
Oct2002cover.qxd 9/4/02 11:10 AM Page 1

What Is Agile Software Development?
In answering this fundamental question, this article looks at a sampler of agile
methodologies, an agile case story, and a look at the future.
by Jim Highsmith

Learning From Agile Software Development – Part One
Part one of this two-part series describes how cost- and plan-driven projects can borrow
from agile software development to improve their strategies and hedge against surprises.
by Alistair Cockburn

Agile Methodologies and Process Discipline
This article summarizes and critiques the compatibility of agile methodologies with
plan-driven methodologies as described by the Capability Maturity Model for Software.
by Mark C. Paulk

Odyssey and Other Code Science Success Stories
This article includes real-world insights from developers applying a tailored version of
eXtreme Programming and a quantitative measure of its effectiveness since its inception.
by John Manzo

Integrating Systems and Software Engineering:What Can Large Organizations
Learn From Small Start-Ups?
Learn how adaptive techniques and small informal teams inside large organizations can
complement a formal organizational process focus.
by Paul E. McMahon

Highpoints From the Agile Software Development Forum
This report summarizes what speakers said agile software development is and is not.
by Pamela Bowers

Agile Before Agile Was Cool
This author was developing software solutions using agile methods before he realized
there was such a methodology.
by Gordon Sleve

Cover Design by
Kent Bingham.

3

9

14

18

31

DeparDepar tmentstments

Agile Agile SoftwarSoftwaree DeDevvelopmentelopment

ON THE COVER

2 CROSSTALK The Journal of Defense Software Engineering October 2002

4

10

15

19

22

26

28

SoftwarSoftware e EngineeringEngineering TTechnoloechnologgyy

From the Publisher

Coming Events

Web Sites

Top 5 Contest Information

BackTalk

CrossTalk
Article Submissions:We welcome articles of interest to the
defense software community.Articles must be approved by the
CROSSTALK editorial board prior to publication. Please fol-
low Author Guidelines, available at <www.stsc.hill.af.mil/
crosstalk/xtlkguid.pdf>. CROSSTALK does not pay for sub-
missions.Articles published in CROSSTALK remain the prop-
erty of the authors and may be submitted to other publica-
tions.
Reprints and Permissions: Requests for reprints must be
requested from the author or the copyright holder. Please
coordinate your request with CROSSTALK.
Trademarks and Endorsements: This DoD journal is an
authorized publication for members of the Department of
Defense. Contents of CROSSTALK are not necessarily the
official views of, or endorsed by, the government, the
Department of Defense, or the Software Technology Support
Center. All product names referenced in this issue are trade-
marks of their companies.
Coming Events:We often list conferences, seminars, sympo-
siums, etc. that are of interest to our readers.There is no fee
for this service, but we must receive the information at least
90 days before registration. Send an announcement to the
CROSSTALK Editorial Department.
STSC Online Services: www.stsc.hill.af.mil
Call (801) 777-7026, e-mail: randy.schreifels@hill.af.mil
Back Issues Available:The STSC sometimes has extra copies
of back issues of CROSSTALK available free of charge.
The Software Technology Support Center was established
at Ogden Air Logistics Center (AFMC) by Headquarters U.S.
Air Force to help Air Force software organizations identify,
evaluate, and adopt technologies to improve the quality of
their software products, efficiency in producing them, and
their ability to accurately predict the cost and schedule of
their delivery.

SPONSOR

PUBLISHER

ASSOCIATE
PUBLISHER

MANAGING EDITOR

ASSOCIATE EDITOR

ARTICLE
COORDINATOR

CREATIVE SERVICES
COORDINATOR

PHONE

FAX

E-MAIL

CROSSTALK ONLINE

CRSIP ONLINE

Lt. Col. Glenn A. Palmer

Tracy Stauder

Elizabeth Starrett

Pamela Bowers

Chelene Fortier

Nicole Kentta

Janna Kay Jensen

(801) 586-0095
(801) 777-8069
crosstalk.staff@hill.af.mil
www.stsc.hill.af.mil/
crosstalk

www.crsip.hill.af.mil

Subscriptions: Send correspondence concerning
subscriptions and changes of address to the following
address.You may e-mail or use the form on p. 27.

Ogden ALC/MASE
7278 Fourth St.
Hill AFB, UT 84056-5205

Open Open FForumorum

Online Online ArArticlesticles

30 Should You Be More Agile?
by Rich McCabe and Michael Polen

Agile Development: Weed
or Wildflower?
by David Kane and Steve Ornburn

From the Publisher

This month’s CrossTalk focuses on one of the potentially hot topics of debate in
the software industry today – agile software development vs. disciplined, process-

focused software development. There seems to be much confusion about what agile
software development is and is not, and what agile implies. We hope that our selection
of articles will provide some insight into agile software development methodologies and
how they compare in application and use to the process improvement strategies embod-
ied in capability maturity models that we have championed for many years. Perhaps these

articles may even widen your understanding and perceptions of where agile development fits
within today’s software development challenges.

Our lead article by Jim Highsmith, What Is Agile Software Development? sets the stage for under-
standing agile software development. He discusses what he terms the sweet spot problem domain for
agile approaches and then gives greater detail on the three dimensions he refers to as agile ecosys-
tems: chaordic perspective, collaborative values, and barely sufficient methodology.

We next provide part one of a two-part article by Alistair Cockburn, Learning From Agile
Software Development – Part One. Part one describes how agile and plan-driven teams make different
trade-offs of money for information or for flexibility, and presents the first seven of 10 princi-
ples for tuning a project to meet various priorities, including cost, correctness, predictability,
speed, and agility. Part two will be featured in the November issue of CrossTalk.

In Agile Methodologies and Process Discipline, Mark C. Paulk addresses issues surrounding agile
development as compared to rigorous software process improvement models such as the
Capability Maturity Model® for Software (SW-CMM®). He summarizes and critiques the compat-
ibility of agile methodologies with plan-driven methodologies as described by the SW-CMM, and
concludes by making the point, “Perhaps the biggest challenge in dealing effectively with both
agile and plan-driven methodologies is dealing with extremists in both camps who refuse to keep
an open mind.”

In his article, Odyssey and Other Code Science Success Stories, John Manzo tells of the successful
delivery of an actual complex industrial automation application using an agile development
methodology based on eXtreme Programming (XP). He includes some real-world insights from
a developer’s experience applying the development method, including a quantitative measure of
XP’s effectiveness since its inception.

Our supporting articles this month begin with Integrating Systems and Software Engineering: What
Can Large Organizations Learn From Small Start-Ups? Author Paul E. McMahon explores variations
in large and small engineering organizations and presents an alternative view of large projects that
he claims may aid companies in their quest for more effective systems and software integration.
He believes that using adaptive techniques and small informal teams inside large organizations can
complement a formal organizational process focus that may already exist within a company.

Next, in Highpoints From the Agile Software Development Forum, Pamela Bowers summarizes the
keynote talks from “Creating Competitive Advantage Through Agile Development Practices,” a
technology forum held at Westminster College in Salt Lake City in March. In Agile Before Agile Was
Cool, Gordon Sleve describes a specific example of choice of an agile methodology for the devel-
opment of a needed application, with quick turnaround to meet a customer’s need. He notes that
this was done long before agile methods were well known or popular and concludes by saying, “I
see both methodologies coexisting and filling an important purpose: to make our customers successful.”

We conclude this issue with two online articles: Should You Be More Agile? by Rich McCabe and
Michael Polen, and Agile Development: Weed or Wildflower? by David Kane and Steve Ornburn.
These authors believe that software projects, even in the defense community, can benefit from the
techniques of agile development.

As noted in the lengthy references at the end of many of these articles, much is being written
about agile software development at this time. We hope that this selection of thought-provoking
articles will enable you to become more enlightened about the many perspectives of these new
software development alternatives and will have a positive influence on opening your minds to
new possibilities.

Agile Software Development Deserves
An Open-Minded Approach

H. Bruce Allgood
Deputy Director, Computer Resources Support Improvement Program

October 2002 www.stsc.hill.af.mil 3

“Never do anything that is a waste of
time – and be prepared to wage

long, tedious wars over this principle,”
said Michael O’Connor, project manager
at Trimble Navigation in Christchurch,
New Zealand. This product group at
Trimble is typical of the homegrown
approach to agile software development
methodologies.

While interest in agile methodologies
has blossomed in the past two years, its
roots go back more than a decade. Teams
using early versions of Scrum, Dynamic
Systems Development Methodology
(DSDM), and adaptive software develop-
ment (ASD) were delivering successful
projects in the early- to mid-1990s.

This article attempts to answer the
question, “What constitutes agile software
development?” Because of the breadth of
agile approaches and the people who prac-
tice them, this is not as easy a question to
answer as one might expect. I will try to
answer this question by first focusing on
the sweet-spot problem domain for agile
approaches. Then I will delve into the
three dimensions that I refer to as agile
ecosystems: barely sufficient methodology,
collaborative values, and chaordic per-
spective. Finally, I will examine several of
these agile ecosystems.

The Agile Problem
Domain: Fitting the
Process to the Project
All problems are different and require dif-
ferent strategies. While battlefield com-
manders plan extensively, they realize that
plans are just a beginning; probing enemy
defenses (creating change) and responding
to enemy actions (responding to change)
are more important. Battlefield command-
ers succeed by defeating the enemy (the
mission), not conforming to a plan.

I cannot imagine a battlefield com-
mander saying, “We lost the battle, but by

golly, we were successful because we fol-
lowed our plan to the letter.” Battlefields
are messy, turbulent, uncertain, and full of
change. No battlefield commander would
say, “If we just plan this battle long and
hard enough, and put repeatable process-
es in place, we can eliminate change early
in the battle and not have to deal with it
later on.”

A growing number of software proj-
ects operate in the equivalent of a battle
zone – they are extreme projects. This is
where agile approaches shine. Project
teams operating in this zone attempt to
utilize leading or bleeding-edge technolo-

gies, respond to erratic requirements
changes, and deliver products quickly.
Projects may have a relatively clear mis-
sion, but the specific requirements can be
volatile and evolving as customers and
development teams alike explore the
unknown. These projects, which I call
high-exploration factor projects, do not
succumb to rigorous, plan-driven meth-
ods.

The critical issues with high-explo-
ration factor projects are as follows: first,
identifying them; second, managing them
in a different way; and third, measuring
their success differently. Just as winning is
the primary measure of success for a bat-
tlefield commander, delivering customer
value (however the customer defines it)

measures success for the agile project
manager. Conformance to plan has little
meaning in either case. If we want to be
agile, we have to reward agility.

There is, however, a critical difference
between managing a battle and managing
warehouse logistics. Battlefields are man-
aged by constant monitoring of condi-
tions and rapid course alterations – by
empirical processes. Adapting to changing
conditions is vital. Conversely, managing
warehouse logistics is a process that can
be described by calculations involving
materials on hand, deliveries, and ship-
ments; managing can be described as a
defined process, one that involves a relatively
high degree of predictability and algorith-
mic precision. Many manufacturing plants
operate as defined processes.

The concepts and assumptions behind
empirical and defined processes are funda-
mentally and irreconcilably different. The
practices of agile software development –
short iterations, continuous testing, self-
organizing teams, constant collaboration
(daily integration meetings and pair pro-
gramming for example), and frequent re-
planning based on current reality (rather
than six-month- old plans) – are all geared
to the understanding of software develop-
ment as an empirical process.

On the other hand, the fundamental
basis of the Capability Maturity Model®

(CMM®) and CMM IntegrationSM

(CMMISM) is a belief in software develop-
ment as a defined process. As such, tasks
can be defined in detail, algorithms can be
defined, results can be accurately meas-
ured, and measured variations can be used
to refine the processes until they are
repeatable within very close tolerances.

For projects with any degree of explo-
ration at all, agile developers just do not
believe these assumptions are valid. This is
a deep, fundamental divide – and not one
that can be reconciled to some comfort-
able middle ground. It is part of having a
chaordic (meaning a combination of
chaos and order as coined by Dee Hock,
founder and former CEO of Visa

Agile Software Development

4 CROSSTALK The Journal of Defense Software Engineering October 2002

What Is Agile Software Development?1

Jim Highsmith
Cutter Consortium

In the past two years, the ideas of “agile software development,” which encompasses individual methodologies such as Crystal
methods, eXtreme Programming, feature-driven development, and adaptive software development, are being increasingly
applied and are causing considerable debate. This article attempts to answer the fundamental question on many people’s minds:
What is agile software development?

® Capability Maturity Model and CMM are registered in the
U.S. Patent and Trademark Office.

SM CMM Integration and CMMI are service marks of
Carnegie Mellon University.

“Projects may have a
relatively clear mission,

but the specific
requirements can be
volatile and evolving
as customers and

development teams alike
explore the unknown.”

October 2002 www.stsc.hill.af.mil 5

What Is Agile Software Development?

International) perspective on the world as
described in the next section.

While agile practices – refactoring,
iterative feature-driven cycles, customer
focus groups – are applicable to nearly any
project, I believe the agile sweet spot is this
exploratory projects problem category. The
more volatile the requirements and the
more experimental the technology, the
more agile approaches improve the odds
of success.

The Agile Ecosystem:
Chaordic, Collaborative,
and Streamlined
The agile movement covers a broader set
of issues than the word methodology con-
notes, so I use the word ecosystem to include
the three characteristics that define agile
development: a chaordic perspective, col-
laborative values and principles, and bare-
ly sufficient methodology. A chaordic per-
spective arises from recognition and
acceptance of increasing levels of unpre-
dictability in our turbulent economy.

Two concrete ramifications of trying
to manage in an unpredictable environ-
ment are that while goals are achievable,
project details are often unpredictable, and
that the foundation of many process-driv-
en approaches (the goal of repeatable
processes) is unattainable. In company
after company, I have found successful
projects that met the customer’s vision,
but in the end, looked nothing like the
original plan.

Furthermore, truly repeatable process-
es would be almost mechanical in nature,
and no mechanical process could possibly
react to the infinite variety of variations
that software projects encounter. The rea-
son many projects attain their goals has lit-
tle to do with repeatable processes and
much to do with the skill and adaptability
of the people who are working on the
project.

Hock’s chaordic style is similar to what
I call leadership-collaboration or adaptive
management, which is about creating an
environment with the requisite variety to
meet the challenge of extreme projects,
particularly the challenge of high change.

Agile managers understand that
demanding certainty in the face of uncer-
tainty is dysfunctional. They set goals and
constraints that provide boundaries within
which creativity and innovation can flour-
ish. They are macromanagers rather than
micromanagers2.

While an entrepreneurial Silicon Valley
company has one culture, a space shuttle
avionics team has another. One of the
biggest problems in implementing soft-

ware development methodologies over the
years has been the attempted mismatch of
culture and methodology. Rather than rec-
ognizing the inherent differences between
people, project teams, and organizations,
we denigrate those who have different cul-
tures by labeling them unprofessional,
immature, or undisciplined. Or conversely,
we label them bureaucratic, rigid, and
closed-minded. For example, you can call
a well-oiled extreme programming team a
lot of things, but after watching them
practice test-first development, pair pro-
gramming, constant refactoring, and sim-
ple design, the last thing you can call them
is undisciplined, immature, or unprofes-
sional.

The second characteristic of agile
development is collaborative values and
principles. Agile and rigorous organiza-
tions view people, and how to improve
their performance, differently. Rigorous
methodologies are designed to standardize
people to the process, while agile process-
es are designed to capitalize on each indi-
vidual’s and each team’s unique strengths:
they adapt the process to the people3.

Agile organizations focus on building
individual skills and on fostering a high
degree of interaction among team mem-
bers and the project’s customers. Agilists
believe that with today’s complex projects,
understanding comes more from face-to-
face interaction than from documentation.
Agilists do not believe that a reliance on
heavy processes makes up for lack of skill,
talent, and knowledge.

The third aspect of agile ecosystems is
the concept of a barely sufficient methodol-
ogy that attempts to answer the question
of how much structure is enough. To be
agile, one must balance flexibility and
structure, and barely sufficient does not
mean insufficient. Bare sufficiency
reduces costs through streamlining but
even more importantly, it incorporates the
chaordic perspective that creativity and
innovation occur in a slightly messy envi-
ronment, not a primarily structured one.
Too many organizations operate on the
unspoken assumption that “if a little
process is good, then lots of process will
be better.”

Concepts drive action and behavior.
Software inspections, or any other soft-
ware engineering technique, will be imple-
mented differently depending upon one’s
underlying conceptual framework. The
underlying conceptual frameworks behind
agile development and the CMM are dif-
ferent and will therefore drive organiza-
tions to different behaviors. The really
important questions are about to what
kind of core capabilities one’s conceptual

foundation leads. These are not always
easy questions to answer, and organiza-
tions will have different answers for dif-
ferent stages in their evolution and for dif-
ferent projects in their portfolio.

An Agile Case Story
Jeff De Luca, project director of
Nebulon, an information technology con-
sulting firm in Melbourne, Australia,
offers an example of an agile methodolo-
gy’s success using feature-driven develop-
ment (FDD). De Luca’s project was a
complex commercial lending application
for a large Singapore bank utilizing 50
people for 15 months (after a short initial-
ization period). I tracked De Luca down
looking for an FDD case story for my
book, and subsequently spent several
hours on the phone and exchanged many
e-mails with him.

Previously, the Singapore lending proj-
ect had been a colossal failure. Prior to De
Luca’s involvement in the project, a large,
well-known systems integration firm had
spent two years working on the project
and finally declared it undoable. Its deliv-
erables included the following: 3,500
pages of use cases, an object model with
hundreds of classes, thousands of attrib-
utes (but no methods), and, of course, no
code. The project – an extensive commer-
cial, corporate, and consumer lending sys-
tem – incorporated a broad range of lend-
ing instruments (from credit cards to large
multi-bank corporate loans) and a breadth
of lending functions (from prospecting to
implementation to back-office monitor-
ing). “The scope was really too big,” said
De Luca.

FDD arose, in name at least, in 1997-
98 when Nebulon took over the Singapore
project. De Luca had been using a stream-
lined, light-process framework for many
years. Peter Coad, who was brought in to
develop the object model for the project,
had been advocating very granular, fea-
ture-oriented development but had not
embedded it in any particular process
model. These two threads came together
on this project to fashion what was
dubbed FDD.

Less than two months into the new
project, De Luca’s team was producing
demonstrable features for the client. The
team spent about a month working on the
overall object model (the original model
and what De Luca refers to as the previ-
ous team’s useless cases were trashed).
They spent another couple of weeks
working on the feature decomposition and
short iteration planning. Finally, to
demonstrate the project’s viability to a
once-burned and skeptical client, De Luca

Agile Software Development

6 CROSSTALK The Journal of Defense Software Engineering October 2002

and his team built a portion of the rela-
tionship management application as a
proof of concept. From that point on,
with about four months elapsed, they
staffed to 50 people and delivered approx-
imately 2,000 features in 15 months. The
project was completed significantly under
budget, and the client, the CEO of the
bank, wrote a glowing letter about the
success of the project.

While talking with De Luca, a couple
of things struck me about this project.
Certainly the FDD process contributed to
the project’s success, but when I asked De
Luca what made the FDD successful, his
first response was that the overriding
assumption behind the FDD is that it
embraces and accepts software develop-
ment as a decidedly human activity. The
key, he said, is having good people – good
domain experts, good developers, good
chief programmers. No process makes up
for a lack of talent and skill.

My guess is that even if the first ven-
dor’s staff had used FDD as a process
model, they would not have been success-
ful because they just did not have the
appropriate level of technical and project
management talent. However, had they
been using a FDD-like agile process, their
inability to complete the project might
have surfaced in less than two years. This
is a clear example of why working code is
the ultimate arbiter of real progress. In the
end, thousands of use cases and hundreds
of object model elements did not prove
real progress.

A Sampler of Agile
Approaches
There are a growing number of agile
methodologies, or agile software develop-
ment ecosystems (ASDEs), as I prefer to
label them, and a number of agile prac-
tices such as Scott Ambler’s agile modeling
[1]. The core set of these includes lean
development (LD), ASD, Scrum, eXtreme
Programming (XP), Crystal methods,
FDD, and DSDM. Authors of all of these
approaches (except LD) participated in
writing the Agile Software Development
Manifesto [2] and so its principles form a
common bond among practitioners of
these approaches. While individual prac-
tices are varied, they fall into six general
categories:
• Visioning. A good visioning practice

helps assure that agile projects remain
focused on key business values (for
example, ASD’s product visioning ses-
sion).

• Project initiation. A project’s overall
scope, objectives, constraints, clients,

risks, etc. should be briefly document-
ed (for example, ASD’s one-page proj-
ect data sheet).

• Short, iterative, feature-driven, time-
boxed development cycles. Explora-
tion should be done in definitive, cus-
tomer-relevant chunks (for example,
FDD’s feature planning).

• Constant feedback. Exploratory
processes require constant feedback to
stay on track (for example, Scrum’s
short daily meetings and XP’s pair pro-
gramming).

• Customer involvement. Focusing on
business value requires constant inter-
action between customers and devel-
opers (for example, DSDM’s facilitat-
ed workshops and ASD’s customer
focus groups).

• Technical excellence. Creating and
maintaining a technically excellent
product makes a major contribution to
creating business value today and in
the future (for example, XP’s refactor-
ing).
Some agile approaches focus more

heavily on project management and col-
laboration practices (ASD, Scrum, and
DSDM), while others such as XP focus on
software development practices, although
all the approaches touch the six key prac-
tice areas. The rest of this section delves
into four of these approaches, illustrating
different aspects of each.

Lean Development
The most strategy-oriented ASDE is also
the least known: ITABHI, Inc. President
Bob Charette’s LD was derived from the
principles of lean production used during
the restructuring of the Japanese automo-
bile manufacturing industry in the 1980s.
In LD, Charette extends traditional
methodology’s view of change from a risk
of loss to be controlled with restrictive
management practices to a view of change
as producing opportunities to be pursued
using risk entrepreneurship. LD has been
used successfully on a number of large
telecommunications projects in Europe.

The goals of LD are completion in
one-third the time, within one-third the
budget, and with one-third the defect rate.
While most other ASDEs are tactical in
nature, Charette thinks that the major
changes required to become agile must be
initiated from the top of the organization.
Organizational strategy becomes the con-
text within which agile processes can
operate effectively. Without this strategic
piece, agile development – as all those
who have tried to implement ASDEs in
organizations can testify – is shunted aside
by the organizational forces that seek

equilibrium.
LD is the operational piece in a three-

tiered approach4 that leads to change-tol-
erant businesses. It provides a delivery
mechanism for implementing risk entre-
preneurship. The key in business, accord-
ing to Charette, is that the opportunity for
competitive advantage comes from being
more agile than the competitors in one’s
market.

LD’s risk entrepreneurship enables
companies to turn risk into opportunity.
Charette defines change tolerance as “the
ability of an organization to continue to
operate effectively in the face of high mar-
ket turbulence.” A change-tolerant busi-
ness not only responds to changes in the
marketplace, but also causes changes that
keep competitors off balance. “Most soft-
ware systems are not agile, but fragile,”
said Charette. “Furthermore, they act as
brakes on competitiveness.” Every busi-
ness must deal with change by building a
change-tolerant organization that can
impose change on competitors.

Charettes’s work sends three key mes-
sages to agile developers and business
stakeholders in information technology.
First, the wide adoption of ASDEs will
require strategic selling at senior levels
within organizations. Second, the strategic
message that will sell ASDEs is the ability
to pluck opportunity from fast-moving,
high-risk exploration situations. And third,
proponents of ASDEs must understand
and communicate to their customers the
risks associated with agile approaches and,
therefore, the situations in which they are
and are not appropriate.

LD is as much a management chal-
lenge as a set of practices. Charette said,
“You have to set the bar high enough to
force rethinking traditional practices. LD
initiatives focus on accelerating the speed
of delivering software applications, but
not at the expense of higher cost or defect
rates. These three goals need to be
achieved concurrently, or it isn’t LD.”

Adaptive Software Development
In 1992, I started working on a short
interval, iterative, rapid application devel-
opment process that evolved into ASD.
The original process, developed in con-
junction with colleague Sam Bayer, was
used on projects in companies from Wall
Street brokerage houses to airlines to
telecommunications firms. During the
next several years, Sam and I (together and
separately) successfully delivered more
than 100 projects using these practices.
During the early to mid-1990s, I also
worked with software companies that
were using similar techniques on very

What Is Agile Software Development?

October 2002 www.stsc.hill.af.mil 7

large projects.
In the mid-1990s, my interest in com-

plex adaptive systems began to add a con-
ceptual background to the team aspects of
the practices and was the catalyst for the
name change to ASD. Complexity theory
helps us understand unpredictability and
that our inability to predict does not imply
an inability to make progress. ASD works
with change rather than fighting against it.
In order to thrive in turbulent environ-
ments, we must have practices that
embrace and respond to change – prac-
tices that are adaptable. Even more impor-
tantly, we need people, teams, and organi-
zations that are adaptable and agile.

The practices of ASD are driven by a
belief in continuous adaptation – a differ-
ent philosophy and a different life cycle –
geared to accepting continuous change as
the norm. In ASD, the static plan-design-
build life cycle is replaced by a dynamic
speculate-collaborate-learn life cycle. It is
a life cycle dedicated to continuous learn-
ing and oriented to change, re-evaluation,
peering into an uncertain future, and
intense collaboration among developers,
management, and customers.

A Change-Oriented Life Cycle
A waterfall development life cycle, based
on an assumption of a relatively stable
business environment, becomes over-
whelmed by high change. Planning is one
of the most difficult concepts for engi-
neers and managers to re-examine. For
those raised on the science of reduction-
ism (reducing everything to its component
parts) and the near-religious belief that
careful planning followed by rigorous
engineering execution produces the
desired results (we are in control), the idea
that there is no way to “do it right the first
time” remains foreign. The word plan,
when used in most organizations, indi-
cates a reasonably high degree of certain-
ty about the desired result. The implicit
and explicit goal of conformance to plan
restricts a manager’s ability to steer the
project in innovative directions.

Speculation, the first conceptual con-
cept, gives us room to explore, to make
clear the realization that we are unsure and
to deviate from plans without fear. It does
not mean that planning is obsolete, just
that planning is acknowledgeably tenuous.
It means we have to keep delivery itera-
tions short and encourage iteration. A
team that speculates does not abandon
planning; it acknowledges the reality of
uncertainty. Speculation recognizes the
uncertain nature of complex problems
and encourages exploration and experi-
mentation. We can finally admit that we do

not know everything.
The second conceptual component of

ASD is collaboration. Complex applica-
tions are not built; they evolve. Complex
applications require that a large volume of
information is collected, analyzed, and
applied to the problem – a much larger
volume than any individual can handle by
himself or herself. Although there is
always room for improvement, most soft-
ware developers are reasonably proficient
in analysis, programming, testing, and sim-
ilar skills. But turbulent environments are
defined in part by high rates of informa-
tion flow and diverse knowledge require-
ments. Building an e-commerce site
requires greater diversity of both technol-
ogy and business knowledge than the typ-
ical project of five to 10 years ago. In this
high-information-flow environment, in
which one person or small group cannot

possibly know it all, collaboration skills (the
ability to work jointly to produce results,
share knowledge, or make decisions) are
paramount.

Once we admit to ourselves that we
are fallible, then learning practices – the
learn part of the life cycle – becomes vital
for success. Learning is the third compo-
nent in the speculate-collaborate-learn life
cycle. We have to test our knowledge con-
stantly, using practices like project retro-
spectives and customer focus groups.
Furthermore, reviews should be done
after each iteration rather than waiting
until the end of the project.

An ASD life cycle has six basic charac-
teristics: mission-focused, feature-based,
iterative, time-boxed, risk-driven, and
change-tolerant. For many projects, the
requirements may be fuzzy in the begin-
ning, but the overall mission that guides
the team is well articulated. A mission
provides boundaries rather than a fixed
destination. Without a good mission and a
constant mission refinement practice, iter-
ative life cycles become oscillating life
cycles – swinging back and forth with no
progress.

The ASD life cycle focuses on results,
not tasks, and the results are identified as
application features. Features are the cus-
tomer functionality that is to be developed
during iteration.

The practice of time boxing, or setting
fixed delivery times for iterations and
projects, has been abused by many who
use time deadlines incorrectly. Time dead-
lines used to bludgeon staff into long
hours or to cut corners on quality are a
form of tyranny; they undermine a collab-
orative environment. It took several years
of managing ASD projects before I real-
ized that time boxing was minimally about
time – it was really about focusing and
forcing hard trade-off decisions. In an
uncertain environment in which change
rates are high, there needs to be a period-
ic forcing function to get work finished.

As in Barry Boehm’s spiral develop-
ment model [3], analyzing the critical risks
drives the plans for adaptive iterations.
ASD is also change-tolerant, not viewing
change as a problem but seeing the ability
to incorporate change as a competitive
advantage.

eXtreme Programming
XP, to most aficionados, was developed by
Kent Beck, Ward Cunningham, and Ron
Jeffries and has, to date, clearly garnered
the most interest of any of the agile
approaches. XP preaches the values of
community, simplicity, feedback, and
courage and is defined, at least in part, by
its 12 practices: the planning game, small
releases, metaphor, simple design, refac-
toring, test-first development, pair pro-
gramming, collective ownership, continu-
ous integration, 40-hour week, on-site
customer, and coding standards.

There has been so much written about
XP’s practices that another rehash seems
less important than discussing XP’s
impact on software development. The
interest in XP generally comes from the
bottom up, from developers and testers
tired of burdensome processes, documen-
tation, metrics, and formality. These indi-
viduals are not abandoning discipline, but
excessive formality that is often mistaken
for discipline. They are finding new ways
to deliver high-quality software faster and
more flexibly.

XP and other agile approaches are
forcing organizations to re-examine
whether their processes are adding any
value to their organizations. Well over 400
individuals have signed the Agile Software
Development Manifesto Web page, avail-
able at: <www.agilealliance.com>. These
individuals reaffirm their desire to deliver
high-quality software without the burdens

“A change-tolerant
business not only

responds to changes
in the marketplace,

but also causes
changes that keep

competitors off balance.”

Agile Software Development

8 CROSSTALK The Journal of Defense Software Engineering October 2002

of bureaucracy.
Other important contributions of XP

proponents are their views on reducing
the cost of change during a software’s life
and their emphasis on technical excel-
lence through refactoring and test-first
development. XP provides a system of
dynamic practices, whose integrity as a
holistic unit has been proven.

Some people think extreme is too
extreme, that XP would be more appeal-
ing with a more moderate name. I don’t
think many people would get excited
about a book on moderate programming.
New markets, new technologies, new
ideas aren’t forged from moderation, but
from radically different ideas and the
courage to challenge the status quo. XP
has led the way.

Dynamic Systems
Development Method
The DSDM was developed in the United
Kingdom in the mid-1990s. It is an out-
growth of, and extension to, rapid appli-
cation development practices. The
DSDM boasts the best-supported train-
ing and documentation of any ASDE, at
least in Europe.

Each of the major phases of the
DSDM development process – functional
model iteration, design-and-build itera-
tion, and implementation – are them-
selves iterative processes. The DSDM’s
use of three interactive iterative models
and time boxes can be used to construct
very flexible project plans.

The functional model iteration is a
process of gathering and prototyping
functional requirements based on an ini-
tial list of prioritized requirements.
Nonfunctional requirements are also
specified during this phase. The design-
and-build iteration refines the prototypes
to meet all requirements (functional and
nonfunctional) and engineers the soft-
ware to meet those requirements. One set
of business functions (features) may go
through both functional model and
design-and-build iterations during a time
box, and then another set of features goes
through the same processes in a second
time box. Implementation deploys the
system into a user’s environment.

The DSDM also addresses other
issues common to ASDEs. First, it explic-
itly states the difference between the
DSDM and traditional methodologies
with respect to flexible requirements. The
traditional view, according to the DSDM
manual, is that functionality stays relative-
ly fixed (after it is established in the origi-
nal requirements specifications), while
time and resources are allowed to vary.

The DSDM reverses this viewpoint,
allowing the functionality to vary over the
life of the project as new things are
learned. However, while functionality is
allowed to vary, control is maintained by
using time boxes.

The DSDM also addresses the issues
of documentation – or lack thereof – a
constant criticism of ASDEs. Because
one of the principles of the DSDM
relates to the importance of collabora-
tion, it uses prototypes rather than
lengthy documents to capture informa-
tion. The DSDM recommends only 15
work products from its five major devel-
opment phases, and several of these are
prototypes. There is an interesting com-
ment in the DSDM white paper on con-
tracting:

The mere presence of a detailed
specification may act to the detri-
ment of cooperation between the
parties, encouraging both parties
to hide behind the specification
rather than seeking mutual benefi-
cial solutions. [4]

With respect to work products, the
DSDM, unlike rigorous methodologies,
does not offer detailed documentation
formats for its 15 defined work products.
Instead, the DSDM work product guide-
lines offer a brief description, a listing of
the purposes, and a half-dozen or so qual-
ity criteria questions for each work prod-
uct.

Another area that the DSDM focuses
on is establishing and managing the prop-
er culture for a project. The manual
describes, for example, the different
emphasis of project managers and points
out how difficult the transition can be for
project managers steeped in traditional
approaches. A passage from the DSDM
manual illustrates this point:

A traditional project manager will
normally focus on agreeing a
detailed contract with customers
about the totality of the system to
be delivered along with the costs
and time scales. In a DSDM proj-
ect, the project manager is focused
on setting up a collaborative rela-
tionship with the customers. [4]

The focal point for a DSDM project
manager shifts from the traditional
emphasis on tasks and schedules to sus-
taining progress, getting agreement on
requirement priorities, managing cus-
tomer relationships, and supporting the
team culture and motivation.

The Future of Agile
Development
There are fundamental shifts driving
economies, the structure of products that
we build, and the nature of the processes
we use to build products. “These changes
in products, technologies, firms, and mar-
kets are not a passing phenomenon,”
according to Carliss Baldwin, Harvard
Business School professor and Kim Clark,
dean of the Harvard Business School fac-
ulty.

These fundamental changes driven
by powerful forces deep in the eco-
nomic system, forces which more-
over have been at work for many
years ... we must be prepared to dig
deep, for the forces that matter are
rooted in the very nature of things,
and in the processes used to create
them. [5]

In the foreword to “Planning eXtreme
Programming,” Tom DeMarco makes the
analogy between military history and soft-
ware development as each swing from the
relative advantages of armor to those of
mobility. DeMarco says:

In the field of IT, we are just emerg-
ing from a time in which armor
(process) has been king. And now
we are moving into a time when
only mobility matters. [6]

Agile development is not defined by a
small set of practices and techniques.
Agile development defines a strategic
capability, a capability to create and
respond to change, a capability to balance
flexibility and structure, a capability to
draw creativity and innovation out of a
development team, and a capability to lead
organizations through turbulence and
uncertainty.

Agile development does not abandon
structure, but attempts to balance flexibil-
ity and structure – trying to figure out that
delicate balance between chaos and rigidi-
ty. The greater the uncertainty, the faster
the pace of change, and the lower the
probability that success will be found in
structure. Plan-driven methodologies have
a definite place for some problem
domains just as individual practices (con-
figuration management for example) have
a definite place in the most agile of soft-
ware development projects. In a less
volatile era, rigorous processes were appli-
cable for a wide range of projects. In an
era in which traditional management styles
dominated, plan-driven software develop-

What Is Agile Software Development?

October 2002 www.stsc.hill.af.mil 9

ment approaches fit well.
But as Bob Dylan sang, “Times, they

are a-changin’.” Volatility and uncertainty
increasingly defines today’s business, and
even today’s military environment.
Talented technical people want to work in
an organization in which they have more
control over how they work and how they
interact with peers, customers, and man-
agement. Problems are changing, people
are changing, and ideas are changing.
While there are still opportunities for
plan-driven style development and man-
agement, I believe growth lies in being
agile and flexible.

Throughout the last three years, I have
used agile methods with project teams in
India, Canada, Norway, the United States,
New Zealand, Poland, and Australia.
Companies in these countries are strug-
gling with exploratory projects that run
the gamut, including an e-commerce infra-
structure product, a clinical drug-trial
monitoring application, 300,000 lines of
embedded C code in a new cell-phone
chip, a worldwide financial system prod-
uct, a myriad of internal IT applications,
the complete business system for a dot-
com start-up (that is still in business), and
an oil-field geophysical data gathering and
analysis system.

These companies want to be more
agile: They want to create change for their
competitors and respond quickly to mar-
ket conditions. They plan, but they are not
blinded by those plans. They focus on
delivering customer value, not adding up
how many processes they have in place.
They document, but they do not get lost
in piles of paper. They rough out blue-
prints (models), but they concentrate on
creating working software. They focus on
individuals and their skills and on the
intense interaction of development team
members among themselves and with cus-
tomers and management. They deliver
results in a turbulent, messy, ever-chang-
ing, ever-exciting marketplace.◆

References
1. Ambler, Scott. Agile Modeling. New

York: John Wiley, 2002.
2. AgileAlliance. “Agile Software

Development Manifesto.” 13 Feb.
2001 <www.agilemanifesto.org>.

3. Boehm, Barry. “A Spiral Model of
Software Development Enhance-
ment.” IEEE Computer May 1988.

4. DSDM Consortium. Dynamic Sys-
tems Development Method. Version 3.
United Kingdom <www.dsdm.org>.

5. Baldwin, Carliss Y., and Kim B. Clark.
Design Rules – Vol. 1: The Power of

Modularity. Cambridge: The MIT
Press, 2000.

6. Beck, Kent, and Martin Fowler.
Planning eXtreme Programming.
Boston: Addison-Wesley, 2001.

Notes
1. This article is adapted from Jim

Highsmith’s book “Agile Software
Development Ecosystems.” Addison-
Wesley, 2002. (Article quotes and
examples taken from this book.)

2. For additional information, see James
A. Highsmith. Adaptive Software
Development: A Collaborative App-
roach to Managing Complex Systems.
New York: Dorset House, 2000.

3. For extensive research in this area, see
Buckingham, Marcus, and Curt
Coffman. First, Break All the Rules:
What the World’s Greatest Managers
Do Differently. New York: Simon &
Schuster, 1999, and Buckingham,
Marcus and Donald O. Clifton. Now,
Discover Your Strengths. New York:
Simon & Schuster, 2001.

4. The three tiers are Risk Leadership,
Risk Entrepreneurship, and Lean
Development.

About the Author
Jim Highsmith is
director of the Cutter
Consortium’s Agile
Project Management
Practice, author of
“Agile Software Deve-
lopment Ecosystems

(2002)” and “Adaptive Software
Development: A Collaborative App-
roach to Managing Complex Systems
(2000),” and winner of the 2000 Jolt
Award. He has more than 30 years
experience as a consultant, software
developer, manager, and writer. In the
last 10 years, he has worked with infor-
mation technology organizations,
industrial product companies, and
software companies in the United
States, Europe, Canada, South Africa,
Australia, Japan, India, and New
Zealand to help them adapt to the
accelerated pace of development in
increasingly complex, uncertain envi-
ronments.

Cutter Consortium
2288 North Coulter Drive
Flagstaff, AZ 86004
Phone: (781) 648-8700
E-mail: jim@jimhighsmith.com

COMING EVENTS

October 14-16
20th Annual Pacific Northwest
Software Quality Conference

Portland, OR
www.pnsqc.org

November 3-6
3rd Annual Amplifying Your Effectiveness

(AYE) Conference 2002
Phoenix, AZ

www.ayeconference.com

November 4-8
Software Testing Analysis
and Review Conference

Anaheim, CA
www.sqe.com/starwest

November 11-14
National Defense Industrial Association

Denver, CO
www.ndia.org

November 18-21
International Conference on

Software Process Improvement
Washington, DC

www.software-process-institute.com

February 24-27, 2003
Software Engineering Process

Group Conference

Boston, MA
www.sei.cmu.edu/sepg/

April 28-May 1, 2003
Software Technology Conference 2003

Salt Lake City, UT
www.stc-online.org

May 3-10, 2003
International Conference on

Software Engineering
Portland, OR

www.icse-conferences.org/2003

10 CROSSTALK The Journal of Defense Software Engineering October 2002

Being agile is a declaration of prioritiz-
ing for project maneuverability with

respect to shifting requirements, shifting
technology, and a shifting understanding
of the situation. Other priorities that
might override agility include predictabili-
ty, cost, schedule, process-accreditation, or
use of specific tools.

Most managers run a portfolio of
projects having a mix of those priorities.
They need to prioritize agility, predictabil-
ity, and cost sensitivity in varying amounts
and therefore need to mix strategies. This
article focuses on borrowing ideas from
the agile suite to fit the needs of plan-driv-
en and cost-sensitive programs.

Our industry now has enough infor-
mation to sensibly discuss such blending.
The agile voices have been heard [1, 2, 3,
4, 5, 6, 7], the engineering voices have
been heard [8, 9, 10], two articles in this
issue [11, 12] illustrate the differences in
world view, and some authors have dis-
cussed the question of their coexistence
and principles underlying successful devel-
opment strategies [3, 8, 13].

Buy Information or Flexibility
Many project strategies revolve around
spending money for either information or
flexibility [3, 14].

In a money-for-information (MFI) propo-
sition, the team can choose to expend
resources now to gain information earlier.
If the information is not considered valu-
able enough, the resources are applied to
other work. The question is how much the
team is willing to expend in exchange for
that information.

In a money-for-flexibility (MFF) proposi-
tion, the team may opt to expend re-
sources to preserve later flexibility. If the
future is quite certain, the resources are
better spent pursuing the most probable
outcome, or on MFI issues.

Different project strategies are made
by deciding which issues are predictable,
unpredictable but resolvable, or unresolv-
able, deciding which of those are MFI or

MFF propositions, and how best to allo-
cate resources for each.

Predictable issues can be investigated
using breakdown techniques. Such an
issue might be creating a schedule for
work similar to that successfully per-
formed in the past.

Unpredictable but resolvable issues can be
investigated through study techniques
such as prototypes and simulators. Such
issues include system performance limits.
These are also MFI propositions. Agile
and plan-driven teams are likely to use
similar strategies for these issues as part of
basic project risk management.

Unresolvable issues tend to be sociolog-
ical, such as which upcoming standard will
gain market acceptance, or how long key
employees will stay around. These issues
cannot be resolved in advance, and so are
not MFI propositions, but are MFF
propositions. Agile and plan-driven teams
are intrinsically likely to use different
strategies for these issues. Agile teams will
set up to absorb these changes, while plan-
driven project teams must, by definition,
create plans for them.

Teams will differ on which issues are
resolvable, and how much money should
be spent in advance on predictable issues.
A plan-driven team is more likely to
decide that creating the project plan is
basically a predictable issue, and that a
good MFI strategy is to spend resources

early to make those predictions.
In contrast, an agile team might decide

that the project plan is fundamentally un-
resolvable past a very simple approxima-
tion. There being no effective MFI strat-
egy, it adopts an MFF approach, making
an approximate plan early and allocating
resources for regular re-planning over the
course of the project.

Both agile and plan-driven developers
might agree that the question of system
performance under load is an important
MFI issue, and so both might agree to
spend money early to build a simple sys-
tem simulator and load generator to
stress-test the design.

They are likely to spend money differ-
ently on design issues. The plan-driven
team, viewing it as a sensible MFI propo-
sition, will spend money early to reduce
uncertainty about the future of the design.
Agile teams are more likely to view design
as either being inexpensive to change (a
poor MFI candidate) or unresolvable
(making it an MFF proposition). They are
therefore more likely to choose a design
early and allocate money to adjust it over
time. This difference on design issues is
fundamental, since the two groups view
the matter from different decision arenas.

Ten Principles
The following 10 principles have shown
themselves useful in setting up and run-
ning projects. Most of these are known in
the literature [3, 4, 8, 21]. My phrasing of
them may be slightly different.
1. Different projects need different

methodology trade-offs.
2. A little methodology does a lot of

good; after that, weight is costly.
3. Larger teams need more communica-

tion elements.
4. Projects dealing with greater potential

damage need more validation ele-
ments.

5. Formality, process, and documentation
are not substitutes for discipline, skill,
and understanding.

Learning From Agile Software Development – Part One
Alistair Cockburn

Humans and Technology

This two-part article compares agile, plan-driven, and cost-sensitive software development approaches based on a set of proj-
ect organization principles, extracting from them ideas for pulling agile techniques into cost- and plan-driven projects. Part
one describes how agile and plan-driven teams make different trade-offs of money for information or for flexibility, and pres-
ents the first seven of 10 principles for tuning a project to meet various priorities, including cost, correctness, predictability,
speed, and agility. Part two, which will run in the November issue of CrossTalk, will present the last three principles,
then pull the material together for actions that plan-driven and cost-sensitive project teams can use to improve their strategies
and hedge against surprises.

“This is a MFI [money-
for-information]

situation: It is worth
spending a lot of money

now to discover ...
where those next defects

are located.”

Learning From Agile Software Development – Part One

October 2002 www.stsc.hill.af.mil 11

6. Interactive, face-to-face communica-
tion is the cheapest and fastest channel
for exchanging information.

7. Increased communication and feed-
back reduces the need for intermediate
work products.

8. Concurrent and serial development
exchange development cost for speed
and flexibility.

9. Efficiency is expendable in non-bottle-
neck activities.

10. Sweet spots speed development.
The first seven principles are discussed

in this article, the last three will be
addressed in part two.

1. Different Projects Need Different
Methodology Trade-offs
This should be obvious, but it seems to
need re-stating at frequent intervals [15,
16, 17, 18].

Figure 1, adapted from Boehm and
Port [8], shows one particular aspect of
these differences. In this figure, the two
diminishing curves show the potential
damage to a project from not investing
enough time and effort in planning. The
two rising curves show the potential dam-
age to the project from spending too
much time and effort in planning.

The lines crossing on the left indicate a
project for which potential damage is rela-
tively low with under-planning, and rela-
tively high with over-planning. Much
commercial software, including Web serv-
ices fall into this category. The lines cross-
ing on the right indicate a project for
which potential damage is relatively high
with under-planning, and for which much
more planning would have to be done
before damage would accrue from delays
due to planning. Safety-critical software
projects fall into this category.

The curves should make it clear that
when there is risk associated with taking a
slow, deliberate approach to planning,
then agile techniques are more appropri-
ate. When there is risk associated with
skipping planning or making mistakes
with the plan, then a plan-driven
approach is more appropriate. The curves
illustrate clearly the home territory of
each.

Figure 2 shows a different characteri-
zation of project differences [3]. The
hori-zontal axis captures the number of
people needing to be coordinated, rising
from one on the left to 1,000 on the right.
The idea is that projects need more coor-
dina-tion elements to their methodology
as the number of people increases.

The vertical axis captures the potential
damage caused by undetected defects in
the system, from loss of comfort to loss

of life. The idea is that projects need
more validation elements as the potential
damage increases.

Each box in the grid identifies a set of
projects that might plausibly use the same
combination of coordination and valida-
tion policies. The label in the box indi-
cates the maximum damage and coordi-
nation load common to those projects
(thus, D40 refers to projects with 20-40
people and potential loss of discretionary
monies). Projects landing in different
boxes should use different policies.

The different planes capture the idea
that projects run to different priorities,
some prioritizing for productivity, some
for legal liability, and others for cost, pre-
dictability, agility, and so on.

Any one methodology is likely to be
appropriate for only one of the boxes on
one of the planes. Thus, at least 150 or so
methodologies are needed (Capers Jones
identifies 37,000 project categories [17]).
That number is increased by the fact that
technology shifts change the methodolo-
gies at the same time.

2.A Little Methodology Does a Lot
of Good;After That,Weight is Costly
Figure 3 (see page 12) relates three quan-
tities: the weight of the methodology
being used, the size of the problem being
attacked, and the size of the team.
(Problem size is a relative term only. The
problem size can drop as soon as some-
one has an insight about the problem.
Even though problem size is highly sub-
jective, some problems are clearly harder
for a team to handle than others.) This
figure illustrates that adding elements to a
team's methodology first helps then hin-
ders their progress [3].

The dashed line shows that a small

team, using a minimal methodology, can
successfully attack a certain size of prob-
lem. Adding a few carefully chosen ele-
ments to the methodology allows them to
work more effectively and attack a larger
problem. As they continue to add to the
methodology, they increase the bureau-
cratic load they put on themselves and,
being only a small team, start expending
more energy in feeding the methodology
than solving the problem. The size of the
problem they can successfully attack
diminishes.

The curve is similar for a large team
(the solid line), but not as abrupt. The
large team needs more coordination ele-
ments to work optimally, and has more
people to feed the methodology as it
expands. Eventually, even the larger team
starts being less productive as the
methodology size grows and solves the
larger problems less successfully.

3. Larger Teams Need More
Communication Elements
Six people in a room can simply talk
amongst themselves and write on white
boards. If 200 people were to try that,
they would get in each other’s way, miss
tasks, and repeat each other’s work. The
larger team benefits from coordination.
This is the slower rise in the large-team
curve in Figure 3. The smaller team needs

Time and Effort Invested in Plans

D
am

ag
e

fr
o

m
O

ve
r-

 o
r

U
n

d
er

-P
la

n
n

in
g

Plan-Driven
Sweet Spot

Agile
Sweet Spot

Figure 1: Balancing Discipline and Flexibility
with the Spiral Model and MBASE

Number of People Involved

C
rit

ic
al

ity
(d

ef
ec

ts
 c

au
se

 lo
ss

 o
f..

.)

Comfort
(C)

Essential
Money

(E)

Life
(L)

+20%

 . . . Prioritized for Legal Liability

1 - 6 - 20 - 40 - 100 - 200 - 500 - 1,000

C6 C20 C40 C100 C200 C500 C1000

D6 D20 D40 D100 D200 D500 D1000

E6 E20 E40 E100 E200 E500 E1000

L6 L20 L40 L100 L200 L500 L1000

Prioritized for Productivity & Tolerance

Discretionary
Money

(D)

Figure 2: Projects by Communication, Criticality, and Priorities [3]

Agile Software Development

12 CROSSTALK The Journal of Defense Software Engineering October 2002

fewer coordination mechanisms and can
treat them with less ceremony than can
the larger team.

Although this principle should be
obvious, many process designers try to
find a single set of coordination elements
to fit all projects.

4. Projects Dealing with Greater
Potential Damage Need More
Validation Elements
A team of developers charged with creat-
ing a proof-of-concept system does not
have to worry about the damage caused
by a system malfunction in the same way
that a team charged with developing a
final production system to be produced in
vast quantities does. Atomic power plants,
automated weapons systems, even cell
phones or automobiles produced in the
millions have such economic conse-
quences that it is well worthwhile spend-
ing a great deal more time locating and
eliminating each additional remaining
defect. This is an MFI situation: It is
worth spending a lot of money now to
discover information about where those
next defects are located.

For a system in which remaining
defects have lower economic conse-
quences (such as ordering food online
from the company cafeteria), it is not
worth spending as much money to dis-
cover that information. The team will
consequently find it appropriate to use
fewer and lighter validation techniques on
the project

5. Formality, Process, and
Documentation Are Not
Substitutes for Discipline,
Skill, and Understanding
Highsmith [4] points to the difference
between discipline and formality, skill and
process, understanding and documenta-
tion.

Discipline is an internal quality of
behavior; formality is an externally visible
result. Many of the best developers are
very disciplined in their actions without
using formal methods or documents.

Skill is an internal quality of action,
typically of a single person, while process
is an externally declared agreement, usual-
ly between several people. Individuals op-
erating at high levels of skill often cannot
say what process they follow. Processes are
most useful in coordinating the flow of
work between people.

Understanding is an internal realiza-
tion; documentation is external. Only a
small part of what people know can be put
into external documentation, and that
small part takes a lot of time.

Process designers often forget these
differences, thinking that enough formality
will impart discipline, enough process will
impart skill, and enough documentation
will impart understanding. An agile project
manager relies on discipline, skill, and
understanding, while requiring less formal-
ity, process, and documentation (Figure 4).
This allows the team to move and change
directions faster.

6. Interactive, Face-to-Face
Communication Is the
Cheapest and Fastest Channel
for Exchanging Information
Understanding passes from person to per-
son more rapidly when two people are
standing next to each other, as when they
are discussing at a white board. At that
white board, they can use gestures, facial
expressions, proximity cues, vocal inflec-
tion and timing, cross-modality (aural-

visual) timing, and real-time feedback
along modalities to discover what each
knows, needs to know, and how to convey
it [3, 19]. They use the white board as an
external-marking device not just to draw,
but also to hold some of their discussion
points in place so they can refer back to
them later.

As characteristics of that situation are
removed, the communication effectiveness
between the two people drops (Figure 5).
On the phone, they lose the entire visual
channel and cross-modality timing. With e-
mail or instant messaging, they lose vocal
inflection, vocal timing, and real-time
question and answer. On videotape, they
have visuals, but lose the ability to get
questions answered. On audiotape, they
again lose visuals and cross-modality tim-
ing. Finally, communi-cating through doc-
uments, they attempt to communicate
without the benefit of gestures, vocal
inflection and timing, cross-modality tim-
ing, proximity cues, or question-and-
answer.

This principle suggests that for cost
and efficiency improvements, a project
team employ personal, face-to-face com-
munication wherever possible. A decade-
long study at MIT's Sloan School of
Management in the 1970s and a recent
research compilation both concluded that
physical distance matters a great deal [20,
21].

The cost of imposing distances
between people can be seen with a simple
calculation. Suppose that a developer earns
$2 per minute, and two people working
side-by-side on the same problem
exchange questions and answers at the rate
of 100 questions each per week. Thus, for
each minute on average that gets inter-
posed between thinking the question and
hearing the answer adds $200 of salary
cost to the project per person per week, or
about $10,000 per year. For a 10-person
project, that one-minute average delay
costs the organization $100,000 per year.
Two offices being a few meters apart cre-
ates a one-minute delay. For offices around
the corner or up a flight of stairs, the aver-
age delay is more on the order of five min-
utes ($500,000 per year).

The salary cost is actually the smaller
cost. The larger cost is that when two peo-
ple are more than about half a minute's
travel apart, they simply do not ask each
other many of those questions. Instead,
they guess at the answers. Some percent-
age of those guesses are wrong, and those
mistakes end up as defects in the system
that must be found through debugging,
external test, integration test, or even
through system use.

Methodology Weight

Large Team

P
ro

bl
em

 S
iz

e

Small Team

Figure 3: A Little Methodology Goes a Long
Way

Formality, Process, Documentation

D
is

ci
pl

in
e,

 S
ki

ll,
 U

nd
er

st
an

di
ng

X Typical Heavy
 Methodology

Light Heavy

A
da

pt
in

g

Low

High

Optimizing

X Typical Light Methodology

Figure 4: Differences Between Adapting and
Optimizing Approaches

“An agile project
manager relies on
discipline, skill, and

understanding, while
requiring less formality,

process, and
documentation.”

Learning From Agile Software Development – Part One

October 2002 www.stsc.hill.af.mil 13

7. Increased Communication and
Feedback Reduces the Need for
Intermediate Work Products
Intermediate work products – those not
required by the final users of the system
or the next team of developers -– tend to
have two forms: a) promises as to what
will eventually be constructed, and b)
intermediate snapshots of the develop-
ers' knowledge (design descriptions).

This understanding, as we have
already seen, moves faster through inter-
active than paper-based communication.
Increasing the use of interactive commu-
nications will never entirely eliminate the
need for archivable design documenta-
tion, but it can reduce it, particularly dur-
ing the design and development stages of
the project. Eventually, external docu-
mentation will be needed when none of
the original designers are around, but
that does not count as intermediate docu-
mentation.

Users who regularly get to see the
developing system stop needing elabo-
rate promises of what they will be given.
This is an MFI issue. If the users are not
going to get to see the result for a year or
two, then it is worth a lot to create the
most accurate promise possible. If on
the other hand, the users get to see
results every few days or weeks, then a
better use of the project's money is to
simply build the system and show it to
the users.

There is, however, a MFF issue at play
here as well since there are diminishing
returns on the MFI issue of creating that
promise. No amount of care in crafting a
detailed promise can capture the unpre-
dictable reaction of the users on seeing
the final product in their own environ-
ment as they perform their work assign-
ments. The time and money spent on
guessing at the users' response to the
delivered system would be better allocat-
ed to deal with their response on seeing
the real system.

Mock-ups, prototypes, and simula-
tions deal with the MFI aspects of the
situation. They are an expenditure of
resources to discover information soon-
er. The MFF aspects of the situation are
handled through incremental delivery
with iterative re-work, allocating resour-
ces for the inevitable surprises resulting
from real delivery.

Interim Summary
The natural tension between agility-
focused, plan-driven, and cost-sensitive
project teams is explained in part by their
interpretations of what counts as a money-

for-information proposition, what counts as
a money-for-flexibility proposition, and how
much money to spend on each. We have
seen how people with various priorities
use those economic strategies differently.

It is particularly important, in work-
ing with the first seven principles, that
each be used to tune a project's running
rules, of particular importance is that
each project team declares its priorities as
well as its communication and validation
requirements. With those in place, the
team can orient itself to the amount of
face-to-face communication it can man-
age, and the extra methodology weight it
should appropriately set in place.

The principles are intended to be
used as slider scales. Too much toward
each end of the sliding scale brings its
own sort of damage.

The second part of this article will
present the final three principles, then
pull from the collected information to
suggest specific actions that leaders of
plan-driven and cost-sensitive projects
can take to either improve their strate-
gies, or at least hedge their bets against
future surprises.◆

References
1. Beck, Kent. eXtreme Programming

Explained: Embrace Change. Boston:
Addison-Wesley, 1999.

2. Coad, P., E. Lefebvre, and J. De Luca.
Java Modeling In Color With UML:
Enterprise Components and Process.
Upper Saddle River: Prentice Hall,
1999.

3. Cockburn, Alistair. Agile Software
Development. Boston: Addison-
Wesley, 2001.

4. Highsmith, Jim. Agile Software Deve-
lopment Ecosystems. Boston: Add-
ison-Wesley, 2002.

5. Schwaber, K., and M. Beedle. Agile
Software Development with Scrum.
Upper Saddle River: Prentice Hall,
2001.

6. Highsmith, Jim, and Alistair
Cockburn. “Agile Software
Development: The Business of
Innovation.” IEEE Software 34.9
(2001): 120-122.

7. Cockburn, Alistair, and Jim
Highsmith. “Agile Software
Development: The People Factor.”
IEEE Software 34:11 (2001): 131-133.

8. Boehm, Barry, and D. Port. “Balancing
Discipline and Flexibility with the
Spiral Model and MBASE.”
CrossTalk Dec. 2001: 23-30.
Available at: <www.stsc.hill.af.mil/
crosstalk/2001/dec/boehm.pdf>.

9. Software Engineering Institute.
Capability Maturity Model® Integra-
tionSM V1.1 (CMMISM). Pittsburgh:
SEI, 2002. Available at: <www.sei.
cmu.edu/cmmi>.

10. Humphrey, Watts. A Discipline for
Software Engineering. Boston:
Addison-Wesley, 1997.

11. Paulk, Mark C. “Agile Methodologies
and Process Discipline.” CrossTalk

Oct. 2002: 15-18.
12. Highsmith, Jim. “What Is Agile

Software Development?” Cross-

Talk Oct. 2002: 4-9.
13. Cockburn, Alistair. “Agile Software

Development Joins the Would-Be
Crowd.” Cutter IT Journal Jan. 2002:
6-12.

14. Sullivan, K., P. Chalasani, S. Jha, and V.

Richness (Temperature) of Communication Channel

C
om

m
un

ic
at

io
n

 E
ffe

ct
iv

en
es

s 2 People at
White Board

2 People
on Phone

2 People
on E-mail

Videotape

Paper
Audiotape

(hot)(cold)

(No Question-Answer)

(Question-and-Answer)

Figure 5: Increasing Communication Effectiveness from Richer Communication Channels

Sazawal. “Software Design as an
Investment Activity: A Real Options
Perspective,” in Real Options and
Business Strategy: Applications to
Decision Making. L. Trigeorgis, ed.
London: Risk Books. Dec. 1999.

15. Mathiassen, L. “Reflective Systems
Development.” Scandinavian Journal
of Information Systems. Vol. 10, No.
1, 2. Gothenburg, Sweden: The IRIS
Association, 1998: 67-117.

16. Hohmann, L. Journey of the Software
Professional. Upper Saddle River:
Prentice-Hall, 1997.

17. Jones, Capers. Software Assessments,
Benchmarks, and Best Practices.
Boston: Addison-Wesley, 2000.

18. Cockburn, Alistair. “Selecting a
Project's Methodology.” IEEE
Software 17.4 (2000): 64-71.

19. McCarthy, J., and A. Monk. “Channels,
Conversation, Cooperation and

Relevance: All You Wanted to Know
About Communication But Were
Afraid to Ask.” Collaborative
Computing 1.1 (Mar. 1994): 35-61.

20. Allen, T.J. Managing the Flow of Tech-

nology. Cambridge, MIT Press, 1977.
21. Olson, G. M., and J. S. Olson.

“Distance Matters.” Human-
Computer Interaction 15 (2001): 139-
179.

About the Author

Agile Software Development

14 CROSSTALK The Journal of Defense Software Engineering October 2002

AgileAlliance
www.agilealliance.org/home
The AgileAlliance is a nonprofit organization dedicated to
promoting the concepts of agile software development, and
helping organizations adopt those concepts, which are out-
lined by the Agile Software Development Manifesto and can
be found on this Web site. The AgileAlliance was designed to
be lightweight, initially consisting of a board of directors, one
administrator, and a set of bylaws. Just like agile processes, all
work and operations within the AgileAlliance is intended to
emerge from subsets of members that self-organize into pro-
grams.

Agile Development Conference
http://agiledevelopmentconference.com
The Agile Development Conference is a conference on deliv-
ering fit-for-purpose software under shifting conditions,
using people as the magic ingredient. A number of tech-
niques, practices, and processes have been identified to do
this, and more will be found in the future. This conference
will discuss people working together to create software, and
the tools, techniques, practices, and issues involved. Come
here to learn, or, even better, to name them. This conference
has recently been funded and is still being organized. Read
the conference vision and structure and the request for par-
ticipation.

Crystal Methodologies
www.alistair.cockburn.us/crystal
Crystal collects together a self-adapting family of “shrink-to-
fit,” human-powered software development methodologies
based on these understandings:

• Every project needs a slightly different set of policies and
conventions, or methodology.

• The workings of the project are sensitive to people issues,
and improve as the people issues improve, individuals get
better, and their teamwork gets better.

• Better communications and frequent deliveries communi-
cation reduce the need for intermediate work products.
This site is a resource for people wanting to understand

those ideas, to find more about improving skills and team-
ing, and to identify some project policies to use as a start-
ing point. This site is set up as a museum of information,
with exhibit halls, exhibit rooms, exhibits with notes, and a
discussion area.

North Carolina State University
www.csc.ncsu.edu
The North Carolina State University's (NCSU’s) Computer
Science Department cites strengths in the areas of software
systems, communications and performance analysis, theory
and algorithms, and computer architecture. Founded in
1967, NCSU’s is one of the oldest computer science depart-
ments in the country and the only one at a state-assisted
Research I University. The university hosts a small workshop,
“Agile Software Development Methodologies: Raising the
Floor or Lowering the Ceiling” at <http://collaboration
.csc.ncsu. edu/agile>.

XBreed
www.xbreed.net/index.html
XBreed is the product of mixing SCRUM, eXtreme
Programming (XP) and Alexanderian ideas. Information
technology is the result of developing multiple applications
and shared components as fast as humanly possible.
Combining Scrum and XP was very natural: Scrum provides
a solid management framework, while XP provides a basic
but complete set of engineering practices. The result is a lean
but very effective way to run software projects. In addition,
Scrum practiced at the application team level – provided a
shared resources team is involved – can lead to re-usability.
XBreed is a free method. This Web site includes everything
you need to know to run XBreed projects.

WEB SITES

Alistair Cockburn, an
internationally recog-
nized expert in object
technology, methodolo-
gy, and project manage-
ment, is a consulting fel-

low at Cockburn and Associates. He is
author of “Surviving Object-Oriented
Projects,” “Writing Effective Use Cases,”
and “Agile Software Development,”
which have won Jolt Productivity Book
Awards. He is one of the original authors
of the Agile Software Development

Manifesto and founders of the
AgileAlliance, and is program director
for the Agile Development Conference
held in Salt Lake City. Cockburn has
more than 20 years experience leading
projects in hardware and software devel-
opment.

1814 Fort Douglas Circle
Salt Lake City, UT 84103
Phone: (801) 582-3162
Fax: (775) 416-6457
E-mail: alistair.cockburn@acm.org

October 2002 www.stsc.hill.af.mil 15

Agile Methodologies and Process Discipline

Mark C. Paulk
Software Engineering Institute

Agile methodologies have been touted as the programming methodologies of choice for the high-speed, volatile world of Internet
and Web software development. They have also been criticized as just another disguise for undisciplined hacking. The reality
depends on the fidelity to the agile philosophy with which these methodologies are implemented, and the appropriateness of the
implementation for the application environment. This article addresses these issues and summarizes and critiques the com-
patibility of agile methodologies with plan-driven methodologies as described by the Capability Maturity Model® for Software.

Agile methodologies, such as eXtreme
Programming (XP), have been touted

as the programming methodologies of
choice for the high-speed, volatile world of
Internet and Web software development.
They have also been criticized as just
another disguise for undisciplined hacking.
Although creators of agile methodologies
usually espouse them as disciplined
processes, some have used them to argue
against rigorous software process
improvement models such as the
Capability Maturity Model® (CMM®) for
Software (SW-CMM®) [1].

Many organizations moving into e-
commerce (and e-government) have exist-
ing CMM-based initiatives (and possibly
customers demanding mature processes)
and desire an understanding of whether
agile methodologies can address CMM
practices adequately. Usually, the reality
depends on 1) the fidelity to the agile phi-
losophy with which these methodologies
are implemented, and 2) the appropriate-
ness of the implementation for the appli-
cation environment.

This article recaps the Agile Software
Development Manifesto and its underlying
principles. The compatibility of agile
methodologies with plan-driven method-
ologies as described by the CMM is sum-
marized and critiqued. Although agile
methodologies can be characterized as
lightweight methodologies that do not empha-
size process definition or measurement to
the degree that models such as the CMM
do, a broad range of processes can be con-
sidered valid under the CMM. The conclu-
sion is that agile methodologies advocate
many good engineering practices, although
some practices may have an extreme
implementation that is controversial and
counterproductive outside a narrow
domain.

For those interested in process
improvement, the ideas in the agile move-
ment should be thoughtfully considered.
When rationally implemented in an appro-
priate environment, agile methodologies
address many CMM Level 2 and 3 prac-

tices. The ideas in the agile movement
should be carefully considered for adop-
tion where appropriate in an organization's
business environment; likewise, organiza-
tions considering agile methodologies
should carefully consider the management
and infrastructure issues of the CMM.

Agile Methodologies
Many names have been used for the agile
methods, including Internet-speed, light-
weight, and lean methodologies. Similarly,
plan-driven methodologies have been

described as rigorous, disciplined, bureau-
cratic, heavyweight, and industrial-
strength. Some of these descriptors can be
considered derogatory, e.g., lightweight or
bureaucratic. Agile is the term preferred by
the AgileAlliance, a group of software
professionals dedicated to promoting the
concepts of agile software development.
Plan-driven was coined by Barry Boehm [2]
to characterize the opposite end of the
planning spectrum from agile methodolo-
gies.

Any discussion of agile methodologies
should begin with the fundamentals of

agile as expressed by its proponents. The
Manifesto of the AgileAlliance found at
<www.agilemanifesto.org> states:

We are uncovering better ways of
developing software by doing it,
and helping others do it. Through
this work we have come to value:
• Individuals and interactions

over processes and tools.
• Working software over compre-

hensive documentation.
• Customer collaboration over

contract negotiation.
• Responding to change over fol-

lowing a plan.
That is, while there is value on

the items on the right, we value the
items on the left more.

The principles behind the agile mani-
festo are as follows:
1. Our highest priority is to satisfy the

customer through early and continuous
delivery of valuable software.

2. Welcome changing requirements, even
late in development. Agile processes
harness change for the customer's
competitive advantage.

3. Deliver working software frequently,
from a couple of weeks to a couple of
months, with a preference to the short-
er timescale.

4. Business people and developers must
work together daily throughout the
project.

5. Build projects around motivated indi-
viduals. Give them the environment
and support they need, and trust them
to get the job done.

6. The most efficient and effective
method of conveying information to
and within a development team is face-
to-face conversation.

7. Working software is the primary meas-
ure of progress.

8. Agile processes promote sustainable
development. The sponsors, develop-
ers, and users should be able to main-
tain a constant pace indefinitely.

“The conclusion is
that agile methodologies

advocate many good
engineering practices,

although some practices
may have an extreme
implementation that
is controversial and
counterproductive
outside a narrow

domain.”

Agile Software Development

16 CROSSTALK The Journal of Defense Software Engineering October 2002

9. Continuous attention to technical
excellence and good design enhances
agility.

10. Simplicity – the art of maximizing the
amount of work not done – is essen-
tial.

11. The best architectures, requirements,
and designs emerge from self-organiz-
ing teams.

12. At regular intervals, the team reflects
on how to become more effective, then
tunes and adjusts its behavior accord-
ingly.
Agile methodologies are usually target-

ed toward small- to medium-sized teams
building software in the face of vague
and/or rapidly changing requirements.
Agile teams are expected to be co-located,
typically with less than 10 members.

Process Discipline in
the Agile Methods
Why would we challenge the principles of
agile methodologies? Do not most profes-
sionals share the objectives espoused in
the agile movement? In one sense, the val-
ues expressed in the agile manifesto should
be captured in any modern software proj-
ect, even if the implementation may differ
radically in other environments. Customer
satisfaction, communication, working soft-
ware, simplicity, and self-reflection may be
stated in other terms, but without them,
non-trivial projects face almost insur-
mountable odds against success.

In effective CMM-based improvement,
when defining processes, organizations
should capture the minimum essential
information needed, use good software
design principles (such as information hid-
ing and abstraction) in structuring the def-
initions, and emphasize usefulness and
usability [3]. One of the consequences of
the Level 1 to Level 2 culture shift is
demonstrating the courage of convictions
by becoming realistic in estimates, plans,
and commitments.

Much of the formalism that character-
izes most CMM-based process improve-
ment is an artifact of large projects and/or
severe reliability requirements, especially
for life-critical systems. The hierarchical
structure of the SW-CMM, however, is
intended to support a broad range of
implementations within the context of the
18 key process areas and 52 goals that
compose the requirements for a fully
mature software process. It is true, howev-
er, that the CMM emphasizes explicitly
capturing knowledge via documentation
and measurement – a process emphasis.
The challenge for many in adopting agile
methodologies lies in the (perceived) prob-

lems in de-emphasizing processes, docu-
mentation, contracts, and planning.

Individuals Over Process
Agile methodologies assume the pro-
grammers are generalists rather than spe-
cialists. Competent generalists are hard to
come by, but this is an endemic problem
in any technically demanding discipline.
Specialist knowledge in a domain can be
needed, however, which may lessen the
effectiveness of practices such as pair
programming.

The foundation of software engineer-
ing in the SW-CMM at Level 1 is compe-
tent people, sometimes doing heroics, all
too frequently working to overcome the
system to do professional work. In spite of
heroics, the foundation that is assumed in
the CMM is competent professionals.

Without competent professionals, the
best software process is ineffective –
because the work we do in software proj-
ects is human-centric and design-inten-
sive, and the process is what we do.

Software professionals want to take
pride in their work, but how can they
when managers say, “I’d rather have it
wrong than have it late. We can always fix
it later.” When program managers
acknowledge that making the schedule is
the primary consideration in raises and
promotions, what is the impact on moti-
vation, quality, and professionalism?
These are fundamental management
issues, which is why the focus at Level 2
of the SW-CMM is on project manage-
ment, which empowers competent pro-
fessionals to do quality work.

It is interesting to note that, although
agile methodologies emphasize individu-
als over process, the set of practices in an
agile methodology addresses the same
kind of planning and commitment issues
as the focus on basic project management
at CMM Level 2. An agile methodology that
ignored customer collaboration and incre-
mental development would almost cer-

tainly fail. Agile practices are synergistic,
and the success of agile methodologies
depends on the emergent properties of
the set of practices as a whole.

Working Software
Over Documentation
The agile emphasis on tacit rather than
explicit knowledge, as externally captured
in documentation, can be a high-risk
choice in many environments such as
government contracting, but it can be an
effective choice if rationally made. When
agile advocates denigrate the value of
documentation, they lessen their credibil-
ity in the eyes of many experienced pro-
fessionals. The tone in arguing against
non-essential documentation differs from
arguing that documentation is an ineffi-
cient waste.

eXtreme Programming expert Bob
Martin said at the 2001 XP Universe con-
ference that he ran into someone who
said his organization was using XP.
Martin asked him how pair programming
was viewed, and the reply was, “We don’t
do that.” Martin asked how refactoring
was working out, and the reply was, “We
don’t do that.” Martin asked how well the
planning game was working, and the reply
was, “We don’t do that.” “Well,” Martin
asked, “then what are you doing?” “We
don’t document anything!” was the
answer.

Success carries the seeds of failure,
and the agile methodologists are con-
cerned that some adopting these new
ideas do not really understand what an
agile methodology is – and it is not ad
hoc, chaotic programming.

When considering process documen-
tation, the element that is missing from
agile methodologies, which is crucial for
the SW-CMM, is the concept of institu-
tionalization, i.e., establishing the culture
that “this is the way we do things around
here.”

Although implicit in some agile prac-
tices such as the peer pressure formed by
pair programming, infrastructure is
important for institutionalizing good
engineering and management practices.
The key process areas in the CMM are
structured by common features that deal
with implementing and institutionalizing
processes. The institutionalization prac-
tices for each key process area map to all
the goals within the area, so a naïve agile
implementation that ignored these cultur-
al issues would fail to satisfy any CMM
key process area.

As implementation models that focus
on the development process, these issues

“Software professionals
want to take pride in

their work, but how can
they when managers say,
‘I’d rather have it wrong
than have it late.We can

always fix it later.’ ”

Agile Methodologies and Process Discipline

October 2002 www.stsc.hill.af.mil 17

are largely outside the focus of the agile
methodologies, but they are arguably cru-
cial for their successful adoption.

Over-documentation is a pernicious
problem in the software industry, espe-
cially in Department of Defense (DoD)
projects. Software maintainers have long
known that the only documentation you
can really trust is the code (and those of
us with experience debugging compiler
and run-time defects doubt even that).
Having said that, an architectural descrip-
tion of the system that provides a tour of
the top-level design can be invaluable to
maintainers.

From a technical perspective, as proj-
ects become larger, emphasizing a good
architectural philosophy becomes increas-
ingly critical to project success. Major
investment in the design of the product’s
architecture is one of the practices that
characterizes successful Internet compa-
nies [4]. Architecture-based design, desig-
ning for change, refactoring, and similar
design philosophies emphasize the need
for dealing with change in a systematic
fashion.

One of the compromises that agile
methodologists are likely to be required to
make as they move into larger projects
and applications that are life- or mission-
critical is a stronger emphasis on docu-
menting the architecture and the design
of the system. In turn, plan-driven
methodologists must acknowledge that
keeping documentation to a minimum,
useful set is also necessary. What benefit
do we really get from detailed designs
where the programming design language
is nearly as large as the code?

Much of the controversy with respect
to the technical issues centers on what
happens as projects scale up. Practices
that rely on tacit knowledge and highly
competent professionals may break down
in larger teams with their rapidly expand-
ing communication channels and coordi-
nation challenges. However, replacing
those practices with ones appropriate for
large teams may result in losing the emer-
gent properties of the agile methodology.

Customer Collaboration
Over Contracts
The degree of trust implicit in relying on
customer collaboration rather than a con-
tract is not justified in many customer-
supplier relationships. Even when the rela-
tionship begins with the best of intentions
and the highest of expectations on both
sides, one of the main difficulties in learn-
ing from experience is “the use of unaid-
ed memory for coding, storing, and

retrieving outcome information” [5], with
the consequence that “change can make
liars of us, liars to ourselves” [6]. As time
goes by, as things change, our unaided
memories become unreliable.

The reliance of agile methodologies
on tacit knowledge is therefore vulnerable
to perception shifts over time, yet tacit
knowledge may be much more effective
than external, explicit knowledge in set-
ting expectations and driving behavior. In
a government-contracting context, federal
acquisition regulations establish a context
for ensuring fair play – even if it is not
necessarily an effective and efficient envi-
ronment. This can be considered a prob-
lem in expectations management. The
agile methodologies manage customer
expectations by insisting on an ongoing
customer interaction and rapid iteration.

Ignoring possible regulatory issues, the
stories in XP, in conjunction with an evolu-
tionary life cycle and ongoing customer-
supplier communication [7], document
requirements and commitments in a man-
ner that could satisfy the goals of require-
ments management and software project
planning in the SW-CMM. Will such a set
of stories satisfy a DoD customer that the
requirements are adequately stated and
that commitments as driven by the customer
are being met? Or will the natural desire
for a more comprehensive requirements
statement drive the customer towards a
requirements specification that lacks the
dynamic capability desired for an agile
methodology?

Perhaps an honest answer to this type
of question reveals more about the com-
fort levels of both customer and supplier
in an agile relationship. One of the most sig-
nificant barriers to implementing an agile
methodology is likely to be an inability to
establish and maintain close and effective
customer collaboration – and this barrier
is likely to be erected on the customer’s
side of the relationship.

Responding to Change
Over Planning
Dwight Eisenhower is quoted as saying that
planning is more important than the plan.
And one of the great military axioms is that
no battle plan survives contact with the
enemy. That said, planning – and prepara-
tion – are prerequisites to success. Planning
for change is quite different from not plan-
ning at all.

Agile methodologies, with their rapid
iterations, require continual planning.
Customer collaboration and responsiveness
to change are tightly linked, if perhaps
inconsistent with typical government-con-
tractor relationships. One of the shifts in
acquisition strategy in recent years has been
toward prototyping, evolutionary develop-
ment, and risk-driven life cycles. With their
emphasis on addressing requirements
volatility, agile methodologies could be a
powerful synthesis of practices that DoD
contractors could leverage to make planning
more responsive to change.

Stepping Up to the Plate
The greatest challenge in taking advantage
of the virtues of agile methodologies may
lie in convincing acquisition agencies to step
up to the plate and use agile methods where
appropriate. Hardly lesser is the challenge in
convincing agile advocates to consider mod-
ifying the agile methodologies to suit new
arenas. We have to decide where to place the
balance point in documentation and planning
to alleviate the concerns of the stakeholders
(and regulatory requirements) while achiev-
ing the flexibility and benefits promised in
the agile philosophy.

Agile methodologies may wind up being
the preferred process in many environ-
ments, yet be inappropriate in contexts such
as life-critical systems or high-reliability sys-
tems. Modifications to the agile methodolo-
gies needed for those environments may be
great enough that the synergistic effects of
the set of practices in an agile methodology
are lost. Emergent properties in a system are
sensitive to interdependencies. Arguing that
agile methodologies are not suitable for all
environments is not the same as saying they
are suitable for none.

Contractual commitments explicitly
based on evolutionary or incremental life
cycles are desirable. Plans with miniature mile-
stones that are detailed in the short term and
conceptual in the long term are possible.
Processes that capture the minimum essen-
tial information needed to reliably and con-
sistently perform the work and documenta-
tion that captures useful information are
feasible. Just because these objectives are
desirable, possible, and feasible does not,

“One of the most
significant barriers to
implementing an agile
methodology is likely
to be an inability to

establish and maintain
close and effective

customer collaboration.”

Agile Software Development

18 CROSSTALK The Journal of Defense Software Engineering October 2002

however, mean they are easily realized.
Selecting an appropriate balance point
requires an open mind from both agile and
plan-driven methodologists on both the
supplier and customer sides of the equation.

Conclusions
Agile methodologies imply disciplined
processes, even if the implementations dif-
fer in extreme ways from traditional soft-
ware engineering and management prac-
tices; the extremism is intended to maxi-
mize the benefits of good practice [8]. The
SW-CMM tells what to do in general terms,
but does not say how to do it; agile method-
ologies provide a set of best practices that
contain fairly specific how-to information
– an implementation model – for a partic-
ular kind of environment.

Even though agile methodologies may
be compatible in principle with the disci-
pline of models such as the CMM, the
implementation of those methodologies
must be aligned with the spirit of the agile
philosophy and with the needs and inter-
ests of the customer and other stakehold-
ers. Aligning the two in a government-con-
tracting environment may be an insur-
mountable challenge.

As we learn empirically what works well
in the agile methodologies and how far
they can be extended into different envi-
ronments, we should expect software engi-
neering to adapt and adopt the useful ideas
of the visionaries in the agile movement.
This will include using data to separate the
wheat from the chaff as we identify what is

useful, and what is limited in its applica-
tion. Laurie Ann Williams, for example, has
integrated pair programming into an exten-
sion of the Personal Software ProcessSM

called the Collaborative Software Process,
and demonstrated that performance
improves [9].

Many of the practices in the agile
methodologies are good practices that
should be thoughtfully considered for any
environment. While the merits of any of
these practices can be debated in compari-
son with other ways of dealing with the
same issues, none of them should be arbi-
trarily rejected. Perhaps the biggest chal-
lenge in dealing effectively with both agile
and plan-driven methodologies is dealing
with extremists in both camps who refuse to
keep an open mind.◆

References
1. Paulk, Mark C., Charles V. Weber, Bill

Curtis, and Mary Beth Chrissis. The
Capability Maturity Model ®: Guidelines
for Improving the Software Process.
Boston: Addison-Wesley, 1995.

2. Boehm, Barry. “Get Ready for Agile
Methods, With Care.” IEEE Computer
Jan. 2002.

3. Paulk, Mark C. “Using the Software
CMM with Good Judgment.” ASQ
Software Quality Professional June
1999.

4. MacCormack, Alan. “Product Devel-
opment Practices That Work: How
Internet Companies Build Software.”
MIT Sloan Management Review Winter
2001.

5. Einhorn, Hillel J., and Robin M.
Hogarth. “Confidence in Judgment:

Persistence of the Illusion of Validity.”
Psychological Review 85.3 (1978).

6. Dawes, Robyn M. Rational Choice in an
Uncertain World. Orlando: Harcourt
Brace Jovanovich, 1988.

7. Beck, Kent. eXtreme Programming
Explained: Embrace Change. Boston:
Addison-Wesley, 1999.

8. Paulk, Mark C. “Extreme Programming
From a CMM Perspective.” IEEE
Software 34.11 (2001).

9. Williams, Laurie Ann. “The Collabora-
tive Software Process.” Diss. Univer-
sity of Utah, Aug. 2000.

About the Author
Mark C. Paulk is a
senior member of the
Technical Staff at the
Software Engineering
Institute. He has been
with the SEI since

1987. Paulk was the “book boss” for
Version 1.0 of the Capability Maturity
Model® for Software and the project
leader during the development of
Software CMM® Version 1.1. His cur-
rent interests center on high maturity
practices and statistical control for
software processes.

Software Engineering Institute
Carnegie Mellon University
Pittsburgh, PA 15213
Phone: (412) 268-5794
Fax: (412) 268-5758
E-mail: mcp@sei.cmu.edu

2002 U.S. Government's Top 5 Quality Software Projects
The Department of Defense and CrossTalk are currently accepting
nominations for the 2002 U.S. Government's Top 5 Quality Software
Projects. Outstanding performance of software teams will be recognized
and best practices promoted.

These prestigious awards are sponsored by the Office of the Under
Secretary of Defense for Acquisition Resources and Analysis, and are
aimed at honoring the best of our government software capabilities and
recognizing excellence in software development.

The deadline for the 2002 nominations is December 13, 2002. You can
review the nomination and selection process, scoring criteria, and
nomination criteria by visiting our Web site. Then, using the nomination
form, submit your project for consideration for this prominent award.

Winners will be presented with their award at the 15th annual Software
Technology Conference in Salt Lake City and will be featured in the
July 2003 issue of CrossTalk and recognized at the Amplifying
Your Effectiveness 2003 conference.

SM Personal Software Process is a service mark of Carnegie
Mellon University.

October 2002 www.stsc.hill.af.mil 19

Using Code Science®, an agile software
development methodology based on

eXtreme Programming (XP), we1 recently
delivered an application (code-named
Odyssey) consisting of 400,000-plus exe-
cutable source lines of code (ESLOC) to
one of the world’s premier industrial
automation companies. The application was
written in C++ by as many as 17 developers
(including some of our customer’s staff) in
approximately 15 months. We are geograph-
ically remote from this customer.

Odyssey was delivered a month and a half
ahead of schedule with a productivity rate of
43 ESLOC per coding hour. During the
project duration, approximately 2,400
defects were found and fixed, yielding a cap-
tured defect density of six defects per thou-
sand lines of code (KLOC). During a thor-
ough, more than six-week customer-con-
ducted acceptance test, only about 200
defects were found (none severe), yielding a
delivered defect density of 0.5/KLOC. The
customer is delighted with the product and is
confident of the competitive edge achieved.

The Application
The Odyssey program consists of two dis-
tinct but related scalable vector graphics
applications. The first is a run-time applica-
tion that issues real-time commands from a
touch screen panel to devices known as pro-
grammable logic controllers, which are used
in manufacturing assembly processes. The
second is a panel design application that
enables human-machine interface engineers
to develop the graphical equivalent of a
hardware panel made up of buttons, gauges,
and other control and monitoring devices.

Why Agile Methods
We began experimenting with XP several
years ago, and actually began our first XP
project a few months before Kent Beck pub-
lished his first book on the subject [1].
Before that time, we used several traditional
waterfall and rapid application design-based
methods. We were impressed at how quickly
our first XP project was completed.

In a side-by-side comparison of XP and
waterfall on the very same project, the XP
team delivered their final product when the
other team was less than 50 percent com-
plete. Since then, we refined our initial XP
approach to encompass successive refine-
ments that became known as Code Science.

Code Science is largely based on the
twelve tenets of XP. These are as follows:
1. Customer at the Center of the Project.

The customer is treated as a full-fledged
member of the development team with
access to all the information that the rest
of the team is privy to (e.g., defect logs,
issue lists, etc.).

2. Small Releases. Simple releases are put
into production early and updated fre-
quently on a very short cycle (two to
three days). New versions are released at
the end of each iteration (three to five
weeks).

3. Simple Design. A program built with XP
should be the simplest program that
meets the current requirements.

4. Relentless Testing. XP teams focus on
validation of the software at all times.
Programmers develop software by writ-
ing tests first followed by software that
fulfills the requirements reflected in the
tests. Customers provide acceptance
tests that enable them to be certain that

the features they need are provided.
5. Refactoring. The system design is

improved throughout the entire develop-
ment process. This is done by keeping
the software clean, without duplication,
as simple as possible, and yet complete –
ready for any change that comes along.
(Martin Fowler defines refactoring as
“the process of changing a software sys-
tem in such a way that it does not alter
the external behavior of the code yet
improves its internal structure” [2]).

6. Pair Programming. XP programmers
write all production code in pairs: Two
programmers work together at one
machine.

7. Collective Ownership. All the code
belongs to the all the programmers. This
enables the team to work at full speed.
When something needs changing, it can
be changed without delay. It is important
to note that an effective configuration
management discipline is an important
enabler of this practice.

8. Continuous Integration. The software
system is integrated and built multiple
times per day (ideally, every time a task is
finished). Continual regression testing
prevents functional regressions when
requirements change. This also keeps the
programmers on the same page and
enables very rapid progress.

9. 40-Hour Workweek. Tired programmers
make more mistakes. XP teams do not
work excessive overtime, which keeps
them fresh, healthy, and effective.

10. On-Site Customer. An XP project is
steered by a dedicated individual who is
empowered to determine requirements,
set priorities, and answer questions.

11. Coding Standards. For a team to work
effectively in pairs and to share owner-
ship of all the code, programmers need
to write the code in the same way with
rules that ensure the code communicates
clearly.

12. Metaphor. Development is guided with a

Odyssey and Other Code Science Success Stories

John Manzo
AgileTek L.L.C.

Code Science® is an agile software development method based on eXtreme Programming (XP). This article describes the suc-
cess achieved using code science to develop a complex industrial automation application. With a brief review of XP as back-
ground, code science is described in terms of refinements made to XP in applying it to a wide variety of application domains
and industries over a period of almost four years. Included are real-world insights from the developers’ experience in applying
this agile development method, concluding with a quantitative measure of the effectiveness of XP since its inception almost
four years ago.

“In a side-by-side
comparison of XP and
waterfall on the very
same project, the XP

team delivered their final
product when the other
team was less than 50

percent complete.”

® Code Science is registered in the U.S. Patent and Trademark
Office.

Agile Software Development

20 CROSSTALK The Journal of Defense Software Engineering October 2002

simple shared story of how the overall
system works. XP was originally used to
develop a payroll program at Chrysler
Corporation [3]. The team used the
metaphor of an assembly line to describe
the process of building a payroll check.
The key tenet in XP is iterative develop-

ment and the unforgiving honesty of work-
ing code. The concept of iterative develop-
ment has been around for a long time.
However, XP does have some limitations
such as scaling – the ability to add large
numbers of developers to a project that
requires them. (Most XP practitioners con-
sider six to 12 developers to be the practical
limit.) It was necessary to modify XP to
develop a methodology that would work on
large projects, across multiple application
domains, and for clients with diverse and
sometimes very specialized needs, for exam-
ple, regulatory environments such as the
Food and Drug Administration (FDA),
where there is a strong need for extensive
documentation.

The Code Science Difference
A way to quickly understand Code Science is
to think of it as XP with a delta (a set of dif-
ferences). Some of the differences are addi-
tive (+), some are subtractive (-) and some
are simply modifications or refinements (�).
Following are a set of differences defined.

+ Business Process Analysis
In employing XP there is an implicit
assumption that the client basically knows
what it wants and, therefore, the require-
ments gathering process can begin with user
stories. Although this is often the case, many
of our clients need to focus and solidify their
ideas and, most importantly, determine with
clarity what they need rather than what they
want. To accomplish this, we developed a
process that helps bring focus and under-
standing to the client’s business needs, prior-
itizing features and functions in terms of the
business value they represent. This first step,
which is formally absent from XP, is a step
we can take when necessary to ensure that the
story-gathering effort produces stories based
on a real vs. perceived need.

+ Delphi Estimation
The Delphi method of estimating involves
three or more participants who discuss the
work and provide anonymous estimates of
the time for completion (usually in units of
perfect programmer hours – i.e., an ideal, no
interruption, period of time). These esti-
mates are tallied and a mean and standard
deviation is made known to the participants.
Discussion ensues among the participants as
to the differences in the estimates (which
remain anonymous). This continues for suc-

cessive rounds (usually three) until the stan-
dard deviation (a measure of uncertainty) is
made sufficiently narrow. Once the number
of perfect programmer hours is known, a
loading factor is applied to convert this esti-
mate to real programmer hours.

+ Componentized Architecture
For complex systems, it is especially impor-
tant to assure conceptual integrity in the final
product. Also, because complex systems can
be large, it is also important to enable the
system to be developed in an environment
of distributed ownership. Among the least
understood areas of XP is the notion of
design-as-you-go through refactoring. To some,
especially those who equate design and
architecture, this means no up-front archi-
tecture, and, by implication, any architecture
that the delivered system may have is a de-
facto one at best.

Architecture of a system simply means
identifying the constituent components of
the system and defining the interrelation-
ship(s) between them. The best architectures
are isomorphic (one-to-one) mappings
between problem and program space. This
ensures that a system’s underlying structure
and components mirror the problem being
solved. This means that for the program to
change requires that the problem changes and,
therefore, you are change-proofing your pro-
gram. While there may be more efficient
ways to solve a problem (e.g., creating one
module to perform similar functions by
invoking it in a context sensitive way), this
efficiency will almost always come at the
expense of time spent debugging and later
modifying the program if one or more of
the functions change.

However, it also means something more.
By defining the relationships between the
various components, one has gone most of
the way toward establishing agreements for
the interfaces. The power of interface agree-
ments is that they serve as restrictive libera-
tors. In other words, the individuals working
on various system components are free to
design the internals of those components
without regard for potential untoward
effects on the rest of the system – so long as
the interface agreements are honored.

By spending a relatively small amount of
time up front, one can ensure both a prod-
uct with conceptual integrity and a project
that can scale.

+ Automated Contract and
Regression Testing
Given that XP is premised upon the need to
embrace change, making it easy to perform
regression testing is an important part of
any XP project. We have taken this to the
next level by implementing the capability to
perform contract testing, which checks for
the existence of predefined pre-conditions,
post-conditions and class invariants. (As an
example, an overdrawn flag in your checking
account is invalid if there is a positive bal-
ance remaining after the last transaction.)

+ Story Actors
We have added to the notion of stories the
concept of story actors. Actors are personifi-
cations of the various categories of users the
system will encounter. Thinking of the
requirements in terms of actors brings the
requirements to life as well as unmasks
nuances that would otherwise remain invisi-
ble to both the developers and the customer.

+ Wall Gantts
Frequently used in project management, a
Gantt chart provides a graphical illustration
of a schedule that helps to plan, coordinate,
and track specific tasks in a project. We have
taken the concept one step further and
adapted it to agile methods by creating a
physical construct using twine, pushpins,
and index cards. The twine is used to create
a line on a wall. Tasks, written on cards, are
folded in half and hung on the line (one line
for each project participant). Index cards
with dates (one for each day of an iteration,
which usually lasts three to five weeks) are
pinned across the top of the chart.

Physically constructing the Gantt chart
makes it very easy to move tasks around,
drive out dependencies, and load balance.
Because the chart is wall size, it is easy for
the team to stand around the chart to discuss
the state of the project in near real-time
(each day starts with a stand-up meeting).
The wall Gantt also provides clear owner-
ship for development efforts, encourages
accountability, and serves as the team’s war
room and center of the project universe.

+ Automatic Document Generation
Through a tool we have built called Doc-It
(similar to JavaDoc), we are able to reduce
the burden and streamline the process of
generating documentation that describes the
inner workings of the code. Experience
shows that it is a poor practice to separate

“The best architectures
are isomorphic

(one-on-one) mappings
between problem and

program space.”

Odyssey and Other Code Science Success Stories

October 2002 www.stsc.hill.af.mil 21

documentation from the code that it
describes. Updating source code documenta-
tion is difficult enough, but once the docu-
mentation is separated from the code, it is
“out of sight, out of mind.” To deal with
this, a programmer simply needs to tag a
comment in the source code and Doc-It cre-
ates automatic HTML Application Program
Interface documentation with every build.

Doc-It traverses source code directories,
creating a navigable hierarchy (directory,
class, method) and creates a Web page for
each source file. This makes the documenta-
tion easily accessible to new and existing
team members. It also makes the documen-
tation easily accessible to clients during co-
development or during knowledge transfer
phases.

� Pair Programming
Although our experience proves pair pro-
gramming to be extremely effective, for
many routine programming tasks, pair pro-
gramming has not shown itself to be cost
effective. On the other hand, for anything
either algorithmically or logically complex,
pair programming is a must. The default is to
program in pairs, but the team gets to decide
which modules will be coded solo.

- 40-Hour Workweek
While we strive to provide the highest quali-
ty of life for all our staff members, it is unre-
alistic to expect that our client’s time-critical
requirements will not sometimes necessitate
sustained periods of activity. Treating a 40-
hour workweek as a hard requirement is
often impractical.

- Metaphor
Metaphor is not included in Code Science.
While we concede that it has benefits, so far
we have not found a need to incorporate the
use of metaphor in our methodology.

+ Flexibility to Meet
Client’s Special Needs
Some of our clients have special needs that
are not accounted for by pure XP (e.g., in
highly regulated environments such as bio-
medicine, the FDA requires specialized doc-
umentation and traceability for certain types
of software). Code Science eliminates this
XP limitation by incorporating a special needs
provision in our methodology.

Application to Odyssey
Code Science is used on all Geneer software
development projects. The Odyssey project
was no exception. However, no two projects
are the same. Each emphasizes certain of
the specific tenets described above to differ-
ing degrees. In the interest of brevity, we

describe some of our developers’ more
salient experiences and insights in applying
these tenets.

The Customer Is
at the Center
XP talks about having the customer on-site.
While this is ideal, our experience in using
XP/Code Science over the last four years is
that it is seldom practical unless your cus-
tomer is internal. In the case of Odyssey, the
customer was located hundreds of miles
away.

More important than physical location,
however, is putting the customer at the cen-
ter of your project as described earlier. In an
XP/Code Science project, there is no
attempt to hide information from the cus-
tomer. While we did not insist the customer
be physically in our facility, we did request
that they be present during iteration plan-
ning, periods of critical knowledge transfer,
or to approve test plans and validate their
results – usually at the beginning/end of
iteration. When this was impractical, or for
routine communications, we used e-mail,
conference calls, WebEx sessions, or video-
conference. With active customer participa-
tion, the resulting product can be everything
that the customer expects it to be.

Refactoring
Refactoring does not mean re-working. Do
not partially write a feature with the intent of
refactoring to get it complete later. Keep the
changes simple, but keep them atomically
complete.

Pair Programming
Pair programming was especially useful in
ramping up a new staff member. It was also
quite useful for chasing down complex
defects. For simple modules, the team found
it more expedient to use the white board in
pairs for 15 minutes, then program solo.

Continuous Integration
The team performed builds at least daily,
more often, two or three times a day. With a
good automated build program, you cannot
build too often. Our builds are generated
with a custom, home-grown application that
creates builds at 4 a.m. and again at 3 p.m.
This gives the team a fresh build every
morning and also one to work on in the
afternoon. Besides performing the physical
build, we are also informed if the build is
broken (e.g., cannot compile because of a
syntax problem, or a configuration manage-
ment issue – checked in one file and not
another, etc.).

40-Hour Week
During a long period of peak activity, the

team found it helpful to make their work
environment homier. By making their work-
place a more dorm-like environment, they
significantly eased the stress of the long,
often intense, workdays and nights.

Componetized Architecture
A high-level architecture was defined at the
beginning of the first iteration, and as more
information became available, more detail
was added to successive iterations. Team
leads would spend perhaps two days with
their teams using white boards for a four to
six-week iteration. We found that the biggest
mistake one can make here is to attempt to
get too detailed about something for which
there is insufficient information.

Story Actors
Because most of the team never worked on
an industrial automation application, actors
helped the team get familiar with the client’s
domain. When the team took a field trip,
they could identify the user types by their
actor names (representative of their role-
play, more than their job title). It helped the
team understand the business and how the
product would be used in stories. The
requirements were written in terms of how
the system would be used, vs. desired func-
tions. By associating who is doing what, it
helps conceptualize and compartmentalize
the functions.

Wall Gantts
Wall Gantts make load balancing easy and
kept the project on track. The whole team
sees the actual size of the function based on
the task cards and there is great satisfaction
in putting completion stickers on each card.
An extremely useful management tool, Wall
Gantts also helped to reveal issues and
expose risks.

Large Team Experience
Although the overall team was divided into
subteams, stand-up meetings were typically
with the entire team. Team leads summarize
and add detail with other team members as
needed. As tasks are completed, people can
move from one team to another.

Conclusion
During a period of almost four years,
XP/Code Science has been employed on 14
projects across a wide variety of application
domains and industries such as aerospace,
telecommunications, banking and finance,
pharmaceuticals, consumer goods, and even
pari-mutuels. These projects ranged in size
from 10 KLOCs for a Personal Data
Assistant client, to more than 400 KLOCs

CONTINUED ON PAGE 30

Software Engineering Technology

Today, many companies are examining
their internal processes in an effort to

integrate more effective systems and soft-
ware engineering. Many of the challenges
faced in integrating systems and software
engineering exhibit similarities to chal-
lenges observed on large distributed
efforts.

In this article, engineering organiza-
tional variations are first explored, not to
judge but to recognize the existence of
variation and to note a common charac-
teristic observed in all successful organi-
zations regardless of size or structure.
The article then discusses how the identi-
fied characteristic is achieved in different
organizations.

This preliminary investigation sets the
stage for a closer examination of what
systems and software integration means
in practice. An alternative view of a suc-
cessful large project is presented that may
challenge current published literature.
The information presented in this article
is the result of research initially conduct-
ed on large distributed projects [1].

Organizational Variation
If you were to ask a manager or senior
engineer working today in a large
advanced technology software-intensive
organization to examine the chart in
Figure 1, it is likely he (or she) would nod
his (or her) head up and down, reflecting
familiarity with the functional organiza-
tional structure and terminology
employed on the chart.

Each rectangle on Figure 1 under-
neath the engineering manager is imple-
mented through a department each with
its own manager and pool of skilled engi-
neers. At this level, similarity across
diverse organizations is evident.
Nevertheless, while many organizations
have a similar top level structure, we have
seen that inside these organizations
implementation can vary greatly.

For example, in some organizations

the Systems Engineering department is
totally responsible for producing the soft-
ware requirements specification (SRS). In
other organizations, the Systems and
Software Engineering departments col-
laborate on the production of the SRS
with each producing specific piece-parts of
the final SRS. We have also witnessed a
third organizational variation where the
Software Engineering department pro-
duces the complete SRS, while the sys-
tems group provides a review and
approval role.

Note that in all three cases described,
the organizational chart referenced in
Figure 1 could be used to describe the
organizational structure. At the same
time, it is important to note that what we
are asking engineers to do in departments

by the same name, but in different organ-
izations, can differ greatly.

Common Successful Key
Characteristics
It is not the intent here to judge the mer-
its of particular organizational approach-
es, but rather to acknowledge their exis-
tence and to point out a key characteristic
we have observed common to all success-
ful organizations. In each case, when an
organization functions successfully to
produce an end product, individuals with-
in that organization understand and accept
their specific role. That is, they understand
the organization’s expectations of them.

This mutual understanding of roles,
responsibilities, and expectations leads to
operational efficiency with minimal dupli-
cation of effort. The successful organiza-
tion appears from the outside to function
as a single unit. Its piece-parts may vary
on the inside, but in each case they come
together without major surprises into a
final integrated product.

It is worth noting here that in our
experience we have found in many suc-
cessful organizations that the definition of
and responsibility for each piece-part is
oftentimes not written down or described
formally. It has been our experience
working with large software intensive
organizations with long histories of
development and evolution that this
knowledge may have been written down
at some point in time but due to organi-
zational evolution, its current state is
most often passed on through less formal
means.

Integrating Systems and Software Engineering:What Can
Large Organizations Learn From Small Start-Ups?

Paul E. McMahon
PEM Systems

In an effort to integrate more effective systems and software engineering, many companies today are examining their internal
processes. Recent research conducted on distributed development efforts may provide insight that could aid today’s systems and
software integration initiatives. Drawing material from his book, “Virtual Project Management: Software Solutions for
Today and the Future [1],” the author explores variations in large and small engineering organizations and presents an alter-
native view of large projects that may aid companies in their quest for more effective systems and software integration.

22 CROSSTALK The Journal of Defense Software Engineering October 2002

Engineering
Manager

Systems
Engineering

Support
Engineering

Integration & Test
Engineering

Software
Engineering

Figure 1: Traditional Functional Engineering Organization

“... it is important
to note that what

we are asking
engineers to do in

departments by the
same name, but

in different
organizations, can

differ greatly.”

October 2002 www.stsc.hill.af.mil 23

Integrating Systems and Software Engineering: What Can Large Organizations Learn From Small Start-Ups?

Communicating Expectations
in Large Organizations
In large organizations we tend to see
expectations communicated through
structure and what we refer to as a
process focus. While many large firms
have over the past few years undergone
organizational streamlining, our experi-
ence indicates that sizable written com-
mand media with phase-related exit and
entry criteria continues to be relied upon.

The process employed inside many of
these large organizations can be referred
to as predictive, or repeatable. While
written command media aids repeatabili-
ty and communication, we have found
that new engineers in many large organi-
zations cannot rely totally on this written
word to fully comprehend organizational
expectations. Frequently, local cultures
are also relied upon to aid communica-
tion of expectations.

Communicating Expectations
in Small Organizations
Unlike many large organizations, small
organizations most often see little struc-
ture, little process, and little established
culture. The focus of most small organi-
zations is on surviving. We find many
small organizations to be heavily reliant
on specific individuals. Given this situa-
tion, on the surface it would appear there
is little a large organization could learn
from a small one. However, let us take a
closer look at the small organization.

The Small Organization
Super Programmer Model
The communication of expectations in
many small organizations is simple to
describe. We refer to it as the super pro-
grammer model that implies a do-it-all
expectation. The problem with this
model is that, while expectations are
clear, those expectations often lead to
over-reliance on, and burnout of, individ-
uals. We frequently find organizations
that live by the super programmer model
also live by the code-and-fix methodology.

During the past few years, we have
known colleagues who have given up the
relative security of the large, established
organization in favor of the increased
opportunity afforded by small start-ups.
Unfortunately, many have also found
that the demands of the small start-up
require great personal sacrifice. While
some have returned to the more pre-
dictable large corporate environment, oth-
ers have found increased job satisfaction
through an alternative small-company
model that is rapidly gaining in populari-

ty: the small team model.

The Small Team Model
Today, many small organizations are mov-
ing away from the super programmer
model of operation in favor of a small team
development approach. This change also
often reflects a move away from a code-
and-fix methodology, or no process, to
what is referred to as an adaptive or light-
weight process or method [2]. When we
use the term adaptive method in this article
we mean a method that supports rapid
change initiated through small teams.

Lightweight processes can be thought
of as just enough process, or process with-
out a process-focus. Examples include
eXtreme Programming (XP), which have
been described by Kent Beck [3] and Jim
Highsmith [4].

Characteristics of many lightweight
processes include the following:
• Code and test focus.
• Continual iterative design.
• Pair programming.
• Continual planning and integration.

Upon first learning about the charac-
teristics of XP, our reaction was, “This is
fluff camouflaging a traditional code-and -
fix methodology.” However, after observ-
ing and interacting with a number of small
teams embracing this approach, we have
reached a different conclusion.

XP Fundamentals in Practice
While it is true that XP focuses on today,
we have found that organizations that take
this methodology seriously do not do so at
the expense of planning. In fact, teams
that follow this process often find them-
selves planning continuously. Planning in
an XP environment is different from tra-
ditional planning conducted on many
large projects. Plans are short in length,
contain specific attainable goals, and often
focus on periods of only a few weeks in
duration.

This notion might not even sound like
planning to those familiar with the process
as currently implemented in many large
organizations. It also might sound short-
sighted and non-optimizing (not looking
to the future for improvement), but the
immediate feedback provided through
short repeated cycles of planning and exe-
cution is proving to be effective from the
perspective of the engineer in the trench.

This is the first fundamental differ-
ence we noticed when dealing with a small
company employing an adaptive method-
ology. The second came when talking to
software engineers working on an XP
team: We found a surprising level of
awareness and ownership of schedule and

budget. The software engineers were
aware of the schedule and budget and felt
ownership of it because they had partici-
pated in its development. On the other
hand, in many large organizations, we
have found that it is not uncommon for
engineers to have little insight into the
project schedule and budget.

Upon first learning about XP, we
found its code-focus to be difficult to
accept. However, after observing an XP
team in action, it left us with a different
impression.

The notion that programmers using
XP do not design is a misunderstanding.
One member of a small XP team
explained it to us this way: “Just because
we focus on the code doesn’t mean we
don’t give each task considerable fore-
thought. We just don’t write down the
result formally, and we don’t use a formal
design tool.” Then after he hesitated, he
added, “But we might draw a sequence
diagram or two, if we think it might help.”
Another member of the same team said,
“We keep our designs as simple as possi-
ble, and we try not to spend any unneces-
sary time in design.”

We had an opportunity to witness the
design process in action with a small team,
and it reminded us of an informal brain-
storming session you might see in any
organization. The meeting had not been
scheduled ahead of time. It just happened
because one member of the team wanted
some help. Within a few minutes, three
team members had gathered around a
white board, and 25 minutes later there
was a design solution sketched out on the
board. We suggested that someone cap-
ture the diagram more formally.

Another interesting aspect of XP is
pair programming. When we first heard
about pair programming, we expressed
agreement with the concept to a young
client. Our thinking was that this tech-
nique would provide a backup in case one
team member was pulled off the project
or got sick. But the client was quick to
explain that pair programming had noth-
ing to do with having a backup.

We have since learned that some pair
programming team members are adamant
about having both team members present
side by side during 100 percent of the
programming activity. That is right! Not
only does it take two people to complete
one program, but also if one of the two is
missing, in some cases, the other does not
want to move on. Doesn’t that sound
incredibly inefficient?

But then the client went on to explain:
“It’s the dialogue that I don’t want to miss.
By having my teammate right next to me,

Software Engineering Technology

it forces me to verbalize my thought
process at the moment I type the code in.
Often through this process, errors are
detected at the same moment when they
are about to be created.”

As I listened to this process being
described, a light bulb was flicking on in
my head – this process is what peer
reviews and early error detection was
always meant to be!

Tailoring XP
When reading about a new methodology,
you often envision something different
from the way organizations actually apply
it. XP, according to the book, includes 12
key practices. However, not all companies
that claim to employ XP follow all the
practices exactly as outlined by Beck [3].
For example, while many small organiza-
tions have recognized the value of pair
programming, others have also recognized
that what their engineers actually do
extends beyond programming itself.

Often we find in practice that the pair
recognizes that one of the members has
more of a systems inclination (i.e., customer
interface, requirements management),
while the other prefers the traditional pro-
grammer role. These recognitions are usu-
ally based on individual strengths and
desires. As a result, we tend to see a systems
focus and a software focus being supported
within the small team and small company
environment, but without the formal sys-
tem and software department boundaries
that are prevalent in large organizations.

Effective Systems and
Software Integration
in Practice
We have witnessed large organizations
communicating expectations through
defined organizational structures, support-
ed by heavyweight command media (policies,
practices, and procedures). We have also
seen the key role of culture in communi-
cating expectations in large organizations.

In small organizations applying light-
weight methodologies, on the other hand,
communication occurs through short-
range planning that leverages individual
teammate strengths. Given what we have
witnessed inside both large and small
organizations, we are led to a question:
“What does effective systems and software
integration mean in practice?”

We believe that the answer to this
question should be independent of the
size and structure of the organization. We
propose the following definition: Effective
systems and software integration means
that the right interactions are occurring at

the right time, the right questions are
being asked at the right time, and the right
factors are being considered and acted
upon at the right time.

Systems Engineering Inside
Large Organizations
We have, on a number of occasions, taken
the opportunity to ask an engineer in a
large organization, “What is systems engi-
neering?” Often the answer received has
equated to, “whatever the systems engi-
neering group does,” in that particular
organization.

Unfortunately, this answer can be
problematic for two reasons. First, from
an educational viewpoint, how are we to
prepare systems engineers in our universi-
ties when the expectations of a systems
engineer can vary dramatically from one
organization to another?

Second, when task expectations are
too tightly coupled to an organizational
structure or department charter, the
increased likelihood for tasks to fall
through cracks exists. This is because no
organization is perfect. We have also
found that a tight coupling of task respon-
sibilities to organizational partitioning
tends to give rise to the “it’s not my job”
syndrome in large organizations.

Systems Engineering Inside
Small Organizations
On the other hand, when we have asked,
“What is systems engineering?” to an engi-
neer who has experienced only the small
organization environment, the most com-
mon response has been a puzzled look on
his/her face. This is because in most small
organizations, engineers do not think in
terms of distinct systems and software
tasks; rather, they think in terms of getting
the job done.

One reason small organizations do not
tend to exhibit the task-related difficulties
we have observed in large organizations is
because they have not artificially parti-
tioned detailed tasking responsibility based
on organizational boundaries. Stated dif-
ferently, in small organizations that use
adaptive methods, the team works out the
task responsibilities knowing that together
the team is responsible for everything.

Applying a Lightweight
Approach to a Large Project
Published literature available today on
lightweight methodologies [3, 4] indicates
these approaches may not be scalable to
large projects. While we do not recom-
mend XP practices be applied in full on
large projects, a number of the most suc-

cessful large projects we have witnessed
tend to already embrace many of these
same practices. Although it is unwritten,
i.e., not found in any formal corporate
command media, a number of the most
successful large projects we have observed
also tend to exhibit an unspoken adaptive
subculture.

Characteristics of these projects
include incremental development, plans
that focus on today, and a code focus. A
code focus may seem unusual to a large
project especially in large disciplined
organizations, but in practice it has proven
to be particularly effective when heavy
reuse is involved. Testing candidate reuse
code early, peer reviewing proposed
changes early and often, integrating early,
and staying integrated through a series of
incremental builds have proven to be effec-
tive techniques on projects of all sizes.

A Key to Success
This article recommends managing a large
project as a collection of small adaptive
projects. This recommendation is not
meant to imply that the adoption of such
methods alone is sufficient to ensure large
project success. On the contrary, if small
teams within a large team were allowed to
continually adapt their plan independently,
then chaos would certainly result.

On one large project that we worked as
a team member, the software work was
partitioned across the country at three dis-
tinct sites. But before the work partitioning
took place, a small group of senior project
personnel established overall system archi-
tecture with very specific constraints,
including computer platforms, compilers,
tools, and interfacing requirements.

As the project evolved, there also
evolved a number of small teams each with
approximately seven to 10 engineers. Each
small team had its own unique develop-
ment issues. The project leader empowered
these lower level informal small teams to
make key decisions constrained only by the
project requirements and the defined proj-
ect architecture.

Many of the characteristics we have
seen in successful small companies
employing adaptive methods are also evi-
dent within small informal teams inside
large projects. You will not necessarily find
the small teams we are referring to on a for-
mal organizational chart.

In-the-large XP practices can work, but
only if implemented within the context of
a higher level framework.

In short, we want our small teams
inside large teams to take on increased
responsibility, but the key to success on
large projects is ensuring small team adap-

24 CROSSTALK The Journal of Defense Software Engineering October 2002

October 2002 www.stsc.hill.af.mil 25

Integrating Systems and Software Engineering: What Can Large Organizations Learn From Small Start-Ups?

tations are consistent with well-defined,
well-communicated system architecture.

An Alternative View
of a Large Project
Through the use of a small architecture
group and other related techniques to
communicate architectural decisions and
responsibilities [1], large projects can
effectively be managed as a collection of
small adaptive projects (Figure 2). While
many large companies may not formally
describe their operating structure in these
terms, many successful large projects oper-
ate in this manner today.

It is also worth noting that we do not
recommend that the notions of small
teams and pair programming be overly
formalized in large organizations. This
would, in fact, undo the value we seek.
Informality is an essential ingredient to the
success of the small team in any organiza-
tion.

Pair programming can be effective in
an organization of any size, but it is also
important to realize that some people just
do not team well, and we do not believe
that forcing small teams or pair program-
ming makes sense in any organization.

Different companies have different
cultures and differing past experiences and
beliefs surrounding their workspace. Some
believe in open workspaces, while others
pride themselves in the private offices they
provide their professional personnel.
Nevertheless, we are witnessing a definite
movement within the software community
toward more group activities in support of
increased productivity.

One new engineer in a large company
told us that he sat in his cubicle for the first
three months of his new job continually
wanting to ask questions, but not wanting
to be perceived as a nuisance. Other new
engineers in the same company, we found
out later, felt the same way.

Soon thereafter, an engineering lab
environment was set up. It was not long
before all the new software engineers were
spending more and more time together in
the lab. One engineer said the lab environ-
ment made it much easier to ask questions
and to listen to answers to questions asked
by others. Progress on the project
increased at lightning speed shortly there-
after.

Conclusions
A few months after providing assistance to
a small company utilizing XP, we asked
one of their engineers a simple question:
“Had anything changed over the past few
months?” The engineer responded: “If I
had to point to one thing, I’ve noticed that
I’m spending less time dealing with urgent
and unimportant matters, and more time
on the things that count.”

Adaptive methods not only can work
in large organizations, we have found they
are often key to large project success. We
recommend large organizations that are
not operating as effectively as desired con-
sider the selective adoption of adaptive
techniques.

What really first caught our attention
with adaptive methods was the focus on
the engineer in the trench. Too often, well-
intentioned process improvement initia-
tives never seem to reach the real workers.

In reality, the short cycles of planning
are not shortsighted, rather they are based
on the length of time into the future where
we have control over where we are going.

It is also important to note that it is not
that the process we see today in large com-
panies is not working, but it works at its
own pace. Adaptive techniques and small
informal teams inside large organizations
can complement a formal organizational
process focus, and can also be an effective
method to facilitate change in an organiza-
tion that is not evolving at the pace need-

ed to remain competitive in today’s world.
Write plans that work today, and do not

discourage your team from continually
updating their plans to reflect increased
knowledge tomorrow. Encourage small
teams to leverage your organization’s
strengths regardless of where those
strengths lie inside your organization.

Small teams and adaptive methods can
not only help your systems and software
integration efforts, but they can also pre-
pare your organization to be more effec-
tive in tomorrow’s collaborative world.◆

References
1. McMahon, Paul E. Virtual Project

Management: Software Solutions for
Today and the Future. Boca Raton: St.
Lucie Press, An Imprint of CRC Press
LLC, 2001.

2. Fowler, Martin. “Put Your Process on a
Diet.” Software Development Mag-
azine Dec. 2000: 32-36.

3. Beck, Kent. eXtreme Programming
Explained: Embrace Change. Boston:
Addison-Wesley, 1999.

4. Highsmith, James A. Adaptive
Software Development: A Collabora-
tive Approach to Managing Complex
Systems. New York: Dorset House
Publishing, 1999.

About the Author
Paul E. McMahon is
an independent con-
tractor providing tech-
nical and management
leadership services to
large and small engi-
neering organizations.

Before initiating independent work as
PEM Systems in 1997, McMahon held
senior technical and management posi-
tions at Hughes and Lockheed Martin.
Today he employs his 28 years of
experience to help organizations
deploy high quality software processes
integrated with systems engineering
and project management. He has
taught software engineering at
Binghamton University in New York,
conducted software process and man-
agement workshops, and has pub-
lished more than 20 articles and a book
on virtual project management.

118 Matthews St.
Binghamton, NY 13905
Phone: (607) 798-7740
E-mail: pemcmahon@acm.org

Large Project

Small
Team

Small
Team

Small
Team

Figure 2: An Alternative View of a Successful Large Project

Agile software development is not new.
It has been around since the beginning

of software development, but did not
show a competitive advantage in the 1970s
and 1980s, said Alistair Cockburn, a con-
sulting fellow at Cockburn and Associates.
However, it did win the development races
in the turbulent 1990s, he said, and
methodologies that began appearing in
1993-95 were Rapid Application
Development, eXtreme Programming
(XP), Scrum, Dynamic Systems
Development Method, Crystal, and adap-
tive.

Cockburn was one of the speakers at
the “Creating Competitive Advantage
Through Agile Development Practices”
technology forum held recently at
Westminster College in Salt Lake City.
More than 150 attendees learned about
agile software development and networked
with peers during breakout sessions. The
Westminster College Gore School of
Business and Wasatch Digital IQ co-spon-
sored the forum.

In his talk, Cockburn explained that
agile software development is about put-
ting value on “maneuverability.” He said,
“Its [agile development] being able to
respond quickly became its advantage,
however, agility is a value statement.”
Cockburn stressed that agile is not appro-
priate for every project. Some projects
want predictability and repeatability, and
cost and agility go against each other, he
said. “With agile, it costs more to deliver
products faster. There are trade-offs, and
each project will make its own appropriate
value decisions.”

Jim Highsmith, director of Cutter
Consortium’s Agile Project Management
Advisory Service, cited two main reasons
for the popularity of agile software devel-
opment today. “Agile addresses a problem
domain where speed and flexibility are
paramount,” he said. “And it addresses a
culture and workplace we would like –
that Dilbert would like to work in – a
community.”

Cockburn noted that agile methods

make greater use of the following: individ-
uals and interactions, working software,
customer collaboration, and responding to
change. Plus, agile means different tech-
niques in different situations, he said.
“Within agility, different tactics fit different
situations. Agile is not just a re-titling of
eXtreme Programming.”

Highsmith noted that agile works best
in “exploration” environments. He com-
pared it to drilling for oil: Drilling to
known oil reserves requires very different
techniques to be cost effective than does

exploration drilling to find oil. In each case,
projects are managed differently and suc-
cess is measured differently, he said. “Agile
software development finds a way around
problems to get successful projects.”

Highsmith defined an exploratory
project in the software world as “one to
complete large projects that are both fron-
tier (research-like) and mission critical in a
turbulent business and technology environ-
ment. The characteristics include early
product release, high customer involve-
ment, and frequent testing.”

What led Symantec to move to XP was

not delivering the product that its customer
needed, said Russell Stay, vice president of
Product Delivery. The company was using
a modified Waterfall technique consisting
of up-front design then execution. Tight
project management resulted in delivering
the product on time and in budget, said
Stay, but it was the wrong product. “We
needed to adopt a new process.”

Agile software development is a
resource-limited cooperative game of
invention and communication, said
Cockburn. The key is adapting to reality
with players – people – who are non-linear,
unpredictable, spontaneous, and bring
weaknesses and strengths to the game,
which never repeats itself, he said.
“Software succeeds when people notice
errors and have enough pride in their work
to step out of their job description to see
that it gets fixed.”

An important consideration, said
Cockburn, is that people communicate
most effectively interactively, i.e., face to
face. “The richest form of communication
is two people at a white board. The least
effective form is on paper.” Much is said in
the communication that occurs with body
language, voice inflection, facial expression,
etc., he said.

Added to this is the fact that the project
methodology gets restructured around the
ecosystem details, which are always chang-
ing. The key is to pair workers who com-
plement each other to achieve the desired
results. For example, said Cockburn, if
“Bill” only has the patience to take a proj-
ect through the requirements stage, then he
should be teamed with “Mary” who excels
in implementing the process through to
project completion, he explained. “This
way, information gets from the marketplace
to the programmers.”

“Gone are the days of the saviors and
cowboys,” said Stay. Pair programming was
stressed up front when Symantec began its
agile implementation. Stay said that he was
willing to accept a 15 percent attrition rate
due to this change. However, after giving it
a try, he said that fewer than 8 percent of

Highpoints From the
Agile Software Development Forum

Pamela Bowers
CrossTalk

There is much confusion in the software industry about what agile software development is and is not, and what it implies.
This article reports on the keynote talks at the “Creating Competitive Advantage Through Agile Development Practices”
technology forum held at Westminster College in Salt Lake City in March. Nearly 110 attendees at this initial annual forum
participated in work sessions and networking breaks, and heard speakers and panel discussions about increasing return on
investment, decreasing time to market, increasing innovation, and more.

26 CROSSTALK The Journal of Defense Software Engineering October 2002

“Agile software
developers are not

hackers. Agilists plan
regularly, test according

to project priorities,
and re-check results

with users often.
They talk to each

other and customers
as a matter
of practice.”

October 2002 www.stsc.hill.af.mil 27

employees left the company.
Stay stressed that it is important for the

team to buy into the agile method and that
coaching should be brought in house. Co-
residence is also critical so that leaders and
developers can work side by side, he said.
“Individual office cubes get used less and
less. Our average use is about one hour per
day. The rest of the time, the development
area is the hub of activity.”

Unfortunately, the agile message is
often misconstrued, said Cockburn. “Agile
software developers are not hackers.”
Unlike hackers, agilists do plan regularly, he
said. Agilists test according to project prior-
ities, and re-check results with users often.
They talk to each other and customers as a
matter of practice. They expect manage-
ment to provide priorities and to participate
jointly in making project adjustments.

Stay concurred. The process at
Symantec is “highly managed but flexible,”
he said. They use the “queing” theory of
breaking down the process into small parts;

iterations are done biweekly. Also, exit cri-
teria and test procedures are defined first,
before writing code, he said, and test
automation is a priority.

It is also not true that agile only works
with the best developers, Cockburn said.
The critical success factor is to have at least
one experienced and competent lead per-
son, who can then carry four or five “aver-
age or learning” people. With that skill mix,
agile techniques have been shown to work
many times when the deck is “stacked” as
follows:
• Hire good people.
• Seat them close together to help each

other out, close to customers and users.
• Arrange for rapid feedback on deci-

sions.
• Let them find fast ways to document

their work.
• Cut out the bureaucracy.

“Agile software development has a lot
to do with how much trust and communi-
cation is set up,” said Cockburn.◆

Successful Methodology Ensures Reuse

In the real world, organizations can mandate that Personal Software ProcessSM (PSPSM)
be used on a project and install the trainers to make sure it is used. However, soft-

ware developers can either refuse to use PSP, or find many ways to subvert it, warned
Alistair Cockburn, a recognized expert on software project management in an interview
with CrossTalk.

“Since 1991, my views on methodology have been that programmers can at anytime
opt not to use this [process] either overtly or covertly,” said Cockburn, a consulting fel-
low at Cockburn and Associates. “Therefore, the definition of the successful method-
ology for me includes that the people agree to use it the next time.”

Cockburn said that he is looking for the way [methodology] that “puts the least
requirements for consistency and discipline on software teams, yet beats the odds.” He
pointed to Crystal as a solution. There are three core principles in Crystal that make it
successful. First, it works in increments, which allow you to recover from almost any
catastrophe. Second, Crystal calls for reflection after every increment to discuss what to
keep and what to change, which develops a process that adapts to change. Third, the
team must tailor itself to create its own process. He added that Crystal also has a strong
emphasis on personal communications, tacit knowledge, close worker proximity, and
frequent delivery of running deliverables. It is all these elements, Cockburn said, that
allow you to “beat the odds.”

When asked, “What are the three things that most ensures agile success?” Cockburn
said that experienced management is the No. 1 factor. “You need to have a project man-
ager who is alert, sensing whether something is right or wrong, and with enough expe-
rience to steer the group. Second is having access to real users; developers need reliable
information for requirements, to have someone handy to show results, and to get feed-
back on a reliable basis. Third most important is physical proximity. It is important to
have people close enough together that they can talk to each other, he said.

Cockburn also advises management to pay attention to their fears. “They could be
well founded.” The key is to find out which fears are unfounded, he said. For example,
he pointed to the fear of “hacking.” In XP, the process check is that there are always
two people working together, so it’s a lot harder for one of them to hack, he said.
Programmers also write their acceptance check before they write actual code, and this
takes a lot of thinking, he added. A final rule is that any two people sitting together can
change anybody else’s work, as long as they agree, he said. “Call it common ownership.”

With agile development, said Cockburn, “Programmers cannot just say, ‘Go away
and leave us alone’. Agile takes collaboration among project managers, users, program-
mers and testers. There is no privacy in the code.”

Get Your Free Subscription

Fill out and send us this form.

OO-ALC/MASE

7278 Fourth Street

Hill AFB, UT 84056-5205

Fax: (801) 777-8069 DSN: 777-8069

Phone: (801) 775-5555 DSN: 775-5555

Or request online at www.stsc.hill.af.mil

NAME:__

RANK/GRADE:___

POSITION/TITLE:__

ORGANIZATION:___

ADDRESS:__

__

BASE/CITY:__

STATE:___________________________ZIP:___________________________________

PHONE:(_____)___

FAX:(_____)___

E-MAIL:__

CHECK BOX(ES) TO REQUEST BACK ISSUES:

JUL2001 � TESTING & CM

AUG2001 � SW AROUND THE WORLD

SEP2001 � AVIONICS MODERNIZATION

JAN2002 � TOP 5 PROJECTS

MAR2002 � SOFTWARE BY NUMBERS

MAY2002 � FORGING THE FUTURE OF DEF

JUN2002 � SOFTWARE ESTIMATION

JULY2002 � Information Assurance

AUG2001 � SOFTWARE ACQUISITION

SEP2002 � TEAM SOFTWARE PROCESS

To Request Back Issues on Topics Not

Listed Above, Please Contact Karen

Rasmussen at <karen.rasmussen@

hill.af.mil>.

Highpoints From the Agile Software Development Forum

28 CROSSTALK The Journal of Defense Software Engineering October 2002

Open Forum

People go years, possibly their entire
lives, exhibiting certain behaviors,

sometimes knowingly but often unaware
of any notable pattern. Sometimes an
event will occur where a name is given to
their particular behavior. A man who takes
his work problems out on his family may
be in an anger management class and be
informed that he exhibits misplaced aggres-
sion. For a woman whose husband is an
alcoholic, yet buys liquor for him, might be
labeled an enabler.

This identification can lead to an
epiphany for the subject. This sudden real-
ization is exactly what happened to me
when a colleague of mine inquired as to
my willingness to write this article on agile
programming.

I had never before heard the term agile
programming, but my associate was famil-
iar with the concept and also with my
work, so I was willing to trust in his judg-
ment. During research into the concept of
agile programming, it quickly became evi-
dent that this was an acceptable label for
the coding practices I have used routinely
for more than 13 years.

Unwitting Agile Programmer
In my work as an analyst for a program
management firm, I use a fourth genera-
tion language (4GL), control and analysis
tool to build reports and graphs. My cus-
tomers and I use these documents to per-
form analysis on schedule related data. The
information derived from this data is used
to point out past mistakes and potential
problems, thus saving both time and
money. This is my goal as a program man-
agement analyst, and the goal of my firm,
to make our customers successful.

Occasionally I am called upon to devel-
op related applications or modules using
4GL. Some applications are written to ana-
lyze existing data and some to capture new
data. The latest major development effort
involved a resource-forecasting tool used
to project future work requirements, and
provide what-if scenario modeling. Because
the customer wanted to keep the existing
analysts at the site working on their current
assignments, a separate contract was writ-
ten and programmers were hired to per-

form the work. This project followed a tra-
ditional software development methodolo-
gy because this methodology worked for
this project. The project finished on time
and under budget.

In 1994, the Air Force was awarded the
Navy FA-18 programmed depot mainte-
nance (PDM) contract. This was historic in
that it was the first time that one branch of
the armed forces was contracted to repair
a weapon system used by a different
branch. The accepted proposal called for
the work to be performed at Hill Air Force
Base (AFB) in Ogden, Utah.

Since the fall of 1993, I had been work-
ing as a program analyst on the Program-
med Depot Maintenance Support System
contract in the Aircraft Directorate at Hill
AFB. When the new workload arrived, the
program management team provided
precedence network schedules and tracked
the work against the plan, as had been
done for the other aircraft work at Hill
AFB.

Not long thereafter, the Aircraft
Directorate was audited by an independent
audit agency. Their findings required Hill
AFB to provide an auditable unplanned work
approval tracking system. The F-18s were
brought to Hill AFB for a PDM, which is
basically an overhaul of the entire aircraft,
according to a specific set of operations to
be performed, called planned operations.
There are also provisions for problems
encountered either during aircraft inspec-
tion or while the mechanics are perform-
ing planned work. These problems are
defined as unplanned work and require
extra time not accounted for in the
planned operation package.

Given that the FA-18 is a Navy weapon
system and each aircraft has spent a good
deal of time on aircraft carriers or at
coastal Naval Air Stations, much of the
unplanned work is corrosion removal. This
unplanned work accounted for more than
half of the total hours on a FA-18 PDM.
The independent audit agency required a
way to show that hours billed to this con-
tract workload were not being used to
work on F-16s or C-130s, which were
located in the same hangars as the FA-18.
Without such an auditable system, the

workload would be pulled from Hill AFB
and given back to the Navy.

The Aircraft Directorate quickly estab-
lished a manual process that may have sat-
isfied the requirements set forth by the
independent audit agency. The only worry
was, with hand carrying of thousands of
documents to and from the hangars, some
were bound to get lost and therefore the
system might fail the audit.

An Air Force major working in the
Aircraft Directorate approached our firm
about automating this process. It was easy
to show a good potential return on invest-
ment (ROI) based on the amount of man-
hours involved in processing work cards in
the manual system. This also fell into the
scope of our firm’s program management
charter. Automating this system would
provide the ability to add the hours gener-
ated by this unplanned work into the
schedule as soon as the requests were
approved, thereby extending the schedule
in a real time fashion. Since all parties were
in agreement that this was a win-win situa-
tion, the next decision was how would we
proceed with development?

To bring in more analysts would
require writing a new contract or making
an amendment to the existing one. Since
the customer wanted the system in place
by the time the audit agency returned, this
option would take too long. They decided
instead to reallocate the existing resources
of the program management team and
place all three analysts on full-time devel-
opment of the new application. Due to the
time constraint, there was no development
of a formal plan or extensive require-
ments, which led to the use of methods
now described as agile.

A Perfect Agile Fit
Traditional programming methodologies
were put in place mainly to prevent require-
ments creep. In agile programming, potential
for these problems is diminished by getting
the application to the users quickly. Surely
if it takes two years to develop an applica-
tion, changes will arise in the organization
or process that will drive new requirements
and cause delays. Agile methodologies
exist that are specifically tailored to long-

Agile Before Agile Was Cool
Gordon Sleve

Robbins Gioia LLC

Success can be achieved by many means. Sometimes it is obvious which road to take, other times it does not really matter.
Look at individual circumstances before choosing one path over the other.
Success can be achieved by many means. Sometimes it is obvious which road to take, other times it does not really matter.
Look at individual circumstances before choosing one path over the other.

October 2002 www.stsc.hill.af.mil 29

Agile Before Agile Was Cool

term projects, but my experience has been
with short-term projects. The unplanned
work module was not extensive and we
were confident that we could provide a
quick turnaround. Even though we did not
have agile methodology guidelines to go
by, this project was a perfect candidate for
just such a philosophy. The Agile Software
Development Manifesto states:

We are uncovering better ways of
developing software by doing it and
helping others do it. Through this work
we have come to value:
• Individuals and interactions

over processes and tools.
• Working software over compre-

hensive documentation.
• Customer collaboration over

contract negotiation.
• Responding to change over fol-

lowing a plan.
That is, while there is value in

the items on the right, we value the
items on the left more. [1]

Although we did not know of agile
methodologies, in retrospect we practically
followed them to the letter. We focused
almost entirely on those items on the left and
for all intents and purposes, ignored the
items on the right. In this case, circumstance
rather than conscious thought led us to
perform in this manner. We were under the
gun to get a working product in place in a
short amount of time. There was little time
for planning, contract negotiation, or doc-
umentation.

The lack of planning shows a slight
departure from agile, but remember, we
did not have the agile methodology with
which to work. The available resources and
their expertise locked in our tools. Due to
the fact that very little of the traditional
methodologies were available to us, we
were forced to draw heavily from what is
now an agile approach. I like to look at
these two approaches as the Scarecrow and
the Tin Man, agile being the Scarecrow
(flexible) and traditional being the Tin Man
(rigid.) They both want to get Dorothy to
Oz, but they each have unique abilities and
weaknesses. In our case, we had to rely on
a Scarecrow named “agile.”

The initial requirements were to auto-
mate the manual process and add reports.
The bulk of the detailed requirements
were obtained during development by
working closely with civilian counterparts
involved in the unplanned work process.
These individuals were planners, sched-
ulers, and the approval authority, each with
knowledge of how their piece of the
process worked.

We met daily, but on an informal basis,
usually with the point of contact (POC)
most familiar with the section being
worked in a one-on-one setting. This
would almost always take place at the
developer’s desk. We showed progress
from the previous day and verified with the
POC that their requirements were being
met. Then we would identify any changes
that needed to be made and start working
to that end. As we moved through the
development phase, we would identify
those nice to have features and record those
requirements for follow-on work. Through
this process the programmer learned much
more about his customer’s needs than he
could by reading thousands of pages of
requirements documents. It also showed a
commitment to individuals and interac-
tions over processes and tools.

As changes were made to the applica-
tion, corroboration was sought from the
user before continuing further. Some-
times the user would sit through several
iterations of code changes right at the pro-
grammer’s desk, commenting and cri-
tiquing. By working closely with the user
community, there was very little need for
documentation and training. By the time
development was completed, the users had
been trained through their constant
involvement. There was no need for a for-
mal training class after implementation.
Since we knew there would be a good deal
of follow-on changes, we decided to wait
on documentation.

The main application was completed
with great success in plenty of time for the
next audit. The only cost associated with
the program was the temporary loss of
productivity toward the original program
management objectives. Our team was
awarded a certificate of appreciation from
the Aircraft Directorate citing a savings of
250 direct/indirect man-hours per aircraft.
There was a dollar figure placed on both
the cost (approximately $28,800) and the
savings (approximately $1 million) result-
ing in an actual ROI of more than 30 to 1.

Given the limited planning work, there
was no way to predict such a fantastic
windfall. However, had more time been
spent in planning, documentation, con-
tracting, and processes the ROI ratio
would have been less impressive. Follow-
on changes included expansion for both F-
16 and C-130 workloads, and a master write-
up module that provided the users with a
pick list of frequently used write-ups.

Specified Successful
Use Continues
Although the F-18 contract only lasted one

year before the workload was returned to
the Navy, the use of this application on the
F-16 and C-130 programs continues to this
day. This program is still in a textual inter-
face format but will soon be converted to
an Oracle/Web-based format to provide
better accessibility and ease of use. The
user community has taken ownership of
this application and they like it because of
that very fact; it is their own creation.
From time to time, minor bugs appear,
which will be the case when omitting con-
figuration management and strict coding
practices, but the users are happy with that
trade-off for flexibility.

One might argue that agile software
development flies in the face of program
management. While the irony of a pro-
gram management professional touting
“responding to change over following a
plan” is not lost on me, I see both method-
ologies coexisting and filling an important
purpose: to make our customers successful.

Yes, I am a proponent of agile pro-
gramming but only in those cases where it
is the best solution. Unless given a specif-
ic set of circumstances, I cannot say which
is best. I have experienced success with
both agile and traditional software devel-
opment methodologies, and success is the
ultimate goal.◆

References
1. AgileAlliance. “Agile Software Devel-

opment Manifesto.” 13 Feb. 2001
<www.agilemanifesto.org>.

About the Author
Gordon Sleve is a sen-
ior program analyst for
Robbins Gioia LLC
working in the ICBM
program office at Hill
Air Force Base (AFB)

in Ogden, Utah. He was previously a
site manager at Letterkenny Army
Depot in Chambersberg, Penn. Sleve
was selected as Robbins Gioia’s Senior
Program Analyst of the Year for
Dayton-based operations in 1995 for
his support of the implementation of
Programmed Depot Maintenance
Support System at Hill AFB.

Robbins Gioia LLC
OO-ALC/LMSO
6014 Dogwood Ave.
Bldg. 1258 Rm. 14
Hill AFB, UT 84056-5816
Phone: (801) 775-5943
Fax: (801) 586-4835
E-mail: gordon.sleve@hill.af.mil

for the industrial automation project
described herein. The languages were most-
ly C++ but also included C, HTML, VB, and
SQL. Productivity ranged from a low of 21
to a high of 48 lines of code per coding
hour, averaging 35 lines of code per coding
hour.

Compared to projects conducted before
adopting this intensely practical and agile
software development discipline, our cost
per line of code and defect rates were dras-
tically reduced while our development veloc-
ity was significantly increased. Our most
recent audit revealed an overall average pro-
ductivity index of 22 [4]. This index is a
management scale corresponding to the
overall process productivity achieved by an
organization during the main software build.
An index of 25 is considered among the
highest ever recorded.◆

References
1. Beck, Kent. eXtreme Programming

Explained: Embrace Change. Boston:
Addison-Wesley, 1999.

2. Fowler, Martin, et. al. Refactoring:
Improving the Design Of Existing

Code. Boston: Addison-Wesley, 1999.
3. C3 Team. “Chrysler Goes to Extremes.”

Distributed Computing. Oct. 1998
<www.xprogramming.com/public
ations/distributed-computing .html>.

4. Putnam, Lawrence H., and Ware Myers.
Measures of Excellence: Reliable

Software on Time, Within Budget.
Upper Saddle River: Prentice Hall/Your-
don Press, 1992.

Note
1. “We” as mentioned throughout this arti-

cle refers to the Geneer company.

30 CROSSTALK The Journal of Defense Software Engineering October 2002

About the Author
John Manzo has spent
more than three decades
of his career in software
engineering, and has
contributed to and made
significant accomplish-

ments in the development of software,
computer, and telecommunications
solutions. Manzo comes to AgileTek
from Geneer where he was chief tech-
nology officer, and brings with him a
legacy of broad and deep experience in
agile development methods. Earlier in
his career, Manzo was recognized for
his development of the Fire Control
software for the Navy's highly success-

ful AEGIS system – one of the largest
and most complex software develop-
ments ever delivered to the Department
of Defense. He has served as a repre-
sentative to the President's National
Science Advisory Board, and served as
an adjunct faculty member of Harvard
University where he developed, and for
several years taught, “The Management
of Software Engineering.”

AgileTek
934 South Golf Cul de Sac
Des Plaines, IL 60016
Phone: (847) 840-3765
Fax: (847) 376-8308
E-mail: jmanzo@agiletek.com

CONTINUED FROM PAGE 21

Agile software development techniques are an effective response to many problems still plaguing development projects. Although
there are a number of issues to consider, almost any project can become more agile to its benefit. What exactly does it mean
to be more agile? Words like predictable, cost-effective, and mature are more often used to characterize desirable software devel-
opment processes. Agile development has come into focus recently due to the popularity of its most widely known interpreta-
tion, eXtreme Programming, but some of its foundations go back as far as 20 years. This article addresses some of the ques-
tions about agile: What is agile? Who needs to be agile? How can any project not creating small business applications seri-
ously consider agile development? Is agile development an “all or nothing” proposition?

Online Articles

Should You Be More Agile?
Rich McCabe and Michael Polen

Software Productivity Consortium

Agile Development: Weed or Wildflower?1

David Kane
SRA International

Steve Ornburn
GBC Group, Inc.

Editor’s Note: Due to space constraints, CrossTalk was not able to publish these articles in their entirety. However, they can be
viewed in this month’s issue on our Web site at <www.stsc.hill.af.mil/crosstalk> along with back issues of CrossTalk.

The Software Engineering Institute’s Capability Maturity Model® (CMM®) has been a major force for software process and
acquisition improvement in the federal government’s civil and defense communities for the past decade. Major investments have
been made by the government, their contractors, and many other organizations to make software development more consistent
and reliable. The CMM provided an alternative to the cowboy programmer archetype. Amid this backdrop of progress, a new
trend in software development has emerged – agile development, which aims to build software faster and more flexibly than tra-
ditional approaches. Agile values “individuals and interactions over processes and tools” [1]. For organizations that have
invested in a CMM, do agile methods represent the rebirth of the cowboy – a weed to be stamped out? Or, are agile methods
a reasonable way to build software in a world in which needs are changing at an ever-increasing pace – a wildflower to be nur-
tured? This article looks at whether there is a home for agile methods in communities that have have embraced the CMM.

BACKTALK

October 2002 www.stsc.hill.af.mil 31

In the February issue of CrossTalk, I sensed an intellectual
melee in the air. Six months later, software publications and con-

ferences were abuzz. In an industry where plans are inadequate and
planning is essential, we are starting to question the strong hold of
predictive, process oriented, model-based software development.

Grassroots intrigue with lightweight methods like eXtreme
Programming (XP) and Scrum has triggered software developers to
question their approach, methods, and focus. Although questions
currently outweigh answers, this debate has broken the assiduous
fixation on such heavyweight methods like the Capability Maturity
Model® IntegrationSM (CMMISM) and Software Process
Improvement and Capability dEtermination.

I am, however, concerned for individuals, teams, and organiza-
tions that are ensnared and laden by incompatible methods or
approaches. For some these processes and methods have become
addicting and will be hard to break.

For those who are troubled, I offer the time-tested 12-Step pro-
gram used by millions of people to successfully transform their lives
and recover from obsessive-compulsive behaviors. With modifica-
tion, I hope these steps successfully amend software development
habits and aid in the recovery from career threatening behaviors.

If you are clinging to the sanctuary of models, processes, and
theoretical control, and find these heavy methods too restrictive for
your small-to-medium projects, unstable requirements, competent
team, and short deadlines then repeat after me: “I, (state your name)
am a heavyweight zealot. I promise to follow the 12 Steps for
Heavyweights.”

12 Steps for Heavyweights
1. I admit I was powerless over predictability, and my life had

become unimaginative.
2. I believe that a power greater than a process, model, or best

practice could restore my sanity.
3. I made a decision to turn my will and my career over to the care

of vigilance, acumen, proficiency, and ingenuity.
4. I searched and made a fearless inventory of my respect for col-

leagues and customers.
5. I admit to customers, myself, and to colleagues the exact nature

of my wrongs.
6. I am entirely ready to have pair programming, coding standards,

and iterative deliveries remove my defects.
7. I humbly ask my customer, collaborative colleague, and test pro-

grams to reveal my shortcomings.
8. I made a list of customers I harmed, and I am willing to make

amends to them all.
9. I will make amends to customers wherever possible, except

when to do so would injure them or others.
10. I will continue to take personal inventory, and when I am wrong

will promptly admit it and refactor.
11. I will seek through collective ownership to improve my con-

scious contact with customers asking only for knowledge of
their will for me and the power to carry that out.

12. Having had a creative awakening, I will carry this message to
heavyweight zealots and practice these principles in all my
affairs.
If your proclivity for collaboration, rapid development, and

empirical control has led you to the fast paced world of XP, Scrum,
Crystal, adaptive software development, feature-driven develop-
ment, or dynamic systems development method, and you find these

light methods are inadequate for your large
project, dependable requirements, and
motley team then repeat after me: “I,
(state your name) am a lightweight infidel.
I promise to follow the 12 Steps for
Lightweights.”

12 Steps for Lightweights
1. I admit I was powerless over change, and

my life had become unmanageable.
2. I believe that a power greater than ingenu-

ity could restore me to sanity.
3. I made a decision to turn my will and my

career over to the care of prescriptive
processes and best practice models.

4. I searched and made a fearless inventory of
my process areas and maturity.

5. I admit to my manager, SEPG, and quality
assurance department the exact nature of
my wrongs.

6. I am entirely ready to have quantitative
management and optimization remove my
defects.

7. I humbly ask assessments, inspections, and
quality assurance to reveal my shortcom-
ings.

8. I made a list of all process areas I neglected,
and I am willing to make amends to them all.

9. I will make amends to my process areas wherev-
er possible, except when to do so would injure the budget, in
which case I will request a waiver.

10. I will continue to assess my maturity and when I deviate, I will
promptly conform.

11. I will seek through documentation and meetings to improve my
conscious contact with “The Model” asking only for knowledge
of its will for me and the power to carry that out.

12. Having had a disciplined awakening, I will carry this message to
lightweight infidels and to practice these principles in all my
affairs.
Since the majority of the industry has considerable investment

in heavyweight methods and will likely dismiss the agile movement
as a return to callow software programming, I offer you the follow-
ing athletic afflatus.

In planning for one of the most grueling events, the Tour de
France, Lance Armstrong starts preparations a year in advance. He
does not prepare for a specific race but instead prepares for sever-
al race scenarios and his ability to adapt to them. That is important
because as soon as the race starts, the event will take its own course
and any planning will be history. He knows the course, conditions,
and competitors are unpredictable and his success depends on
knowing what is going on and responding quickly.

Software development, although not the Tour de France, is far
from predictable and would benefit from the insight of one of the
greatest athletes in the world. Although not a panacea, these pellu-
cid ideas, if allowed to imbue the mind, will ameliorate your soft-
ware organization. Go ahead. Break from the peloton.

–– Gary Petersen
Shim Enterprise, Inc.

The 12-Step Program for
Software Weight Watchers

CrossTalk / MASE
7278 4th Street
Bldg. 100
Hill AFB, UT 84056-5205

PRSRT STD
U.S. POSTAGE PAID

Albuquerque, NM
Permit 737

Sponsored by the
Computer Resources
Support Improvement

Program (CRSIP)

Published by the
Software Technology

Support Center (STSC)

Oct2002cover.qxd 9/4/02 11:09 AM Page 2

	Cover
	Index
	From the Publisher
	What Is Agile Software Development?
	Coming Events
	Learning From Agile Software Development - Part One
	Web Sites
	Agile Methodologies and Process Discipline
	Top 5 Contest Information
	Odyssey and Other Code Science Success Stories
	Integrating Systems and Software Engineering: What Can Large Organizations Learn From Small Start-Ups?
	Highpoints From the Agile Software Development Forum
	Agile Before Agile Was Cool
	Should You Be More Agile?
	Agile Development: Weed or Wildflower?
	BackTalk
	Back Cover

