
2 CROSSTALK The Journal of Defense Software Engineering January 1999

I recently asked an
elderly gentleman if
he had heard of the
year 2000 (Y2K)
problem that will soon
impact many com-
puter systems. He said

he had not. After I briefly explained the
Y2K problem, he emphatically stated,
“Ours is a generation of abbreviations,
and we are always in a hurry.”

I realized how right he was when I
headed to work the next day. On the
radio, the announcers were talking
about baseball’s AL and NL MVPs,
whether the current lockout would KO
the NBA, and the impact it would have
on the NFL and NHL. I went in the
office and powered up my PC’s CPU so
I could check my E-mail to see if an
author had received my fax about an
article that discussed the ROIs associated
with COTS. As I booted, I glanced at a
fed IT magazine that discussed the FY99
DoD authorization bill (HR-3616) and
a legal battle between AT&T and GSA. I
looked in my day planner and saw notes
on getting X-mas cards and the date of
our next CEB. In the tech world, we talk

about SEPGs doing CBA IPIs and SCEs
and pushing SPI throughout the whole
org. My business card says I work at the
STSC at Hill AFB, UT.

Is it any wonder that we software
developers brought this problem on
ourselves? We even refer to the year 2000
problem as the Y2K bug, just to save a
few characters. We need not look down
on computer programmers in the ’60s
and ’70s (sorry: 1960s and 1970s) for
trying to save space in systems that were
hard pressed for memory allocation.
Who knows what shortsighted software
decisions we’re making today (including
our Y2K renovation choices) that we will
regret tomorrow?

It is worth noting that more than
mainframe computers will have prob-
lems next year. For example, the world’s
consensus standard operating system,
Windows, is not compliant. In “Time
To Debunk Y2K Myths” (Information
Week, Sept. 28, 1998, p. 172), Leon A.
Kappelman states, “The name alone
should alert us to the simple fact that
Windows 98 is not Y2K OK, either. Win-
dows 98 defaults to two-digit years just
like Windows 95, and two-digit years

can lead to problems. In fact, all versions
of Windows have date-processing prob-
lems. ... The same is true of practically
every Microsoft product, including the
newest versions.”

Many questions remain as we ap-
proach January 2000. At this point, the
question is not whether we can fix all the
world’s computers in time (we cannot)
but whether we will finish renovating
the most critical systems and fix them
correctly. To make the right decisions,
we need a clear idea of which systems
need to be fixed and which can be left
alone or left to die. Patricia McQuaid
and Lee Fischman note in their article
(page 11) that “One big mistake made in
scoping Y2K renovation is assuming that
all legacy software needs treatment.”

As we hurry to renovate our systems,
we cannot just work fast, but must work
smart. When we get to January 2000, let
us hope we have not made unwise reno-
vation shortcuts, work-arounds, and
other “abbreviations” that do not work,
but put us deeper in the hole than we
already are. The sacrifice of long-term
needs for short-term savings is what put
us in this mess in the first place. u

From the Publisher

Short-Term Fixes Shade Future
Forrest Brown

Managing Editor

If your experience or research has produced informa-
tion that could be useful to others, CROSSTALK will get
the word out. We welcome articles on all software-
related topics, but are especially interested in several
high-interest areas. Drawing from reader survey data,
we will highlight your most requested article topics as
themes for 1999 CROSSTALK issues. In future issues, we
will place a special, yet nonexclusive, focus on

Metrics and Measures
June 1999

Article Submission Deadline: Feb. 1, 1999

Project Management, Cost Estimation,
Risk Management

July 1999
Article Submission Deadline: March 1, 1999

Call for Articles
Software Acquisition Management

August 1999
Article Submission Deadline: April 1, 1999

Look for additional announcements that reveal more
of our future issues’ themes. We will accept article
submissions on all software-related topics at any time;
issues will not focus exclusively on the featured theme.

Please follow the Guidelines for CROSSTALK Authors,
available on the Internet at http://www.stsc.hill.af.mil.

Ogden ALC/TISE
ATTN: Denise Sagel
CROSSTALK Features Coordinator
7278 Fourth Street
Hill AFB, UT 84056-5205

Or E-mail articles to features@stsc1.hill.af.mil. For
more information, call 801-777-9239 DSN 777-9239.

CROSSTALK The Journal of Defense Software Engineering 3January 1999

SUBJECT: Year 2000 (Y2K) Compliance—FY 1999 Reporting Requirements

The secretary’s memorandum entitled “Year 2000 Compliance,” dated August 7, 1998, directs several measures by specific dates to
improve the accountability for Y2K compliance. To carry out the secretary’s requirements, the OSD staff developed an implementation
plan that underscores the need for accurate mission-critical information in the DoD Y2K database. Guidance for the Acquisition Cat-
egory I, IA, II system reports will be provided separately, since this information will not be used in the determination of Y2K-related
FY 1999 funding withholds.

The military departments, the commanders-in-chief, and the defense agencies are responsible for consistent, accurate, and timely
submission of Y2K information for the DoD Y2K database. In this regard, the data reporting requirements found in the ASD (C3I)
memorandum, “Year 2000 Assessments,” dated August 1, 1996, and the ASD (C3I) memorandum, “System Interfaces, Data Ex-
changes, and Defense Integration Support Tools,” dated November 5, 1996, no longer apply. While my staff is available to assist you in
your actions to ensure the accuracy of the Y2K database, each component is responsible for all actions necessary to eliminate redundan-
cies and inaccuracies of system and subsystem reporting. Each component must ensure adherence to my memorandum entitled “Year
2000 Database Reporting,” dated June 19, 1998. The updated and corrected Y2K database as of October 1, 1998 will serve as the
baseline for Y2K mission-critical systems.

To further comply with the secretary’s direction, additional information is necessary to record and maintain the status of formal
interface agreements for Y2K compliance. Each component is responsible for determining that there is a complete set of interface
agreements for all pertinent mission-critical systems under its purview. Defense Information Systems Agency (DISA) will provide by
September 25, 1998, to my Resource Management office a list of all megacenter domains and associated domain users who have failed
to or are not planning to sign explicit test agreements with DISA by October 1, 1998. DISA will provide a copy of this list to each
affected DoD component. DISA will also provide the estimated resources provided by these domain users.

As part of the department’s upcoming apportionment process, the Office of the Under Secretary of Defense (Comptroller) will
direct the services and defense agencies that all funds for each mission-critical system be withheld from obligation until the system
meets the standards of the Secretary of Defense memorandum. On a case-by-case basis, I will consider granting waivers for indi-
vidual systems that are necessary to ensure the performance of essential military functions, or that are based on safety consider-
ations. Withheld funds will be released through the normal fund release process. My staff will hold period reviews on the status of
Y2K withhold funds.

Prior to obligation of funds, the military departments, the commanders-in-chief, and the defense agencies are responsible for mak-
ing sure that any contract that processes date-related information contains the Y2K requirements specified in Section 39.106 of the
Federal Acquisition Regulation.

To assist you in these efforts, additional guidance documents are available on the C3I Web page (www.dtic.mil/c3i/). For comments
and questions, my point of contact is Ms. Sally Brown, 703-602-0967, sally.brown@osd.pentagon.mil.

Arthur L. Money
Senior Civilian Official

office of the assistant secretary of defense
6000 defense pentagon

washington, dc 20301-6000

23 Sep 1998

Policy and Management

MEMORANDUM FOR SECRETARIES OF THE MILITARY DEPARTMENTS
CHAIRMAN OF THE JOINT CHIEFS OF STAFF
UNDER SECRETARIES OF DEFENSE
DIRECTOR, DEFENSE RESEARCH AND ENGINEERING
ASSISTANT SECRETARIES OF DEFENSE
GENERAL COUNSEL OF THE DEPARTMENT OF DEFENSE
INSPECTOR GENERAL OF THE DEPARTMENT OF DEFENSE
DIRECTOR, OPERATIONAL TEST AND EVALUATION
ASSISTANTS TO THE SECRETARY OF DEFENSE
DIRECTOR, ADMINISTRATION AND MANAGEMENT
DIRECTORS OF THE DEFENSE AGENCIES
CHIEF, NATIONAL GUARD BUREAU

command, control,
communications, and

intelligence

4 CROSSTALK The Journal of Defense Software Engineering January 1999

Increasingly, we live in a complex
world where software is indispens-
able to everyone’s life. And increas-

ingly, we are frustrated by the software
with which we are forced to live.

Consider if a carpenter were com-
pelled to work with tools as unreliable,
complex, and generally inaccessible as
most of our computers. Can you imag-
ine turning on a sander and getting a
message that says, “general protection
fault,” at which point the disk flies off
and the whole thing self-destructs? Why
do we put up with this from tools
which, for many of us, are as indispens-
able as a sander is to someone who
makes a living by woodworking?

If we want quality software, we must
accept responsibility for how it is devel-
oped. Improving what you build means
improving how you build.

The DoD’s Environment
The DoD is a large and complex organi-
zation. There are 1.4 million active duty
men and women in the uniformed ser-
vices and about 800,000 civilians. Every
year, we recruit around 200,000 new
people to join the armed forces and
separate about 220,000. So approxi-
mately 30 percent of our organization is
either coming or going every year. We
have about 250 major installations
worldwide. We operate 550 public util-
ity systems—gas, water, electricity, and
natural gas distribution.

We support one of the larger school
systems in the world comprising 126
high schools and elementary schools. We
are the world’s largest day-care pro-
vider—300,000 children are enrolled in
DoD day-care centers.

We have 28,000 separate computer
systems that we are tracking for the
year 2000; 2,800 of them are mission
critical. We disperse 5 million pay-
checks and about 400,000 bonds and
about 600,000 travel vouchers and
800,000 contract actions every month.
In Columbus, Ohio, where we do our
large contract management administra-
tion, there are about 390,000 contracts
under administration. We disburse the
staggering amount of about $43 mil-
lion an hour.

We sustain operations in every time
zone. Today, there are about 120,000
military personnel deployed around the
world, in addition to the 200,000 who
are permanently stationed overseas. We
operate over 400,000 vehicles—every-
thing from sedans and buses to the
street sweepers used to clean runways to
combat vehicles to tanks to armored
vehicles.

As an organization, one of our chal-
lenges is to concurrently manage about
70 years of technology. We operate, on a
daily basis, aircraft that were designed
back in the early 1950s, and we still
have to maintain them, buy spare parts
for them, and keep them updated. At
the same time, we are working on re-
search and development programs for
systems that will not be fielded until
between 2015 and 2020. To manage
that spectrum of technology is a con-
stant challenge.

In information technology, we oper-
ate some of the world’s most advanced
computers, and yet, just last year, we
moved a number of Burroughs punch
card readers to a new megacenter be-
cause we are still operating punch cards
for some business applications. We
manage an astounding spectrum of
technology. The DoD is not only the

largest but also is probably the most
complex organization in the world.

Yet, this is an organization that has
had its budget cut for 15 consecutive
years, has undergone significant reduc-
tions, is operating at 46 percent of the
budget resources it had only 12 and 13
years ago, and has a third of its person-
nel coming and going in any one year.
And still, it is an organization that is
able, within a month, to send 60,000
people to the Persian Gulf along with
400 combat aircraft and 500 cruise
missiles and could carry out war tomor-
row if necessary.

War-Fighting Changes
We have been engaged in an unprec-
edented change in the way we think
about warfare. It has been going on for
some time, and it is moving into a highly
sophisticated dimension. The change
accelerated in the late 1970s and the
early 1980s when we were starting to
bring microprocessors into weapons
systems.

We are on the edge of breaking
through in what we call network-centric
warfare. To put it bluntly, the DoD is in
the business of destroying things. In
warfare, we try to do that in a focused
way without doing a great deal of dam-
age to things we do not want to destroy.
We have done that before by putting
extremely lethal and highly accurate
capabilities in the hands of whoever was
doing the shooting at the time. We are
now moving into a more interesting and
highly leveraged dimension where the
person who launches the missile does not
have to see the target. We are going to be
sharing information across a network and
still be able to attack and destroy an
opponent. This dramatically improves
the survivability of our own forces, of

Improving Software Engineering Practice
Patricia Sanders

Office of the Undersecretary of Defense for Acquisition and Technology

This article is based on a speech given at the 1998
Software Engineering Symposium in Pittsburgh,
Pa. Sept. 16, 1998.

The complexity and size of the Department of Defense (DoD) necessitates an extensive,
software-dependent computer network; however, past experience has shown that software
is rarely defect free. In an organization that requires pinpoint accuracy to save lives, func-
tional software is an area in which excellence cannot be compromised. The only way to
improve software’s performance is to improve the way in which software is developed.

CROSSTALK The Journal of Defense Software Engineering 5January 1999

Improving Software Engineering Practice

course. It is going to be revolutionary.
The situational awareness that will be on
our side of the battlefield will be three or
four orders of magnitude better than our
opponent’s. We call this information
dominance.

In the past, the dilemma of warfare
was always how to bring mass together
for its effect over your opponent without
giving your opponent lots of targets at
which to shoot. It is the classic dilemma.
One of the reasons there were so many
casualties during the Civil War was that
firepower technology had progressed so
much farther than communications
technology. We were still massing people
close to each other, side by side, so the
soldiers could hear shouted orders. Fire-
power technology had advanced, how-
ever, so that cannon could mow people
down. We are now going to be in a
wholly different world where people do
not have to see each other and yet, they
can operate together as a combined arms
team. What we expect to be able to do is
quite dramatic.

Importance of Software
So a new breed of “knowledge warriors”
has begun to emerge who recognize that
knowledge can win or prevent wars. And
this is causing fundamental changes in
what is important to our war-fighting
capability.

Today, about 10 percent of the
weight and one-third of the cost of
modern combat aircraft are composed
of electronics and related components.
Principal among the latter is software—
a substance that weighs nothing but
costs inordinately.

There has been nothing like the
headlong rush to software since the
similar rush to electronics after World
War I. The average automobile of today
has more software in it than the first
Apollo spacecraft to arrive at the moon
30 years ago.

In the Gulf War, television cameras,
ravenous for dramatic visuals, focused
on F-14 aircraft roaring off the decks of
carriers, Apache helicopters swooping
over the desert, M-1A1 Abrams tanks
growling over the sands, and Tomahawk
missiles singling out their targets. Pieces
of hardware became overnight stars. But

the real star was the invisible software
that processed, analyzed, and distributed
data, though no television watcher ever
saw those who produced and maintained
it—America’s software soldiers.

Software is changing military bal-
ances in the world. Today, weapons
systems are mounted on or delivered by
what we call “platforms”—a missile, an
airplane, a ship, or even a truck. What
we are learning is that cheap, low-tech-
nology platforms that are operated by
poor, small nations can now deliver
high-technology, smart firepower if the
weapons are equipped with smart soft-
ware. Stupid bombs can have their “IQ”
raised by the addition of retrofitted
components dependent on software for
their manufacture or operation.

In previous eras, military spies paid
special attention to an adversary’s ma-
chine tools because they were needed to
make other tools needed to produce
arms. Today, the “machine tool” that
counts most is the software used to
manufacture the software that manufac-
tures software, because much of the
processing of data into practical infor-
mation and knowledge depends on it.
The sophistication, flexibility, and secu-
rity of the military software base is
crucial.

Software Costs
The DoD does not track software
spending independently of other ex-
penses. But, Federal Sources, Inc., a
Virginia-based marketing firm that
tracks government spending, completed
a survey around September 1997, which
concluded that by 2002, the DoD will
spend more than $20 billion annually
on software used for weapons systems,
information technologies, and com-
mand, control, communications, and
intelligence systems (not including per-
sonnel, management, and non-tactical
systems). The Federal Sources review
estimates military aircraft require by far
the largest software expenditures,
roughly $5 billion in 1998. Ships sail in
at a distant second with barely more
than $1 billion. Ordinance and weap-
ons, lumped together in one category, tie
for last with vehicles at less than $1
billion.

A study by the Electronics Industries
Association estimated in 1995 that the
DoD would spend $42.5 billion on
computer systems, of which $35.7 bil-
lion would be on software—about two-
thirds of that on maintenance. These
analyses are important in that they illus-
trate the increasing reliance on software
for warfare in the information age.
Some, in fact, predict a future in which
military hardware procurement becomes
secondary to software purchases.

Costs of Software Failure
Information or knowledge superiority
may win wars, but that superiority is
exceedingly fragile. In the past, when
you had 5,000 tanks and your enemy
had only 1,000, you may have had a
ratio of 5-to-1 superiority. In informa-
tion war, you can have a ratio of 100-
to-1 superiority, but it can all turn on a
fuse or a lie or on your ability to protect
your advantage from those who want to
steal it.

The key reason for this fragility is
that knowledge, as a resource, differs
from all the others. It is inexhaustible. It
can be used by both sides simulta-
neously, and it is nonlinear, which means
that small inputs can cause dispropor-
tionate consequences. A small bit of the
right information can provide an im-
mense and strategic or tactical advan-
tage, whereas the denial of a small bit of
information can have catastrophic ef-
fects.

Pentagon leaders have been increas-
ingly stunned upon learning that some
of our computer systems can be and
have been tampered with by hackers and
by military exercises that demonstrate
how easy it is for hackers to cripple U.S.
military and civilian computer networks.

But my issue is not so much one of
information assurance—although that is
decidedly a top priority for the DoD,
one with which the Software Engineer-
ing Institute (SEI) is providing major
assistance—rather, I want you to focus
on the implication that you succeed or
fail on the software. It does not matter
how much speed, or how much stealth,
or how much armor plating you have;
you will not succeed if the software does
not work.

6 CROSSTALK The Journal of Defense Software Engineering January 1999

Policy and Management

The cost of software failures can be
high. In the commercial world, a system
error in American Airlines scheduling
software that incorrectly showed flights
full resulted in a $50 million loss. Sys-
tem downtime for American Express
costs $167,000 per minute; for Charles
Schwab, the penalty is $1 million per
minute.

The DoD’s damages can be more
expensive. Under the START II treaty
(Strategic Arms Reduction Talks), three-
quarters of our nuclear deterrent is in
our fleet ballistic missiles, the effective-
ness of which is in the hands of their
fire-control software.

So, I contend that software that does
not work is self-inflicted information
warfare. The policies, processes, and
practices that guide the development
and use of information technology in
general and software in particular are a
crucial component of our strategy.

Expectations
Unfortunately, our overall track record
for producing quality software is
underwhelming. There is a perception
that the DoD has a perfect record on
software development—we never get it
right.

According to the results of a study on
U.S. software development reported by
the Standish Group in 1996,
• In 1995, only 16 percent of software

projects were expected to finish on
time and within budget.

• In larger companies, only 9 percent
of the software projects will be com-
pleted on time and within budget.

• An estimated 53 percent of projects
will cost nearly 190 percent of their
original estimates.

• Projects completed by the largest
American organizations have only 42
percent of the originally proposed
features and functions.
These findings show slightly better

performance than an earlier DoD study.
In that analysis of DoD software devel-
opment projects that were originally
estimated to take between two and three
years to complete, there was, on average,
a 36-month schedule slip, and one-third
of all software programs were canceled
before completion.

Despite the real and potential ben-
efits software holds for us, expectations
of software performance differ in inter-
esting ways from expectations for hard-
ware performance.

A story going around has it that at a
recent computer exposition, Bill Gates
reportedly compared the computer in-
dustry to the automobile industry and
stated, “If GM had kept up with tech-
nology like the computer industry has,
we would all be driving $25 cars that got
1,000 miles per gallon.” General Motors
reportedly addressed this comment by
releasing the statement, “Yes, but would
you want your car to crash twice a day?”

A similar story has it that if software
engineers made automobiles, your car
would sometimes die on the freeway for
no reason, and you would accept this,
restart, and drive on. Occasionally, exe-
cuting a maneuver would cause your car
to stop and fail, and you would have to
reinstall the engine. For some strange
reason, unlike a carpenter’s tools, you
would accept this, too.

This sort of reliability might be ad-
equate in a word processor, but it hardly
seems acceptable in a weapons system or
where safety is a major consideration.
After all, a soldier without a weapon is at
best a tourist and more likely, a target.

Systems Engineering Process
To get good software, we need to build it
right. When we track successful software
developments, almost invariably, the
accomplishment can be linked to the
existence of good systems engineering
processes because it is the application of
the disciplined systems engineering
process that makes the difference in
achieving the functionality we seek—in
both hardware and software.

As Reuel Alder observed (CROSSTALK,
September 1998), “Discipline is no
fun—I consider day planners self-in-
flicted torture. My idea of a good day is
to wake up with no plan and accom-
plish more than humanly thought pos-
sible. The work would be intuitively
discovered as the day progressed. Cre-
ativity and spontaneity would be en-
hanced, and routine, repetitive activities
would be minimized. Each day would
be a fresh and exhilarating experience

filled with learning, personal growth,
and development. The variations would
be unlimited, and the success would be
phenomenal.

“But if you believe the last 40 years
of development data, this dream is not
achievable for most software projects.
Yet, we are still largely living in a dream
world where we think software can be
built by pure ‘artists’ who arrive at river’s
edge with no plans, and through sheer
talent can turn a pile of scrap iron into a
decent bridge.

“However, I have learned from un-
fortunate personal experience that al-
most all significant human achievements
require more than just talent and creativ-
ity. Decades of data prove it: Even the
best software artists do better work when
they start with a foundation of planning,
preparation, and discipline.”

Consider requirements management.
A 100-company survey by Standish
Group International found that 45 per-
cent of a software application’s features
are never used, 19 percent rarely used,
16 percent sometimes used, 13 percent
often used, and 7 percent always used.
Yet, in spite of the fact that most of an
application is seldom used, software gets
bigger all the time.

I have a cartoon in my office that
shows two individuals—presumably
software engineers—and one of them
says to the other as he is running out,
“You start coding; I’ll go find out what
they want.” Unfortunately, there is all
too much truth in this picture. Because
what is being developed is “only soft-
ware”—and everyone knows software is
easy to change—a disciplined require-
ments management process is all too
frequently lacking. Without require-
ments analysis upfront, however, the
results are unsatisfied needs, wasted
effort, and rework.

Software may be easy to change—at
least relative to bent metal—but it can
still be costly in both time and dollars. It
is estimated that rework is 40 percent of
the cost of development. Metrics col-
lected by Capers Jones indicate that the
cost and schedule impact of defects in
requirements are the most expensive of
all defects, followed by defects in top-

CROSSTALK The Journal of Defense Software Engineering 7January 1999

Improving Software Engineering Practice

level design (architecture), and finally by
defects in code.

We also do not develop software with
its lifecycle in mind. Much of the soft-
ware that is operational today will still be
in service several years from now. Over
the service life of software-intensive
aircraft and smart munitions, there is a
need for continuous improvement, cor-
rection, and addition of new capability
via software modification. Embedded
software in weapons system platforms
has evolved in operational and technical
impact to the point where upgrades
must be seen as major subsystems. The
effectiveness and efficiency of the process
for upgrading and otherwise modifying
embedded software has a major impact
on readiness. Each year, upgrades to the
B-1, F-15, and F-16 aircraft programs
cost nearly $200 million. When the
planned expenditures for the B-2, F-22,
and F-117 aircraft and the advanced
weapons are added in, that figure
doubles.

One definition I have seen for soft-
ware upgrade is you take old bugs out to
put new ones in. As I previously noted,
approximately 66 percent of the DoD’s
software costs are associated with main-
tenance. Almost all of the systems engi-
neering practices that have high leverage
for lowering the cost of maintenance are
practices that need to be implemented
during development. These include
• Development practices that reduce

the density of defects in the software
delivered into operation.

• Effective software test.
• A strong configuration management

program.
• Taking account early in the program

of the engineering environment and
processes that need to be in place for
sustainment.

SEI’s Contributions
SEI has successfully influenced commer-
cial technology for the DoD’s benefit.

SEI’s function, as defined in the
DoD Management Plan, is to develop

and transfer important technology to the
private sector so that the government
can benefit from a broader base of exper-
tise. Their work benefits both the DoD
and industry by helping to define, ana-
lyze, and improve operational processes
from the level of the individual engineer
to practices that apply across the entire
organization. They have achieved mea-
surable success.

SEI’s mission is to reduce the cost,
schedule, and technical and performance
risk associated with acquiring and build-
ing software. Simply put, SEI exists to
help us build software “better, faster, and
cheaper.”

But it must be predictably better,
faster, and cheaper—erratically better,
faster, and cheaper is not helpful to
achieve the DoD’s goals for information
superiority. Discipline in process and
product management is essential.

For fiscal 1999, we have worked
with SEI to define some focus areas for
initiatives.
• Commercial-off-the-shelf-based

systems.
• Survivable systems.
• Architecture trade-off analysis and

product-line practices.
• Continuing process improvement.

Conclusion and Summary
In closing, I will tell you a story about
the brass lamp that Secretary of Defense
William S. Cohen found in his office
when he first moved into the Pentagon.
When he rubbed the lamp, a genie
popped out and offered him one wish
(in a downsizing environment, you no
longer get three wishes). Cohen first
pointed to the large map covering the
wall and the numerous pins in the map
that indicated trouble spots around the
world and asked the genie to provide
stability to all those locations. The genie,
however, said that this was perhaps too
much even for a genie to accomplish. So
the secretary thought some more and
asked instead that the genie provide a
guarantee of error-free DoD software.

The genie, upon hearing this wish, said,
“Let’s look at that map again.”

I am more optimistic.
The information technology revolu-

tion is having a profound effect on all of
us. But never lose sight of the fact that
all this progress depends on one funda-
mental: No matter how technologically
sophisticated we are, it is people who
make knowledge and knowledge sharing
possible.

Real process improvement is not
easy, and anyone who believes otherwise
has never tried it or has never helped
make an improvement of lasting signifi-
cance. Learning better techniques and
technologies is only the beginning—
there are many human aspects through
which to work.

Process improvement pays big divi-
dends for those with the discipline to do
it right. With it, we can improve what
we build because we will have improved
how we build. ◆

About the Author
Patricia Sanders is the
director of test, systems
engineering, and evalua-
tion for the DoD, where
she is responsible for
ensuring the effective
integration of all engi-

neering disciplines into the system acquisi-
tion process. These include design, pro-
duction, manufacturing and quality,
acquisition logistics, modeling and simula-
tion, and software engineering, with em-
phasis on test and evaluation as the feed-
back loop. She is also responsible for
oversight of the DoD’s Major Range and
Test Facility Base and the development of
test resources such as instrumentation,
targets, and other threat simulators. She
has over 24 years experience in the DoD.
She holds a doctorate in mathematics from
Wayne State University and is a graduate
of the Senior Executive Fellow Program,
John F. Kennedy School of Government,
Harvard University.

POC: Brenda Zettervall
E-mail: zettterbt@acq.osd.mil
Voice: 703-695-2300

8 CROSSTALK The Journal of Defense Software Engineering January 1999

War fighters may laugh at
the title, but the Air Force
cannot support flying opera-

tions without its data networks. Until
recently, the focus of Y2K efforts has
been the renovation of mainframe-based
software. But the day of the dedicated
circuit and mainframe system is quickly
disappearing. What am I talking about?
Many Air Force command, control,
communications, computers, intelli-
gence, and logistics systems are designed
to run on the Internet via the base’s
client-server data network, for example,
the Global Command and Control
System, the Global Transportation Net-
work, the Core Automated Maintenance

System, and the Standard Base Supply
System. And do not forget basic E-mail
service—who could survive without it?
The Air Force air and space operational
mission has become dependant on the
information exchange E-mail offers.

Network device hardware and com-
ponent software functions derive dates
from embedded real-time clock (RTC)
chips, basic input/output system (BIOS)
firm or flash read-only memory, or net-
work time-server hosts. These items pass
date information to hosts, clients, net-
work devices, and selected software
applications. This article discusses the
critical network components that must
be assessed for Y2K compliance, what

kind of errors you might expect, and
how to determine if the devices you
operate and maintain are at risk of Y2K
faulty logic. A candidate list of network
components for Y2K consideration is
provided in the sidebar below.

Network Protocols
The underlying construct for all net-
works is the network protocols. Accord-
ing to a March 1998 paper by the Inter-
net Engineering Task Force, most of the
current implementations of these proto-
cols will not be impacted by Y2K logic
errors. However, transport layer, e.g.,
TCP, network layer, e.g., IP, application
layer, e.g., HTTP, and protocol con-

This articles discusses critical network components that must be as-
sessed for year 2000 (Y2K) compliance, what kind of errors to expect,
and how to determine if the devices are at risk of Y2K faulty logic.

“The Network Is Down …”
Capt. Cathy Walter

Headquarters, Air Force Communications Agency

Network Types
• Multiplexers with date-dependent channel or band-

width controls.
• Routed networks with date-dependent routing met-

rics.
• Multicast radio nets with date-dependent controls.
• Point-to-point radio nets with date-dependent controls.
• Satellite networks with a shared date and time-depen-

dent transponder.
• Cable networks with pre-programmed scheduling.

Network Systems
• Operating System services (Windows NT, HP UX,

and NetWare).
• Domain Name Service (DNS) implementation.
• Network Information Service (NIS) implementation.
• Novell Directory Service (NDS) implementation.
• Network Time Protocol (NTP) Service implementa-

tion.
• Managed systems with date or scheduling processes

(UNIX cron tabs).
• Automated backup systems.
• Messaging systems.
• Network management subsystems.
• Operational test equipment with date log.
• Dedicated server (Web proxy and time).

Devices
• Simple Mail Transport Protocol (SMTP) gateways.
• Managed modem banks (for remote access).
• Switches (voice, data, and video).
• Routers.
• Bridges.
• Firewalls or guards.
• Intelligent hubs.
• Multiplexers.
• Wireless controllers and managers.
• Date dependent CSUs and DSUs.
• Management modules.
• Token ring NIC cards using RTC functions.
• Any device that maintains time with an RTC.

Application Software
• Network, system, or application management utilities.
• Office automation.
• E-mail applications.
• Job control and scheduling.
• Scheduling.
• Metering software.
• Anti-virus software.
• Databases.
• Client-server applications.
• Date and time-dependent controls.

Candidate Components for Y2K Consideration

Year 2000

CROSSTALK The Journal of Defense Software Engineering 9January 1999

structs have not been fully investigated. At least one significant
potential problem has been identified that may affect Web
operations. Version 1.1 of HTTP, as defined by RFC (Request
for Comment) 2068, requires the transmission of dates in a
four-digit format as defined by RFC 1123. More than one-
fifth of the Web servers on the Internet use a noncompliant
two-digit format that was defined in the outdated RFC 850.
Implementation of RFC 2068-compliant code will partially
alleviate this problem. Older implementations of network
protocols, e.g., RFC 850, that use two-digit dates are not Y2K
compliant. For complete details, see The Internet and the
Millennium Problem (Year 2000) on the Internet Engineering
Task Force Web site at http://www.ietf.org/ids.by.wg/
2000.html.

Another network construct of vital interest is the Network
Time Protocol (NTP). It is used by network time-server appli-
cations to synchronize the date and time on all networked
devices—from routers to supercomputers. The date format
used by NTP has always been a four-digit format, so it is Y2K
compliant. Devices that feed or use the date processed by NTP
must adhere to the same date storage and maintenance format
to also be Y2K compliant. In the Air Force, the date and time
reference for NTP is drawn from traceable date and time refer-
ences, e.g., Global Positioning System, and is compatible with
Version 3 of the Network Time Protocol (RFC 1305). It is the
transfer of incompatible, garbled, or truncated date and time
information from network devices such as routers, application
servers, e.g., time servers, and database hosts (Figure 1) that is
a potential killer for our networks.

Workstations, Servers, and Minicomputers
The most common source of potential Y2K impact for net-
worked data systems is from servers and workstations. Al-
though the operating systems of networked devices may take
the date and time from a network time server on boot-up,
some applications tap the BIOS chip for this date information.
Some communication system interfaces do not rely on a BIOS
capability but use quasi-analog interfaces to track real-time
clock transitions. What could it mean if the clock reference
system, the digital BIOS or RTC is noncompliant? You could
suddenly find you are no longer authorized to use your office
automation system, your network connection is severed, or
that your mission-critical networked files and E-mail have been
deleted. An application server could grind to a halt under a
flood of log data filling up a shared storage device. If you are
fortunate, your resourceful local area network administrator or
Network Control Center wizard may be able to recover and re-
enter the corrupted user data. But what if the backup utility
also fails, or you cannot wait for data restoration?

To give you an idea how pervasive and potentially critical
this problem is, Figure 1 (items in gray) show where personal
computers or workstations may be in use on your network.
Note that noncompliance of any of these components could
lead to serious problems during or after critical dates such as
Sept. 9, 1999, Dec. 31, 1999, Jan. 1, 2000, and Feb. 29, 2000.
One test conducted by the Air Force Communications

Agency Technology Directorate found 35 percent of PCs will
fail the Y2K rollover, but almost all of those can be fixed with a
BIOS update or patch.

Fortunately, fixing a noncompliant PC is straightforward,
since software patches and numerous utilities are available
from original equipment manufacturers (OEM) and indepen-
dent software vendors. However, before trying any new patch
or utility, make sure you virus-check any new files or utilities
you download, and back up all critical or time-sensitive data.
Since some license agreements (especially on UNIX) may have
expiration triggers, make sure you have validated access to all
installed software before you attempt any date-change testing.
If you have important but troublesome hardware for which
none of the popular software patches work, RTC cards may be
obtained for as little as $150 per machine. The RTC hardware
replacement method is a viable option if BIOS updates or
patches fail, or you do not want to rely on an external date and
time clock reference.

Operating Systems and Applications
If the RTC or the BIOS chip does not get your network, the
operating system or a faulty utility might. The most common

Figure 1. The typical Air Force network topology.

“The Network Is Down …”

10 CROSSTALK The Journal of Defense Software Engineering January 1999

network operating systems in the Air
Force, e.g., Windows NT and Novell
NetWare, use different time utilities
and synchronization methods to set the
date and time on clients and servers.
Beware that security functions, business
applications, anti-virus software, man-
agement utilities, directory caching,
and file and print services also rely on
operating system dates. E-mail prod-
ucts, like other network-based services,
are driven in large measure by date and
time stamps. Messages may be deleted
or rejected by the component utilities
because the software thinks its shelf life
has expired. Message measurement and
tracking utilities also are vulnerable.
Verify that your hardware is compliant
and upgrade to a Y2K compliant ver-
sion of the software.

Routers, Switches, and Hubs
On the diagram of a typical Air Force
network (Figure 1), you will notice that
if a network device is not a PC or work-
station, it is probably a router, a switch,

or a hub. A base may have anywhere
from one to 50 of these devices, depend-
ing on the configuration of the base
network. Routers, switches, and hubs do
not require date and time stamps to
forward packets, but operation and
maintenance may experience problems if
the associated operating software or
controlling management application is
noncompliant. Network events are
logged in these devices, and the Y2K
rollover could result in lost or misrouted
error information.

Fortunately, most Air Force routers
are the newer Cisco 4000 and 7000
models that can be upgraded into com-
pliance through free patches available
from the vendor. At some bases, older
Cisco AGS/AGS+ routers also are preva-
lent. According to Cisco System repre-
sentatives, these older routers are at the
end of their lifecycle and will not be
tested for Y2K compliance. Check your
manufacturer’s Web site for Y2K compli-
ance and upgrade information. A listing
of some key OEM Web sites are avail-

able on the Air Force Year 2000 Web site
under Y2K Toolkit/Resources & Links.

Putting It All Together
After you have inventoried, determined
compliance, and upgraded all these
items, the next step is to perform opera-
tional assessments. Air Force functional
communities are conducting functional
integration and interoperability assess-
ments to ensure mission continuity in
the year 2000.

Focus on the Network
Air Force networks are mission critical to
the operational mission of the Air Force.
More and more deployed environments
reach back to the fixed base architecture
for communication support. It is also the
one mission-critical piece of communi-
cations that has been wholly designed,
funded, and acquired by base units.
People at the bases are the only ones who
know what is in use and can fix it. We
have less than one year to ensure opera-
tions beyond the year 2000. Base Com-
munication Squadrons must focus on
this mission-critical asset.

How to Contact Us
For more about the Air Force Y2K pro-
gram, contact us at the below numbers.
You may also visit our Web page at
http://year2000.af.mil for information
on commercial-off-the-shelf compliance
and testing and the status of centrally
managed communication and informa-
tion infrastructure items, e.g., voice
switches. The site also includes Air Force
Y2K guidance packages and links to
other Web sites, including sites focused
on the impact of Y2K on communica-
tions infrastructure. u

About the Author
Capt. Cathy Walter has been in the Air
Force for nine years. She is the Air Force
Y2K communication and information
functional manager in the Air Force Y2K
Program Management Office.

AF Y2K Program Management Office
HQ Air Force Communications Agency
203 W. Losey Street
Scott AFB, IL 62225-5222
Voice: 618-256-5761 DSN 576-5761
E-mail: AFCA-AFY2K@scott.af.mil

Inventory Your Network with
Simple Network Management Protocol

Have you been trying to collect a complete list of network infrastructure compo-
nents on your base for Y2K certification? Although this can be a difficult task,
your network management system (NMS) can help get the project off the ground.
HP OpenView, for example, is a common NMS with the capability to query
network components for system information.

What information is needed to verify Y2K compliance for a device? The key
information is node name, node type (router, hub, etc.), vendor, model number,
and software version. An example description of a Cisco router would be “Bldg.
100, router, Cisco, 3000, IOS 11. 1(6).” NMS systems can be used to gather this
data since it is contained in a standard management information base called sys-
tem description, or sysdescr, on all simple network management protocol
(SNMP)-manageable devices. You can use OpenView to check the system descrip-
tion by highlighting the component and selecting System Information from the
Configuration menu.

A complete inventory requires information from nonmanaged network infra-
structure components as well. The primary network managers at your base should
be able to identify the key network equipment that is not visible on the NMS
console. This can be traced to one of three causes: The device has no SNMP capa-
bility, SNMP has not been enabled on the device, or the community string for the
device is not entered properly on the NMS. If the system cannot be managed
using SNMP, the system data will have to be gained manually. Devices that are
SNMP-manageable should be configured to be visible in your NMS not just for
this project but to enhance overall network visibility and management. As a gen-
eral security measure, ensure that community strings on your network equipment
are not set to “public.” See http://www.afca.scott.af.mil/pa/public/98may/
intercom.htm to view other Air Force Y2K articles.

1st Lt. Mike Witzman
Staff Sgt. Kevin Nichols
Voice: 618-256-8513 DSN 576-8513
AFCA Scope Network

Year 2000

CROSSTALK The Journal of Defense Software Engineering 11January 1999

As we all know, the Y2K prob-
lem is so serious that it may affect
 you personally. If you are being

caught late in the game, engaged in an
emergency bout of planning, the first
thing you should ask yourself is, “What
is the scope of my problem?”

Galorath Incorporated estimates
resource requirements for software
development, particularly the staffing
and the scheduling required to accom-
plish a particular software project. Re-
cently, we have been asked to estimate a
number of Y2K renovation projects
because of our traditional expertise in
modeling software modification and
reengineering; Y2K work is in many
ways an extension of such traditional
work. However, we have experienced a
learning curve of our own. Although
you can and should apply the lessons of
the past, Y2K work does have a lan-
guage and concerns of its own.

In this article, we share our experi-
ence estimating Y2K work using the
SEER-Year2K model we have developed.
Every Y2K job is different, so you first
need to carefully assess your software
inventory before applying any model.
When estimating a Y2K job, you also
should not apply rules of thumb devel-
oped on the basis of macro, even na-
tional-level data, if you want an accurate
assessment of your costs.

There are many different recipes to
describe Y2K activities; our research
approach was to merge commonly ac-
cepted Y2K renovation activities with
those we have developed to categorize
other forms of rework.

Legacy Sizing
To obtain good Y2K renovation esti-
mates, you must measure the size of
your legacy code. The two most com-

mon metrics for software size are func-
tion points and lines of code, both of
which are supported in our method.
However, for Y2K work, lines of code
are usually the preferred measure: It is
far easier to apply an automatic line
counter to legacy code than it is to
develop a laborious, manual function
point count. Furthermore, changes in
software will usually be made in a line-
by-line fashion whether by automatic
or manual methods.

It is more difficult or impossible to
develop meaningful line-of-code esti-
mates for items like database files; for
these situations, we rely on more ideally
suited function points. A size estimate
may thus combine lines of code with
function points when necessary. As long
as there is no overlap in what is counted,
this is perfectly legitimate.

If you are able to size a good amount
of your legacy code, but not all of it, you
can apply this knowledge to areas you
know less about. This is called estimating
by analogy. Simple analogies are as easy
as saying, “This and that have a similar
magnitude.” There are more sophisti-
cated analogy procedures that can pro-
duce risk ranges, in addition to produc-
ing more accurate estimates.

Effective Size vs. Legacy Size
One big mistake made when scoping
Y2K renovation requirements is to as-
sume that all legacy software needs treat-
ment. There is, in fact, a difference be-
tween total legacy size and the effective
size of the software undergoing repara-
tion. Our model computes effective size
through a series of rework percentages,
which is discussed in the next section.
Imagine effective size as the contents of a
box, as depicted in Figure 1.

Although total size represents all the
code you own, effective size is the code
impacted by Y2K rework requirements.
These requirements may involve simple
testing or actual changes. Changes may
be made manually or using a Y2K “solu-
tion” product. Much of the effort re-
quired for a good Y2K rework estimate
is therefore involved in assessing the
effective size.

When doing an overall estimate of
rework required, there is a balance be-
tween details required and essentially
macro knowledge. We have learned that
this dichotomy can be embodied in
overall size estimates that are then ad-
justed downward using sets of special-
ized percentages; we call this the adjust-
ment to effective size, a process that is by
no means straightforward. You need to
first define the percentage items, then
figure out how these percentages should
be used to adjust the gross size estimate.
We have acquired many data sets of
projects completed, in addition to much
heuristic knowledge and post-validations
of our estimates, which have guided us
toward proper definition of percentages
and their formulaic specification.

Rework Items
This section describes rework categories
for Y2K renovation that we have devel-
oped for our estimates. These originate
from our knowledge of renovation is-
sues, the experience of others, and our
recent Y2K consulting engagements.
Although the computations used are

Estimating Y2K Rework Requirements
Lee Fischman, Galorath Incorporated

Patricia A. McQuaid, California Polytechnic State University

Especially at this late juncture, critical decisions regarding year 2000 (Y2K) projects need to be
grounded in an understanding of the true scope of rework requirements for assessed systems. This
article discusses how to characterize Y2K renovation work and what the scope of that work might be.

Figure 1. Effective size of the software undergoing
remediation.

12 CROSSTALK The Journal of Defense Software Engineering January 1999

specific to our model, the definitions
should provide robust ground rules to
evaluate your work. We have added
detailed “Y2K Advice” sections to guide
you in this. The rework items covered
include
• Reverse Engineering Required.
• Date-Related Design Change.
• Specification Updates Required.
• Manual Recoding Required.
• Automated Recoding Required.
• Automated Conversion Verification.
• Programmer and Unit Testing Re-

quired.
• Test-Bed Preparation.
• Application Testing.

The diversity of these categories is a
strength, since misspecification of any
one category is not likely to drive the
estimate too far off. The following
sections provide details on these rework
categories.

Reverse Engineering Required
This is the percentage of code (relative to
the total application size) that a technical
staff must review to understand what is
happening at the code level. Include
only those lines of code with which
someone must be familiar for the appli-
cation to be considered “reviewed.”

Whole blocks of code may theoreti-
cally undergo “review,” but lines thor-
oughly analyzed may be slight. In this
case, the percentage of reverse engineer-
ing would only be the lines studied. Let
us say that a “100 percent code review”
translates into a scan across all code but
only at the level of function calls—
function contents are not examined. In
this case, the percentage of reverse engi-
neering is far lower than 100 percent—
it may even be 1 percent or less.

To determine the percentage of re-
verse engineering, consider
• The level of familiarity with the

system’s internal logic. Systems that
have been informally maintained
over the years may now require basic
understanding (ultimately expressed
as flowcharts, entity-relationship
diagrams, data flow diagrams, data
dictionaries) before substantial reno-
vation can begin.

• Formal documentation requirements
may mandate additional reverse

engineering, other than that neces-
sary to complete work.

• Redocumenting requirements. These
may be closely related to reverse
engineering.

Y2K Advice
Outside teams may have to reverse engi-
neer code to orient themselves to basic
architecture and design. Code analyzers,
scanning methods, and other automated
tools may mitigate the need to reverse
engineer—do not include the code cov-
ered by automated methods in this per-
centage. Older applications have higher
levels of hidden utility and therefore
require a more detailed approach, which
often translates into additional reverse
engineering.

Date-Related Design Change
These are date-related design changes
measured relative to the total applica-
tion size. Design is at a level that covers
everything except actual programming.

To determine the percentage of rede-
sign required, consider changes to
• Data structures, e.g., data-type

changes, new or deleted fields, and
expansions. When redesigning these,
think in terms of the amount of code
necessary to carry the design in a
given data structure (such as in a
structured query language CREATE
command).

• Object methods.
• Date-related data passage between

functions.
• Operating system-related issues, e.g.,

memory usage and date and time
functions.

• Design changes at the function level
(this does not include isolated code
changes that do not change the
function’s design).

Y2K Advice
Consider the changes that actively ad-
dress date issues. These include bridges
to noncompliant external applications,
encapsulation of potentially troublesome
code to capture noncompliant dates, on-
the-fly record format translation,
windowing of two-digit years, redesign
of date logic, representation, and ma-
nipulation.

Specification Updates Required
This is the percentage of new documen-
tation to be developed compared to total
existing documentation.

Redocumentation relates to both
the proportion of a system being
redocumented and the coverage of that
documentation. An application may be
well described at a high level, but this
may only amount to a small percentage
of what comprises the application.
Only if requirements spell out that
every single line of code be mentioned
in new documentation is redocumen-
tation 100 percent.

Redocumentation can also be
thought of as the amount of code of
which a technician must be cognizant to
adequately document a system; in this
way, it may be closely related to reverse
engineering. Thus, a short report that
describes a large system, which took only
a few days to produce, is likely to fall
into the low percentage ranges.

To determine the percentage of up-
dates required, consider
• Comments. When inserted into the

code, they are not part of formal
documentation; however, this may be
a part of reverse engineering.

• Documentation. If documentation
must be completely rewritten, this
does not necessarily mean 100 per-
cent redocumentation. Documenta-
tion is calculated only with respect to
the full application.

• Formal documentation requirements.
Informal development shops with no
formal processes or standards have
documentation requirements that are
typically orders of magnitude lower
than those for shops that follow
stringent standards.

Y2K Advice
Consider the state of existing formal
documentation for this application,
then decide whether it has to be up-
dated. If there is no outstanding formal
documentation requirement (have pre-
vious maintenance efforts had any?),
the updates required percentage may be
zero. An outsourcer may have formal
documentation requirements imposed
to ease later in-house maintenance or

Year 2000

CROSSTALK The Journal of Defense Software Engineering 13January 1999

because of other contractual require-
ments.

Manual Recoding Required
These are manual changes to software
evaluated as a percentage of existing size.
Thus, if 200 lines of a 10,000-line appli-
cation are modified, recoding would be
2 percent.

To determine the percentage of
recoding, consider
• New code. If any new code is being

written to support changes, it should
be factored into the size of the exist-
ing software to develop a correct
percentage. Thus, if 200 lines of a
10,000-line application are modified
and 200 new lines are written,
recoding will be 4 percent.

• Language conversions. Major lan-
guage changes, such as from CO-
BOL to C (with no automatic con-
version aids), will require 100
percent recoding, even if virtually no
redesign is required.

• Minor changes due to a change in
compilers.
Do not count code that is changed

using an automated tool, but do con-
sider the manual refinements that are
necessary after the tool is used.

Y2K Advice
Consider code that directly impacts
date and time issues. This includes, to
the extent applicable, data typing and
initialization of date and time variables,
date logic, input and output of date and
time data, encapsulation of existing
code, bridges to noncompliant external
applications, and other software patches
necessary to ensure compliance, fault
recovery, etc. A simple text scan helps
reveal what percentage of the code
needs attention and rewriting.

Automated Recoding Required
These are automated changes to software
evaluated as a percentage of the existing
size. Thus, if 500 lines of a 10,000-line
application are to be modified by means
of an automated tool, automated
recoding would be 5 percent.

To determine the percentage of auto-
mated recoding, consider

• If any new code must be written to
support the automated changes, it
should be factored into the size of the
existing software to develop a correct
percentage. Thus, if 500 lines of a
10,000-line application are to be
recoded by an automated tool, but
100 new lines must first be written to
assist the automated recoding, auto-
mated recoding will be 6 percent,
and manual recoding must be in-
creased by 1 percent.

• If no automated tool is used, this
input will be 0 percent.

Automated Conversion
Verification
This is the amount of code processed by
automated conversion that requires
manual inspection, review, or walk-
throughs. This should be given as a
percentage of the code that is being
converted by automated means. Code
reviews are generally done to ensure
coding standards and conventions are
adhered to and to detect potential errors.

To determine the percentage of veri-
fication required, consider
• Code reviews are work that is subject

to low-level, direct review by one or
more people knowledgeable in the
organization’s standards and practices
and the language in which the code
is written.

• The use of automated code conver-
sion may significantly reduce the
need for code reviews or at least
reduce the rigor of required reviews.

• If no formalized code reviews are
performed, i.e., regular get-togethers,
this could be 0 percent.

• Use of automated tools to check for
adherence to coding standards and
conventions may reduce or eliminate
code reviews.

Y2K Advice
Are code reviews part of your normal
development or maintenance process? If
so, they will probably be part of your
Y2K renovation. Code reviews are nor-
mally isolated to new changes. To de-
velop an accurate percentage, consider
the percentage of work that is normally
reviewed and multiply this by the per-
centage of new coding.

Programmer and Unit Testing
Required
This is measured as the percentage of
code, relative to existing size, that re-
quires unit testing. Unit testing is gener-
ally done by programmers to test and
debug low-level software. Unit testing is
usually considered at the module level
(such as functions and subroutines) and
the unit level (generally a source file).

To determine the percentage of unit
testing, consider
• The amount of recoding required,

because code changes typically must
be tested. If 10 percent of code is
changed and all of that is tested, unit
testing is also 10 percent.

• External testing. If testing is carried
out by people other than the pro-
grammer making code changes, these
testers will probably cover more code
than has been changed.

Y2K Advice
Are unit tests part of your normal devel-
opment or maintenance work? If so,
they will probably be part of your Y2K
renovation. In addition, because unit
tests of certain sensitive functions are an
efficient way to track down faults, unit
testing may exceed the amount of code
changed.

Test-Bed Preparation
This parameter covers the preparation of
new test plans and test procedures, not
their implementation. Actual testing is
covered in application testing. Test plans
and procedures that already exist should
not be included in the Test-Bed Prepara-
tion percentage.

Test preparation describes the scope,
approach, resources, and schedule of
test activities. It further identifies test
items, features to be tested, tasks, who
will perform each task, and any risks
that require contingency planning. To
clarify the difference between test pro-
cedures and plans, imagine an orches-
tra: Test plans describe the conductor’s
job, whereas test procedures describe
the musician’s instructions.

The percentage of test-bed prepara-
tion required relates to both the pro-
portion of a system to be tested and
the depth of testing required. In an

Estimating Y2K Rework Requirements

14 CROSSTALK The Journal of Defense Software Engineering January 1999

absolute sense, the overall percentage
covers the extent to which the lowest
logical attributes of the software are
exercised. If plans spell out that every
piece of code be reached by test plans
and procedures, the percentage re-
quired is 100 percent.

To determine the percentage of test-
bed preparation required, consider
• If you have informal integration

testing and little or no formal testing,
test-bed percentages are likely to be
low.

• Test plans orchestrate testing activi-
ties but do not control the most
detailed tasks. These are covered by
test procedures.

• Can existing test plans be reused
without modification? For every test
plan that exists, somewhat fewer
new plans may be required. The
same may be true for existing test
procedures.

• A clever test plan may simultaneously
exercise multiple test points with a
single directive. For instance, a re-
petitive software architecture may
allow the test plan to specify an iden-
tical approach across system compo-
nents. If each “test point” is sepa-
rately accounted for in development
of the test plan, coverage should
include each test point separately.

However, if only a single test point
needs to be accounted for despite
several being tested, coverage should
include only that test point.

Y2K Advice
A Y2K renovation effort may require test
plans and procedures if formal testing or
third-party regression and integration
testing is used. Furthermore, validation
of date compliance may require that
additional tests be drawn up.

Application Testing
This parameter covers only actual test-
ing, not detailed test preparation.
Preparation is covered in Test-Bed
Preparation. Include all testing effort,
even if familiar from previous efforts.
Formal tests are conducted in an envi-
ronment of intentional yet usually ami-
cable mistrust; an outside authority or
an in-house authority—which requires
extremely formal turnover proce-
dures—asks developers to provide proof
that various aspects of a system work
before they will accept delivery. Formal
testing is sometimes called user accep-
tance testing.

The overall formal testing percent-
age covers the extent to which the low-
est logical attributes of the software are
exercised. Some formal tests provide an

automatic environment that is designed
to ultimately “contact” a high percent-
age of test points. If so, the percentage
of formal tests required should be rated
lower than the percentage of points that
will be asymptotically “hit.” The test
percentage should instead be rated at
the percentage of the application that
the equivalent test effort could at mini-
mum cover.

To determine the percentage of ap-
plication testing required, consider:
• Do you do formal testing? If it is not

a part of the standard product sign-
off, formal testing will be zero.

• Complete formal testing does not
necessarily imply “100 percent”—
what percentage of code is actually
exercised?

Y2K Advice
Meaningful formal acceptance testing is
common in so-called “formal” develop-
ment environments.

Rework Percentages
Recall that all the categories above are
expressed in terms of percentages. The
first “default” percentages that we de-
veloped were based on our experience
with other types of renovation work;
these can be modified by a user possess-
ing more specific information. As a
sanity check, however, it is useful to
note that with these default percent-
ages, our model yields results that are
similar in magnitude to those produced
by other third-party benchmarks, nota-
bly those by the Gartner Group and
Capers Jones.

In Table 1, “Least” is the least likely
coverage or percentage, “Likely” is most
probable, and “Most” is the highest
possible. These percentages are translated
into effort and schedule estimates via
SEER-Year2K’s analytic model.

The percentages are in some ways
quite general; what is important are
• The magnitudes being assumed.
• The balancing for the ranges speci-

fied.
It also is apparent that the percent-

ages are quite low, emphasizing how
strictly we have defined activities. This
should make sense, because Y2K renova-
tion falls far short of rewriting code. We

Table 1. Rework percentages. Some are in hundredths because they are products of other estimating
formulas.

citamotuA citamotuaimeS launaM

tsaeL ylekiL tsoM tsaeL ylekiL tsoM tsaeL ylekiL tsoM

deriuqeRgnireenignEesreveR 00.0 00.1 00.3 00.0 00.2 00.6 00.0 00.4 00.21

egnahCngiseDdetaleR-etaD 00.0 00.4 00.4 00.0 00.4 00.4 00.0 00.4 00.4

deriuqeRsetadpUnoitacificepS 00.0 00.0 00.2 00.0 00.0 00.2 00.0 00.0 00.2

deriuqeRgnidoceRlaunaM 00.0 00.0 00.0 00.0 00.2 00.2 00.0 00.4 00.4

deriuqeRgnidoceRdetamotuA 00.0 00.4 00.4 00.0 00.2 00.2 00.0 00.0 00.0

noitacifireVnoisrevnoCdetamotuA 00.1 00.5 00.01 00.1 00.5 00.01 00.0 00.0 00.0

gnitseTtinUdnaremmargorP
deriuqeR

00.0 41.1 03.1 00.0 85.2 56.2 00.0 00.4 00.4

noitaraperPdeB-tseT 00.0 61.0 86.0 00.0 61.0 86.0 00.0 61.0 86.0

gnitseTnoitacilppA 00.0 00.4 00.4 00.0 00.4 00.4 00.0 00.4 00.4

Year 2000

CROSSTALK The Journal of Defense Software Engineering 15January 1999

reiterate that these percentages are start-
ing points; they need to be plugged into
a formula to determine cost and—ban-
ish the thought with our millenium
deadline—schedule. Over time and with
enough projects, you could, as we have,
develop such a formula—maybe by the
millenium?

Conclusion
A diversity of activities are under the
Y2K umbrella, and not all are always
required. Sizing alone, therefore, cannot
suffice as an accurate guide to effort
required. It is useful to develop a set of
secondary criteria based on types of
activity.

You will need a standard way to
specify the magnitude of Y2K rework
activities; we have found that percent-
ages are an efficient standard metric to
scope activities. Percentages are well-
suited to the gross inventorying that
typically occurs in Y2K planning. Ap-
plication specialists in the field with
day-to-day responsibility for Y2K-
impacted systems and the renovation
team doing the work will buy in to the

language of percentages with a mini-
mum of introduction. Percentages thus
give you an agreeable basis to rapidly
approach an estimate.

The importance of a risk-based
estimate cannot be overstated given the
scarce resources and tight schedules of
Y2K work. Without knowing upside or
downside exposure, a simple point
estimate in the face of such constraints
carries tremendous risk. With a dead-
line that cannot be moved for these
renovations, risk is not an option. u

About the Authors
Lee Fischman is special
projects manager at
Galorath Incorporated
in El Segundo, Calif.
He is active in the devel-
opment of SEER tools
and consulting meth-

ods. He wrote the Software Evaluation
Guide for the Office of the Secretary of
Defense, Program Analysis and Evalua-
tion, and he has explored software eco-
nomics and estimating in numerous pa-
pers over the past several years, all available
at http://www.galorath.com.

Galorath Incorporated
Voice: 310-414-3222
E-mail: fischman@galorath.com
Internet: http://www.galorath.com

Patricia A. McQuaid
is an assistant professor
of management infor-
mation systems at
California Polytechnic
State University at San
Luis Obispo. She has

taught a wide range of courses in both the
business and the engineering colleges. She
has industry experience in computer audit-
ing and is a certified information systems
auditor. Her research interests include
software process improvement, software
quality, and software testing, particularly
in complexity metrics. She is the developer
of a new software complexity metric
known as the Profile Metric.

California Polytechnic State University
Management Information Systems Area
College of Business
San Luis Obispo, CA 93407
Voice: 805-756-5381
Fax: 805-756-1473
E-mail: pmcquaid@calpoly.edu

Estimating Y2K Rework Requirements

Configuration Management
Seminars

Dates: Between Jan. 25, 1999 and
March 5, 1999, depending on
location and seminar.

Locations: San Diego, Calif., Las
Vegas, Nev., Orlando, Fla.,
Washington, D.C.

Sponsor: Technology Training Cor-
poration

Instructors: Robert Ventimiglia,
Larry Bowen

Topics: Four seminars. Examples of
topics: How to Integrate Con-
figuration Management (CM)
into Your Software Development
Methods, the Latest CM Stan-
dards and Requirements, Estab-
lishing Appropriate Baselines.

Contact: Dana Marcus
Voice: 310-563-1223
E-mail: dmarcus@ttcus.com

product exhibition. Target audi-
ence: embedded systems software
developers, hardware engineers,
and project leaders.

Internet: http://
www.embedded.com/
escfrm.htm

SEPG 99: 11th Software
Engineering Process Group
Conference

Dates: March 8-11, 1999
Location: Atlanta, Ga.
Subject: This four-day event brings

together international representa-
tives from government, industry,
and academia for a global per-
spective on software process
improvement.

Sponsor: Software Engineering
Institute

Voice: 412-268-3007
Fax: 412-268-5758
E-mail: sepg@sei.cmu.edu

Coming Events
ITCC World Conference and
Exposition

Dates: Feb. 11-12, 1999
Location: Chicago, Ill.
Topic: Information Technology (IT)

Consultants and Contractors
(ITCC) World Conference and
Exposition is the only industry
event designed specifically for IT
consultants and contractors. Join
over 60 of the region’s top IT
consulting and software companies
at the ITCC Exposition, along
with a two-day conference pro-
gram and workshops to maximize
your professional success.

Internet: http://www.itccexpo.com

ESC Spring: Embedded Systems
Conference

Dates: March 1-4, 1999
Place: McCormick Place South, Chi-

cago, Ill.
Topic: Five days of high-level techni-

cal training as well as a three-day

16 CROSSTALK The Journal of Defense Software Engineering January 1999

Before developing a test strat-
egy, tactics, and plan to test Y2K
compliance, testers need to con-

sider certain “concerns”—conditions
that if present increase the probability
that testing will not be effective. Identi-
fying these concerns early and addressing
them in the testing plan will help reduce
the negative probabilities associated with
those concerns.

The following 15 testing concerns
are areas the testers need to address.
• Organization’s track record on com-

pleting projects on time. If your
information services organization has
a history of missing scheduled dates,
there is a high probability it will miss
the date for making Y2K changes.

• Organization’s track record on com-
pleting projects within budget. If
your organization has a history of
being over budget on software devel-
opment projects, there is a high prob-
ability it will not be able to complete
Y2K changes with existing resources.

• Maturity level of organization’s
development process at the time
programs were written. If your orga-
nization developed systems that were
not Y2K compliant with a Capability
Maturity Model (CMM) Level 1
development process, it will be much
more difficult to change and test than
projects written at Levels 2 through 5.

• Currency of program documenta-
tion. If the documentation represents
the code in the program, both
changes and testing will be easier than
if the documentation is out of date and
cannot be relied on by either the Y2K
team or the Y2K testers.

• Amount of program documenta-
tion. If the documentation for pro-
grams meets the documentation

Effective year 2000 (Y2K) testing must be performed using a process. The process for Y2K testing
described in this article is based on experiences from many of the approximately 1,000 corporate
members of the Quality Assurance Institute (QAI). By using this process, you will benefit from the
experiences of leading corporations in addressing the Y2K problem. The nine steps in the process
are designed to lead testers from the initiation of the Y2K testing effort to the writing of the final
Y2K test reports and verifying the correctness of installing the Y2K changes into production.

Effective Methods for Testing Year 2000 Compliance
William E. Perry

Quality Assurance Institute

standards of standard-setting organi-
zations such as the Institute of Elec-
trical and Electronics Engineers,
International Organization for Stan-
dardization, and the National Insti-
tute of Standards and Technology,
the ability to find and correct problems
as well as conduct test methods will be
significantly enhanced than in pro-
grams that are sparsely documented.

• Amount of renovation to be in-
cluded in the Y2K projects. If, in
addition to making date changes,
significant renovations, i.e., modifi-
cations and enhancements, are made,
they will increase the difficulty and
potential problems associated with
making and testing the changes.

• Effectiveness of estimating proce-
dures. If the organizations that esti-
mate procedures are realistic, the
estimates for both implementation
and testing will be representative of
the effort required; if the estimating
process is not realistic, there is a high
probability that inadequate time will
be available for testing.

• Lack of skilled testers. The testers
need the skills associated with testing
the systems that are changed. They
may require knowledge of obsolete
languages, tools, and testing proce-
dures. If the testers do not possess the
necessary skills, they will not be able
to properly carry out the procedures.

• Down-sized or burned-out staff. If
information services has been under-
staffed for a time, the staff may not be
in a position to expend the extra effort
needed to effectively complete Y2K
changes on time.

• Likelihood of litigation. If there is a
high probability that inadequate Y2K
compliance will result in litigation

from customers, suppliers, stock
holders, etc., the testers will need to
spend extra time and effort to both
document the test processes and the
results of the testing.

• Lack of Y2K change tools. The
individuals responsible for changing
the Y2K date procedures need tools
to help them search for the date
problems and to make corrections.
The fewer tools they are given, the
higher the probability they will not
correctly identify and implement the
needed changes.

• Lack of Y2K test tools. Testers need
the tools that will enable them to
conduct one of the largest test assign-
ments many will experience in their
testing career. The lack of effective
tools to test Y2K compliance will
inhibit the effectiveness of the testers
and most likely increase the amount of
resources needed for testing.

• Importance of new projects. Experi-
ence has shown that many of the
resources within an information
services group will need to be di-
verted to make and test Y2K
changes. If new projects have a
higher priority for resources than the
Y2K compliance project, changes will
be more difficult.

• Lack of adequate testing resources.
Estimates for testing Y2K compli-
ance range from 50 percent to 75
percent of the total change effort.
Finding those resources to perform
the testing may be difficult. Lack of
adequate testing resources will result
in shortcuts or omission of some changes
in testing.

• Lack of adequate testing time. One
of the challenges testers face in any

CROSSTALK The Journal of Defense Software Engineering 17January 1999

Figure 1. The nine-step Y2K test process.

Effective Methods for Testing Year 2000 Compliance

software development project is that
they are the last to work on the
project. If the previous phases for
Y2K compliance take longer than
expected, they will erode the amount
of testing time available and thus re-
duce test effectiveness.
Any Y2K test process that is going to

be effective must address these 15 con-
cerns. The concerns can be addressed by
either resolving them immediately or
incorporating appropriate tactics in the
test plan to resolve or minimize the
potential impact of the concern.

The Nine-Step Y2K Testing
Process
The Y2K testing process used by the
QAI follows the traditional “V” concept
of testing (see Figure 1). The V shows
the three major components of the Y2K
correction process and the nine steps of
the Y2K testing process. The first two
steps of the correction process involve a
verification process and test. The last
step of the correction process is valida-
tion by an operational execution of the
corrected software. The final step is the
preparation of the report describing the
results of implementation and testing.

A brief description of the nine-step
Y2K testing process follows.

Step 1: Verify Y2K Assessment
The Y2K assessment scopes the size of
the Y2K computing crisis and is a pre-
requisite to determining the effort re-
quired to correct the problem. Neither
the implementation effort nor the test-
ing effort can be determined until the
scope of the problem is defined. It is the
equivalent of the requirements or need
definition component of new software
development. During this step, the
testers will challenge the completeness
and correctness of the assessment per-
formed to determine the scope of the
Y2K computing crisis.

Step 2: Develop Y2K Test Plan
The scope of the Y2K test effort neces-
sitates the development of the test plan.
To expend the amount of resources
needed for Y2K testing without a plan
will probably lead to wasting valuable
testing resources and the inability to

make an evaluation of the status of the
correction effort prior to Jan. 1, 2000.
The test planning effort for the Y2K
test project should follow the normal
test-planning process; however, while
the structure of the plan will be the
same, the content will vary because it
will involve not only software devel-
oped in-house but also supplier-devel-
oped software and software embedded
into computer chips.

Step 3: Verify Supplier’s
Compliance Capability
Software provided by a supplier through
purchase or contract poses the same Y2K
computing crisis as software developed
in-house. However, unlike software
developed internally, organizations do
not have direct control over supplier
plans, projects, and employees. If the
supplier has made Y2K corrections or
built the software so that it is Y2K com-

pliant, validation can be performed to
determine whether that software is Y2K
compliant. On the other hand, if the
supplier is undertaking efforts to make
software Y2K compliant, the execution
of that software may not be known until
almost Jan. 1, 2000. In the interim, at
least for critical software, organizations
should perform an assessment of the
supplier’s capability to make the software
Y2K compliant.

Step 4: Verify Internal Compliance
Capability
The organization’s ability to achieve Y2K
compliance on internally developed
systems should be defined by the Y2K
compliance plan. The more detailed the
plan, the easier it will be to verify the
adequacy and the completeness of the
plan. In this step, a detailed review pro-
cess to examine the plan will need to be
implemented. The review process in-

18 CROSSTALK The Journal of Defense Software Engineering January 1999

Year 2000

volves establishing a review team for its
total competency and assessing all as-
pects of the plan. The review process will
conclude with the preparation of a re-
port, which will detail the strengths and
weaknesses of the plan together with
recommended improvements.

Step 5: Inspect Implementation
Deliverables
In this step, the corrected software will
be inspected prior to executing the soft-
ware. The inspection process is used
because first, it is more effective in iden-
tifying defects than validation methods;
and second, it is much more economical
to remove the defects through inspection
than through unit or system testing.

Step 6: Perform System Testing of
Changes
For this step, many types of test data
that may be needed to perform effective
Y2K testing will be identified. The test
plan is decomposed into specific test
transactions that will be used to validate
the performance of the operational sys-
tem. It is assumed that the developers
will perform unit testing.

Step 7: Perform Acceptance
Testing of Changes
The system testing will evaluate the
functional and structural components of
the software that has been changed. It
will attempt to determine that the sys-
tems are Y2K compliant. Acceptance
testing is a test performed from a user
perspective. Acceptance testing may be
necessary for any of the following three
reasons.
• Potential Regression. The system

may not perform the tasks that were
performed previously because in
correcting the Y2K date problem,
other processing components could
be negatively impacted.

• Enhancements. Many organizations
will make enhancements to the sys-
tem at the same time they make the
Y2K correction. This will not neces-
sitate determining that the enhance-
ments were corrected from the user
perspective.

• Performance Changes. This system
may process correctly but due to the

Y2K date, change in performance
may be negatively impacted. For
example, in the correction process, it
may increase the amount of time
required to provide on-line re-
sponses, which could have a negative
impact on the user’s business.

Step 8: Prepare Y2K Test Reports
There should be both interim and final
test reports. Interim test reports are
needed for both testers and manage-
ment. The testers need to know the
status of testing and the status of defect
identification and correction; manage-
ment needs to know the status of the
overall project effort. Management will
also need to know, shortly prior to Jan.
1, 2000, the status of the Y2K change
efforts and what risks the organization
faces because of that status. This step is
to enable the tester to verify that what
was tested, reported on, and accepted
has been correctly installed in a produc-
tion status.

Step 9: Monitor Y2K
Implementation Changes
In this step, the organization needs to
address actions that testers could take
that relate to the magnitude of changes
that will be occurring during the Y2K
correction process. For example, while
date changes are being made, business
may be needed for the software; there-
fore, one version of the software will be
under development for date changes,
while another version will be modified
for business changes placed in the opera-
tion. In addition, changes to the process
of making date changes will be incorpo-
rated. During this step, issues such as
version control, change control, and
control over the testing process during
the dynamic change environment will be
dealt with.

Summary
The Y2K program is expected to be the
largest and most complex system conver-
sion effort undertaken for many organi-
zations. Because of the complexities and
scope of the Y2K problem, it is critical
that organizations develop comprehen-
sive plans that establish schedules for all
tasks and phases of the Y2K program, set

reporting requirements, assign conver-
sion or replacement projects to Y2K
project teams, provide measures to assess
performance, and anticipate the need for
risk assessments and contingency plans.

Ironically, perhaps, the enormous
challenge involved in achieving Y2K
compliance is not technical; it is mana-
gerial. Whether organizations succeed or
fail will be largely influenced by the
quality of executive leadership and pro-
gram management. Executive leadership
sets the tone; program management
makes change happen. It will be impera-
tive for top management—including the
chief information officer—to not only
be fully aware of the importance of this
undertaking but also to communicate
this awareness and urgency to all em-
ployees in such a way that everyone
understands why Y2K compliance is
tremendously important. That urgency
must also include planning and execut-
ing the test segment of the Y2K pro-
gram. ◆

About the Author
William E. Perry has
been the executive direc-
tor of QAI since 1980.
He is the author of more
than 50 books, including
Surviving the Top Ten
Challenges of Software

Testing, Effective Methods for Software
Testing, A Structured Approach to Systems
Testing, and Year 2000 Software Testing. A
certified quality auditor and certified
software test engineer (CSTE), he realized
the need for a practitioner-based confer-
ence for software testers 18 years ago. This
conference has been a favorite among
testers ever since. He started the first certi-
fication for software testers, CSTE, at
QAI. He has a master of business adminis-
tration degree from Rochester Institute of
Technology and a master of education
degree from the University of Rochester.

Quality Assurance Institute
9222 Bay Point Drive
Orlando, FL 32819-7273
Voice: 407-363-1111
Fax: 407-363-1112
Internet: http://www.qaiusa.com

CROSSTALK The Journal of Defense Software Engineering 19January 1999

U.S. Air Force Materiel Command Year 2000 Bomb Squad
Unit: http://www.cisf.af.mil/seit/seit/ProgMgmt/
Y2kBSU/Y2kBSU.htm

U.S. Air Force Year 2000 Web Site: http://year2000.af.mil
(military and government Internet domains only)

Software Technology Support Center: http://
www.stsc.hill.af.mil/RENG/index.html#2000

Defense Information Systems Agency (DISA): Office of Chief
Information Officer: https://www.dsdc.dla.mil/priv/
projects/year2k/frontpg/y2khome5.htm

The Year 2000 Information CenterTM: http://
www.year2000.com/cgi-bin/y2k/year2000.cgi

Chief Information Officers’ Council Committee on Year 2000
Information: http://www.itpolicy.gsa.gov/mks/yr2000/
cioy2k.htm

Federal Aviation Administration Year 2000: http://
www.faay2k.com

Defense Information Infrastructure Common Operating Envi-
ronment Y2K Compliance: http://coeeng.ncr.disa.mil/
REFERENCE_PAGES/Y2K/y2k_table.htm

Congressman Steven Horn: http://www.house.gov/horn
The Year 2000 Support Centre: http://

www.support2000.com
The Institution of Electrical Engineers: http://

www.iee.org.uk/2000risk/updates/a01-5-4.htm
Year 2000: http://www.year2000.com
AntiY2K Associates Solutions: http://www.antiy2k.com
Electric Utilities: http://www.euy2k.com

Joint Position Statement on Embedded Systems and Interna-
tional Infrastructure: http://
www.effectivebydesign.com/nutmeg/embedsys.html

Electric Power Research Institute: http://
year2000.epriweb.com

National Association of State Information Resource Execu-
tives: http://www.nasire.org/ss/ST2000.html

Gary North: http://www.garynorth.com/y2k
The MITRE Corporation/Electronic Systems Center Year 2000

Home Page: http://www.mitre.org/research/y2k
Society for Information Management: http://

www.year2000.unt.edu
Westergaard Information Center: http://

www.y2ktimebomb.com
Computer Information Centre: http://www.compinfo.co.uk
Infinium Corporation: http://www.infinium.com/html/

year_2000.html
Shakespeare and Tao Consulting: http://www.tmn.com/

~frautsch/y2k2.html
CMP Net: http://www.techweb.com/wire/technews/

year2000.html
“The Year 2000 Computer Crisis!”: http://www.karinya.com/

yr2k.htm
Microsoft Inc.: http://www.microsoft.com/technet/topics/

year2k/default.htm
Federal Computer Week: http://www.fcw.com/ref/

hottopics/y2k.htm
Year 2000 Managers’ Toolbox: http://www.govexec.com/

tech/year2000

Y2K Web Sites

The Time for Negotiation Is Over

• Assessments
• Renovation
• Verification
• Documentation
• Planning
• Reviews

Let’s be blunt. Your systems are not year 2000 compliant. You waited too
long to provide the ransom, and now it looks like the “millennium bug” will
make good on its threats.

There’s only one option left: Get professional help. Call the
Software Technology Support Center (STSC) and let us
help you minimize the impact of this hostage situation.

• Continuation of Operation Plans and Processes
• Contingency Plans
• Guidelines
• Exercise of Plans or Contingency Exercises
• Operational Readiness
• Technical Review as Legal Assistance

We provide the following services:

Paul Harames 801-775-5741 DSN 775-5741 or
Karen Rasmussen 801-777-7214 DSN 777-7214

The STSC provides fee-for-service consultation to Air Force and other Department of Defense organizations.

20 CROSSTALK The Journal of Defense Software Engineering January 1999

The DoD distributed simula-
tion domain encompasses a
variety of uses, architectures,

and techniques. DoD uses distributed
simulation for test and evaluation,
analysis, and training. Each of these
categories brings with it different re-
quirements for the distributed simula-
tion architecture. Currently, DoD has
simulations that use a totally distrib-
uted approach, as discussed in [1] and
[2] but has mandated that all simula-
tions use a middleware approach as
defined by the high-level architecture
(HLA) discussed in [3,4,5]. HLA is
designed to support a family of simula-
tions such as uses mentioned above and
aggregate, disaggregate, and component
levels of detail.

Failures in distributed training
simulations can cause unrealistic behav-
ior. Should a simulator crash or lose its
link to the rest of the simulation, vir-
tual objects the simulator owns will
continue under the control of their
dead-reckoning algorithms until they are
removed from the simulation. There are
ways to provide more realistic behavior.
Starting a new copy of the simulation
on a different host can re-establish
sanity if the simulator requires little or
no human involvement. For human-in-
the-loop trainers, this approach is not
practical because it is too expensive to
maintain simulators with crews that do
nothing but wait around for failures. To
substitute a computer-controlled simu-
lator for the absent trainer is more cost-

effective and also can successfully main-
tain simulation realism.

In some cases, a manned simulator
would only be lost temporarily. When
the human-in-the-loop system returns,
it cannot simply be left out of the exer-
cise as would be a computer-controlled
simulator. The crew represents a signifi-
cant investment in resources and train-
ing opportunity. To give the manned
simulator control of its original objects
will not always be appropriate, such as
returning control of the original heli-
copter to a user when it has already
crashed on the virtual battlefield. To re-
introduce a simulator back into a simu-
lation is a complicated decision that
requires knowledge of the virtual world
as well as the simulation configuration.

We call the automatic restructuring
of a distributed application in accor-
dance with a set of rules “compensating
reconfiguration.” We have developed a
software engineering environment that
could support its inclusion in DoD
distributed simulations. The compen-
sating reconfiguration component cre-
ated through this environment imposes
an extremely small performance penalty
on the simulation and is not an unrea-
sonably complex burden for the simula-
tion builders.

Related Work
In the DoD distributed simulation
domain, there has been an abundance
of work that defines the HLA [3,4,5].
The HLA addresses the late joining,
early departure, and changing owner-

ship of federates (simulator compo-
nents). However, fault tolerance does
not seem to have been adequately ad-
dressed, and certainly it has not been
addressed within the context of de-
mands such as fewer support staff and
human-in-the-loop simulations [1].

The gluing together of disparate
heterogeneous distributed systems
forms the foundation of HLA. Under-
standing interconnection abstractions
like Common Object Request Broker
Architecture [6] and Polylith [7] is
critical to understanding HLA. Using
standard interconnection abstractions
makes the development of a software
engineering environment practical.
These abstractions make it possible for
our framework to work with existing
systems without resorting to changing
any of the components. We feel that
compensating reconfiguration is best
built into the interconnection abstrac-
tion and provided as a service.

The end result of compensating
reconfiguration is the dynamic recon-
figuration of the application. There are
two primary approaches to dynamic
reconfiguration. The Conic approach
moves the application to a quiescent
state prior to reconfiguration [8]. This
approach requires logic located in each
component that will migrate a compo-
nent to a quiescent state in finite time.
This technique is more appropriate for
simulations that do not run on wall-
clock time. A virtual simulation cannot
achieve a quiescent state and still main-
tain realistic behavior. C. Hofmeister’s

Building Self-Reconfiguring Distributed Simulations
Using Compensating Reconfiguration

Lt. Col. Don Welch, U.S. Military Academy
James Purtilo, University of Maryland

In distributed training simulations, simulators can lose their connections to the rest of the
simulation. When this happens, the uncontrolled virtual entities exhibit unrealistic be-
havior. To avoid unrealistic behavior, the distributed simulation must reconfigure itself
based on the state of the simulation software and the virtual world. We call the automatic
restructuring of a distributed application with respect to a set of rules “compensating
reconfiguration,” and we have developed a software engineering environment that could
be used to support its inclusion in Department of Defense (DoD) distributed simulations.

Software Engineering Technology

CROSSTALK The Journal of Defense Software Engineering 21January 1999

approach is better suited for virtual
simulations [9]. She requires that the
components involved divulge their
internal state, then loads this into the
new component. Since simulators in a
distributed simulation continuously
divulge their internal state (which is
most important to the rest of the simu-
lation), the software is ready for dy-
namic reconfiguration without change.

N. Minsky has used laws to ensure
consistency in the software architecture
as it evolves. A set of invariant laws is
enforced throughout the lifecycle of the
software using independent monitoring
[10]. We focus on keeping the behavior
of the distributed system consistent
throughout its execution.

Compensating Reconfiguration
Distributed simulations require dy-
namic reconfiguration to keep correct
execution in the presence of external
failures. The proper compensation for a
failure is not always readily apparent.
Making the correct compensation re-
quires taking the current software and
hardware configuration and status into
account and can require the virtual
world state and a mapping between the
two. Current dynamic reconfiguration
techniques provide only for considering
system configuration and not the appli-
cation state.

To compensate for an external con-
dition can involve complex decisions.
Straightforward, like-for-like substitu-
tions are not always appropriate. To
compensate reconfigurations involves
heterogeneous changes to the simula-
tion. By heterogeneous, we mean that a
different type of simulator is substi-
tuted for the original. In the motivating
example, it is impractical to keep a
crewed simulator as the backup to the
attack helicopter flight simulator. An-
other factor that adds to the complexity
is that compensation decisions cannot
rely solely on the current configuration
of the distributed simulation. As shown
in the motivating example, the internal
state of the simulators must sometimes
be taken into account. Since the system
configuration and the simulator state
are not static, the compensation logic
must be dynamic, too.

The main concepts of compensating
reconfiguration are first, mapping the
virtual world state and system configu-
ration; and second, using an abstract
interface to build the decision logic. To
maintain this mapping in software is
complex. When requirements change,
the more concentrated the code
changes, the easier code changes are to
make and the less likely they are to be
in error. Using an abstract interface for
the reconfiguration and compensation
decisions allows the user to keep in
mind the big picture and not become
distracted by the dynamic reconfigura-
tion implementation details.

We have built Bullpen, a tool to
build compensating reconfiguration
software in the distributed simulation
domain. We named it Bullpen because
as baseball managers must change their
pitchers to meet the changing condi-
tions of a game, our software must
substitute simulators. Bullpen currently
runs as an invisible support utility. It
could just as easily be integrated into
the run-time infrastructure if one is
used. When it detects a condition of
interest, Bullpen makes two decisions.
The first decision determines the ap-
propriate compensation for the condi-
tion. The second is how to dynamically
change the structure of the distributed
simulation to meet the desired configu-
ration and maintain realistic simulation
behavior.

Results
Our goal has been to produce compen-
sating reconfiguration code with less
effort that also is more accurate than
using only a high-level programming
language. In addition, we want to en-
sure that the compensating reconfigu-
ration code can perform all the recon-
figurations required by current applica-
tions. Finally, we want the execution
speed penalty to be low enough to
ensure that this is a practical approach.

We did a pilot study to determine
whether our tool warrants further
evaluation. In this pilot study, we used
a number of different scenarios, all
based either on military uses or military
simulation exercises. For each scenario,
we built the initial versions of the com-

pensating reconfiguration software
either in Java™ or with Bullpen. We
then changed the requirements for the
simulation and modified the software
to match the new requirements. As we
built and tested, we collected the met-
rics discussed below.

A lack of expressiveness in Bullpen’s
abstract interface would manifest itself in
the worst case by our inability to per-
form one or more of the requirements
changes. Since we were able to do all the
changes from the scenario, Bullpen
satisfies this provision. A less drastic lack
of expressiveness would show itself
through increased effort and complexity
of the code needed to implement the
changes. We did not face this situation,
so we concluded that Bullpen is expres-
sive enough as it stands.

We looked at six categories of re-
quirements change. Changes to the
reconfiguration interface—or the ways
the reconfiguration code must interact
with the distributed simulation infra-
structure—are part of this category. An
example is a new release of the run-time
infrastructure with an updated applica-
tion programming interface. Changes
to the Reconfiguration Policy represent
revisions to the choice of possible com-
pensating dynamic reconfigurations.
The Virtual Configuration category
contains changes to the simulated
world. This includes both the number
and the associations between virtual
entities. Likewise, changes to the Sys-
tem Configuration category include
changes to the hosts or the software
components that compose the distrib-
uted simulation. Changes to Virtual
and System Configuration include
requirements changes that involve the
virtual world, the system configuration,
and the mapping between them. The
final category includes changes to the
Conditions handled. An example of a
condition is the return of a simulator.
The Reconfiguration Policy and System
Configuration are the changes the
simulation builders are most likely to
make during the prototyping phase.
Changes to the Virtual Configuration
are most likely to come from the users
as they refine their concept for the
simulation.

Building Self-Reconfiguring Distributed Simulations Using Compensating Reconfiguration

22 CROSSTALK The Journal of Defense Software Engineering January 1999

Effort
We focused on the effort required to implement require-
ments changes. Our experience with the military domain
shows that the requirements will change so many times that
the effort spent to modify the compensating reconfiguration
code will overshadow the initial construction effort. In addi-
tion, the ease of implementing changes makes for an effective
prototyping tool. The effort metrics we used were source
lines of code (SLOC)1 and time. The initial effort using
Bullpen averaged 84 percent of the effort required to imple-
ment the same functional system using only high-level code
(Table 1).

The effort required to change the functionality of the
compensating reconfiguration software was much less with
Bullpen than with a high-level source code approach. Bullpen
did not perform as well when the changes were to the System
Configuration as it did in the other categories, but these were
the simplest changes to implement in both systems.

Complexity
We also examined the complexity of the modifications as a
result of the requirements change. We reasoned that less
complex code is easier to build and less error prone. We used
three metrics to determine complexity: number of locations
in the code modified, number of defects found during inte-
gration test, and repair time for those defects (which includes
all types of defects, regardless of their cause). Our reasoning
was that more complex code will tend to produce more de-
fects, and those defects will be more difficult to repair. The
complexity of the code used to build the initial systems using
Bullpen was only 68 percent of the complexity of the high-
level code version.

In the most common categories of requirements change,
Bullpen showed the best performance (Table 2). As the com-
position of the simulation evolved, Bullpen was far less com-
plex to deal with than high-level language. The changes to
the conditions category were the worst performers again. In
the areas of change most commonly encountered in military
simulations, Bullpen far out-performed the conventional
approach.

Correct Reconfigurations
We also looked at Bullpen’s tendency to produce correct
reconfigurations. We define a correct reconfiguration as one

that results in all objects in the virtual world being controlled
by only one executing simulator. We assume that all the
simulators in the distributed simulation have been validated
and verified. Therefore, objects under the control of a vali-
dated and verified simulator will behave realistically. An ob-
ject not under control of a functioning simulator is bound to
eventually behave unrealistically. Should an object be under
the simultaneous control of two simulators, it also is not
guaranteed to behave in a realistic manner. We assume that a
compensating reconfiguration component that makes more
incorrect reconfigurations in integration test is more likely to
make incorrect reconfigurations in actual use. Bullpen
showed that is it equal to or better than high-level language
in all categories (Table 3).

Response Time
Finally, we looked at response time. Abstract interfaces gener-
ally impose a performance penalty as a cost of an easier-to-
understand interface. For Bullpen to be a worthwhile tool,
the performance penalty must be within acceptable limits.
Since 100 milliseconds is perceived as instantaneous by hu-
mans, we were willing to accept a penalty of about 100 milli-
seconds. Bullpen-generated code took an average of 102
milliseconds longer to determine the correct reconfiguration.
In neither case was the decision time significant with respect
to the total response time, which demonstrates that the
Bullpen approach is fast enough to be practical.

Conclusions
Through our work in the distributed simulation domain, we
believe that it is possible to build self-reconfiguring distrib-
uted systems using an abstract interface. The advantages of
developing distributed systems this way include less effort,
less complicated code, and fewer errors. A rule-based abstract
interface is powerful enough to handle the reconfiguration
requirements found in the military distributed simulation
domain. In addition, the response time is fast enough for
virtual simulations.

With Bullpen, we can build compensating reconfigu-
ration components with less initial effort, but more impor-
tant, the code is less complex and easier to modify in re-
sponse to changing requirements. We found that changes to
requirements that involve the virtual world, both the virtual
world and system configuration, the reconfiguration policy,
and the reconfiguration interface showed the greatest gains

Table 2. Categories of change compared to high-level language implementation.

Table 1. Effort compared to high-level language implementation.

Change Category SLOC Time

Virtual Configuration (User Driven) 23% 20%
System Configuration (Prototyping) 35% 85%
Virtual Configuration and System Configuration 11% 17%
Reconfiguration Policy (Prototyping) 28% 37%
Reconfiguration Interface 68% 41%
Conditions 83% 87%

Change Category Locations Defects Repair Time

Virtual Configuration (User Driven) 21% 17% 7%
System Configuration (Prototyping) 63% 100% 100%
Virtual Configuration and System Configuration 25% 100% 100%
Reconfiguration Policy (Prototyping) 19% 14% 8%
Reconfiguration Interface 32% 14% 13%
Conditions 125% 100% 100%

Software Engineering Technology

CROSSTALK The Journal of Defense Software Engineering 23January 1999

using Bullpen. These categories also represent the most com-
mon types of requirements changes that occur in the military
distributed system domain.

The effort and complexity saving shown by this approach
supports prototyping. Experimenting with different mixes of
spare resources and reconfiguration policy should allow the
builders to achieve more effective self-reconfiguring code.
Our approach lowers the cost of this experimentation.

We found that our system was more than powerful
enough to handle the requirements of military distributed
simulations; therefore, we believe that this approach will
generalize to other distributed systems that must reconfigure
themselves during execution in response to changing condi-
tions. Even though our initial work has been with the com-
pensating reconfiguration function as a component of the
distributed program, we believe the proper place for compen-
sating reconfiguration is in the middleware. ◆

About the Authors
Lt. Col. Don Welch is an associate professor
of computer science at the U.S. Military Acad-
emy (USMA). He teaches software engineer-
ing and has experience as an Army software
engineer. His military assignments include
infantry and special missions units. His cur-
rent research interests include dynamic recon-

figuration, software engineering, managing the risk from year
2000 failures, and distributed simulation. He has a bachelor’s
degree from USMA, a master’s degree in computer science from
California Polytechnic State University, and a doctorate from
the University of Maryland.

Department of Electrical Engineering and Computer Science
United States Military Academy
West Point, NY 10996
E-mail: Donald-Welch@usma.edu

Average Incorrect
Change Category Reconfigurations

Virtual Configuration (User Driven) 25%
System Configuration (Prototyping) 100%
Virtual Configuration and System Configuration 100%
Reconfiguration Policy (Prototyping) 11%
Reconfiguration Interface 27%
Conditions 100%

James Purtilo is an associate professor of com-
puter science at the University of Maryland,
where he also holds an appointment in the
Institute for Advanced Computer Studies. He
is a senior member of the Institute of Electri-
cal and Electronics Engineers, having previ-
ously received a doctorate from the University

of Illinois at Urbana. His research is in software engineering,
with a special focus on software interconnection. Most recently,
he served as general chairman for the Fourth International Con-
ference on Configurable Distributed Systems.

Department of Computer Science
University of Maryland
College Park, MD 20741
E-mail: purtilo@cs.umd.edu

References
1. Calvin, J. and D. Van Hook, “Agents: An Architectural Con-

struct to Support Distributed Simulation,” Proceedings of the
11th Distributed Interactive Simulation Standards Workshop,
September 1994.

2. Weatherly, R., A. Wilson, B. Canova, E. Page, A. Zabek, and
M. Fischer, “Advanced Distributed Simulation Through the
Aggregate-Level Simulation Protocol,” 29th International Con-
ference on System Sciences, Wailea, Hawaii, Jan. 3-6, 1996, pp.
407-415.

3. Defense Modeling and Simulation Office, High-Level Architec-
ture Rules, Version 1.2, August 1997.

4. Defense Modeling and Simulation Office, High-Level Architec-
ture Interface Specification, Version 1.2, August 1997.

5. Defense Modeling and Simulation Office, High-Level Architec-
ture Object Model Template, Version 1.1, February 1997.

6. Siegel, J., CORBA Fundamentals and Programming, Wiley
Computer Publishing Group, New York, 1996.

7. Purtilo, J., “The Polylith Software Bus,” ACM Transactions on
Programming Languages, Vol. 16, January 1994, pp. 151-174.

8. Kramer, J. and J. Magee, “The Evolving Philosopher’s Problem:
Dynamic Change Management,” IEEE Transactions on Software
Engineering, Vol. 16, No. 11, November 1990, pp. 1293-1306.

9. Hofmeister, C. and J. Purtilo, “Dynamic Reconfiguration of
Distributed Programs,” Proceedings of the 11th International
Conference on Distributed Computing Systems, 1991, pp. 560-
571.

10. Minsky, N., “Independent On-Line Monitoring of Evolving
Systems,” Proceedings of the 18th International Conference on
Software Engineering,” March 1996.

Note
1. Size includes the number of SLOC added, modified, and re-

moved. If code was made “dead” or nonreachable by other
modifications, it was removed and not counted.

Table 3. Categories of change and performance compared to high-level
language implementation.

Building Self-Reconfiguring Distributed Simulations Using Compensating Reconfiguration

24 CROSSTALK The Journal of Defense Software Engineering January 1999

One of CogniTech’s customers
 collects and verifies back-
ground data on various appli-

cants to determine their suitability to
perform specified tasks as a contractor or
an employee for other organizations
(clients). The background data include
education, professional certification,
employment history, criminal allega-
tions, and citizenship. The business
processes of collecting and verifying
these data are time- and resource-inten-
sive and require the centralized storage
and maintenance of the resulting
records.

To increase the efficiency, responsive-
ness, and quality of its verification ser-
vices, the customer wanted to reengineer
its business processes through the use of
software packages for each of the three
distinct but interdependent services:
• Collection of background data.
• Verification and auditing to authenti-

cate the data.
• Generation of reports and other

forms of data access based upon the
verified data.
The profile of each applicant deter-

mines the data collected, verified, and
reported during the process. Therefore,
each applicant requires a customized
user interface, which is determined dy-
namically, based on the clients request-
ing the collection and verification ser-
vices. CogniTech developed an Internet

solution to support the collection of the
background data.

The Development of Internet-
Based Data Collection System

User Perspective and Involvement
Typical users of the Internet-based data
collection are applicants. Under the
traditional form system, an applicant
might be required to complete as many
as 15 forms for different clients, many
of which request the same data. From
the point that the paper form is sent to
the applicant, there is typically a two-
week delay until the completed infor-
mation is returned by mail. This trans-
lates into a two-week delay before the
customer’s verification stage can begin.
The transcription of this information
from the paper form to a computerized
system can lead to incorrect copying of
handwriting, a lack of consistent termi-
nology, and inefficiencies within the
verification process. To help prepare a
precise set of functional requirements,
two categories of domain experts—
applicants and verification process
domain experts—assisted in the devel-
opment process.

Data Model
A common data model served as the
foundation for all of the software solu-
tions. The data model was based on

input from domain experts and existing
paper data collection forms associated
with clients. This model divided the data
into two categories: generic to all clients
and client-specific. When the valid val-
ues for a field could be enumerated,
these values were coded with a standard
internal representation and vocabulary
for presentation to the user.

Technology Selection and
Challenges
Decision to Support Internet Data
Entry. The first technology decision for
the software development was the use of
an Internet interface for data entry. This
allowed centralized storage and mainte-
nance of the software, databases, and
data. It required a minimal information
systems investment (a browser and an
Internet connection) from its users.

Selection of Programming Language
and Target Platforms. Common Gate-
way Interface (CGI) was the first tech-
nology considered for this project. CGI
scripts running on a server can dynami-
cally generate HyperText Markup Lan-
guage (HTML) pages. The advantage of
this approach is that it does not require
special browser support. Even with the
addition of JavaScript (a scripting lan-
guage for HTML pages unrelated to the
Java programming language), static
HTML could not capture the dynamic

Real-World Java Development Experiences
A Background Data Collection System

Jerome B. Soller, James Clingenpeel, Patrick W. Hayes Jr.,
Mark Muday, Brian Larsen, and Tamara Jones

CogniTech Corporation

An Internet-based infrastructure can enable easier data entry, validation, and report genera-
tion capabilities when users are at different locations or use diverse hardware platforms and
operating systems. However, there are many technical obstacles to tackle before such a solu-
tion can be successfully implemented, especially when users with diverse requirements need
access to extensive capabilities and dynamic information. This article discusses the develop-
ment and run-time implementation of a background data collection system, based on a
three-tier architecture using JavaTM, the eXtensible Markup Language (XML), and rela-
tional database technologies. This solution is representative of a broader class of solutions,
applicable to problems requiring the collection, verification, auditing, and reporting of data
for users at different locations or who use different hardware and software platforms.

Field Report

CROSSTALK The Journal of Defense Software Engineering 25January 1999

behavior required by the functional specifications.
In addition to dynamic behavior, the user interface specifi-

cations required a minimal security risk, cross-platform sup-
port, software reuse, and rapid development. The Java pro-
gramming language was the programming language that best
met these criteria. We first looked at Java Development Kit
(JDK) 1.02, an older version of Java supported by most Web
browsers in use, but found that it did not support the neces-
sary infrastructure for the rapid development of business solu-
tions. Instead, we chose JDK 1.1 (a later version of the JDK
released in spring 1997) and its Java Beans component model
[2], which provided the necessary foundation for the solution.
The trade-off was that JDK 1.1-compliant software requires
that the user have a recent version of Netscape Navigator,
Microsoft Internet Explorer, or another Java Virtual Machine
(run-time Java environment).

Selection of the Software Development Environments.
Microsoft Windows NT was chosen as the software develop-
ment platform. After developing and testing the JDK 1.1-
compliant Java software on NT, it could later be ported to a
more stable, scalable, and secure enterprise-wide production
environment, such as a UNIX-based server, an AS/400 server,
or a mainframe. For a number of reasons, the CogniTech
development team selected IBM VisualAge for Java Enter-
prise Edition as the primary Java development environment
for this project. Among its advantages, VisualAge for Java
• Offered strong support for the platforms and technologies

within the target enterprise, including JDK 1.1, Windows
NT, AS/400 servers, the IBM DB2 Database, and the
Lotus Domino E-mail/groupware server.

• Offered strong functionality for team development, includ-
ing a development repository and strong revision control.

• Supported the model-view-controller paradigm, which
encourages developers to fully utilize the object-oriented
paradigm by dividing objects by their functionality.
NetObjects Fusion was chosen as the Web site authoring

environment for the complex site, which anchored the Java
applets. RoboHelp Office Edition supported the creation of
the HTML help pages and their associated index, imple-
mented as a Java applet.

Use of XML. We first looked at the Standard Generalized
Markup Language (SGML) [1], an international standard to
provide a simple, platform-independent and flexible represen-
tation. It also is widely used to encode documents. SGML
does not define a set of element types (such as tags or at-
tributes) but provides a mechanism to define markup lan-
guages to solve a class of problems. HTML is an application of
SGML. We chose to implement the eXtensible Markup Lan-
guage (XML) [9], a subset of SGML that provides many of the
benefits of SGML, such as generalized markups to create cus-
tomized tags, but removes several complex features.

The software uses XML to represent three distinct forms of
business domain content:
• The visual layout of components within the user interface.
• The relationships of the screens within the user interface.

• The mapping of the visual components to external data
object references, e.g., relational database data.
An intuitive visual XML editor accelerates the develop-

ment and maintenance processes.

Run-Time Environment

Three-Tier Architecture
Figure 1 shows the architecture for the solution. The IBM AS/
400 server contains the DB2 databases used by the software. A
Windows NT server provides a firewall and second tier, which
runs the Java implementations of business logic and data ac-
cess. The XML represents the dynamic mapping to these
server-side objects. The Java applets communicate with the
server-side Java through sockets, which are low-level commu-
nications application programming interfaces (APIs). The
client-side Java applets contain the user interface.

Client-Side Java
Since each applicant in the process has a different user profile,
the solution generates and dynamically merges content at run-
time based on each profile. This results in a user interface that
supports a wide variety of navigation paradigms. However, the
typical user would only use the system once every two years.
Therefore, it is difficult to standardize the choice of client-side
Java Virtual Machine for all users.

In theory, one of the advantages of client-side Java is “write
once, run anywhere.” As the technology is currently supported
by many Web browsers and Java Virtual Machines, the reality
of cross-platform Java support is “write once, test everywhere.”
Support for JDK 1.1.2 by Microsoft Internet Explorer and
Netscape Navigator has only recently been implemented, and
both browsers still contain minor incompatibilities with the
standard. Because of the inability to fully control the client
platforms used for data entry, the Java applets will run under

Figure 1. Three-tier architecture.

Real-World Java Development Experiences: A Background Data Collection System

26 CROSSTALK The Journal of Defense Software Engineering January 1999

Netscape Navigator 4.04 with the Java
1.1 patch, Microsoft Internet Explorer
with service pack 1, and fully JDK1.1.2-
compliant Java Virtual Machines.

To address the concerns over support
for future releases of the JDK, JavaSoft
(Sun Microsystem’s Java division) re-
cently released a standard plug-in Java
Virtual Machine for Web browsers called
the Activator. In spite of these “growing
pains,” Java’s cross-platform capabilities
have significant advantages over other
technologies. In environments where the
enterprise controls the client platform, it
is significantly easier to upgrade and
standardize upon a browser, Lotus Notes
client, or Java Virtual Machine than to
repeatedly upgrade all computers to new
operating systems.

Given customer requirements to
support multiple browsers, the solution
could not make strong assumptions
about locally resident Java class libraries,
e.g., Java Foundation Classes. Any
classes not resident in the local browser
or Java environment would require
downloading. To minimize download
time, we chose to create a lightweight set
of graphical components. Due to incom-
patibilities in browsers, sockets were
used in place of a more robust distrib-
uted object framework, such as the Ob-
ject Management Group’s (OMG’s) [7]
Common Object Request Broker Archi-
tecture (CORBA) [8]. This eliminated
the need to download the class libraries
for the Object Request Broker (ORB) or
the Java stubs for the Interface Defini-
tion Language (IDL) of a given inter-
face. However, the design supported the
possibility of a migration to a CORBA
architecture in the future.

Server-Side Java
The server-side Java application on the
middle tier of the three-tier architecture
handled all database transactions with
the third tier AS/400 DB2 database,
business logic, and dynamic user profil-
ing. Communication with the database
used the Java Database Connectivity
(JDBC) [6] standard, which encapsu-
lates Structured Query Language (SQL)
statements in Java classes. For Java com-
ponents only running on the server, run-
time cross-platform support is not as

important as run-time performance. Java
has advantages over C++ because of the
ease of developing and porting the soft-
ware to another server platform.

Lessons Learned and New
Technologies
During and after CogniTech’s efforts to
develop the solution, technologies and
developer tools have evolved. Given its
experience, the development team for-
mulated a technical road map for future
projects.

Most current and future CogniTech
projects, including the development of
decision support systems and occupa-
tional medicine and worker’s compensa-
tion records, use an object modeling
tool, e.g., Rational Rose, and a data
modeling tool, e.g., Platinum ERwin,
for the design phases. Rose can generate
Java class definitions and CORBA IDL
specifications, which serve as the starting
point for the software implementation.
The data modeling tools can generate an
SQL Data Definition Language (DDL)
specification for the database tables.

In the three-tier architecture previ-
ously discussed, the JVM, the Web
server, and the database server ran as
separate processes. The increasingly
popular Java application servers offer an
alternative for the run-time implementa-
tion of Java middle tiers. Java application
servers, such as IBM WebSphere, in-
crease the performance of server-side
Java software by supporting a tight cou-
pling of Web server HTTP services,
CORBA Internet Inter-ORB Protocol,
database connectivity, and JVMs.

The server-side Java issues focus on
• Speed performance.
• The ability to port development

code.
• The ability to integrate enterprise

data and applications.
Unlike client-side Java, a large per-

centage of server-side Java software re-
quires high performance and does not
require the run-time cross-platform
support of Java bytecode (the intermedi-
ate Java code sent to the client machine).
In the past, components with these re-
quirements could be written in C++ and
linked to the Java code through a native
interface. With the creation of native

code Java compilers (such as IBM’s high
performance Java compiler), high perfor-
mance code previously written in C or
C++ can now be written in Java. This
combines the development advantages of
Java, such as its lack of pointers, with the
performance advantages of C++.

However, whether the native meth-
ods are written in Java or C++, they
must interact with cross-platform Java
bytecode. Many CogniTech projects will
require a high-performance component
written in the Java language (such as
database queries, user profiling, statisti-
cal computations, manipulation of an
expert systems knowledge base) to im-
pact the dynamic generation of Java
objects, which are then downloaded to
many platforms.

A large business issue today is the
selection of the appropriate Internet
technology to solve a problem. If the
user accesses a Web site infrequently,
there may be limited incentive to up-
grade or standardize their browser or
JVM. When the user interface require-
ments are not complex, CogniTech
recommends a dynamically generated
HTML and JavaScript user interface.

Servlets [5] and Java Server Pages [4]
offer Java programmers a high-perfor-
mance alternative to CGI for dynamic
server-generated HTML. Servlet engines
provide a high-performance plug-in that
runs a Java Virtual Machine and main-
tains data values associated with a ses-
sion. The IBM WebSphere Java Applica-
tion Server includes a servlet engine and
manages database connections. Servlet
design and maintenance benefit from
the separation of business logic and
presentation logic.

The Java Server Pages technology
supports HTML produced from a vari-
ety of sources, including Web authoring
tools. Java Server Pages allow the substi-
tution of HTML within print state-
ments and the combination of Java
expressions with HTML tags and con-
tent.

If the user interface requires the
richness of Java, the organization associ-
ated with the Web site must create a
strong incentive for users to upgrade
their browser or JVM. It is easier to
require this standardization if the user

Field Report

CROSSTALK The Journal of Defense Software Engineering 27January 1999

accesses the same Internet or enterprise
Intranet site repeatedly. Given this usage
pattern, there is a strong business case
for supporting the most recent JDK and
providing the richest possible Java user
interface. In these circumstances,
CogniTech recommends that its clients
standardize either on the Lotus Notes
5.0 client or a Web browser with the
Sun Java Activator plug-in.

For many current projects,
CogniTech is developing two user inter-
faces:
• An HTML and JavaScript user inter-

face generated by Java Server Pages.
• A rich Java user interface, using the

Java Foundation Classes [3].
In the solution described above, the

developers chose not to use CORBA.
However, several technology changes
will impact the future use of Java and
CORBA. The upcoming JDK 1.2.x will
include a lightweight CORBA ORB and
components of the CORBA security
service. This eliminates the need to
download the ORB for browsers using
JDK 1.2. For browsers not supporting
1.2, the OMG is releasing a specification
for minimum CORBA, which defines a
minimum set of CORBA services. This
specification could standardize the mini-
mum download of a CORBA ORB.

The CORBA standards offer many
technical advantages over Microsoft’s
competing Component Object Model
(COM). However, one significant ad-
vantage of COM is that Microsoft
bundles it free within the operating
system. We believe the greatest chal-
lenges of CORBA technology vendors
are
• Decreasing the cost of CORBA de-

velopment tools, ORBs, CORBA
services, and application servers.

• Improving the usability of software
development environment support of
CORBA, e.g., hiding the complexity
of CORBA from developers.

• Continuing the development of
vertical industry interface standards.

• Developing a business object facility.
Security of confidential information

passed across the Internet is another
rapidly evolving area. Technology and

licensing issues impact the use of secu-
rity in Java applications and applets.
Today, implementations of Secure
Sockets Layer (SSL) use RSA encryp-
tion. Although public domain imple-
mentations of RSA encryption exist,
RSA’s patent requires a licensing fee in
the United States. From an indepen-
dent developer perspective, licenses for
applet downloads of the RSA encryp-
tion technology are expensive. This has
hampered developer use of these tech-
nologies with Java applets. Today’s
options for Internet developers who do
not wish to purchase the RSA licenses
include
• The use of other encryption algo-

rithms.
• Creating only HTML user interfaces,

using HTTP as the protocol, and
leveraging the SSL support of the
browsers and Web servers.

• Using CORBA IIOP as the protocol
and SSL services provided by several
ORB vendors.
Several future occurrences will im-

pact the use of encryption technologies
on the Internet. In the year 2000, RSA’s
patent expires, and RSA encryption
becomes effectively free. The Internet
Engineering Task Force (IETF) devel-
oped a public key infrastructure (PKIX)
standard draft, and IBM has released
the source code for a PKIX reference
implementation to the public domain.

Conclusion
The data collection solution described in
this article represents a large class of
problems that benefit from a three-tier
architecture leveraging Java, XML, and
relational database technologies. It is
important to understand the current
limitations and projected capabilities of
these technologies to meet project dead-
lines and create software components,
which can be reused and maintained
over time. u

About the Authors
Jerome B. Soller is president of
CogniTech Corporation in Salt Lake City,
Utah, which provides information systems
research, design, development, and con-

sulting services. He has a
bachelor’s degree in
electrical engineering
from the Johns Hopkins
University and holds a
doctorate in computer
science from the Univer-

sity of Utah. He previously served as a
research instructor at the University of
Utah and held several research positions
for the Department of Veterans Affairs and
other organizations.

CogniTech Corporation
1060 East 100 South #202
Salt Lake City, UT 84102
Voice: 801-322-0101
Fax: 801-322-0975
E-mail: Info@Cognitech-UT.com
Internet: http://www.cognitech-ut.com

James Clingenpeel, Patrick W. Hayes Jr.,
Mark Muday, Brian Larsen, and Tamara
Jones are software engineers at CogniTech
Corporation.

References
1. International Organization for Standard-

ization (ISO), “The Standard General-
ized Markup Language (SGML),” ISO
8879:1986, 1986.

2. JavaSoft, “JavaBeans FAQ: General
Questions,” http://www.javasoft.com/
beans/faq/faq.general.html, 1998.

3. JavaSoft, “Java Foundation Classes: Now
and the Future,” http://
www.javasoft.com/marketing/collat-
eral/foundation_classes.html, 1998.

4. JavaSoft, “Java Server Pages: The Front
Door to Enterprise Applications,” http://
www.javasoft.com/products/jsp/
index.html, 1998.

5. JavaSoft, “Servlet,” http://
www.javasoft.com/products/jdk/1.2/
cast-out/servlet/index.html,1998.

6. JavaSoft, “The JDBC Database Access
API,” http://www.javasoft.com/prod-
ucts/jdbc/index.html, 1998.

7. Object Management Group, “OMG
Home Page,” http://www.omg.org,
1998.

8. Object Management Group, “OMG
Technical Library,” http://
www.omg.org/library/downinst.html,
1998.

9. World Wide Web Consortium, “Exten-
sible Markup Language (XML),” http://
www.w3.org/XML/,1998.

Real-World Java Development Experiences: A Background Data Collection System

28 CROSSTALK The Journal of Defense Software Engineering January 1999

Cutback-stricken employees in
both the public and the private
sector are worried, and rightly

so, about information technology
outsourcing and privatization
(ITO&P). The problem has reached its
apex at the Department of Defense
(DoD) where many government tech-
nologists face the prospect of
contractorization as military budgets
become more austere and personnel
cuts increasingly severe.

Since the Cold War’s end, DoD has
borne about 80 percent of all govern-
ment cutbacks, which, after four
rounds of base closures, have resulted in
the loss of approximately 355,000 civil-
ian and 743,000 military jobs since the
early 1990s. This means more competi-
tion for private technology workers and
less security for mid- and lower-level
defense employees who still perform
DoD information technology (IT)
tasks.

All defense IT workers know jobs
are made and lost after leaders embrace
or rebuke ITO&P. But they wonder
about the financial mechanics and the
art of and their part in this big financial
deal. Nowhere are the battle lines more
apparent and consequential to DoD’s
future than in the struggle between
public and private employees for gov-
ernment IT work.

The heavy cuts in DoD’s permanent
work force have still failed to generate
savings enough to offset planned pro-

curement expenditures called for under
the May 1997 Quadrennial Defense
Review (QDR). In June 1998, 15 busi-
ness leaders from the Business Executives
for National Security (BENS), a group
of U.S. defense contractor executives,
declared that DoD could make up the
procurement shortfall of around $15
billion through more aggressive
outsourcing. John Lis, a BENS policy
associate, in a recent issue of Defense
News suggests that more contracting-out
in payroll, utilities, information systems,
housing, and other base support func-
tions would save billions of dollars.
DoD’s 1998 procurement budget is $45
billion, while it requires $60 billion to
fund “all of its authorized procurement
programs,” according to the article [1].

We can conclude with confidence
from this that programming, network-
ing, webmaster, and other IT skills will
continue to migrate from DoD to the
public sector, at least in the short term.
And this will occur despite the actions of
some agencies like NASA to federalize
private contractors at high grades to
keep them focused on intra-agency IT
projects.

Outsourcing and Privatization —
Differences and Commonalities

Outsourcing
This brand of economic determinism is
a form of contracting-out that promises
a satisfactory level of accuracy, quality,

timeliness, etc., while shunting native
talent to core tasks. Outsourcing-type
contracts can be government-to-govern-
ment, government-to-private, or pri-
vate-to-private arrangements.1 It is
mainly the potential of reducing labor
costs that compels many a chief infor-
mation officer, entrepreneur, or govern-
ment executive to tinker with
outsourcing.

Privatization
Economist Calvin A. Kent’s still-timely
definition in Entrepreneurship and the
Privatizing of Government tells us that
privatization “refers to the transfer of
functions previously performed exclu-
sively by government, usually at zero or
below full-cost prices, to the private
sector at prices that clear the market and
reflect the full costs of production.” [2]

In a shortsighted pursuit of profits,
government employees are often right-
out-the-door-sized from secure positions
and flung into the private sector, often
flooding a given labor market, flatten-
ing wages, and forcing public and pri-
vate sector employees into intense com-
petition for limited positions. In the
last analysis, it is precisely this competi-
tion that lowers the cost of available
labor and thus provides the lion’s share
of company outsourcing profits.

Reducing the costs of labor for com-
petent code writers, systems integrators,
and information specialists—in a word,
every genre of technologist—is the

Outsourcing and Privatizing Information Technology
Re-examining the “Savings”

J. Michael Brower
Department of Justice, Immigration, and Naturalization Service

The Department of Defense has taken about 80 percent of the government cutbacks since the end of the
Cold War. As a result, information technology (IT) outsourcing and privatization has become a popular
means to lower the cost of labor devoted to perform computer-related functions. This article advances a
labor theory of value to explain the source of the profit and cost savings that underwrite outsourcing and
privatization as popular financial tactics. This labor theory uses several private and public industry
examples to promote its thesis and also explains the impact of U.S. industry’s use of foreign programmers
to reduce or cap wages. A case is made that outsourcing and privatization undermine long-term eco-
nomic stability, ultimately weakening national security institutions dependant on IT.

Open Forum

CROSSTALK The Journal of Defense Software Engineering 29January 1999

heart and soul of any success that
ITO&P can claim for stakeholders and
shareholders.

Outsourcing Information
Technology — IT Is a Small
World
One of the bellwether battles over public
vs. private work is being fought in the
technology arena. Federal Computer Week
reported on June 8, 1998 that the Office
of Management and Budget is pushing
for a new list of government activities
that might be outsourced. Similarly,
industry has been lobbying hard to re-
vamp OMB Circular A-76, the federal
guidebook covering public vs. private
competitions for work, to expand and
strengthen enforcement options. Edward
DeSeve, acting deputy director for man-
agement at OMB, speaking at a recent
conference sponsored by the Professional
Services Council, explained that DoD
has outsourced 150,000 full-time posi-
tions and saved $6.4 billion in the pro-
cess [3]. Obviously, the trend toward
outsourcing is continuing, mission-
related IT requirements are increasing,
and government staff continues to de-
cline. In the last analysis, capitalizing on
less expensive labor makes ITO&P pay.

The hocus-pocus at work behind the
recent “job creating” move in Pennsylva-
nia to outsource mainframe work will
not hold up under close scrutiny by
those technologists who understand
outsourcing’s true source of value—
reducing the labor expense of technolo-
gists! Pennsylvania’s state government
officials hail the move to consolidate and
outsource work performed by 23 state
data centers. According to Government
Computer News/State & Local, Pennsyl-
vania’s well-meaning but uninformed
officials claim savings of $127 million
over the next five years and $25 million
annually for the other two years of the
contract [4]. The contract is worth about
a half billion dollars over its life. Only at
the end of the article does one find the
human cost: “The commonwealth will
encourage the contractor to hire the 370
data center employees who will be dis-
placed by the new setup. …”—this is
what it is all about. Butchering the de-
cent salaries of the current and necessar-

ily voiceless IT workers will offset any
losses that the outsourcing strategy
might otherwise pass on to the state—
yes, they will show a profit. The dis-
placed will seek—quietly—acceptance in
the new company that gets the
outsourced work. Even those who re-
ceive higher wages in the short term will
sacrifice their health benefits, their state
retirement options, their decent working
hours, and job security. The economic
analysis behind the venture—in this case
conducted by well-paid and well-known
industry supporter KPMG Peat
Marwick of New York, cannot be ex-
pected to concede anything to govern-
ment IT employees—quite the reverse.

State governments all over America,
like the federal government, look to
capitalize on perceived savings through
privatizing and outsourcing IT. Orches-
trated by Chief Information Officer
Elizabeth Boatman, a significant part of
the privatization effort currently
under way in Chicago’s city government
involves contracting-out departmental
IT functions. Targets include arrest
process computerization, legal case
management, and financial systems.
The work is frequently repetitive and
labor-intensive, choice breeding
grounds for privatization and
outsourcing projects. The primary
motivation to go private in this case is
the lure of short-term cost reductions
(the largest expenses are usually person-
nel-related) through a strategic decision
to purchase rather than grow expertise.
In an interview with Government Com-
puter News/State & Local, Boatman
stated, “Privatization has hinged on
issues of cost. ...We’ve also had a diffi-
cult time competing with private indus-
try for good IT employees. Retraining
the ones we do have is costly, and we
simply don’t have time to wait for the
payoff.” In general, specialized service
capabilities, economies of scale, niche
advantages, and the flexibility of private
employees over public employees factor
heavily into the privatization decision.
But the greatest attraction remains the
potential to reduce labor expenses to
achieve management goals. The largest
part of the city’s IT spending (30 per-
cent of the $64 million calendar year

1998 budget) is devoted to personnel
[5]. Boatman has discovered that
privatization, like outsourcing, delivers
a blacker bottom line via the “pink-slip
approach.” Interestingly, professional
service companies are beginning to
admit that they do not know if custom-
ers are saving money, breaking even, or
expending more to transfer functions
out-of-house for the cause of ITO&P.
In reality, most companies are “explor-
ing outsourcing services for cost pre-
dictability” rather than for assurances
that outsourcing costs less [6].

Consider, too, the recent decision by
pharmaceutical maker Eli Lilly & Co. to
outsource its on-line health-care network
to IT giant EDS. Eli Lilly decided to
shed undesirably expensive payroll by
effectively putting IT workers into the
company that receives the outsourced
project. Eli Lilly staff who attempt to
follow their jobs will look for employ-
ment with EDS. Those newly created
job seekers will be “offered jobs at EDS
based on skills” according to an EDS
spokeswoman [7]. It is a short-term,
stock-enhancing, win-win for both com-
panies—EDS gets a labor pool hungry
for work; Eli Lilly reduces its costly rolls.
The unionless (over 85 percent of the
U.S. work force) watch their wages stay
flat or decrease as they unwittingly satu-
rate the available labor pool.

Another labor-cheapening tactic
particularly effective against permanent
DoD IT staff is importing foreign IT
employees. Roy Beck, editor of The
Social Contract magazine, has written
that instead of training their own cadre
of technologists, Microsoft Corp. pre-
fers to “import tens of thousands of
foreign programmers” or ship work
overseas because wages are lower [8]. In
his book, The Case Against Immigration,
Beck cites the 1990 census, which
found foreign-born IT workers in Sili-
con Valley will work for nearly “$7,000
less than did natives of the same age
and level of education.” [9] He also
reveals that computer and software
makers have a willing cooperative ac-
complice—universities attempt to arti-
ficially keep wages low. Beck writes that
many institutions of higher learning
“have kept their Ph.D. numbers up by

Outsourcing and Privatizing Information Technology: Re-examining the “Savings”

30 CROSSTALK The Journal of Defense Software Engineering January 1999

Open Forum

increasingly turning to foreign students.
So the universities crank out far more
scientists than are needed for industry,
the U.S. government, and for university
professorships. The glut works further
to the universities’ advantages because
there is a large pool of scientists willing
to continue to work for low wages in
postdoctoral research positions for
another three to six years. The universi-
ties, therefore, gain an even larger low-
paid work force.” [10] This too is the
real value of ITO&P outsourcing: a
slashed labor cost.

Technically minded immigrant
labor, particularly from China, Paki-
stan, and India, will work for far less
than U.S. citizens when a potential
green card is part of their employment
package. Now that Congress is being
told by information systems giants like
Intel and Microsoft that foreign IT
worker quotas must be increased to
assure a flow of new program and net-
work administrators, unorganized
American computer specialists will be
more amenable to bargaining. The Wall
Street Journal recently discussed how
high-technology companies have asked
for an exception to immigrant quota
levels to permit more foreign IT work-
ers into the country. Intel’s president,
Craig Barrett, contends that if federal
limits on technical immigrant person-
nel remain at current levels, “the talent
will go where the opportunities are,
even if that is offshore.” [11] Indeed,
Business Week’s chief economist, William
Wolman, similarly discovered with co-
author Anne Colamosca in their new
book The Judas Economy that when
capital learns that it can outsource for
computer programmers and code writ-
ers in Beijing and New Delhi at one-
third the wage of similarly skilled U.S.
IT workers, stockholders will demand
that capital fly to China and India [12].
Not long will the remaining commu-
nity of civilian and military technolo-

gists at DoD have to wait until this
strain of outsourcing visits them.

Conclusion
In no department in the federal sector
are the ravages of ITO&P more appar-
ent than in DoD. Many thousands of
defense industry and government IT
workers worldwide have suffered the
effects of blind contracting-out,
outsourcing, and privatization. When
the vogue of outsourcing and privatiza-
tion fades away, its legacy will be one of
short-term fiscal advantage, long-term
economic instability, and ultimately a
weakening of national security institu-
tions—all at the expense of the average
technology workers from whom
ITO&P draws its chief source of value
and profit. u

About the Author
J. Michael Brower is a
program specialist with
the Department of
Justice, Immigration
and Naturalization
Service in South
Burlington, Vt. He was

assigned to the Army secretariat from
1991 to 1997 with the Information Man-
agement Support Center. His previous
assignment was with the Office of the
Assistant Secretary of the Army (Finan-
cial Management and Comptroller),
Business Practices Directorate at the
Pentagon. He has a bachelor’s degree in
business management and has published
many articles on military, information
management, privatization, and
outsourcing issues in numerous journals
such as Armed Forces Journal Interna-
tional, Program Manager, Minerva, Stars
and Stripes (domestic edition), and the
Army News Service.

E-mail: jmichael@together.net or
john.m.brower@usdoj.gov.
Internet: http://www.geocities.com/
capitolhill/lobby/2985/

References
1. Burgess, Lisa, “Business Leaders Pro-

mote Outsourcing to Pentagon,” De-
fense News, June 8-14, 1998, p. 44.

2. Kent, Calvin A., ed., Entrepreneurship
and the Privatizing of Government,
Quorum Books, New York, 1987, p. 4.

3. Tillett, Scott, “OMB: List Outsource
Possibilities,” Federal Computer Week,
June 1998, p. 10.

4. House, Claire E., “Pennsylvania Takes
Bids to Outsource Mainframe Work,”
Government Computer News/State &
Local, September 1998, p. 1.

5. McCann, Michelle, “Chicago Privatizes
Some Systems Work; Statistic from
Chicago’s Business Information Sys-
tems Department,” Government Com-
puter News/State & Local, February
1998, p. 8.

6. Bowen, Ted S. and Martin LaMonica,
“IT Gets Picky with Outsourcing,”
Infoworld, Aug. 17, 1998, p. 43.

7. McGee, Marianne K. and Gregory
Dalton, “Lilly Outsources to EDS,”
Information Week, Feb. 23, 1998, p. 34.

8. Beck, Roy, The Case Against Immigration,
W. W. Norton & Company, 1996, p.
142.

9. ibid., p. 143.
10. ibid., p. 150.
11. Takahashi, Dean, “Ethnic Networks

Help Immigrants Rise in Silicon Val-
ley,” Wall Street Journal, March 18,
1998, p. B1.

12. Wolman, W. and Anne Colamosca, The
Judas Economy: The Triumph of Capital
and the Betrayal of Work, Addison-
Wesley, 1997, pp. 120-154.

Note
1. See Daniel Minoli’s Analyzing Outsour-

cing, McGraw-Hill, 1995. This is one of
the few texts available the rely heavily
on mathematical models. It is an indis-
pensable text for those interested in
further study of outsourcing particularly
as it impacts IT. See review of this work
in the Army RD&A magazine, May-June
1998, p. 45.

CROSSTALK The Journal of Defense Software Engineering 31January 1999

Got an idea for BACKTALK? Send an E-mail to backtalk@stsc1.hill.af.mil

Sponsor Lt. Col. Joe Jarzombek
801-777-2435 DSN 777-2435
jarzombj@software.hill.af.mil

Publisher Reuel S. Alder
801-777-2550 DSN 777-2550
publisher@stsc1.hill.af.mil

Managing Editor Forrest Brown
801-777-9239 DSN 777-9239
managing_editor@stsc1.hill.af.mil

Senior Editor Sandi Gaskin
801-777-9722 DSN 777-9722
senior_editor@stsc1.hill.af.mil

Graphics and Design Kent Hepworth
801-775-5798
graphics@stsc1.hill.af.mil

Associate Editor Lorin J. May
801-775-5799
backtalk@stsc1.hill.af.mil

Editorial Assistant Bonnie May
801-777-8045
editorial_assistant@stsc1.hill.af.mil

Features Coordinator Denise Sagel
801-775-5555
features@stsc1.hill.af.mil

Customer Service 801-775-5555
custserv@software.hill.af.mil

Fax 801-777-8069 DSN 777-8069

STSC On-Line http://www.stsc.hill.af.mil
CROSSTALK On-Line http://www.stsc.hill.af.mil/

Crosstalk/crostalk.html
ESIP On-Line http://www.esip.hill.af.mil

Subscriptions: Send correspondence concerning subscriptions and changes
of address to the following address:

Ogden ALC/TISE
7278 Fourth Street
Hill AFB, UT 84056-5205

E-mail: custserv@software.hill.af.mil
Voice: 801-775-5555
Fax: 801-777-8069 DSN 777-8069

Editorial Matters: Correspondence concerning Letters to the Editor or other
editorial matters should be sent to the same address listed above to the atten-
tion of CROSSTALK Editor or send directly to the senior editor via the E-mail
address also listed above.

Article Submissions: We welcome articles of interest to the defense software
community. Articles must be approved by the CROSSTALK editorial board prior to
publication. Please follow the Guidelines for CROSSTALK Authors, available upon re-
quest. We do not pay for submissions. Articles published in CROSSTALK remain the
property of the authors and may be submitted to other publications.

Reprints and Permissions: Requests for reprints must be requested from the
author or the copyright holder. Please coordinate your request with CROSSTALK.

Trademarks and Endorsements: All product names referenced in this issue
are trademarks of their companies. The mention of a product or business in
CROSSTALK does not constitute an endorsement by the Software Technology
Support Center (STSC), the Department of Defense, or any other govern-
ment agency. The opinions expressed represent the viewpoints of the authors
and are not necessarily those of the Department of Defense.

Coming Events: We often list conferences, seminars, symposiums, etc., that are
of interest to our readers. There is no fee for this service, but we must receive
the information at least 90 days before registration. Send an announcement to
the CROSSTALK Editorial Department.

STSC On-Line Services: STSC On-Line Services can be reached on the Inter-
net. World Wide Web access is at http://www.stsc.hill.af.mil.
Call 801-777-7026 or DSN 777-7026 for assistance, or E-mail to
schreifr@software.hill.af.mil.

Publications Available: The STSC provides various publications at no charge
to the defense software community. Fill out the Request for STSC Services
card in the center of this issue and mail or fax it to us. If the card is missing, call
Customer Service at the numbers shown above, and we will send you a form
or take your request by phone. The STSC sometimes has extra paper copies of
back issues of CROSSTALK free of charge. If you would like a copy of the printed
edition of this or another issue of CROSSTALK, or would like to subscribe, please
contact the customer service address listed above.

The Software Technology Support Center was established at Ogden Air
Logistics Center (AFMC) by Headquarters U.S. Air Force to help Air Force
software organizations identify, evaluate, and adopt technologies that will im-
prove the quality of their software products, their efficiency in producing them,
and their ability to accurately predict the cost and schedule of their delivery.
CROSSTALK is assembled, printed, and distributed by the Defense Automated Printing
Service, Hill AFB, UT 84056. CROSSTALK is distributed without charge to individu-
als actively involved in the defense software development process.

A year ago I shook up the technology world with a crushing rebuttal to the
paranoia of year 2000 (Y2K) alarmists, assuring our readers that “MacGyver
alone could fix the Y2K problem using nothing but PVC pipe, a transistor radio,
and Gouda cheese” (http://www.stsc.hill.af.mil/CrossTalk/1998/jan/
backtalk.html). Unfortunately, a startling percentage of readers thought I was
joking, or at least tried to dismiss my forecast by

• claiming to have proof that MacGyver is a fictional character. (So what is he—
a trained otter in a guy suit?)

• claiming that the problem isn’t a lack of solutions but a lack of time. (I’ll
partially concede this point. Cheese factories can only work so fast.)
It’s getting harder to be a voice of sanity while virtually all of government and

industry—blinded by facts and data—jumps on the “this-could-get-ugly-if-we-
don’t-act-fast” bandwagon. They’re forecasting irritating to catastrophic effects
depending on what gets done this year, and the sad thing is they’re basing all this
alarm on a laughably faulty assumption. All along, they’ve presumed that just
because their critical systems go kablooey when they test for Y2K problems, it
means these systems will go kablooey in January 2000.

Ha! These people are obviously putting more trust in their experience and in
the “experts” than in the opinion polls, which clearly show that most people think
the Y2K thing is overblown. And the Y2K alarmists aren’t the only ones with
respectability and expertise on their side, either. After some searching, I have
finally found someone with the respectability, experience, and credentials to reli-
ably verify that we’ll be buying fresh bananas by credit card come next January:
Consultant: Thank you for calling 1-900-ASTROTEK, the psychic technology hot line. We employ only MCSE-
certified astrologers, just $3.95 a minute. Birth date?
Me: May eighth. Tell me: what will January 2000 bring?
C: Let’s see (sound of shuffling) ... the cards say ... beware of mysterious floppies, for they may foul the purity of
your system with macro viruses. Backup often and—
M: —No, I mean, will the Y2K bug bring chaos and upheaval or just overcooked microwave popcorn?
C: For that I must gaze at the crystal ball ... I type January 15, 2000 into the mysterious oracle’s keypad and I
see ... I see ... (sound of whacking) ... blackness ... nothingness. My system just froze up.
M: I have no time for that. Just tell me whether I’ll be cooking toothpaste over a can of Sterno next January or
whether I’ll be dining on imported Argentine beef while making satellite phone calls from a 747.
C: (shuffling) The cards say that the answer ... lies within each person’s heart.
M: Give me an answer I can work with. Ed Yardeni’s heart says there will be a severe worldwide recession and a
huge dip in the stock market. Ed Yourdon’s heart told him to move into a solar-powered house in New Mexico—
C: —Who are these people?
M: A world-renowned economist and a world-renowned systems consultant.
C: And I couldn’t help but notice the similarities in their names. Are you certain they’re not the same person?
M: Nobody knows for sure. But they’re huge in their fields. Why should I believe my heart ahead of theirs?
C: Does your heart say there will be a Y2K disaster?
M: Well, having seen “Armageddon” and “Deep Impact,” there’s a good chance Manhattan and Paris will be de-
stroyed. But I know that somewhere out there a group of scrappy misfits will save the planet with seconds to spare,
followed by celebratory vignettes of cheering people who represent the Earth’s major cultures and ethnic groups.
C: Then, there you have it. That is your truth, and you may live accordingly.
M: So I don’t personally need to do anything, just in case someone else’s truth happens? What do the stars say?
C: Let’s see ... you’re a Taurus ... January 2000 ... emphasis on romancxe and hardware upgrades ... 10X DVD
drives will be big ... beware of Capricorn network administrators ... nope, nothing about distribution problems, power
outages, or hardships. Yes, you’ll be ordering Alaskan salmon over the Internet next January.
M: Great! Well, I’m off to sell my food storage to some emergency preparedness nuts and buy some snowmobiles!

What a relief that interview was! But if you’re still not sure if you should
personally do anything, here’s an analogy to put things in perspective: Imagine
some weather experts say a hurricane may or may not hit your city on a certain
day, and it may or may not have a devastating impact. What’s the intelligent thing
to do? That’s right: you sit on your hiney until general panic sets in, and then you
sell bottled water and toilet paper to desperate people at obscene prices. At least
that’s what I’m going to do. Snowmobiles aren’t cheap, you know. – Lorin May

Need Proof? Call 1-900-Y2K-SHAM

BACKTALK

	Contents
	Short-Term Fix Casts Long Shadow…
	Forrest Brown…
	Managing Editor…
	Call for Articles …
	Year 2000 Compliance 1999 Reporting Requirements…
	Improving Software Engineering Practice…
	Patricia Sanders…
	Office of the Undersecretary of Defense for Acquisition and Technology…
	"The Network Is Down …"…
	Capt. Cathy Walter…
	Headquarters, Air Force Communications Agency…
	Inventory Your Network with…
	Simple Network Management Protocol…
	Estimating Y2K Rework Requirements…
	Lee Fischman, Galorath Incorporated…
	Patricia A. McQuaid, California Polytechnic State University…
	Effective Methods for Testing Year 2000 Compliance…
	William E. Perry…
	Quality Assurance Institute…
	Year 2000 (Y2K) Web Sites…
	Coming Events…
	Building Self-Reconfiguring Distributed Simulations Using Compensating Reconfiguration…
	Lt. Col. Don Welch, U.S. Military Academy…
	James Purtilo, University of Maryland…
	Real-World Java Development Experiences…
	A Background Data Collection System…
	Jerome B. Soller, James Clingenpeel, Patrick W. Hayes Jr.,…
	Mark Muday, Brian Larsen, and Tamara Jones…
	CogniTech Corporation…
	Outsourcing and Privatizing Information Technology…
	Re-examining the "Savings"…
	J. Michael Brower…
	Department of Justice, Immigration, and Naturalization Service…
	$^&$*(#)…

