such as from a traditional to an object-ori-
ented approach, the following estimation
strategy is recommended: Create, if possi-
ble, an analog by dividing the product into
components and actually doing develop-
ment on a typical component to estimate
the remainder of the project. Also, the fol-
lowing additional information associated
with the software cost/effort estimation
and reliability estimation is recommended:
• Project management tracks baseline,

current and completion dates, and the
number of detected faults.

• At the end of each software release,
postmortem compares actual vs.
detailed estimates for the features.

• The estimation process is evaluated on
two criteria: responsiveness (in busi-
ness days) and accuracy, which is
defined as the percent of relative error
between the detailed estimate and
actual data.
The new estimation process described

in the next section also consists of two
phases (sometimes an additional zero
phase is added) and is based on more con-
sistent usage of estimation tools and tech-
niques and less reliance on high human
expertise. But this estimation practice
strongly concurs with the suggestion that
the most important factor in improving
estimation is to “hold its software estima-
tors, developers, and managers account-
able for their estimates” [9].

A New Estimation Process
Our new estimation process is based on
size estimation using function point analy-
sis (FPA), which is usually performed
based on complete requirements [7] in
combination with estimation tools like
KnowledgePLAN and the modified Rome
Labs estimation model. (In some cases,
FPA is based on particular telecom
domains or, even earlier, based on the
high-level Feature Definition and
Assessment Form (FDAF), the most
important estimation phase called zero
pass.)

The project size in function points
(FP) is one of the significant inputs for
the KnowledgePLAN tool. Other input
information collected by the Knowledge-
PLAN’s questionnaire describes the type,
nature, and complexity of the project, the
project management practices, the expert-
ise and morale of the team, together with
a few dozen other attributes of the partic-
ular project. This enables the tool to
choose the project having the closest
match from its vast knowledge base of
previously collected industry projects.

As output, the tool generates many

“Size estimation
consists of two phases,

called passes,
which require using
highly trained and

experienced estimators.”

Early Estimation of Software Reliability in Large Telecom Systems

June 2002 www.stsc.hill.af.mil 11

useful estimation reports on resources,
schedule, etc., and also on the total num-
ber of defects that will be introduced dur-
ing various stages of the project. While in
the past the estimation team widely used
the predicted reliability data on potential
defects from the Checkpoint estimation
tool (KnowledgePLAN’s predecessor), the
team decided to compare the estimation
tool’s results with those from another
software reliability model.

For this purpose, the original U.S. Air
Force’s Rome Laboratory model, RL-TR-
92-52 [8] was modified to allow for more
than 60 telecommunications applications
to be included in the historical database,
and also to allow for the usage of the FP
method, which is growing in popularity in
civil and military applications [4]. Using
available industry and internal data from
the software process assessment (SPA)
and the CMM of the organization devel-
oping the software, the major nine factors
of the Rome Lab’s model were expanded
to include new ranges of values in FPs.
(See Table 1).

Originally, the output of the Rome
Lab’s model is a fault density in terms of
faults per KLOC. To compute the total
estimated number of inherent defects, the
fault density should be multiplied by the
total predicted number of KLOC. If
function points are being used and no
KLOC is available for correlation, the
backfire method (low accuracy table for
the conversion of source lines of code to
FPs [3, 4]) is sometimes recommended.
Also the Rome Lab’s model is very useful
for predicting fault density at delivery
time; subsequently, this fault density is uti-
lized to predict the total number of inher-
ent faults and the failure rate.

The fault density of the application
(A) is predicted by using a baseline fault
density established for applications of the
same type, adjusted to reflect the influence
of the development environment (D) and
the software characteristics (S) of the spe-
cific application. Once fault density is
determined, the failure rate (FR) can be
predicted by applying empirical value
(EV), established from historical data for
the application type, to the fault density.
The Rome Lab’s model contains empirical
data that have a total of 33 data sources
representing 59 different projects (some
from Software Engineering Laboratory).

Fault Density: FD = A x D x S
(faults/FPs or LOC)

Estimated number of Inherent Faults:
N = FD x SIZE

Failure Rate: FR = FD x EV
(faults/time)

This model has the following significant
benefits:
• It can be used as soon as the software

concept is known.
• During the concept phase, it allows

what-if analysis to be performed to
determine the impact of the develop-
ment environment on fault density. (In
our case, the data from the previous
SPA for this organization will be
reused.)

• During the concept phase, it allows
what-if analysis to be performed to
determine the impact of software
characteristics on fault density. (Also
the data from the previous SPA for
this organization will be reused.)

• It allows for system software reliability
allocation because it can be applied
uniquely to each application type com-
prising a large software system.

• The estimation can be easily cus-
tomized using unique values for the A,
D, and SIZE factors based upon his-
torical software data from the specific
organization’s environment.
The Rome Lab’s model consists of

nine factors (Table 1, first column) that
are used to predict the fault density of the
software application. That is, application
type factor (which could be real-time con-
trol systems, scientific, or information
management) with the range of values of
two to 14 defects per KLOC, or 0.2 to 1.5
defects per FP. This demonstrates the
potential influence of different applica-
tion types on fault density in an early
phase of development. Similar logic
applies to the rest of the factors: They
show the potential ranges of values for

fault density that depend on the type of
factors and measures associated with
them.

There are parameters in this estimation
model that have tradeoff capability (maxi-
mum/minimum predicted values). The
analyst can determine where some
changes can be made in the software engi-
neering process or product to achieve
improved fault-density estimation. This
tradeoff is valuable only if the analyst has
the capability to impact the software
development process. (Notice that the
tradeoff is fixed for the type of applica-
tion and is not applicable after you select a
particular software language.) The trade-
off analysis can also be used to perform a
cost analysis by optimizing the develop-
ment.

The values of many of the parameters
in this model may change as development
proceeds. The latest updated values
should be used when making an estima-
tion that will become more and more
accurate with each successive phase until
the final design and implementation.

Table 1 represents the summary of
Rome Laboratory’s estimation model.
The column “Range of Values” shows
original and modified telecom values, the
latter reflecting the historical reliability
data correlated with the data from the
SPA assessments range for more than 60
projects. Most of the factors of the orig-
inal model like software implementation
metrics (SX, SM, SR, etc.), requirements
and design representation metrics (SA,
ST, SQ), and application (A) and develop-
ment environment (D) correspond
almost one-to-one to the factors of the
SPA/SPR questionnaire. The only differ-
ence is that range of values for fault den-
sity is mapped in defects per FPs instead

Factor Measure

Range of Values
Rome Labs Telecom
defs/KLOC defs/FPs

Application
Phase*

Trade-off
Range

A-Application Difficulty in developing
various application types

2 to 14 0.2 to 1.5 AP-T None
fixed

D-Development
 environment

Development org., methods,
tools, techniques, document .5 to 2.0 0.1 to 1.8

If known at
AP, DTLD-T

Largest
range

SA-Software
 anomaly mgmt.

Indication of fault-tolerant
design .9 to 1.1 0.3 to 0.4

Normally,
C-T Small

ST-Software
 traceability

Traceability of design
and code to requests .9 to 1.0 0.2 to 0. 6

Normally,
C-T Large

SQ-Software
 quality

Adherence to coding
standards 1.0 to 1.1 0.2 to 0.3

Normally,
C-T Small

SL-Software
 language

Normalizes fault
density by language type

N/A N/A C-T N/A

SX -Software
 complexity

Unit complexity
.8 to 1.5 0.1 to 0.6 C-T Large

SM-Software
 modularity

Unit size
.9 to 2.0 0.1 to 0.7 C-T Large

SR-Software
 standards review

Compliance with
design rules .75 to 1.5 0.2 to 0.4 C-T Large

*AP = Concept or Analysis Phase, C = Coding, DTLD = Detailed and Top Level Design, and T = Testing

Table 1: Summary of the Rome Laboratory Model, RL-TR-92-52

Software Estimation

12 CROSSTALK The Journal of Defense Software Engineering June 2002

of defects per KLOC.
Table 2 provides an example of data

for one of the critical telecom projects.
The predicted and industry standard data
were generated using the project quality
report of KnowledgePLAN. Actual data
came from the final systems/integration
test reports. The data from the two differ-
ent models were compared and correlated
with the SPA data for this project and the
reliability data produced by the modified
Rome Labs model. The percent of vari-
ance between actual and predicted faults
showed an acceptable range of deviation
(from 10 percent to 27 percent, as com-
pared with the acceptable range for this
most important early stage of estimation:
+/- 50 percent).

Table 2 represents data for a project
size of about 1,800 FPs. The fault density
(1.24 faults/FP) and total number of
inherent faults (2,626) were predicted for
the FDAF stage of the life cycle. These
data, together with some historical infor-
mation for similar projects, helped predict
the duration of systems test with about 15
percent accuracy and the size of the test
team with about 20 percent accuracy. The
early predicted faults in Table 2 are pre-
sented by severity level (based on histori-
cal distribution data for similar projects)
and percent of deviation from actual and
industry database. The 17 percent devia-
tion of total predicted faults to actual is a
significant (almost three times) improve-
ment compared with the first-pass results
(50 percent) at the same stage.

Also during this object-oriented proj-
ect for a real-time telecommunication sys-
tem, the early reliability estimation data
indicated a need for a focused review and
inspection process especially during analy-
sis, design, and additional systems test
effort to fully cover all test cases written
against original user requirements. This
helped to increase defect removal efficien-
cy to 92 percent (which is very high for
this type of transmission application) and
to create a system with software availabili-
ty exceeding Telcordia standards by more
than 10 times. This particular system was

in the field for more than one year without
any major software outage.

Summary
This article has described a number of
experiences of early estimation of soft-
ware reliability for large real-time
telecommunications systems. The bene-
fits of early reliability estimation for the
design and allocation decisions, which can
have a significant impact on schedule and
cost, were also discussed. The article also
emphasized the importance of early size
and complexity estimation on which a
number of software reliability models are
based. The past processes of early size
and reliability estimation (relying on high-
ly qualified human experts) and new
processes (based on the heavy usage of
estimation tools) were described in detail.
The modified Rome Labs estimation
model, based on early size estimation as
well as a number of other factors that
describe the software development
process and its influence on reliability,
was introduced for comparison and was
shown to be very useful. The example of
working with two different models for
early reliability estimation and the positive
results achieved proved that other proj-
ects could significantly benefit from the
above-described processes in building
reliable systems.

References
1. Insight 4:1. Spring 2000. (Insight is the

Army’s Software Metrics Newsletter.
Available at: <www.ArmySoftware
Metrics.org>.)

2. Shepperd, M. J., and C. Schofield.
“Estimating Software Project Effort
Using Analogies.” IEEE Trans.
Software Engineering 23.12 (1997).

3. Jones, T.C. Applied Software Meas-
urement. McGraw-Hill, 1991.

4. Lubashevsky, Alex, and L. Bernstein.
“Living with Function Points at
AT&T.” CrossTalk Nov./Dec.
1995.

5. Boehm, B. W. Software Engineering
Economics. Prentice Hall, 1981.

6. Musa, J. D. Software Reliability.
Measurement, Estimation, Appli-
cation. McGraw-Hill, 1987.

7. Albrecht, A. J., and J. R. Gaffney.
“Software Function, Source Lines of
Code, and Development Effort
Estimation: A Software Science
Validation.” IEEE Trans. Software
Engineering 9.6 (1983).

8. Rome Laboratory. “Methodology for
Software Reliability Estimation and
Assessment.” Technical Report RL-
TR-92-52, Vol. 1 and 2, 1992.

9. Lederer A. L., and J. Prasad. “A Causal
Model for Software Cost Estimating
Error.” IEEE Trans. Software
Engineering 24.2 (1998).

Severity Level Predicted
Industry
Standard Actual

Percent of Variance (Actual to
Predicted/Industry Standard)

1. System
 inoperative 87 103 67 22/35

2. Major functions
 incorrect 408 516 359 14/30

3. Minor functions
 incorrect 1185 1446 1076 10/25

4. Superficial error 945 1034 742 27/28

 Total 2626 3098 2244 17/28

Table 2: Faults by Severity Level

About the Author

Alex Lubashevsky is an
independent consultant
specializing in estimation
and reliability. He was
previously an estimation
project manager with

AT&T/Lucent for 17 years. He was
responsible for estimating size, effort,
interval, and defects for more than 200
telecom and data processing systems
inside and outside the company (IRS,
DELTA, Prudential, etc). While at AT&T,
he also helped to achieve one of the first
industry Capability Maturity Model®

Level 3 ratings. He originated and helped
to develop the first automated CASE tool
for early estimation (Bachman Analyzer).
Lubashevsky was an early industry sup-
porter of Practical Software and Systems
Measurement and a pioneer in the
National Software Council and later a
board member. He has a master’s of sci-
ence degree in computer science from
New York University and a bachelor’s of
science degree in computer science from
the Polytechnic University of Kharkov,
Ukraine. He is a member of the
International Electrical and Electronics
Engineers Computer and Communica-
tions Societies, the International Function
Point Users Group, and the International
Academy of the Information Sciences.

165 Osprey
Hackettstown, NJ 07840
Phone: (908) 813-0208
Fax: (908) 813-0208
E-mail: alexluba1@att.net

June 2002 www.stsc.hill.af.mil 13

This past year, electronic commerce
reportedly reached $5 billion in sales.

Considering that this was during a reces-
sion, it is a marvelous achievement. You
are probably thinking, “How was that
achieved with the technology bubble
bursting and Internet start-ups failing
right and left?” The answer is simple. The
larger businesses took the place of the
smaller businesses. They moved to the
Web with speed and enthusiasm, often
for good business reasons. For example,
General Electric reportedly saved $40 mil-
lion in a single month compared with the
same month in the previous year by mov-
ing its travel onto the Web [1].

Just as importantly, this move to the
Web is heralding in a major change in the
way we in the software community do
business. For example, the large projects
that we worked on in the past are being
replaced by many small Web develop-
ments. These small projects are being
done using different technology as well.
Table 1 characterizes these changes to give
some insight into the current trends. It
highlights the move to agile methods [2],
extreme programming methods [3], com-
ponents [4], multimedia, and visual tech-
nologies by Web shops.

These trends are motivated by the
move to quicker-paced developments.
Instead of developing software from
requirements, these Web development
projects are gluing components together
using agile instead of traditional methods.
They build prototypes and refactor [5]
them instead of focusing on design. From
Table 1, you will see that Web develop-
ments seem deficient in the areas of
process, discipline, and estimating. That is
not entirely true. As Mark Paulk recently
pointed out, process improvement and
extreme methods are not incompatible [9].
However, many of the large firms with
which my firm has recently worked seem
to have abandoned process paradigms and
the Software Engineering Institute’s

Capability Maturity Model® (CMM®),
Software Capability Maturity Model® (SW-
CMM®), and Capability Maturity Model
IntegrationSM (CMMISM) [10, 11] in their
quest to speed time-to-market as they
move to the Web.

Those of us in the estimating commu-
nity currently have not agreed upon how
to address Web-based projects. The trou-
ble is that the characteristics of the Web-
based projects listed in Table 1 make it dif-
ficult for estimators to adapt and put their
existing processes, metrics, and models to
work operationally. Web projects are dif-
ferent. To highlight the challenges
involved in the area of Web estimation, we
have constructed Table 2 (see page 14).
For comparative purposes, this table also
identifies the approaches that we current-
ly use to develop estimates for traditional
software projects.

Most estimators would like to use the
more traditional processes, metrics, mod-
els, and tools for estimating Web projects.
They are mature, and many of us in the
field have confidence in their ability to
accurately predict project costs and sched-
ules. We also have a great deal of experi-
ence using these metrics, models, and
tools and feel comfortable with them and

their outputs. However, as noted by Table
2 (page 14), these traditional approaches
do not address the challenges that we face
with Web projects. The two major chal-
lenges are accurately estimating size and
duration. New size metrics are needed to
cope with Web objects like shopping carts,
Java scripts, and building blocks like
Cookies, ActiveX controls, and
Component Object Model components.
New duration-estimating equations are
needed to address the fact that the cube
root laws used by most estimating models
just do not seem to work for the Web.

New Web Applications Sizing
Metrics Needed
Because Web cost can be treated as a func-
tion of size, a meaningful size predictor is
needed for Web projects. Those working
such projects agree that the popular size
metrics, function points (FP) and source
lines of code (SLOC), are not suitable for
Web estimation because they do not take
all of the Web objects (buttons, templates,
etc.) into account. Luckily, the research
community has not been idle. It has pro-
posed several size metrics for Web devel-
opments (object points [12], application
points [13], etc.). However, the only find-

Estimating Web Development Costs:
There Are Differences

Donald J. Reifer
Reifer Consultants, Inc.

This article discusses the need for new metrics and models to estimate the effort and duration for Web development projects. It
then describes a new size metric, Web objects, and a new cost estimation model, WEBMO, that have been developed to sat-
isfy these needs. Most importantly, this article identifies differences between traditional and Web projects that managers need
to be aware of when developing estimates prior to ending with a current status of the effort.

Characteristics Traditional Developments Web Developments
Primary objective Build quality software products at

minimum cost.
Bring quality products to market as
quickly as possible.

Typical project size Medium to large
(hundreds of team members).

Small
30 the largest).

Typical timeline 12-18 months 3-6 months
Typical cost $ millions $ thousands
Development
approach employed

Classical, requirements-based, phased
and/or incremental delivery, use cases,
documentation driven.

Agile methods, extreme programming,
building block-based, demo-driven,
prototyping, Rational Unified Process [6],
MBASE [7].

Primary engineering
technologies used

Object-oriented methods, generators,
modern programming languages
(C++), CASE tools, etc.

Component-based methods, 4th and 5th

generation languages (html, Java, etc.)
visualization (motion, animation), etc.

Processes employed CMM-based Ad hoc
Products developed Code-based systems, mostly new,

some reuse, many external interfaces,
often-complex applications.

Object-based systems, many reusable
components (shopping carts, etc.), few
external interfaces, relatively simple.

People involved Professional software engineers with
5+ years of experience.

Graphic designers, less-experienced
software engineers, Java specialists.

Estimating
technologies used

Source line of code or function point-
based models, Web-based systems
approach for small projects.

Design-to-fit based on available
resources, Web-based systems for
small projects.

Note: Table is an a daptation of the author's previously published work [8].

(3-5 team members the norm,

Table 1: Characteristics of Traditional vs. Web Development Projects

® Software Capability Maturity Model and SW-CMM are
registered in the U.S. Patent and Trademark Office.

SM CMM Integration and CMMI are service marks of
Carnegie Mellon University.

Software Estimation

14 CROSSTALK The Journal of Defense Software Engineering June 2002

ing that researchers in the field currently
agree upon is that they cannot reach
agreement on which of these is best.
Based upon our experimentation, we
believe that we have developed a size met-
ric that can resolve the current debate.
The metric, Web objects, predicts size by
taking each of the many elements that
make up the Web application into account
as size is estimated.

You are probably asking, “What are
Web objects?” Like function points, Web
objects are defined to be a metric that
provides users with an indication of the
relative size of an application [14]. In our
case, the applications run on the Web.
Web objects predict size by permitting its
users to bound the functionality of their
applications in terms of the following five
groups of predictors:
• Function points.
• Links.
• Multimedia files.
• Scripts.
• Web building blocks.

As indicated, Web objects extend func-
tion points to encompass groups of func-

tions present in Web applications. For
example, Web objects allow estimators to
take Web building blocks like shopping
carts and the number of XML language
lines needed to link the application to a
Web accessible database into account as
they develop their estimate. Such exten-
sion is needed because traditional function
points predict size using more traditional
application characteristics like number of
inputs and outputs.

Using the size predictor groupings list-
ed in Table 3 to compute the number of
Web objects, we have been able to repeat-
edly predict the size of a Web application
with what we believe to be reasonable
accuracy. These predictors allow us to take
into account all of the different elements
of applications that contribute to size,
including those specific to the Web. We
devised this list initially based upon the
opinions of experts. For one year, we have
applied the metric to develop estimates,
collect project data, and refine our count-
ing conventions based upon experience.
Based upon analysis of 64 completed Web
projects in five application domains, we

have shown that these predictors can be
used along with FPs to develop accurate
estimates.

Like function points, the key to devel-
oping repeatable and consistent sizing
predictor counts is a well-defined set of
counting conventions. To help on our
pilot projects, we have developed a white
paper to explain our initial counting con-
ventions [15]. We plan to update this and
develop a more detailed counting manual
for Web objects later this year. That man-
ual, a version of which will posted on our
Web site at <www.reifer.com>, will pro-
vide those interested in using Web objects
with a consistent set of experience-based
conventions for dealing with most situa-
tions they will likely encounter when siz-
ing their Web applications.

We have also developed the worksheet
in Table 4 to show you how to use the
information gathered on predictors along
with function points to size a typical Web
application. Using an actual Java program
being developed for a Web portal as an
example, the size estimate developed in
Table 4 provides you with an indication of
how big the program would be once fully
developed. It uses the five groupings of
predictors that we have discussed to devel-
op weighted counts that allow us to size a
Web application based upon its unique
characteristics.

We have also empirically developed
backfiring ratios to convert from Web
objects to SLOC. If the example shown in
Table 4 were done in Java, the 356 Web
objects would be the equivalent of 11,392
source lines of Java code, assuming a con-
version ratio of 32 Java lines per Web
object. Backfiring is important to us
because we plan to use a modified version
of the COCOMO II early design model
to estimate effort and duration.

The COCOMO II model uses SLOC
as its underlying size metric. However,
after much experimentation, we calibrated
our new cost estimation model WEB
model (WEBMO) using Web objects
instead of SLOC. The reason for this was
that such calibration improved our esti-
mating accuracy by as much as 12 percent
in two of our five application domains.
However, to remain compatible with
COCOMO II until we can calibrate all five
domains, we plan to continue to use
SLOC in our formulas. This may change
in the future once we gather more data
and can more precisely calibrate our esti-
mating model.

A New Estimation Model
Having a realistic size metric is just the first
step in developing a model for accurately

Traditional Approach Web-Based Challenges
Estimating
process

Most use analogy supplemented by
lessons learned from past experience.

Job costing, if done, performed ad hoc using
inputs from the developers (too optimistic).

Size
estimation

Because systems are built to
requirements, SLOC or function points are
used. Separate models are used for COTS
and reused software (equivalent new
lines).

Applications are built using templates using a
variety of Web-based objects (html, applets,
components, etc.). No agreement on size
measure reached yet within the community.

Effort
estimation

Effort is estimated via regression formulas
modified by cost drivers (plot project data
to develop relationships between
variables).

Effort is estimated via analogy using job
costing practices and experience as the
guide. Little history is available.

Schedule
estimation

Schedule is estimated using a cube root
relationship with effort.

Schedules estimated using cube root
relations are an order of magnitude high.

Model
calibration

Measurements from past projects are used
to calibrate models to improve accuracy.

Measurements from past projects are used to
identify estimating knowledge base.

What if
analysis

Estimating models are used to perform
quantitative what if and risk analysis.
They are also used to compute ROI and
cost/benefits.

Most what if and risk analysis is mostly
qualitative because models don't exist. ROI
and cost/benefit analysis for electronic
commerce remains an open challenge.

Note: Table is an adaptation of the author's previously published work [8].
SLOC = source lines of code, COTS = commercial off-the-shelf, ROI = return on investment

Table 2: Web-Based Estimation Challenges

Web Object Predictors Description
Number of function
points

Traditional metrics used to predict the size of non-Web
applications using number of inputs, outputs, files,
inquiries, and interfaces as the basis of estimate.

Number of XML, HTML,
and query language
links

Takes into account the effort to link applications,
integrate them together dynamically, and bind them to
the database and other applications in a persistent
manner.

Number of multimedia
files

Takes into account the effort required to insert audio,
video, and images into applications.

Number of scripts Takes into account the effort required to link HTML/XML
data with applications and files and generate reports.

Number of Web
building blocks

Takes into account the effort required to develop Web-
enabled fine-grained building block libraries and related
wrapper code needed to instantiate them.

Table 3: Web Object Predictors

Estimating Web Development Costs: There Are Differences

June 2002 www.stsc.hill.af.mil 15

estimating Web application effort and
duration. The mathematical issues associ-
ated with making such predictions need to
be reconciled before such models are tran-
sitioned into use.

The major issue revolves around the
schedule law used by the model. Analysis
of data we have collected to date confirms
that the equations can be expressed as
regressions. However, the traditional cube-
root relationship that exists between effort
and duration in most estimation models
does not accurately predict Web develop-
ment schedules [16].

Dr. Barry Boehm of the University of
Southern California has proposed a
square-root relationship for small projects
[17]. Larry Putnam has published several
papers arguing that such relationships are
accurately represented by a fourth power
tradeoff law [18, 19]. Our initial data analy-
sis reveals that a square-root relationship
exists for Web projects. However, this
mathematical relationship tends to break-
down when the number of Web objects
exceeds 300. Therefore, the schedule law
used in our model needs to be scaled
accordingly.

To estimate Web project costs, we have
developed the WEBMO cost model; its
mathematical formulation is shown in
Figure 1. As stated, this model is an exten-
sion of the COCOMO II early design
model [20]. The WEBMO model was
developed using a mix of expert judgment
and actual data from 64 projects using lin-
ear regression techniques. It allows users to
take the characteristics of Web projects
identified in Table 1 into account via adjust-
ments that they make to its cost drivers.

WEBMO’s mathematical formulation
builds on the COCOMO II model’s
extensive data analysis of more than 161
projects to address Web issues. We com-
pute exponents for its effort and duration
equations, P1 and P2, using the following
five application domains: Web-based elec-
tronic commerce, financial/trading appli-
cations, business-to-business applications,
Web portals, and information utilities. As
shown in Figure 1, the WEBMO estimat-
ing equations for effort (in person-
months) and duration (in calendar
months) assume size is provided in Web
objects. To predict duration, the model
assumes a square root instead of a cube-
root relationship between duration and
effort for small projects.

The current version of the WEBMO
estimation model differs from the original
COCOMO II model by having nine
instead of seven cost drivers and a fixed
instead of a variable effort power law.

While our goal is to be as compatible with
COCOMO II as possible, we had to devi-
ate because of observed colinearity
between cost drivers when we performed
our regression analysis. Such colinearity
means that some of the cost drivers can
not be assumed to be independent from
others. In response, we have treated them
and COCOMO’s scale factors differently
in our mathematical formulation.

The constants in the effort and dura-
tion equations and power laws for each of
the five application domains that we have
studied are summarized in Table 5. A brief
explanation for each of the nine cost driv-
ers used by the model is provided in Table
6 (see page 16). The values for the driver
ratings used in the model are also provid-
ed in Table 6. Those interested in more
detail on the model are referred to the
WEBMO model definition manual that
will be issued late this year. At that time, a
version of this manual will also be made
available at <www.reifer.com>.

As expected, the choice of value for
the duration power law, P2, is based on the
relative size of the application. For small
applications less than 300 Web objects, the
square-root relationship between effort
and duration seems to hold (e.g., P2 =

0.5). For larger Web applications, the
cube-root relationship should be used (P2
= 0.32).

The nine cost drivers replace those in
the original COCOMO II model. Most
represent combinations of the original
factors in the early design version of the
model. However, teamwork and process
efficiency are new and different. They rep-
resent scale factors in the COCOMO II
model that have been shown to have a sta-
tistical effect on Web estimation.
However, instead of using them as power
law factors in the effort estimating equa-
tion, we include them as effort multipliers
to simplify the mathematics. Once we can
verify the WEBMO calibration statistical-
ly using scale factors, we will revert back
to the more standard version of the
COCOMO II model.

Let us continue with the Java example
we used previously for sizing a Web appli-
cation. The 356 Web object count in
Table 4 represents the size of the pro-
gram that would be required for this Web
application. If this were done entirely
using the Java language, the program
would take the equivalent of 11,392
SLOC to develop, test, and transition into
operations using the Language Expansion

Web Object Predictors Low Average High Notes
Traditional function point
predictors
• Internal logical files
• External interface files
• External inputs
• External outputs
• External inquires

2x10
2x7
4x4
3x5

1x15

6x6

From specification: 3 files
From specification: 2 interfaces
From specification: 10 inputs
From specification: 3 outputs
From specification: none

Number of XML, HTML, and
query lines

16x4 From specification: 16 HTML lines

Number of multimedia files 1x4

3x4

13x5 1x7 Operands: audio file, 13 multimedia
files, help file
Operators: open, close, save

Number of scripts
3x2

1x3 Operands: animation script
Operators: open, go (forward), close

Number of Web building
blocks

3x3

10x4 5x6 Operands: 15 building blocks from
library including 9 buttons, 1 cast, and
5 secure server icons
Operators: find, add, and insert

TOTAL 31 237 88

Table 4: Web Object Calculation Worksheet

Figure 1: WEBMO Estimation Equations

Application Domain A B P1 P2
Web-based electronic commerce 2.3 2.0 1.03 0.5 or 0.32
Financial/trading applications 2.7 2.2 1.05 0.5 or 0.32
Business-to-business applications 2.0 1.5 1.00 0.5 or 0.32
Web-based portals 2.1 1.8 1.00 0.5 or 0.32
Web-based information utilities 2.1 2.0 1.00 0.5 or 0.32

Table 5: WEBMO Parametric Values

 8
Effort = A cdi (Size)P1 Duration = B(Effort)P2

 i=1

Where: A and B = constants cdi = cost drivers
 P1 and P2 = power laws

Π

 Size = # SLOC

Software Estimation

16 CROSSTALK The Journal of Defense Software Engineering June 2002

Factors (LEF) listed in Table 7. Please
note that the values in this table differ
from those currently endorsed by the
International Function Point Users
Group (IFPUG). We developed these
numbers empirically using our Web appli-
cations database because the IFPUG
numbers did not seem to be consistent
with our current experience. This count
includes the volume of work required to
program Java scripts and beans on both
the client and server, assuming that an
appropriate Java environment were avail-
able for this distributed application.

The LEF factors are used to backfire
between FP and SLOC estimates. The
one convention that we impose on back-
firing is that only languages in the same
family can be used in conjunction with
each other. For example, you would not
mix C and C++ counts because their syn-
tax and semantics are quite different. Our
data indicate that there is a 10 percent to
40 percent error in counting when lan-
guages are mixed across language fami-
lies. As noted, HTML and System Query
Language (SQL) are considered 4GL and
can be mixed using the conventions that

we developed.
Why is backfiring to SLOC impor-

tant? The COCOMO II model uses
SLOC as the basis for all of its estimates.
Therefore, conversion to SLOC is
required to use this popular model out of
the box.

Let us run WEBMO with all of its
drivers set to nominal within the Web
portal domain as an example. The effort
estimate assuming size is 11.4 thousand
SLOC is about 24 person-months, while
the duration estimate is 5.0 calendar
months assuming the cube-root relation-
ship holds because size is greater than 300
Web objects.

For comparison purposes, let us run
the early design version of the COCO-
MO II model out of the box with all of
its cost drivers set to nominal. However,
to use the model, we need to calibrate the
scale drivers. We will assume the follow-
ing values for these parameters:
• Precedence – largely familiar.
• Development flexibility – general

goals.
• Architecture/risk resolution – often

(60 percent).
• Team cohesion – basically coopera-

tive.
• Process maturity – level 1 (upper half).

With these values, COCOMO II esti-
mates the effort at 38.8 person-months
during a period of 11.4 calendar months.
“Which estimate is right?” you are proba-
bly asking. As expected, neither answer is
right on the mark. The actual for this
project was six people for four months.
Clearly, the WEBMO formulas have bet-
ter predictive accuracy for this project.

Summary and Significant
Research Findings
Estimating the cost and duration of Web
developments has a number of challenges
associated with it. To cope with these chal-
lenges, we developed new size metrics,
Web objects, and an estimating model,
WEBMO. We have also validated and cal-
ibrated the metric and model in anticipa-
tion of building potential products based
upon them.

We prepared an initial calibration for
WEBMO by combining expert opinion
and actual data from 64 completed Web
projects. Our goal is to improve the accu-
racy of our models by collecting data on at
least another 30 projects during Phase II.

The following significant results/find-
ings were outputs of our initial research
efforts:
• We validated that Web objects have

better predictive accuracy (r2) than tra-

RatingsCost
Driver Very Low Low Nominal High Very High

Product
Reliability
and
Complexity
(CPLX)

Client only,
simple math
and I/O, no
distribution,
reliability not a
factor.

Client/server,
some math, file
management,
limited
distribution,
easy to recover.

Client/server,
full distribution,
databases,
integration,
moderate
recovery goals.

Client/server,
wide
distribution,
math intensive,
high losses due
to errors.

Client/server,
full
distribution,
collaborative,
soft real-time,
errors
dangerous.

Values 0.63 0.85 1.0 1.30 1.67
Platform
Difficulty
(PDIF)

Rare platform
changes,
speedy net, no
resource
limitations.

Few platform
changes, fast
net, few
resource
problems.

Stable
platform, net
performance
all right, must
watch resource
usage.

Platform often
changes,
slow, lack of
resources a
problem.

Platform
unstable, poor
performance,
resources
limited.

Values 0.75 0.87 1.00 1.21 1.41
Personnel
Capabilities
(PERS)

15th percentile,
major delays
due to
turnover.

35th percentile,
minor delays
due to turnover.

55th percentile,
few delays
due to
turnover.

75th percentile,
rare delays
due to
turnover.

90th percentile,
no delays due
to turnover.

Values 1.55 1.35 1.00 0.75 0.58
Personnel
Experience
(PREX)

< 2 months,
limited tool,
language, and
platform
experience.

< 6 months,
some tool,
language, and
platform
experience.

< 1 year,
average tool,
language, and
platform
experience.

< 3 years,
above average
tool, language,
and platform
experience.

< 6 years,
lots of tool,
language, and
platform
experience.

Values 1.35 1.19 1.00 0.87 0.71
Facilities
(FCIL)

International,
no collaboration,
language tools.

Multisite, some
collaboration,
basic CASE,
some methods.

One complex,
teams, life-
cycle
methods,
good tools.

Same
building,
teamwork,
integrated
tools and
methods.

Co-located,
integrated
collaborative
method/tools,
etc.

Values 1.35 1.13 1.00 0.85 0.68
Schedule
Constraints
(SCED)*

Must shorten,
75% of
nominal value.

Must shorten,
85% of nominal
value.

Keep as is,
nominal value.

Can relax
some, 120%
of nominal
value.

Can extend,
140% of
nominal value.

Values 1.35 1.15 1.00 1.05 1.10
Degree of
Planned
Reuse
(RUSE)

Not
used.

Not
used.

Unplanned
reuse.

Planned reuse
of component
libraries.

Systematic
reuse based
on
architecture.

Values -- -- 1.00 1.25 1.48
Teamwork
(TEAM)

No shared
vision, no
team
cohesion.

Little shared
vision,
marginally
effective teams
and teamwork.

Some shared
vision,
functional
teams.

Considerable
shared vision,
strong team
cohesion.

Extensive
shared vision,
exceptional
team
cohesion.

Values 1.45 1.31 1.00 0.75 0.62
Process
Efficiency
(PEFF)

Ad hoc, rely
on heroes.

Project-based
process, rely on
leadership.

Streamlined
process, rely
on process.

Efficient
process, best
way to do job.

Effective
process,
people want to
use it.

Values 1.35 1.20 1.00 0.85 0.65
*Schedule differs from COCOMO II, which is bell shaped instead of flat past its nominal value.

Table 6: WEBMO Cost Drivers and Their Values

Estimating Web Development Costs: There Are Differences

June 2002 www.stsc.hill.af.mil 17

ditional function points when counted
using conventions developed for that
purpose. These counting conventions
allowed us to extend the excellent
work done by the IFPUG so that we
can better handle the sizing of Web
applications.

• We increased the statistical accuracy of
our WEBMO estimating model from
30 percent of the actual experience at
least 60 percent of the time (using a
32-project database of actuals) to 20
percent of the actual experience at
least 68 percent of the time (using our
expanded 64-project database of actu-
als).

• We validated that a square root instead
of a cube-root relationship exists
between effort and schedule for Web
application projects whose size was
less than 300 Web objects.
These results are substantial because

they indicate that the Web objects and the
WEBMO estimating model can help
address the gaps in the estimating tech-
nology that we summarized in Tables 1
and 2.

Acknowledgment
A major part of the research reported
within this paper was funded by the
National Science Foundation under Grant
DMI-0060006. Our partners also provid-
ed the data used to calibrate the model
and refine its mathematical formulation.

Currently, we are looking for beta test
sites and partners for our research.
Anyone interested in participating in this
capacity can inquire through e-mail at
<info@reifer.com>.

Information on COCOMO II
For those unfamiliar with the COCOMO
II, refer to the University of Southern
California (USC) Web site at <http://
sunset.usc.edu/research>. USC has much
literature and a public version of the
model available on this site.

References
1. Pelz, James P. “GE Takes to the Net

to Lower Company Costs.” Los
Angeles Times 9 Oct. 2000: C1-C5.

2. Highsmith, Jim, and Alistar Cock-
burn. “Agile Software Development:
The Business of Innovation.” IEEE
Computer Nov. 2001: 120-122.

3. Beck, Kent. Extreme Programming
Explained. Addison-Wesley, 2000.

4. Heineman, George T., and William T.
Councill. Component-Based Software
Engineering. Addison-Wesley, 2001.

5. Fowler, Martin, Kent Beck, John

Brant, William Opdyke, and Don
Roberts. Refactoring: Improving the
Design of Existing Code. Addison-
Wesley, 1999.

6. Kruchten, Philippe. The Rational
Unified Process. Addison-Wesley,
1998.

7. Boehm, Barry W. “Transitioning to
the CMMI via MBASE.” Southern
California SPIN Meeting Presen-
tation. University of Southern
California, Jan. 2000. Available at:
<http://sunset.usc.edu>.

8. Reifer, Donald J. “Web Development:
Estimating Quick-to-Market Soft-
ware.” IEEE Software Nov./Dec.
2000: 57-64.

9. Paulk, Mark C., “Extreme Program-
ming from a CMM Perspective.”
IEEE Software Nov./Dec. 2001: 19-
26.

10. Paulk, Mark C., Charles V. Weber, Bill
Curtis, and Mary Beth Chrisis. The
Capability Maturity Model: Guidelines
for Improving the Software Process.
Addison-Wesley, 1995.

11. Ahern, Dennis M., Aaron Clouse, and
Richard Turner. CMMI Distilled.
Addison-Wesley, 2001.

12. Lorenz, Mark, and Jeff Kidd. Object-
Oriented Software Metrics. Prentice
Hall, 1994.

13. Boehm, Barry W., Chris Abts, A.
Winsor Brown, et al. Software Cost
Estimation with COCOMO II.
Prentice Hall, 2000: 192-6.

14. Dreger, J. Brian. Function Point
Analysis. Prentice Hall, 1989: 5.

15. Reifer, Donald J. “Web Objects
Counting Conventions.” Reifer
Consultants, Mar. 2001. Available at:
<www.info@reifer.com>.

16. Brown, A. W. “CORADMO.” 13th
International COCOMO Forum and
Focused Workshop on COCOMO II
Extensions. Oct. 1998.

17. Boehm, Barry W. “COCOMO II
Overview.” 14th International
COCOMO Forum. Oct. 1999.

18. Putnam, L. H. “A General Empirical
Solution to the Macro Software Sizing
and Estimating Problem.” IEEE
Trans. Software Engineering. SE-4
July (1978): 345-61.

19. Putnam, L. H., and D. T. Putnam. “A
Data Verification of the Software
Fourth Power Tradeoff Law.”
International Society of Parametric
Analysts Conference. 1984.

20. Boehm, Barry W., Chris Abts, A.
Winsor Brown, et al. Software Cost
Estimation with COCOMO II.
Prentice Hall, 2000: 51-55.

Language LEF
1GL default 320

C 128
2GL default 107

COBOL (ANSI85) 91
FORTRAN 107 107
PASCAL 91

3GL default 80
C++ 53
Java for Web 32
LISP 64
ORACLE 38
Visual Basic 40
Visual C++ 34
Web default — visual languages 35

OO default 29
EIFFEL 20
PERL 22
Smalltalk 20
Web default — OO languages 25

4GL default 20
Crystal Reports 20

Program generator default 16
HTML 15
SQL for Web 10

Spreadsheet default 6
Excel 6
Screen Painter 6

5GL default 5
XML 6
MATHCAD 5

Table 7: Language Expansion Factors (LEF)

About the Author
Donald J. Reifer is one
of the leading figures in
the fields of software
engineering and man-
agement, with more
than 30 years of pro-

gressive experience in government and
industry. In that time, he has served as
chief of the Ada Joint Program Office
and the director of the Department of
Defense Software Reuse Initiative. He
is currently the president of Reifer
Consultants, Inc., which specializes in
helping clients improve the way they do
business. Reifer’s many honors include
the American Institute of Aeronautics
and Astronautics Software Engineering
Award, the Secretary of Defense’s
Medal for Outstanding Public Service,
the NASA Distinguished Service
Medal, the Frieman Award, and the
Hughes Aircraft Fellowship.

P.O. Box 4046
Torrance, CA 90505
Phone: (310) 530-4493
Fax: (310) 530-4297
E-mail: d.reifer@ieee.org

18 CROSSTALK The Journal of Defense Software Engineering June 2002

Two issues are at the core of the esti-
mation challenge. First, is the need

to understand and define (as early as pos-
sible) the problem domain. Second, is
the need to understand the capacity to
deliver the required software solution
within a specified environment. Then
and only then can accurate predictions
be made of the effort necessary to deliv-
er the required product.

The problem domain can be defined
as the definition of requirements. The
problem domain must be accurately
assessed in size and complexity.
Furthermore, the ability to develop an
initial estimate (early in the system’s life
cycle) must exist since we cannot pre-
sume to have all of the necessary infor-
mation at our disposal. Therefore, a rig-
orous process must exist that permits
further clarification of the problem
domain as additional knowledge of the
required solution is gained.

The capability to deliver is derived
from an assessment of risk factors that
are known to impact rate of delivery.

An effective estimation model con-
siders three elements: functional size,
complexity, and risk factors. When fac-
tored together, the opportunity to
achieve an accurate estimate is signifi-
cantly increased (see Figure 1).

Functional Size
By far, the project-sizing technique that
delivers the greatest accuracy and flexi-
bility is function point analysis. Based
upon several recent analytical studies

performed for client organizations, the
function point sizing method was com-
pared with other sizing techniques,
including backfiring from source lines of
code, approximation, ratios, and estima-
tion. The results concluded that the
function point method consistently pro-
duced more accurate sizing of the soft-
ware product.

As to its flexibility, the function point
methodology presents the opportunity
to size a user requirement regardless of
the level of detail available. An accurate

function point size can be determined
from the detailed information included
in a logical, user-defined requirements
document or from the limited informa-
tion provided in an early proposal.

The function point method is
dependent upon the identification of
five elements: inputs, outputs, inquiries,
internal stores of data, and external ref-
erences to data. During the early stages
of development, these elements are
exposed at a functional level. (For exam-

ple, we know that we will generate an
output report, although we may not
know the detailed characteristics of that
report.)

The first level of function point
counting is to identify these five ele-
ments. As more information becomes
available regarding the characteristics of
these elements such as data fields, file
types, and so on, the function point
count will become more detailed. During
the early phases of a count, it may be
necessary to assume levels of complexi-
ty within the system (for example,
whether the report will be simple or
complex). The value of using function
points is that it allows for this distinction
and, in fact, requires it early in the
process.

Function points accurately size the
stated requirement. If the problem
domain is not clearly or fully defined, the
project will not be properly sized. When
there are missing, brief, or vague require-
ments, a simple process using basic dia-
gramming techniques with the request-
ing user can be executed to more fully
define the requirements. Function points
can be utilized early in the life cycle in
conjunction with a context diagram or
other diagramming devices such as mind
maps or use case diagrams. The devel-
oped diagram is used to identify stated
inputs, outputs, inquiries, internal stores
of data, and external stores of data (see
Figure 2). For an average-size project,
hours (not days) are required to com-
plete the diagramming and sizing task.

From the example in Figure 2, we can
quickly identify, at a high level, the
inputs, outputs, internal, and external
files. At this level, we could easily assign
average values of complexity and quick-
ly determine a functional value that we
would then use in our estimating model.

Project Complexity
The second element addressed in our
estimation model is project complexity.

Estimating Software Earlier and
More Accurately

David Garmus and David Herron
The David Consulting Group

Software practitioners are frequently challenged to provide early and accurate software project estimates. A U.S. government
study on software development projects revealed the extent of that challenge: 60 percent of projects were behind schedule, 50
percent of projects were over cost, and 45 percent of delivered projects were unusable. This article explores the use of a basic
estimating model, which utilizes functional sizing as one of its key components. The primary value gained from utilizing a
functional sizing technique such as function points is the capability to accurately estimate a project early in the development
process.

REQUIREMENT FUNCTIONAL
SIZE

=X X RISK
FACTORS

ESTIMATES
• Schedule
• Effort
• Costs
• Deliverables

PROJECT
COMPLEXITY

DEFINITION CAPABILITY

Figure 1: An Effective Estimation Model

“An effective
estimation model

considers three elements:
functional size,
complexity, and
risk factors.”

June 2002 www.stsc.hill.af.mil 19

Project complexity must be properly
evaluated and should consider the
impact of various contributing charac-
teristics that may influence the ease or
difficulty in developing the required
solution. In part, complexity level is eval-
uated as part of the function point
methodology.

A value adjustment factor (VAF) is
used as a multiplier of the unadjusted
function point count to calculate the
adjusted function point count of an
application. The VAF is determined by
identifying 14 general system characteris-
tics (GSCs). Each characteristic has an
associated description that helps in
determining the degree of influence (of
that characteristic). The degree of influ-
ence for each characteristic ranges on a
scale from zero (no influence) to five
(strong influence). The 14 GSCs are
totaled to calculate a total degree of
influence (TDI).

A VAF is calculated from the follow-
ing formula: VAF = (TDI * 0.01) + 0.65.
When applied, the VAF adjusts the unad-
justed function point count by ±35 per-
cent to produce the adjusted function
point count. Detailed guidance is con-
tained within the International Function
Point Users Group (IFPUG) Counting
Practices Manual. Information on
IFPUG can be found on their Web site
at <www.ifpug.org>.

Each of the following 14 GSCs is
evaluated and assigned a degree of influ-
ence between zero and five:
1. Data Communications: Describes the

degree to which the application com-
municates directly with the processor.

2. Distributed Data Processing:
Describes the degree to which the
application transfers data among
components of the application.

3. Performance: Describes the degree
to which response time and through-
put performance considerations
influenced the application develop-
ment.

4. Heavily Used Configuration:
Describes the degree to which com-
puter resource restrictions influenced
the development of the application.

5. Transaction Rate: Describes the
degree to which the rate of business
transactions influenced the develop-
ment of the application.

6. Online Data Entry: Describes the
degree to which data are entered
through interactive transactions.

7. End-User Efficiency: Describes the
degree of consideration for human
factors and ease of use for the user of
the application measured.

8. Online Update: Describes the degree
to which internal logical files are
updated online.

9. Complex Processing: Describes the
degree to which processing logic
influenced the development of the
application.

10. Reusability: Describes the degree to
which the application and the code in
the application have been specifically
designed, developed, and supported
to be usable in other applications.

11. Installation Ease: Describes the
degree to which conversion from
previous environments influenced
the development of the application.

12. Operational Ease: Describes the
degree to which the application
attends to operational aspects such as
start-up, back-up, and recovery
processes.

13. Multiple Sites: Describes the degree
to which the application has been
developed for multiple locations and
user organizations.

14. Facilitate Change: Describes the
degree to which the application has
been developed for easy modification
of processing logic or data structure.
In addition to the 14 GSCs, a pro-

ject’s complexity assessment must take
into consideration complex interfaces,
database structures, and contained algo-
rithms. These complexity factors impact
the project delivery, and they do not
serve as an adjustment to the function
point count. The complexity assessment
can be based upon five varying levels of
complexity:
Level 1:

• Simple addition/subtraction.
• Simple logical algorithms.
• Simple data relationships.

Level 2:
• Many calculations, including mul-

tiplication/division in series.
• More complex, nested algorithms.
• Multidimensional data relation-

ships.

Level 3:
• Significant number of calcula-

tions typically contained in pay-
roll/actuarial/rating/scheduling
applications.

• Complex, nested algorithms.
• Multidimensional and relational

data relationships with a signifi-
cant number of attributive and
associative relationships.

Level 4:
• Differential equations typical.
• Fuzzy logic.
• Extremely complex, logical, and

mathematical algorithms typically
seen in military/telecommunica-
tions/real-time/automated process
control/navigation systems.

• Extremely complex data.

Level 5:
• Online, continuously available,

critically timed.
• Event-driven outputs that occur

simultaneously with inputs.
• Buffer area or queue determines

processing priorities.
• Memory, timing, and communica-

tion constraints.
• The most advanced applications

developed.

Risk Factors
The capability to effectively deliver soft-
ware on time and within budget is based
upon a variety of risk factors. The third
element in our estimating model is an
evaluation of risk factors, including soft-

USER

INVOICE PURCHASE
ORDER

PURCHASE ORDERS
INVOICE BANK SYSTEM

PAYMENT FILE

PAYMENTACCOUNTS PAYABLE

VENDOR

Internal Logical Files

External Inputs

External Interface File

External Output

Figure 2: Example of a Function Point Diagramming Device

Estimating Software Earlier and More Accurately

20 CROSSTALK The Journal of Defense Software Engineering June 2002

Software Estimation

ware processes utilized, staff skill levels
(including user personnel), automation
utilized, and the influences of the physi-
cal (development conditions) and busi-
ness environment (competition and reg-
ulatory requirements). Categorized in
Figure 3 are some examples of influenc-
ing factors that must be evaluated to pro-
duce an accurate estimate.

As each project commences, the size,
complexity, and various risk factors are
assessed, and an estimate is derived.
Initially, the resulting estimate would
typically be based upon industry data
that reflect average occurrences of
behavior given a project’s size, complex-
ity, and performance profile. Over time,
as an organization develops a historical
baseline of information regarding its
own behaviors, performance profiles
would reflect a more accurate represen-
tation of likely outcomes (see Figure 4).
This information can be used to predict
and explore what-if scenarios on future
projects.

Bringing It All Together
As an example of how the elements of
the estimating model fit together,

assume we are about to initiate a project
that requires an enhancement to an
existing system. The first step would be
to fully understand the stated require-
ments and to evaluate those require-
ments from a functional perspective.
Based upon our understanding of the
functionality being added, changed, or
deleted from the existing system, we
would apply the function point method
to determine the size of the require-
ments.

The function point method would
consider all new or changed inputs, out-
puts, inquiries, interfaces, and internal
stores of data. Based on a series of
weights and algorithms, an unadjusted
function point size would be derived.
This unadjusted value would then be fine
tuned by an examination of the 14 gen-
eral system characteristics and value
adjustment factors noted earlier. The
result would equate to an adjusted func-
tion point value.

Let us assume in this example that
the resulting function point size is 250
function points. This information alone
tells us very little about what it will take
to make the required changes to the

existing system. We need to consider any
additional levels of complexity that may
inherently be part of the change
required, and we need to assess our
capacity to design, develop, and deploy a
project of this given size.

Industry data indicate that (on aver-
age) an enhancement project of a given
size would equate to a range of delivery
rates. Considering our example’s size of
250 function points, we know from stan-
dard industry data that we could expect a
delivery rate ranging from four to 25
function points per person-month. That
is a wide range, which will of course be
influenced by a variety of factors, includ-
ing those previously mentioned.

To effectively complete the estimate
(and our example), we must evaluate all
of the risk factors that will influence the
ability to deliver the required changes. If
project data have been collected and ana-
lyzed for a statistically relevant period of
time, performance profiles would be
available that would pinpoint a likely out-
come when we matched the current pro-
file of risk factors to an existing profile.

In place of an internal historical base
of information, organizations are
dependent upon industry data sources.
These sources of industry data will pro-
duce varied results relative to an organi-
zation’s actual experiences, but they are
of significant value when there is little
information available from within.

Industry Data
Companies have not typically invested
the resources to develop internal rate-of-
delivery performance baselines that can
be used to derive estimating templates.
Therefore, industry data baselines of
performance delivery rates are of signif-
icant value. The industry data points
allow organizations to use these generic
delivery rates to ballpark their estimates.
As they continue to develop an experi-
ence base of their own, they can transi-
tion from using industry data to using
their own data.

The International Software Bench-
marking Standard Group (ISBSG) is one
of several opportunities that currently
exist for gathering, retrieving, and shar-
ing industry data. ISBSG operates on the
principle of a well-defined collection
process that feeds a central repository,
making the data available for detailed
access and comparison to industry best
practices. The advantage of industry
databases is the accessibility of detailed
data. Information on ISBSG can be
found at <www.isbsg.org.au>.

MANAGEMENT

•• Team Dynamics

• Morale

• Project Tracking

• Project Planning

• Automation

• Management Skills

DEFINITION

• Clearly Stated Requirements

• Formal Process

• Customer Involvement

• Experience Levels

• Business Impact

DESIGN

• Formal Process

• Rigorous Reviews

• Design Reuse

• Customer Involvement

• Experienced Development Staff

• Automation

BUILD

• Code Reviews

• Source Code Tracking

• Code Reuse

• Data Administration

• Computer Availability

• Experienced Staff

• Automation

TEST

• Formal Testing Methods

• Test Plans

• Development Staff Experience

• Effective Test Tools

• Customer Involvement

ENVIRONMENT

• New Technology

• Automated Process

• Training

• Organizational Dynamics

• Certification

Figure 3: Factors That Influence Risk

Project Initialization

Selected
Profile of
Performance

Create Profile:
Rate of Delivery
Time to Market
Defects

 Estimate

Assess: Size
 Complexity
 Risk Factors

Project Completion

 Record Actuals:
 Size
 Effort
 Defects

Historical Data Base

Performance
Profiles

Rate of Delivery
Productivity

Quality
Time to Market

Figure 4: Developing and Using a Historical Baseline

June 2002 www.stsc.hill.af.mil 21

Estimating Software Earlier and More Accurately

Summary
Accurate and early estimating requires
the following:
• Proper identification of the problem

domain, including functional size and
complexity.

• An assessment of the organization’s
capacity to deliver based upon known
risk factors.

• Use of industry data points as neces-
sary to provide delivery rates or as a
point of comparison.
As Robert Glass says in Building

Software Quality [1], “If there is one man-
agement danger zone to mark above all
others, it is software estimation.”

Furthermore, an investment in skills
training and risk profile development is
critical. Project managers must be
equipped with the proper tools and tech-
niques necessary to accurately estimate

projects. The return on that investment
is obvious to any organization that has
misspent dollars because of inaccurate
estimating.

Reference
1. Glass, Robert. Building Software

Quality. Prentice Hall PTR, 1997.

Additional Reading
1. Garmus, David, and David Herron.

Measuring the Software Process: A
Practical Guide to Functional Meas-
urement. Prentice Hall, 1996.

2. Garmus, David, and David Herron.
Function Point Analysis: Measure-
ment Practices for Successful
Software Projects. Addison-Wesley
Information Technology Series,
2000.

Get Your Free Subscription

Fill out and send us this form.

OO-ALC/TISE

7278 Fourth Street

Hill AFB, UT 84056-5205

Fax: (801) 777-8069 DSN: 777-8069

Phone: (801) 775-5555 DSN: 775-5555

Or request online at www.stsc.hill.af.mil

NAME:__

RANK/GRADE:___

POSITION/TITLE:__

ORGANIZATION:___

ADDRESS:__

__

BASE/CITY:__

STATE:___________________________ZIP:___________________________________

PHONE:(_____)___

FAX:(_____)___

E-MAIL:___@_________________________

CHECK BOX(ES) TO REQUEST BACK ISSUES:

JUN2000 � PSP & TSP

APR2001 � WEB-BASED APPS

JUL2001 � TESTING & CM

AUG2001 � SW AROUND THE WORLD

SEP2001 � AVIONICS MODERNIZATION

DEC2001 � SW LEGACY SYSTEMS

JAN2002 � TOP 5 PROJECTS

MAR2002 � SOFTWARE BY NUMBERS

APR2002 � RISKY REQUIREMENTS

MAY2002 � FORGING THE FUTURE OF DEF

To Request Back Issues on Topics Not

Listed Above, Please Contact Karen

Rasmussen at <karen.rasmussen@

hill.af.mil>.

About the Authors
David Garmus is a prin-
cipal and founder of The
David Consulting Group.
He is an acknowledged
authority in sizing, meas-
uring, and estimating

software application development and
maintenance with more than 25 years of
experience in managing, developing, and
maintaining computer software systems.
Concurrently, as a university instructor
he taught courses in computer program-
ming, system development, information
systems management, data processing,
accounting, finance, and banking.
Garmus is the immediate past president
of the International Function Point
Users Group (IFPUG) and a member of
the Counting Practices Committee from
1989 through 2001. He previously served
IFPUG as chair of the Certification
Committee, chair of the New
Environments Committee, and on the
Board of Directors as director of
Applied Programs, vice president, and
president. Garmus has a bachelor’s of
science degree from the University of
California at Los Angeles, and a master’s
degree from Harvard University.

The David Consulting Group
1935 Salt Myrtle Lane
Orange Park, FL 32003
Phone: (904) 269-0211
Fax: (904) 215-0444
E-mail: dcg_dg@compuserve.com

David Herron is a
principal and founder
of The David Consult-
ing Group. He is an
acknowledged authority
in using metrics to

monitor information technology’s (IT)
impact on business, including advance-
ment of IT organizations to higher
levels on the Software Engineering
Institute’s Capability Maturity Model®

and on the governance of outsourcing
arrangements. He assists clients in
establishing software measurement,
process improvement, and quality pro-
grams and to enhance their project
management techniques. Herron has
more than 25 years experience in man-
aging, developing, and maintaining
computer software systems. He serves
as a Cutter Consortium Expert Con-
sultant. Herron attended Union
College and Northeastern University.
He is chair of the International
Function Point Users Group (IFPUG)
Management Reporting Committee, a
member of the IFPUG IT Perfor-
mance Committee, and a member of
the American Society for Quality.

The David Consulting Group
19 Pointe View Drive
Medford, NJ 08055
Phone: (609) 654-6227
Fax: (609) 654-2338
E-mail: dcg_dh@compuserve.com

Best Practices

22 CROSSTALK The Journal of Defense Software Engineering June 2002

The Wind Computational Fluid
Dynamics code was developed to ana-

lyze fluid flow to better design and develop
aerospace vehicles and components. This
was the primary software product devel-
oped by the National Project for
Applications-Oriented Research in
Computational Fluid Dynamics (NPARC)
alliance, a formal partnership between the
U.S. Air Force (USAF) Arnold Engineering
Development Center (AEDC) and the
NASA Glenn Research Center (GRC).

The NPARC mission was to develop,
validate, and support an integrated, general
purpose computational flow simulator for
the U.S. aerospace community. The
NPARC project’s success is exemplified by
its large number of registered users from
government, industry, and academic organ-
izations during the past three years. In addi-
tion to AEDC and GRC, other govern-
ment, commercial, and academic organiza-
tions participated in the planning and exe-
cution of the project. One of the primary
contributors was The Boeing Company.

The Wind code solves the Navier-
Stokes equations using a variety of iterative
algorithms. The flowfield can be two-
dimensional, three-dimensional, or axisym-
metric and may represent steady or
unsteady flow conditions. Turbulence is
simulated using a variety of turbulence
models, and the convection, dissipation,
and reaction of chemical species can be
modeled. A variety of numerical algorithms
are available to integrate the flow equations
depending on user accuracy requirements.
The solution domain may be divided into
multiple zones, each of which is trans-
formed into cubicle regions in the compu-
tational space.

The code has been applied to a variety
of systems, including air-breathing engine
inlets and nozzles, liquid and solid propel-
lant rocket propulsion systems, full aircraft
systems, missile control systems, test cell

and wind tunnel aerodynamics, and hyper-
sonic vehicles. Computational fluid dynam-
ics has become a major contributor to the
design and test process for Department of
Defense (DoD) weapons systems by allow-
ing the flow around and through systems to
be evaluated before costly designs become
reality. The result is significant reduction in
the overall cost and cycle time of the acqui-
sition process.

Wind Code Specifics
The NPARC alliance consists of diverse
organizations across a large geographical
area. These organizations perform first-rate
operations coordinating configuration
management, development efforts, code
distribution, and user support. To facilitate
this coordination, the NPARC project
developed an Internet Version
Management System (IVMS) to provide
centralized support for multisite, multiplat-
form software distribution and develop-
ment.

With IVMS, files are provided to users
and developers for each major release. This
browser-based system allows developers to
log into the system, check out a software
module, modify it, and insert it back into
the system. IVMS prevents other develop-
ers from simultaneously updating the same
module. IVMS also allows users to have
immediate access to the latest code versions
from a protected file transfer protocol
(FTP) site.

The Wind code is written in FOR-
TRAN90 and C and includes excellent
code reuse examples from the individual
efforts of the USAF AEDC, NASA GRC,
and The Boeing Company. Excluding
libraries maintained by other organizations,
the Wind program consists of 160,000
lines of FORTRAN90 code and 18,000
lines of C code. There are also 29 auxiliary
programs used for processing. Altogether,
these utility programs contain about

240,000 lines of FORTRAN90 code and
75,000 lines of C code.

Documentation is provided on the
Wind code and its associated utilities in
HTML, PDF, and PostScript formats. The
documentation is extremely detailed and
constantly updated to reflect changing
capabilities and to clarify descriptions of
existing capabilities. Developer documenta-
tion is also provided on the Web, but is
accessible only to registered developers.
This documentation consists of informa-
tion on code structure, memory manage-
ment, and details on specific modules.
During the last year, this Web site has han-
dled, on average, approximately 30,000 user
inquiries per month. The documentation
and other Web-based information can be
accessed at <www.arnold.af.mil/nparc>.

NPARC software is developed primari-
ly in a Unix environment, and it runs on a
multitude of platforms, including systems
using SGI IRIX, Sun Solaris (Sparc CPUs),
Linux (Intel-compatible CPUs), and
Hewlett-Packard HP-UX (PA-RISC
CPUs). The code has been ported to and
used on most major systems at DoD’s
Major Shared Resource Centers.

Wind Code Application and
Operation
The Wind code can run in parallel on a net-
work of workstations or a large multi-
processor machine using either message
passing interface (MPI) or parallel virtual
machine (PVM) protocols. To run in paral-
lel, the user creates a multi-processor con-
trol file containing a list of hosts on which
to run. The Wind run-scripts set up an
entire virtual machine environment. The
scripts check the remote machine to see
whether it is overloaded before adding it to
the virtual machine. This prevents the job
from waiting for the overloaded machine to
complete its tasks.

The parallel methodology used is a

New Code Analyzes Fluid Flow for Better Designed
Aerospace Vehicles and Components

Dr. Greg D. Power
Sverdrup Technology, Inc. AEDC Group

This article describes the Wind Computational Fluid Dynamics code developed by the National Project for Applications-
Oriented Research in Computational Fluid Dynamics (NPARC) alliance, a formal partnership between the U.S. Air Force
Arnold Engineering Development Center and the NASA Glenn Research Center. The project was nominated to
CrossTalk in its 2001 search for the top five software projects in the U.S. government. It received high scores by the
Software Technology Support Center review team. The NPARC mission was to develop, validate, and support an integrat-
ed, general purpose computational flow simulator for the U.S. aerospace community that can be used to analyze fluid flow to
better design and develop aerospace vehicles and components.

June 2002 www.stsc.hill.af.mil 23

New Code Analyzes Fluid Flow for Better Designed Aerospace Vehicles and Components

master-worker paradigm, where the master
controls the work allocation and communi-
cations between the workers. The master
assigns a grid block to each worker as it
completes work on the previous grid block.
This approach results in excellent load bal-
ancing, provided there are sufficiently more
grid blocks than worker processes. Worker-
to-worker communication is allowed to
improve the overhead for exchanging zonal
interface information.

To ensure product quality, a developer’s
programming approach must be discussed
with other developers and approved before
implementation. Before modifying any
modules through the IVMS, developers
must have their work checked by at least
one other developer at another organiza-
tion. A description of the modification and
the name of the individual who checked
the work must be entered into the IVMS.

To aid in quality assurance, a validation
Web site is maintained containing numer-
ous test cases with experimental data for
comparison. The Web site contains all of
the files and input data required to recon-
struct a test case. All output files are also
available. When modifications are made to
the code, the test cases on this site are used
to validate that the modification operates as
expected.

A set of standards documents was
developed as one of the project’s first tasks.
A document describing programming
guidelines provides a set of required pro-
gramming practices. A document describ-
ing documentation guidelines provides a
description of all NPARC documentation
and the information required to document
new features. Finally, a document describ-
ing testing standards provides guidance on
procedure, documentation, and achieve-
ment of validation and functional testing.

Each year, key customers and the
alliance partners hold a NPARC workshop
to identify customer and user needs. The
NPARC support team is also available year
round via a dedicated e-mail address and
phone number. User-identified bugs are
handled on a priority basis and the modi-
fied code is made available to the user com-
munity as soon as the bug is fixed.

Project Performance
The NPARC project is an ongoing devel-
opment effort geared to rapidly respond to
customer needs, which require frequent
schedule modifications as the environment
shifts. Recently, AEDC completed a three-
year High Performance Computing (HPC)
Modernization Office effort under the
Common HPC Scalable Software Initiative
(CHSSI). CHSSI milestones, including
improved parallelization and usability, were

established and were exceeded in most
cases. In 1999, the project received an
Honorable Mention in the NASA Software
of the Year Award competition.

The NPARC project places a huge
emphasis on supporting the aerospace
community, which is confirmed by the
projects’ large following. The code has
been requested by more than 273 organiza-
tions in the past three years. User organiza-
tions include 42 DoD organizations, 21
government organizations, 149 commercial
companies, and 61 universities. The cus-
tomers are primarily associated with aero-
space design and testing, although there are
users associated with other industries. By
supporting a large number of users, the
United States’ principal aerospace organiza-
tions (USAF and NASA) benefit greatly
from the code’s exposure to unforeseen sit-
uations as it is applied to configurations
and flow conditions that are not normally
encountered within a single organization.

This project demonstrates a new way of
doing software development in general and
governmental software development in
particular through the coordinated devel-
opment efforts between NASA, DoD, and
industry organizations using Internet-based
tools. The NPARC product is a true gov-
ernment off-the-shelf success story. The
unique development environment allows
each organization to leverage the high cost
of program development with other organ-
izations.

Usually, a development effort of this
nature requires investments from $1 to $2
million annually to adequately maintain and
support the software tools. By leveraging
resources, no single organization must
invest more than $500,000 while reaping
the benefit of the entire investment. The
ultimate beneficiary of these products is
the U.S. taxpayer, through prudent cost
sharing among government agencies and
leveraging resources with commercial and
academic partners.

This leveraging also provides the aero-
space community with a first-class free
product and a greater ability to share data
and produce technological advances for the
United States. The involvement of com-
mercial organizations in the utilization,
planning, and execution of the software
development helps to ensure that the
United States maintains worldwide eco-
nomic and military superiority.

More information on all aspects of the
NPARC project may be found at
<www.arnold.af.mil/nparc>.

Conclusion
The Wind code is a computational fluid
dynamics software package used within

the government and industry to analyze
fluid flow to better design and develop
aerospace vehicles and components. This
software is jointly developed by the
NPARC Alliance, a consortium of part-
ners in the DoD, NASA, and industry,
through Internet version management
tools and disciplined coordination. While
joint development of software is a signifi-
cant challenge, the NPARC Alliance has
demonstrated that a multi-site software
development effort can result in a high-
quality product and development cost sav-
ings.

Additional Readings
1. Slater, J. W., J. C. Dudek, and K. E.

Tatum. “The NPARC Alliance
Verification and Validation Archive,”
2000-FED-11233. Proceedings of
ASME FEDSM’00, ASME 2000 Fluids
Engineering Division Summer Meeting.
Boston, MA, 11-15 June 2000.

2. Matty, J. J., G. D. Power, and W. A.
Acosta. “HPC CHSSI CFD-7: Scalable
Wind From the NPARC Alliance,”
AIAA-99-3674, 30th AIAA Plasma-
dynamics and Lasers Conference.
Norfolk, Va, 28 July - 1 June 1999.

3. Bush, R. H., G. D. Power, and C. E.
Towne. “WIND: The Production
Flow Solver of the NPARC Alliance,”
AIAA-98-0935, 36th AIAA Aerospace
Sciences Meeting and Exhibit. Reno,
NV, 12-15 Jan. 1998.

About the Author

Greg D. Power, Ph.D.,
is a team manager and
engineering specialist
with Sverdrup Tech-
nology, Inc. at the
Arnold Engineering

Development Center in the Compu-
tational Simulation, Modeling, and
Analysis group. His responsibilities
include the development and application
of computational fluid dynamics analy-
ses for use in design of experimental
facilities and integrated test and evalua-
tion of aircraft components. He
received his doctorate degree from the
Georgia Institute of Technology.

Sverdrup Technology, Inc.
AEDC Group
740 Fourth Street
Arnold AFB,TN 37389-6001
Phone: (931) 454-5832
DSN: 340-5832
E-mail: greg.power@arnold.af.mil

Software Engineering Technology

24 CROSSTALK The Journal of Defense Software Engineering June 2002

Measuring the size and complexity of
software is critical to the develop-

ment of business models that accurately
forecast the development cost, duration,
and quality of future software applica-
tions. One way to measure software size
is through function point analysis, espe-
cially using the methodology of the
International Function Point Users
Group (IFPUG) as published in their
“Function Point Counting Practices
Manual” (CPM) version 4.1 [1]. Readers
unfamiliar with function point analysis
are referred to the CPM as the primary
reference for this methodology.

As good as the IFPUG function point
methodology has been, it has historically
had a perceived gap regarding the sizing
of software algorithms, especially those
embedded in real-time software. A pro-
posed solution to the function point
community was a general procedure to
measure the size of those algorithms,
which appeared in CrossTalk

February 2001 [2].
Since publishing that article, the

authors were asked to focus this proce-
dure for certain types of algorithms –
calculus integration formulas – that can
appear in engineering and scientific appli-
cations. This article, therefore, focuses
the general procedure for sizing algo-
rithms into a specific procedure for siz-
ing calculus integration formulas. This is
suitable for experienced function point
counters who are also familiar with the
fundamentals of calculus.

Description of an Algorithm
An algorithm is a series of equations
solved in a logical sequence to produce an
external output (EO). Real-time software
sometimes contains embedded algo-
rithms. Examples of these can include
algorithms for controlling a nuclear reac-
tor, calculating complex pricing agree-
ments, or optimizing production levels in

manufacturing. Calculus integration for-
mulas fit this description of an algorithm
because, as we will show, their solution
requires solving a series of equations in a
logical sequence before a solution can be
reached.

Every algorithm must have one exter-
nal input (EI), internal logical file (ILF),
and EO with at least the following:
• Data and/or control information

must be externally input into the algo-
rithm.

• Data and/or control information
must be logically stored. This storage
area is not necessarily shown on an
entity relationship diagram or other
diagram depicting physical data files.

• The results of the algorithm’s execu-
tion must be identifiable to the user as
an EO.

Integration Formulas as
Algorithms
Let us consider the following as an
example for using function point analysis
to measure integration formula size and
complexity.

10

∫ 6 dx (1)
4

The solution of this formula can be
expressed as the area under the curve
f(x) = 6, as bounded by the x-axis, and

within the domain four through 10.
Figure 1 shows this graphically as the
shaded area.

The Fundamental Theorem of
Calculus gives us the algorithm to deter-
mine this area. The general formulation
of the theorem is as follows.

b

∫ f(x) dx = F(b) - F(a) (2)
a

In this example, this formulates as fol-
lows.

10

∫ 6 dx = F(10) - F(4) (3)
4

This algorithm can be solved graphically.
First, calculate the area of the shaded
region in Figure 2. This is the region
bounded by the points (0,0), (10,0),
(10,6), and (0,6). This is F(b), or F(10),
and its area is 60 square units.

Then, calculate the area of the
striped region in Figure 3. This is the
region bounded by the points (0,0), (4,0),
(4,6), and (0,6). This is F(a), or F(4) and
its area is 24 square units.

Finally, subtract the striped region
from the shaded region. This is F(b) -
F(a), or F(10) - F(4). The remaining
shaded region is shown in Figure 4. Its
area is 60 - 24, or 36 square units.

Measuring Size and
Complexity
Counting the ILF
Sometimes an ILF is often identified
with a physical data table. Here we need
to be more specific. According to the
IFPUG’s CPM, an ILF is “... a user iden-
tifiable group of logically related data or
control information maintained within
the boundary of the application [1].” In
mathematical terms, we suggest that an
ILF could be described using the follow-

Measuring Calculus Integration Formulas
Using Function Point Analysis

Dr. Charles Tichenor
Defense Security Cooperation Agency

Function point counters, software developers, and others occasionally need to measure the size and complexity of calculus inte-
gration formulas embedded in engineering and scientific applications. Sizing these formulas using function point analysis can
result in more accurate measures of application size and improved quality in forecasting costs, schedule, and quality. It can
also improve the confidence of those new to the function point methodology as they see that all of their calculus work is rec-
ognized and measured. This article shows an approach to sizing these formulas. This methodology is in full compliance with
the International Function Point Users Group procedures and does not require any additional counting rules or patches.

Nancy Redgate
American Express Risk Management

“The authors suggest
that ... [those] in

mathematical academia
or those with strong

mathematical skill sets
can further this theory.”

ing set theory: a set of data or control
information maintained within the
boundary of the application.

A mathematical set can be represent-
ed in several ways. For example, we
might represent the set of all numbers
greater than five as the following:
• {all numbers greater than five}, or
• using a number line such as the fol-

lowing:
• | | | | | o | |

0 1 2 3 4 5 6 7
In this example, therefore, we have

an ILF, which is the set of data points in
the Cartesian plane required to solve this
equation using the Fundamental
Theorem of Calculus.

Sometimes ILFs have subgroups of
data. These are called record element
types (RETs). According to the CPM [1],
a RET is a “user recognizable subgroup
of data elements within an ILF ...” Using
set theory, we could describe an RET as
a subset of data.

Each ILF is measured by considering
the number of data element types
(DETs) it logically contains and the num-
ber of RETs it contains. A complexity
matrix in the CPM then shows how to
convert the combination of counted
DETs and RETs into function points.

Counting the RETs
The Fundamental Theorem of Calculus
states that the set of points (or the area)
in the Cartesian plane, which represent
the solution to this integration formula,
is found by subtracting the area of the
striped region of Figure 3 from the area
of shaded region of Figure 2. This
resulting region has the area shown in
Figure 4.

For this example, this entire region
has three subsets. The first subset of all
points in the Cartesian plane affected by
this algorithm is the area of Figure 2,
that is, F(b), or F(10). The second subset
is the area in Figure 3: F(a), or F(4). The
third subset is the area in Figure 4: F(b) -
F(a), or F(10) - F(4). This is the solution
subset. Therefore, this integration for-
mula has one ILF, with three RETs.

Counting the DETs
The integration formula tells us how to
partition the Cartesian plane into the
areas F(b) and F(a). Let us recall the for-
mula.

10

∫ 6 dx (4)
4

The ILF is the region of the Cartesian

plane bounded by the f(x) on the north
side, the x-axis on the south side, x = 10
on the east side, and x = 0 on the west
side. The solution RET is bounded by x
= 4 on the west side. This gives us the
information we need to count this for-
mula’s DETs.
• The first DET is f(x), the northern

boundary of the ILF. In this case, the
DET is six.

• The second DET is dx, which tells us
that the integration is with respect to
x and is therefore bounded in this
case by the x-axis on the southern
side.

• The third DET is 10, which gives us
the “b” in F(b).

• The fourth DET is four, which gives
us the “a” in F(a).

Therefore, this ILF has three RETs and
four DETs. According to the CPM com-
plexity matrix, this is a low complexity
ILF and is worth seven function points.
To generalize this method, we suggest
the following key points shown in
Figure 5.
• The shaded area on this graph repre-

sents an ILF. It is “... a user identifi-
able group of logically related data or
control information maintained with-
in the boundary of the application.”

• The RETs are the “blocks” or areas
needed to graphically depict F(b),
F(a), and F(b) - F(a).

• The number of DETs represents the
instances of data and/or control
information to define the solution
area F(b) - F(a).

• This ILF does not appear in an ER
diagram.

Counting the EI
One can imagine a simple version of an
input screen having a layout as follows:

f(x) =
dx or dy
b =
a =

There are four DETs as stated, plus the
control information ENTER key to affect
the input process. There is one ILF being
referenced (File Types Referenced [FTR]),
which is the graph of Figure 5. The CPM
complexity matrix shows that an EI with
four DETs and one ILF is a Low com-
plexity EI worth three function points.

Counting the EO
Imagine a simple report with the solution
of the integration formula calculations –
perhaps a paper report that looks like this.

The solution is

In this case, there is one DET on the
report, and one FTR – the graph of
Figure 5. Therefore, the CPM complexity
matrix is used to show that this is a Low
EO worth four function points.

Figure 3: F(a)

June 2002 www.stsc.hill.af.mil 25

Measuring Calculus Integration Formulas Using Function Point Analysis

f(x)

f(x) = 6

 6

(0,0) 4 10 x

Figure 1: Solution to Equation 1

f(x)

f(x) = 6

 6

(0,0) 4 10 X

Figure 2: F(b)

f(x)

f(x) = 6

 6

(0,0) 4 10 x

Figure 4: F(b) - F(a)

f(x)

f(x) = 6

 6

(0,0) 4 10 x

f(x)
f(x) = 6

 6

(0,0) 4 10 x

Figure 5: Equation 1’s Internal Logic File

ENTER

Other Examples and Their
Solutions
Consider taking a function point count of
the following integration formula.

10

∫ x2 dx (5)
4

In principle, this formula’s ILF is counted
the same way as the previous example.
There are four DETs (x2, dx, 10, and 4).
There are three RETs in the ILF (F(10),
F(4), and F(10) - F(4)). This is a low com-
plexity ILF, worth seven function points.
We assume that the EI input screen and
EO are similar to the first example, so the
total unadjusted function point count is 14.

Consider a slightly different formula.
10

∫ (x2 -x) dx (6)
4

We count the function points using the
same logic.

The solution to this formula requires
us to break this into two parts. We first use
the Fundamental Theorem of Calculus to
find the following.

10

∫ (x2) dx (7)
4

Then we subtract from it the solution to
the second part.

10

∫ (x) dx (8)
4

This ILF therefore contains six RETs –
three regions from the first part and three
regions from the second part. There are
four DETs needed to solve the first part
(x2, dx, 10, and 4) and four to solve the
second part (x, dx, 10, and 4). Therefore,
this ILF of six RETs and eight DETs is an
average complexity ILF worth 10 function
points.

One point needs to be clarified here
for the advanced function point counter.
Even though the dx, 10, and four might
appear to be counted twice in this ILF, this
does not violate the CPM rule that each
DET must be unique. They are actually
unique here because the Fundamental
Theorem of Calculus must be executed
twice – once for each part. Each instance
of dx, 10, and four must be used in order
to solve the formula.

Finally, consider this formula.
10

∫ 3x dx (9)
4

The solution to this requires first simplify-
ing to the following.

10

3 ∫ x dx (10)
4

This formula’s ILF still has its three RETs,
but its DET count increases from four to
five. This is because the solution area of
the following is multiplied by three.

10

∫ x dx (11)
4

Further Notes for Function
Point Counters
The above examples were intended to be
simplistic to illustrate the procedure. In
more complex cases, we might want to
consider whether, for example, there is an
add, change, and delete capability associ-
ated with the EI. If so, count up to three
EIs accordingly (one for the add capabil-
ity, one for the change capability, and one
for the delete capability.) The EO may be
more complex, or several EOs might be
required. There might be an EQ capabili-
ty to view what data and control informa-
tion is currently in the ILF. Finally, an
external interface file could be involved.

If an integration formula can be for-
mulated in several ways, extend the con-
cept of the elementary process and
choose the smallest unit of activity mean-
ingful to the user. For example, perhaps
choose the ILF formulation having the
smallest number of RETs.

Algorithms may influence the general
systems characteristics. You may need to
check, for example, the following:
• GSC5 Online Data Entry.
• GSC8 Online Update.
• GSC9 Complex Processing.
• GSC14 Facilitate Change.

Areas for Future Research
The authors suggest that readers in math-
ematical academia or those with strong
mathematical skill sets can further this
theory. The authors suggest that a variety
of integration techniques can be counted
and that research should be conducted to
expand this methodology.

Conclusion
Function point analysis can be used to
measure the size and complexity of algo-
rithms in general, and integration formu-
las in particular. Advanced function point
counters need to recognize all algorithms
in the software they count, to include

July 18-20
Shareware Industry Conference

St. Louis, MO
www.sic.org

July 22-25
Joint Advanced Weapons Systems Sensors,

Simulation, and Support Symposium
(JAWS S3)

Colorado Springs, CO
www.jawswg.hill.af.mil

July 22-26
6th Annual PSM Users’

Group Conference
Keystone, CO

wwwpsmsc.com

August 19-22
The 2nd Software Product

Line Conference
San Diego, CA

www.sei.cmu.edu/SPLC2/

September 9-13
International Conference on Practical

Software Quality Techniques
(PSQT) 2002 North

and International Conference on
Practical Software Testing Techniques

(PSTT) 2002 North
St. Paul, MN

www.psqtconference.com

November 18-21
International Conference on

Software Process Improvement
Washington, DC

www.software-process-institute.com

April 28-May 1, 2003
Software Technology Conference 2003

Salt Lake City, UT
www.stc-online.org

COMING EVENTS

Software Engineering Technology

26 CROSSTALK The Journal of Defense Software Engineering June 2002

Measuring Calculus Integration Formulas Using Function Point Analysis

June 2002 www.stsc.hill.af.mil 27

those embedded integration formulas.
The IFPUG function point methodology
can be used to measure the size and com-
plexity of these integration formulas
without the need for additional patches or
counting rules.

Reference
1. International Function Point Users

Group. Function Point Counting Prac-
tices Manual Release 4.1, 1999. Refer
to <www.ifpug.org/publications/
manual.htm>.

2. Redgate, Nancy, and Charles B.
Tichenor. “Measure Size, Complexity
of Algorithms Using Function Points.”
CrossTalk Feb. 2001: 12-15.

Additional Reading
1. International Function Point Users

Group. “Function Points as Assets.”
(Provides direction for using function
point analysis to develop cost, sched-
ule, and quality forecasts.)

2. Garmus, David, and David Herron.
Measuring the Software Process: A
Practical Guide to Functional
Measurements. Upper Saddle River,
N.J.: Prentice Hall PTR, 1996.

3. Jones, Capers. Applied Software
Measurement: Assuring Productivity
and Quality. New York: McGraw-Hill,
1991.

About the Authors

Nancy Redgate has a
bachelor’s degree in
industrial engineering/
operations research from
the University of Massa-
chusetts at Amherst. She

received master’s degrees in operations
research, statistics, and business adminis-
tration from Rensselaer Polytechnic
Institute.

5 Wood Hallow Drive
34-02-01
Parsippany, NJ 07054
Phone: (973) 526-6602
Fax: (973) 526-3635
E-mail: nancy.redgate@prodigy.net

Charles B. Tichenor,
Ph.D., serves as an
information technology
operations research ana-
lyst for the Department
of Defense, Defense

Security Cooperation Agency. Dr.
Tichenor holds a part-time position as
an adjunct faculty member at Strayer
University’s Anne Arundel, Md. cam-
pus. He has a bachelor’s degree in busi-
ness administration from Ohio State
University, a master’s degree in business
administration from Virginia Polytech-
nic and State University, and a doctorate
degree in business from Berne
University.

Defense Security
Cooperation Agency
1111 Jefferson Davis Hwy.,
East Tower, Suite 303
Arlington,Va. 22202-4306
Phone: (703) 601-3746
Fax: (703) 602-7836
E-mail: tichenor@erols.com

WEB SITES

Software Cost Estimation Web Site
www.ecfc.u-net.com/cost/index.htm
The Software Cost Estimation Web site presents a review of
current cost estimation techniques to help industry and
academia choose the appropriate methods when preparing
software cost estimates. The site covers both traditional and
state-of-the-art methods identifying advantages and disad-
vantages of each and the underlying aspects in preparing
cost estimates. The site also provides links to other software
cost estimation sites that are involved in this area and
details the research that has been undertaken at
Bournemouth University.

International Function Point Users Group
www.ifpug.org
The International Function Point Users’ Group (IFPUG) is a
non-profit organization committed to increasing the effec-
tiveness of its members’ information technology environ-
ments through the application of function point analysis
(FPA) and other software measurement techniques. IFPUG
endorses FPA as its standard methodology for software sizing
and maintains the “Function Point Counting Practices
Manual,” the recognized industry standard for FPA.

Practical Software and Systems
Measurement Support Center
www.psmsc.com
The Practical Software and Systems Measurement (PSM) Support
Center is sponsored by the Department of Defense (DoD) and the
U.S. Army. It provides project managers with the objective infor-
mation needed to successfully meet cost, schedule, and technical
objectives on programs. PSM is based on actual measurement
experience with DoD, government, and industry programs. The
Web site also has the most current version of the PSM Guidebook.

The Software Productivity Consortium
www.software.org/default.asp
The Software Productivity Consortium is a nonprofit partnership
of industry, government, and academia. It develops processes,
methods, tools, and supporting services to help members and affil-
iates build high-quality, component-based systems, and continu-
ously advance their systems and software engineering maturity
pursuant to the guidelines of all of the major process and quality
frameworks. Its Technical Program builds on current best practices
and information technologies to create project-ready processes,
methods, training, tools, and supporting services for systems and
software development.

Software Estimation:
Perfect Practice Makes Perfect

28 CROSSTALK The Journal of Defense Software Engineering June 2002

Software estimation is a difficult prob-
lem. Some have called it a black art.

How does one go about learning this
black art? Actually, it is not as exciting as
it sounds: It takes practice and hard
work. Unless developers get regular prac-
tice doing estimation work, improvement
will be difficult. My son’s karate instruc-
tor shouts his philosophy about practice
at the end of each karate session:
“Practice doesn’t make perfect! Perfect
practice makes perfect!”

Most software developers do some
estimation work, but many are not
trained to do it properly. Regular estima-
tion work with feedback gives the devel-
oper the opportunity to improve his/her
estimation skills. This article presents a
few ideas about how to involve software
developers in the estimation process. The
techniques presented are being used at
the author’s organization with some suc-
cess; result data will be presented later in
the article.

Why Software Projects Are
Poorly Estimated
There are many misconceptions among
software developers about software esti-
mation, which leads them to create poor
estimates. The first thing a software
developer should understand is what an
estimate really is; estimates are probabili-
ty statements. For example, if a develop-
er believes that he/she has an 80 percent
chance of completing a project in nine
months (see Figure 1), but his/her man-
ager says it has to be done in seven
months, what just happened?

By moving the completion date arbi-
trarily, the manager has just reduced the
probability of on-time completion to 25
percent (assuming no other parameters
are changed). This was probably not the
manager’s intention. Most people would
probably feel very uncomfortable if they
knew the project they were responsible
for only had a 25 percent success proba-
bility. They would most likely make a vig-
orous effort to move the completion date
back. By understanding and teaching the
concept of estimates as probabilities,
engineers can make a better defense of
their estimates.

Software engineers should also
understand the difference between target
setting and estimation. Target setting is
when a completion target is set because
of some external dependency, such as a
conference or fiscal year, and the engi-
neer has to figure out how to meet that
target. True estimation must be based on
an analytical foundation with an estima-
tion process that is not open to debate.
The estimation process should be a black
box with inputs of requirements,
resources, etc., which generate the esti-
mate (see Figure 2).

Inputs are independent variables and
the output is a dependent variable. For
example, if the manager wants to short-
en the schedule, he/she must experiment
with different inputs: adding more
resources to the project or reducing the

functionality of the end product. A
defined estimation process is critical to
any organization that desires repeatable,
consistent, and quality estimations.

Another common problem is that the
estimation task itself is often not sched-
uled as part of the project. This leads to
what is known as off-the-cuff or best-guess
estimates (or euphemistically as expert
judgment) that most developers at one
time have done and later regretted. It can
be difficult to justify the importance of
estimation work when there is a lot of
pressure to start working on project
deliverables.

The estimation work at the outset of
a project is really just the tip of the ice-
berg: Creating infrastructure and the cul-
ture to collect and analyze metrics and
other estimation inputs throughout the
project can take a lot of organizational
discipline and work. It is easier to use
personal memory of past projects than
to gather and analyze historical data.
However, creating estimates from per-
sonal memory alone is a proven cause of
cost and schedule overruns [1].

Is a high level of estimation accuracy
even possible early in the project? The
answer is, “It depends” (more about this
later). In a less mature software organiza-
tion, there are usually too many
unknowns at the beginning of a software
project to estimate the following with
high precision and accuracy: Which tech-
nology will be used? How long will it take
to learn it? What if it doesn’t work as
advertised? The list goes on and on. The
author has been involved in many proj-
ects where project milestones are all
mapped out at the beginning of the proj-
ect (before critical decisions have been
made) with pinpoint precision. This false
precision gives the impression that the
estimates are also accurate.1

With so many unknowns, estimating
software can be like peering into thick
fog. One can see things that are near
pretty clearly and estimate their distance.

David Henry
Linux NetworX

Accurate software estimation has long been a headache for software developers. Much of the problem stems from lack of esti-
mation training and practice. This article is the result of the author’s in-the-trenches experimentation with different estima-
tion training methods and is intended to give practical advice to managers or technical leads who wish to initiate a software
estimation process in their organization

10 months

9 months

8 months

7 months

6 months

5 months

4 months

3 months

2 months

1 month

95%

80%

60%

25%

Impossible 0%

Probability
of Completion

Estimated
Completion Time

Figure reprinted with permission from Steve McConnell,
Software Estimation: Demystifying the Black Art, Microsoft Press, 2002. All rights reserved.

Figure 1: Estimates Are Probability Statements

Open Forum

June 2002 www.stsc.hill.af.mil 29

Software Estimation: Perfect Practice Makes Perfect

Objects farther away can only be dimly
seen or not seen at all. How accurate can
distance be estimated when the traveler
has no map and cannot see the goal, but
is relying on memory only? Early esti-
mates should be presented in a way that
expresses this potential inaccuracy. For
example, the author has attended meet-
ings where managers presented all com-
pletion estimates to the day (even long-
term estimates). Once when one of these
estimates was being presented (which
was still over a year away), the question
was asked, “Do you want the project
completed at 10 a.m. or 11 a.m.?” That
manager got the message and now gives
all estimates farther than three months
away in quarter precision, e.g., first quar-
ter of 2002. Treating early estimates for
what they are takes a lot of unnecessary
pressure off the developers. Of course,
estimates can and should be revised as
the project progresses, since the end can
usually be more clearly seen the closer it
gets.

Now to explain the answer given ear-
lier, “It depends.” There are some soft-
ware projects that are estimated with
high precision and accuracy. If an organ-
ization has a tuned estimation process,
metrics gathering, risk management, and
other necessary processes in place, high-
ly accurate estimates are certainly possi-
ble. The fog of project unknowns will
bother this type of organization less. Its
trained engineers have created an organi-
zation-specific map of the software
development terrain and can more easily
navigate around roadblocks. There are
other situations where high accuracy can
be obtained even with a less mature
organization: projects where the engi-
neering team has high familiarity with the
domain and small non-complex projects.

Where to Start
Before proceeding to educate developers
about software estimation, it is instruc-
tive to find out how skilled at estimation
they are. Some people have a knack for
the basic skill of estimating, and others
need more practice. Try taking Jon
Bentley’s estimation quiz [2].2 When tak-
ing the quiz, instruct the engineers to fill
in upper and lower bounds that give one
an 80 percent chance of including the
correct value. If the engineer scores
poorly, this is a chance to remind
him/her to read requirements more care-
fully. The whole point of taking an esti-
mation quiz before getting down to the
nuts and bolts of estimating is to estab-
lish the before state, so the engineer can

track his/her improvement at basic esti-
mation skills.

The logical place for the engineer to
do estimation work is within the scope of
the organization’s estimation process. If
no estimation process exists, get one in
place first. Defining the estimation
process is outside the scope of this
paper, but some online resources are
given later.

Create a Feedback Loop
Developers need to keep track of their
own day-to-day estimates to estimate
accurately in the small. Estimation in the
small is a different problem than estima-
tion in the large, but it is an easier prob-
lem that should be tackled first. Most
engineers will not need to do much esti-
mating in the large unless they are tech-
nical leads or managers, so this paper will
not address its unique problems.

Recently we interviewed a candidate
for a software development position, and
asked him how he liked to be managed.
He replied: “I write embedded code for
devices. Here’s how it works – a sensor
reads a device, providing input to the
program, which then modifies the output
to the device. The sensor repeatedly gets
new values from the device, which allows
the program to guide the device until the
sensor detects values in the correct range.
This means that the device is operating at
the proper level.”

He was describing a feedback loop,
which is how he liked to be managed
(with the manager as the program and
the employee as the device). When man-
aging people, a self-directed feedback
loop is even better, which mostly takes
the manager out of the picture. We have
implemented such an embedded controller in
our organization.

We have created an estimation
spreadsheet that contains estimates for
tasks in the product requirements. (The
spreadsheet is available at <www.burgoyne.
com/~henryd/estimation>.) At the
beginning of each week, the engineer
enters estimates for the weeks’ work and
the actual amount of time the task from
the previous week had taken. This is the
essential idea, and it only takes a few
minutes per week. The spreadsheets are
checked into our source code repository,
so anyone can see others’ spreadsheets.

The spreadsheet contains some sim-
ple formulas to allow the engineer to see
at a glance how close his/her estimates
are to reality. Since it is a spreadsheet, it
can also be easily modified to suit differ-
ent needs, and charts or graphs could be
added. The manager can see who is cur-

rently working on what and how well the
engineer is doing at estimation.

There are certainly other ways of
keeping track of what work is currently
being done, but this solution is light-
weight and does not require expensive or
custom software. The main point is that
the engineer should be teaching himself
to estimate by practicing estimation on a
regular basis and seeing the accuracy and
results of those estimates.

There are a few caveats, however. As
with any metrics gathering, it is best to
explain at the outset that the gathered
information will not be used against the
employee (e.g., in reviews). Otherwise,
engineers may fudge the numbers, ren-
dering the data useless. We have found it
useful to only enter time spent on the
actual task, not including interruptions,
personal time, etc. Because of this, the
estimation spreadsheet does not differen-
tiate between actual and elapsed task time.
Elapsed time is the time between the
start and finish points of a task (includ-
ing interruptions and time spent on other
tasks), whereas actual time is the time
spent only on the task. We felt that
elapsed time was more of a scheduling
issue and did not belong in a tool used
only for estimation purposes, although
other organizations may see this issue
differently. In any case, standardizing the
metric helps simplify the process.

The tasks themselves should be small
tasks of three days or less in size. This
will force the developer to think about
the details of the task, and the estimation
should therefore be more accurate when
broken into smaller pieces. For example,
if a large task estimate (30 days) is under-
estimated by 50 percent, the estimation
error will be larger than if the same task
is broken into 10 smaller three-day tasks.
It is unlikely that all 10 tasks will be
underestimated by 50 percent: some will
be underestimated and some overesti-
mated, which will tend to cancel the esti-
mation errors and produce a better over-
all estimate.

The developer should give three esti-
mates: worst case (pessimistic), best case
(optimistic), and most likely. When asked
to give single-point estimates, many
developers will simply provide best-case

Inputs Outputs

NOT open to debateOpen to debate NOT open to debate

Estimation
Process

Figure reprinted with permission from Steve McConnell,
Software Estimation: Demystifying the Black Art, Microsoft Press, 2002. All rights reserved.

Figure 2: Estimation Process as a Black Box

Open Forum

30 CROSSTALK The Journal of Defense Software Engineering June 2002

estimates. Giving all three estimates will
reveal such tendencies.

Our estimation spreadsheet has been
in use for approximately eight months at
the author’s organization by engineers
with little or no previous formal estima-
tion practice. Before attempting any
work-related estimation, all engineers
involved in the project took the estima-
tion quiz mentioned previously and
scored poorly. During the first month of
use, the average percent differences
between estimates and actual task com-
pletion times were about 75 percent, and
the variance in the group was quite large:
25 percent to 150 percent. By the third
month of use, the average percent differ-
ences for the month had dropped to
about 35 percent, with the greatest
improvements among engineers who had
never before given estimates in such
detail. The average differences had stabi-
lized to about 25 percent after six
months, which may be the best average
results to be obtained by this method.

Comments from the engineers sug-
gest that the most useful feature of this
method is the estimation history con-
tained in the spreadsheet, which assists
the engineer’s memory when creating new
estimates. Other comments suggest that
this process helped the participants prop-
erly size lower- and upper-estimate
bounds (shown as best- and worst-case
estimates in the spreadsheet). This light-
weight method seems to work best as an
introduction to software estimation. If
the organization wishes or needs better
estimation accuracy, this method can be
modified or discarded for a more rigor-
ous method once the software team gains
some estimating skill.

Use Group Estimation
Processes
When making project estimates, get
everyone’s head into the game by using
group estimation techniques. Wide band
Delphi is a popular formal technique [3].
For those who prefer less formal meth-
ods, estimates can be made separately by
members of the group and then aver-
aged. This tends to have a conservative
effect on the estimate. The wide band
Delphi technique is good for groups with
strong personalities because of its anony-
mous estimations. If strong personalities
are not a problem, try reaching group
consensus, but do not vote to overrule
someone who may have a valid point.

We use another spreadsheet to aid our
group estimation process. By first decom-
posing our project by requirement into

modules/classes, each engineer separately
estimates the size of each module in lines
of code (LOC). In order to estimate size,
we use estimation by analogy. For exam-
ple, on a past project five new forms were
to be added to the graphical user inter-
face. By counting the LOC per form from
the most recent project, it was fairly easy
to compare new forms with previously
built forms and estimate how many LOC
the new forms would contain. After esti-
mating separately we met, and our esti-
mates were surprisingly similar. We dis-
cussed differences, which were mostly
different assumptions about the require-
ments. We found this an effective way to
create consensus that leads to a sense of
estimation buy-in among the team.

Lessons Learned
The following lessons learned are sug-
gested for best results:
• Do not rush estimates. Take the time

to define and use a formal estimation
process.

• Integrate regular estimation work into
organizational processes.

• Use group estimation techniques,
allowing team members to learn esti-
mation techniques from one another.

• Gather estimation measurements and
use them in future estimation efforts.

• Avoid off-the-cuff estimates. Managers
should not be tempted to demand
these types of estimates. Developers
should resist giving an estimate until a
detailed analysis of the problem has
been made.

References
1. Lederer, A., and J. Prasad. “Nine

Management Guidelines for Better
Cost Estimation.” Communications
of the ACM Feb. 1992: 34-49.

2. Bently, Jon. Programming Pearls 2nd
Ed., appendix 2. Addison-Wesley,
2000.

3. Wiegers, Carl. “Stop Promising
Miracles.” Software Development
Feb. 2000.

Notes
1. For a good discussion of the differ-

ence between accuracy and precision,
see Steve McConnell’s “Rapid
Development,” Microsoft Press, 1996:
173.

2. The estimation quiz is available online
at <www.cs.bell-labs.com/cm/cs/
pearls/quiz.html>.

Free Estimation Software
• Construx Estimate 2.0. A user-friend-

ly tool that combines several estima-

tion methods. <www.construx.com/
estimate>.

• COCOMO. Requires knowledge of
COCOMO II. <http://sunset.usc.
edu/research/cocomoii>.

• Cosmos. Requires knowledge of
COCOMO II. <www-cs.etsu.edu/
softeng>.

• SizeCost. A wizard-oriented tool for
the beginner estimator. <http://
members.tripod.com/~djelovic/
sizecost.htm>.

• SoftEst. A full-featured COCOMO II
implementation. <http://sepo.sparwar.
navy.mil/estimation.htm>.

Author’s Note
The author is not affiliated with any of
the estimation tools noted above. There
are of course many excellent estimation
tools that can be purchased, but for an
organization/developer just starting to
work with estimation software, it may be
easier to check out some of the simpler
free tools first.

The estimation process should be tai-
lored to fit the organization. There are
some excellent estimation processes avail-
able publicly, including “Manager’s
Handbook for Software Development,”
Revision 1 (See section 3: Cost
Estimating, Scheduling, and Staffing). It
is available online at <http://sel.gsfc.
nasa.gov/website/documents/docs/
84-101.pdf>.

About the Author

David Henry is direc-
tor of Software Engi-
neering at Linux
NetworX, a cluster
computing company.
He is also a principal of

Synergy Software, a consulting firm,
and occasionally teaches programming
classes at Columbia College in Salt
Lake. Henry has nine years of industry
experience in software development.
He has a bachelor’s degree in comput-
er science from Brigham Young
University and is completing a master’s
degree in computer science at
Colorado State University.

Linux NetworX
8689 South 700 West
Sandy, UT 84070
Phone: (801) 562-1010
Fax: (801) 568-1010
E-mail: dhenry@lnxi.com

BACKTALK

June 2002 www.stsc.hill.af.mil 31

The room is full of tension. White
boards are plastered with convolut-

ed notes etched in multi-colored dry
erase ink. Walls are awash with diagrams
(affinity, fishbone, entity relationship,
and state), charts (flow, Pareto, PERT,
and GANTT), structures (breakdown,
data, and control), and lists (personnel,
resource, and equipment). Coffee is
cold, tempers hot, discussion long, for-
bearance short, donuts fresh, and ideas
stale.

This quotidian scene subsists in soft-
ware war rooms far and wide. At the
advent of a new customer, project, or
requirement, managers marshal troops
to answer two very elusive questions:
how long and how much? These simple
questions set in motion conjecture,
machination, negotiation, and arm
wrestling that would nauseate Johnny
Cochran. For all our vaunted powers of
ratiocination, software engineers tend to
be a fickle lot when it comes to estima-
tion. Why?

Being masters of our domain and
desiring to be worthy of the vaunted
title of engineer, we ignore the fact that
our estimates are inherently subjective.
For the past decade, software’s leitmotif
is that software development is analo-
gous to industrial manufacturing. The
analogy hints that software construction
can be shaped into a repeatable process
where programmers are cogs in a
Fredrick Taylor production line. While
similarities exist in some areas of soft-
ware development, estimation is not
one. The theory cloaks the software
estimation process with a farrago of
formal notation and hints at objectivity.

In manufacturing, repeatable and
codified processes lead to objective
measures and estimates. Software devel-
opment, on the other hand, is an intrin-
sically creative activity that differs each
time code is manufactured. What you
composed on your last project rarely
translates objectively to your subse-
quent project. It resembles Bob Fosse’s
chorus line more than Fredrick Taylor’s
production line.

Before the maturity pundits kvetch
like contumacious sports stars to
impugn my opinion, let me explain. I
concur that mature organizations are

using repeatable processes, but I con-
tend that the complexity of each project
varies. In developing software for the F-
16 Head-Up-Display, I used the same
process and techniques to construct the
“Altitude Low Warning” module and
the “Enhanced Envelop Gun Site”
module. Yet the complexities involved
in constructing those two components
were about as close as Bill Gates and
Larry Ellison. Bollinger elaborates this
point in his IEEE Computer article “The
Interplay of Art and Science.”1

Variation in complexity, which is dif-
ficult to objectively measure, dominates
a software project estimate. Con-
sequently, estimating software is
unavoidably subjective. Therefore, as we
estimate our projects, instead of emerg-
ing as the professor of estimation we
end up more like Gilligan.

Second, we prefer precision to accu-
racy. Software engineers favor specific
single-value estimates, which are certain
to be wrong, over a range of values that
have a high probability of enclosing the
correct estimate. This concept should
not be foreign; we use it all the time.
When a spouse asks what time we will
be home, we always give a range
because we know that if we answer 4:12
p.m. and waltz in at 4:15 p.m., we are
sleeping on the couch.

Then there is the Pygmalion effect?
From Greek mythology, Pygmalion was
a king of Cyprus who carved and then
fell in love with a statue of a woman.
Psychologists Robert Rosenthal and
Leonore Jacobson attached Pygmalion’s
name to the observation that when eval-
uating something, the evaluator is hard-
ly neutral, and the evaluator’s expecta-
tions influence the evaluation.

This was personified eloquently in
Bernard Shaw’s play “Pygmalion” in
which phonetics professor Henry
Higgins tutors a Cockney flower girl,
Eliza Doolittle, in the refinement of
speech and manners. For those who
avoid the theatre you may have caught
the story in the musical “My Fair Lady?”
If you are still not with me, join the the-
atrically impaired and visualize “Pretty
Woman” with interesting dialogue and
wit.

In this yarn, the project at hand is
the transformation of Eliza into a lady.

Participants in this transformation are:
Professor Higgins who, despite his love
of Eliza, can never truly commit him-
self fully; Freddy Hill who is naively
infatuated with Eliza; and Colonel
Pickering who seems aloof of the antics
but always seems to be there at the right
time with the right words.

How does this apply to estimation?
Stakeholders are about as focused on
estimation accuracy as my son is on
picking up after himself. They provide
specious estimates to impress clients
and, like my son, are improvident to the
mess they leave behind. Stakeholders
are more callow than a freshman engi-
neer at a fraternity party. They, like
young Freddy Hill, are in love with a
project’s prospects with little concern
for the consequence of their credulous
desires.

Software engineers, like Professor
Higgins, are more than willing to
demonstrate their knowledge, wisdom,
and prowess but are short of commit-
ting to the minutiae of the project’s
long haul. We are prone to embellish the
estimate to assure that our reputation,
health, and marriage remain in tact.

Estimations involving human inter-
vention are prone to the Pygmalion
effect, and software estimation is no
exception. Exuberant stakeholder
expectations counter engineers who, if
the truth were known, fervently wish
they could get home from the office
earlier and come in less on weekends.
The fact is no one is a good (impartial)
judge of one’s capability because our
perception of the problem causes bias.

That’s where Colonel Pickering
comes in – a prudent counselor who
mixes analysis with common sense. A
sage that applies experience, intuition,
and judgment to obviate subjectivity,
employ flexibility, and temper bias. A
team needs a Pickering to mediate
between stakeholders and engineers and
swing back the estimation pendulum
from fallacious exactitude to viable
accuracy.

Higgins forewarns, “… you can
come back or go to the devil: which you
please.”

— Gary Petersen,
Shim Enterprise, Inc.

My Fair Estimate

1. T. Bollinger. “The Interplay of Art and Science in
Software .” IEEE Computer Oct. 1997.

CrossTalk / TISE

7278 4th Street
Bldg. 100
Hill AFB, UT 84056-5205

PRSRT STD
U.S. POSTAGE PAID

Albuquerque, NM
Permit 737

Sponsored by the
Computer Resources
Support Improvement

Program (CRSIP)

Published by the
Software Technology

Support Center (STSC)

	cover
	Index
	From the Publisher
	Software Cost Estimation in 2002
	Early Estimation of Software Reliability in Large Telcom Systems
	Estimating Web Development Costs: There Are Differences
	Estimating Software Earlier and More Accurately
	New Code Analyzes Fluid Flow for Better Designed Aerospace Vehicles and Componenets
	Measuring Calculus Integration Formulas Using Funtion Point Analysis
	Coming Events
	Web Sites
	Software Estimation: Perfect Practice Makes Perfect
	BackTalk
	Back Cover

