
Nov2002cover.qxd 10/10/02 1:54 PM Page 1

The 10 Most Powerful Principles for Quality in Software and Software
Organizations
These 10 classic ideas are time-tested and proven to improve software quality and costs
due to their solid principles: measurement, quantification, and feedback.
by Tom Gilb

Learning From Agile Software Development – Part Two
The final part of this two-part series completes the list of 10 principles for setting up
and running software projects, then explains ways that cost- and plan-driven projects can
borrow from agile software development to improve strategies and hedge against surprises.
by Alistair Cockburn

Using SW-TMM to Improve the Testing Process
This article describes how the SW-TMM really can help improve your testing process,
either alone or in conjunction with the Capability Maturity Model for Software.
by Thomas C. Staab

Reality Configuration Management
This article presents a real-life experience in configuration management and the differences
among the archival, open, focused, and optimized repository methods.
by Donald E. Casavecchia

Document Diseases and Software Malpractice
In the context of human diseases, software documentation errors take on an alarming tone that
motivates developers to plan immediate project cost and quality treatments.
by Gregory T. Daich

Defense Software Development in Evolution
This article tabulates years of measuring software quality and productivity to relate how the
Department of Defense ranks when compared with the civilian sector.
by Capers Jones

Securing Information Assets: Security Knowledge in Practice
by Lawrence Rogers and Julia Allen

EVM and Software Project Management: Our Story
by Walter H. Lipke

Cover Design by
Kent Bingham.

3
8

16

21

22

22

31

DeparDepar tmentstments

*** *** ****** ******

ON THE COVER

2 CROSSTALK The Journal of Defense Software Engineering November 2002

4

9

13

17

23

26

30

SoftwarSoftware e EngineeringEngineering TTechnoloechnologgyy

From the Publisher

Coming Events

JOVIAL Services

Call for Articles

Web Sites

Top 5 Contest Information

BackTalk

CrossTalk Article Submissions:We welcome articles of interest to the
defense software community.Articles must be approved by the
CROSSTALK editorial board prior to publication. Please fol-
low the Author Guidelines, available at <www.stsc.hill.af.mil/
crosstalk/xtlkguid.pdf>. CROSSTALK does not pay for sub-
missions.Articles published in CROSSTALK remain the prop-
erty of the authors and may be submitted to other publications.
Reprints and Permissions: Requests for reprints must be
requested from the author or the copyright holder. Please
coordinate your request with CROSSTALK.
Trademarks and Endorsements: This DoD journal is an
authorized publication for members of the Department of
Defense. Contents of CROSSTALK are not necessarily the
official views of, or endorsed by, the government, the
Department of Defense, or the Software Technology Support
Center.All product names referenced in this issue are trade-
marks of their companies.
Coming Events:We often list conferences, seminars, sympo-
siums, etc. that are of interest to our readers.There is no fee
for this service, but we must receive the information at least
90 days before registration. Send an announcement to the
CROSSTALK Editorial Department.
STSC Online Services: www.stsc.hill.af.mil
Call (801) 777-7026, e-mail: randy.schreifels@hill.af.mil
Back Issues Available:The STSC sometimes has extra copies
of back issues of CROSSTALK available free of charge.
The Software Technology Support Center was established
at Ogden Air Logistics Center (AFMC) by Headquarters U.S.
Air Force to help Air Force software organizations identify,
evaluate, and adopt technologies to improve the quality of
their software products, efficiency in producing them, and
their ability to accurately predict the cost and schedule of
their delivery.

SPONSOR

PUBLISHER

ASSOCIATE
PUBLISHER

MANAGING EDITOR

ASSOCIATE EDITOR

ARTICLE
COORDINATOR

CREATIVE SERVICES
COORDINATOR

PHONE

FAX

E-MAIL

CROSSTALK ONLINE

CRSIP ONLINE

Lt. Col. Glenn A. Palmer

Tracy Stauder

Elizabeth Starrett

Pamela Bowers

Chelene Fortier

Nicole Kentta

Janna Kay Jensen

(801) 586-0095
(801) 777-8069
crosstalk.staff@hill.af.mil
www.stsc.hill.af.mil/
crosstalk

www.crsip.hill.af.mil

Subscriptions: Send correspondence concerning
subscriptions and changes of address to the following
address.You may e-mail or use the form on p. 25.

Ogden ALC/MASE
7278 Fourth St.
Hill AFB, UT 84056-5205

BestBest PracticesPractices

OpenOpen FForumorum

Online Online ArArticlesticles

From the Publisher

Iespecially enjoyed putting together this month’s issue. Each month I am the one
responsible for deciding which articles will be published in CrossTalk. I lobbied

for this month’s theme, “Publisher’s Choice,” so that I would have an opportunity to
share several very good articles that have been waiting to be published for far too long.
The only problem is that there still was not enough space to share them all. If you like
this issue, please let us know and maybe we can start doing an annual Publisher’s
Choice.

This is a good opportunity to give a special thanks to all the wonderful authors who support
CrossTalk. There are many great people involved with putting together CrossTalk each
month, and this journal’s quality would be greatly reduced without their continued support.
However, we wouldn’t have a journal at all without the continued support of our authors. These
people receive no compensation from CrossTalk except our thanks and a few extra copies
of that month’s issue, yet I believe the reward to our readers is great.

I always appreciate the shared knowledge from our authors, and it is a pleasure working with
them. One example is an author that is one of the top 10 software experts in the United States,
yet always acts as if I am doing him a favor when I publish one of his articles. Another example
is an author that absolutely captivates me whenever I read her articles or listen to her speak. I
was foolish enough to think she was CrossTalk’s own special find until I noticed that she
was the keynote speaker at a prestigious software conference in Europe. Then there are all the
authors that I enjoy having an excuse to call and talk to for a few minutes about their article
since they are just pleasant people.

We start this issue with an article that has been waiting way too long to be shared. Tom Gilb
provides his insights for developing quality software in The 10 Most Powerful Principles for Quality
in Software and Software Organizations. I hope he forgives our delay in sharing this information and
will consider writing for us again.

Next is the second part of Alistair Cockburn’s article, Learning From Agile Software Development
– Part Two. Cockburn discusses the final three of 10 principles that are useful for setting up and
running projects. He then concludes by discussing how plan-driven projects can borrow from
agile methodologies.

Thomas C. Staab shares his experience with the Software Testing Maturity Model (SW-
TMM) and how to use it either alone or in conjunction with the Capability Maturity Model for
Software in his article, Using SW-TMM to Improve the Testing Process. Donald E. Casavecchia shares
some practical approaches to configuration management (CM) in Reality Configuration
Management. In this article, Casavecchia discusses how his organization has successfully used
varying amounts of CM, depending on the needs of a project.

Gregory T. Daich’s article, Document Diseases and Software Malpractice, provides a tongue-in-
cheek discussion of some common “diseases” plaguing software and developers. Also, Capers
Jones provides insight into the current state of software development within the U.S. military in
Defense Software Development in Evolution.

I don’t usually discuss BackTalk articles in this column, but as I stated earlier, this month
was especially fun for me. After last May’s BackTalk by Dr. David Cook, my brother e-mailed
a rebuttal listing several counterpoints. I enjoyed reading them and asked him to expand them
into an article for us. The result can be found in Kevin Leachman’s Trials and Tribulations of a
Non-Geek Engineer. (You know our parents will be receiving an autographed copy of this month’s
issue.)

Thank you again to all of the authors who contribute to CrossTalk. We work hard to
share your ideas with our readers and hope you will continue to make them available.

Well,Actually,Associate Publisher’s Choice

Elizabeth Starrett
Associate Publisher

November 2002 www.stsc.hill.af.mil 3

Best Practices

4 CROSSTALK The Journal of Defense Software Engineering November 2002

All projects have some degree of fail-
ure compared with initial plans and

promises. Far too many software projects
fail totally. In the mid 1990s, the U.S.
Department of Defense (DoD) estimated
that about half of its software projects
were total failures [1]. The civil sector is
no better [2]. So what can be done to
improve project success? This article out-
lines 10 key principles of successful soft-
ware development methods that charac-
terize best practices.

These 10 principles have been selected
because there is practical experience
showing that they really gain control over
qualities and their costs. They have a real
track record spanning decades of practice
in companies like IBM, Hewlett Packard,
and Raytheon. They are not new: They are
classic. But the majority of our communi-
ty is young and experientially new to the
game, so my job is to remind the industry
of the things that work well. Your job is to
evaluate this information and start getting
the improvements that your management
wants in terms of quality and the time and
effort needed to get them.

“Those who do not learn from history,
are doomed to repeat it” [3].

Principle 1: Use Feedback
The practice of gaining experience from
formal feedback methods is decades old,
and many appreciate its power. However,
far too many software engineers and their
managers are still practicing low feedback
methods, such as waterfall project man-
agement (also known as Big Bang or
Grand Design). Even many textbooks and
courses continue to present low feedback
methods. This is not done in conscious
rejection of high feedback methods but
from ignorance of the many successful
and well-documented projects that have

detailed the value of high feedback meth-
ods.

Methods using feedback succeed;
those without feedback seem to fail.
Feedback is the single most powerful prin-
ciple for software engineering. (Most of
the other principles in this article support
the use of feedback.) Feedback helps you
get better control of your project by pro-
viding facts about how things are working

in practice. Of course, the presumption is
that the feedback comes early enough to
do some good; rapid feedback is the crux.
We need to have the project time to make
use of the feedback (for example, to radi-
cally change direction, if that is necessary).
Four of the most notable rapid high-feed-
back methods are discussed in the follow-
ing sections:

Defect Prevention Process
The Defect Prevention Process (DPP)
equates to the Software Engineering
Institute’s Capability Maturity Model®

(CMM®) Level 5 as practiced at IBM from
1983 to the present [4]. The DPP is a suc-
cessful way to remove the root causes of
defects. In the short term (one year) about
a 50 percent defect reduction can be
expected; within two to three years, about

a 70 percent reduction (compared to the
original level) can be experienced; and in
five to eight years, about a 95 percent
defect reduction is possible [5].

The key feedback idea is to decentralize
the initial causal analysis activity by inves-
tigating defects back to the grassroots pro-
grammers and analysts. This gives you the
true causes and acceptable, realistic
change suggestions. Deeper cause analysis
and measured process-correction work can then
be undertaken outside of deadline-driven
projects by the more specialized and cen-
tralized process improvement teams.

There are many feedback mechanisms.
For example, same-day feedback is
obtained from the people working with
the specification, and early numeric
process change-result feedback is
obtained from the process improvement
teams.

Inspection Method
The Inspection Method originated at IBM
in work carried out by M. Fagan, H. Mills
(cleanroom method), and R. Radice
(CMM inventor) [6]. Originally, it primari-
ly focused on bug removal in code and
code-design documents. Many continue to
use it this way today. However, inspection
has changed character in recent years.
Today, it can be used more cost-effective-
ly by focusing on measuring the significant
defects on upstream specifications.
Furthermore, sample areas often only
need to be inspected rather than process-
ing the entire document [7]. For example,
the defect level measurement should be
used to decide whether the entire specifi-
cation is fit for release downstream to be
used for a go/no-go decision-making review
or for further refinement (test planning,
design, or coding).

The main Inspection Method feedback
components are as follows:
• Feedback to author from colleagues

The 10 Most Powerful Principles for
Quality in Software and Software Organizations

Tom Gilb
Result Planning Limited

The software industry knows it has a problem: The industry’s maturity level with respect to “numbers” is known to be poor.
While solutions abound, knowing which solutions work is the big question. What are the most fundamental underlying prin-
ciples in successful projects? What can be done right now? The first step is to recognize that all your quality requirements can
and should be specified numerically. This does not mean “counting bugs.” It means quantifying qualities such as security,
portability, adaptability, maintainability, robustness, usability, reliability, and performance. This article presents 10 power-
ful principles to improve quality that are not widely taught or appreciated. They are based on ideas of measurement, quan-
tification, and feedback.

“The key feedback idea
is to decentralize the
initial causal analysis

activity by investigating
defects back to the

grassroots programmers
and analysts.”

® Capability Maturity Model and CMM are registered in the
U.S. Patent and Trademark Office.

November 2002 www.stsc.hill.af.mil 5

The 10 Most Powerful Principles for Quality in Software and Software Organizations

regarding compliance with software
standards.

• Feedback to author about required lev-
els of standards compliance in order
to consider their work releasable.

Evolutionary Project Management
Evolutionary Project Management (Evo,
which originated in large scale within
cleanroom methods) has been successful-
ly used on the most demanding space and
military projects since 1970 [8, 9]. The
DoD changed its software engineering
standard MIL-STD-2167A to an Evo
standard (MIL-STD-498), which derived
succeeding public standards, (for example,
the Institute of Electrical and Electronics
Engineers). The reports, (op. cit.) along
with my own experience, are that Evo
results in a remarkable ability to deliver on
time and on budget, or better, compared
to conventional project management
methods [2].

An Evo project is consciously divided
into small, early, and frequently delivered
stakeholder result-focused steps. Each
step delivers benefits and builds toward
satisfaction of the final requirements. Step
size is typically weekly or 2 percent of
total time or budget. This results in excel-
lent regular and realistic feedback about
the team’s ability to deliver meaningful,
measurable results to selected stakehold-
ers. The feedback includes information on
design suitability, stakeholders’ reactions,
requirements’ trade-offs, cost estimation,
time estimation, people resource estima-
tion, and development process aspects.

Statistical Process Control
Statistical Process Control [10], although
widely used in manufacturing [11], is only
used in software work to a limited degree.
Some use is found in advanced inspec-
tions [5, 12]. The Plan Do Study Act cycle
is widely appreciated as a fundamental
feedback mechanism.

Principle 2: Identify Critical
Measures
It is true of any system – your body, an
organization, a project, software, or serv-
ice product – that there are several factors
that can cause a system to die. Managers
call these critical success factors. If you ana-
lyzed systems looking for all the critical
factors that cause shortfalls or failures,
you would get a list of factors needing
better control. They would include both
stakeholder values (such as serviceability,
reliability, adaptability, portability, and
usability) and the critical resources needed
to deliver those values (i.e., people, time,

money, and data quality). For each critical
factor, you would find a series of faults
that would include the following:
• Failure to systematically identify all

critical stakeholders and their critical
needs.

• Failure to define the factor measurably.
Typically, only buzzwords are used and
no indication is given of the survival
(failure) and target (success) measures.

• Failure to define a practical way to
measure the factor.

• Failure to contract measurably for the
critical factor.

• Failure to design toward reaching the
factor’s critical levels.

• Failure to make the entire project team
aware of the numeric levels needed for
the critical factors.

• Failure to maintain critical levels of
performance during peak loads or on
system growth.
Our entire culture and literature of

software requirements systematically fails to
account for the majority of critical factors.
Usually, only a handful such as perform-
ance, financial budget, and deadline dates
are specified. Most quality factors are not
defined quantitatively at all. In practice, all
critical measures should always be defined
with a useful scale of measure. However,
people are not trained to do this and man-
agers are no exception. The result is that
our ability to define critical breakdown lev-
els of performance and manage successful
delivery is destroyed from the outset.

Principle 3: Control Multiple
Objectives
You do not have the luxury of managing
qualities and costs at whim. With software
development, you cannot decide to man-
age just a few of the critical factors and
avoid dealing with the others. You have to
deal with all the potential threats to your

project, organization, or system. You must
simultaneously track and manage all the
critical factors. If not, then the forgotten fac-
tors will probably be the very reasons for
project or system failure.

I have developed the Impact
Estimation (IE) method (see Table 1) to
enable tracking of critical factors; howev-
er, it does require that critical objectives
and quantitative goals have been identified
and specified. Given that most software
engineers have not yet learned to specify
all their critical factors quantitatively
(Principle 2), this next step, tracking
progress against quantitative goals to
enable control of multiple objectives (this
principle), is usually impossible.

IE is conceptually similar to Quality
Function Deployment [13], but it is much
more objective and numeric. It gives a pic-
ture of reality that can be monitored [14,
15] (Table 1). It is beyond the scope of
this article to provide all the underlying
detail for IE. To give a brief outline, the
percentage estimates in Table 1 are based,
as far as possible, on source-quoted, cred-
ibility-evaluated, objective, documented
evidence. IE can be used to evaluate ideas
before their application, and it can also be
used, as in Table 1, to track progress
toward multiple objectives during an evolu-
tionary project. In Table 1, the Actual
Difference and Total numbers represent feed-
back in small steps for the chosen set of
critical factors that management has
decided to monitor. If the project is devi-
ating from plans, this will be easily visible
and can be corrected in the next step.

Principle 4: Evolve in
Small Steps
Software engineering is by nature playing
with the unknown. If we already had
exactly what we needed, we would reuse it.
When we choose to develop software,
there are many types of risk that threaten

Step #1
Plan A:
{Design: X,
Function:
-Y}

Step #1
Actual

Step #1
Difference
- Is Bad
+ Is Good

Total
Step #1

Step #2
Plan B:
{Design: Z,
Design: F}

Step #2
Actual

Step #2
Difference

Total
Steps
#1 and #2

Step #3
Next Step
Plan

Reliability
99%-
99.9%

50%
+_ 50%

40% -10% 40% 30%
20%

20% -10% 60% 0%

Performance
11 sec.-
1 sec.

80%
40%

40% -40% 40% 30%
+_ 50%

30% 0 70% 30%

Usability
30 min.-
30 sec.

10%
20%

12% +2% 12% 20%
+_ 15%

5% -15% 17% 83%

Capital
Cost
1 mill.

20% 10% +10% 10% 5% 10% -5% 20% 5%

Engineering
Hours
10,000

2%
+_ 1%

4% -2% 4% 10%
+_ 2.5%

3% +7% 7% 5%

Calendar
Time

1
week

2
week s

-1
week

2
week s

1
week

0.5
week

+0.5
week

2.5
weeks

1
week

+_

+_

+_

+ 1%_ +_ 2%

Table 1: Example of an Impact Estimation Table

Best Practices

6 CROSSTALK The Journal of Defense Software Engineering November 2002

the result. One way to deal with this is to
tackle development in small steps, one
step at a time. If something goes wrong,
we will immediately know it. We also have
the ability to retreat to the previous step, a
level of satisfactory quality, until we
understand how to progress again.

It is important to note that the small
steps are not mere development incre-
ments. The point is that they incremental-
ly satisfy identified stakeholder require-
ments (see Figure 1). Early stakeholders
might be salespeople needing a working
system for demonstration, system
installers/help desk/service/testers who
need to work with something, or early trial
users.

The duration of each small step is typ-
ically a week or so. The smallest widely
reported steps are the daily builds used at
Microsoft, which are useful-quality sys-
tems. They cumulate to six- to 10-week
shippable quality milestones [16].

Principle 5:A Stitch in
Time Saves Nine
Quality control must be done as early as
possible, from the earliest planning stages,
to reduce the delays caused by finding
defects later. There needs to be strong
specification standards (such as all quality
requirements must be quantified) and rigorous
checking to measure that the rules are
applied in practice. When the specifica-
tions are not of some minimum standard

(like “<1 major defect/page remaining”)
then they must be edited until they become
acceptable, including the following:
• Use inspection sampling to keep costs

down, and to permit early, i.e., before
specification completion, correction
and learning.

• Use numeric exit from development
processes such as Maximum 0.2 Majors
per page.
It is important that quality control by

inspection be done very early for large
specifications, for example within the
first 10 pages of work. If the work is not
up to standard, then the process can be
corrected before more effort is wasted. I
have seen half a day of inspection (based
on a random sample of three pages)
show that there were about 19 logic
defects per page in 40,000 pages of air
traffic control logic design. The same
managers who had originally approved the
logic design for coding carried out the
inspection with my help. Needless to say,
the project was seriously late.

In another case I facilitated (United
States, 1999, jet parts supplier), eight
managers sampled two pages out of an
82-page requirements document and
measured 150 major defects per page.
Unfortunately, they had failed to do such
sampling three years earlier when the
project started, so they had already expe-
rienced one year of delay; they told me
they expected another year delay while

removing the injected defects from the
project. This two-year delay was accurate-
ly predictable given the defect density
they found and the known average cost
from major defects. They were amazed at
this insight, but agreed with the facts. In
theory, they could have saved two project
years by doing early quality control
against simple standards: clarity, unambi-
guity, and no design in requirements.

These are not unusual cases. I find
them consistently all over the world.
Management frequently allows extremely
weak specifications to go unchecked into
costly project processes. They are obvi-
ously not managing properly.

Principle 6: Motivation Moves
Mountains
Motivation is everything! When individu-
als and groups are not motivated positive-
ly, they will not move forward. When they
are negatively motivated (fear, distrust,
and suspicion), they will resist change to
new and better methods. Motivation is a
type of method. In fact, there are many
large and small items contributing to your
group’s sum of motivation. We can usefully
divide the motivation problem into four cate-
gories:
• The will to change.
• The knowledge to change direction.
• The ability to change.
• The feedback about progress in the

desired change direction.
Leaders (I did not say managers) create

the will to change by giving people a positive
and fun challenge and the freedom and
resources to succeed. During the 1980s, John
Young, CEO of Hewlett Packard, inspired
his troops by saying that he thought they
needed to aim to be measurably 10 times bet-
ter in service and product qualities by the end
of the decade. He did not demand it. He
supported them in doing it. They reported
getting about 9.95 times better, on average, in
the decade. The company was healthy and
competitive during a terrible time for many
others.

The knowledge of directional change is
critical to motivation; people need to channel
their energies in the right direction! In the
software and systems world, this problem
has three elements, two of which have been
discussed in earlier principles. They are as fol-
lows:
• Measurable, quantified clarity of the

requirements and objectives of the vari-
ous stakeholders (Principle 2).

• Knowledge of all the multiple critical
goals (Principle 3).

• Formal awareness of constraints such as
resources and laws.

1 3 4 52 6 8 10 12 14 222018161197 15 17 19 2113

For Evolutionary Project: Benefit / Cost
For Evolutionary Project: Cumulative Delivered Functionality
For Waterfall Project: Benefit / Cost
For Waterfall Project: Cumulative Delivered Functionality

Project Months

Figure 1: Evolutionary vs. Waterfall Comparison

Note: One advantage of Evo is that you can focus on delivering high value increments to critical
stakeholders early. The upper line represents high value at early stages [17].

The 10 Most Powerful Principles for Quality in Software and Software Organizations

November 2002 www.stsc.hill.af.mil 7

These elements are a constant communi-
cation problem because of the following:
• We do not systematically convert our

directional changes into crystal clear
measurable ideas; people are unclear
about the goals and there is no ability
to obtain numeric feedback about
movement in the right direction. We
are likely to say we need a robust or
secure system, and less likely to convert
these rough ideals into concrete,
measurable, defined, agreed-upon
requirements or objectives.

• We focus too often on a single meas-
urable factor (such as percent built or
budget spent) when reality demands that
we simultaneously track multiple crit-
ical factors to avoid failure and to
ensure success. We do not understand
what we should be tracking, and we
do not get enough rich feedback.

Principle 7: Competition Is
Eternal
Our conventional project management
ideas strongly suggest that projects have a
clear beginning and a clear ending. In our
competitive world, this is not as wise a
philosophy as one W. Edwards Deming
suggests, “Eternal process improvement
is necessary as long as you are in competi-
tion” [11]. We can have an infinite set of
milestones or evolutionary steps of result
delivery and use them as we need; the
moment we abandon a project, we hand
opportunity to our competitors. They can
sail past our levels of performance and
take our markets.

The practical consequence is that our
entire mindset must always be on setting
new ambitious numeric stakeholder value
targets both for our organizational capa-
bility and our product and service capabil-
ities (see Figure 2).

Continuous improvement efforts in
the software and services area at IBM,
Raytheon, and others [4, 5, 18] show that
we can improve critical cost and perform-
ance factors by 20 to one, in five- to eight-
year time frames. Projects must become
eternal campaigns to get and stay ahead.

Principle 8:Things Take Time
“It takes two to three years to change a
project, and a generation to change a cul-
ture” [11].

Technical management needs to have a
long-term plan for improving the critical
characteristics of their organization and
their products. Such long-term plans need
the ability to be tracked numerically and
stated in multiple critical dimensions. At
the same time, visible short-term progress

toward those long-term goals should be
planned, expected, and tracked (see Figure
3).

Principle 9:The Bad
With the Good
Any method (means, solution, or design)
you choose will have multiple quality and
cost impacts whether you like them or
not! In order to get a correct picture of
how good any idea is for meeting our pur-
poses, we must do the following:
• Have a quantified, multidimensional

specification of our requirements, our
quality objectives, and our resources
(people, time, or money).

• Have knowledge of the expected
impact of each design idea on all these
quality objectives and resources.

• Evaluate each design idea with respect
to its total – expected or real – impact
on our requirements, the unmet objec-
tives, and the unused cost budgets.
We need to estimate all impacts on our

objectives. We need to reduce, avoid, or

accept negative impacts. We must avoid
simplistic one-dimensional arguments. If
we fail to use this systems engineering dis-
cipline, then we will be met with unpleas-
ant surprises of delays and bad quality,
which seem to be the norm in software
engineering today. One practical way to
model these impacts is using an IE table
(see Table 1, page 5).

Principle 10: Keep Your Eyes
on Where You Are Going
“Perfection of means and confusion of
ends seem to characterize our age,” said
Albert Einstein.

To discover the real problem, we have
only to ask of a specification: Why? The
answer will be a higher level of specifica-
tion, nearer the real ends. There are too
many designs in our requirements!

You might say, why bother? Isn’t the
whole point of software to get the code
written? Who needs high-level abstrac-
tions? Cut the code! But somehow that
code is late and of unsatisfactory quality.

A P

S D
(Do) Carry out the change or
the test (preferably on a small
scale).

Plan a change or a test
aimed at improvement.

Study the result.

Act. Adopt the change, or abandon
it, or run through the cycle again,
possibly under different conditions.

Figure 2: The Shewhart Cycle for Learning and Improvement – the PDSA Cycle
Note: Reproduction from a letter from W. Edwards Deming, May 18, 1991 to the author.

Cost of Quality = CONC (Cost of Non-conformance) + COC (Cost of Conformance)

CONC = Cost of Fix and Check Fix

COC = Appraisal + Prevention

Cost of doing it right

Cost of doing it wrong

1988 1989 19911990 1992 1993 1994 1995

0%

5%

10%

15%

20%

25%

30%

35%

40%

45%

50%
Philip Crosby Concepts [19]

Project Cost = {Cost of Quality + Cost of Performance}
Cost of Performance = {Planning, Documentation, Specification}

 % CONC

 % COC

Figure 3: Cost of Quality vs. Time: Raytheon 95 – the Eight-Year Evolution of Rework Reduction

Note: In the case of Raytheon process improvements (Dion, 1995), many years of persistent
process change for 1,000 programmers were necessary to drop rework costs from 43% of total
software development costs to below 5%.

Best Practices

8 CROSSTALK The Journal of Defense Software Engineering November 2002

The reason is often lack of attention to
the real needs of the stakeholders and the
project. We need these high-level abstrac-
tions of what our stakeholders need so
that we can focus on giving them what
they are paying us for! Our task is to
design and deliver the best technology to
satisfy their needs at a competitive cost.

One day, software engineers will real-
ize that the primary task is to satisfy their
stakeholders. They will learn to design
toward stakeholder requirements (multiple
simultaneous requirements). One day we
will become real systems engineers and
realize there is far more to software engi-
neering than writing code.

Conclusion
Motivate people toward real results by giv-
ing them numeric feedback frequently and
the freedom to use any solution that gives
those results. It is that simple to specify. It
is that difficult to do.◆

References
1. Jarzombek, Stanley J. “The 5th Annual

Joint Aerospace Weapons Systems
Support, Sensors, and Simulation
Symposium (JAWS S3).” Proceedings,
1999.

2. Morris, Peter W. G. The Management
of Projects. Ed. Thomas Telford.
London, 1994.

3. Santayana, George. The Life of
Reason. Amherst: Prometheus Books,
1903.

4. Mays, Robert. Practical Aspects of the
Defect Prevention Process. (Gilb,
Tom, and Dorothy Graham. Software
Inspection. Addison-Wesley, 1993.
Chapter 17 written by Mays).

5. Dion, Raymond, et. al. The Raytheon
Report. Pittsburgh: Software
Engineering Institute, 1995 <www.
sei.cmu.edu/publications/documents
/95.reports/95.tr.017. html>.

6. Fagan, Michael E. “Design and Code
Inspections.” IBM Systems Journal
15.3 (1976): 182-211. Reprinted 38.2, 3
(1999): 259-287 <www.almaden.
ibm.com/journal>.

7. Gilb, Tom, and Dorothy Graham.
Software Inspection. Addison-Wesley,
1993. Japanese Translation, Aug. 1999.

8. Mills, Harlan D. IBM Systems Journal.
1980. Also republished IBM Systems
Journal, Nos. 2 and 3, 1999.

9. Cotton, Todd. “Evolutionary Fusion:
A Customer-Oriented Incremental Life
Cycle for Fusion.” Hewlett-Packard
Journal 47.4 (Aug. 1996): 25-38.

10. Shewhart, Deming, Juran 1920s.
11. Deming, W. Edwards. Out of the

Crisis. Cambridge: MIT CAES Center

for Advanced Engineering Study, 1986.
12. Florac, William A., Robert E. Park, and

Anita D. Carleton. Practical Software
Measurement: Measuring for Process
Management and Improvement.
Pittsburgh: Software Engineering
Institute, 1997 <www.sei.cmu.edu>.

13. Akao, Yoji. Quality Function
Deployment: Integrating Customer
Requirements into Product Design.
Cambridge: Productivity Press, 1990.

14. Gilb, Tom. Principles of Software
Engineering Management. Boston:
Addison-Wesley, 1988.

15. Gilb, Tom. Competitive Engineering.
Addison-Wesley: United Kingdom,
2000 <www.resultplanning.com>.

16. Cusumano, Michael A., and Richard W.
Selby. Microsoft Secrets: How the
World’s Most Powerful Software
Company Creates Technology, Shapes
Markets, and Manages People. The
Free Press (a division of Simon and
Schuster), 1995.

17. Woodward, Stuart. “Evolutionary
Project Management.” IEEE Com-
puter Oct. 1999: 49-57.

18. Kaplan, Craig, Ralph Clark, and Victor
Tang. Secrets of Software Quality, 40
Innovations From IBM. McGraw
Hill, 1944.

19. Crosby, Philip B. Quality Is Still Free:
Making Quality Certain in Uncertain
Times. McGraw Hill, 1996.

About the Author
Tom Gilb has been a
freelance consultant
since 1960 and is the
author of nine books,
including “Software
Metrics,” “Principles of

Software Engineering Management,”
“Software Inspection,” and the forth-
coming “Competitive Engineering.”
Gilb teaches and consults worldwide
with major multinational clients includ-
ing Nokia, Ericsson, Motorola, HP,
IBM, BAE Systems, Philips, Sony,
Canon, Intel, and Microsoft and does
pro bono training and consulting for
the Department of Defense, United
Kingdom, NATO, and the Norwegian
Defense.

Iver Holtersvei 2
NO-1410
Kolbotn, Norway
Phone: +47 66 80 46 88
E-mail: tom@gilb.com

COMING EVENTS

December 9-11
7th Annual ITC East Conference

Hershey, PA
www.govresources.com

January 14-16, 2003
West 2003 Conference

San Diego, CA
www.west2003.org

February 24-27
Software Engineering Process

Group Conference

Boston, MA
www.sei.cmu.edu/sepg/

April 7-11
Software Development

Conference and Expo West
Santa Clara, CA

www.sdexpo.com/2003/west

April 8-10
FOSE 2003 Conference

Washington, DC
www.fose.com

April 28-May 1
Software Technology Conference 2003

Salt Lake City, UT
www.stc-online.org

May 3-10
International Conference on

Software Engineering
Portland, OR

www.icse-conferences.org/2003

May 6-8
TechNet International 2003

Washington, DC
www.technet2003.org

June 25-28
Agile Development Conference

Salt Lake City, UT
www.agiledevelopmentconference.com

Software Engineering Technology

November 2002 www.stsc.hill.af.mil 9

Being agile is a declaration of priorities,
prioritizing for project maneuverabili-

ty with respect to shifting requirements,
shifting technology, and shifting under-
standing of the situation. Other priorities
that might override agility include pre-
dictability, cost, schedule, process-accred-
itation, or use of specific tools.

Most managers run a portfolio of
projects having a mix of those priorities
and need to mix their strategies to suit.
The question at hand is how a person can
borrow from the set of agile practices to
fit the plan-driven and cost-sensitive pro-
grams.

Part one of this article [1] introduced
two phrases:
1. Money-for-information (MFI) issues are

those on which the team can spend
money now to obtain information that
puts them in a better situation for later
in the project. Work-plan breakdown
structures, system performance under
load, and user reaction to system
design are MFI issues.

2. Money-for-flexibility (MFF) issues are
those on which the team cannot pos-
sibly obtain information now to put
them in a better situation later. The
better strategy is to spend money on
making the change easier later.
Movements in the stock market,
emerging standards, and staff conti-
nuity are MFF issues.
Many of the differences between agile

methodologies and cost- and plan-driven
approaches are in deciding which issues
are MFF or MFI issues, and what the best
allocation of resource is for each.

A plan-driven team might decide that
the project plan is predictable, and a good
MFI strategy is to spend energy now to
make those predictions. An agile team
might decide that the project plan funda-
mentally cannot be resolved past a very
simple approximation, and therefore a

MFI strategy is a waste of money.
Instead, they adopt a MFF approach,
which involves making many coarse-
grained plans over the course of the proj-
ect.

Both teams might agree that the ques-
tion of system performance under load is
an important MFI issue, and both might
agree to spend money early to build a sim-
ple system simulator and load generator to
stress test the design.

Ten Principles
The following 10 principles have shown
themselves useful in setting up and run-
ning projects:
1. Different projects need different

methodology trade-offs.
2. A little methodology does a lot of

good; after that, weight is costly.
3. Larger teams need more communica-

tion elements.
4. Projects dealing with greater potential

damage need more validation elements.
5. Formality, process, and documentation

are not substitutes for discipline, skill,
and understanding.

6. Interactive, face-to-face communica-
tion is the cheapest and fastest channel
for exchanging information.

7. Increasing feedback and communica-
tion reduces the need for intermediate
work products.

8. Concurrent and serial development
exchange development cost for speed
and flexibility.

9. Efficiency is expendable in non-bottle-
neck activities.

10. Sweet spots speed development.
The first seven principles were

addressed in the October issue of
CrossTalk. I pick up the discussion
here with Principle No. 8.

8. Concurrent and Serial
Development Exchange
Development Cost for
Speed and Flexibility
On a predictable project, the project coor-
dinator can arrange for each work special-
ist to show up at just the right moment,
perform the needed work, and leave. Such
scheduling, common in the construction
and book publishing industries, minimizes
salary cost in exchange for extending
elapsed time (see Figure 1, Serial
Development). The hazard is that a sur-
prise might show up in an already-com-
pleted task forcing the previous task item
to restart, in which case neither time nor
cost is minimized.

Concurrent development runs teams in
parallel, even when they have dependen-
cies between them [2]. The teams will
make and change decisions as they gain
information, causing the other teams some
rework. With careful management of their
dependencies, the teams can complete the

Learning From Agile Software Development – Part Two

Alistair Cockburn
Humans and Technology

This two-part article compares agile, plan-driven, and cost-sensitive software development approaches based on a set of proj-
ect organization principles, extracting from them ideas for pulling agile techniques into cost- and plan-driven projects. Part
one, which appeared in October’s CrossTalk, described how the different teams make trade-offs of money for informa-
tion or for flexibility, and presented the first seven of 10 principles for tuning a project to meet various prioritization of cost,
correctness, predictability, speed, and agility. This month, part two presents the last three principles, then pulls the material
together for actions that plan-driven and cost-sensitive project teams can use to improve their strategies and hedge against sur-
prises.

Serial
Development

Concurrent
Development

Requirements
Design
Program
Test

Requirements
Design
Program
Test

Figure 1: Serial Development vs. Concurrent
Development [2]

Note: Serialized development takes longer but
costs less than concurrent development.

“The most important
agile value for the

cost-sensitive project
leader to adopt is

customer collaboration.”

Software Engineering Technology

10 CROSSTALK The Journal of Defense Software Engineering November 2002

final work sooner even though their salary
costs are higher (see Figure 1, Concurrent
Development). Effective concurrent
development demands that communica-
tion between people is fast, rich, and inex-
pensive (as discussed in principles 6 and 7).
The hazard in concurrent development is
that if work is started too early, rework
costs dominate the project.

Serial and concurrent development
have opposing characteristics. Cost-sensi-
tive projects should use serial development
where they can, while projects sensitive to
shifting requirements benefit more from
concurrent development

Agile project teams almost always use
concurrent development assuming a sig-
nificant number of surprises will arise dur-
ing development. The close communica-
tion needed for effective concurrent devel-
opment also lets them respond to late-
breaking changes effectively.

9. Efficiency Is Expendable in
Non-Bottleneck Activities
Effective concurrent development
requires calculating the moment at which
to start a downstream activity. Goldratt’s
process theory [3] and theory of con-
straints [4] provide advice here.

Suppose that one requirements gather-
er feeds information to five designers, who
in turn feed their results to a single data-
base analyst (DBA, see Figure 2). It is clear
that the DBA will not be able to keep up
with the work (and rework). Prudence
insists that the designers get their work to
a complete and stable state before passing
it to the DBA.

Figure 3 illustrates this idea. The verti-
cal axis indicates how complete and stable
each group’s work is. Completeness refers
to how much they have done, and stability
refers to how unlikely they are to make
changes. For simplicity, the figure illus-
trates them as joint: The work becomes
more complete and more stable over time,
shown in an S-type of curve. For each
curve, the solid downward-arrow indicates
at what point a dependent activity gets ini-
tiated.

If the designers take work from a sin-
gle requirements gatherer as in Figure 2,
they can start work on their assignments
when the requirements are only slightly
complete and stable and still handle the
consequential rework. Figure 3 shows the
trigger event (the solid vertical arrow from
requirements to design) occurring close to
the left, while the requirements are not yet
very complete or very stable. This figure
also shows information continuing to pass
from the requirements gatherer to the
designers as the requirements work pro-
gresses. Once requirements become com-
plete and stable, it will not take long to
finalize work. The designers can complete
the extra rework because there are five of
them to one requirements gatherer.

The DBA, having no excess capacity,
needs to be handed work that is more
complete and more stable. The solid right-
most vertical arrow in Figure 3, which
shows when the DBA’s work gets initiated,
starts higher on the designer’s complete-
ness and stability scale.

Note that in Figure 3 each designer
uses much more time than the DBA. This
is appropriate, since there is only one DBA
for five designers.

The principle says that rework is an
expendable commodity everywhere except
at the bottleneck station (the DBA, in the
above example). Rework can be expended
to improve a design, to investigate multiple
designs, or to get a head start on a down-
stream activity. Applying this principle to
different circumstances produces different
optimal project strategies [2].

Although this is the most complicated
principle presented so far, I find that most
project leaders have, in fact, used this prin-
ciple in responding to standard project
pressures through common sense and
intuition.

10. Sweet Spots Speed
Development
The ideal project uses dedicated, experi-
enced people who sit within earshot of
each other; use automated regression tests;
have easy access to the users; and deliver

running, tested systems to those users
every month or two. Such a project is
clearly in a better position to complete suc-
cessfully than one missing those character-
istics. The surprise is that sponsoring exec-
utives do not pay more attention to these
important success factors.

When the team cannot hit one of
those sweet spots, then they need to invent
a way to get closer to it. The farther away
they are, the more difficult the project
becomes. Here are six sweet spots:
1. Dedicated Developers. There is a

large emotional and mental cost to a
person having to switch between mul-
tiple assignments [2, 5]. In my project
reviews, I find that once people get
interrupted at the rate of about three
times per day, they stop even trying to
focus on their main assignment and
simply wait for the next interruption to
happen. One senior project manager
reported that he simply does not count
as productive staff anyone assigned
less than half-time to the project.

2. Experienced Developers. Experi-
enced developers know the domain,
they know the technologies or how to
adopt them, and they know their com-
puter science material. They move at
multiple times the speed of their slow-
er colleagues.

3. Small Collocated Team (a conse-
quence of principles 6 and 7). Two to
eight people sitting in the same room
can ask each other questions without
raising their voices. They are aware of
when others are available to answer
questions. They overhear relevant con-
versations without pausing in their
work. They keep the design ideas and
project plans on the board in ready
sight and share information faster. The
developers I have interviewed uni-
formly say that while the environment
can get noisy, they have never been on
a more effective project than when a
small team sat in the same room.

Technology can mitigate the situ-
ation somewhat. One project team
installed cameras on every workstation
to display the image of the other peo-
ple on the project in their various
offices [6]. This gave them a sense of
each other’s presence, and indicated
when people were not at their worksta-
tions or not to be disturbed with a
question. They used online chat boxes
to fire off and get answers to the many
small questions that constantly arise.
They were creative in mimicking the
sweet spot in an otherwise unsweet sit-
uation.

4. Automated Regression Tests. With

DBA
Requirements

Gatherer

Designer

Designer

Designer

Designer

Designer
Figure 2: The Database Analyst (DBA) Bottlenecking Five Designers [2]

Learning From Agile Software Development – Part Two

November 2002 www.stsc.hill.af.mil 11

automated regression unit and accept-
ance tests, the developers can revise
the code base and retest the entire sys-
tem at the push of a button. Teams
who have such tests report that they
freely replace and improve awkward
modules. They also report relaxing
more on the weekends since they will
run the tests on Monday morning and
discover if someone has changed their
system out from under them. These
tests improve both the design quality
and the programmers’ quality of life.

Experienced developers spend
quite some effort to minimize the
amount of the system not amenable to
automated regression tests.

5. Easy Access to Users. Having a cus-
tomer or usage expert available at all
times means that the feedback cycle
from nominated solution to evaluated
idea is much shorter, often in the range
of minutes to a few hours. The devel-
opment team gains a deeper under-
standing of the users’ needs and habits
and makes fewer mistakes nominating
ideas. It also means that more ideas can
be tried, allowing for a better final
product.

Missing this sweet spot lowers the
likelihood of making a really useable
product. Teams unable to have a usage
expert available at all times have substi-
tuted weekly sessions with the users,
studying the user community in depth
before and during the project, using
surveys, or using friendly alpha-test
groups.

6. Short Increments and Frequent
Delivery to Real Users. There is no
substitute for rapid feedback, both on
the development process and the prod-
uct itself. Some colleagues say that
even one month is an intolerably long
time. However, there is also a cost to
deploying a product, which makes this
a MFI proposition (discussed in the
previous article).

With short increments, the
process itself gets tested and can be
repaired quickly, and the requirements
for the product can be tested and var-
ied quickly.

Projects that cannot deliver to an
end user every few months should
integrate a full build every few months
and pretend as though it were deliv-
ered. This way, they exercise every part
of the development process.

Differences Between
Approaches
At this point, we have listed the issues that

bear on how cost- and plan-driven projects
can borrow from agile approaches. Some
cause intrinsically different responses;
other responses are more a matter of
habit.

Intrinsic Differences
Statistics vs. heuristics. Some project
leaders believe software development is a
statistically controllable process; others do
not. Their resulting strategies are incom-
patible. This is one of the places where
friction arises between agile and plan-driv-
en project leaders.

Individuals and interactions vs.
processes and tools. Some leaders
believe that with the right process, they can
become immune to the turnover of key
people. Others believe that no process can
offer that immunity; the heart of good
software development will always reside in
the individual people on the project. As
with the statistical approach, we are more
likely to find process-centric leaders run-
ning plan-driven projects, and individual-
centric leaders running agile projects.

Responding to change vs. following
a plan. It is a fundamental difference
between the two project types whether the
team is encouraged to or penalized for
responding to changes. Even though busi-
ness needs, requirements, technologies,
and people are constantly moving these
days, some projects are still fixed in some
combination of time, scope, and cost, and
must operate in the plan-driven range.

Project plan as MFI or MFF. If the
requirements or technologies are likely to
change late in the game or without notice,
or the team does not have experience with
the technology, then it is a poor strategy to
treat the project plan as a MFI issue. In
those situations, the agile leader’s mindset
that the plan is a MFF proposition works
better. The leader allocates energy to
replanning coarsely but frequently.

Design as MFI or MFF. A plan-driv-
en project team, believing that the design
can be worked out in advance (MFI),
expends resources early to gain that infor-
mation and lock down the design. For
those design elements that cannot be fore-
seen (MFF issues), plan-oriented design
teams often design the system so that a
range of future design constraints can be
easily incorporated – expending extra
design energy early in anticipation of hav-
ing a more adaptable design.

Many agile designers find those result-
ing designs overly complicated. Agreeing
that certain issues are MFF issues, they
argue that a better MFF strategy is to make
a simpler design in the first place, with less
built-in flexibility. The saved money can

then be allocated to change the design on
an as-needed basis.

Some agile designers argue that the
MFI component of the design activity is
negligibly small, thus little or no effort
should be expended on anticipated design
changes.

Serial vs. concurrent development.
There is a fundamental difference in the
strategies applied when agility is a priority
compared with when cost is the priority.
As Principle No. 8 describes, cost-sensitive
projects do better with serial development
when that can be successfully executed.
Unfortunately, there are so many surprises
in projects that it is very difficult to exe-
cute successfully.

Surmountable Differences
Working software vs. comprehensive
documentation. One tends to find more
initiatives for comprehensive documenta-
tion on statistics-, process- and plan-driven
projects, but this is not intrinsic. Many
experienced managers use prototypes, sim-
ulators, and incremental development to
reduce risk and gain early information on
both agile and plan-driven projects, feed-
ing that information into the plan as quick-
ly as possible.

Customer collaboration vs. contract
negotiation. Plan-driven project leaders
clearly can improve their situation by
increasing the collaboration in their cus-
tomer relations, even if they must write
and enforce contracts. This is a case in
which plan-driven project leaders can
employ some of the same work practices
as agile project leaders.

Project plan and design on cost-
sensitive projects. A detailed plan does
not, by itself, confer cost savings or safety
to a project. Detailed plans and detailed
designs enable an estimable base-line cost.
The manager can then tell if the cost is
going up or down over time. It is not the

C
om

pl
et

en
es

s,
 S

ta
bi

lit
y

Time

Requirements
Gatherer

Designer

DBA

Figure 3: Completeness and Stability Over Time

Note: The designer-programmer benefits the
schedule by starting earlier and accepting more
rework [2].

Software Engineering Technology

12 CROSSTALK The Journal of Defense Software Engineering November 2002

detail of the plan, but successful applica-
tion of MFF and MFI decisions that
makes the difference in the result.

Borrowing From Agile
Drawing from the above, we see that the
plan-driven project can streamline its
development operations, improve pre-
dictability, and hedge its bets by borrow-
ing in various ways from the agile
approach. Following are examples of
these.

Streamlining
A plan-driven project leader should still
try to hit the six sweet spots: dedicated,
experienced and collocated staff; using
automated regression test suites; having
easy access to knowledgeable users; and
showing and delivering incrementally
growing, running, tested systems to them
regularly.

In addition to these, the project mem-
bers can question to what extent they can
lower the documentation burden through
a more informal information exchange.

Improving Predictability
Good project leaders already use proto-
types, simulators, and incremental devel-
opment to get early information on their
project. However, in my experience, many
leaders of plan-driven projects do not
avail themselves of these techniques,
which are standard business among agile
developers.

Of the above techniques, the most
important for the plan-driven team to
adopt is incremental development. By
delivering a few increments, the leader
gains invaluable information about this
team, this problem, and this technology.
That data are more appropriate to the
project plan than estimates from other
people working on other problems in
other technology.

Hedging Bets
Surprises can show up even on a plan-
driven project. Based on where they esti-
mate those surprises are, the plan-driven
project leaders can incorporate some of
the agile mindset into their strategy. Once
again, the use of incremental development
is key. The delivery, or even just integra-
tion, of each increment offers the team a
chance to deal with whatever surprise
showed up, whether in the requirements,
the technology, or the process. The other
technique to borrow is concurrent devel-
opment, which offers a way to speed
development and respond to late-breaking
changes.

Lowering Costs
Customer collaboration over contract
negotiation. The most important agile
value for the cost-sensitive project leader
to adopt is customer collaboration. When
told that varying a requirement converts
an expensive design into a simple, inex-
pensive one, a customer often is willing to
change the requirements to allow the less
expensive design. To the extent that the
customer and the development team are
on good terms, this happens more often.

Working software over comprehen-
sive documentation. Tacit knowledge
and informal communication are much
less expensive than complete documenta-
tion. The cost-sensitive project will play a
game of documentation brinkmanship,
creating only minimal documents needed
to keep the project from falling apart.

Responding to change vs. follow-
ing a plan. Optimizing from an accurate
plan is clearly a winning strategy. The only
time that responding to change is advanta-
geous to a cost-sensitive project team is
when they discover a shortcut later in the
project. At that point, they obviously ben-
efit from changing the plan.

Summing Up
Agile teams put more emphasis on the
ideas presented in this two-part article
than do plan-driven teams. Most of the
ideas are not particularly new. What is sur-
prising is the extent to which these known,
old practices are ignored. It is sobering to
re-read the paper, “Disciplines Delivering
Success,” presented at the 1997 Software
Technology Conference in Salt Lake City
[7] in which Brown points out the follow-
ing: “project-saving disciplines ignored by man-
agement: good personnel practices, plan-
ning and tracking using activity networks
and earned value, incremental release
build plan, formal configuration manage-
ment, test planning and project stability,
and metrics.”

Of all the practices, the agile strategy
of using concurrent development is
intrinsically in opposition to cost-mini-
mization under predictable circumstances.
However, cost-sensitive project teams can
benefit from all four of the agile values
and all six of the project sweet spots.
Customer collaboration and making good
use of close, informal communications
are key among those.

Of the differences between develop-
ment styles, agile developers typically
believe that software development is not
amenable to statistical process control,
and so heuristic project controls must be
used.◆

References
1. Cockburn, A. “Learning From Agile

Software Development – Part One.”
CrossTalk Oct. 2002: 10-14.

2. Cockburn, A. Agile Software
Development. Boston: Addison-
Wesley, 2001.

3. Goldratt, E. The Goal. Great Barring-
ton: North River Press, 1992.

4. Goldratt, E. Theory of Constraints.
Great Barrington: North River Press,
1990.

5. DeMarco, T., and T. Lister. Peopleware:
Productive Projects and Teams. 2nd
Ed. New York: Dorset House, 1999.

6. Herring, R., and M. Rees. Internet-
Based Collaborative Software Develop-
ment Using Microsoft Tools.
Proceedings of the 5th World
Multiconference on Systemics, Cyber-
netics and Informatics. Orlando,
Florida. July 2001: 22-25 <http://
erwin.dstc.edu.au/Herring/Software
Engineering0verInternetSCI2001.pdf>.

7. Brown, N. “Disciplines Delivering
Success.” Software Technology
Conference, 1997 <http://stc-online.
org/cd-rom/1997/track1.pdf>.

About the Author
Alistair Cockburn, an
internationally recog-
nized expert in object
technology, methodolo-
gy, and project manage-
ment, is a consulting fel-
low at Humans and

Technology with more than 20 years
experience. He is one of the original
authors of the Agile Software
Development Manifesto and founders
of the AgileAlliance, and is program
director for the Agile Development
Conference held in Salt Lake City.

1814 Fort Douglas Circle
Salt Lake City, UT 84103
Phone: (801) 582-3162
Fax: (775) 416-6457
E-mail: alistair.cockburn@acm.org

Call for Conference
Participation

The Agile Development Conference
is seeking people to give tutorials, host
workshops, or submit field reports or
research papers at the conference June
25-28, 2003 in Salt Lake City. More infor-
mation is available at <www.agiledevelop
mentconference.com>.

November 2002 www.stsc.hill.af.mil 13

The Software Testing Maturity ModelSM

(SW-TMMSM) is an exciting tool that
can help generate significant changes in an
organization’s testing process. The SW-
TMM is a testing process improvement
tool that can either be used in conjunction
with the Capability Maturity Model® for
Software (SW-CMM®) or as a stand-alone
tool. While the SW-CMM is an excellent
software development tool that recognizes
that reviews and testing are activities
intended to enhance quality, it does not
provide sufficient depth of testing cover-
age; the SW-TMM fills that void. The SW-
TMM is not a tool to be used in addition
to SW-CMM but is designed to be used in
conjunction with the SW-CMM.

What Are Testing
Maturity Models?
Testing maturity models are not new.
Available documentation shows that most
of them were developed around 1996, but
they have never found much acceptance.
One of the main reasons for this is the
fact that there is very little documentation
on the models. The articles, books, and
Web sites on testing maturity models are
written in a very theoretical style. Most
people read them and say something like,
“That’s an interesting concept. When I
have the time, I’ll look into it.” Of course,
they never find the time.

I have taken the time to study the var-
ious maturity models and have discovered
that the SW-TMM can be easily imple-
mented and provides significant improve-
ments in the testing process.

What Testing Maturity Model
Should I Use?
Terry Weatherill with ImagoQA Ltd.
undertook a comparison of the testing
maturity models currently available. His
article “In the Testing Maturity Model
Maze” [1] documents the results of his
comparison. He studied the following six
testing maturity models:
• Testability Maturity Model [2].
• Software Testing Maturity Model.
• Test Process Improvement (TPI) [3].
• Test Organization MaturityTM [4].
• Testing Assessment Program [5].

• Proposed Evaluation and Test SW-
CMM Key Process Areas (SW-CMM
KPA) [6].
Weatherill concluded there were only

two testing maturity models that were use-
able in their current format: SW-TMM
and TPI. I read his article with extreme
interest since I had already been searching
for a testing maturity model to help my
clients improve their testing processes. I
judged the acceptability of a testing matu-
rity model on the following:
• The ease of understanding and use.
• Allowing organizations to perform

their own assessments.

• The ability to provide a baseline of the
current testing function and a road
map for improvement.

• The capability of being used for
telecommunications, Web-based, and
information technology testing appli-
cations.

• The ability to be used in conjunction
with SW-CMM.
I had already been researching the SW-

TMM and, after reading Weatherill’s arti-
cle, I decided to further research the TPI.
I came back to the SW-TMM as the best
fit for my requirements.

Dr. Ilene Burnstein of the Illinois
Institute of Technology and her associates
designed the SW-TMM to be a companion
to SW-CMM. Since 1996, she and her
associates have published several articles
in professional magazines, including the
following:
• “Developing a Testing Maturity

Model: Part I” [7].

• “Developing a Testing Maturity Model
Part II” [8].

• “A Model to Assess Testing Process
Maturity” [9].
The major weakness with SW-TMM is

that there is no single book on the subject.
I have corresponded with Burnstein, and
the institute plans to release a book on the
SW-TMM in 2002.

Why Should I Assess My
Testing Maturity?
One of the biggest problems I have
encountered while working with clients on
their testing process is, that many times,
there is no consistency within their organ-
ization as to the health and professional-
ism of the testing process. If you were to
ask individuals at various levels of the
organization their opinion of the current
status of the software testing process, you
will be surprised at the diverse answers
you get. The answers given range from,
“We have an excellent process in place,
and don’t need to change it,” to “We have
a horrible testing process. We should scrap
it and start all over.” The true level is usu-
ally somewhere in between these two
extremes.

An assessment of the testing process
using a testing maturity model will not
only document the current level, but will
also highlight the variances between the
imagined level and the actual level. Only
when the current status is known can sig-
nificant improvements be made. Using the
SW-TMM will not only help document the
current level, but will also provide a road
map for making the necessary process
improvements.

What Are the Five
SW-TMM Levels?
As previously stated, one significant
advantage of the SW-TMM is its compat-
ibility with the SW-CMM. It contains a set
of five maturity levels, like the SW-CMM,
with goals and sub-goals at each level that
can be used as building blocks for
improvement.

Level No. 1 is where most organiza-

Using SW-TMM to Improve the Testing Process

Thomas C. Staab
Wind Ridge International

Can using the Software Testing Maturity Model SM (SW-TMMSM) really help improve your testing process? The answer is a
resounding “Yes!” This article describes the SW-TMM and the benefits that can be derived from its use.

“An assessment of the
testing process using a

testing maturity model ...
will also highlight the

variances between the
imagined level and the

actual level.”

SM Testing Maturity Model and TMM are service marks of the
Illinois Institute of Technology.

Software Engineering Technology

14 CROSSTALK The Journal of Defense Software Engineering November 2002

tions start. Testing is a chaotic process. It
is ill defined and not distinguished from
debugging. The tests are developed ad hoc
after coding is complete. The objective of
testing at this level is to show that the sys-
tem and software works. It usually lacks a
trained professional testing staff and test-
ing tools.

Most organizations will quickly recog-
nize the need to develop a more organized
and professional testing process. Many do
not realize there is a structured process,
like SW-TMM, available to make these
improvements. Instead of using a struc-
tured process, they try to implement ran-
dom improvement measures without a
clear documented plan of approach.

When a testing process reaches Level
No. 2, it identifies testing as a separate
function from debugging. This is also the
level where testing becomes a defined
phase following coding. When an organi-
zation reaches this level, their testing goal
is to show that the system and software
meets specifications. They have standard-
ized their process to the point where basic
testing techniques and methods are in
place. Table 1 shows a comparison of the
SW-TMM goals and the SW-CMM key
process areas (KPAs) at this level.

By the time the testing program reach-
es Level No. 3, the testing is integrated
into the entire life cycle. The test objec-

tives are now based on the system require-
ments. A formal testing organization is in
existence. It establishes formal testing
technical training, controls and monitors
the testing process, and begins to consider
using automated test tools. One of the
major milestones reached at this level is
that management recognizes testing as a
professional activity. Table 2 shows a com-
parison at this level of the SW-TMM goals
and SW-CMM KPAs.

This is the first level where testing is
mentioned in activities five, six, seven, and
nine under KPA Software Product
Engineering. An organization should not
wait until they arrive at this level to assess
their testing processes for improvement.
It is best to incorporate SW-TMM as a
companion tool in the software process
assessment (SPA) performed at Level 1 so
that improvement can begin at Level 2. If
an organization does decide to wait until
reaching this level, two things may occur:
1. The costs associated with the improve-

ments can significantly increase
because of the sheer volume of neces-
sary improvements.

2. Because of the magnitude of the
process improvements and the time
constraints, they may never get accom-
plished.
At Level No. 4, the testing is a meas-

ured and quantified process. The develop-

ment products are now also tested for
quality attributes such as reliability, usabil-
ity, and maintainability. The test cases are
collected and recorded in a test database
for reuse and regression testing. Defects
found during testing are now logged,
given a severity level, and are assigned a
priority for correction. Table 3 shows a
comparison of the SW-TMM goals and
SW-CMM KPAs at this level.

When an organization reaches the
highest maturity level, CMM Level 5, the
testing is institutionalized within the
organization. It is well defined and man-
aged, and testing costs and effectiveness
are monitored. At this level, automated
tools are a primary part of the testing
process and there is an established proce-
dure for selecting and evaluating testing
tools. Table 4 shows a comparison of the
SW-TMM goals and SW-CMM KPAs at
this level. It should be noted that they are
both concerned with defect prevention at
this level.

Why Do I Need to
Use SW-TMM?
Now that we have discussed the five levels
of the SW-TMM, the question on every-
one’s mind is: “The theory is nice, but why
do I need to use SW-TMM?” If your
organization is using the SW-CMM, the
answer is obvious: SW-TMM is an excel-
lent companion tool. The next question
will probably be, “What makes SW-TMM
an excellent companion tool?” The answer
is that SW-TMM was designed to be a
companion to SW-CMM. SW-TMM per-
forms the following:
• Provides a methodology to baseline

the current test process maturity.
• Is designed to guide organizations in

selecting process improvement strate-
gies and identifying the few issues
most critical to software test process
maturity.

• Is designed as an evolutionary path
that increases an organization’s soft-
ware testing process maturity in stages.

• Provides a road map for continuous
test process improvement.

• Provides a method for measuring
progress.

• Helps an organization satisfy activities
five, six, seven, and nine in Level 3
under KPA Software Product
Engineering.
The first five bullets are virtually iden-

tical to the SW-CMM objectives. Org-
anizations have to satisfy the activities list-
ed in the last bullet in order to achieve
Level 3. The SW-TMM provides a process,
which can be incorporated into their SW-

SW-TMM Goals SW-CMM v. 1.1 Key Process Areas
Level 3 Level 3

Integration Defined
• Establish a Testing Organization • Organization Process Focus
• Integrate Testing into the Life Cycle • Organization Process Definition
• Establish a Technical Training Program • Training Program
• Control and Monitor the Testing Process • Integrated Software Management

• Software Product Engineering
• Intergroup Coordination
• Peer Reviews

SW-TMM Goals SW-CMM v. 1.1 Key Process Areas
Level 2 Level 2

Phase Definition Repeatable
• Develop Testing & Debugging Goals • Requirements Management
• Initiate Test Planning Process • Software Project Planning
• Institutionalize Basic Testing Techniques & Methods • Software Project Tracking and Oversight

• Software Subcontract Management
• Software Quality Assurance
• Software Configuration Management

Table 1: A Level 2 Comparison

SW-TMM Goals SW-CMM v. 1.1 Key Process Areas
Level 5 Level 5

Optimization Defect Prevention & Quality Control Optimizing
• Application of Process Data for Defect Prevention • Defect Prevention
• Quality Control • Technology Change Management
• Test Process Optimization • Process Change Management

Table 4: A Level 5 Comparison

SW-TMM Goals SW-CMM v. 1.1 Key Process Areas
Level 4 Level 4

Management and Measurement Managed
• Establish an Organization-Wide Review Program • Quantitative Process Management
• Establish a Test Measurement Program • Software Quality Management

Table 3: A Level 4 Comparison

Table 2: A Level 3 Comparison

Using SW-TMM to Improve the Testing Process

November 2002 www.stsc.hill.af.mil 15

CMM structure, for accomplishing those
activities. Furthermore, the figures above
illustrate that the goals of the SW-TMM
complement the KPAs of the SW-CMM
at every level. It is also easy to understand
and use. Thus, I believe that SW-TMM ful-
fills the design objective of being an excel-
lent companion to SW-CMM.

If an organization is not using the SW-
CMM, they can still use the SW-TMM as a
stand-alone tool to help improve their test
processes. We know the following about
this versatile tool:
• We know the basic elements of the

SW-TMM.
• We know that the SW-TMM was

designed to be a companion to the
SW-CMM.

• We know that many organizations do
not know their true testing maturity
level.

• We know that performing an assess-
ment using the SW-TMM will baseline
an organization’s current testing matu-
rity level.

• The SW-TMM will help an organiza-
tion map incremental improvements.
The next step in the process is to

determine your organization’s current test-
ing maturity level. The only way to docu-
ment the true level of testing maturity is
to perform an assessment. If your organi-
zation is using the SW-CMM, then the
SW-TMM can easily be incorporated into
the SPA. It becomes just another assess-
ment tool. As previously stated, the SW-
TMM is not a tool to be used in addition to,
but it is designed to be used in conjunction
with the SW-CMM.

If your organization is not using the
SW-CMM, then management will not
approve making improvements to the test-
ing process unless you can prove to them
that it truly needs improving. They will
not spend the money just because the SW-
TMM is a really neat tool. Here are a few
selling points that might be used with
management: 1) the SW-TMM will pro-
vide an unbiased assessment of the cur-
rent testing process, 2) the SW-TMM will
provide a road map for incremental
improvements, and 3) as the testing
process moves up the maturity levels,
there are usually some cost savings. Do
not push for a commitment to implement
the SW-TMM. Instead, consider it a win if
you can get management approval to per-
form an independent testing process
assessment using the SW-TMM.

Can Our Organization Perform
Our Own Maturity Assessment?
The answer is “Yes.” (Remember that one

of my criteria when I evaluated the vari-
ous maturity models was “allowing organ-
izations to perform their own assess-
ments.”) In fact, an organization must per-
form their own assessment to feel owner-
ship and have confidence in the results.

It is usually advantageous to hire a
consultant to lead you through the process
the first time. A consultant has performed
the process before and can help reduce
the learning curve. They also offer an
unbiased perspective when analyzing the
results and developing an action plan. The
following suggested process works well
either incorporated into the SW-CMM
SPA or used as a stand-alone assessment.

How Do I Perform the
SW-TMM Assessment?
The logical first step in assessing testing
maturity is the assessment preparation. Now
is the time to choose a team leader and
team members. This team should develop
the assessment plan and prepare the tools
they will be using. Do not limit the assess-
ment to just the testing organization.
Include individuals – from senior manage-
ment to the non-technical developer –
from across the entire organization. These
individuals should be either directly or
indirectly involved with the testing
process. You want to sample as many dif-
ferent and varied opinions as possible.

One of the evaluation tools that will
be used is a questionnaire. I have modified
the questionnaire for the TMM developed
by the Illinois Institute of Technology that
I make available to my clients. The ques-
tionnaire provides structure and consis-
tency to the process and makes it easier to
identify the current level of maturity.
During this phase, it is essential to con-
duct all training and management brief-
ings. The training and briefings educate
everyone on the objectives and evaluation
process to be used. Periodic management
status briefings should also be scheduled
at this time.

Once all of the preparations have been
completed, it is time to conduct the assess-
ment. The first step is to collect and record
information. Here are some of the meth-
ods that can be used:
• Request the organization being evalu-

ated to prepare a presentation and
briefing for the team. This gives them
an opportunity to present any infor-
mation they feel is important from
their perspective. It also demonstrates
to them that they are an integral part
of the assessment.

• Conduct interviews with all individu-
als on the assessment list. During the

interview, the team members should
complete the questionnaire.

• Review and photocopy all testing doc-
umentation and procedures to deter-
mine the actual testing process cur-
rently being used.
One of the most important assess-

ment activities is to document the findings. By
compiling all of the information collected
by the team, they should be able to do the
following:
• Document the organizations’ current

testing process based on the records
and documentation review.

• Compile and summarize the question-
naire data using either a spread sheet
or database program.

• Document the interview information.
It is best if more than one person has
conducted the interview. The inter-
viewers will compare notes and docu-
ment all agreed information.
While the documentation process is

under way, it always becomes apparent
that the team has missed some essential
information or needs clarification of
information. Now is the time to secure
that information or clarification.

The assessment report should include
a section containing the analysis of findings.
The analysis should document the current
maturity level and any areas of disagree-
ment highlighted during the evaluation. It
should also identify areas for improve-
ment and a prioritized list of recom-
mended improvement goals. The recom-
mendations should include anticipated
benefits resulting from implementation.

Usually the team will discover testing
processes that are excellent, but are not
utilized throughout the entire organiza-
tion. I like to call these the best-of-breed
processes. The team should include as
many of the best-of-breed processes as pos-
sible in the improvement plan. There are
several reasons for this:
• There will be better acceptance of the

improvement plan if the team recom-
mends building on current processes.

• It will accelerate the implementation
and improvement process.

• People enjoy the feeling of pride that
accompanies having one of their
processes adopted organization-wide.
It should be emphasized that it is

important for an organization not to try
to progress from Level 1 to Level 5 in one
giant step. That will result in almost cer-
tain failure. The recommendations should
be a road map of how to reach only the
next level of maturity.

The assessment team should develop an
action plan for implementing the recom-
mendations. The plan should describe

Software Engineering Technology

16 CROSSTALK The Journal of Defense Software Engineering November 2002

each specific action, the resource require-
ments, and a recommended schedule for
implementation. A cost/benefit analysis is
considered helpful supporting documen-
tation. The action plan should be an inte-
gral part of the final report.

While a written final report is essen-
tial, a management briefing of the find-
ings and recommendations should also be
scheduled. It is usually easier to secure
management approval of the recommen-
dations after a management briefing. The
written report should be provided as sup-
porting documentation for the briefing.

After securing management approval
to implement the improvement plan, it is
time to implement the improvements. It is usu-
ally best, if possible, to implement the
improvements either in a pilot project or
in phases. This allows the organization to
track progress and achievements prior to
expanding organization wide.

Implementing in a limited application
also makes it easier to fine-tune the new
process prior to expanded implementa-
tion. Since the SW-TMM assessment
process is repeatable, improvements can
easily be tracked by repeating the assess-
ment six months to a year after imple-
mentation.

Summary
The SW-TMM was designed as a com-
panion to the SW-CMM to evaluate an
organization’s current testing maturity
and to plan test process improvements. It
accomplishes that goal. To recap, the use
of the SW-TMM will provide the follow-
ing:
• Baseline the current testing process

level of maturity.

• Identify areas that can be improved.
• Identify best-of-breed testing process-

es that can be adopted organization-
wide.

• Provide a road map for implementing
the improvements.

• Provide a method for measuring
improvement results.

• Provide a companion tool to be used
in conjunction with the SW-CMM.
Clients who are using the SW-CMM

that I have exposed to the SW-TMM can
immediately recognize that it is an excel-
lent companion tool. It can be easily
incorporated into their SPA, thus helping
them map the test process improvements
necessary to reach the next level of matu-
rity. Organizations not using the SW-
CMM will also find the SW-TMM an
excellent tool to realize their goal of
improving their testing process.◆

References
1. Weatherill, Terry. “In the Testing

Maturity Model Maze.” Journal of
Software Testing Professionals Mar.
2001: 8-13.

2. Gelperin, David, and Hayashi Gelperin.
“How to Support Better Software
Testing.” Application Trends May 1996.

3. Kooman, Tim, Martin Pol, Henk W.
Broeders, and Hans Voorthuyzen. Test
Process Improvement. Addison-
Wesley, May 1999.

4. <www.evolutif.co.uk>.
5. Software Futures Ltd.
6. Weatherill, Terry. “In the Testing

Maturity Model Maze.” Journal of
Software Testing Professionals Mar.
2001. <www.softdim.comliist/journal.
htm>.

7. Burnstein, Ilene, Taratip Suwannasart,
and C.R. Carlson. “Developing a
Testing Maturity Model: Part I.”
CrossTalk Aug. 1996.

8. Burnstein, Ilene, Taratip Suwannasart,
and C.R. Carlson. “Developing a
Testing Maturity Model: Part II.”
CrossTalk Sept. 1996.

9. Burnstein, Ilene, Ariya Homyen,
Robert Grom, and C.R. Carlson. “A
Model to Assess Testing Process
Maturity.” CrossTalk Nov. 1998.

About the Author
Thomas C. Staab
owns an independent
consulting firm, Wind
Ridge International,
which helps clients
improve their software

quality assurance and testing processes.
He has more than 35 years experience
in information technology and quality
assurance. Staab has a master’s of sci-
ence degree in quality systems and is
listed in the “International Who’s Who
of Information Technology.” He has
currently published more than 25 arti-
cles and presented more than 50
speeches and tutorials at regional,
national, and world conferences.

Wind Ridge International
11321 E. Folsom Point Lane
Franktown, CO 80116-9105
Phone: (303) 660-3451
Fax: (303) 660-2057
E-mail: tcstaab@windridgeinterna

tional.com

November 2002 www.stsc.hill.af.mil 17

Do you work for a small systems
development facility? Does manage-

ment profess a desire to implement the
Software Engineering Institute’s (SEI)
Capability Maturity Model®1 (CMM®) by
next fiscal year? Are you the one they
hired to miraculously transform their
hobby shop into the lean mean systems
generating machine they envision? Are
you getting something less than the 100
percent support you were originally prom-
ised?

Three years ago, I joined a small sys-
tems development facility as configura-
tion management (CM) lead, a newly cre-
ated position, and was initially tasked with
getting their software under control. This
is a government facility with engineering
contractors supplying the labor, and gov-
ernment engineers filling management
positions as technical advisors.

Once past the security clearance barri-
er, I determined the facility was consis-
tently in the process of developing some
20 separate projects simultaneously, each
with six or less project members, with
start to finish schedules ranging from
three months to two years. As soon as one
project ships its deliverables, another pro-
posal is turned into real work, and a new
project is kicked off. Post-delivery system
support ranged from no support to the
full operations and maintenance (O&M)
regiment. Project team members are a mix
of seasoned engineers and technicians
that build complex systems entirely
behind closed doors with project-
obtained resources.

Prior to my arrival, senior manage-
ment provided formal CMM training for
every employee. One year later, project
managers and technical advisors were
required to attend repeat CMM training
sessions. The facility chief and deputy
appeared to want repeatable process-ori-
ented systems development for their facil-
ity. They failed, however, to set forth the
policy and direction to accomplish it.
Their desire to step up a level from pro-
ducing ill-managed prototypes to cost-
and schedule-driven first articles with

detailed build-to documentation was not
being realized.

They held an all-hands on-site briefing
to emphasize improvement goals.
Unfortunately, they directed their frustra-
tions down their own organization rather
than coordinate across the customer base
for better quality assurance requirements
and adherence to stricter standards.
Without customer requirements for
repeatable processes with meaningful
milestone reviews, the underlying work
ethic remained “do only what it takes to
get the job done.”

By interacting with project members, I
was able to identify the following reoccur-
ring CM deficiencies:
• Vague, often undocumented require-

ments.
• Rough-order-of-magnitude proposals with

cost and schedule estimates usually
provided before requirements were
firm.

• Follow-up project plans that failed to
provide enough detail for project
members to understand what it was
they were building.

• No commitment to make project
plans living documents.

• Chassis, cable, printed wiring board

(PWB), mechanical, and schematic
drawings too loosely controlled, with
far too many redline variations that
contributed to best guess build-to docu-
ments.

• Lack of rigid inspection checkpoints
on drawings and PWB build-ups.

• Minimal software design documenta-
tion and few written unit test plans.

• No agreed-upon milestone identified
for starting formal change manage-
ment.
After several sessions with the lead

system engineer during several months, I
concluded that our small systems devel-
opment facility, with less than 70 contrac-
tor and 15 government employees, could
not dedicate the resources to establish a
systems engineering workgroup and char-
ter it with developing and implementing
center policies, processes, and procedures.
I witnessed our lead engineer receiving
even less upper management support
than I received. Eventually, he was dis-
missed from the program (and not
replaced). It was apparent that if I wanted
to improve CM practices, it would require
a grassroots approach.

My first three months were spent
developing a makefile 2 build system and
converting a project’s CM system from a
homegrown source code control system
(sccs)-based system3 to one based on a
commercial off-the-shelf (COTS) CM
product. This quickly established me as a
hands-on team player and gained me the
support of key engineers and managers.

With one fire extinguished, I still had
19 other projects in need of CM improve-
ments. With nobody yelling fire, I per-
suaded management to let me design and
establish a local area network (LAN) to
install and maintain a common set of
engineering tools to be used across proj-
ects. Instead of each project purchasing,
installing, and maintaining their own
development environment on stand-alone
workstations or makeshift workgroups,
we pooled selected project products,
switched from node-locked to floating
licenses where possible, and established a

Reality Configuration Management

Donald E. Casavecchia
ACS Defense, Inc.

You are not alone if you have found that in your job as configuration management (CM) lead, you are given less than opti-
mal support for your task, or are asked to scale back your CM goals. This author faced these dilemmas in his CM position
at a small systems development facility. Here is how he adjusted his CM practices based on facility resources and manage-
ment’s commitment to CM.

“Instead of several CM
tools from competing

vendors, one was
selected as the center’s
standard, and training

became an across-center
effort instead of each
project sending their

engineers for
vendor-supplied training.”

Software Engineering Technology

18 CROSSTALK The Journal of Defense Software Engineering November 2002

development infrastructure.
Previously isolated workspace offices

now received LAN drops, meaning work-
stations could utilize the LAN to allow
project developers to access infrastructure
products. By providing a common infra-
structure product base for Windows and
Unix platforms, management could budg-
et and coordinate training targeting infra-
structure products and set policy and pro-
cedures for project teams to follow.
Instead of several CM tools from com-
peting vendors, one was selected as the
center’s standard, and training became an
across-center effort instead of each proj-
ect sending their engineers for vendor-
supplied training.

After using this evolving, controlled
infrastructure for three years, our center
defined six classes of projects (Table 1).

We found that we often pursue a con-
cept design project that later spawns sep-
arately funded integration design and/or
production projects. Fielded systems
often call for incremental advancement of
a design (Class 2) or major enhancement
(Class 4) projects. Each new request for a
proposal is now categorized as Class 1
through 6, and each class carries prede-
fined level-of-effort disciplines like CM,
quality assurance, and documentation
support.

Most of our Class 1 and 2 projects fall
under the general descriptions of proof of
concept, investigate leading edge technology, rapid
development of a prototype, conduct a trade study
on xyz technology, etc. These projects are
usually short-scheduled with limited fund-
ing. Often, they are meant to only con-
vince the customer that we could exploit
the technology and deliver a system.
Because we often build a working model or
prototype and often write white papers as
part of these project executions, captur-
ing the more important parts of the proj-
ect is all CM is able to achieve; often, we
receive a media with the soft copy deliver-
ables.

Sometime later (weeks, months) we
may get tasked with revisiting the earlier
effort and building a first article to demo.
The follow-up task is a new project, sepa-
rately funded with additional require-
ments. Since we have proved the concept,

it is now less a risk and more an existing
technology Class 3 or 4 project.

The following four sections in this
article depict CM methods available to
our project managers to satisfy CM
requirements for the six classes of poten-
tial projects with which this center is
involved. When asked to quickly (less than
90 days) produce a narrowly defined sys-
tem (Class 2 project), the Archival
Method is appropriate. The Archival
Method is selected for requests of addi-
tional copies of a system we designed and
built 18 months ago as an integration
design project using the Open Repository
CM Method (the additional copies would
be categorized as a Class 6 project).

The Open Repository Method is usu-
ally appropriate for a concept design
(Class 1) or development design (Class 2)
project where schedule is usually longer
than three months, and deliverables are
often prototypes or working models.

The Focused Repository Method is
always appropriate for our bread-and-butter
systems that have proven themselves and
when a hardware and/or software
enhancement (Class 4 project) is request-
ed. The Focused Repository Method is
usually selected when problems are
reported (Class 5) on fielded systems for
which our center is on the hook for life-
cycle support.

With the bulk of our delivered sys-
tems living short life cycles (mostly due to
technology advancements), overCMing
can be a real cost and schedule issue.
If/when a fielded system (Class 3 project)
exceeds expectations and takes on a long
life cycle (greater than four years) with
requests for additional copies with
expanded functionality, we sometimes
have to resurrect an Archival Method
repository and bring it up to Focused
Repository levels of CM resource com-
mitment.

We have yet to achieve a system that
provides enough metrics to seriously
examine and tune our CM processes
(Optimized Repository). I look forward to
that day. The “CM Discipline Progres-
sion” depicts our least restrictive to our
most restrictive CM method. I would love
to report that every time our center has

selected minimal CM (Archival Method)
for a project, we have not regretted it.
Likewise, we have gone all the way with
the Focused Repository Method only to
watch our system sit on the shelf with no
takers.

Archival Method
The Archival Method (characterized as a
capture technique) is selected when mini-
mal CM is appropriate. The program
manager (PM) specifies the schedule mile-
stone(s) at which the baseline will be
archived and identifies the set of system
components for capture. Minimum CM
occurs when the selected milestone is
System Acceptance Test (SAT) and an
O&M phase is not specified. When multi-
ple milestones are designated, or an O&M
phase is required, all soft copy files asso-
ciated with the milestone should be
placed into a project repository and labeled
with the milestone acronym. CM techni-
cians work closely with project members
to catalog system components, down to
lowest replaceable units (LRUs), compris-
ing the project at the specified milestone.

CM Requirements
The PM is responsible for identifying the
set of system components to be archived.
Software system components, comprised
of source files (no intermediate or build
product files), are isolated from project
work areas (preferably placed on a trans-
fer media) after the following is verified:
• Builds cleanly, without errors.
• Successfully executes.

Each software system component’s
build and execution (run-time) environ-
ment must be documented to ensure its
reproducibility. The following are the
minimum details to include:
• Development and target platform

nomenclature (if appropriate), includ-
ing identification of any special
boards, cables, peripherals, and driv-
ers.

• Operating system version and list of
patches.

• COTS and/or government off-the-
shelf (GOTS) version, installation
order, feature selections, configuration
files, patches, and integration code.

• Compilers, linkers, and loaders, includ-
ing their version and switch settings.

• Environment variables and their set-
tings.

• Dependencies on any third party
libraries, identify source and version,
and use restrictions.

• Actual license certificates, keys (don-
gles), and maintenance agreements.

• Test tools, either internally developed

Categorized Project Type Risk
Class 1 Concept Design High
Class 2 Development Design Moderate to High
Class 3 Integration Design Moderate
Class 4 Application Enhancement Low to Moderate
Class 5 Application Maintenance Low
Class 6 Production Low

Table 1: Classes of Projects Defined

Reality Configuration Management

November 2002 www.stsc.hill.af.mil 19

or commercial.
Each soft copy document turned over

to CM should be saved in a format that
turns off any tool propriety revision dis-
play feature4. This is especially important
for drawings from computer-aided design
COTS packages.

Hardware turned over to CM (usually
for transfer to an external O&M facility)
will be appropriately identified and classi-
fied. Bill of materials (BOM) must be
detailed down to line replacement units
(LRU). Any special handling or environ-
mental stowage requirements must be
made known at the time of turnover.

Strengths
• Simplifies project member’s work

environment.
• Allows staffing the project with less

experienced workers.
• Minimizes impact to project members.
• Reduces training needs.
• May result in shorter system develop-

ment timelines.

Weaknesses
• Places most of the responsibility for

executing CM onto CM technicians
who least understand the project’s
organization, goals, and deliverables.

• With respect to version control, this
method merely captures a snapshot set
of system components corresponding
to the designated milestone. Compo-
nent versions created between
archived snapshots are lost.

• With respect to change management,
when issues/problems are not docu-
mented or processed via a
review/approval process, manage-
ment also has no insight as to the
number of problems fixed (product
quality) or the way that problems are
fixed (design quality).

• With respect to configuration control,
this method frequently requires an
inordinate effort from CM to config-
ure the baseline, i.e., understand the
project components hierarchy (soft-
ware file system restructuring is per-
haps the worst case) and identify and
apply a meaningful software labeling
scheme.

• With respect to status accounting, lit-
tle or no metrics are available or col-
lected. It is difficult to associate
between changes to components and
the driving requirement, e.g., no way
to track revision three to system com-
ponent X with the corresponding
issue/problem report.

• With respect to auditing, no formal
baseline exists until a capture milestone

is executed. Customer insight to com-
pleted work is not verifiable. Change
implementation is invisible.

Open Repository Method
The Open Repository Method (character-
ized as a contribution technique) is selected
when management desires closer control
and progress review capabilities. Project
members are tasked with routinely sub-
mitting soft copy versions of their work
into a project repository. More dynamic
and comprehensive than the Archival
Method, the Open Repository Method
ensures that aggregate changes to a com-
ponent are contributed to the repository
as an identifiable version. Typically, an add
to or check-in/check-out interactive exchange
is employed to mature the repository
from project start-up through all phases
of the project’s life cycle. Management
review of a project is greatly simplified
when every project member is conscien-
tiously contributing to and/or entering
changes into the repository at predefined
milestones.

CM Requirements
It is necessary to comply with each
Archival Method requirement in addition
to the following:
• Pre-coordination and agreement

between CM and the project of a file
system structure to accommodate all
known system components and their
interfaces.

• As much advanced notice as possible
on project selected development tools
to allow for interoperability evaluation
to determine the best way to save and
stow soft copy files from these tools
into the repository.

• A mandatory repository check-in
comment that appropriately describes
the aggregate of changes to a compo-
nent since last check-in.

Strengths
• Anyone with permission to access the

repository can monitor when project
components enter the repository as
change sets at designated milestones.

• Work is centralized to a single file sys-
tem simplifying backup procedures.

• Facilitates project member communi-
cations because everyone knows
where to look for project items.

• Provides integration between develop-
ment tools (like Microsoft’s Word and
Visual C++) and the repository for
direct check-in/check-out processing
right from the tool they are using; with
some tools, compare and merge capa-
bilities can exist.

• Increases the opportunity for common
software and software reuse.

• Provides management with meaning-
ful metrics on project and component
size and complexity. The number of
versions for an item may convey the
level of development difficulty or
number of problems overcome.

• Reduces the data entry workload on
CM by distributing the repository
entry responsibility to each project
member.

Weaknesses
• With respect to version control,

although the open repository method
may produce file versioning, without
an organizational policy that mandates
following a change-management pro-
cedure for each file update, discrete
version control is not being exercised.

• With respect to change management,
although the open repository method
allows a comment to be entered when
a repository file is added, modified, or
replaced, without a formal issue man-
agement process with board adjudica-
tion, change management is not being
exercised. Repository changes are not
subject to formal review.

• With respect to configuration control,
without formal change management,
controlling a project’s configuration by
defining labels that correspond to
schedule milestones and manually
apply them is about the best you can
achieve. The open repository method
does not achieve verifiable baseline
advancement. An opportunity exists
for unsolicited enhancements.

• With respect to status accounting, ver-
sion metrics and associated comments
are available and can be reported, but
correlation of problems fixed to spe-
cific files changed is still missing.

• With respect to auditing, it provides
both management and customer the
opportunity to review soft copy files
(including schedule updates) in the
repository, but fails to provide issue-
management metrics (action item,
issue, problem report, engineering
change proposal, engineering change
notice, revision-level change, etc.).

Focused Repository Method
The Focused Repository Method (charac-
terized as a directed technique) is selected
when management has CM policies/pro-
cedures institutionalized within their
organization and the intent is for full con-
trol of workflow processes for the proj-
ect5. Project members are indoctrinated
on CM policies, issue documenting, and

Software Engineering Technology

20 CROSSTALK The Journal of Defense Software Engineering November 2002

change management procedures. The PM
is indoctrinated on management review
policies and the various metric reports
available from status accounting.

The Focused Repository Method is a
disciplined process-oriented approach to
achieving CM during project execution.
All project members have access to the
issue-tracking tool and all issues are docu-
mented when they become known. The
timely review and disposition of every
issue conforms to the organization’s
change management process. For our
organization, two Configuration Control
Boards (CCBs) handle the disposition of
issues. A project-level CCB handles all
issues that do not affect schedule, cost, or
design. A program-level CCB dispositions
all schedule-, cost-, and design-related
issues. Management overview of project
execution is near real-time because issues
are immediately surfaced and dealt with.

CM Requirements
It is necessary to comply with each
Archival and Open Repository Method
requirement in addition to the following:
• Project plans must identify major sys-

tem components and supply support
documents that fully describe:
• Hardware components detailed to

subassemblies, LRUs, with draw-
ings, board layouts, and accurate
BOM and formal build-to docu-
mentation.

• Drawings and layouts comply with
IPC-A6 revision standards.

• Firmware, vendor supplied or cus-
tom developed, maintenance plan.

• Bundled COTS, GOTS, version,
license and distribution agree-
ments.

• Software components, build order,
build mechanism, build environ-
ment, run-time environment,
release strategy, version descrip-
tion, and maintenance plan.

• Project members must attend CM
training sessions covering tools,
processes, and procedures.

• Project engineers responsible for tool
selection must coordinate with CM on
tool integration and upgrade tasks.

Strengths
These include all the strengths listed
under the Open Repository method plus
the following:

• Verifiable change management.
• All repository changes are subject

to formal review.
• All changes are captured.
• Project issues are documented,

adjudicated, and dispositioned

resulting in traceable system com-
ponent changes within the matur-
ing baseline.

• Provides for accurate file compare
capability, a single change set that
directly correlates with a single
issue.

• Management has full insight into
the number of problems fixed
(product quality).

• Management can review exactly
how an issue was fixed.

• Reduces CM technician’s involve-
ment with repository input.

Weaknesses
• Requires organizational policy, proce-

dure, and training programs, each sub-
ject to a continuous improvement
effort.

• Customer buy-in, including compiling
adequate cost and schedule metric
briefings to convince customers that
implementing effective CM gets them
better products at cheaper prices with-
in shorter development cycles.

Optimized Repository
Method
The Optimized Repository Method (char-
acterized as a tuning technique) is selected
for a project by management only after an
acceptable number of projects using the
Focused Repository Method have been
completed and thoroughly evaluated.
Isolated areas with weak processes and
procedures, insufficient metric collectors,
inadequate change-tracking information,
forms and route slip inadequacies, high
quality control failure areas, and high per-
centage test failure components are tar-
geted for having their workflow processes
fortified. Fortifications include the fol-
lowing: more stringent reviews, tighter
version management, better testing (addi-
tional regression tests), additional
required fields for capturing metric data,
and a higher degree of system decompo-
sition. Management targets a specific

project for observation and evaluation
using the improved CM practices.

CM Requirements
It is necessary to comply with each
Archival, Open Repository, and Focused
Repository Method requirement in addi-
tion to the following:
• Project members must attend CM

training sessions covering tool,
process, and procedure enhancements
or replacements.

• Project members must comply with
entering additional form and route slip
inputs.

• Project members must supply greater
detail to required comment fields
when assigned issue and change reso-
lution tasks.

Strengths
These include all strengths listed under
the Open and Focused Repository
Methods plus the following:
• The project is first to try out new

tools, processes, and procedures.
• Increased metric data usually results in

more accurate cost and schedule
reporting.

• Companies executing disciplined sys-
tems development have an advantage
when it comes to attracting good engi-
neers.

• Companies executing disciplined sys-
tems development have the advantage
over undisciplined companies that
cannot bid (SEI/CMM competition).

Weaknesses
• The project is first to try out new

tools, processes, and procedures.
• May result in a longer system develop-

ment timeline.
• Tendency for higher project cost asso-

ciated with implementing process
changes.

Conclusion
A small systems development facility can
achieve limited CM proficiency by selec-
tively implementing CM disciplines across
their business lines. As management real-
izes benefits from the relatively small
resource investments associated with the
Archival Method, a natural progression to
Open and Focused Repository Methods
becomes almost automatic as customers
communicate their desire or need for sys-
tem advancements.

Conversely, when the deliverable is a
working model that proves a concept, or a
design, cost, and schedule are the para-
mount requirements, Archival Method
processes may be just the right amount of

“A small systems
development facility can

achieve limited CM
proficiency by selectively

implementing CM
disciplines across their

business lines.”

November 2002 www.stsc.hill.af.mil 21

Reality Configuration Management

CM. Government contracts awarded to
the low bidder demand cost effective pro-
posals with the basis of estimates receiv-
ing careful scrutiny. Minimizing CM often
becomes a target for cost savings for small
developing facilities facing the reality of
having to present a winning proposal.◆

Notes
1. Substitute ISO9001, Capability

Maturity Model® IntegrationSM, or
Malcolm Baldrige Award, as applica-
ble.

2. Makefile: A manually generated, spe-
cially formatted input file to the make
utility, which contains information
about what files to build and how to
build them. The make utility stream-
lines the process of generating and
maintaining object files and executable
programs. It helps to compile pro-
grams consistently, and eliminates
unnecessary recompilation of mod-
ules that are unaffected by source
code changes.

3. A source code control system (SCCS)
allows you to control write access to
source files and to monitor changes
made to those files. Allows only one
user at a time to update a file, and
records all changes in a history file.
SCCS is a bundled Unix utility.

4. Our center’s CM tool is integrated
with our desktop office package to
automatically display two versions of

a non-binary file in revision mode.
5. Our center selected Rational’s

ClearCase product as its standard for
creating and maintaining individual
project repositories because ClearCase
allows engineers, technicians, and
managers to work directly in the proj-
ect repository.

6. IPC: From 1957-1999, IPC stood first
for Institute for Printed Circuits; later it
became Institute of Interconnecting and
Packaging Electronic Circuits. In 1999,
IPC changed its name to just plain
IPC, which has its offices at 2215
Sanders Road, Northbrook, IL 60062-
6135. The IPC provides the following
information:
• Standards to facilitate communica-

tions between suppliers and cus-
tomers.

• Guidelines with current industry
positions on a wide range of sub-
jects.

• Research to solve industry prob-
lems.

• Correlation of industry test meth-
ods.

• New developments in intercon-
nection technology.

• A monthly publication called
Relay.

• Provides training (and certifica-
tion) at U.S. and overseas sites.

• Maintains a web site at
<www.ipc.org>.

For example: IPC-A-610C –
Acceptability of Electronic Assem-
blies: This standard is a collection of
visual quality acceptability require-
ments for electronic assemblies.

About the Author
Donald E. Casavecchia
is director, configura-
tion management/quali-
ty assurance (CM/QA)
with the Warrenton
Operations Strategic

Planning Group of ACS Defense, Inc.
He is a hands-on CM manager with
more than 20 years experience with the
Department of Defense and govern-
ment projects, including assembly,
BASIC, FORTRAN, C, and script pro-
gramming, setting up and maintaining
software development environments,
and supporting embedded systems
development. Casavecchia believes in
implementing practical CM/QA solu-
tions.

ACS Defense, Inc.
P.O. Box 700
Warrenton,VA 20188
Phone: (540) 349-3762
Fax: (540) 349-3517
E-mail: donc@wtc.gov

If your experience or research has produced information that could
useful to others, CrossTalk can get the word out. We are
ecially looking for articles in several specific, high-interest areas.
oming issues of CrossTalk will have special, yet non-
usive, focuses on the following tentative themes:

Call for ArticlesC

Commercial and Military Applications Meet
June 2003

Submission Deadline: January 20, 2003

Defect Management
August 2003

Submission Deadline: March 17, 2003

Information Sharing/Data Management
September 2003

Submission Deadline: April 17, 2003

Please follow the Author Guidelines for CrossTalk, available on the Internet at:
www.stsc.hill.af.mil/crosstalk

We accept article submissions on all software-related topics at any time,
along with Open Forum articles, Letters to the Editor, and BackTalk submissions.

22 CROSSTALK The Journal of Defense Software Engineering November 2002

Departments

DACS
www.dacs.dtic.mil/
The DACS is a Department of Defense Information Analysis
Center. The DACS supports the development, testing, validation,
and transitioning of software engineering technology to the
defense community, industry, and academia. DACS’ subject areas
encompass the entire software life cycle and include software engi-
neering methods, practices, tools, standards, and acquisition man-
agement. Also included are programming environments and lan-
guage techniques such as Ada and Object Oriented Design, soft-
ware failures, test methodologies, software quality metrics and
measurements, software reliability, software safety, cost estimation
and modeling, standards and guides for software development
and maintenance, and software technology for research, develop-
ment, and training. The DACS is a central distribution hub for
software technology information sources.

Defense Acquisition Deskbook
www.web2.deskbook.osd.mil/5000Model.asp
The Defense Acquisition Deskbook is sponsored by the Office of
the Under Secretary of Defense. It functions as a hub for the
Department of Defense’s (DoD) acquisition center, including the
DoD 5000 Model, quick links, reference library, ask a professor,
special interest items, education and training, and more.

Software Testing Institute
www.softwaretestinginstitute.com
The Software Testing Institute (STI) provides access to quality
industry publications, research, and online services. STI offers a
software testing discussion forum, the STI Resource guide, and
privileged access to STI’s industry surveys on salaries, industry
trends, staffing and more.

CrossTalk
www.stsc.hill.af.mil/crosstalk
CrossTalk, The Journal of Defense Software Engineering,
introduces its newly redesigned Web site. We have completely
revised our look and links making it easier and faster for you to
locate any issues, read back issues, review current monthly
themes, search the Web site, download author guidelines, sub-
mit questions and feedback, and more. CrossTalk is an
approved Department of Defense journal. Our mission is to
encourage the engineering development of software in order to
improve the reliability, maintainability, and responsiveness of
our war fighting capability and to inform and educate readers
on policy decisions and new software engineering technologies.

Software Program Managers Network
www.spmn.com

The Software Program Managers Network (SPMN) is sponsored
by the deputy under secretary of defense for the science and
Technology, Software Intensive Systems Directorate. It seeks out
proven industry and government software best practices and con-
veys them to managers of large-scale Department of Defense soft-
ware-intensive acquisition programs. SPMN provides consulting,
on-site program assessments, project risk assessments, software
tools, guidebooks, and specialized hands-on training.

StickyMinds
www.stickyminds.com
StickyMinds.com is designed for software managers, testers, and
quality assurance engineers to share information and is the Web
site where they gather to discuss know-how. StickyMinds.com is
all about gathering knowledge.

WEB SITES

2002 U.S. Government's Top 5 Quality Software Projects
The Department of Defense and CrossTalk are currently accepting
nominations for the 2002 U.S. Government's Top 5 Quality Software
Projects. Outstanding performance of software teams will be recognized
and best practices promoted.

These prestigious awards are sponsored by the Office of the Under
Secretary of Defense for Acquisition Resources and Analysis, and are
aimed at honoring the best of our government software capabilities and
recognizing excellence in software development.

The deadline for the 2002 nominations is December 13, 2002. You can
review the nomination and selection process, scoring criteria, and
nomination criteria by visiting our Web site. Then, using the nomination
form, submit your project for consideration for this prominent award.

Winners will be presented with their award at the 15th annual Software
Technology Conference in Salt Lake City and will be featured in the
July 2003 issue of CrossTalk and recognized at the Amplifying
Your Effectiveness 2003 conference.

Open Forum

November 2002 www.stsc.hill.af.mil 23

Disciplined document reviews are
somewhat analogous to medical

instrument sterilization. Today, we would
not tolerate doctors using unsterilized
equipment to conduct surgery. However, it
was common practice, for example, during
the Civil War to use a surgical instrument
such as a saw without proper sanitation
between limb amputations. This caused
more soldiers to die of infections than
from the initial wounds. Once scientists
learned about bacteria and other microbes,
the medical industry began requiring that
equipment be sterilized to avoid infecting
patients.

Today, we have plenty of experience
data that shows disciplined document
review practices are vital to delivering sys-
tems on-time and within budget [1, 2].
However, many software development
organizations still have no problem using
yesterday’s practice of whipping together a
set of requirements and delivering it to the
developers and testers without an ade-
quate review. They do not take the time
nor use effective tools to look for docu-
ment defects. Either they do not see any
obvious bugs, or they must figure the bugs
can be fixed later. Consequently, they do
not seem to mind delivering a document
with serious diseases, so to speak.
However, it is a well-known fact that
defects cost more to fix the longer they
remain in the system documentation (and
code) [3].

Yesterday’s state-of-the-practice is
often today’s malpractice. Let me go on
record as saying that organizations not
implementing a disciplined document
review program will one day be considered
to be conducting software malpractice.
Disciplined document reviews are that
important!

Disciplined document reviews are also
known as peer reviews, inspections, and
structured walk-throughs. While there are
some differences in definitions for these
terms in various standards and guidelines
[4] in the industry, the intent is to identify
defects to determine if the document is

ready for release to the next phase of
development or for delivery to the cus-
tomer. The author should prepare the doc-
ument to the point that he or she believes
that there are few, if any, defects remain-
ing, and that it is considered ready for
release to the next phase of development
or delivery. Another major purpose for
these reviews is to identify process
improvement opportunities to avoid mak-
ing the same mistakes on future efforts.

Human Disease Analogies
In any discipline, we provide names to
characterize the topics, objects, and proj-
ects that we need to discuss. Naming a
concept helps us gain an initial under-
standing of the issue. If naming document
maladies after human diseases could help
software engineers better understand and
deal with the documentation problems
confronting them, then I propose doing
so. There are several document diseases
that I have seen in my research at the
Software Technology Support Center
(STSC) and during my support of STSC
clients. Since many of us are not readily
conversant with human diseases, here are a
few definitions for review [5]:
• Rickets. A deficiency disease resulting

from a lack of vitamin D, marked by
defective bone growth and occurring
chiefly in children.

• Sclerosis. A thickening or hardening
of a bodily part, especially from dis-
ease or excessive growth of tissue.

• -itis. Inflammation or disease of [a
body part or parts].

• Scurvy. A disease resulting from a
deficiency of vitamin C and marked by
bleeding under the skin.

• Glaucoma. A disease of the eye
marked by high intraocular pressure
and partial or total vision loss.

• Cancer. Malignant neoplasms that
manifest invasiveness and have a ten-
dency to metastasize to new sites.
After this quick review, surely you can

see that relating these names to document
defects could invoke a feeling of alarm

that would require immediate treatment to
keep project costs and quality under con-
trol. The following sections discuss sever-
al document diseases to to treat immedi-
ately on your projects.

Requirements Rickets
Requirements rickets is a deficiency of
important requirements resulting from a
lack of exposing requirements to adequate
analysis and review. For example, require-
ments state that a behavior shall occur
given a specific condition. But they do not
tell you what to do when the condition is
not met. This is a common cause of
requirements rickets: The symptom is
missing requirements. Granted, an itera-
tive or evolutionary development life cycle
does not expect all requirements to be
defined at the start. But when you define
the requirements that you do know about,
be sure they are adequately specified.

Another example of requirements
rickets occurs when we state that we want
a usable system and then do not provide
any objective scale of measure for usabili-
ty. We are missing vital information, with-
out which we can neither build the desired
system nor evaluate whether it has been
successfully accomplished. Example scales
of measure for usability include the aver-
age time to learn to use specific product
features and the average time to perform
specific product features by experienced
personnel [1].

Source Code Sclerosis
Source code sclerosis is a hardening of the
source code, making it very difficult to
correct or upgrade without breaking some
other existing capability. Many old legacy
systems are built with breakable design
architectures and poor coding practices
(for example, inadequate comments,
unstructured code, or poorly named vari-
ables). These systems require intensive
care to revive them to prolong their lives
many times. We often spend 70 percent or
more of the entire life cycle doing mainte-
nance on many of these systems [6].

Document Diseases and Software Malpractice
Gregory T. Daich

Software Technology Support Center/SAIC

This article proposes some names for software documentation diseases based on human diseases that will surely invoke a feel-
ing of alarm to motivate developers to plan immediate treatment to keep project costs and quality under control. To ignore
and leave these documentation diseases untreated may one day be considered software malpractice. This article can help to iden-
tify serious documentation maladies early when treatment is possible to maintain a lean, healthy, and on-time project.

Open Forum

24 CROSSTALK The Journal of Defense Software Engineering November 2002

Some of these systems with source
code sclerosis need to be taken off life
support. They need to be redesigned and
rebuilt to cost-effectively meet operational
requirements. With the support of auto-
mated static analysis tools, effective docu-
ment reviews assures that maintainable
code is developed.

Ambiguousitis
Ambiguousitis is a disease of ambiguity
inherent in all natural languages and is as
common as the common cold. Sometimes
it provides some variety, mystery, or humor
to fictional prose but it always causes liter-
ary dizziness and confusion in software
documentation. People can legitimately
interpret the same specifications in differ-
ent ways. For example, consider the fol-
lowing statement: “If Transaction_A is
received, and it is the end of the week, or
it is the end of the month, produce
Summary_A Report.”

This text can be interpreted in at least
two distinct and valid ways using the
parentheses to clarify as follows:
• Interpretation 1: “If (Transaction_A is
received, and it is the end of the week) or
it is the end of the month, produce
Summary_A Report.”
• Interpretation 2: “If Transaction_A is
received, and (it is the end of the week or
it is the end of the month), produce
Summary_A Report.”

Making an assumption about what the
original text means is dangerous to the
health of the project. Interpretation 1
always produces Summary_A Report at
the end of the month. It also produces
Summary_A Report if it is the end of the
week and Transaction_A has been
received. Interpretation 2 produces
Summary_A Report only if Transac-
tion_A is received and either it is the end
of the week or it is the end of the month.
(Is that clear?) In other words, the results
are different depending on the reader’s
interpretation. This disease has caused
entire projects to die a slow and painful
death, though the symptoms were often
known very early and could have been
diagnosed and treated.

Source Document Scurvy
Source document scurvy is a malicious dis-
ease resulting from a deficiency of source
document references and is rampant in
many project documents. Its effects are
often tolerated as part of life when the
quality of our projects could be greatly
improved with the adoption of a few
effective antidotes. If you obtain informa-
tion from a source document, then provide
a useful citation to that document such as

a reference identifier with a page or section
number (if it is not obvious where the
information came from). It takes only a lit-
tle more time and saves countless review
and rework hours later.

Note that a reference section should
always be provided in all documentation,
and includes the titles, authors, dates, and
version numbers of all sources. No docu-
ment is an island. Some managers want the
documents that they have to review to
stand on their own. Thus the authors hide
vital reference information by not listing
all the applicable references. You can often
find inconsistencies between documents
when you check it under review against the
source document.

Document Glaucoma
Document glaucoma is a disease caused by
unclear or missing document and project
objectives. It is a frequent illness in special
reports, plans, or guidelines to support
software development or maintenance
efforts. When I am asked to review these
types of documents, I often cannot find a
statement of objectives. With no vision of
where we are really headed in some of
these documents, it is a wonder we make
any progress at all.

Software-related documentation writ-
ten by inexperienced authors often jumps
right into the body of the document with
no proper introduction. This may have
something to do with the mindset of some
developers that documentation is bad
because it slows us down. That is like say-
ing we do not have time to document our
plans or our requirements. We just have
time to build. “We’ll document later,” is a
common comment I have heard from a
variety of sources. This is a clear example
of document glaucoma; unclear project
objectives is its main symptom.

Content Cancers
Content cancers occur whenever an uncor-
rected, often malignant documentation
problem is not corrected prior to delivery
to the next phase of development. IBM
studied how design defects propagate to
multiple design defects, and how design
defect propagates to multiple coding
defects [6]. Again, documents written in
early project phases often transmit these
cancerous defects to follow-on phases
because they were not diagnosed and the
disease treated when authors had a chance
– shortly after writing the document. This
disease continues to grow maliciously to
damage schedules and costs and ultimately
kill projects. One particularly malignant
strain of this disease manifests itself in
“required” but trivial overkill documenta-

tion that does not support key project
objectives.

Disease Cure and Prevention
Unlike some human diseases, these docu-
ment diseases are completely diagnosable
and curable using technologies available
today. The technologies are not difficult
but are a collection of common-sense
activities that require training where effec-
tive practices can be experienced.
However, effective document reviews
require a significant process implementa-
tion effort following training. Many organ-
izations do not make this vital investment.

Some of these common-sense activi-
ties include the following [1, 7]:
• Checking the document against objec-

tive criteria to determine readiness for
review, and planning the review by a
trained document review leader.

• Conducting a kick-off meeting to
introduce the document to the review-
ers and to answer questions.

• Checking the document against
sources, checklists, standards and
checking for ambiguities, incomplete-
ness, inconsistencies, and missing
sources.

• Meeting as a team of reviewers to
report and check for additional defects.

• Conducting a process brainstorming
meeting to begin root cause analysis
shortly after the team review meeting.

• Correcting the document by the author
or author-representative and address-
ing all issues and defects.

• Auditing the author’s corrections.
• Verifying that objective document

readiness criteria have been met by the
review leader and recording metrics.
Once the review process is underway, it

needs to be constantly monitored to assure
that document review leaders are following
the process. Without active management
support and involvement, developers and
support staff often slip back into archaic,
skim-review malpractice (one quick gloss-
over reading without checking sources and
checklists). [1, 7, 8, 9, 10].

Poor document review practices persist
in many organizations because there is no
documented policy and process for con-
ducting reviews; that is the way it has been
done for years. Conducting haphazard ad
hoc reviews allows critical project docu-
mentation to be transmitted unsterilized to
subsequent phases of development.

We all know that “An ounce of pre-
vention is worth a pound of cure.”
Effective document reviews also feed
information back to developers to help
improve the authoring process in the
future.

Document Diseases and Software Malpractice

November 2002 www.stsc.hill.af.mil 25

Effective document reviews will not
prevent all document diseases and will not
guarantee success, but they go a long way
toward maintaining healthy projects. They
require up to 15 percent more time during
the document authoring stages of devel-
opment, but they save time overall on
projects through significantly less rework
and retesting [1]. It is like taking the time
to eat well-balanced meals, participate in
an effective exercise program, and get
enough rest for your projects. You just
cannot expect to live a healthy project
lifestyle without effective and efficient
document review practices.

With effective review practices, you
can also expect more projects to reach full
maturity. You will have fewer incidents of
project euthanasia (cancellations) adminis-
tered (which is probably the best idea for
many suffering projects). You will also
have more lean and healthy projects deliv-
ered on-time and on-budget [2].

Although I do not really expect any
project to adopt my document disease
naming convention, it brought to light
some interesting issues about documenta-
tion maladies that are treatable today. One
rule in conducting disciplined document
reviews is to direct comments at the doc-
ument, not the author. Naming document
diseases this way may suggest that some
authors are carriers of certain diseases. We
do not really want to label authors this
way. However, it may be fair to say that
responsible managers who neglect imple-
menting effective reviews of critical docu-
mentation may be the real carriers of the
above document diseases.

The consequences of poor quality
documentation can still result in preventa-
ble project fatalities just like individuals
practicing poor health habits result in pre-
ventable fatalities. Again, to do anything
less than implementing disciplined docu-
ment reviews could eventually be software
malpractice.◆

Acknowledgements
I would like to thank the following people
for their comments regarding this article:
Pam Bowers, Ross Collard, Rick Craig,
David Dayton, Chelene Fortier, Tom Gilb,
Paul Hewitt, Tony Henderson, Cem
Kaner, Ed Kit, Bret Pettichord, Ron
Radice, Johanna Rothman, Bob Stahl,
Beth Starrett, Tracy Stauder, and Karl
Wiegers.

References
1. Gilb, Tom, and Dorothy Graham.

Software Inspection. Boston:
Addison-Wesley, 1993.

2. Dion, Raymond. “Process Improve-

ment and the Corporate Balance
Sheet.” CrossTalk Feb. 1994.

3. Boehm, Barry. Software Engineering
Economics. Prentice Hall, 1981: 17.

4. Institute of Electrical and Electronics
Engineers. “Standard for Software
Review Processes”. IEEE 1028-1997.

5. Webster’s II New Riverside University
Dictionary. The Riverside Publishing
Company, 1984.

6. Collard, Ross, et. al. System Testing
and Quality Assurance Techniques.
Collard & Associates, 2001.

8. Ebenau, Robert G., and Susan H.
Strauss. Software Inspection Process.
McGraw Hill, 1993.

9. Radice, Ronald A. High Quality Low
Cost Software Inspections. McGraw-
Hill, 1993.

7. Daich, Gregory T. “Disciplined
Document Reviews Course.” Software
Technology Support Center. Mar.
2002, Version 6.

10. Wiegers, Karl E. Peer Reviews in
Software: A Practical Guide. Addison-
Wesley, 2002.

About the Author
Gregory T. Daich is a
senior software engi-
neer with Science Ap-
plications International
Corporation currently
on contract with the

Software Technology Support Center
(STSC). He supports STSC’s Software
Quality and Test Group with more
than 25 years of experience in develop-
ing and testing software. Daich has
taught public and on-site seminars
involving software testing, document
reviews, and process improvement. He
consults with government and com-
mercial organizations on improving the
effectiveness and efficiency of soft-
ware quality practices. Daich has devel-
oped two Air Force training programs:
Software-Oriented Test and Evalua-
tion, and Disciplined Document
Reviews. He has a master’s degree in
computer science from the University
of Utah.

Software Technology Support Center
OO-ALC/MASEA
7278 4th St.
Bldg. 100
Hill AFB, UT 84056-5205
Phone: (801) 777-7172
E-mail: greg.daich@hill.af.mil

Get Your Free Subscription

Fill out and send us this form.

OO-ALC/MASE

7278 Fourth Street

Hill AFB, UT 84056-5205

Fax: (801) 777-8069 DSN: 777-8069

Phone: (801) 775-5555 DSN: 775-5555

Or request online at www.stsc.hill.af.mil

NAME:__

RANK/GRADE:___

POSITION/TITLE:__

ORGANIZATION:___

ADDRESS:__

__

BASE/CITY:__

STATE:___________________________ZIP:___________________________________

PHONE:(_____)___

FAX:(_____)___

E-MAIL:__

CHECK BOX(ES) TO REQUEST BACK ISSUES:

JUL2001 " TESTING & CM

AUG2001 " SW AROUND THE WORLD

SEP2001 " AVIONICS MODERNIZATION

JAN2002 " TOP 5 PROJECTS

FEB2002 " CMMI

MAR2002 " SOFTWARE BY NUMBERS

MAY2002 " FORGING THE FUTURE OF DEF

JUN2002 " SOFTWARE ESTIMATION

JULY2002 " Information Assurance

AUG2001 " SOFTWARE ACQUISITION

SEP2002 " TEAM SOFTWARE PROCESS

OCT2002 " AGILE SW DEVELOPMENT

To Request Back Issues on Topics Not
Listed Above, Please Contact Karen
Rasmussen at <karen.rasmussen@
hill.af.mil>.

26 CROSSTALK The Journal of Defense Software Engineering November 2002

The phrase defense software refers to soft-
ware produced for a uniformed mili-

tary service such as the Air Force, Army,
Navy, Marines, or Coast Guard. The term
can also include software produced for the
Department of Defense (DoD), or the
equivalent in other countries, by civilian
companies such as Boeing, Lockheed
Martin, Raytheon, and a host of others.

Uniformed military personnel produce
some defense software. In the United
States, however, civilian contractors devel-
op the bulk of defense software.
Oversight and project management roles
are normally the responsibility of military
program management officers.

The broad definition of defense soft-
ware includes a number of subclasses
such as software associated with weapons
systems; with command, control, and
communication systems (usually short-
ened to C3 or C cubed); with logistical
applications; and also with software virtu-
ally identical to civilian counterparts such
as payroll applications, benefits tracking
applications, and the like. The main attri-
bute that distinguishes defense software
from other types of software is adherence
to military or DoD standards.

DoD Software Industry
Overview
Since about 1990, the U.S. defense con-
tracting community has been undergoing
some significant changes. Waves of merg-
ers and acquisitions have led to a reduc-
tion in overall numbers of defense con-
tractors. While the remaining contractors
are growing in size, “downsizing” or elim-
ination of redundant personnel also
accompanied the mergers so the overall
defense sector has not grown in terms of
demographics for several years. However,
in the aftermath of the Sept. 11 tragedy,

new importance has been placed on the
defense community so demographics may
climb again in the future.

The United States is far and away the
major producer and consumer of military
and defense software in the world. The
volume and sophistication of U.S. military
software is actually a major factor of U.S.
military capabilities. All those pictures of
cruise missiles and smart bombs that filled
television news during the Gulf War and
the Afghanistan action have an invisible
background: It is the software and com-
puters onboard that make such weapons
possible.

In addition, the NATO countries tend
to use many weapons systems, communi-
cation systems, logistics systems, and
other software systems produced in the
United States. This means that the volume
of U.S. defense and military software
appears to be larger than the next five
countries put together (Russia, China,
Germany, United Kingdom, and France).
Many other countries produce military
and defense software for weapons and
communications systems that they use or
market, including Israel, Brazil, South and
North Korea, India, Pakistan, Sweden,
and Japan.

Differences Between Civilian
and Defense Software
Practices
To an outside observer, military software
and hardware projects are noticeably dif-
ferent from civilian norms. The first
noticeable difference is the procurement
process itself. The bulk of military proj-
ects are acquired by means of competitive
bids, with lowest cost as a primary consid-
eration. The bidding process is quite for-
mal and includes rather massive sets of
deliverable items from the prospective
contractors. Thus, responding to a military

request for proposal can be an expensive
proposition in its own right.

This form of acquisition by competi-
tive bids also leads to another difference
between civilian and military norms.
Military procurement is often accompa-
nied by litigation that challenges the suc-
cessful bidder. Based on discussions with
DoD officials, almost half of the initial
contract awards are challenged by losing
vendors. An entire body of military con-
tract law, special courts, and arbitrators
deal with these challenges. In contrast, less
than 10 percent of civilian contracts go to
litigation to challenge the winning bid.

As a result of frequent litigation chal-
lenging the initial contract awards, there is
often a six- to 18-month delay in reaching
a final decision on military software con-
tracts and starting the work. This means
that many large military software and
hardware projects are under immediate
schedule pressure. Since schedule pressure
is one of the major root causes of soft-
ware failures, some projects that are
rushed tend to run late, have poor quality,
or end up being canceled since they can-
not meet operational requirements.

Another difference between military
and civilian practice is readily apparent
once the contract work begins. The rela-
tionship between the DoD and its con-
tractors had tended to be somewhat
adversarial. As a result, the oversight and
control requirements of military projects
have been more extensive and burden-
some than civilian norms. This has had a
direct and tangible impact on defense
software productivity. On the other hand,
the number of very large software proj-
ects successfully concluded in the defense
domain appears to be better than civilian
norms for the same sized applications. In
other words, defense software may have
more front-end litigation than civilian
software, but fewer instances of litigation

Defense Software Development in Evolution©

Capers Jones
Software Productivity Research, Inc.

The author and his colleagues have been measuring software quality and productivity rates since 1985. They classify the proj-
ects that they examine into six major groupings: information technology software, outsource software, commercial software, sys-
tems software, defense software, and end-user development software. Applications are placed in the defense software group if
they followed U.S. military or Department of Defense (DoD) standards. Overall, defense software projects have ranked near
the top in software quality. However, defense software projects have ranked last in terms of software productivity, mainly
because DoD standards created a number of extra tasks for defense software that do not occur in the civilian sector. In addi-
tion, the volume of defense software specifications and other paper documents has been about three times larger than civilian
norms. As the DoD moves toward adopting the best civilian practices and standards for software, it is possible to see some
improvement in productivity while keeping software quality levels high.

© Copyright 2002 by Capers Jones. All Rights Reserved.

Defense Software Development in Evolution

November 2002 www.stsc.hill.af.mil 27

for non-performance at the end.
Due to elaborate oversight require-

ments, the volume of planning and track-
ing paperwork required for a typical mili-
tary software project has been about three
times larger than for civilian software
projects of the same size, based on our
comparisons. Indeed, software require-
ments, software specifications, and almost
all forms of text-based documents were
several times larger for military projects
than for equivalent civilian projects.

The large volume of paper documents
is one of the main reasons why military
software productivity rates lagged behind
all other domains. About 400 English
words were produced for every source
code statement in the Ada95 program-
ming language on typical military software
projects in the 1980s and early 1990s.
These words cost at least twice as much as
the code itself. It is not unusual for large
defense projects to accumulate roughly 50
percent of total costs in the area of pro-
ducing and reviewing paper documents.
This is far more than for any other kind of
software.

While every software project needs
requirements, specifications, plans, and
deficiency reports, about half of the
words created for military software proj-
ects seemed to be due to the very elabo-
rate oversight and status reporting criteria
associated with military contract work.
Basically, some of the documents are pro-
duced to demonstrate contract compli-
ance rather than to add technical content
to the project itself.

Dealing with the DoD and the military
services for business and contract purpos-
es is so complex and specialized that com-
panies actually doing significant amounts
of military business usually have specialist
military proposal and contract personnel
who often are retired military officers. It is
very difficult for amateurs to bid success-
fully on a military contract.

Being the world’s largest producer and
consumer of military software, the United
States’ software production methods are
of global importance. In the United States
in 1994, the Secretary of Defense William
Perry issued a major policy statement [1]
saying in effect that DoD standards no
longer needed to be utilized. Instead, the
armed services and the DoD were urged
to adopt current civilian best practices.

Immediately, several task forces and
study groups were created to explore lead-
ing civilian software practices. However,
the military community has a conservative
bent. Many military and DoD standards,
such as MIL-STD-2167A or MIL-STD-
498 [2], have continued to be the de facto

standards of the military world, if for no
other reason than because military con-
tractors have used them for so long they
are comfortable with the nomenclature
and requirements.

Since civilian software fails, too, (wit-
ness the protracted delays associated with
the luggage handling system of the
Denver Airport [3]) another challenge for
the defense community is to select prac-
tices from the civilian sector that truly do
work, as opposed to practices that are
merely fads. James Johnson and his col-
leagues at the Standish Group publish an
annual report on software failures [4].

Further, some of the civilian stan-
dards, such as the ISO 9001-9004 quality
standards, create document volumes that
are just as large, or larger, than military
standards such as MIL-STD-2167.
Overall, selecting the best standards in
either civilian or defense sectors is not
necessarily an easy task.

The World Wide Web has many inter-
esting sites dealing with the evolution of
military standards toward civilian equiva-
lents such as those published by well-
known standards organizations, including
the Institute of Electrical and Electronic
Engineers (IEEE). Using a search engine
with the key words “military standards”
will bring up more than 20 relevant sites.
One of the relevant documents is an
interesting report on “Systems Engineer-
ing Standards and Models Compared” by
Sarah Sheard and Dr. Jerome Lake. This
document is available via the Software
Productivity Consortium at <www.soft
ware.org/pub/externalpapers/98042.
html>. On the whole, the best models for
the military domain would be the large
civilian systems software producers such
as AT&T, IBM, etc.

The phrase systems software refers to
software applications that control com-

plex physical devices. Examples include
digital computers, modern telephone
switching systems, aircraft flight controls,
and robotic manufacturing tools. The larg-
er systems software applications, such as
IBM’s multiple virtual storage (MVS)
operating system, are about 100,000 func-
tion points in size, which is equivalent to
roughly 10,000,000 source code state-
ments in common procedural languages
such as Fortran, PL/I, or Ada.

Systems software is of similar size and
complexity levels to many large-scale mili-
tary applications. However the civilian sys-
tems software domain manages to build
large applications with smaller specifica-
tions, shorter schedules, lower costs, and
equal or higher quality than normally
found on defense projects. The compa-
nies that build systems software tend to
utilize sophisticated internal standards
augmented by major international stan-
dards, such as those published by the
IEEE and ISO.

Both the civilian systems software
domain and the defense software domain
excel in software quality control. Since
both domains are concerned with com-
plex hardware platforms that are con-
trolled by software, it is imperative to have
state-of-the-art quality control or the
hardware devices may fail or perform in
hazardous ways.

In contrast, the companies that pro-
duce information systems, commercial
software packages, and software not con-
trolling physical devices often lag in soft-
ware quality control. There are both social
and technical reasons for this. For exam-
ple the systems and defense software
domains almost always have formal quali-
ty assurance departments, while the infor-
mation systems and commercial vendors
are not as likely to have quality assurance
groups.

Historically, the systems software and
defense domains evolved from older engi-
neering groups that had quality assurance
support even before computers were uti-
lized. The information systems domains
evolved from accounting, finance, and
business operations that seldom utilized
quality assurance before computers were
common.

Another aspect of the DoD attempt
to move in a civilian direction is increased
usage of commercial off-the-shelf soft-
ware (COTS). Obviously the use of
COTS packages refers to ordinary busi-
ness and personal software packages such
as databases, payroll programs, spread-
sheets, and the like. The COTS concept is
clearly not aimed at sophisticated weapons
systems where no civilian packages exist.

“Organizations at or
above CMM Level 3 are

more likely to be
successful on large

systems [larger than
10,000 function points
or 1,000,000 source

code statements] than
those at Levels 1 or 2.”

Open Forum

28 CROSSTALK The Journal of Defense Software Engineering November 2002

Unfortunately, the military and
defense domain have no strong incentive
for adopting civilian best practices other
than innate professionalism. The DoD
itself and the military services are not
profit-making organizations. If they tend
to overspend or develop software in a way
that is more costly than the civilian sector,
so long as the fundamental mission
requirements are not compromised, there
is no overwhelming reason to improve.

For contractors, there are actually
business reasons for staying somewhat
inefficient compared to civilian norms.
For time and materials contracts, there
would be a negative incentive for adopting
civilian best practices since increased pro-
ductivity and shorter schedules would
reduce the revenues and the profits from
major contracts.

For fixed-price contracts, a case might
be made that adopting civilian best prac-
tices would lower costs and raise the prob-
ability of gaining the contract. However,
artificially low bids are common enough
that this strategy might not be effective.
The whole process of military procure-
ment and contracting is in need of very
careful analysis and possible re-work.

Defense Software
Technologies
The military services and the DoD have
been quite active in software technology
research. Many initiatives have been fund-
ed and several prominent organizations,
such as the Software Engineering Institute
(SEI) and the Software Productivity
Consortium (SPC), have focused much of
their research on defense and military
software.

Historically, the major programming
languages used for military software
included assembly language, Fortran, and
some specialized languages that were sel-
dom used outside of the military domain:
Jovial and CMS2. The Ada83 program-
ming language and the newer Ada95 pro-
gramming language continue the tradition
of developing specialized languages for
defense software. However, the Ada lan-
guages have also attracted some civilian
users, especially so in Europe.

Because of the diversity of software
applications under the overall military
umbrella, almost all programming lan-
guages are used. For example COBOL is
used for more business-oriented military
software such as payroll applications. The
C and C++ programming languages are
also used. Of the total of about 600 pro-
gramming languages in current use, we
have noted at least 75 languages on vari-

ous military applications including JAVA,
which is expanding in use among all soft-
ware classes.

It is interesting that when productivity
comparisons are restricted to coding, and
exclude production of paper documents,
the defense community and the civilian
systems software community are roughly
equal in terms of productivity. In other
words, the defense programming commu-
nity is as good as other software domains
in coding.

Military projects often share common
features with civilian systems software
projects. One of these features is a need
for high quality and reliability coupled
with rather sophisticated software quality
assurance groups. The military software
domain has the second highest levels of
defect removal of any type of software
that Software Productivity Research has
studied. Many military software projects
top 95 percent in defect removal efficien-
cy, and some have approached 99 percent.
Since the U.S. national average is only
about 85 percent in terms of pre-deploy-
ment defects removed, the defense com-
munity has had better than average quality
control.

This is true for weapons systems and
communications systems, but not neces-
sarily true for ordinary defense applica-
tions such as payrolls and accounting that
do not follow military standards. The
domains that lag in software quality con-
trol include information systems, com-
mercial software vendors, and some but
not all outsource vendors. Of course in
every domain there are broad ranges of
performance, just as there are broad
ranges in every human activity.

The military domain also ranks as
number two in the use of software quality
assurance departments. On many defense
projects, more than 30 percent of the total
work force is involved with testing and
quality assurance tasks. Quality control in
the military domain for weapons systems
is quite sophisticated for obvious reasons.
The main reason is because military soft-
ware controls complicate physical devices
such as radar sets and aircraft flight con-
trols. If these do not work as intended,
lives and battles could be lost.

The importance of quality control and
formal processes within the military soft-
ware domain explains why more defense
software producers can be found at or
higher than Level 3 on the Software
Engineering Institute’s (SEI) Capability
Maturity Model® (CMM®) than other
domains. Since many companies that are
SEI CMM Level 3 produce both military
and civilian software, there is some over-

lap between the systems and military soft-
ware companies.

The defense software community
deserves credit for pioneering software
process assessments and process improve-
ment technologies. The impact of the
SEI’s CMM has benefited many major
defense applications and is spreading rap-
idly among civilian software producers as
well.

In our studies since 1994, large appli-
cations of the same nominal size, such as
10,000 function points, appear to have
better productivity and quality levels when
produced by organizations at or above
CMM Level 3. For smaller applications of
around 1,000 function points in size, the
data is less definitive but still favors the
higher CMM levels.

A number of fairly sophisticated soft-
ware quality approaches are quite com-
mon in both the military and systems soft-
ware domains. The quality assurance and
control methods used by both systems
and military software include the follow-
ing:
• Formal design and code inspections.
• Quality estimation tools.
• Quality and defect removal targets for

key projects.
• Quality Function Deployment.
• Six sigma quality targets.
• Complexity analysis tools.
• Automated defect tracking systems.
• Test library automation support.
• Automated change control tools.
• Trained testing specialists.
• Formal regression test suites.
• Full life-cycle quality measurements.
• The SEI’s CMM.

Both the systems and the defense soft-
ware domains also strive for excellence in
project management disciplines. Software
cost estimation and software milestone
tracking are very detailed activities in the
defense domain. Software project man-
agement is an area where the defense
community may be superior to most civil-
ian sectors.

The military software domain utilizes
the following two techniques that are sel-
dom encountered on civilian software
projects:
• Independent verification and valida-

tion (IV&V).
• Independent testing by a third party.

The phrase IV&V implies using a
third party or an external company to
investigate whether all requirements have
been met and whether the design and
other documents meet all relevant military
standards. The phrase independent testing
refers to hiring a company other than the
prime contractor on a military software

project to conduct late stage testing after
internal testing.

Both IV&V and independent testing
add costs to military software projects
that are not encountered on normal civil-
ian projects. Whether or not these stages
actually improved quality is ambiguous. It
is true that military software defect
removal is among the best of any kind of
software project. However, it is no better
than the defect removal found on civilian
systems’ software projects where IV&V
and independent testing are not per-
formed. Yet the military results are still
better than those usually noted on infor-
mation systems and commercial software
applications, and on some outsource proj-
ects.

The overall results of the military
software quality approaches have been
generally successful. Indeed, only systems
software and military software have
approached or exceeded 99 percent in
cumulative defect removal efficiency lev-
els.

Large system development is inher-
ently difficult and complicated. The
defense software community often has a
need for very large software systems that
can approach or exceed 100,000 function
points or 10,000,000 source code state-
ments. At this large end of the spectrum,
the defense community achieves better
quality levels and more successful out-
comes than any other domain except the
best of the systems software producers.
Productivity rates are fairly low, but fail-
ures and cancelled projects are low, too.
Thus, the overall economic picture for
building very large applications is not too
bad in the defense sector. Indeed, for the
largest applications beyond 100,000 func-
tion points, military software is an overall
leader in terms of success and failure
ratios.

It can be said that the strong emphasis
in the military world on rigorous process-
es, complete specifications, and formal
quality assurance controls produce proj-
ects that are fairly successful above 10,000
function points in size and even above
100,000 function points. These large soft-
ware projects are expensive of course, but
being able to complete such projects and
have them work is a very difficult task.
The success of the military software com-
munity on very large software applica-
tions is commendable.

Conclusions
Overall, the defense move toward civilian
best practices is encouraging. However
because this initiative only started in 1994
and required several years of research, the

results may not be fully visible until some-
time around 2005 or later. The reason for
this is because applications in the 10,000
to 100,000 function point size ranges nor-
mally have development cycles approach-
ing five calendar years. Thus, major
defense applications using civilian best
practices and standards are still under
development and hence not yet studied
and measured in terms of overall produc-
tivity and quality.

The following are some of the con-
clusions that we have reached from study-
ing both civilian and defense software
projects:
• Large applications above 10,000 func-

tion points or 1,000,000 source code
statements require rigorous quality
control and capable project manage-
ment to be successful. Large applica-
tions that skimp on quality control
and are careless with plans and esti-
mates usually fail. If they do not fail,
they will run late and exceed their
budgets by notable amounts.

• The strong emphasis on quality con-
trol and project management disci-
plines associated with the SEI’s CMM
leads to a greater probability of suc-
cessful completion than less formal
processes for applications larger than
10,000 function points or 1,000,000
source code statements. Organizations
at or above CMM Level 3 are more
likely to be successful on large systems
than those at Levels 1 or 2.

• For small applications below 1,000
function points or 100,000 source
code statements, formal processes are
not as significant as the experience of
the development team. This is because
teams are small so competence – or
incompetence – of even one person
tends to be visible and significant.

• For small applications below 1,000
function points or 100,000 source
code statements, the level achieved on
the CMM by the development team
does not lead to major differences in
successes or failure rates.
Overall, there are hundreds of ways to

cause software projects to fail, and only a
few ways to make them succeed. The
highest odds of success will be found
where capable teams use formal quality
control and formal project management
methods.

The military and defense community
has been a pioneer in both quality control
and project management methods. This
appears to have paid off when building
large software packages. Capable software
personnel are in great demand every-
where so all domains are striving to select

and keep good personnel.
The DoD’s move to civilian best prac-

tices is encouraging and indicates a desire
to improve software performance. Of
course, quite a few civilian practices are of
marginal value so one of the problems
facing the defense community is to select
practices that are truly best in terms of
achieving high levels of quality, reliability,
productivity, or other tangible factors.◆

References
1. Perry, William J. “DoD Policy on the

Future of MILSPEC.” CrossTalk
Sept. 1994.

2. Sorensen, Reed. “Software Standards:
Their Evolution and Current State.”
CrossTalk Dec. 1999.

3. Dempsey, Paul Stephen, et. al. Denver
International Airport: Lessons
Learned. McGraw-Hill. Mar. 1997.

4. Johnson, James, et. al. The Chaos
Report. West Yarmouth, Mass.: The
Standish Group, 2001.

Defense Software Development in Evolution

November 2002 www.stsc.hill.af.mil 29

About the Author
Capers Jones is chief
scientist emeritus of
Artemis Management
Systems and Software
Productivity Research
Inc., Burlington, Mass.

Jones is an international consultant on
software management topics, a speak-
er, a seminar leader, and an author. He
is also well known for his company’s
research programs into the following
critical software issues: Software
Quality: Survey of the State of the
Art; Software Process Improvement:
Survey of the State of the Art;
Software Project Management: Survey
of the State of the Art. Formerly,
Jones was assistant director of pro-
gramming technology at the ITT
Programming Technology Center in
Stratford, Conn. Before that he was at
IBM for 12 years. He received the
IBM General Product Division’s out-
standing contribution award for his
work in software quality and produc-
tivity improvement methods.

Software Productivity
Research Inc.
6 Lincoln Knoll Drive
Burlington, MA 01803
Phone: (781) 273-0140
Fax: (781) 273-5176
E-mail: cjones@spr.com

30 CROSSTALK The Journal of Defense Software Engineering November 2002

Critical information assets (systems,
networks, and sensitive data) can be

compromised by malicious or inadvertent
actions despite an organization’s best
efforts. System and network administra-
tors are on the firing line and even when
they know what to do, they often do not
have the time to take action; operational
day-to-day concerns and the need to keep
systems functioning take priority over
securing those systems.

Administrators must choose how to
protect assets. But when managers cannot
prioritize critical assets and threats (as part
of a business strategy for managing infor-
mation security risk), then the protections
an administrator offers will be arbitrary at
best. Unfortunately, managers often fail to
understand that securing assets is an

ongoing process. They do not consider
this factor when allocating administrator
time and resources.

Most system and network administra-
tors learned from their peers how to pro-
tect and secure systems, not by consulting
published procedures that serve as de
facto standards accepted by the adminis-
trator community – no such standards
currently exist. Administrators are sorely
in need of a structure for organizing, pri-
oritizing, and selecting security practices
that is easy to understand, describe, justi-
fy, and implement.

Tackling the Problem
The Security Knowledge in Practice
(SKiPSM)1 method was developed to
organize security practices published on

the Computer Emergency Response
Team (CERT®)/CERT Coordination
Center® Web site into a more process-
based approach, departing from the more
common problem-based approach. SKiP
defines a cyclical process for establishing
and sustaining the security of critical
information assets such as the following:
• Systems running mission critical appli-

cations.
• Network infrastructure, including

routers, hubs, and switches.

Due to space constraints, CrossTalk was not
able to publish this article in its entirety. However,
it can be viewed in this month’s issue on our Web
site at <www.stsc.hill.af.mil/crosstalk> along
with back issues of CrossTalk.

Securing Information Assets:
Security Knowledge in Practice

Lawrence Rogers and Julia Allen
Software Engineering Institute

System and network administrators are an organization’s first lines of defense in protecting critical information assets.
They need a framework for organizing and selecting security practices that are easy to understand, describe, and imple-
ment. The authors propose the Security Knowledge in Practice (SKiP) method as a solution.

Online Articles

This story spans more than 20 years.
There has been a considerable

amount of excellent work performed by
several dedicated, persevering people
throughout this entire time span.
Although our story covers two decades, it
is not meant to imply that employing
earned value management (EVM) for
managing software requires an exorbitant
time to implement. Our story is an evolu-
tion of practice caused by failure, a desire
to do better, and outside influences upon
our business.

In describing our use of EVM, I will
cover the subject chronologically. Our
beginnings cover a period of time from
1979 to 1985. The efforts to understand

our process occurred from 1987 to 1989.
Our period of significant, measured,
process improvement was from 1989 to
1996. Then a period of evolving and
refining our process is described, begin-
ning in 1997 and continuing today.

Before we discuss EVM and its influ-
ence upon our software practices, I will
introduce you to the Software Division’s
mission and its products. Tinker Air Force
Base (AFB) is an Air Force Depot, which
performs maintenance and modification
to several weapon systems (including B-1,
B-2, B-52, and E-3) and jet engines,
including their avionics.

The Software Division supports the
automated processes associated with the

depot repair processes. Our products are
Test Program Sets (TPS) and industrial
automation software. For clarification, a
TPS is used along with automatic test
equipment to automate the testing process
for an item requiring maintenance. A TPS
consists of software, an electrical-mechan-
ical interface, and instructions for its use.
The portion of the division supporting
depot maintenance has an annual revenue
of approximately $40 million.

Due to space constraints, CrossTalk was not
able to publish this article in its entirety. However,
it can be viewed in this month’s issue on our Web
site at <www.stsc.hill.af.mil/crosstalk> along
with back issues of CrossTalk.

EVM and Software Project Management: Our Story

Walter H. Lipke
Tinker Air Force Base

The Software Division at Tinker Air Force Base in Oklahoma has used earned value management (EVM) methods
for more than 15 years. These management methods have had significant influence in the improvement of software devel-
opment and maintenance practices of the organization. This article, in a story-telling manner, describes the use of
EVM for managing software, and how its system of management facilitated a natural evolution that led to recognition,
awards, and more importantly, on-time, at-cost, quality software.

BACKTALK

November 2002 www.stsc.hill.af.mil 31

When I was in college, a little music
group I played with recorded a

humorous parody of a song in response
to a fight that broke out at the end of a
basketball game. As the evil team we
played prepared to venture to our arena,
the song got a fair amount of airplay on
a local radio station. Knowing there
were far more talented musicians who
would never be on the radio, I was con-
tent to take my 15 minutes of fame and
go home. Now, here I am, an environ-
mental engineer writing a column for
a software journal. The reason I am
writing this is in response to the May
2002 BackTalk column “Week of
the Geek.” I found that I did not fit
the mold of the geek very well. I am
an engineer, but just where do I fit in?

While my dad and sister are
steeped in high-tech engineering pur-
suits, I seemed to be destined for
water and wastewater projects for
the Air Force. Growing up an Air
Force brat, my earliest introduction
to these projects was venturing into
wading pools at Wright-Patterson
Air Force Base in my clothes to the
point where my dad would have to
retrieve me, often in his Sunday best
or Air Force uniform. My earliest
wastewater experience was losing a
Snoopy in the sewer when my dad was
stationed in Korea. Not to mention the
countless number of times I set up
Army men in the yard only to turn on
the hose and flood them all out in a
watery mess.

These used to be chances for me to
get into trouble, but now I make a living
at it. For example, on a recent trip to an
overseas installation, as part of our
study, we opened a fire hydrant, which
ripped half the bark off of a tree by the
wing commander’s house. As a kid, I
would have been sent to my room, been
introduced to a belt, and told, “don’t do
that.” As an engineer, I now go to a con-
ference room and get introduced to the
base civil engineer where I am told
“good job.”

This disconnect I have with software
engineers was never more evident than
the May BackTalk. The indicators of
geekiness were well laid out, but I failed
the test miserably. After some reflection,
I determined that it is possible to be an

engineer and a non-geek. After some
painstaking research (conducted on sev-
eral drives home), I came up with the
following indicators of a non-geek engi-
neer:
• You read Dilbert and wonder why

everyone picks on
the pointy-haired
guy.

• You are shunned by the “Beta Geek”
cliques.

• You read the assembly instructions
for your kids’ toys before you
attempt to put them together.

• You identify the picture in the May
2002 BackTalk column as “T.J.
Hooker looking at wigs.”

• You tell the Wal-Mart associate in the
computer department that you want
a computer with a “Baud modem.”

• You shop for computers at Wal-
Mart.

• In reading the May 2002
BackTalk, you wondered if “X”
was a variable for all “Dummies”
books or an actual programming lan-
guage.

• You think “Fry’s” is a place to order

unhealthy food.
• You did not buy Star Wars tickets

until the day you actually saw (or will
see) the movie.

• You think “TNG” is a copycat of the
rap group “Run DMC” and has
nothing to do with Star Track.
• You say Star Track.

• You have no computer disks of
any kind on your person at this
moment.
• When you see the sign that
says, “Positive I.D. check in
progress,” as you approach the
guard shack, you think the
guard is going to say some-

thing nice about your driver’s
license photo.

• When you shop for a car,
you are more concerned
about gas mileage than
gadgets.
• The cross talk you
read is a journal for

backflow prevention de-
vices.

• You only subscribe to
CrossTalk (the software

journal) because your sister
is the associate publisher.

Kevin Leachman, P.E.
Technical Project Manager

Trajen Systems
kevinleachman@excite.com

Trials and Tribulations of a Non-Geek Engineer

Can You BackTalk?

Here is your chance to make your
point, even if it is a bit tongue-in-cheek,
without your boss censoring your writ-
ing. In addition to accepting articles that
relate to software engineering for publi-
cation in CrossTalk, we also accept
articles for the BackTalk column.
BackTalk articles should provide a
concise, clever, humorous, and insight-
ful article on the software engineering
profession or industry or a portion of
it. Your BackTalk article should be
entertaining and clever or original in
concept, design, or delivery. The length
should not exceed 750 words.

For a complete author’s packet
detailing how to submit your
BackTalk article, visit our Web site at
<www.stsc.hill.af.mil>.

For the third year, the Air Force's Software Technology Support Center (STSC) is offering a series of
informative software-related seminars in a workshop environment. This year's series will focus on some
of the fundamentals of software management in acquisition and development programs, a Back to Basics.

The 2003 STSC seminar series will include these topics:

 January 14-16 Lifecycle Software Project Management Hill AFB Vicinity
 February 18-20 Lifecycle Software Project Management Hanscom AFB Vicinity
 March 11-13 The Requirement for Good Requirements Hill AFB Vicinity
 April 22-24 The Requirement for Good Requirements Hanscom AFB Vicinity
 May 13-15 Software Cost Estimation Hill AFB Vicinity
 June 17-19 Introduction to CMMI Hanscom AFB Vicinity
 July 15-17 Introduction to CMMI Hill AFB Vicinity
 August 19-21 Software Risk Management Hill AFB Vicinity
 September 16-18 Software Quality Assurance Hill AFB Vicinity
 October 14-16 Software Acquisition Hill AFB Vicinity
 November 18-19 Bringing it All Together for the Software Manager Hill AFB Vicinity
 (Software Best Practices: An Executive’s Perspective)

These seminars are FREE to all U.S. government employees, however, seating is limited. So act quickly.

For additional information, visit our Web site at www.stsc.hill.af.mil

SPACE IS LIMITED. To reserve your place at any of these workshops,
contact Debra Ascuena at 801-775-5778 (DSN 775-5778) or debra.ascuena@hill.af.mil.

Get Back to the A-B-Cs of Software Management
with the 2003 STSC Seminar Series

CrossTalk / MASE
7278 4th Street
Bldg. 100
Hill AFB, UT 84056-5205

PRSRT STD
U.S. POSTAGE PAID

Albuquerque, NM
Permit 737

Sponsored by the
Computer Resources
Support Improvement

Program (CRSIP)

Published by the
Software Technology

Support Center (STSC)

Nov2002cover.qxd 10/10/02 1:52 PM Page 2

	Cover
	Index
	From the Publisher
	The 10 Most Powerful Principles for Quality in Software and Software Organizations
	Coming Events
	Learning From Agile Software Development - Part Two
	Using SW-TMM to Improve the Testing Process
	JOVIAL Services
	Reality Configuration Management
	Call for Articles
	Web Sites
	Top 5 Contest Information
	Document Diseases and Software Malpractice
	Defense Software Development in Evolution
	Securing Information Assets: Security Knowledge in Practice
	EVM and Software Project Management: Our Story
	BackTalk
	Back Cover

