
2 CROSSTALK The Journal of Defense Software Engineering March 1999

From the Publisher

The Software Technol-
ogy Support Center
(STSC) Web site gets
more than 80,000 hits
per month, most of
which are on CROSSTALK

articles, past and
present. Often, the most popular article
subject is configuration management
(CM). The STSC Web site also has
pages dedicated to CM resources, and
CM receives nearly double the number
of hits of any other technology area.
Professionals are obviously looking for
answers to CM questions they face every
day. Ironically, the CM consultation
service we offer to defense organizations
is the least requested of all our services. I
can conclude one of two things from
this: CM is not glamorous enough to
attract the funding it needs for imple-
menting improvements, or CM manag-
ers are all rugged individualists. The
latter, if true, can probably be explained
in terms of our cultural mind-set.

We seem to be heavily influenced by
the John Wayne rugged individualist
approach to life. We struggle to be tow-

ers of individual strength and isolation.
To a large degree, we work alone, face
crisis alone, and grieve alone. Nowhere is
this more clearly demonstrated than in
the way we learn. We read alone, review
alone, solve problems alone, and create
alone. We pursue this individualistic
drive in the face of overwhelming evi-
dence that teams are more productive
than individuals because the whole is
better than the sum of its parts. Study
groups in school find solutions to prob-
lems more accurately and in less time
and increase the rate of learning.

Our rugged individualist approach to
learning is also prevalent in our work
habits. How many of us, for example,
got together as a group to learn the latest
version of Windows? It is more likely
that we pursued a frustrating path of
learning it on our own, on the job, and
as we needed it and only learned what
was immediately required to be semi-
functional. What an inefficient way to
learn. Educators have long understood
that we remember 10 percent of what we
read, 20 percent of what we hear, 50
percent of what someone coaches us

through, and 90 percent of what we do.
Reading this publication, for example, is
only the beginning of the process you
must follow to assimilate and effectively
apply the CM principals and concepts
introduced here.

To internalize any new concept, you
must first go through a discovery process
of contact and awareness followed by an
understanding of what is to be gained,
followed by evaluation and trial usage.
Finally, after much effort, the new con-
cepts are mastered, adopted, and institu-
tionalized. CM is no different. New
habits must be formed to effectively
apply CM principles. This is a difficult
process even when we are committed to
the change; a halfhearted effort will take
much longer. Because organizations have
many people in varying degrees of resis-
tance to change (who by definition are
halfhearted), it becomes even more
imperative to use a tutor or consultant
to stimulate organizational change. To
rely on individualism to train a team in
CM techniques may satisfy your inner
John Wayne, but it will not get the job
done. u

Who Needs John Wayne ?

Letter to the Editor

I read “Outsourcing and Privatizing
Information Technology – Re-examin-
ing the Savings,” January 1999, with
particular interest. As a former Marine
Corps comptroller now heavily in-
volved in information technology (IT),
I have seen this issue from both sides.
Although there is real pain in forcibly
pushing our high-technology public
servants from public to private industry,
the real issue is finding the best value
(in the long run) for the taxpayer. If
outsourcing can lower costs, it is worth
examining.

Michael Brower’s article contains
contradictory points. If government
cannot compete with the high-wage

private sector for workers, how does
outsourcing to that sector save money?
Yet, Mr. Brower argues that government
workers have to worry about low-cost
civilian jobs. Juxtaposing the two argu-
ments, it is clear that one is wrong. You
cannot have it both ways.

Still, I agree with Mr. Brower’s main
point. Office of Management and Bud-
get Circular A-76-style outsourcing
tends toward failure in IT. An A-76
study should determine whether main-
taining government IT resources is
more costly than maintaining effective
management and control of contracted
resources. Traditional A-76 clearly
quantifies the former. The latter is usu-

ally severely underestimated. So, even
high-performance, high-quality govern-
ment organizations risk being dis-
mantled. The government then finds
that it must hire another set of contrac-
tors to supervise the first set because
too much in-house expertise is gone.
Sometimes, even a third set of contrac-
tors is hired to manage the second set.
Such recursively determined additional
cost is seldom budgeted. A-76 “savings”
disappear and so does effective mission
performance. (These opinions are mine
and should not be attributed to my
employer or to any government
agency.)

Gary A. Ham
Woodbridge, Va.

Outsourcing’s Hidden Costs Deserve Closer Inspection

CROSSTALK The Journal of Defense Software Engineering 3March 1999

HAVE YOU NOTICED the variety of
names given that institution
known as the CCB? Configu-

ration Control Board, Change Review
Board, Change Implementation Board,
and Software Configuration Control
Board are popular names. It does not
take a great deal of imagination to
come up with other possible definitions
for CCB. The lack of a universal defini-
tion contributes to the confusion that
sometime surrounds this critical part of
any serious attempt at software configu-
ration management (CM).

Control Board Defined
For the purposes of this article, the
term “control board” will refer to a
body that provides the means to imple-
ment change control at optimum levels
of authority. This hierarchical approach
is shown in Figure 1.

As shown in Table 1, there are two
types of change board: Those that make
business decisions and those that make
technical decisions. In light of these
distinctions, the myriad names men-
tioned in the first paragraph need to be
further examined. Table 2 shows that to

know the name of a change board is not
enough to know what type of board it
is. An “SCCB” may be a business deci-
sion change board or a technical deci-
sion change board, depending on the
organization that chose the name.

Example Scenario
The two types of boards work together.
Consider, for example, how a change
request to ensure that system XYZ is
year 2000 (Y2K)-compliant would be
processed.

The business decision change board
authorizes someone to do a preliminary
analysis that includes a rough order-of-
magnitude cost estimate to implement
the change as well as a finding on its
technical feasibility. Based on the pre-
liminary analysis, that same change
board considers the risks and benefits of
implementing, deferring, or ignoring the
change request. They consider imple-
mentation cost, available resources, and
political implications.

If the business decision control board
decides to proceed with implementation
of the change, a project is initiated to do
so. As the project proceeds, Y2K issues
and proposed solutions are documented
as change requests. These change re-
quests generally do not need the consid-
eration of the business decision control
board but rather the technical decision
control board, which deals with issues
such as how many bytes to use and what
type of date representation is appropri-
ate. The sidebar “Sample Control Board
Meeting Discussions” on the next page
compares conversations in each type of
board meeting.

CCB – An Acronym for “Chocolate Chip Brownies”?
A Tutorial on Control Boards

Reed Sorensen
Software Technology Support Center

This article reviews the basic concepts of control boards. It answers the questions, What
is a change board? When is a change board needed? How is a change board established
and run? What is the role of a change board in the software development lifecycle?

Table 1. Decision types [1].

Figure 1. Levels of authority.

When to Establish Control
Boards
As a project manager of software devel-
opers, how do you know if you need to
establish control boards? You can an-
swer this question by determining if the
manager’s near-term project issues in
the following example sound familiar.
(These issues pertain to a system that
has been released and used by custom-
ers for six weeks.)

• Get all problems documented in
the problem-tracking tool (all
problems need to be identified
and described).

• Deal with George having quit
last week. He was the technical
lead for design to deal with
technology issues of implemen-
tation (Sybase, printing, etc.)
Bill and Callie also have quit
from the stress of producing
almost daily releases in response
to customer change requests.
There is no documentation of
the things George did, so he left
a big hole in our staff.

ssenisuB
snoisiceD

.tsoC�
.eludehcS�

elohwehtrofnoitcnuF�
.metsys

lacinhceT
snoisiceD

laitraprofseludehcscificepS�
.snoitcnuf

.setadyreviledmiretnI�
.serutcurtsatadnommoC�

.segnahcngiseD�

Configuration Management

4 CROSSTALK The Journal of Defense Software Engineering March 1999

• After seven batch jobs are run
successfully at customer sites A
and B, configure everything
under the version control tool.

• Document and describe all inter-
faces in the next three months
(we have a list of the interfaces).

On a project with functioning con-
trol boards, these issues would be less
likely to surface because control boards
• Ensure that all problems are docu-

mented.
• Authorize releases in a controlled

fashion based on schedule and cost
considerations.

• Establish controlled baselines.
• Ensure that interfaces are docu-

mented and controlled.

Establishing and Running a
Control Board
Following are three steps to establish and
run a control board.

Write a Charter
The charter should describe the board’s
objectives, scope, membership, roles and
responsibilities of members, reporting
and approval process (including standard
and emergency changes), meeting fre-
quency, and relationship to other boards.
Many organizations have a process to
review charters to avoid duplication of
effort across control boards. For a sample
of a control board charter, E-mail a
description of your project to me (ad-
dress at end of article).

Table 2. Examples of names for control boards.

Business Decision Control Board Meeting

Secretariat: Our first agenda item is EX-01, “MIRS
Location Codes Addition.”

Chairman: Has anyone not reviewed the data pack-
age? (Pause.) This is a major requirements change.
We are 18 months into development with established
functional and allocated baselines. We are on sche-
dule to field the system in six months. As you know,
tank maintenance will begin at least two months be-
fore delivery. Sally, what is your position?

Software Project Manager: I agree with the estimate
of a three-month schedule slip. This change is clearly
out of scope, based on the existing requirements
baseline. I support funding this as part of a future
release rather than slip the schedule.

User Representative: The problem with incorporating
the change in a future release is that the new location
data will have to be tracked manually in the interim.
Despite that, we would rather have the system deliv-
ered on schedule so we can eliminate the workload of
manually tracking all the data except the location
codes.

Chairman: And Gen. Given has repeatedly stated
publically that the system will be available in June. We
are going to defer this change for a future release.

Technical Decision Control Board Meeting

Secretariat: The next change request on the agenda is
No. 19, named “Restructure Shipments Table to
Eliminate Data Redundancy.”

Database Representative: I have reviewed the data
package and discussed it with the original designer.
The Shipments Table as designed produces redun-
dant data. The current design violates basic relational
database design principles. This design will cause
serious data maintenance problems. The solution
outlined in the change request to create separate
Shipment and Supplier Tables is correct. We need to
make this change.

Graphical User Interface Analyst: The changes to
the graphical user interface are manageable. We
agree with the estimates in the change request and
agree with making the change.

Chairman: When can the change be made, tested,
and moved to the development library?

Database Representative: By the fifteenth, if we start
on Monday.

Chairman: The change request stands approved. Be-
gin implementation Monday.

Sample Control Board Meeting Discussions

lacirtcelEfoetutitsnI
scinortcelEdna

DTSsreenignE
7891-2401

erawtfoS
gnireenignE

ytilibapaCetutitsnI
ledoMytirutaM

foetutitsnI
noitarugifnoC

]2[tnemeganaM

suomynonA
erawtfos

tnempoleved
noitazinagro

ekamtahtsdraoB
ssenisub snoisiced

desoporpgnidrager
.segnahc

noitarugifnoC(BCC
)draoBlortnoC

erawtfoS(BCCS
lortnoCnoitarugifnoC

)draoB

weiveRegnahC(BRC
)draoB

erawtfoS(BCCS
lortnoCnoitarugifnoC

)draoB

ekamtahtsdraoB
lacinhcet snoisiced

desoporpgnidrager
.segnahc

erawtfoS(BCCS
lortnoCnoitarugifnoC

)draoB

gnireenignEerawtfoS
puorG

egnahC(BIC
noitatnemelpmI

)draoB

erawtfoS(BRCS
tseuqeRegnahC

)draoB

Configuration Management

CROSSTALK The Journal of Defense Software Engineering 5March 1999

Follow the Charter
The chairman convenes and runs the board. For the business
decision control board, the chairman is usually the person who
controls the money or other resources; for the technical deci-
sion control board, it is the project manager. The chairman
and secretariat are the key roles on a control board. Their spe-
cific responsibilities are listed in Table 3.

The use of consensus varies between authoritative boards
and voting boards. Authoritative boards are governed exclu-
sively by the chairman, who listens to the members and then
makes a decision. In a voting board process, changes that fail
to receive consensus are deferred possibly many times in an
attempt to achieve consensus later. The responsibilities of all
members of the board are listed in Table 4.

Reach a Decision
For each change request, the board must approve and assign
priority, defer for later consideration and possible inclusion
with other changes, refer to a higher authority board, or reject.

Five Principles That Govern Control Boards
I have already discussed the first two principals:
• Business decision control boards make business decisions.
• Technical decision control boards make technical decisions.

The final three principles are as follows:

Use Control Boards Throughout the Lifecycle
(Principle 3)
Control boards are required to fully implement these four CM
processes throughout the software lifecycle.
• Configuration identification – Identify executables, data-

bases, source files, and procedures to be controlled.
• Configuration change control – Control the identified

items so that only authorized changes are made.

• Configuration status accounting – Provide management
and practitioners “snapshots” of the state of the identified
items and associated change requests.

• Configuration audits – Compare the results with original
plans.

Control the Baseline(s) (Principle 4)
Each board establishes the baseline that corresponds to its
authority.
• Functional baseline – Can be established when require-

ments are agreed on by the customer and the developer,
usually at the system design review (SDR). The customer
business decision control board considers the results of the
SDR before authorizing the baseline.

• Allocated baseline – Can be established when requirements
have been assigned or allocated to software subsystems,
hardware, or manual procedures. The developer business
decision control board considers the results of the software
requirements review before authorizing the baseline.

• Developmental baseline – Can be established during
implementation when the technical decision control board2

so authorizes. For example, such baselines can be estab-
lished at various points during informal testing.

• Product baseline – Can be established when the functional
configuration audit and physical configuration audit is
complete. The customer and developer business decision
control boards consider the results of the audits before
authorizing the baseline.

Establish Process for Multiple-Project Decisions
(Principle 5)
Refer changes involving multiple projects to a higher board.
Consider this example: A technical decision control board
considers the following change request.

The “designator” field in the inventory control system
allows for only eight planning shops. One of the user sites
of the system has assigned all eight planning shops. They
need to add a ninth planning shop. The material shipping
system also uses the designator field.

The technical decision control board would be correct to
refer the change request to a higher authority board because
multiple systems will be impacted by changing the designator
field.3

Summary
Though they bear many names, there are only two types of
control boards: Those that make business decisions and those
that make technical decisions. Established control boards have
a charter that describes their purpose and procedures. Effective
control boards can simplify the role of the software project
manager and improve the work environment of the practitio-
ner. To do so, the boards must be used throughout the software
lifecycle in conjunction with fundamental CM processes. u

Table 3. Responsibilities of the chairman and the secretariat.

ChairmanChairmanChairmanChairmanChairman

Follow the charter.
Convene regular meetings.
Prioritize agenda items.
Conduct the meeting.
If members are not prepared, adjourn the meeting.
Strive for consensus on change request decisions.1

SecrSecrSecrSecrSecretariatetariatetariatetariatetariat

Generate the agenda.
Distribute the data package.
Take and distribute minutes.
Reserve the meeting room.

Table 4. Responsibilities of all control board members.

BeforBeforBeforBeforBefore the Meetinge the Meetinge the Meetinge the Meetinge the Meeting

• Review the data package.
• Communicate with other members of the board regarding the change.

At the MeetingAt the MeetingAt the MeetingAt the MeetingAt the Meeting

• Represent their organization or group.
• Express and coordinate their organization’s or group’s viewpoints.

CCB – An Acronym for “Chocolate Chip Brownies”? A Tutorial on Control Boards

6 CROSSTALK The Journal of Defense Software Engineering March 1999

About the Author
Reed Sorensen is on the
technical staff at TRW
and is currently working
under contract to the
Software Technology
Support Center. He has
over 20 years experience

developing and maintaining software and
documentation of embedded and manage-
ment information systems, providing
systems engineering and technical assis-
tance to program offices, and consulting
with many Department of Defense organi-
zations regarding their software configura-

tion management and documentation
needs. He has published articles in
CROSSTALK on various software-related
subjects.

Software Technology Support Center
OO-ALC/TISE
7278 Fourth Street
Hill AFB, UT 84056-5205
Voice: 801-775-5738 DSN 775-5738
Fax: 801-777-8069 DSN 777-8069
E-mail: sorenser@software.hill.af.mil

References
1. IEEE Guide to Software Configuration

Management, IEEE-STD-1042-1987.

Yahoo configuration management (CM) links
http://www.yahoo.com/Computers_and_Internet/
Software/Programming_Tools/
Software_Engineering/Configuration_Management

Software Technology Support Center (STSC) home page
http://www.stsc.hill.af.mil

CM Yellow Pages (provided by André van der Hoek)
http://www.cs.colorado.edu/users/andre/
configuration_management.html

Brad Appleton’s home page and CM links
http://www.enteract.com/~bradapp

Software Engineering Institute CM home page
http://www.sei.cmu.edu/legacy/scm/
scmHomePage.html

CM frequently asked questions from the Usenet CM
group

http://www.iac.honeywell.com/Pub/Tech/CM/
CMFAQ.html

CM Bibliography
http://liinwww.ira.uka.de/bibliography/SE/scm.html

A Software Engineering Resource List for CM
http://wwwsel.iit.nrc.ca/favs/CMfavs.html

Other Web Sites of Interest

CROSSTALK

http://www.stsc.hill.af.mil/CrossTalk/crostalk.html

Association for Configuration and Data Management
http://www.acdm.org

Government Electronic Industries Association
http://www.geia.org

Managing Standards home page
http://www.airtime.co.uk/users/wysywig/wysywig.htm

Data Interchange Standards Association
http://www.disa.org

International Organization for Standardization
http://www.iso.ch/welcome.html

Software Productivity Research
http://www.spr.com

Official Department of Defense Single Stock Point
http://www.dodssp.daps.mil

Configuration Management Web Sites

2. Institute of Configuration Management
at Arizona State University.

Notes
1. This means general agreement, not

unanimous agreement.
2. If the developmental baseline in question

includes changes that affect multiple
projects, a higher authority will be
needed.

3. The higher board would probably be a
business decision control board that
could authorize analysis of this interface
issue.

Configuration Management

CROSSTALK The Journal of Defense Software Engineering 7March 1999

The foremost challenge facing
today’s software organizations is
to make their products Y2K

compliant. Failure to achieve compliance
will result in immediate product obso-
lescence at the new millennium’s ar-
rival. At the heart of any successful Y2K
conversion is the configuration man-
agement (CM) system, which has to be
flexible enough to accomplish ongoing
maintenance of routine fixes while
integrating Y2K conversion code into
the product [1].

The keystone of CM is the baseline
[2]. Organizations that hastily developed
software without CM may now be fac-
ing Y2K conversion efforts without
product baselines. The lack of reference
points in this vital area means that an
organization cannot effectively support
its software products [3].

Watts Humphrey best expresses the
importance of CM to Y2K compliance
in “Year 2000 Readiness Checklists.” [4]
He emphasizes that the lack of CM
system capability “will most likely [cre-
ate] problems that could be severe and
unrecoverable.” Humphrey implores
software developers to implement CM
immediately rather than wait until their
schedule clears.

This article provides the first step to
make software Y2K compliant: a method
to recapture baselines of systems built
without a CM system in place. The
recapture process, ironically, requires
that a CM system first be implemented.

CM System Defined
The CM system described by
Humphrey constitutes more than just
the adoption of high-end automated
CM tools. Although tools are an impor-
tant part of a CM system, they do not

compose the entire system; rather, it is
based on the integration of basic CM
functions—configuration identification,
control, status accounting, and audits—
into a cohesive process that uses defined
procedures, documentation, automated
tools, and practitioners. Humphrey
observes that “The CM system main-
tains physical and electronic control of
the organization’s programs and data.”
[4] It ensures the integrity and reliability
of source code, test data, and documen-
tation over time through use of
baselines. These software work products
must always be kept current and correct
to ensure reliable reproducibility and
change.

Effective CM systems always origi-
nate from a well-written configuration
management plan (CMP) [1]. This plan
should be written to provide a clear
understanding of how a baseline is cre-
ated and maintained from the initial
identification of components and docu-
mentation to their release and subse-
quent configuration control through a
change management process. Details in
the CMP should include how audits are
performed to maintain the integrity and
stability of the software product for
further development. When properly
executed, the CMP mirrors the
organization’s software process.

Establish Business Rules
Three vital considerations must be
determined by management to set the
tone for what is to be done for baseline
recapture.
• Consider impact to business rev-

enue. Due regard must be given to
financial limitations; otherwise, the
sequence and scope of the recap-

ture effort cannot be properly
determined.

• Ensure that software products under
contract support are thoroughly
reviewed. Ascertain what the cus-
tomer purchased for software main-
tenance to determine which artifacts
(software work products) have to be
accounted for in the support effort
[2]. The range of possibilities can
sweep the entire product spectrum
from what is needed to support a full
30-year Department of Defense
software-intensive system to a short-
term interim application.

• Identify which minimum artifacts
are needed to support the products.
Identify the product’s name, software
performance requirements, software
component lists, and documentation
created for support. As elementary as
this seems, as Humphrey points out,
if they are not recorded, they are
soon forgotten and lost. Even with
automated CM tool assistance in the
software process, documentation is
not necessarily archived with the
source code.

These business rules establish the re-
quirements to be used by the Configura-
tion Control Board (CCB) to determine
types of products, required support
artifacts, and the order of events to re-
capture lost product baselines.

Configuration Control Board
The CCB is the forum where business
rules are put into action. Its function is
central to manage and control baseline
recapture efforts. Requisite responsibili-
ties are defined in a CCB charter, which
would outline the CCB’s functions;
thus,

Using CM to Recapture Baselines
for Y2K Compliance Efforts

Ronald Starbuck
International Billing Services, Inc.

Time is closing in on the year 2000 (Y2K) and those software organizations without
product configuration baselines risk failure to meet this hard, “drop-dead” conver-
sion deadline. The purpose of this article is to provide the basic methods essential to
achieve the recapture of a product’s software baseline to begin the Y2K conversion.

8 CROSSTALK The Journal of Defense Software Engineering March 1999

• It guides the entire recapture effort
from start to finish.

• It must resolve all problems and
situations that arise during the effort.

• To be effective, it must have clear
authority and scope.

• Its primary decision-making resource
is the CM system.

• When needed, it takes into account
organizational management consid-
erations for decision making.

• It orchestrates all activities from the
beginning to the approval of the
baselines for CM establishment.

• It determines which products should
be recaptured, the method to be
used, and the order in which they
should be done.

• It resolves all issues such as the most
suitable product name to be used
from among numerous documented
aliases. (Multiple aliases often occur
when a CM system was not origi-
nally in place.)
CCB members should have experi-

ence in many areas of software engineer-
ing, including CM, so that they can
adequately advise the CCB chairman on
such matters as product history, costs,
contractual aspects, market conditions,
quality requirements, and other proceed-
ings. The chairman should have the
authority to implement decisions, in-
cluding those that require funding au-
thorization. CM is the CCB’s conduit to
accomplish its configuring and process-
ing decisions. All relationships and inter-
faces should be identified as part of the
process plan for recapture as defined in
the CMP.

Tools
CCB activities require a planning and
decision-making tool to identify, track,
and record findings revealed for each
product. A generic example of one tool
is shown in Figure 1. This checklist
functions as a CM process action and
status tool used to get tasks accom-
plished and monitor progress. Software
organizations that use automated CM
tools could have much of this informa-
tion already available. A few characteris-
tics of the checklist are as follows:

• It is initiated at the direction of the
CCB for each product under
 consideration.

• It ensures consistent organization
and formatting of the recaptured
data for CCB consideration.

• It includes fields for identification of
the software product’s name, software
composition by version, documenta-

tion by revision, and any tools neces-
sary to build the product.

• The “Approach Used” field identifies
whether the recapture effort is for a
contracted or internally produced
item.

• Each list is given a unique CM con-
trol number.

Figure 1. Baseline recapture checklist.

emaNmetsyS erutpaceR onsey

desUhcaorppA lanretnIdetcartnoC yrogetaC tnemssessA

laitnessE laitnessEtoN tnerruC tnerruCtoN

noisreVerawtfoS

noitisopmoCtnenopmoC
)dehcattA(

relipmoC

noisreV

slooT

noisreV

emaNyrotceriD

etaD

stnemeriuqeR
noitatnemucoD

etaDnoitacilbuP

noisiveR

ecnanetniaM
noitatnemucoD

etaDnoitacilbuP

noisiveR

detaicossA
noitatnemucoD

etaDnoitacilbuP

tseTdetaicossA
noitatnemucoD

etaDnoitacilbuP

evorppasiDevorppA

dengiS etaD

Configuration Management

CROSSTALK The Journal of Defense Software Engineering 9March 1999

• Those lists for contracted support
products must include all contracted
items.
The CM group and CCB are respon-

sible for completing two highly impor-
tant portions of the checklist. The first
categorizes artifacts to be recaptured as
essential or not essential. If an item is
designated not essential (not mandatory
but nice to have), the CCB chairman
annotates the checklist accordingly, and
the CM group establishes and maintains
the item in its historical files for trace-
ability. Artifact items checked as essential
must be locatable and traceable. If they
cannot be found or were never gener-
ated, a statement to that fact should be
noted on the checklist.

The second important portion on
the checklist is termed “Assessment.” It
specifies whether an artifact is current.
The CM group records this evaluation
after completing an analysis of the ad-
equacy of the artifact to be released.
When all items on the checklist have
been assessed, the completed checklist
provides all the information needed by
the CCB chairman to approve or disap-
prove the baseline recapture effort. Ap-
proval signifies the sanctioning of the
checklist’s configuration information so
that the CM group can establish the
product’s baseline and maintain all the
processed checklists.

After CCB deliberations, the final
decision rests with the CCB chairman to
give the CM group the task of proceed-
ing with investigation and coordination
or of closing the checklist out as disap-
proved. To obtain information may
require exploration of both on-line and
backup storage such as tapes, disks, or
cassettes, depending on the system
legacy. Research of soft- and hard-copy
documentation, preferably from original
departmental documentation libraries,
and one-on-one interviews with original
system development and maintenance
employees can be extremely useful to
recapture the baseline. An intangible
benefit from recapture is to uncover
documentation that may still be useful
to support the product. This previously
unknown information should be entered
on the checklist and validated regarding
its relevance to the current released prod-

uct. The CCB will rule on its inclusion
in the recaptured baseline.

When all research and information
gathering is completed for a checklist,
the CM group members evaluate it for
completeness and write their initials on
each item. They must determine
whether an item is essential or not essen-
tial and current or not current with the
released configuration. The completed
checklist should include a detailed list of
all software components called for in
the performance requirements and the
design documentation. If the checklist is
incomplete, it is returned to the origina-
tor for completion. Unknown docu-
ments uncovered during research are
identified by the CM group and brought
to the CCB for resolution. Finally, the
CCB must determine the adequacy and
currency of recovered artifacts with the
released product version. Checklist items
not complete or adequately documented
may require an impact estimate on cost
to bring them into agreement with the
released product. If the item was a con-
tract deliverable not maintained since
the initial release, a business rule may
mandate its recovery. The CCB chair-
man will make that decision.

Recapture Process
The following is a summary of what, as a
minimum, the CM group should do to
recapture a baseline foundation to ensure
parallel software support.
• Initiate a checklist based on known

released products by product name.
• Identify the categories of artifacts for

potential identification for baseline
recapture and forward them to the
CCB chairman for concurrence and
direction.

• Follow the chairman’s direction and
coordinate the investigation. To
obtain the information may require
exploration of both on-line and
backup electronic storage of media,
depending on the legacy of the par-
ticular system.

• Search through such media types as
tapes, cassettes, and disks and review
associated hard-copy documentation
through various departmental docu-
mentation libraries.

• Hold one-on-one interviews (if pos-
sible, with original team members).
These constituents can provide in-
valuable insight into what happened
and what was produced.

• Review the categories on the form
and qualify each item as essential or
not essential and current or not cur-
rent with the released configuration.
The checklist should contain list of
all software components called for
in the performance requirements
and the design documentation.
After reviewing the checklists, the

CCB returns them to the CM group for
their assessment and processing. All
artifacts uncovered are then analyzed for
their adequacy and currency to the cur-
rent released product version and pro-
vided to the board for reconciliation.
Those items that are not current require
an impact analysis for the estimated
effort and resources to bring them into
harmony with the software’s released
version level. Each item is authorized by
the CCB chairman based on business
rules, contractual commitments, or
other higher-level management or prod-
uct needs. The following sections pro-
vide further insight into what and how
the software requirements and version
information can be recaptured.

Requirements
It is essential to determine which perfor-
mance requirements were to be achieved
by the software. These specifications are
generally produced before the code is
designed and written and is the source
from which the software design is based
and coded. With incremental or evolu-
tionary engineering models, the require-
ments are successively achieved; there-
fore, its documentation may be
produced in sets. This document or set
of documents could be in or part of the
Statement of Work or in other stand-
alone documents.

If created, an operational user’s
manual can include the system’s opera-
tional requirements. Those mature or-
ganizations that incorporate software
quality assurance (SQA) elements could
have additional independent test plans
that identify the functions tested and
provide verification of produced arti-

Using CM to Recapture Baselines for Y2K Compliance Efforts

10 CROSSTALK The Journal of Defense Software Engineering March 1999

facts. It also is possible that SQA has
other records that further amplify, de-
scribe, or test the product.

Software Version
With these requirements noted in the
checklist, the most complex task is to
ascertain the relationships between the
software artifacts that compose the re-
leased product. This decomposition
must go down to the version level of
build files and source code. CM tools
can enable this with minimal effort. The
hierarchy between the various compo-
nents that compose software products
can also make discerning the relation-
ships easier. If tools are not employed,
there should be some form of software
repository from which software compo-
nents can be identified for each prod-
uct. The product’s software components
and the tools used to build them must
be defined according to the version level
used for baselining [3]. This will require
checking records of system administra-
tors to find what was used for a released
product.

CM Status Review
Upon completion of each product’s
recapture effort, all checklists are re-
turned to the CM group for a status
review. The CM group determines readi-
ness of the configuration data to be
forwarded to the CCB for final baseline
sanctioning or to address the particular
need at the time to render a decision on
some issue or problem. The CM group
sorts the checklists into two types of
packages: The first includes those
deemed as current and ready for final
determination by the CCB for
baselining. The second are those that
need further resolution by either the
originator or the CM group. The check-
lists are verified by the CM group to
ensure that the approach used to obtain
the information followed the CCB’s
direction and that the consistency of the
information complies with standardiza-
tion, accuracy, and format for the re-
corded items.

Of high concern to the CM group is
the inclusion of those items it identifies
as essential for baselining, as shown in
Figure 1. If not provided, a reason must

be attached to the checklist so the CCB
can determine the need to re-create
missing artifacts. The CM group ensures
that each artifact identified has either a
version or a revision number for each
essential artifact. Any missing revision
numbers found by the group are re-
turned to the checklist implementers to
obtain them. Those artifacts that are not
current have to be acknowledged to the
board so that a decision can be made
regarding the need for an impact analysis
to bring them into conformance.

This task is considerably easier when
organizations use a common revision
scheme in its version application. There
will be those unfortunate instances
where no revision status was used. This
is quite prevalent in chaotic types of
development as identified in the Soft-
ware Engineering Institute Capability
Maturity Model. The CM group also
verifies that the tools and the revisions
used to create the product were in-
cluded. When completed, the CM
group forwards the package to the board
with its recommendations on the ad-
equacy of data recaptured for baselining.

Reconciliation
The CCB reviews all packages and pro-
vides recommendations to the CCB
chairman for final decision. Products not
approved for the baseline could require
more information or be rated “disap-
proved” based on business need. If nec-
essary, the checklist is annotated and
returned to the CM group for further
processing. When the CCB chairman’s
signature and date appear on the check-
list, it signifies the final decision from
which the CM group takes action. For
baseline recapture to occur, all product
components and documentation not
current with released software must be
recovered and made current. The deci-
sion to proceed may depend on the cost
required for the effort. Documentation
often is the category most likely to be
incomplete, especially when referenced
by multiple names or aliases. When
checklists are finally sanctioned by the
CCB chairman, they are archived into
the chosen database or CM tool by the
CM group. They may also be stored
manually. This act constitutes the re-

establishment of the product’s baseline
for authentication by the SQA group. It
completes the recapture and provides the
foundation needed to begin Y2K conver-
sion.

Summary
Humphrey best expresses the importance
of a CM system to achieve Y2K compli-
ance when he states that the lack of a
CM system will most likely create prob-
lems, some of which could be severe and
unrecoverable. CM tools alone are not
the entire CM system but part of it.
Without an effective CM system, soft-
ware organizations are likely to lose
programs, misapply fixes, or use the
wrong test or test data. Software organi-
zations that sacrificed CM for expedi-
ency or other reasons are extremely vul-
nerable to problems related to Y2K
conversion. An incomplete or absent
baseline directly affects a software
organization’s ability to support its soft-
ware. The only option available when a
baseline does not exist is recapture. This
article explained what is necessary from
both management and the CM process
to accomplish the recapture of product
baselines—the key to completing con-
version to Y2K. u

About the Author
Ronald Starbuck is a
configuration manager
at International Billing
Services and is involved
in improving customer
systems’ CM processes
and process infrastruc-

ture. He has spent more than 20 years in
various government positions and agencies
such as lead programmer for the Navy’s P-
3 Orion Weapons Systems Simulator,
configuration manager at the Sacramento
Army Depot for test program sets, and a
software quality assurance representative
for the Defense Logistics Agency.

International Billing Services, Inc.
Mail Stop 7050
5220 Robert J. Mathews Parkway
El Dorado Hills, CA 95762-5712
Voice: 916-857-6857
E-mail: Ronald_Starbuck@uscs.com

Configuration Management

CROSSTALK The Journal of Defense Software Engineering 11March 1999

References
1. Software Engineering Institute, CMU/

SEI-93-TR-25, 1993, pp. A-5, A-22, A-
45.

2. Starbuck, Ronald, “The Misplaced
Backbone of Software Change Manage-

ment,” Software QA, Vol. 4. No. 5, 1997,
pp. 19-21.

3. Bersoff, Edward, Vilas Henderson, and
Stanley Siegal, Software Configuration
Management, Prentice-Hall, Englewood
Cliffs, N.J., 1980, pp. 85, 274.

4. Humphrey, Watts S., “Year 2000 Readi-
ness Checklists,” CROSSTALK, Software
Technology Support Center, Hill Air
Force Base, Utah, July 1998, pp. 24-28.

Coming Events
Sixth Annual ISO 9000 Conference

Dates: March 22-23, 1999
Location: Atlanta, Ga.
Theme: “New Direction for Continuous Improvement”
Sponsor: American Society for Quality
Topics: Upcoming Revisions to the International Organi-

zation for Standardization (ISO) 9000 Quality Manage-
ment Standards, Technological Shortcuts to Accurate
Process Documentation, Case Studies of Corrective
Action Resulting in New Levels of Effectiveness, Cost
Benefits of ISO 9000 to Secure Management Buy-In,
and How Even Small Companies Can Use Internal
Auditors Effectively.

To receive full conference program, call: 800-248-1946,
ask for item B0424. Mention priority code CEJAPR8
to speed order.

Internet: http://www.asq.org/products/conf.html

Call for Papers: The Sixth International Symposium
on Software Metrics

Dates: Nov. 5-6, 1999
Location: Boca Raton, Fla.
Theme: “Taking the Measure of New Technology”
Topics: The theme of the conference will focus on the

application of measurement (through empirical studies)
to understand and manage new software technologies
(including their related tools and processes), such as
commercial-off-the-shelf-based development, software
architectures, object-oriented development, and Web-
based applications.

Abstracts due: April 1, 1999
Contact: David Card, General Chairman, Software Pro-

ductivity Consortium, 115 Windward Way, Indian
Harbour, FL 32937

Voice: 703-742-7199
Fax: 703-742-7200

Call for Papers: Thirteenth Annual Advanced
Software Engineering Education and Training
(ASEET) Symposium

Dates: July 26-29, 1999
Location: U.S. Air Force Academy, Colorado Springs,

Colo.
Theme: “Ada in the 21st Century: Academic, Govern-

ment, and Industry Perspectives”

Topics: For a complete list of topics, refer to the Web page
listed below.

Abstracts due: April 30, 1999
Full paper due: June 25, 1999
Send all submissions (MS Word or Adobe PDF) via E-

mail to Lt. Col. J.A. Hamilton Jr. or Dr. Martin C.
Carlisle.

E-mail: hamiltoj@spawar.navy.mil
E-mail: mcc@cs.usafa.af.mil
Internet: http://www.acm.org/sigada/aseet

INCOSE ’99
Dates: June 6-10, 1999
Location: The Stakis Brighton Metropole Hotel, Brighton,

England
Sponsor: The United Kingdom Chapter of the Interna-

tional Council on Systems Engineering (INCOSE).
Theme: “Systems Engineering: Sharing the Future”
Topics: INCOSE ’99 seeks to exploit the confluence and

synergy that we are seeing between various key issues
being addressed by INCOSE worldwide. Come and
share in the challenges of the breadth of applications,
the diversity of techniques, and the overlap that systems
engineering has with other disciplines.

Contact: Cass Jones, Professional Conference Manage-
ment, Inc., 7916 Convoy Court, San Diego, CA 92111

Voice: 619-565-9921
Fax: 619-565-9954
E-mail: pcminc@pcmisandiego.com
Internet: http://www.incose.org.uk

5th Annual Joint Aerospace Weapon Systems
Support, Sensors, and Simulation Symposium and
Exhibition

Dates: June 13-17, 1999
Location: San Diego, Calif.
Theme: “Making Information Work for the Warfighter”
Sponsors: Embedded Computer Resources Support Im-

provement Program, U.S. Air Force, U.S. Army, U.S.
Navy, and U.S. Marine Corps.

Contact: Dana Dovenbarger
Voice: 801-777-7411 DSN 777-7741 or 801-698-0132
Fax: 801-775-4932
E-mail: dovenbad@software.hill.af.mil
Internet: http://www.jawswg.hill.af.mil

Using CM to Recapture Baselines for Y2K Compliance Efforts

12 CROSSTALK The Journal of Defense Software Engineering March 1999

Figure 1. A typical revision sequence.

Configuration management is
the key to managing and con-
trolling the highly complex

software projects being developed today.
CM tools have developed from simple
version-control systems targeted at indi-
vidual developers into systems capable of
managing developments by large teams
operating at multiple sites around the
world. The variety of tools offered means
that you can be sure to find one that is a
close match to your individual needs.

The need for this degree of team
support has grown in response to time
pressures on software development and
the increasing need to manage multiple
changes to the same software at the same
time. For example, resolving year 2000
(Y2K) compliance problems while still
developing new features and fixing bugs.

As a result, the market for CM
tools exceeded $1 billion in 1998, and
many of the smaller companies that
created the modern CM capability
have been swallowed up by the large
players in the software arena. Even so,
the growth in the CM market is so
strong that there is still room for new
entrants to introduce new products
and to compete successfully.

Key Feature of CM Tools
The key capabilities of CM tools are the
identification and control of software
and software-related components as they
change over time.

For most users, the main issue is the
tool’s ability to support a project team

that develops software in a single reposi-
tory, even though individual members of
the team may be at different locations
connected by a network. Individual
members of the team need to be able to
undertake the tasks assigned to them
without interference from other team
members. However, as each task is com-
pleted, the results need to be made avail-

change the same root component with-
out undue risk.

The first development was the exten-
sion of version-numbering systems to
support branches and therefore parallel
developments by different users along
different branches of the version tree.
Figure 1 shows a typical revision se-
quence and numbering scheme includ-
ing the creation of new development
branches.

The second development has been
the availability of merge tools with a
strong graphical interface, which assist
the resolution of conflicts when changes
made on different branches are merged
back into the main development stream.
The best merge tools can relate all
changes to a common ancestor (in Fig-
ure 1, revision 2 is the common ancestor
of all branches emanating from the origi-
nal single stream of development) and
can therefore accept many changes auto-
matically with only conflicting changes
being raised for user attention.

The capability of modern merge
tools is now so strong that users can
become tempted to accept the tools’
automatic resolutions and omit essen-
tial testing processes. This is not
recommended.

The branching approach to parallel
development is used in a few tools to
support the cloning of software reposito-
ries across a number of geographically
distributed sites or even companies, e.g.,
for consortium projects. In these circum-
stances, the issue becomes the level of
capability to support the periodic syn-
chronization of databases between sites.

Configuration Management
Coming of Age in the Year 2000

Clive Burrows
Ovum, Ltd.

An earlier version of this article was published in
SIGS’s Component Strategies, July 1998.

Some estimates show that the market for configuration management (CM) tools and services now
exceeds $1 billion per year and is still growing rapidly. The market size and growth has led to many
of the founding companies in the CM market being acquired by larger companies with no history of
involvement in CM. This article summarizes the proven capabilities of CM tools that have created
a market of this size and reviews the potential areas for future development—most notably CM
control of Web site content. It also summarizes the potential impact of these acquisitions on users and
notes the rise of new companies entering the market with good cost-effective products.

able to other team members to assimilate
into their own work at a time of their
choosing.

Version control, the original CM
requirement, maintains a history of the
changes to a component as it evolves
over time and allows users access to a
particular version—not just the last
version created.

Parallel Working
Originally, when team sizes were small,
the accepted wisdom required CM
systems to prevent several users from
attempting to change the same compo-
nent at the same time. Many organiza-
tions still attempt to operate with this
“safe” development discipline. How-
ever, two important developments have
combined to allow multiple users to

CROSSTALK The Journal of Defense Software Engineering 13March 1999

The individual cloned repositories are
never at an identical state, but over time
all changes are applied to all sites. The
repositories may be different at any time,
but the differences never become too
great and are always controlled at a man-
ageable level.

Web Interface
New developments in almost all CM
tools are the provision of some CM
functionality through a Web browser
interface. There is still a big difference
between the CM tools in the degree of
support provided. Apart from those with
no Web access capability, the minimum
support tends to be for problem and
change management systems and for
information reporting systems, i.e., all
those aspects with a minimum require-
ment for data transfer. Only a few tools
provide a check-in, check-out facility to
access and modify files through a Web
interface.

Some tools prefer the higher band-
width solution of a “cut down” client for
home CM access via a modem into the
organization’s network.

Change Management
Change management features address
the issues of problem tracking and
change control and the presentation and
analysis of management information
derived from these sources. Gathering
management information is greatly
simplified if change features are part of
the CM system—without them, com-
plex cross-references between different
databases are required, and full naviga-
tion and searching may not be possible.

Unfortunately, many CM vendors
have developed their own add-on capa-
bility in this area using new develop-
ment tools, different databases, and even
a different style of user interface. In
some cases, the only area of commonal-
ity is the product “badge” name created
by the marketing department.

Build and Release Support
Building systems can take days, and an
inefficient build process can waste hours
of developer time, particularly during
testing and integration when you may
need to build the whole system to test a

small change. An intelligent build pro-
cess can reduce build times dramatically
by reusing partially built items from
previous builds.

Release support allows developers to
track which users have which versions of
which components and, therefore, to be
sure which of those will be affected by a
particular change.

Process Management
Many users, particularly those seeking an
external quality approval such as ISO
9000 or a particular Software Engineer-
ing Institute Capability Maturity Model
level, have standard development pro-
cesses they expect their development
teams to follow. In the past, this has
often involved considerable bureaucratic
paperwork procedures, which are gener-
ally resented and ignored by developers.

The process management features in
CM tools allow the developer to ensure
that components progress through cho-
sen lifecycle phases before being released.
An example of this is to help ensure that
testing and quality assurance occur be-
fore release. The tools take a wide range
of approaches to process management,
and it is important to select one that
suits the culture of your organization or
the new culture you wish to introduce.

New Developments

Year 2000
This is an immediate, if short-term,
opportunity for CM tool vendors. Tradi-
tional CM support for multiple streams
of development activity is becoming
increasingly important as the millen-
nium approaches. Y2K conformance
issues must be addressed in parallel with
new developments and with bug fixes. In
addition, governmental and regulatory
action to open up markets is requiring
European utilities—and in the near
future, U.S. utilities—to modify their
systems to support competition. Finan-
cial institutions and multinational cor-
porations worldwide need systems to
cater to Euro currency. This degree of
parallel working is not sustainable with-
out strong CM support.

Y2K activities also have a different
characteristic from normal development

work. About 60 percent of all Y2K effort
is spent on testing. As problems are
found, traditional change management
processes are applied to ensure that all
changes are pursued to completion and
that adequate retesting takes place. Indi-
vidual modules need to have their com-
pliance status logged to allow a full audit
trail to be established. If a new Y2K issue
is identified, selective retesting of previ-
ously “compliant” modules may be nec-
essary. CM tools have features to support
all these requirements.

Although Y2K issues are seen by
most users as short term, the emphasis
on test management will provide long-
term benefits for all users of CM tools
well beyond Dec. 31, 1999.

Web Management
CM support for Web and particularly
Intranet pages and their embedded ob-
jects is creating an important new mar-
ket for the vendors of CM tools, which
in time could exceed the size of the mar-
ket for managing software development.

To develop this new market opportu-
nity, vendors have to address three main
issues:
• Different characteristics associated

with Intranet and Web management.
• Different user skills and profile of

Intranet and Web developers.
• New marketing issues to be ad-

dressed to attack this market.
The different characteristics include

sheer size—the number of pages being
managed for an Intranet site can be
more than 100,000, implying a require-
ment to manage more than 500,000
objects. By contrast, 10,000 software
modules would represent an extremely
large software development program.

The rate of change for Intranet pages
is high, but the lifetime of a typical page
can be relatively short. This is associated
with an extremely high level of build and
release operations. It is not unusual for a
large Intranet site to be changed on a
daily basis, whereas for large software
systems, a new release every month
would be regarded as an indicator of
serious instability.

Intranet sites can contain commer-
cially and legally sensitive information.
For protection against lawsuits, not only

Configuration Management: Coming of Age in the Year 2000

14 CROSSTALK The Journal of Defense Software Engineering March 1999

does a full audit trail of approvals need
to be kept, it also is essential that a pre-
cise copy of the Intranet site on a par-
ticular date can be faithfully re-created
when required. The volume of configu-
ration information needed to accomplish
this is phenomenal. In comparison to
that needed for software configuration
management, it is like comparing the
number of Internet servers in the uni-
verse to the number of servers in a single
company.

All CM vendors can truly claim a
capability to address the individual issues
raised here—this is why they believe
that, in time, CM Intranet management
will be a bigger gold mine than CM for
software development. The issues, how-
ever, are not all related to functionality.
There also are scalability issues. Vendors
that attack the Intranet market will need
a strong partnership with pioneering
users to demonstrate this scalability.
Other vendors can still market their

smaller-scale systems to manage the
smaller public Web sites.

A large information technology (IT)
development might involve hundreds of
people, nearly all assigned full time to
the project. A large Intranet site might
have more than 10,000 contributors,
each probably spending no more than a
few hours each month updating ele-
ments of the Intranet pages to which
they contribute. A much smaller group
of webmasters (broadly equivalent to
build managers in an IT project) are
responsible for managing and publishing
the Web and Intranet content.

None of these people are CM aware,
nor do they want to be. The providers of
Web content are most likely to use
Notepad or a word processing package,
whereas the webmasters will certainly
use Web-based tools for their day-to-day
tasks. It is essential in this environment
that vendors integrate their CM func-
tionality seamlessly within the tools used

for day-to-day tasks. It also is highly
desirable that CM terminology be mini-
mized, for example, by referring to a
third draft rather than to Version 3.

Access to the CM functionality
needed by webmasters should be via a
Web interface to minimize the need to
switch styles of working.

Most CM tools already have a degree
of support for CM functionality via the
Web and can readily integrate with a
wide range of third-party tools. Some
vendors have gone so far as to repackage
their software CM systems (including
the product documentation) with addi-
tional functionality to create a product
targeted directly at this market (Web
Integrity from MKS, WebSynergy from
Continuus, and StarTeam from
StarBase are examples). Other vendors
are doing little more than make refer-
ence to Web issues in their promotional
literature.

Configuration Management

Pick a Card,
Any Card�

Is your system vulnerable to version-control problems? Is
your documentation lacking (or nonexistent)? Are you able to
track down errors quickly, or do you just write patches to fix
the unseen defects and pray they will hold?

Don’t wait around for the year 2000 or another “minor”
problem to snatch away the component that causes all your
hard work to collapse around you. Start now to implement a
strong configuration management (CM) program that will ensure
your “house of cards” against disaster.

The Software Technology Support Center CM team is commit-
ted to helping you reach and maintain your CM objectives. We will
help you formulate a systematic strategy for changes and improve-
ments, and most important, we will be there to guide your organiza-
tion step by step through the entire CM improvement effort.

Our services include CM Consulting and Implementation, CM
Capability Evaluation, CM and Standards Workshops, CM Executive
Session, CM Tools Evaluation, Independent Documentation Assess-
ment, and Process Work-flow Consulting and Implementation.

Paul Hewitt
Voice: 801-775-5742 DSN 775-5742
E-mail: Hewittp@software.hill.af.mil

Reed Sorensen
Voice: 801-775-5738 DSN 775-5738
E-mail: Sorenser@software.hill.af.mil

CROSSTALK The Journal of Defense Software Engineering 15March 1999

To fully exploit the Web manage-
ment market, CM vendors have three
other hurdles to jump—not technical
issues but marketing issues.

First, they do not know how to find
the potential buyers. In a software envi-
ronment, vendors often find potential
buyers coming to them, and they gain
good links with IT managers and other
project managers as the word spreads
that these products really work. The
potential buyers for Web management
CM tools are not so easily found.

The reasons for this are the second
and third hurdles: The potential buyers
are not aware that they have a problem,
and even if they were aware, they have
no inkling that CM is the answer.

It has taken six years for CM vendors
to establish a software market for capa-
bilities beyond simple version control.
Even so, their market penetration in an
area they know well is still only 20 per-
cent. CM vendors have a capability to
satisfy a latent market need for manag-
ing Web and particularly Intranet sites,
but they first have to establish market
awareness. Currently, the potential Web
market could dwarf their traditional
software market, but for now they have
0.01 percent of a lot—which does not
amount to much.

Documentation Support
The competition CM vendors face in
the Web management market will be
from document management systems.
Although these systems have zero ver-
sion control capability, they are per-
ceived as being closer to the needs of
Web site managers. And this perception
is true. Document management systems
are closer to the needs of Web site man-
agers than CM systems—but only in the
sense of their position in a queue of
issues that have so far failed to get the
attention of Web site managers.

Document management systems do
have features that assist webmasters but
these are not in conflict with the features
offered by CM tools. In fact, document
management systems are extremely poor
at version management and related CM
issues and would benefit from closer
links with CM tools.

Many CM tools are starting to offer
support for documentation development
via integration with such products as
Framemaker. The version and configura-
tion support for documentation tends to
be at a relatively high level (chapters or
major document sections), but it also
includes support for a document “build”
process. In the future, this support will
extend to CM management of embed-
ded objects within the document, e.g.,
diagrams and pictures. This manage-
ment of embedded objects in documents
is closely allied to similar issues within
Web pages. The vendors’ development
money is going into solving the Web
management issues, but the spin-off will
be a much stronger capability to manage
many types of complex documents.

Tool Integration
Historically, most CM systems have
targeted the management of software
sources held in ASCII files. The scope of
support provided for this environment is
not necessarily available to users of Inte-
grated Development Environments
(IDEs) or fourth-generation languages
(4GLs), which are not file based but
repository based. There is little that
CM vendors can do to add full CM
value to products in this group until
they are given access to the elements
within the repository. This is starting
to happen as users of these environ-
ments start to suffer the problems first
encountered by COBOL and C devel-
opers. The IDE and 4GL systems that
fail to offer links with CM systems are
adding to the development risks of
their customers instead of reducing
them as they promise.

Project Management
A new trend, so far supported by just a
few products, is to use the development
progress information held within the
CM system to link with project manage-
ment systems such as Microsoft Project.
In principle, this should add an extra
dimension to the progress information
available to project managers. This is not
yet the case, but the process has started.
And in the future, the scope of what is
considered to be CM will undoubtedly

include strong links with project man-
agement systems.

The Players
The original players in this market were
small, innovative companies that jointly
created a $1 billion market from a small
base of users who were previously only
familiar with free version-control
software.

As user demands for team support
grew, the inadequacies of the free ver-
sion-control software became apparent
(free software rarely provides value for
money). The new products offered
much more capability, and the compa-
nies developing them were strongly
focused on CM alone. By 1995, these
companies were well established, had a
strong user base, and were doing busi-
ness in a market that was still growing
strongly. Some became quoted in the
NASDAQSM (National Association of
Securities Dealers Automated Quota-
tions) index, while others preferred to
remain private.

Neither choice changed the outcome.
Almost all the founding companies of
CM are now owned by “software con-
glomerates.”
• TeamOne was bought by Legent,

and their TeamNet product was
renamed Endevor/WSX. Legent, in
turn, was bought by Computer Asso-
ciates, and Endevor/WSX was re-
named Endevor/Unix.

• Platinum bought Softool, and for a
change, did not rebrand the CCC
product range.

• Atria was bought by Pure Software,
and subsequently, Pure Atria was
bought by Rational. Products such
as DDTS were badged with the
Pure name (PureDDTS) and subse-
quently with the Clear name
(ClearDDTS) to establish an asso-
ciation, however loose, with the
ClearCase CM product.

• Intersolv bought SQL Software and
rebranded PCMS Dimensions as
PVCS Process Manager and then
confused the buyers when it sold
Process Manager only with a package
of other PVCS products and named
the package PVCS Dimensions.

Configuration Management: Coming of Age in the Year 2000

16 CROSSTALK The Journal of Defense Software Engineering March 1999

The Architecture Coordination Council (ACC) met May
28, 1998 and approved the Technical Architecture Steer-
ing Group Majority Position Document. The implementa-
tion memorandum dated Nov. 30, 1998 signed by the tri-
chairs of the ACC makes Joint Technical Architecture
(JTA), Version 2.0 effective for use immediately, supersed-
ing JTA, Version 1.0.

The JTA is a document that mandates the minimum
set of standards and guidelines for the acquisition of all
Department of Defense (DoD) systems that produce, use,
or exchange information. The JTA shall be used by anyone
involved in the management, development, or acquisition
of new or improved systems within DoD.

The memorandum, JTA, Version 2.0, and related in-
formation is available on the Data and Analysis Center for
Software Web site at http://www.dacs.dtic.mil/data-
bases/url/key.hts?keycode=2024.

The JTA provides DoD with the basis for seamless
interoperability of information technology systems. The
JTA defines the service areas, interfaces, and standards
(JTA elements) applicable to all DoD systems, and its
adoption is mandated for the management, development,
and acquisition of new or improved systems throughout
DoD.

The JTA consists of two main parts: the JTA core and
the JTA annexes. The JTA core contains the minimum set
of JTA elements applicable to all DoD systems to support
interoperability. The JTA annexes contain additional JTA
elements applicable to specific functional domains (families
of systems).

The JTA is a living document and will continue to
evolve with the technologies, marketplace, and associated
standards upon which it is based.

New JTA Version Announced

Within just a few months, Intersolv
was acquired by Micro Focus.

• In December 1998, a relatively new
entry to the market, Tower Concepts
(Razor), was acquired by another
privately owned company, Visible
Systems Corporation.
Most acquisitions have been by com-

panies with little experience in CM that
aim to buy a stake in this market. The
acquisition cycle is not yet complete.

While acquisitions of this nature can
introduce additional funding for prod-
uct development and synergy with re-
lated products, the end result is not
always good news for the user.
• After the acquisition, there is usually

a period of quiescence while the
buying company tries to understand
what it has bought and the bought
company tries to understand its new
environment.

• After the quiescent period, expendi-
ture on marketing and related issues
tend to get immediate priority over
technical development issues—the
new owners want a return on their
investment quickly.

• Support is rationalized, i.e., reduced,
by integration with established
“help” desks, which lengthens lines
of communication between the user

and the people who know what they
are talking about.

• New development expenditure be-
comes directed at integrations with
the conglomerate’s “Enterprise Sup-
port” products. They do this in the
name of providing wider support for
all users, but in reality, it benefits the
conglomerate’s existing customers by
giving them a CM capability. The
CM user gets offered related “enter-
prise” products that they do not
want.

• Overseas dealers are often disenfran-
chised in favor of the conglomerate’s
local office, which gives established
users even less support.

• Small users are no longer nurtured as
the big corporate sell takes over—10
licenses no longer motivate the sales-
man who now needs 50 license deals
to keep on target.
Of course, the new owners are still

making money—the increase in sales
outlets and sales resource makes this
almost inevitable—but they do not have
it all their way. One effect of these own-
ership changes and a sure sign of a grow-
ing market has been the emergence of a
new group of small companies (Perforce,
StarBase, and Tower Concepts—still
small despite being acquired by Visible
Systems Corporation, another privately

owned company) that targets just those
project groups favored by the developers
of this market with proven developer-
oriented messages.

Conclusion
There are over 50 companies that offer
products to meet CM needs. Most are
expanding their business and profits, and
there is no sign of this declining. The
main competition for CM vendors is
still the users’ lack of awareness of the
success and capability of this technology.
People do not wake up in the morning
with “It’s time to buy a CM tool” at the
top of their to-do list. Instead, they wait
for a foreseeable and inevitable disaster
to kick-start the process—and then they
usually buy from the first company they
call. Make sure you do not do this by
being an educated consumer. u

About the Author
Clive Burrows is princi-
pal evaluator of configu-
ration management
products for Ovum in
London, England. He is
the author of four
Ovum reports on this

subject, the most recent being Ovum
Evaluates: Configuration Management
(June 1998).

E-mail: clive_burrows@compuserve.com.

Configuration Management

CROSSTALK The Journal of Defense Software Engineering 17March 1999

Since 1985, the Test Program Set (TPS) development
activities within the Software Division at the Oklahoma
City Air Logistics Center have been performing project

management using C/SCSC methods. Initially, the application
of C/SCSC management techniques was not thought to be
suitable for software. In general, in 1985, only weapons sys-
tems program offices involved with major acquisitions em-
ployed C/SCSC management. For anything less than a major
acquisition, its use was considered to be overly burdensome.
However, it was the Software Division’s belief that this man-
agement system provided advantages over the use of Gantt
(milestone) charts that were typical for software projects in
1985. Even today, these charts are extensively used, although
the use of earned value is gaining some popularity. The failing
with Gantt charts is that managers have no way to connect the
outlay of money to the project plan and to the project produc-
tion; therefore, software managers who use Gantt charts do
not have a good understanding of their project’s status.

Our initial application of C/SCSC management was crude
at best; however, with the performance of several TPS develop-
ment projects, including the B-1 and B-2 aircraft weapons
systems, the methods have evolved and improved and become
increasingly more sophisticated. The work breakdown struc-
ture (WBS) presently employed bears little resemblance to the
one first used in 1985. The earned-value system used today is
an order of magnitude more resolute than the system first used
in our employment of C/SCSC. Initially, we used only four
earned-value elements, regardless of the project requirements;
today, we have as few as 10 and as many as 64.

The C/SCSC methods of project management have served
the Software Division well. The method is applied at the indi-
vidual TPS developer level and is aggregated by team lead,
total project, and higher organizational levels for various man-
agement and customer status reports. Employed in this man-
ner, the method is quite flexible and becomes an extremely
powerful management tool. In the 13 years C/SCSC tech-
niques have been used, we have not experienced a single overall
TPS development project slippage or cost overrun.

Until a few years ago, our application of C/SCSC project
management did not segregate management reserve (MR) into
quantifiable management elements. Although the project plan

accounted for the risk in meeting cost and schedule, the MR
was integrated into the earned-value system, and thus, its man-
agement became unrecognizable. Figure 1 illustrates this point.
It shows that the budgeted cost of work scheduled (BCWS)
line increases with time until the project completes as planned,
indicated by budget at completion (BAC). The difference
between BAC and the total project cost and negotiated
completion date are the project’s MR. As previously explained,
our initial application of the C/SCSC method equated BAC to
the total project cost and negotiated completion and thereby
eliminated the possibility of managing the reserve.

C/SCSC Refresher
A review of C/SCSC terminology and computations will be
required to better understand the remainder of this article. The
fundamental elements follow. For additional information con-
cerning these formulas and terms, refer to [1].
• BCWS – budgeted cost of work scheduled.
• BCWP – budgeted cost of work performed.
• ACWP – actual cost of work performed.
• BAC – budget at completion.

EAC (estimate at completion) = ACWP (cumulative) +
CPI-1 [BAC – BCWP (cumulative)]

Applying Management Reserve to
Software Project Management

Walter H. Lipke
Oklahoma City Air Logistics Center, Directorate of Aircraft Maintenance, Software Division

Today’s standard of practice for managing a project’s management reserve is an art
form. In an effort to make this activity more scientific, the Software Division at the
Oklahoma City Air Logistics Center has begun to use an extension of the Cost/Sche-
dule Control Systems Criteria (C/SCSC) [1] technique to manage the reserve com-
ponents of a software project to achieve the expected completion date and cost.

Figure 1. Management reserve.

Software Engineering Technology

18 CROSSTALK The Journal of Defense Software Engineering March 1999

Figure 3. Cost ratio vs. CPI-1.

CPI (cost performance index) = BCWP / ACWP
(Greater than 1 is good.)

TCPI (to complete performance index) = [BAC –
BCWP (cumulative)] / [EAC – ACWP (cumulative)]
(Greater than 1 is good.)

SPI (schedule performance index) = BCWP / BCWS
(Greater than 1 is good.)

TCSI (to complete schedule index) = [BAC – BCWS
(cumulative)] / [BAC – BCWP (cumulative)] (Greater
than 1 is good.)

In review, C/SCSC evaluates the calculations of schedule in
units of dollars, i.e., cost, rather than in units of time. Figure 2
is an example of a project that is executing behind schedule.
Note the Now vertical line. For this example, C/SCSC mea-
sures, in units of dollars, the amount project performance lags
behind schedule by schedule variance (BCWP – BCWS).
Extrapolation of the ACWP line to the calculated EAC value
graphically projects cost overrun, e.g., the difference between
EAC and BAC. Also, graphical extrapolation of the BCWP
line to the BAC value projects schedule slippage in units of
time.

Management Reserve Indicators
Some of the desirable yet difficult to develop characteristics
considered in the development of the MR indicators and
analysis tools were
• Similar appearance for each component.
• Simple visual analysis—readily understood “stoplight” (red,

yellow, or green) conditions.
• Simple or no project tailoring required.
• Simple calculations.
• Usefulness in project management.

We believe that the indicators and the analysis tools we
developed satisfy the above characteristics. The indicators are
• Cost ratio vs. CPI-1.
• Schedule ratio vs. SPI-1.

Cost ratio is total funding available (TFA) for the project
divided by BAC, where TFA is the sum of BAC and funding

reserve. Schedule ratio is negotiated period of performance
(NPOP) divided by planned period of performance (PPOP);
the difference of NPOP and PPOP is schedule reserve. For
clarification, the ratio formulas are

Cost Ratio = TFA / BAC (dollars)

Schedule Ratio = NPOP / PPOP (time)

Both the cost and the schedule indices (CPI and SPI) pro-
vide information about the cumulative performance of the
project at a specific point in time. Also, both indices similarly
indicate good performance by a number equal to or greater
than one. It was observed that the inverse of the indices could
be compared to the corresponding ratios of negotiated vs.
planned values for cost and schedule. If the reciprocal of the
index value is greater than one, the project manager should be
concerned because the project is consuming MR. The level of
the manager’s concern can be determined by comparing the
index value to the appropriate ratio. If the index value recipro-
cal exceeds its corresponding ratio, the manager knows the
project cannot meet the customer’s expectations without cor-
rective measures.

These indicators are graphically portrayed as a time trend
(Figures 3 and 4). Conceptually, the graphs of the two indica-
tors are identical. If the project is performing such that CPI-1

and SPI-1 are less than their respective cost and schedule ratios,
the project is in good shape. If this situation continues, the
project will complete on time and within the allocated cost. If
both CPI-1 and SPI-1 remain at the value of 1.0, the project is
expected to complete as planned—a project perfectly executed.

The differences between the representation of the two
indicators are small. The only significant difference is that
cost ratio has the possibility of varying, and thus, its initial
value is denoted as “CR” with an “o” subscript. The reason
cost ratio varies and schedule ratio does not is because of
the way C/SCSC accounts for cost and schedule. The use of

Figure 2. Cost and schedule analysis.

Software Engineering Technology

CROSSTALK The Journal of Defense Software Engineering 19March 1999

schedule reserve is accounted for by expending effort that does
not gain earned value, i.e., BCWS marches on with time, but
BCWP only does so by increasing earned value. However, cost
is a different matter; the use of funding reserve is not reflected
in ACWP, BCWS, or BCWP.

A nightmare for software project managers is “extras”
thrown at them by the customer. Of course, revised require-
ments are supposed to be renegotiated and reflected by a re-
vised project baseline that includes a new completion date and
changed cost. However, many times the “requirements creep”
seems so trivial that project managers forego the perfect prac-
tice and merely adjust their funding reserve to account for the
change. For many situations, the effort required to re-baseline
the project and negotiate the change is far greater than the
amount of reserve lost. As an internal practice, we advise cus-
tomers that changes are being accrued and that we reserve the
right to negotiate them once it is apparent the effort to do so is
worthwhile; however, until payment occurs for revised require-
ments, the reduction in funding reserve will be reflected in
decreased TFA and thus a lower cost ratio.

Other than the variability of the cost ratio, the graphical
appearance and analysis are virtually identical. The conditions
to determine the health of the project are simple and easy to
recognize. If CPI-1 and SPI-1 are equal to or less than 1.0, the
project can be completed as planned, and the stoplight indica-
tors would be green. And, if the cost of the effort expended
for unplanned requirements does not totally consume the
funding reserve, some funding is expected to remain at
project completion (a project manager’s delight—cash bo-
nuses for everyone on the project). If CPI-1 and SPI-1 are com-
puted to be between the value of 1.0 and their respective ratios,
the stoplight indicator is yellow—the project is not performing
as well as anticipated but is still executable (project manager
and employees get to keep their jobs). The last condition, i.e.,
the red indicator, is evident when CPI-1 and SPI-1 exceed their
respective reserve ratios. The project cannot be completed in

the red dimension if the present conditions continue—the
negotiated cost or schedule is expected to be exceeded (a bad
situation for those involved).

Management Use
The next step is to determine the appropriate management
action when conditions are other than green. Managers have a
choice of four possible strategies to recover a project:
• Adjust overtime or number of employees.
• Realign employees to increase efficiency.
• Reduce performance requirements.
• Negotiate additional funding or schedule.

Generally, strategies 1 and 2 are within the project
manager’s prerogative and are much preferred, whereas strate-
gies 3 and 4 require unpleasant negotiation with the customer.
Application of strategies 3 and 4 are to be used as a last resort
because they build a negative image that impacts future busi-
ness with that customer and others who might contact your
customer as a reference.

Table 1 aggregates all the combinations of conditions pos-
sible for the two indicators and associates each combination
with a specific recommended management action. Certainly,
for multiyear projects, if both indicators are consistently green,
the manager should reward employees—the program has had
good planning and good execution. It is worthy to note that if
one of the indicators is green, the project is recoverable. If one
of the indicators is yellow and the other is red, negotiation
must be considered (recovery miracles do not often happen). If
both indicators are red and the project is far enough along for
everyone to know red means failure is imminent, there is no
alternative—cost and schedule must be renegotiated, or the
project must be willing to absorb the financial loss and endure
the humiliation of a major schedule slippage. Under these
conditions, managers and employees are at risk to be replaced.

A viable action under project manager control is to realign
employees to increase their efficiency; however, realignment
requires in-depth understanding of the strengths and weak-

Table 1. Recovery strategies.

Figure 4. Schedule ratio vs. SPI-1.

.svRC
IPC 1-

.svRS
IPS 1-

noitcA

neerG neerG .seeyolpmedraweR

neerG wolleY .TOesaercnI

neerG deR .elpoeproTOesaercnI

wolleY neerG .TOesaerceD

wolleY wolleY .stnemngissatsujdadnaweiveR

wolleY deR .)eludehcs(noitaitogenredisnoc;stnemngissatsujdA

deR neerG .elpoeproTOesaerceD

deR wolleY .)gnidnuf(noitaitogenredisnoc;stnemngissatsujdA

deR deR .reganamerif;)stnemeriuqer,eludehcs,gnidnuf(noitaitogeN

Applying Management Reserve to Software Project Management

20 CROSSTALK The Journal of Defense Software Engineering March 1999

nesses of the staff and the roles the project requires. To incor-
rectly match staff to new roles can seriously impact perfor-
mance efficiency. The seriousness of the staff deficiencies and
the length of time remaining on the project are to be consid-
ered in taking employee realignment actions.

Calculations
Two of the more manageable strategies under the sole control
of the project manager are varying overtime and number of
employees, for which a few helpful formulas are given in the
following section. The equations are presented first for sched-
ule recovery, then cost recovery. Bear in mind that reserve
funding is used for schedule recovery; people and overtime are
increased. For cost recovery, the opposite must occur; people
and overtime are decreased at the expense of schedule reserve.
It also is important to remember that the formulas are con-
structed to resolve the predicted schedule or cost overrun by
adjusting either staffing or overtime, not both. In other words,
the results of the computations can be used to establish the
bounds for the management action.

For Schedule Recovery
To determine the average number of employees needed for the
remainder of the project, calculate

ESR = [BAC – BCWP (cumulative)] / [CAR • project
time remaining (years)], where CAR (Cost Accrual
Rate) = total average cost per person / year. (The term
[BAC – BCWP (cumulative)] represents the project’s
remaining schedule in dollars.)

The number computed should be larger than the initial
average staffing number. The difference in the two numbers
provides information regarding the adjustments needed in the
project’s man-loading profile. If TFA is used instead of BAC,
the project can be expected to use all the funding reserve.

To determine the overtime (OT) needed, calculate TCSI-1

to determine the ratio of the actual to the planned schedule
remaining—the ratio will be larger than one when the project
is behind schedule. The computed value of TCSI-1 is then used
in the calculation of the OT rate required for the remainder of
the project. The elevated OT rate is computed using the fol-
lowing equation.

OTSR = (TCSI-1) • (1+OTp) – 1, where OTp is the
planned OT rate.

The expectation is that by working at this rate, employees
will complete the project on the planned date. If the OT rate
exceeds what is considered a “burn out” threshold, an increase
in staffing should be considered. If TFA is substituted for
BAC, the OT rate required will be less; however, all schedule
reserve is expected to be used.

For Cost Recovery
To determine the average number of employees needed for the
remainder of the project, calculate

ECR = [BAC – ACWP (cumulative)] / [CAR • Project
time remaining (years)], where CAR is the same as for
the schedule calculation. (The term [BAC – ACWP
(cumulative)] represents the remaining project funds.)

The number computed should be smaller than the initial
average staffing number. Similar to schedule recovery, the
difference in the two numbers provides useful information
concerning the man-loading change needed. If TFA is substi-
tuted for BAC, the project can be expected to use all the fund-
ing reserve.

The overtime calculation for cost recovery is very similar
to the calculation presented previously for schedule recovery.
First, calculate TCPI-1 to determine the ratio of the actual to
the planned funding remaining—the ratio will be smaller

Figure 6. Prototype project: schedule ratio vs. SPI-1.

Figure 5. Prototype project: cost ratio vs. CPI-1.

Software Engineering Technology

CROSSTALK The Journal of Defense Software Engineering 21March 1999

than one when earned-value efficiency
is poor. Analogous to schedule recovery,
the value of TCPI-1 is used in the com-
putation of the OT rate for cost recov-
ery required for the remainder of the
project. The adjusted OT rate is calcu-
lated using the following equation.

OTCR = (TCPI-1) • (1+OTp) – 1

The expectation is that by working at
this reduced OT rate, employees will
complete the project at the planned cost.
If the OT calculation produces a nega-
tive number, the project must reduce its
staffing. If TFA is substituted for BAC in
the calculation, a smaller decrease in OT
rate will result so as not to exceed the
available funding reserve.

Project Application
Over the last year, we have been proto-
typing these management tools and ideas
in a large development project. As can be
seen in Figures 5 and 6, not much infor-
mation about the usefulness of the tools
can be stated; the project has performed
too well. To date, no cost or schedule
recovery has been required. However, a
few observations can be made. Before
the tools were developed, the only re-
serve component considered in project
planning was funding. Figure 6 illus-
trates this point; the prototyping project
has a schedule ratio of 1, thereby indicat-
ing the absence of schedule reserve.
Because they recognize the value and
reduced risk of having two dimensions
of MR, our managers now pay much
more attention to the schedule compo-

nent. The new projects are being
planned with consideration for schedule
reserve.

Other Thoughts
In considering the application of these
tools, you should recognize that consider-
able discretion is required. If applied in
too rote a manner, especially early in a
project, there is risk of tampering, e.g.,
overcorrection. Generally speaking, if
yellow and sometimes even red indica-
tions occur early in the project, it is wise
to merely look into the problem and wait
for the next review before taking action.

Summary
The concepts presented are extensions of
C/SCSC and are targeted to the effective
use of MR. The tools presented provide
simple visual aids to assess project
health, which, in turn, leads to sug-
gested management actions. Calculation
formulas are also provided to further
refine the recommended management
action. This set of management tools
should be easily applied by anyone who
uses C/SCSC for software project man-
agement.

The prototyping of the tools per-
formed to date does not provide suffi-
cient information to show their useful-
ness. Even so, because we believe that
the indicators, prescribed management
actions, and formulas are conceptually
sound, we are proceeding with their
application to other projects. By ex-
panding the application of the MR
management technique this year, we

expect to broaden our perspective by
gaining additional inputs from several
managers. u

Reference
1. Fleming, Quentin W., Cost/Schedule

Control Systems Criteria, The Manage-
ment Guide to C/SCSC, Probus, Chi-
cago, 1988.

About the Author
Walter H. Lipke is the
deputy chief of the
Software Division at the
Oklahoma City Air
Logistics Center. The
division comprises
approximately 600

employees, most of whom are electronics
engineers. He has 30 years experience in
the development, maintenance, and man-
agement of TPS. In 1993, under his direc-
tion, the TPS and industrial automation
functions of the division became the first
Air Force software activity to achieve
Software Engineering Institute Capability
Maturity Model CMM Level 2. Likewise,
in 1996, these functions became the first
software activity in federal service to
achieve SEI CMM Level 4 distinction.
Recently, under his direction, the TPS and
IA software functions achieved ISO 9001
and TickIT registration. He is a profes-
sional engineer with a master’s degree in
physics.

OC-ALC/LAS
Suite 2S12
3660 C Avenue
Tinker AFB, OK 73145-9144
Voice: 405-736-3335
Fax: 405-736-3345
E-mail: wlipke@lasmx.tinker.af.mil

If your experience or research has produced information
that could be useful to others, CROSSTALK will get the
word out. We welcome articles on all software-related
topics, but are especially interested in several high-
interest areas. In a future issue, we will place a special,
yet nonexclusive, focus on

Defense Information Infrastructure
Common Operating Environment (DII COE)

September 1999
Article Submission Deadline: May 1, 1999

Call for Articles
We will accept article submissions on all software-

related topics at any time; issues will not focus exclu-
sively on the featured theme.

Please follow the Guidelines for CROSSTALK Authors,
available on the Internet at http://www.stsc.hill.af.mil.

Ogden ALC/TISE
ATTN: Denise Sagel
CROSSTALK Features Coordinator
7278 Fourth Street
Hill AFB, UT 84056-5205

Or E-mail articles to features@stsc1.hill.af.mil. For
more information, call 801-775-5555 DSN 775-5555.

Applying Management Reserve to Software Project Management

22 CROSSTALK The Journal of Defense Software Engineering March 1999

Any information technology
(IT) system needs its computing
 resources to operate correctly

(system integrity) and should maintain
the value of its information (data integ-
rity). Unfortunately, adverse events may
damage data integrity or system integ-
rity or both.

Contingency planning for IT sys-
tems focuses on preserving, enabling
recovery, or the graceful degradation of
system or data integrity. Unfortunately,
contingency mechanisms that work in
one adverse situation may be hopelessly
inadequate in another. Consequently,
different contingency plan types exist
for different “disasters.” The two pri-
mary types are physical and logical
event plans.

Traditional IT contingency plans
address physical events such as flood,
fire, earthquake, war, or loss of power.
Many sources discuss traditional con-
tingency planning, which often empha-
sizes replication and physical separation
to guard against physical disasters. Such
traditional planning does not consider
logical events.

A logical event (LE) strikes all sites
that have similar information configura-
tions (software, data, and firmware)—no
matter how widely separated. The im-
pacted system also may corrupt IT that
is down the information flow stream. LE
contingency planning has two subcat-
egories: plans for incompletely under-
stood systems and plans for well-under-
stood systems. Because the Y2K problem
is an LE, discussion of LE contingency
planning is appropriate.

LE contingency planning borrows
from systems security principles, which
include auditing, system modeling,
input and output validation, and in-

strumentation. This article outlines the
properties that a contingency plan
strives to preserve, suggests techniques
for further investigation in Y2K LE
contingency planning, and explains LE
contingency plans with respect to tradi-
tional plans.

Y2K planning is about risk manage-
ment. Risk management involves
• Identifying risks (potential threats

and vulnerabilities).
• Analyzing risks by evaluating, cat-

egorizing, and prioritizing them.
• Planning for risks.

Contingency planning reduces to
• Creating mechanisms to identify the

events that trigger contingency
actions.

• Defining what the contingency
actions are (either automatic or
manually executed actions).

• Preparing the responsible parties by
documenting who they are and by
training them to be ready.

Weak Contingency Planning
An occasional protest to LE contin-
gency planning is to offer a weak (or
no) contingency plan followed with,
“What more can be done? I can’t plan
for every possibility!” For example, a
weak plan might call for canceling
vacations and putting support person-
nel on call. This is merely a beginning
that, unfortunately, does not take ad-
vantage of all available information.

Procedures to deal with a disruption
should address the event’s most probable
serious consequences. Scale the plan to
fit the consequences. For instance, if you
run out of paper when printing E-mail,
you acquire more paper—you do not
buy a paper mill. However, if you run
the U.S. Mint and you frequently run

out of paper for money, perhaps you
should buy a paper mill (or mint more
coins). Planning for every event is im-
possible and counterproductive. It is
prudent to analyze the adverse events
that could occur (for example, Y2K
problems) and construct mechanisms to
preserve, enable recovery, or gracefully
degrade system or data integrity.

Contingency Plans and
Integrity
An IT system should be reliable, correct,
and accurate. These integrity principles
divide into two categories: data and
system integrity. Data and system integ-
rity include accuracy, completeness,
consistency, timeliness, authenticity,
authorization, precision, compliance
with laws, regulations, organization
policies, and procedures, and evidence
that all of the proceeding properties are
fulfilled [4]. IT that loses system or data
integrity is worse than useless—it may
be misleading and even dangerous. In-
tegrity principles are fundamental re-
quirements to reliable IT operation.

Contingency plans state how to
manage the planned degradation, pres-
ervation, or restoration of system and
data integrity. Not all adverse events
impact all integrity principles. To create
a contingency plan for a particular
system, one addresses that system’s
requirements with respect to a catastro-
phe by documenting how to handle the
integrity of specific requirements.

Physical Event Contingency
Plans
Traditional contingency planning,
whether from a computer-age view-
point or not, assumes that problems are
physical in nature. Adverse events take

Logical Event Contingency Planning for Y2K
Robert L. Moore and Roberta H. Krupit

Coastal Research and Technology, Inc.

Traditional contingency planning methods do not work well for logical events, such as year 2000
(Y2K) problems. And although there are many different types of logical event contingency plans, those
that work well for some situations may be of no use for others. This article discusses the unique aspects
of logical event contingency plans and helps you plan appropriate strategies to deal with logical events.

CROSSTALK The Journal of Defense Software Engineering 23March 1999

the form of flood, fire, earthquake, war,
terrorism, riot, hurricane, tornado,
sabotage, loss of electricity, equipment
failure, flu epidemic, and so on.

The distinguishing feature of physi-
cal problems is distance. A gas station
explosion might impact business opera-
tions at a restaurant half a block away
but will not impact operations at an-
other gas station 100 miles away. Physi-
cal “disasters” have less direct impact as
distance from the disaster increases.

Traditional contingency plans use
the localization of physical disasters by
emphasizing IT duplication in physi-
cally protected or remote locations.
There is more to contingency planning
than creating backups, of course. Other
parts of physical event contingency
planning include educating staff in
contingency procedures, ensuring ad-
equate management and security con-
trols for operation during an event, cost
analysis of recovery options, and
mechanisms to rapidly transfer control
to alternate sites. In any case, the ulti-
mate safeguard in a physical event con-
tingency plan is a remote operations
center (ROC) that faithfully duplicates
the capabilities of the primary opera-
tions center [7].

Fortunately, disaster planning litera-
ture covers the creation of an ROC.
Consequently, even though the design,
creation, and operation of an ROC are
not easy, they are sufficiently docu-
mented that we need not revisit them
here except in contrast to LE plans.

Logical Event Contingency
Plans
The logical and physical worlds are
fundamentally different, as are logical
and physical events. A logical event, such
as a bug in command and control (C2)
software that shuts down pumping op-
erations at a gas station based on a quar-
terly pump maintenance query, will not
impact a neighboring restaurant but may
impact every gas station with the same
C2 software. Indeed, LEs may corrupt
otherwise operational systems down the
information stream from the impacted
system. A plan to address physical events
is unlikely to help with an LE (and vice
versa).

Adverse logical events are the com-
bination of threats and vulnerabilities, a
combination that is possible due to
bugs at some level (requirements, de-
sign, or implementation). Logical
events can follow failure to anticipate
possible data forms, hazards that could
attack a system (like vulnerability to a
virus), unintended intercomponent
interactions, or design assumptions that
eventually destabilize the system (Y2K).

Computer security events are typi-
cally LEs. Computer security events
provide clear examples of logical “disas-
ters” (such as viruses and Internet
worms). Methods to mitigate security
events are similar to methods for logical
events in general and Y2K events in
particular.

IT security focuses on preserving a
system and its information content
against malicious attempts to make data
and resources unavailable, unreliable,
inaccurate, or inefficient. IT security
begins by trying to avoid events and
concludes by building mechanisms to
deal with events should they happen

anyway. System development tries to
avoid LE problems but uses contin-
gency plans to address expected or
unexpected potential threats. An LE
contingency plan focuses on preserving
a system and its information content
against events that make data and re-
sources unavailable, unreliable, inaccu-
rate, or inefficient.

The comparison of the Y2K LE
with a virus is indeed appropriate. Y2K
consequences, although not malicious,
degrade IT much like viruses.

How an LE impacts IT depends on
the “distance” between the various
components. Coupling, cohesion, and
similarity of function and form deter-
mine distance. As understanding of a
system increases, logical contingency
plans grow from generic catch-all to
specific plans. This understanding
provides a means to develop more
detailed solutions, such as
“checksums” and logging mechanisms
on automated actions and rapid de-
bugging measures [4, 6].

Creating “checksums” from inputs and
outputs depends on determining what valid
inputs and outputs could be:

1. Using documentation, test cases and
results, maintainer and user system knowl-
edge, and accumulated live inputs and outputs
surmise a set of acceptable inputs and out-
puts. This is a blueprint for what will and will
not be allowed as inputs and outputs. This
method is essentially anecdotal. However, it is
also extremely practical in its simplicity (no
special techniques or tools needed) and in its
efficiency (the data is readily available). Take
care that knowledge of historical inputs and
outputs does not unintentionally exclude
legitimate future input or output variations.

2. Calculate the weakest precondition
(wp) or strongest post-condition (sp) to derive
a set of conditions that must hold true either
before or after execution, for the routine to
function correctly. wp(S,R) is “the set of all
states such that execution of [routine] S

begun in any one of them is guaranteed to
terminate in a finite amount of time in a state
satisfying [expected result] R” [3]. Similarly,
sp(S,I) represents that if [input condition] I is
true, execution of S results in sp(S,I) true if S
terminates [2].

Both wp and sp are obscure and have
minimal automated support. However, they can
be calculated almost completely mechanically.
wp and sp are easiest to derive when good
software engineering practices have gone into a
routine (for instance, cyclomatic complexity is
low, nesting is low, the routine is not too large,
and the code is structured). Calculating wp and
sp also requires more mathematical ingenuity
when dealing with loops. The most practical
method to determine wp or sp is to perform the
calculations in sections with good software
engineering or non-loop structures and to
heuristically estimate what should be true in the
spirit of wp and sp in the harder sections (see
sidebar “Calculating Weakest Precondition for a
Simple C Routine” on next page).

Calculating Inputs from Valid Outputs or
Outputs from Valid Inputs

Logical Event Contingency Planning for Y2K

24 CROSSTALK The Journal of Defense Software Engineering March 1999

Y2K LE Contingency Planning
Most Y2K contingency planning is LE contingency planning.
Writing a Y2K contingency plan depends on how much is
known about a system. Y2K triage determines how much is
known and divides Y2K-impacted systems into two categories:

Category 1 – Critical and noncritical systems that because
of fiscal, technical, or time constraints or mission-related
decisions will not be worked on with respect to Y2K.
Category 2 – Critical systems that will be examined,1

possibly fixed, and tested and for which adequate re-
sources exist to accomplish these tasks.
Category 1 systems need plans that address Y2K conse-

quences at a macroscopic level (generic plans). Conversely,
contingency plans for Category 2 systems are based on infor-
mation derived from analyzing and possibly repairing the
systems (specific plans).

Specific LE Contingency Plans
Compared to systems in Category 1, much is known about
Category 2 systems. Information on what a Category 2 sys-
tem does, how it does it, which sections of the code deliver
what functions, etc., is usually available. This information is
the basis of all subsequent contingency planning. It helps
answer both technical (how do I guard against event X?) and
management (which functions are important to me?) ques-
tions. (Generic LE contingency planning techniques, which

are discussed later, may also apply to a system eligible for a
specific plan, but not vice versa.) Specific plans feature an
array of techniques2,3 including input and output validation,
auditing, and code instrumentation [4, 6]. An LE contin-
gency plan’s goals include the following:
• Detect problems quickly.
• Determine a specific cause for the problem.
• Determine a repair or, if no feasible repair exists, reduce

or prevent further impact from the problem.
• Recover information about damage from the problem so

that anything lost can be restored.
• Demonstrate due diligence in anticipating, avoiding, and

mitigating problems.
The following subsections outline ideas for specific plans.

Input and Output Validation
Recovery time and cost are cut when problems are noticed
quickly. One way to notice problems is to automatically
validate inputs and outputs [4]. An understanding of inputs,
outputs, and their interrelationship requires insight into both
the data form and function4 (see sidebar below). To use input
and output validation as a Y2K defense
• Determine valid outputs or inputs or both, usually at a

subroutine level. (Determining outputs is often easiest.)
• Given known, valid outputs, calculate valid inputs (or

conversely, valid outputs from inputs (see sidebar below,

Calculating Weakest Precondition for a Simple C Routine
The following example shows how to calculate
wp(S,R). (wp is discussed in the sidebar
“Calculating Inputs from Valid Outputs or Outputs
from Valid Inputs” on previous page). In this
example, S is the program to be executed. R is a
statement containing as much information as
possible about what is hoped will be true after S
executes. In this example, wp(S,R) is used to detect
conditions that would cause R to not be true after S
executes—that is, error conditions. Once wp(S,R) is
calculated, it can be used as a built-in data check
to see if errors will occur. Any data inputs that
falsify wp(S,R) will cause the routine represented
by “S” to produce unexpected results.

One way to use wp(S,R) is to place S in the
context of a statement such as “if wp(S,R) then do
S else report error.” The following example
demonstrates working out the full wp(S,R)
calculation. Doing the full calculation for most
programs is too tedious. Usually, contingency error-
trap conditions are derived through a combination
of formal wp calculations in easy code segments
and heuristic estimates of what the calculations
should look like in more difficult code segments.
(See http://www.coastalresearch.com/
for definitions and more examples of both the
formal and the heuristic techniques.)

� return maintenance;
}”

For a more detailed explanation of the
mathematics that follow, see http://
www.coastalresearch.com/. Note that
“∨” means “OR” or “union,” “∧” means “AND”

or “intersection,” “⇒” represents “implies,” “F”
is false, and “T” is true. The calculation uses the
fact that if the symbol “a” may be expressed as
the sequence of symbols “b;c”, then wp(a,R) =
wp(b;c,R) = wp(b,wp(c,R)).

R = “currentyear ≤ maintenancedue =

max(currentyear,lastservice+5) ≤
currentyear+5,” because the “business rules”
(known to the source code maintainers or users)
say that maintenance occurs every five years at
the maximum. The rules also say how the current
year and the maintenance year are related.
wp(S,R) = wp(�;�;�,R) =

wp(�;�,wp(�,R)) =

wp(�;�,wp(maintenancedue = maintenance,

currentyear ≤ maintenancedue =

max(currentyear,lastservice+5) ≤
currentyear+5)) = wp(�;�, currentyear ≤

In this example, the programmer interpreted the
statement “the C compiler made by company X is
Y2K compliant” to mean that any software compiled
using that compiler would be compliant. The derived
wp(S,R), if checked before the routine S executes,
provides an error detector to guard against the
programmer’s misinterpretation.
Let S =
“ #include <stdio.h>

#include <time.h>
#include <stdlib.h>

int maintenancedue (int lastservice)
{
 int maintenance, servicedue, currentyear
 long currentdate;
 struct tm *t;

 time(¤tdate);
 t = localtime(¤tdate);
 currentyear = (int) t->tm_year;

� servicedue = 5 + lastservice;

� if (currentyear >= servicedue)

� maintenance = currentyear;
 else

� maintenance = servicedue;

Software Engineering Technology

CROSSTALK The Journal of Defense Software Engineering 25March 1999

“Calculating Weakest Precondition for a Simple C Rou-
tine”).

• Add source code to beginning or end of each subroutine
(or whatever level valid input and output sets were deter-
mined) to check incoming (or outgoing) data to verify
that it is “within range.” If the input (or output) data is
out of range, take whatever action needed, e.g., issue
warning messages, write an error log, or halt execution.
Input/output validation is a good practice that may even

provide a defense against the most pernicious Y2K error—
unrecognized data corruption just short of system failure.

Event and Data Auditing
Audit information records when and how events occur—
critical information in planning and executing recovery.
Event auditing logs the actions and logs calls by routines,
calls to routines, the order in which calculations take place,
etc., to localize a problem’s cause. Data auditing records the
transactions against each data item. This traces where data
corruption exists, how far it has spread, and perhaps what
might be done to correct it. Together, event and data auditing
diagnose a system by identifying an LE’s cause and effect [6].
A specific contingency plan explains how to collect the infor-
mation and what to do with it.

Using Debuggers and Source Code Instrumentation
to Build “Audit” Trails
Running an “instrumented” or “debug” version of a system
accumulates audit-like information to find and diagnose errors
after they have occurred. Although collecting information by
using test or debug tools is not traditional auditing, these tools
are practical because standard audit trails are often not detailed
enough. For instance, test instrumentation tools add code to
an application that records every execution branch choice and
perhaps even value settings. (Some debuggers have a trace
mode that provides equivalent information.) Likewise, debug-
ging tools allow “break points” to be set in software. Program
execution is suspended when a break point is encountered,
allowing queries on variable values. Some debuggers permit
interaction; other debuggers and all instrumentation tools
provide only post-execution information.

Presuming there will be no bugs from debug or instrumen-
tation interaction with the source code at compile time, you
can use the following procedure of instrumented and debug
source code versions to track down and diagnose Y2K events
• Create an instrumented version of the application. Create

a debug version of the application.
• Retain a non-debug, noninstrumented version of the

application for execution during all periods when Y2K
events are unlikely. (Debugging and instrumentation data
generation may slow the application.)

maintenance = max(currentyear, lastservice+5)
≤ currentyear+5) = wp(�, wp(�,

currentyear ≤ maintenance = max(currentyear,

lastservice+5) ≤ currentyear+5))

However, wp(�, currentyear ≤ maintenance =

max(currentyear, lastservice+5) ≤
currentyear+5) = [(currentyear ≥ servicedue) ∨
(currentyear < servicedue)] ∧ [(currentyear ≥
servicedue) ⇒ wp(maintenance = currentyear,

currentyear ≤ maintenance = max(currentyear,

lastservice+5) ≤ currentyear+5)] ∧
[(currentyear < servicedue) ⇒ wp(maintenance

= servicedue, currentyear ≤ maintenance =

max(currentyear, lastservice+5) ≤
currentyear+5)] = [T] ∧ [(currentyear ≥
servicedue) ⇒ (currentyear ≤ currentyear =

max(currentyear, lastservice+5) ≤
currentyear+5)] ∧ [(currentyear < servicedue)

⇒ (currentyear ≤ servicedue =

max(currentyear, lastservice+5) ≤
currentyear+5)] = [(currentyear ≥ servicedue)
⇒ (currentyear ≤ currentyear =

max(currentyear, lastservice+5) ≤
currentyear+5)] ∧ [(currentyear < servicedue)

To see how this works in practice, suppose
that it is now the new millennium. Let the current
year be 2001, represented as currentyear=101 in
the source code (check the C definitions).
Supposing the last maintenance was in 1995,
represented as lastservice = 1995, S might be
supplied by a database to the routine S. Executing
S should return that the maintenance is due now,
in 2001. Instead, the routine returns 2000.

A follow-on routine that flags equipment for
maintenance by checking to see if the
maintenance due date is equal to the current year
would return false—and continue to return false
forever. To a casual reader (or to a hurried Y2K
analyst under pressure to get the job done), the
code looks fine. But if the result of the wp(S,R)
calculation is checked, it will be found to be false.
Using the wp(S,R) as a “guard” before executing
S would prevent this error.

As a practical matter in this example, an
experienced C programmer could have found the
error with less work than calculating wp(S,R). In
more complicated routines, or where someone
with enough time and experience to read the
code is unavailable, calculating wp(S,R) using a
combination of formal and heuristic techniques
holds the advantage.

⇒ (currentyear ≤ servicedue = max(currentyear,

lastservice+5)≤currentyear+5)]=R’

wp(�, R’) = wp(servicedue = 5 + lastservice,

[(currentyear ≥ servicedue) ⇒ (currentyear ≤
currentyear = max(currentyear, lastservice+5) ≤
currentyear+5)] ∧ [(currentyear < servicedue) ⇒
(currentyear ≤ servicedue = max(currentyear,

lastservice+5) ≤ currentyear+5)]) = [(currentyear

≥ 5 + lastservice) ⇒ (currentyear ≤ currentyear

= max(currentyear, lastservice+5) ≤
currentyear+5)] ∧ [(currentyear < 5 + lastservice)

⇒ (currentyear ≤ 5 + lastservice =

max(currentyear, lastservice+5) ≤ currentyear+5)]
If S executes only when “[(currentyear ≥ 5 +

lastservice) ⇒ (currentyear ≤ currentyear =

max(currentyear, lastservice+5) ≤ currentyear+5)]

∧ [(currentyear < 5 + lastservice) ⇒ (currentyear

≤ 5 + lastservice = max(currentyear, lastservice+5)

≤ currentyear+5)]” (the result of the wp(S,R)
calculation above) is true, R will be satisfied. (To
calculate the truth or falseness of this quantity, note
that for two symbols “a” and “b,” “a ⇒ b” is false
only if “a” is true and “b” is false.) Inputs that falsify
the result of the calculation are error conditions and
should be guarded against.

Logical Event Contingency Planning for Y2K

26 CROSSTALK The Journal of Defense Software Engineering March 1999

• On any date or time when a Y2K
event is likely, use the instrumented
version of the application in place of
the standard version. If a Y2K error
appears, use the “audit” information
from the instrumented version to
identify the instruction sequence that
occurred during the erroneous run.

• Use the debug application version to
investigate the erroneous execution
sequence found with the instru-
mented application.
Specific tools are not necessary to

gather audit-like information. Anyone
who can write and compile code can
add debug and trace statements. Tools
merely make life easier. In any case,
audit information is valuable in follow-
ing an event’s cause and effect.

Audit Through Application Models
Some Y2K assessment and repair tools
construct comprehensive source code
models through reverse engineering
techniques. During assessment, they
help the programmer locate potential
Y2K problems and may even provide
insight to fix problems. To audit using
these models simply means that if a
Y2K event occurs, the model, rather
than being used just as an error predic-
tor, can help diagnose the problem. The
model constitutes a “holistic” audit in
its ability to localize problems given the
real-life information about what hap-
pens when an error occurs.

Presuming that an up-to-date model
of the source code and its interactions
and dependencies can be maintained, a
model can be used to rapidly diagnose
errors as follows:
• Use a reverse engineering (see sidebar

“Reverse Engineering”) tool to
model the application, beginning
with the implementation level and
working toward a design-level un-
derstanding. Identify all real and
suspected date data usage. (Deriving
this information is essentially what
goes on during a sophisticated Y2K
bug search.) Keep this model cur-
rent throughout revisions. If pos-
sible, trace the user’s experience-
based “business rules”
understanding through the applica-
tion. This trace may help in under-

standing the side-effects of Y2K
problems.

• When a Y2K bug occurs, note the
functional area and as much other
information as possible about the
bug. Pinpoint the bug in the reverse
engineered model.

• Using the model’s control and data
flow information, along with the
data usage information, trace the
bug manifestation to the code and
data flows that caused the bug.

• Follow the bug as it propagates
through the code and data to find
all bug implications.

• Repair all problems caused by the
bug. Update the model to reflect the
repairs.

Generic LE Contingency Plans
Limited information about systems in
Category 1 confines generic LE contin-
gency plans to addressing broad possi-
bilities. Generic plans end up being like
physical event plans; however, generic
plan techniques apply equally to systems
in Categories 1 and 2. Generic contin-
gency plan mechanisms include service
degradation, internal recovery, commer-
cial recovery, cooperative recovery, and
combination recovery strategies [7].

Service Degradation Strategies
Service degradation strategies are useful
when IT is partially operational. Service
degradation involves
• Reduction of Service: Some, but

not all, functionality is available [7].
This strategy works when part of
the system experiences problems,
but a work-around bridges the gap.
The work-around might not be
desirable or meet all requirements,
but it allows something like busi-
ness-as-usual pending repairs. For
instance, when a central calendar
management system is inoperable,
anyone planning events is incon-
venienced. Replacing the calendar
system with a temporary text file to
share information may suffice.

• Manual Replacement of IT-Based
Service: IT tasks can sometimes be
performed manually. This occurs
when manual calculations substitute
for automated functions, or paper

records replace on-line data. Knowl-
edge about the manual procedures
often exists, since the IT service
superseded the original manual
procedures [7]. Manual procedures
do not mean abandoning automa-
tion—if a corporate accounting
program on a mainframe is unavail-
able, perhaps a personal computer
spreadsheet could substitute.

• Withdrawal of Service: Functions
without immediate operational
impact (planning, research and
development, etc.) are dispensable
during an LE. The functionality
may be too complex, require too
much precision, or be too time-
consuming for manual execution
[7]. Because the functionality can-
not be acceptably executed without
the unavailable system and the func-
tionality is not immediately critical,
withdrawal of the service is the best
choice.

Reverse
Engineering

Reverse engineering is defined as “the
process of analyzing a subject system to (1)
identify the system’s components and their
interrelationships and (2) create representa-
tions of the system in another form or at a
higher level of abstraction.” [1] (See Figure 1.)

Reverse engineering covers a variety of
techniques; only a few are relevant here.
Beginning with source code, reverse engineer-
ing can, for example, produce control and data
flow information (often represented graphically)
both between and within routines, identify the
ripple effects of changing one piece of source
code with respect to other code, and even
deduce the domain of valid inputs and outputs.

Reverse engineering depends heavily on
automated assistance. Many fine research tools
are free (see http:/ /gulf.uvic.ca/~kenw/
toolsdir/). Building and maintaining a source
code date usage model using a reverse engi-
neering tool can have a significant payoff not
just in diagnosing Y2K problems before critical
dates occur but after supposedly corrected
problems crop up as well.

Software Engineering Technology

CROSSTALK The Journal of Defense Software Engineering 27March 1999

Internal Recovery Strategies
Contingency plans frequently use inter-
nal recovery strategies. These strategies
feature a “can do” attitude of “the pres-
sure is on—let’s get the job down now!”
• Work Round-the-Clock: Working

extra hard sometimes gets a job
done quickly and well. However,
experience teaches that work pro-
duced under pressure is often poorly
done. Plans that use this strategy
need to provide details on getting
the best from people in a short time,
maintaining morale under pressure,
and choosing the right people.

• Train and Assign Extra People: Any
project might benefit from extra
hands. Unfortunately, a crisis is not
the time to bring on new people.
There may be exceptions to this if
the people are of high ability, thor-
oughly trained, and familiar with
the work but (through some quirk
of fate) are working elsewhere. This
strategy requires forethought on
getting good people, training them
adequately, and integrating them
into the team.

• Have Employees On Call: Many
industries use an “oncall” strategy to
have employees available during
unforeseen events. Unless a spot
repair solves the problem, though,
calling employees in at midnight
might accomplish no more than
creating a bleary-eyed work force.
Important details for this tactic
include having a checklist of trivial
repairs to attempt before calling
employees in, diagnostics to deter-
mine when a problem is solvable
from on-call resources, and arrange-
ments in case of unreliable
communications.

• Information Preservation: A classic
“disaster” recovery aid is source code
and data backup. System backups
are prudent. Preserving data and
program code frequently, particu-
larly if multiple versions are retained
(in case the most recent backup was
done after an event occurred but
before the event was noticed), en-
sures a baseline exists. Be sure to
verify that the procedure to recover
saved information works before it is

needed. Be aware, too, that back-
ups may be of limited use during a
Y2K LE, because (1) the backup
may be unreadable by the Y2K-
impacted system, and (2) the back-
up itself might include Y2K errors.

Commercial Recovery Strategies
Commercial recovery strategies help
when an organization cannot recover
from an event because of technical,
personnel, or political issues but can
“hire” a solution.
• Contracting Tasks to Others: Hiring

supplemental employees may aid
recovery from an event. Teams can
temporarily expand to produce re-
sults more rapidly. Alternatively,
added employees can free internal
resources to concentrate on recovery.
Either strategy creates difficulties
similar to those in the above “train
and assign extra people” solution.
Important details in using this strat-
egy include determining the types of
available help and having a purchase
order for services pre-approved.

• Commercially Available System
Alternatives: Are there commer-
cially available equivalents to an
internally developed system? De-
pending on the urgency of repairs,
their technical feasibility, how good
a replacement the commercial alter-
native is for the existing component,

and the cost of the repairs vs. the
commercial substitute, buying a
replacement is an efficient recovery
method. It may require great effort
to fit the commercial substitute into
the existing infrastructure; so, seri-
ously consider the impact before
using this tactic.

Cooperative Recovery Strategies
Cooperation between organizations
with similar systems and problems
might facilitate more robust systems
and more rapid post-event recovery.
Banding together also gives cooperating
organizations a louder voice to vendors
who are making fixes and provides
other opinions on how to proceed. A
drawback is that cooperation helps
those who did not work hard to meet
the challenges while providing little
benefit to those who did their home-
work. Cooperation also risks exposing
sensitive information to potential com-
petitors. A contingency plan that ad-
dresses this strategy helps limit the risks
while enhancing the advantages by
establishing nondisclosure agreements,
exploring the strengths of each party,
and determining administrative proce-
dures for cooperation.

Combination Recovery Strategies
Combining the strategies above gives a
more robust overall solution. For in-

Figure 1. Software abstraction levels.

Logical Event Contingency Planning for Y2K

28 CROSSTALK The Journal of Defense Software Engineering March 1999

stance, hiring temporary on-call em-
ployees might be as effective as using
internal employees while avoiding a
morale impact on long-term staff.

Summary
A good contingency plan accounts for
the importance of the IT being pro-
tected, the contingency mechanisms’
costs and benefits, and the ability of
system developers, maintainers, and
managers to implement the plan. Para-
mount in contingency planning is know-
ing a system’s vulnerabilities, determin-
ing real-world threats, understanding the
combination of threats and vulnerabili-
ties, and then choosing appropriate
contingency mechanisms. u

About the Authors
Robert L. Moore is a
senior software engineer
for Coastal Research
and Technology, Inc. in
the National Security
Agency (NSA) Year
2000 Oversight Office.

He is the author of Y2K compliance
criteria widely used in the U.S. intelli-
gence community and a variety of articles
on software reengineering, reverse engi-
neering, and Y2K issues. Prior to Y2K
work, he worked on software reengineer-
ing projects for NSA’s software engineer-
ing center. He is a certified software test
engineer and has a master’s of science
degree in applied mathematics.

718 Meadow Field Court
Mount Airy, MD 21771
Voice: 301-688-9943
Fax: 301-688-9494
E-mail: rlmoore@romulus.ncsc.mil

Roberta H. Krupit is a
senior software engineer
for Coastal Research
and Technology, Inc. in
the National Security
Agency Year 2000
Oversight Office. She

has worked on software reengineering
projects for NSA and the Office of Naval
Intelligence.

References
1. Chikofsky, Elliot J. and James H. Cross

II, “Reverse Engineering and Design
Recovery: A Taxonomy,” IEEE Software,
January 1990, pp. 13-17.

2. Gannod, Gerald C. and Betty H. C.
Cheng, “Using Informal and Formal
Techniques for the Reverse Engineering
of C Programs,” Proceedings of the 1996
International Conference on Software
Maintenance, IEEE Computer Society
Press, Los Alamitos, Calif., 1996, pp.
265-274.

3. Gries, David, The Science of Program-
ming, Springer-Verlag, New York, 1981,
Chaps. 1, 9-12, 16.

4. Mayfield, Terry, J. Eric Roskos, Stephen
R. Welke, and John M. Boone, “Integ-
rity in Automated Information Sys-
tems,” C Technical Report 79-91,
Institute for Defense Analysis, 1991,
Sections 2.1, 2.2, 3.6-3.9, 3.12. (Avail-
able by writing to INFOSEC Aware-

ness, Attn: V/NISC, National Security
Agency, 9800 Savage Road, Ft. George
G. Meade, MD 20755-6753 or at
http://www.radium.ncsc.mil/tpep).

5. Mohan, C., Kent Treiber, and Ron
Obermarck, “Algorithms for Manage-
ment of Remote Backup Data Bases for
Disaster Recovery,” Proceedings of the
9th Annual International Conference on
Data Engineering, IEEE Computer
Society Press, Los Alamitos, Calif.,
1993, pp. 511-518.

6. National Computer Security Center, “A
Guide to Understanding in Audit in
Trusted Systems,” National Computer
Security Center, 1987, Section 5-6
(Available by writing to INFOSEC
Awareness, Attn: V/NISC, National
Security Agency, 9800 Savage Road, Ft.
George G. Meade, MD 20755-6753 or
at http://www.radium.ncsc.mil/tpep).

7. QED Information Services, Inc., Disas-
ter Recovery: Contingency Planning and
Program Evaluation, Chantico, Port
Jefferson, New York, 1985, Chap. 4.

Notes
1. Some systems from Category 2 may be

returned to Category 1 if Y2K examina-
tion reveals that the systems will be
impossible to repair within existing
resource constraints.

2. A useful related technique is process
isolation—separating data records into
two sets: one set for application X and
one set for application Y to limit data-
propagated errors in X from corrupting
Y (and vice versa). Algorithms may be
adapted from [5].

3. Least privilege or role enforcement (re-
stricting processes to just the accesses and
abilities they need for the current
moment’s action) is another related
mechanism. For instance, if the YY part
of DDMMYY increments years since
1900, YY could overflow as the counter
moves from 31 December 1999 to 1
January 2000 (that is, YY = 100). To
restrict any process that tries to write
DDMMYY to a database to no more
than six characters still allows Y2K prob-
lems to occur but prevents an accidental
overwrite of adjacent data items.

4. This is true if inputs from random num-
ber generators are counted as outside
inputs. Consequently, the random num-
ber is a known quantity as an input, even
if it is not known until run time.

The new commercial standard IEEE/
EIA 12207, “Information Technology –
Software Life Cycle Processes,” is
available from the Defense Automated
Printing Service (DAPS) at no charge.
The standard comes in three parts:

• IEEE/EIA 12207.0, “Standard for
Information Technology – Software
Life Cycle Processes.”

• IEEE/EIA 12207.1, Guide for ISO/
IEC 12207, “Standard for Informa-
tion Technology – Software Life
Cycle Processes – Life Cycle
Data.”

IEEE/EIA 12207 Standard for
Software Lifecycle Processing

• IEEE/EIA 12207.2, Guide for
ISO/IEC 12207, “Standard for
Information Technology – Soft-
ware Life Cycle Processes –
Implementation Considerations.”

Other military and federal specifica-
tions also are available from DAPS.

Defense Automated Printing Service
Building 4/D
700 Robbins Avenue
Philadelphia, PA 19111-5094
Help Desk: 215-697-6257/6396 DSN
442-6257/6396
Fax: 215-697-1462
E-mail: roy_bowser@daps.mil
Internet: http://www.dodssp.daps.mil

Software Engineering Technology

CROSSTALK The Journal of Defense Software Engineering 29March 1999

“The Eleventh Annual Software Technology Confer-
ence (STC ’99), the premier Software Technology Con-
ference in the Department of Defense, is co-sponsored
by the United States Air Force, Army, Navy, and Marine
Corps, and the Defense Information Systems Agency
(DISA). Utah State University Extension is the confer-
ence non-federal co-
sponsor. We anticipate
more than 3,500 partici-
pants from the services,
other government agen-
cies, contractors, indus-
try, and academia.

“The theme for the
Eleventh Annual Soft-
ware Technology Con-
ference is ‘Software and
Systems for the Next
Millennium.’ Information
used for the next millen-
nium will require sys-
tems and software
interoperability. This in-
teroperability must be
joint—across all ser-
vices and forces fighting
together.

“The conference theme helps focus on the need for
planning to meet the critical information needs in the
new millennium. A technically prepared 21st century De-
partment of Defense demands shared information and a
common view of the battlefield. This can only happen
with integrated systems. The challenge is tough; the
outcome will be information dominance.

“We strongly encourage your participation in STC ’99.
Mark your calendars for May 2-6, 1999 to be in Salt
Lake City, Utah to explore new software ideas and
trends. At this premier conference, government, indus-
try, and academia software experts will explore new
ideas and technologies for information systems that will
be used to usher us into the next millennium.”
—Conference sponsors Lt. Gen. David J. Kelley, direc-
tor (DISA); Lt. Gen. William Campbell, director of in-
formation systems for command, control, communica-

tions, and computers (U.S. Army); Dr. Helmut Hellwig,
deputy assistant secretary of the Air Force for sci-
ence, technology, and engineering (U.S. Air Force);
Rear Adm. Kenneth D. Slaght, chief engineer, Space
and Naval Warfare Center (U.S. Navy); and Brig. Gen.
Robert Shea, assistant chief of staff for command,

control, communi-
cations, computers, and
intelligence (U.S. Marine
Corps).

The official STC ’99
registration brochure
was mailed in early Janu-
ary. This year, it is easier
to register early. Send in
your registration forms
with your credit card
number now, and it will
not be charged until
March 30, 1999. You no
longer have to wait until
the last minute to register.

You may visit our Web
site at http://www.stc-
online.org for current
conference information,

exhibit information, registration forms, and housing in-
formation. If you would like a copy of the registration
brochure sent to you, please send an E-mail request to
wadel@software.hill.af.mil or call 435-797-0039.

If we can be of further assistance, please call or E-mail.
This is one conference that you do not want to miss. We
will see you in May!

Dana Dovenbarger, Conference Manager
Lynne Wade, Assistant Conference Manager

Software Technology Support Center
OO-ALC/TISE
7278 Fourth Street
Hill AFB, UT 84056-5205
Voice: 801-777-7411 DSN 777-7411
Voice: 801-777-9828 DSN 777-9828
Fax: 801-775-4932 DSN 775-4932
E-mail: dovenbad@software.hill.af.mil
E-mail: wadel@software.hill.af.mil

Joint Service Co-Sponsors Encourage Your
Attendance at STC ’99

30 CROSSTALK The Journal of Defense Software Engineering March 1999

CCCCCROSROSROSROSROSSTSTSTSTSTALALALALALKKKKK Articles
• Mehlman, Lon, “Implementing a Paperless Environ-

ment: The NAVSTAR GPS Block IIF Engineering Man-
agement System Project,” March 1998.

• Alder, Reuel, “From the Publisher: ‘Today’s Software
Complexity Demands Good CM,’” February 1998.

• Gill, Ted, “Stop-Gap Configuration Management,” Feb-
ruary 1998.

• Ventimiglia, Bob, “Effective Software Configuration
Management,” February 1998.

• “Worth a Look: Configuration Management Readings,”
February 1998.

• “Configuration Management Web Sites,” February 1998.
• van der Hoek, André, Richard S. Hall, Antonio

Carzaniga, Dennis Heimbigner, and Alexander L. Wolf,
“Software Deployment: Extending Configuration Man-
agement Support into the Field,” February 1998.

• Burton, Tom, “Software Configuration Management
Helps Solve Year 2000 Change Integration Obstacles,”
January 1998.

• Starbuck, Ronald A., “Software Configuration Manage-
ment: Don’t Buy a Tool First,” November 1997.

• Haque, Tani, “The F-16 Software Test Station Program:
A Success Story in Process Configuration Manage-
ment,” November 1997.

• Haque, Tani, “Process-Based Configuration Manage-
ment: The Way to Go to Avoid Costly Product Recalls,”
April 1997.

• Dart, Susan A., “Achieving the Best Possible Configu-
ration Management Solution,” September 1996.

• Haque, Sohail, “Introducing Process into Configuration
Management,” June 1996.

• Starbuck, Ronald A., “Software Configuration Manage-
ment by MIL-STD-498,” June 1996.

• Kingsbury, Julie, “Adopting SCM Technology,” March
1996.

• Mosley, Vicky, Frank Brewer, Rita Heacock, Phil
Johnson, Gary LaBarre, Vince Mazz, and Tami Smith,
“Software Configuration Management Tools: Getting
Bigger, Better, and Bolder,” January1996.

• Berlack, H. Ronald, “Evaluation and Selection of Auto-
mated Configuration Management Tools,” November/
December 1995.

• Marshall, Alexa, “Software Configuration Management:
Function or Discipline?” October 1995.

• Marshall, A. J., “Demystifying Software Configuration
Management,” May 1995.

• Meiser, Kenneth, “Terms in Transition: Software Con-
figuration Management Terminology,” January 1995.

• Sorensen, Reed, “Document Management Awareness
Is Increasing,” February 1994.

Publications on Configuration Management
Books
• Burrows, Clive and Ian Wesley, Ovum Evaluates: Con-

figuration Management, Ovum, London, 1998, ISBN 1-
898-97224-9, http://www.ovum.com.

• Conradi, Reidar O., ed., Software Configuration Man-
agement: ICSE ’97 SCM-7 Workshop, Boston, Mass.,
USA, May 18-19, 1997: Proceedings, Springer, Berlin,
1997, ISBN: 3-540-63014-7.

• Mikkelsen, Tim and Suzanne Pherigo, Practical Soft-
ware Configuration Management: The Latenight
Developer’s Handbook, Prentice-Hall PTR, Upper
Saddle River, N.J., 1997, ISBN: 0-132-40854-6.

• Buckley, Fletcher J., Implementing Configuration Man-
agement: Hardware, Software, and Firmware, IEEE
Computer Society Press, Los Alamitos, Calif., 1996,
ISBN: 0-818-67186-6.

• Burrows, Clive, George W. George, and Susan Dart,
Ovum Evaluates: Configuration Management, Ovum,
London, 1996, ISBN 1-898-97276-1, http://
www.ovum.com.

• Sommerville, Ian, ed., Software Configuration Manage-
ment: ICSE ’96 SCM-6 Workshop, Berlin, Germany,
March 25-26, 1996 : Selected Papers, Springer, Ber-
lin, 1996, ISBN: 3-540-61964-X.

• Estublier, Jacky, ed., Software Configuration Manage-
ment: ICSE SCM-4 and SCM-5 Workshops: Selected
Papers, Springer, Berlin, 1995, ISBN: 3-540-60578-9.

• Kelly, Marion V., Configuration Management: The
Changing Image, McGraw-Hill, New York, 1995, ISBN:
0-077-07977-9.

• Ben-Menachem, Mordechai, Software Configuration
Management Guidebook, McGraw-Hill, New York,
1994, ISBN: 0-077-09013-6.

• Compton, Stephen B. and Guy R. Conner, Configura-
tion Management for Software, Van Nostrand Reinhold,
New York, 1994, ISBN: 0-442-01746-4.

• Ayer, Steve and Frank S. Patrinostro, Software Con-
figuration Management: Identification, Accounting,
Control, and Management, McGraw-Hill, New York,
1992, ISBN: 0-070-02603-3.

• Berlack, H. Ronald, Software Configuration Manage-
ment, Wiley, New York, 1991, ISBN: 0-471-53049-2.

• Whitgift, David, Methods and Tools for Software Con-
figuration Management, J. Wiley, Chichester, England
1991, ISBN: 0-471-92940-9.

• Babich, Wayne A., Software Configuration Manage-
ment: Coordination for Team Productivity, Addison-
Wesley, Reading, Mass., 1986, ISBN: 0-201-10161-0.

CROSSTALK The Journal of Defense Software Engineering 31March 1999

Got an idea for BACKTALK? Send an E-mail to backtalk@stsc1.hill.af.mil

Sponsor Lt. Col. Joe Jarzombek
801-777-2435 DSN 777-2435
jarzombj@software.hill.af.mil

Publisher Reuel S. Alder
801-777-2550 DSN 777-2550
publisher@stsc1.hill.af.mil

Managing Editor Tracy Stauder
801-775-5746 DSN 775-5746
managing_editor@stsc1.hill.af.mil

Senior Editor Sandi Gaskin
801-777-9722 DSN 777-9722
senior_editor@stsc1.hill.af.mil

Graphics and Design Kent Hepworth
801-775-5798
graphics@stsc1.hill.af.mil

Associate Editor Lorin J. May
801-775-5799
backtalk@stsc1.hill.af.mil

Editorial Assistant Bonnie May
801-777-8045
editorial_assistant@stsc1.hill.af.mil

Features Coordinator Denise Sagel
801-775-5555
features@stsc1.hill.af.mil

Customer Service 801-775-5555
custserv@software.hill.af.mil

Fax 801-777-8069 DSN 777-8069

STSC On-Line http://www.stsc.hill.af.mil
CROSSTALK On-Line http://www.stsc.hill.af.mil/

Crosstalk/crostalk.html
ESIP On-Line http://www.esip.hill.af.mil

Subscriptions: Send correspondence concerning subscriptions and changes
of address to the following address:

Ogden ALC/TISE
7278 Fourth Street
Hill AFB, UT 84056-5205

E-mail: custserv@software.hill.af.mil
Voice: 801-775-5555
Fax: 801-777-8069 DSN 777-8069

Editorial Matters: Correspondence concerning Letters to the Editor or other
editorial matters should be sent to the same address listed above to the atten-
tion of CROSSTALK Editor or send directly to the senior editor via the E-mail
address also listed above.

Article Submissions: We welcome articles of interest to the defense software
community. Articles must be approved by the CROSSTALK editorial board prior to
publication. Please follow the Guidelines for CROSSTALK Authors, available upon re-
quest. We do not pay for submissions. Articles published in CROSSTALK remain the
property of the authors and may be submitted to other publications.

Reprints and Permissions: Requests for reprints must be requested from the
author or the copyright holder. Please coordinate your request with CROSSTALK.

Trademarks and Endorsements: All product names referenced in this issue
are trademarks of their companies. The mention of a product or business in
CROSSTALK does not constitute an endorsement by the Software Technology
Support Center (STSC), the Department of Defense, or any other govern-
ment agency. The opinions expressed represent the viewpoints of the authors
and are not necessarily those of the Department of Defense.

Coming Events: We often list conferences, seminars, symposiums, etc., that are
of interest to our readers. There is no fee for this service, but we must receive
the information at least 90 days before registration. Send an announcement to
the CROSSTALK Editorial Department.

STSC On-Line Services: STSC On-Line Services can be reached on the Inter-
net. World Wide Web access is at http://www.stsc .hill.af.mil.
Call 801-777-7026 or DSN 777-7026 for assistance, or E-mail to
schreifr@software.hill.af.mil.

Publications Available: The STSC provides various publications at no charge
to the defense software community. Fill out the Request for STSC Services
card in the center of this issue and mail or fax it to us. If the card is missing, call
Customer Service at the numbers shown above, and we will send you a form
or take your request by phone. The STSC sometimes has extra paper copies of
back issues of CROSSTALK free of charge. If you would like a copy of the printed
edition of this or another issue of CROSSTALK, or would like to subscribe, please
contact the customer service address listed above.

The Software Technology Support Center was established at Ogden Air
Logistics Center (AFMC) by Headquarters U.S. Air Force to help Air Force
software organizations identify, evaluate, and adopt technologies that will im-
prove the quality of their software products, their efficiency in producing them,
and their ability to accurately predict the cost and schedule of their delivery.
CROSSTALK is assembled, printed, and distributed by the Defense Automated Printing
Service, Hill AFB, UT 84056. CROSSTALK is distributed without charge to individu-
als actively involved in the defense software development process.

BACKTALK

The current upward trend in information technology (IT) salaries is great, right?
Don’t make me laugh myself into a coma. Statistics show you’re still way under-
paid. Do an apples-to-apples comparison of IT salaries with an equivalent field,
such as professional basketball. A representative IT salary (Jeremy Needers, Web
design intern, $14,500) vs. a typical player’s salary (Shaquille O’Neil, center, $17
million) shows you’re earning roughly 1,172 times less than you’re worth.

It’s not fair. Why should the players get so much more wealth and attention? Is
it because they’re more interesting than you? More charismatic? More exciting? A
rarer commodity? And might I add, far, far better looking?

Maybe we shouldn’t go there. But have you noticed that a typical IT team is
strikingly similar to a typical NBA team? You’ve got one or two star prima donnas
supported by some solid starters, some backups who contribute on-and-off bursts
of genius, and a few bench-warmers who do little else but fill a roster spot.

Unlike the IT world, however, an NBA team’s stars make several times the salary
of the bench-warmers. If you’re sick of watching your team’s desk-warmer sneak
out early in a nicer car than yours, it’s time to learn from the pros how to set your-
self apart as your team’s franchise player. Follow the principles outlined below and
you’ll soon be the darling of your organization, handling your superiors with the
media savvy and charm of Dennis Rodman (minus the dignity).

PUBLICITY. The popular media still hasn’t caught on to the thrill of watching
IT’s design and coding all-stars do their magic. We can only dream they’ll some-
day wake up and give both hoop and engineering heroes equal billing:

“V“V“V“V“Van Horn Scoran Horn Scoran Horn Scoran Horn Scoran Horn Scores 3es 3es 3es 3es 38 in 2O8 in 2O8 in 2O8 in 2O8 in 2OT Nail-biter!”T Nail-biter!”T Nail-biter!”T Nail-biter!”T Nail-biter!”
“P“P“P“P“Pippen’s 4ippen’s 4ippen’s 4ippen’s 4ippen’s 40-F0-F0-F0-F0-Foot Buzzer Beater Lifts oot Buzzer Beater Lifts oot Buzzer Beater Lifts oot Buzzer Beater Lifts oot Buzzer Beater Lifts Bulls Bulls Bulls Bulls Bulls ooooovvvvver Knicer Knicer Knicer Knicer Knicks!”ks!”ks!”ks!”ks!”
“Smith’s Design Review F“Smith’s Design Review F“Smith’s Design Review F“Smith’s Design Review F“Smith’s Design Review Finds inds inds inds inds TTTTTwwwwwooooo Medium-Impact Err Medium-Impact Err Medium-Impact Err Medium-Impact Err Medium-Impact Errors! And He’s Almost on Scors! And He’s Almost on Scors! And He’s Almost on Scors! And He’s Almost on Scors! And He’s Almost on Schedule!”hedule!”hedule!”hedule!”hedule!”

But the media remains out of touch—everyone knows Pippen plays for Houston
now. Before IT gets better press, we’ll have to equip offices with locker rooms
where reporters can gather for an IT hero’s scintillating post-milestone analysis:

“Y’know, we just went out there and programmed hard and let the algorithms come to us. We also did good
following our game plan, y’know, and got some good coding off the bench. I think we just wanted it more. But I’m
sick of carrying this project. I want $15 million or a trade to a project that appreciates my abilities.”

Until this happens, you must use your organization’s own media. For example,
insert subliminal self-promotion material into your E-mails. With skill, you can
humbly, subtly position yourself as the key to all past and future successes:

“To management: Before I discuss our weekly report, I must respond to the praise that has been violently heaped
upon me for my performance on the Foomber project, including praise from direct competitors who are now offering
exorbitant sums for my talent and insider knowledge. In good conscience, I must humbly and publicly acknowledge
that I couldn’t have single-handedly turned the project into the gleaming, profitable organizational ensign it is today—
in contrast to the fetid pool of yak sputum it was when I arrived—without the help of my well-intentioned but far less
talented co-team members. For example, Ralph Nerfderder loaned me a sharpened pencil on several occasions …”

ENDORSEMENTS. Endorsement contracts give you the leverage of appearing
popular and desirable. Endorse products associated with developers. (And I’ll resist
the temptation to take a jab at developers by dredging up worn-out stereotypes.
For example, I’d never suggest an ad with copy like, “Curaid-brand strips! They
hold my glasses together twice as long as the leading brand!”)

Instead, you could endorse something sexier, like pizza. Not that you’d need an
endorsement contract with a pizza chain—you just need your managers to think
you’ve got that kind of star power. If you’re the computer whiz you claim to be,
you should have no problem breaking into the local rag’s ad department computer
and modifying an ad to show a picture of yourself alone at your desk late at night,
along with a snappy, subliminally self-promoting headline:

“When staying late at night redoing work done by bozos,
I make mission-critical, non-long-distance calls to Dominos!”
Use these techniques in the weeks before your next review cycle—who knows

but that they’ll help you get the additional $1 million or $2 million per year you
desire? Have Dennis Rodman’s promoter visit your office and give additional
pointers. Be sure to warn him about the yak spit in the hallway. – Lorin May

Don’t Forget the Feather Boa

