
2 CROSSTALK The Journal of Defense Software Engineering April 1999

If your experience or research has produced information
that could be useful to others, CROSSTALK will get the
word out. We welcome articles on all software-related
topics, but are especially interested in several high-
interest areas. In a future issue, we will place a special,
yet nonexclusive, focus on

Software Best Practices
October 1999

Article Submission Deadline: June 1, 1999

Managing Technological Change
November 1999

Article Submission Deadline: July 1, 1999

Call for Articles
We will accept article submissions on all software-

related topics at any time; issues will not focus exclu-
sively on the featured theme.

Please follow the Guidelines for CROSSTALK Authors,
available on the Internet at http://www.stsc.hill.af.mil.
Send articles to

Ogden ALC/TISE
ATTN: Denise Sagel
CROSSTALK Features Coordinator
7278 Fourth Street
Hill AFB, UT 84056-5205

Or E-mail to features@stsc1.hill.af.mil. For more infor-
mation, call 801-775-5555 DSN 775-5555.

Whether you are in
the market to pur-
chase a new car,
home, computer,
television, or other
high-priced item, the
item’s quality is sure

to affect your buying decision. Every-
one wants high quality, but can we
afford it? In today’s society, we have
been geared to expect higher quality
when paying higher prices. Top-model
products often demand top prices. Now
and then, we do get lucky and get a
Cadillac at a Geo price, but those in-
stances are few.

Since quality and price seem to
correlate, many of us do our homework
before spending large sums of money
on what we hope are quality products.
We are careful to measure quality
through our own individual methods.
One method is usually related to our
senses. For instance, we want to see
how a new coat fits and to hear the
sound of a new stereo before we deter-
mine if the quality is sufficient to meet
our needs. Our other quality-measuring
methods include research and testing.
Before we buy a new computer, we
research the technology details of
memory and speed. And before we

purchase a new car or truck, we want to
test drive it to see how it handles. In
any case, for big-ticket items in our
everyday lives, we generally pay much
more attention to the details and to the
quality before we feel comfortable in
making our buying decision.

I see similarities in the software
acquisition environment. Software
acquirers want high-quality software if
they are paying millions of dollars for
it. And because of this, software
acquirers are highly interested in mea-
suring the quality of software products.
They will monitor the software devel-
oper to ensure software test plans and
test engineering processes are in use.
And when possible, they will “test
drive” the software to see if their re-
quirements are satisfied. With mission-
critical software, the requirement must
be “crash free.”

Software acquirers should also look
for developers who embrace defect
prevention and defect tracking pro-
cesses. As Bala Subramaniam reports in
his article (page 3), effective defect
tracking can enhance software quality
while reducing project costs.

Consider the Software Engineering
Institute Capability Maturity Model
definition for quality.

“The degree to which a system,
component, or process meets
specified requirements; or the
degree to which a system or pro-
cess meets customer or user needs
or expectations.”

 Whether buying or developing soft-
ware, many are faced with measuring
this degree of quality.

Software developers should be eager
to show the customer that they are
quality conscious. Software developers
need to assure the customer that defect
prevention methods, such as peer re-
views and test engineering, are em-
ployed in their development processes.
Test engineering can help verify that
requirements are satisfied at each devel-
opment phase.

Software development teams that
work together with their customer to
set quality goals will best satisfy the
end-user needs and desires. So, whether
you are on the buying or the producing
side of the software equation, software
quality assurance through defect pre-
vention and testing is a must. Perhaps
you can take your software for a test
drive today. ◆

 Test Drive Your Software
Tracy Stauder

Managing Editor

From the Publisher

CROSSTALK The Journal of Defense Software Engineering 3April 1999

Defect tracking is sometimes written off as boring,
 repetitive, and unglamorous. Even effective defect
tracking is often viewed as an unnecessary cost that

impedes schedules. Yet, defect tracking is one of the most criti-
cal components of the software development and the quality
assurance efforts.

When implemented well, defect tracking greatly reduces
overall project costs and improves schedule performance. As a
critical component in improving software quality, the potential
paybacks for such processes are enormous. A Hewlett-Packard
quality program reduced software errors by 75 percent and cut
development time 20 percent. An Air Force systems group
reports that every dollar invested to improve quality has a
conservative return of $7.50.

To effectively track and manage software defects also im-
proves customer satisfaction, creates higher productivity and
quicker delivery, and leads to better operational reliability and
improved morale. On the other hand, a mismanaged software
defect tracking program may indeed be an unnecessary cost.

Software defects take different names in different organiza-
tions, e.g., errors, issues, bugs, defects, or incidents. Whatever
they are called and whatever form they take, defects can have
an astounding impact on the development phase and can con-
tinue to haunt the product through its maintenance phase.

The costs to fix software defects are high, especially if
fixing requires developers to re-familiarize themselves with
months-old work or if someone other than the original devel-
oper is doing the fixing. Costs also increase exponentially
while moving further along the software development life-
cycle. Studies at IBM demonstrate that compared to catching
defects before or during coding, it is 10 times more costly to
correct an error after coding and 100 times more costly to
correct a production error.

Software Quality Costs
A 1996 study by The Standish Group reported that U.S. busi-
nesses invest about $250 billion in software development
annually, yet a great many of these projects fail because of
cost overruns. One of the significant components of project
costs is software quality cost. One estimate put the cost of a

single post-release defect to a large organization as high as
$20,000 to $40,000.

Software quality costs are the costs associated with prevent-
ing, finding, and correcting defective software. Following are
three useful definitions of quality costs [1].

Prevention Costs. These are costs of activities specifically
designed to prevent poor-quality software, e.g., costs of efforts
to prevent coding errors, design errors, additional document
reviews to reduce mistakes in the user manuals, and code re-
views to minimize badly documented or unmaintainably com-
plex code. Most of these prevention costs do not fit within a
typical testing group’s budget. The programming, design, and
marketing staffs spend this money.

Appraisal Costs. These are costs of activities to find de-
fects, such as code inspections and software quality testing.
Design reviews are part prevention and part appraisal. For-
mulating ways to strengthen the design is a prevention cost,
whereas to analyze proposed designs for potential errors is an
appraisal cost.

Failure Costs. These are costs that result directly from poor
software quality, such as the cost to fix defects and the cost to
deal with customer complaints. Failure costs can be divided
into two main areas:
• Internal failure costs: Costs that arise before the product is

delivered to the customer. Along with costs to find and fix
bugs are costs associated with wasted time, missed mile-
stones, and overtime needed to get back on schedule.

• External failure costs: Once the software is delivered to the
customer, poor-quality software can incur customer service
costs or the cost to distribute a patch for a released product.
External failure costs are huge; it is much cheaper to fix
defects before shipping the defective product to customers.
If a product has to be shipped late because of bugs, the
direct cost of late shipment includes the lost sales, whereas
the lost opportunity cost of the late shipment includes the
costs of delaying other projects while everyone finishes the
one that is error-ridden.
User interface defects are often treated as low priority and

are fixed last. This can be a mistake. Product screens may be
required for effective marketing and documentation. This can

Effective Software Defect Tracking
Reducing Project Costs and Enhancing Quality

Bala Subramaniam
ISSRe Systems, Inc.

The costs of defective software can be as high as 50 percent of the investment in software develop-
ment. Yet, the potential to improve software quality and reduce project cost is enormous. Software
defect tracking can be an effective means to achieve quality at less cost. However, defect tracking is
commonly misunderstood, incorrectly implemented, and often seen as an impediment and cost to
the organization. This article discusses the quality costs of defective software and provides a working
model to implement an effective software defect tracking system within an organization.

Software Quality Assurance

4 CROSSTALK The Journal of Defense Software Engineering April 1999

result in increased costs in nondevelop-
ment areas, lost marketing opportuni-
ties, and contractual penalties. Unfortu-
nately, numerical estimates of lost
opportunity costs and delays are difficult
to make and can be controversial [2].

All the above software quality costs
contribute to the total cost of poor-
quality software to the organization. In
aggregation, the total cost of software
quality may be presented as follows:

Total Cost of Quality = Prevention +
Appraisal + Internal Failure + External
Failure.

What Is a Defect?
Defects are commonly defined as “failure
to conform to specifications,” e.g., incor-
rectly implemented specifications and
specified requirement(s) missing from
the software. However, this definition is
too narrow. Discussions within the soft-
ware development community consis-
tently recognize that most failures in
software products are due to errors in the
specifications or requirements—as high
as 80 percent of total defect costs [3].
Other studies have shown that the ma-
jority of system errors occur in the de-
sign phase [4]. Figure 1 represents the
results of numerous studies that show
approximately two-thirds of all detected
errors can be traced to the design phase.

I recommend a broader definition of
defect: variance from a desired attribute.
These attributes include complete and
correct requirements and specifications,
designs that meet requirements, and
programs that observe requirements and
business rules.

Implementing an Effective
Defect Tracking Process
Software quality assurance depart-
ments can play a catalytic role in

implementing an effective defect track-
ing process. A survey conducted in
1994 by the Quality Assurance Insti-
tute found that a mere 38 percent of
the organizations had formal software
defect management processes, whereas
25 percent of the survey participants
said their organizations lack consistent
testing standards and procedures [5].
The survey also reported that although
60 percent of organizations had testing
standards and procedures, some orga-
nizations admitted they were out of
date and not followed. Recent surveys,
nonetheless, suggest that more compa-
nies are now striving to improve their
software development process through
early defect identification, minimizing
resolution time, hence reducing
project costs.

Effective defect tracking begins with
a systematic process. A structured track-
ing process begins with initially logging
the defects, investigating the defects,
then providing the structure to resolve
them. Defect analysis and reporting
offer a powerful means to manage de-
fects and defect depletion trends, hence
quality costs.

Integrate Software
Development and Defect
Tracking
Traditional approaches place testing
immediately before implementation.
Typically, testers receive a low-quality
product at the tail end of development
when there is tremendous pressure to
deliver, even if the software is plagued
with defects. For early defect detection
and resolution to take place, defect
tracking and software development
efforts should begin simultaneously. It
will solve a multitude of problems
downstream.

Defect tracking must be imple-
mented throughout the development
lifecycle. On projects I have managed
or worked on, this has always lead to
fewer release defects; however, such
organizational foresight is rare. The
Sentry Group reported that 62 percent
of all U.S. organizations do not have a
formal quality assurance or test group.
The report also added that a large ma-
jority of these organizations place a

much higher priority on meeting sched-
ule deadlines than producing high-
quality software [6].

The Different Phases of Defect
Tracking
Successful verification throughout the
development cycle requires clearly de-
fined system specification and software
application business rules.

Requirements phase. Defect tracking
focuses on validating that the defined
requirements meet the needs and the
users’ expectation about functionality.
Sometimes, system-specific constraints
would cause the deletion of certain busi-
ness requirements.

Design and analysis phase. Efforts
should focus on identifying and docu-
menting that the application design
meets the business rules or field require-
ments as defined by the business or user
requirements. For example, does the
design correctly represent the expected
user interface? Will it enforce the de-
fined business rules? Would a simpler
design reduce coding time and docu-
mentation of user manuals and training?
Does the design have other effects on the
reliability of the program?

I experienced the downstream cost
of a specification error when working
on one of two groups of developers who
were programming complementary
parts of a data-bridging program. Cod-
ing was well under way when incom-
plete system specifications caused trans-
fer of data on the bridge to fail. The
failure was not due to coding errors but
to specification errors that were trans-
lated into program codes. Had the
deficiency been discovered before cod-
ing began, we could have saved the
substantial time and money required to
repair the programs.

Programming phases. Defect track-
ing must emphasize ensuring that the
programs accomplish the defined appli-
cation functionality given by the re-
quirements and design. For example,
has any particular coding caused defects
in other parts of the application or in
the database? Is a particular feature
visibly wrong?

Maintenance and enhancement
phases. During the maintenance phase,

Figure 1. Origin of software errors across industry.

Coding Phase
36 Percent

Design and
Analysis Phase
64 Percent

Software Quality Assurance

CROSSTALK The Journal of Defense Software Engineering 5April 1999

effort is spent tracking ongoing user
issues with the software. During en-
hancement phases (there could be mul-
tiple releases), defect tracking is focused
on establishing that the previous release
is still stable when the enhancements
have been added. Figure 2 represents
the philosophy of defect tracking
throughout the software development
process.

Introduce Defect Tracking Early
It is not difficult to introduce tracking
early into the development process—it
fits well into current software develop-
ment processes. Today’s rapid applica-
tion development (RAD), the domi-
nant approach in client-server software
projects, focuses on shortened develop-
ment schedules. This software develop-
ment method provides early review
points, delivered as “builds” or itera-
tions of development, to ensure that
requirements are met. Such a process
clearly lends itself to early defect track-
ing, which can shadow development
(see Figure 2). Each build can receive
verification that it meets the defined
requirements; if not, defects can be
reported and resolved quickly and rela-
tively inexpensively while the software
is still “pliable.” The same defect re-
ported later in the development process
may require a major “surgery” to the
software product; hence, it will be more
costly. Front-end defect tracking costs
much less than waiting until the end.

“Quality comes not from inspec-
tion, but improvement of the
development process.”

– W. Edward Deming. [7]

An Effective Defect Tracking
Process
To merely integrate defect tracking into
the development process is not enough.
A clearly defined defect tracking process
is needed to ensure defects are handled
in an organized manner from discovery
through resolution. Components of this
process are described in the sections that
follow. This process is progressive—
defect evaluation cannot be successfully
performed if the earlier components
(such as describing defects and prioritiz-
ing defects) were not implemented.

Defect Repository
Once a defect has been discovered, the
important first step is to log the defect
into a defect-tracking database or reposi-
tory. When a defect is logged, it must be
fully described so that it can be repro-
duced during debugging, prioritized
based on its severity, and have resources
assigned for its resolution. Defects have a
number of other attributes that should
be recorded, such as
• Defect number.
• Date.
• The build and test platform in which

it was discovered.
• The application requirement or

business rule to which it relates.
• Any supplementary notes.

It also is important that the reposi-
tory offer a means to track the “life” of
the defect (the resolution status) and
historically report on all defects discov-
ered and logged for the project. It pays
to have this system online and available
to all development staff so that the as-
signed parties can update the resolution
progress for the defect status.

Defects Described
Your organization’s defect reporting
procedures should require that details
about each software defect be recorded
when the defect is discovered, including
a description, symptoms, sequence of
steps to re-create it, and severity. Defects
are of various types:
• Interface defects include incorrectly

working menu items, push buttons,
and list boxes.

• Navigational defects could be de-
scribed as a window not opening
when moving from one interface
screen to another.

• Functionality defects could be incor-
rect calculation of salaries in a payroll
system.
Do not merely log, “Adding new

customer window does not work.” A
detailed description, such as, “The ‘Save’
button on ‘Add New Customer’ window
does not work,” would give the devel-
oper adequate information to go straight
to the specific problem and repair it.
This saves time and unnecessary inter-
ruption for the developer to research the
defect thus reducing the overall project
cost.

Defects Prioritized
Once a defect is logged and described,
appropriate resources must be allocated
for its resolution. To do this, the defect
must be analyzed and prioritized accord-
ing to its severity. Each defect is given a
priority based on its criticality. Usually, it
is practical to have four priority levels:
• Resolve Immediately.
• High Priority.
• Normal Queue.
• Low Priority.

A misstatement of a requirement or a
serious design flaw must be resolved
immediately, before the developer trans-
lates it into codes that are implemented
in the software—it is much cheaper to
amend a requirement document than to
make program code changes. The wrong
font size for a label may be classified as
“Low Priority.”

The critical path for development is
another determinant of defect priority.
For example, if one piece of the func-
tionality must work before the next piece
is added, any functional defects of the

Figure 2. Defect tracking running parallel to development lifecycle.

Effective Software Defect Tracking: Reducing Project Costs and Enhancing Quality

6 CROSSTALK The Journal of Defense Software Engineering April 1999

first piece will be given the “Resolve
Immediately” priority level. On one
project I worked on, a query engine
retrieved transactions matching user-
specified criteria upon which further
processing was performed. If the query
engine had been defective, no further
development (or testing) would have
been practical. Therefore, all functional
defects of the query engine were priori-
tized as “Resolved Immediately.”

 The urgency with which a defect has
to be repaired is derived from the sever-
ity of the defect, which could be defined
as follows:
• Critical.
• Important.
• Average.
• Low.

A defect that prevents the user from
moving ahead in the application—a
“show stopper”—is classified as “Criti-
cal,” e.g., performing an event causes a
general protection fault in the applica-
tion. Performance defects may also be
classified as “Critical” for certain soft-
ware that must meet predetermined
performance metrics. If the user is able
to formulate work-arounds where there
are defects, these defects may be classi-
fied as “Average.” An overly long pro-
cessing time may be classified as “Impor-
tant” because although it does not
prevent the user from proceeding, it is
performance deficiency. Defects with
severity “Average” will be repaired when
the higher-category defects have been
repaired and if time permits. Certain
graphical user interface defects, such as
placement of push buttons on the win-
dow, may be classified as “Low,” since
this does not impede the application
functionality. Although defect priority
indicates how quickly the defect must be
repaired, its severity is determined by the
importance of that aspect of the applica-
tion in relation to the software require-
ments.

Structured Resolution
The defect tracking system also must
ensure that the defect progresses in an
appropriate sequence from discovery
through resolution. Each defect is also
given appropriate status; for example, a
new defect is given the status of “Open,”

and a defect under repair would have the
status of “Assigned.”

As repair work progresses, the status
of defects is updated to reflect its state in
the resolution process. A defect that has
been repaired will be submitted to the
testing team through formal change
control to be verified again. Only if the
fix passes the regression test will it be
accepted and the defect assigned a status
of “Closed.” Other defect statuses could
include “Deferred,” if the defect is not to
be fixed for the current release but may
be resolved in a subsequent release or
“Enhancement,” if a feature that is not
part of the requirements has been sug-
gested, and may be reviewed as an en-
hancement for later releases.

Communication
An effective defect tracking system must
allow communication of the software’s
defects, status, or changes to members of
the development team and all others
concerned. This has become an increas-
ingly crucial element because people
working on the same project may not
only work in different parts of a building
but also may even work in a different
state for a different organization. With-
out an effective means to communicate
defects, defect tracking—and conse-
quently achieving software quality—
would be a nightmare.

E-mail is an efficient vehicle to expe-
dite informing software engineers and all
concerned of defects as they are discov-
ered. Software engineers could then
perhaps access an online defect reposi-
tory as they receive the E-mail on new
and existing defects. Similarly, E-mail
also serves as a reply medium to inform
testers that a defect has been repaired.
Some defect tracking repositories, e.g.,
one set up in Lotus Notes, facilitates
built-in communication features that
can be used by both software engineers
and testers.

Commercially available defect track-
ing software, e.g., AutoTester and SQA
Team Test Software, are more sophisti-
cated in communicating defects and
their status to individuals or as a batch.
They also automatically inform respec-
tive development staff and management
of defects as they are discovered.

Although E-mail provides a means to
convey information about defects be-
tween the development and testing
team, regular formal defect tracking
meetings also help keep a close eye on
the number, types, and nature of defects
found, which may indicate how software
quality is progressing through the resolu-
tion stage.

Defect analysis is discussed in more
detail in the “Reporting” component of
this defect tracking process. If the testing
and development teams must work
hand-in-hand toward achieving software
quality, there must be continuous com-
munication between them. Informal or
verbal communication between these
teams is inadequate.

Continuous Defect Resolution
It costs much less to resolve defects as
soon as they are discovered—do not
merely accumulate a list of defects to fix
later. For example, in my current project,
the software product is undergoing two
transformations: The entire application
architecture is being revamped and en-
hancements are being implemented for
the next release. Revamping the architec-
ture changes the fundamental “back-
bone” of the application in question,
which is in itself a complex task. We
have three categories of defects:
• The existing list of yet-to-be-resolved

defects from the original application.
• Defects that would come about as a

result of revamping the architecture.
• New defects contributed by the new

enhancements.
We have divided the project into

smaller deliverables and implemented
defect tracking for each deliverable. If
resolution were to be delayed until later,
the mere complexity of the various deliv-
erables would present an inordinate
amount of challenge to resolve defects.
Moreover, different software engineers
are working on different deliverables and
different tasks within each deliverable.
At later stages, it would become a mam-
moth effort to merely identify and assign
defects to the respective software engi-
neers. Additionally, when they have been
assigned defects to repair, the engineers
have to remember what they imple-
mented in the codes perhaps months

Software Quality Assurance

CROSSTALK The Journal of Defense Software Engineering 7April 1999

earlier. This will incur expensive investi-
gation time.

The best time to resolve defects is
when they are discovered. This is espe-
cially true in a RAD environment, where
the application is developed through
several iterations or builds. Each build
has an incremental amount of applica-
tion functionality and related coding.
Any defects discovered in a particular
build should be referred to developers
immediately for resolution. The func-
tionality added in the most recent build
and related program codes are still fresh
in the developers’ minds, which leads to
faster investigation of the root cause of
the defects, and therefore more efficient
resolution efforts. To defer defect resolu-
tion until later in the development cycle
wastes time and resources.

Defect Evaluation and Analyses
Most organizations consider it essential
to constantly monitor and evaluate their
performance, and this key practice is
especially critical in defect removal. The
overall success of your project largely
hinges on effective defect resolution, so
you need to know your defect removal
status and the cost of achieving quality.
For example, a defect trend analysis will
indicate the number of defects discov-
ered over time. This analysis may even
be further subdivided for defects by
status, functionality, severity, etc. Defect
age analysis suggests how quickly defects
are resolved by category.

The type and extent of the defect
evaluation and analyses may be deter-
mined by the organization’s cost objec-
tives and delivery schedules. Following
are a few suggested analyses that may be
applicable to most software projects. The
following measures need to be deter-

mined to analyze defects (or those cho-
sen as part of an organization’s defect
analysis strategy).
• Defect status vs. priority.
• Defect status vs. severity.
• Defect status vs. application module.
• Defect age.

The above information will not be
available if the earlier steps of adequately
logging defects were not implemented as
part of the defect tracking process. By
comparing these measures from the
current iteration to the results from the
analysis of previous iterations, one can
get an indication of defects trends,
which are discussed further in the fol-
lowing two subsections.

Defect Evaluation. Although the
evaluation of test coverage provides the
measure of testing completion, an evalu-
ation of defects discovered during testing
provides the best indication of software
quality. By definition, quality is the
indication of how well the software
meets a desired attribute. So, in this
context, defects are identified as “vari-
ance from a desired attribute.”

Defect evaluation may be based on
methods that range from simple defect
counts to rigorous statistical modeling.
Rigorous evaluation can include forming
a model (or setting goals) about discov-
ery rates of defects, then fitting the ac-
tual defect rates during the testing pro-
cess to the model. The results can be
used to estimate the current software
reliability and predict how the reliability
will grow if testing and defect removal
efforts continue. However, because the
field’s current lack of a scientific model
and resources dedicated to perform such
evaluations (or a tool to support them),
an organization should carefully balance

the cost of rigorous evaluation with the
value it adds.

Defect Analysis. This means analyz-
ing the distribution of defects over the
values of one or more parameters associ-
ated with a defect. Defect analysis pro-
vides an indication of the reliability of
the software. Four main defect param-
eters are commonly used for defect
analysis:
• Status: the current state of the defect

(open, being repaired, closed, etc.).
• Priority: the relative importance of

addressing and resolving this defect.
• Severity: the relative impact of this

defect to the end-user, an organiza-
tion, third parties, etc.

• Source: what part of the software
(such as a module) or requirement
this defect affects.
Defect counts can be reported in two

ways: (1) as a function of time, resulting
in a defect trend diagram or report and
(2) as a function of one or more defect
parameters (like severity or status) in a
defect density report. These types of
analysis provide a perspective on the
trends or distribution of defects that
reveal the software’s reliability.

Defect trends follow a fairly predict-
able pattern in a testing cycle. Early in
the cycle, the defect rates rise quickly.
Then, they reach a peak about mid-
stream, in an adequately staffed test
project, and fall at a slower rate over
time. The project schedule can be re-
viewed in light of this trend. For in-
stance, if the defect rates are still rising in
the third week of a four-week test cycle,
the project is clearly not on schedule.
Other instances where the rate of closing
defects is too slow (experience rated)
might indicate a problem with the defect
resolution process; for example, re-
sources to fix defects or to retest and
validate fixes might be inadequate.

This is an important aspect of soft-
ware project management: to ensure that
software quality is progressing within the
planned delivery schedule. Figure 3
displays defect status by software mod-
ule. In each software module, a discov-
ered defect is given a status of Open and
assigned resources for fixing.

In Figure 3, resolution efforts for
accounting appear to be good, because

Figure 3. Resolution efforts for an accounting system.

0

20

40

60

80

100

Accounting Claims Diary Contracts

Discovered

Open

Repaired

Closed

Effective Software Defect Tracking: Reducing Project Costs and Enhancing Quality

8 CROSSTALK The Journal of Defense Software Engineering April 1999

there are more defects being repaired
than left open. Retesting efforts seem to
be adequate, because defects closed are
not far behind defects repaired. How-
ever, although there is a similar retesting
effort for the claims module, there are
far too many defects open, indicating
that additional resources may be re-
quired for this module. The trend for
the diary module suggests that both
defect repair and retesting efforts are
progressing well. The defect trend for
the contracts module also shows that
defect resolution is progressing well.

An organization could set quality
criteria for how the distribution of de-
fects over priority levels should look,
e.g., “No critical defects should stay
open for more than one week.” It would
be expected that defect discovery rates
would eventually diminish as testing and
fixing progresses. A threshold can be
established below that in which the
software can be deployed.

Defect counts can also be reported
based on the source, allowing detection
of weak modules and “hot spots.” Parts
of the software that must be fixed repeat-
edly indicate a fundamental design flaw.
In my current project, this type of analy-
sis helped us come to conclude that the
application architecture technology
needed to be revamped. The originally
chosen architecture, although technically
superior, was more complicated and
made the application extremely delicate
to changes or defects “fixes.”

Defects included in an analysis of
this kind have to be confirmed defects.
Not all reported defects turn out to be
flaws; some may be enhancement re-
quests, out of the scope of the project, or
describe a previously reported defect.
These defects must be reclassified as

trend reports can be cumulative or
noncumulative and help manage-
ment identify defect rates by status
thus providing an indication of how
well the software quality is progress-
ing through the project cycle. Figure
5 represents a typical defect trend
report.
In Figure 5, the number of new

defects peaked in February. Lagging
behind new defects by about a month,
the number of open defects was the
highest in March. The defect-fixing
efforts appear to be consistent through-
out the project, closing all defects by
June. Before an organization can pro-
duce the type of reports discussed here, a
defect repository must have been estab-
lished to support such analysis, i.e.,
provide for logging of defect description,
status, priorities, etc., outlined in the
“Defects Described” section of this ar-
ticle. To be successful, all pieces of the
defect tracking process must be em-
braced.

Making This Approach Work
It is unwise to try to achieve too much
too fast. Change is the most difficult
concept to grasp or implement. The
effective defect tracking model discussed
here not only may call for a fundamental
change in your software development
process but also may require a broader
concept and definition of defects and the
tools to manage them. Depending on
the capability of the development and
quality assurance process, an organiza-
tion may not want to attempt the total
defect-tracking model all at once. For
lower maturity organizations, an incre-

Figure 4. Defect distribution.

Figure 5. Defect trend report.

such. However, there is value in analyz-
ing why many duplicates or uncon-
firmed defects are being reported.

Defect Reporting
Defect evaluation and analysis have to be
reported in a useful form to those who
make decisions about resources, costs,
and delivery schedules. Although each
organization may want to produce dif-
ferent reports and different forms, there
are three classes of reports:
• Defect density or distribution re-

ports allow defect counts to be
shown as a function of one or two
defect parameters. Using the priority
parameter, defect distribution may be
represented as shown in Figure 4.

• Defect age reports are a type of de-
fect distribution report that shows
how long a defect has been in a par-
ticular state, such as Open. In any
age category, defects can also be
sorted by any other attribute, such as
Owner (developer assigned to repair
defect).

• Defect trend reports show defect
counts by status (New, Open, or
Closed) as a function of time. The

0

5

10

15

20

Jan Feb Mar Apr May Jun

New

Open

Closed

Test Periods

Defect

Count

Software Quality Assurance

0

50

100

Number of Defects

Defect Priority

Resolve Immediately

High Priority

Normal Queue

Low Priority

CROSSTALK The Journal of Defense Software Engineering 9April 1999

mental adoption of the recommenda-
tions would be more successful.

A good start is to set up a simple
defect-tracking repository that imple-
ments defect description, status, priority
and severity, and communication. Ex-
pand that list later to include defect
evaluation and analysis and reporting.
This ensures that the required defect
data is captured as a minimum so the
organization can build on this model.

Next, the process should be widened
to embrace the broader definition of a
defect, and the concept of implementing
defect tracking across the development
process. The implementation of an effec-
tive defect tracking process should be
taken through levels of maturity, which
is a topic for an entire article. Once the
model and process is applied to one
project successfully, it can be imple-
mented across the organization.

Conclusion
Effective defect tracking strongly contri-
butes to enhancing software quality and
reducing development project costs.
Using the broader definition of a defect
ensures that not only are resultant errors
or nonconformance to requirements
discovered but also variance from a de-
sired attribute, including incomplete
requirements, takes place. Searches for
such defects can then take place across
all software development phases.

By “shadowing” the software devel-
opment process, defect tracking helps
you identify and report potential soft-
ware problems early and acts as a catalyst
for problems to be addressed. By facili-
tating discovery of defects earlier in the
development cycle, effective defect track-
ing is a critical key to lower costs, en-
hanced software quality, and reducing
overall project cost. However, to achieve
this requires a fundamental change in
the ideology behind quality assurance
and the software development process as
well as the introduction of the necessary
tools to track and manage defects. The
defect-tracking model discussed in this
article will be useful for organizations
moving in this direction. Careful plan-
ning and phased adoption of this model
can make this approach a powerful soft-
ware quality strategy. u

About the Author
Bala Subramaniam is
director of quality
assurance at ISSRe
Systems, Inc., in New
York. He has 15 years
managerial and techni-
cal experience, during

which he has worked for medium and
large software companies including IBM.
His special interests include the definition
and implementation of quality assurance
methods and software process improve-
ment programs. He also is experienced in

designing effective automated test meth-
ods to test complex mission-critical soft-
ware functionality and business cycles. He
has a master’s degree in business adminis-
tration (finance) from Birmingham Busi-
ness School in Great Britain and is a certi-
fied software test engineer (Quality
Assurance Institute).

ISSRe Systems, Inc.
200 Business Park Drive
Armonk, NY 10504
Voice: 914-273-7777
Fax: 914-273-7796
E-mail: balas@issre.com

References
1. Campanella, J., ed., Principles of Quality

Costs, ASQC Quality Press, 1990.
2. Juran, J.M. and Frank M. Gryna, Juran’s

Quality Control Handbook, 4th ed.,
McGraw-Hill, New York, pp. 4.9-4.12.

3. ANSI/IEEE Standard 982.1-1988, IEEE
Standard Dictionary of Measures to Pro-
duce Reliable Software, Institute of Elec-
trical and Electronics Engineers, p. 13.

4. Perry, W., “Structured Approach to
Testing,” Effective Methods for Software
Testing, John Wiley & Sons, New York,
1995.

5. Perry, W., “1994 Survey Results on
Software Testing,” Effective Methods for
Software Testing, John Wiley & Sons,
New York, 1995.

6. Automated Software Quality Directions,
The Sentry Group, February 1998.

7. Deming, W. Edward, Out of the Crisis,
MIT Press, Cambridge, Mass., 1982.

INCOSE ’99 will be different – a new continent, a
fresh perspective, and coverage of emerging issues.

INCOSE ’99 will be the same – the world’s largest
gathering of systems engineering professionals with
thought-provoking, relevant papers; up-to-the-minute
briefings; and a wide range of tutorials.
To find out more about Brighton, visit http://
www.brighton.co.uk. For further details on the confer-
ence, refer to the INCOSE ’99 Web site.

INCOSE ’99
The Ninth Annual International Symposium of the

International Council on Systems Engineering

“Sharing the Future”
June 6 – 10, 1999
Brighton, England

“Brighton” your systems engineering in ’99!

Cass Jones
Conference Manager
7916 Convoy Court
San Diego, CA 92111
Voice: 619-565-9921
Fax: 619-565-9954
E-mail: pcminc@pcmisandiego.com
Internet: http://www.incose.org.uk

Effective Software Defect Tracking: Reducing Project Costs and Enhancing Quality

10 CROSSTALK The Journal of Defense Software Engineering April 1999

Identifying Requirements –
How Will I Know One When I
See One?
Requirements begin their lives when first
elicited from customers or users. Elicita-
tion may occur using any of a variety of
techniques such as interviews, brain-
storming, prototyping, questionnaires,
and quality function deployment or
techniques. Typically, requirements start
out abstractly, e.g., “I need a system that
controls elevators.” As exploration con-
tinues, they become more specific, more
detailed, and less ambiguous—they split
and recombine in new ways (especially
when multiple cases exist). Eventually, a
set of highly detailed requirements
emerges, e.g., “When the ‘up’ button is
pressed, the light behind that button
illuminates within one second.”

Once captured, it is extremely impor-
tant to maintain traces from each require-
ment to its more abstract predecessor
requirements and to its more detailed
successor requirements. Traceability aids
in change management and is a funda-
mental component of quality assurance
and sound requirements management.

The final, most detailed require-
ments are contained in a document
called a requirements specification. This
specification must be communicated
and agreed upon by all relevant parties.
It serves as the basis for design (it tells
designers what the system is supposed to
do) and for test (it tells testers what the
system is supposed to do). Good require-

ments specifications exhibit the follow-
ing characteristics [1].
• Lack of ambiguity – It is unlikely

your product will satisfy users’ needs
if a requirement has multiple inter-
pretations.

• Completeness – Although it may be
impossible to know all future require-
ments for a system, you should at least
specify all known requirements.

• Consistency – It is impossible to
build a system that satisfies all re-
quirements if two requirements are
in conflict.

• Traces to origins – The source of
each requirement should be identi-
fied. It may have evolved from the
refinement of a more abstract re-
quirement, or it may have come from
a specific meeting with a target user.

• Absence of design – As long as re-
quirements address external behav-
iors as viewed by users or by other
interfacing systems, they are still
requirements regardless of their level
of detail. When a requirement at-
tempts to specify the existence of
particular subcomponents or algo-
rithms, it is no longer a requirement
but rather design information.

• Enumerated requirements – Most
requirements specifications enhance
their readability by including auxil-
iary types of information that are not
requirements. This information
includes introductory paragraphs or
sentences, summary statements,
tables, and glossaries. Actual require-
ments contained in the document
should be somehow easily discern-
ible, whether by unique font, identi-
fying label, or other highlighting.

A complete list of principles to adhere to
when performing requirements specifica-
tion appears in Chapter 3 of [2].

Writing Your SRS – Getting Off
to a Good Start
Many important documents exist within
your development project: descriptions
of user needs, design documents, and
test plans. But one particular document,
the software requirements specification
(SRS), is a primary concern of the soft-
ware developer. The purpose of this
document is to define the complete
external characteristics of the system to
be built. It defines all the behavioral
requirements, e.g., this system shall do A
when the environment does B, and non-
behavioral requirements, e.g., the system
shall have an availability of 99.9 percent.
Although standards are by no means a
panacea, an organization that adopts a
standard for the SRS achieves several
benefits:
• The standard serves as a checklist of

things to be addressed, so nothing is
left out.

• It helps readers quickly locate and
review requirements.

• It shortens the learning curve for new
requirements writers and other mem-
bers of the project team.
Numerous software specification

standards can be used as a starting point
in drafting an SRS. One that provides a
good deal of guidance and flexibility is
IEEE/ANSI 830-1993, IEEE Recom-
mended Practice for Software Require-
ments Specifications. [3] Many other
standards can be adopted to suit your
needs. A good resource is the compila-
tion by M. Dorfman and R. Thayer [4].
They have reprinted 26 different re-

 Making Requirements Management Work for You
Alan M. Davis, Omni-Vista, Inc.

Dean A. Leffingwell, Rational Software, Inc.

This article derives from “Using Management Re-
quirements to Speed Delivery of Higher-Quality
Applications,” Rational Software Corporation,
Copyright 1995, 1996, 1997, 1998, 1999. All
Rights Reserved.

Requirements are capabilities and objectives to which software must conform and are the
common thread for all development activities. Requirements management is the process of
eliciting, documenting, organizing, and tracking changing requirements and communicat-
ing this information across the project team. Implementing a requirements management
effort ensures that iterative and unanticipated changes are maintained throughout the project
lifecycle. Without these measures, high-quality software is difficult if not impossible to achieve.

CROSSTALK The Journal of Defense Software Engineering 11April 1999

quirements specifications under one
cover including national, international,
Institute of Electrical and Electronics
Engineers (IEEE), American National
Standards Institute (ANSI), NASA, and
U.S. military standards.

It is important that your document
outlines encourage accuracy, consistency,
and a short learning curve. IEEE/ANSI
830-1993 serves as a good starting point
for an SRS. Then, based on usage, you
may find it beneficial to modify the
standard and turn it into a corporate
standard that better matches your
company’s specific processes and culture.

Selecting Requirements from Your
Documents
Requirements documents contain some
information that is not system require-
ments, e.g., introductions, general sys-
tem descriptions, glossary of terms, and
other explanatory information. Al-
though important to an understanding
of the requirements, they do not consti-
tute requirements to be fulfilled by the
system.

To ease communication of require-
ments and allow requirements manage-
ment, writers should label those portions
of text, graphics, or embedded objects
that must be implemented and subse-
quently tested. Ideally, the requirements
will be left in their original place rather
than stored in multiple places; that is,
they can be edited and maintained in the
project documents even after they have
been selected as individual requirements.
This makes it easier to keep project
documentation up to date as require-
ments change.

Organizing Your Requirements
Whether following a recognized stan-
dard or yours, you will need a section
devoted to specific requirement descrip-
tions. If you have isolated 500 require-
ments, for example, you should find a
way to group them to aid in understand-
ing rather than document them as a long
list of bullets. We recommend organiza-
tion by
• Mode of operation.
• Class of user.
• Object.
• Feature.

• Stimulus.
• Combining any of the above [1].

Applications that have clearly defined
states (powered up, error recovery, etc.)
could have their requirements grouped
under their corresponding mode of
operation. Systems that have a signifi-
cant number of diverse users might be
best organized by class of user. For ex-
ample, a specification for an elevator
control system could be organized into
three major subsections: passenger, fire-
man, and maintenance employee. This
provides a logical way to group specific
requirements so that they can be reviewed
and understood by each class of user.

Other applications may best be
suited to organization by feature; that is,
highlight the features and their intended
behaviors as viewed by the user. Others,
e.g., an air traffic control system, which
is rich in real-world objects, may best be
organized by grouping the behaviors of
objects in the system. This approach may
also be well suited to software organiza-
tions that have adopted object technology
as their development paradigm.

Managing Requirements with
Attributes
All requirements have attributes regard-
less of whether they are recognized.
These attributes are a rich source of
management information that can help
you plan, communicate, and track your
project’s activities throughout the life-
cycle. Each project has unique needs and
should therefore select the attributes that
are critical to its success. Following is a
sample.

Customer Benefit – All requirements
are not created equal. Ranking require-
ments by their relative importance to the
end-user opens a dialogue with custom-
ers, analysts, and members of the devel-
opment team.

Effort – Clearly, some requirements
or changes demand more time and re-
sources than others. Estimating the
number of person-weeks or lines of code
required, for example, is the best way to
set expectations of what can or cannot
be accomplished in a given time frame.

Development Priority – Only after
considering a requirement’s relative
customer benefit and the effort required

to implement it can the team make
feature trade-offs under the twin con-
straints of a project’s schedule and bud-
get. Priority communicates to the entire
organization which features will be done
first, which will be implemented if time
permits, and which will be postponed.
Most projects find that categorizing the
relative importance of requirements into
high, medium, and low or essential,
desirable, and optional is sufficient,
although finer gradations are possible.

Status – Key decisions and progress
should be tracked in one or more status
fields. During definition of the project
baseline, choices such as proposed, ap-
proved, and incorporated are appropriate.
As you move into development, in
progress, implemented, and validated
could be used to track critical project
milestones.

Authors – The names of people (or
teams) responsible for the requirement
should be recorded in the requirements
database, whether it is the person respon-
sible for entering the text or the person
responsible for identifying the need.

Responsible Party – The person who
ensures the requirement is satisfied.

Rationale – Requirements exist for
specific reasons. This field records an
explanation or a reference to an explana-
tion. For example, the reference might
be to a page and a line number of a
product requirement specification or to a
minute marker on a video tape of an
important customer interview.

Date – The date a requirement was
created or changed should be recorded
to document its evolution.

Version of Requirement – As a re-
quirement evolves, it is helpful to iden-
tify the version numbers (and history) of
requirements changes.

Relationships to Other Require-
ments – There are many relationships
that can be maintained between require-
ments. For example, attribute fields can
record
• The more abstract requirement from

which this requirement emanated.
• The more detailed requirement that

emanated from this requirement.
• A requirement of which this require-

ment is a subset.

Making Requirements Management Work for You

12 CROSSTALK The Journal of Defense Software Engineering April 1999

• Requirements that are subsets of this
requirement.

• A requirement that must be satisfied
before this requirement is satisfied.
It is especially important to maintain

linkages from requirements to all devel-
opment products that emanate down-
stream from them. By providing these
links, one can easily ascertain the impact
of any changes and quickly determine
development status (which should be an
attribute of those downstream entities).

The above list is not exhaustive.
Other common attributes include stabil-
ity, risk, security, safety release imple-
mented, and functional area. Whichever
method is used to track them, attributes
should be easily customized to adapt to
the unique needs of each team and each
application.

Requirements Traceability –
Ensuring Quality and Managing
Change
Requirements traceability is explicitly
required in most Department of Defense
software contracts and is typically prac-
ticed by manufacturers of all high-reli-
ability products and systems. In the
health-care industry, requirements trace-
ability is governed by the proposed
changes in the Good Manufacturing
Practices Regulation. However, most
companies outside these industries do
not routinely practice requirements
traceability.

Traceability is a link or definable
relationship between two entities. Those
who use requirements traceability find
that it provides a level of project control
and assured quality that is difficult to
achieve by any other means. At Abbott
Laboratories, where traceability was
instituted in 1987, they like to say, “You
can’t manage what you can’t trace.” [5]
This makes intuitive sense if for no other
reason than to emphasize that full re-
quirements test coverage is virtually
impossible without some form of re-
quirements traceability.

Benefits of Requirements Tracing
In its simplest terms, requirements trac-
ing demonstrates that software does
what it is supposed to do. The key ben-
efits of this process include

• Verification that all user needs are
implemented and adequately tested.

• Verification that there are no “extra”
system behaviors that cannot be
traced to a user requirement.

• Understanding the impact of chang-
ing requirements.

Implementing Requirements
Traceability
Figure 1 shows a sample hierarchy of
project documents. In this example, the
product requirements document is the
“source” of all requirements. In other
examples, the source document could
be a user-needs document or system
specification.

A hierarchical relationship between
two documents in Figure 1 is an indica-
tion that interrelationships may exist
among specific elements in those docu-
ments. For example, the relationship
shown between the product require-
ments document and the software re-
quirements specification implies that any
specific product requirement could be
satisfied by one or more software re-
quirements. Similarly, any software re-
quirement may help to satisfy one or
more product requirements. Clearly, a
product requirement with no related
software requirements or hardware re-
quirements will not be satisfied. The
reverse also is true: A software require-
ment with no related product require-
ments is extraneous and should be
eliminated.

In addition to establishing document
relationships to support traceability, you
will need to employ some form of sys-

Figure 1. Example document hierarchy.

tem to maintain links between indi-
vidual items within the hierarchy. This
can be done by embedding links and
identifiers directly within the document
or by using a separate spreadsheet or
database that manages the linkages out-
side the document. There are advantages
and disadvantages to each of these ap-
proaches. A new class of requirement
management tools automatically main-
tains traceability links. Ideally, this capa-
bility is integrated in the same tool that
manages and manipulates the docu-
ments and their individual requirements.

Change Management
Traceability provides a methodical and
controlled process to manage the
changes that inevitably occur as an appli-
cation is developed. Without tracing,
every change requires that documents be
reviewed on a moment-to-moment basis
to see which, if any, elements of the
project require updating. Because it is
difficult to establish whether all affected
components have been identified,
changes tend to decrease system reliabil-
ity over time.

With traceability, management of a
change can proceed in an orderly fash-
ion. The impact of a change can now be
understood by following the traceability
relationships through the document
hierarchy. For example, when a user
need changes, a developer can quickly
identify which software elements must
be altered, a tester can pinpoint which
test protocols must be revised, and
managers can better determine the

Software Quality Assurance

CROSSTALK The Journal of Defense Software Engineering 13April 1999

potential costs and difficulty to imple-
ment the change.

Requirements Reporting –
Easing Management Reviews
A requirements repository gives manag-
ers a powerful tool to track and report
project status. Critical milestones are
more easily identified. Schedule risks are
better quantified. Priorities and owner-
ship are kept visible. Querying the re-
pository can quickly uncover facts that
provide answers to important questions,
such as
• How many requirements are there

on this project? How many are high
priority?

• What percentage of the requirements
are incorporated in the baseline?

• When will they be implemented?
• Which requirements changed since

the last customer review?
• Who is responsible for the changes?
• What is the estimated cost impact of

the proposed changes?
High-level reports aid management

reviews of product features. Require-
ments can be prioritized by user safety
considerations or by customer need,
difficulty, and cost to implement. These
specialized reports help managers better
allocate scarce resources by focusing
attention on key project issues. The net
result is that managers make better deci-
sions and thereby improve the outcomes
of their company’s application develop-
ment efforts.

Conclusion
Software development is one of the most
exciting and rewarding careers of our
time. Unfortunately, many of us carry
the scars from applications that missed
expectations. It is common for applica-
tions to overshoot their schedule by half,
deliver less than originally promised, or
be canceled before release. To keep pace

with rising complexity and increased
user demands, we must begin to mature
the ways in which we develop, test, and
manage our software projects. The first
step in this advancement is improved
requirements management.

Requirements management provides
a “live” repository of application require-
ments and their associated attributes and
linkages. This repository establishes an
agreement on exactly what the software
is supposed to do. It provides a wealth of
information that can be used to manage
and control your projects. Your quality
will improve, and the software you build
will better fit your customer’s needs. And
with requirements data available to all
members, team communication is
greatly improved.

Start now. You can cut project costs
significantly by catching requirement
errors early. Try to write down, in plain
English, all the requirements of your
current project. (Hint: if this is difficult
or was not already done, ask why.) Com-
pile these requirements in a suitable,
short report and share them with your
customers and peers. Get their feedback.
Are any requirements missing, incom-
plete, or wrong? There is a good chance
the answer is yes to all three. If it is still
early enough to correct these errors,
you have saved a lot of money. If it is
too late, ask what is it about your pro-
cess that could change, then propose a
first step. ◆

About the Authors
Alan M. Davis is founder and chief ex-
ecutive officer of Omni-Vista, Inc.,
which develops and markets software
development decision-making support
tools. He serves as professor of Computer
Science and El Pomar professor of soft-
ware engineering at the University of
Colorado at Colorado Springs. He is
author of Software Requirements: Objects,

What You Can Do
• Continue to educate yourself on the benefits of requirements management.

Secure training. Read. We have included a suggested list at the end of this
article.

• Explore and use the new tools that make requirements management easier.
• Adopt a personal strategy to better communicate the requirements you own.

Functions, and States and 201 Principles of
Software Engineering and is author or co-
author of more than 100 papers on soft-
ware and requirements engineering. He
was editor in chief of IEEE Software
Magazine from 1994 to 1998.

Dean A. Leffingwell is a vice president of
Rational Software and is general manager
of Rational University, where he is re-
sponsible for methodology, the Rational
Unified Process, and customer education
and training. Before 1997, he was chief
executive officer and co-founder of Req-
uisite, Inc., developers of the Requi-
sitePro requirements management prod-
uct and Requirements CollegeTM. He is
considered an authority in requirements
management and software quality and is
a frequent speaker on these topics. He has
a master’s degree in engineering from the
University of Colorado.

References
1. CHAOS, The Standish Group Interna-

tional, Inc., Dennis, Mass., 1994.
2. Davis, A., 201 Principles of Software Devel-

opment, McGraw-Hill, New York, 1995.
3. http://standards.ieee.org/catalog/olis/

arch_swe.html
4. Dorfman, M. and R. Thayer, Standards,

Guidelines and Examples of System and
Software Requirements Engineering, IEEE
Computer Society, Los Alamitos, Calif.,
1991.

5. Watkins, R. and M. Neal, “Why and
How of Requirements Tracing,” IEEE
Software, July 1994, pp. 104-106.

Suggested Reading
1. Davis, Alan M., Software Requirements –

Objects, Functions, and States, Prentice-
Hall, Englewood Cliffs, N.J., 1993.

2. Gause, Donald C. and G. Weinberg,
Exploring Requirements – Quality Before
Design, Dorset House, New York, 1989.

For information on how to order
these books or for addresses of the avail-
able Internet forums that discuss re-
quirements management, please write,
call, or send E-mail to

Rational Software Corporation
18880 Homestead Road
Cupertino, CA 95014
Voice: 800-728-1212
Fax: 408-863-4120
E-mail: info@rational.com
Internet: http://www.rational.com.

Making Requirements Management Work for You

14 CROSSTALK The Journal of Defense Software Engineering April 1999

In 1997, WR-ALC/LU initiated an
internal process improvement effort
 based on the Software Engineering

Institute (SEI) SA-CMM. Our goals
were to institute a process for continuous
process improvement, to become a
knowledgeable and efficient acquisition
organization, and to achieve SA-CMM
Level 2 within 18 months. The aim of
our improvement effort, which we called
ASPIRE (Acquisition and Sustainment
Process Improvement/Re-engineering
Effort), was to improve the software
acquisition and sustainment processes of
the System Program Office (SPO), in-
cluding the ability to
• Acquire and deliver systems in less

time.
• Reduce development costs.
• Reduce lifecycle costs.
• Deliver highly reliable software-

intensive systems that meet the needs
of our customers.
This article shares what the director-

ate has learned from this effort to date,
which is, that process improvement is
harder than it may appear.

Process Improvement
On June 27, 1997, LU completed an
SA-CMM-based assessment for internal
process improvement and finalized the
results in a Findings and Recommenda-
tions Report prepared in August 1997.
With the help of the SEI and the Soft-
ware Technology Support Center
(STSC), we clarified the roles and re-
sponsibilities of our Management Steer-
ing Group (MSG) to provide manage-
ment and direction and our System
Process Improvement Network (SPIN)

team to oversee implementation of tech-
nical process improvement. Initially, six
Process Action Teams (PATs) of five to
six members were established to define
and develop software acquisition pro-
cesses, and additional PATs will be estab-
lished as we proceed.

The obvious reason we chose to apply
the SA-CMM was to improve the
directorate’s expertise in software acquisi-
tion. However, software acquisition was
of interest to only a small number of
people within the SPO. Because some
acquisition processes are common to
both software and hardware, we hoped
that the improvements that would lead
us to achieve SA-CMM Level 2 would
help us improve acquisition in general.
Therefore, we used the SA-CMM to
learn how to institute process improve-
ment and applied the techniques of SA-
CMM-based process improvement to the
larger organizational context.

My experiences with improvement
programs (Total Quality Management
[TQM], Zero Defects, and Management
by Objectives) had shown me how diffi-
cult it is to institutionalize a process for
continuous improvement. In our organi-
zation, as in many others, process im-
provement tends to follow a 24-month
fad cycle; when the cycle is completed,
lasting improvements can be difficult to
identify. Nevertheless, the discipline of
the SA-CMM model, along with the
available expertise from the SEI and the
STSC, offered the hope that the SA-
CMM could be used to achieve a higher
purpose: an institutionalized process by
which things get better in the SPO.

I expected that institutionalization of
process improvement would take about
three years. I would be at WR-ALC/LU
for three years, so I thought we had a

chance to make a good start. My goal as
a sponsor was to make process improve-
ment a significant enough part of daily
processes and create sufficient momen-
tum so the SPO would have a reasonable
chance to sustain process improvement
beyond my tenure.

To reinforce the message that process
improvement should be a normal part of
its everyday work, the organization has
been extremely careful not to make pro-
cess improvement a program. Reengi-
neering was a program; TQM was a
program, and I did not want to make the
“program” mistake again. While at the
Air Power Institute, I wrote a book on
TQM and how it could be used on the
flight line [1]. At that time, TQM litera-
ture was not extensive. I found that
when TQM failed—which it most often
did—it was because it gave people tools
before it identified the problems the
tools were intended to solve. As a result,
people used these tools to fix annoy-
ances: “Let’s get rid of staff meetings and
repave the parking lot.” With its focus
on improvement of the software acquisi-
tion process, the SA-CMM seemed to be
a way to keep the implementation of
TQM grounded in real, immediately
pressing problems.

Allocating and Committing
Resources: Process Improvement
in the Context of Crisis
Management
There is an old saying, “If you always do
what you did, you always get what you
got.” It can be particularly difficult to
change old habits in an organization in
which everything is crisis management.
As a Special Operations Forces (SOF)
organization, WR-ALC/LU is, by neces-
sity, highly skilled at crisis management.

Sponsoring Process Improvement
Col. Henry M. Mason

U.S. Air Force

Institutionalizing a process for continuous improvement in an organization requires active
sponsorship from a leader. It can be particularly challenging for a leader to sustain momen-
tum for long-term process improvement in an organization that excels at crisis manage-
ment. This article presents lessons learned from sponsorship of a process improvement effort
based on the Software Acquisition Capability Maturity Model (SA-CMMSM) at Warner
Robins Air Logistics Center (WR-ALC) Special Operations Forces Directorate (LU).

CMM is registered in the U.S. Patent and Trade-
mark Office.

Software Engineering Technology

CROSSTALK The Journal of Defense Software Engineering 15April 1999

In the language of the SEI CMMs, we
were a typical Level 1 organization—ours
was a culture of institutionalized hero-
ism. But in a culture of heroism, nothing
gets better, heroes retire, and their skills
retire with them. Ironically, we found
that our skill at crisis management was a
liability when it came to instituting pro-
cess improvement. Employees had a
tendency to say, “I don’t have time for
this quality stuff; I have a job to do.”

In light of this tendency, we estab-
lished a rule that never would more than
5 percent of our total SPO resources be
devoted to process improvement. This
rule gave me a powerful way to combat
resistance. Whenever someone com-
plained about the overhead that process
improvement would add, I would say,
“Surely you can do your work with 95
percent of your resources.” In practice,
we have never used more than 4 percent
of our resources on process improve-
ment, and we averaged around 2.5 per-
cent. I did not take much of their re-
sources. If I had pushed employees
harder—to dedicate around 5 percent to
6 percent—I would have overtaxed
them. On the other hand, an effort of
about 1 percent would not be enough to
sustain improvement. At the 2.5 percent
level, I knew that we would make steady,
measured progress without burning out.
I also knew that the effort would not
fizzle out and die.

Metrics and Process Improvement
Metrics are important to project success;
however, a manager who manages only
with metrics is probably easy to deceive. I
have discovered that things that are easy
to measure are often not particularly
important, and things that are the most
difficult to measure tend to be the most
important. For example, I check the
schedules of the PATs against their
progress, and I listen to everybody in the
MSG meetings to gauge attitudes about
how well senior staff is integrating pro-
cess improvement into how we do busi-
ness. I believe attitudes are probably the
most important barometer of success. A
metric I track carefully is the amount of
effort we spend on process improvement
across the SPO. This metric tells me if
the effort is increasing, decreasing, or
staying about the same.

To reinforce the idea that we could
improve our processes and not place too
much strain on our resources, I had to
demonstrate my willingness as a leader
to apply the resources that I controlled
to the effort. For example, to convey
that the MSG was not add-on work, I
released employees from private staff
meetings to participate in the MSG.
Setting a bound on resource commit-
ments sent the message that process
improvement is not a periodic, over-
whelming demand on the employees’
time that has a beginning and an end
but is the normal way we do business.
The MSG is now perceived as a part of
everyday work processes.

Sponsorship
Process improvement efforts are a con-
stant test of senior leadership. You have
to back up your talk with actions and
you cannot waver. If leadership wavers
and process improvement moves down
the scale of importance, the effort will
die. Additionally, if sponsors establish
and reinforce a vision for the effort, they
move beyond passive endorsement to
active sponsorship.

Although we faced challenges, such
as increased competition and a potential
loss of market share, we did not have a
significant emotional event to trigger
process improvement changes. When
your livelihood and your life do not
depend on change, it is an uphill battle
to sustain commitment for process im-
provement; therefore, it was essential to
remind everyone at least every six
months, via correcting meetings called
“visioning” sessions, where we were go-
ing and why we were going there.

To sustain commitment is most diffi-
cult in the early stages of the effort, be-
fore there are tangible results you can
touch, feel, or sense. Therefore, leader-
ship must strike a balance between pa-
tience and active engagement.

If you are the type of leader who
relies only on the evidence available to
your senses, you will fail. In the begin-
ning, everything is intuitive and concep-
tual, and leaders must be willing to let
the process percolate and allow employ-
ees to find their own solutions to the
problems they encounter. I adapted our

processes to this new way of operating. If
I had pushed too hard in the early days
of our effort, we may have achieved some
ephemeral success, written it up, con-
gratulated ourselves, and terminated the
program. I believe patience is the most
essential quality for the leader of a pro-
cess improvement effort. If you do not
have patience, it is best not to go
through the pain. Abort early and avoid
the rush.

On the other hand, the leader must
also know when to push. If anything, I
probably erred on the side of patience.
Attempting to see if the effort could
sustain itself with minimal intervention
in the MSG, I stepped back too far too
soon. For four or five months in the
second year of the effort, I was not ac-
tively engaged in the process. Eventually,
the SPIN let me know that the effort
needed my active participation.

Visioning
In March 1998, at a meeting of the
MSG, we held our first visioning session.
We formulated a vision of an improved
organization, a picture of what it would
be like to work in that organization, and
a list of the expected payoffs. This strat-
egy required the MSG to be directly
involved in the improvement process. At
this meeting, I addressed the staff: “I’m
willing to quit right now. If you don’t
want to do this, we’ll stop. You know
why I think it’s important. I’m not going
to be here forever. We don’t need to drag
this out until I retire 18 months from
now. If you continue, things will get
better, and you’ll see many of the benefits
I’ve been preaching about. But we don’t
have to do this. I am willing to disband
the SPIN team and cancel all the PATs,
and we’ll go back to what we were doing.
If you see long-term benefits for the SPO
and for yourselves, then I want you to
make the commitment. But you will
have to agree to support the PATs. The
decision is yours.” And I left it to them
to decide. This meeting became a water-
shed when the rest of the MSG, without
my influence and after much discussion,
decided to continue the improvement
effort.

Prior to this meeting, the PATs had
not produced anything, and enthusiasm

Sponsoring Process Improvement

16 CROSSTALK The Journal of Defense Software Engineering April 1999

for the effort began to wane. We had
found lots of ways to do nothing. The
PATs realized that a group that works for
only two hours every week will get little
done over a long period of time. Eventu-
ally, we implemented an approach where
employees would block out two weeks
and cram; however, you must plan for
and schedule these concentrated meet-
ings at least three months in advance
because most employees’ calendars are
full in the near term. PAT and SPIN
productivity was the result of teams
maturing as they went deeper into pro-
cess development.

Since the visioning session and the
changes initiated by the SPIN and the
PATs, I have noticed much more enthu-
siasm from employees. PATs have begun
to complete their work, and the results
have been encouraging. For example, the
first PAT, Acquisition Life Cycle Check-
list (ALCC), dealt with the SA-CMM in

general terms. We developed a checklist
of every action necessary to add new
capability or to enhance an existing capa-
bility on SOF weapons systems (concept
development through system life sustain-
ment). The checklist applied to all disci-
plines in the SPO. For the first time, we
had a comprehensive layout of this ex-
tremely complex process. We used the
ALCC to develop program management
plans and schedules, as an on-the-job
training tool, and as a management tool
to track program progression from devel-
opment through system installation. The
checklist and associated training were
well received by the work force; one
software engineer with 15 years experi-
ence commented that she wished she had
the checklist 15 years ago.

Our second PAT, Software Fielding
Process, dealt with an acute LU problem.
Acquisition reform and base realign-
ments had removed the infrastructure

that supported new software distribution
to the war fighter. This PAT developed a
process to immediately disseminate soft-
ware through a password-protected,
secure Web site. User organizations have
successfully tested the system and are
excited about the immediate accessibility
they now have. With this new process,
software changes can be available to user
organizations within hours of software
acceptance.

Another sign of growing acceptance
is that those who participated in the early
PATs have volunteered to join new PATs.
Our ongoing PATs address risk manage-
ment, standardized cost estimation,
training, and solicitation policy and
planning. At the staff ’s request, I did not
attend our “revisioning” session held in
October 1998. As they wrestled with
recommitment to ASPIRE, as well as
meeting the demands of day-to-day
challenges, the staff wanted the freedom
to air their problems, differences, and
gripes and develop their plan to help me
manage the organization. The results
were especially satisfying. Each senior
manager accepted the challenge to
wholeheartedly support ASPIRE and
manage the SPO business as a unified
group, now identified as the Manage-
ment Working Group (MWG). The
MWG meets monthly without my direct
intervention, and the MSG meetings are
now quarterly sessions. To keep our
direction on track, I provide coaching
and steering that is in line with our SOF
SPO mission and goals. At our next
revisioning session, we will check our
progress by identifying what has and has
not been working and what we need to
change in our approach.

I have no doubt that there will be
another period after the early successes
have been achieved and instituted when
everyone says, “Okay, now we are done.”
The idea has not yet fully sunk in that
we have a system for process improve-
ment. If something is wrong with our
work processes, we can feed the problem
into the new system and allow the system
to take care of it and come out with a
new process that is implemented, re-
viewed, and updated. Our organization
will not have sufficient confidence in our
processes until we realize that process
improvement is forever.

Dana Dovenbarger, Conference Manager
Lynne Wade, Assistant Conference Manager

Software Technology Support Center
OO-ALC/TISE
7278 Fourth Street
Hill AFB, UT 84056-5205
Voice: 801-777-7411 DSN 777-7411
Fax: 801-775-4932 DSN 775-4932
E-mail: dovenbad@software.hill.af.mil
Wadel@software.hill.af.mil
Internet: http://www.jawswg.hill.af.mil

The Fifth Annual Joint Aerospace Weapon
Systems Support, Sensors,

and Simulation Symposium and Exhibition

“Making Information Work for the Warfighter”
June 13 – 17, 1999

Radisson Hotel, Mission Valley
San Diego, Calif.

Sponsored by: U.S. Air Force Embed-
ded Computer Resources Support
Improvement Program, U.S. Air
Force, U.S. Army, U.S. Navy, and
U.S. Marine Corps.

Managed by: U.S. Air Force Software
Technology Support Center and
the National Defense Industrial As-
sociation

The symposium will also include
Briefing to Industry presentations and
a classified session.

Visit our Web site for current pro-
gram information or call conference
managers for more information.

This will be a great conference at a
great place at a great time! See every-
one there!

Software Engineering Technology

CROSSTALK The Journal of Defense Software Engineering 17April 1999

Lessons Learned
To summarize, following are some key
lessons I learned as sponsor of our pro-
cess improvement effort.
• Do not characterize process improve-

ment as a separate “program”; charac-
terize it as the normal way of doing
business.

• Spend no more than 5 percent of
total organizational resources on the
improvement effort.

• To monitor progress of the effort,
track resources spent on improve-
ment, track PAT progress against
schedules, and pay attention to atti-
tude changes.

• Whenever possible, demonstrate your
commitment by applying resources
that you control to the effort.

• Clearly identify and communicate
the problems that process improve-
ment are intended to solve.

• Establish a vision for the effort, and
at least every six months, reinforce
the vision and the commitment to
achieving it.

• Enable PATs to meet for concen-
trated periods; schedule the meeting
times several months in advance.

• Find the right balance between pa-
tience and active engagement. ◆

Acknowledgment
I thank Bill Pollak of the SEI for his help
in preparing this article for publication.

About the Author
Col. Henry M. Mason
is the director of SOF
SPO at Warner Robins
Air Logistics Center,
Robins Air Force Base,
Ga. He is the single
authority for fleet man-

agement for the U.S. Special Operations
Command and Headquarters Air Force
Special Operations Command for fixed-
wing aircraft. He directs more than 420
personnel at Robins Air Force Base and
at Wright-Patterson Air Force Base,
Ohio, and he directs more than 20 con-
tractor support agencies.

Mason has a bachelor’s degree in
engineering management from the U.S.
Air force Academy, a master’s degree in
business administration from the Univer-
sity of California at Los Angeles, and is a
graduate of the Air War College, Max-
well Air Force Base, Ala. He is a com-
mand pilot with more than 2,000 flying
hours, and he has commanded at the
squadron and group level. His duty
assignments include operational flying,
flight safety, aircraft maintenance, logis-
tics, and acquisition program manage-
ment.

Point of Contact
Chuck Idone
226 Cochran Street
Robins AFB, GA 31098
Voice: 912-926-6078
E-mail: cidone@lu.robins.af.mil

Reference
1. “Quality Flight-Line Maintenance,” Air

Power Research Institute, U.S. Air
Force, Maxwell Air Force Base, Ala.,
1989.

Eleventh Annual Software Technology Conference
Dates: May 2-6, 1999
Location: Salt Palace Convention Center, Salt Lake City,

Utah
Co-sponsors: U.S. Air Force, U.S. Army, U.S. Navy, U.S.

Marine Corps, Defense Information Systems Agency,
and Utah State University Extension

Co-hosts: Ogden Air Logistics Center and the Software
Technology Support Center

Theme: “Software and Systems for the Next Millennium”
Contact: Dana Dovenbarger or Lynne Wade
Voice: 801-777-7411 DSN 777-7411
Fax: 801-775-4932 DSN 775-4932
E-mail: dovenbad@software.hill.af.mil or

wadel@software.hill.af.mil
Internet: http://www.stc-online.org

Project Management for Development of Software-
Intensive Systems

Dates: May 10-12, 1999
Location: University of California at Los Angeles

(UCLA)
Subject: This course presents practical techniques and

tools to estimate, plan, lead, organize, control, and

complete high-quality projects that are within budget
and on schedule and that meet the needs of the cus-
tomer.

Sponsor: UCLA Extension Short Course Program
Contact: Donald S. Remer
Voice: 909-621-8964
E-mail: remer@hmc.edu
Contact: Marcus Hennessy
Voice: 310-825-1047
E-mail: mhenness@unex.ucla.edu
Internet: http://www.unex.ucla.edu/shortcourses

Montgomery Area Golf Outing and Information
Technology Partnership Day 1999

Dates: May 17-18, 1999
Locations: Wynlakes Golf and Country Club and Em-

bassy Suites Hotel, Montgomery, Ala.
Theme: “Y2K and Challenges Beyond – Government

and Industry Shared Solutions”
Chairman: William R. Stevenson
Voice: 334-416-4041
Fax: 334-416-5505
E-mail: william.stevenson@gunter.af.mil
Internet: http://web1.ssg.gunter.af.mil/partnership

Coming Events

Sponsoring Process Improvement

18 CROSSTALK The Journal of Defense Software Engineering April 1999

Throughout the Department of
Defense (DoD) and private in-
dustry, the terms “return on

investment” and “earned value” are
becoming more commonplace. Their
use also is becoming more appropriate,
visibly demonstrated, and validated.
These terms tend to frustrate some
program managers and corporate execu-
tives, while other organizations revel in
their daily application. It is interesting
that some organizations value these
terms, while others disregard or mini-
mize their use. At the heart of this co-
nundrum lie a variety of statements and
questions that range from skepticism to
downright confusion:
• Is the definition believable? “This

project showed an ROI of 1,421
percent over three and a half years
with a payback period of 0.23
years.”

• Are you sure? “With respect to
project status, I believe we are right
on course and are actually under-
running our costs.”

• Lack of understanding. “Consider-
ing project’s nature, what is the best
method to compute our ROI?”

• Complexity and confusion. “How
in the world can I compute earned
value on that task?”
In working with a variety of organi-

zations, the Software Technology Sup-
port Center (STSC) has discovered the
equal variety of approaches to ROI and
earned value. Some organizations tend
to only intellectually capture and dis-
play the information, others use inap-
propriate or incorrect definitions to
support marketing tactics, while others
honestly struggle with accurate defini-

tions but value these tools as legitimate
management approaches.

As an example, the STSC recently
provided support to a DoD organiza-
tion in the inspection of a software
development plan. The inspection was
carefully planned, then implemented
over a short time frame. At the outset,
ROI and earned value were not a spe-
cific focus of the effort, and detailed
measures were not defined. However, as
the inspection neared completion, a
sufficient amount of data was generated
that enabled the organization to com-
pute rough estimates for both earned
value and ROI.

By deliberate design, the partition-
ing (chunking) of the document, the
allocations of inspection assignments,
and the regular monitoring of progress
enabled a clear estimate of the earned
value achieved at different points during
the inspection. Once the data was
baselined, earned value was a straight-
forward computation that demonstrated
a progression toward successful comple-
tion of the inspection project.

The organization also was pleased
with a relatively accurate ROI estimate
of just over a ratio of 4-to-1. This ROI
measure was based on actual hours
invested in inspecting the document
and estimated hours saved in down-
stream costs if the discovered defects
had not been detected. This estimate
worked well for this activity and mea-
surably justified the expenditure of
effort. However, since it was unique to
this organization and this effort, map-
ping it to another situation would be
inappropriate. Although not specifically
quantifiable, the ROI was influenced by

strong leadership, an insistence on
progress tracking, and the commitment
of the inspection team—all semiunique
intangibles.

Earned value and ROI have been
called management indicators, metrics,
measurements, etc. Although ROI is
typically used as an overall indicator of
project success, it is supported by the
consistent tracking and monitoring of
one of the “smaller scale” (but more
quantifiable) ROI measures—earned
value. Conscious and regular earned-
value measurements point toward and
validate any stated ROI. Therefore, the
proven utility and importance of these
two tools—used not only separately but
also together—are reasons to under-
stand them better. The following sec-
tions define the terms ROI and earned
value, establish a context for their use,
and discuss a few examples of how they
might be applied.

Return on Investment
In its basic computation, ROI is stated
as the ratio of savings estimated or mea-
sured in a given effort by the cost incurred
to accomplish that effort. The difficulty
in computing ROI is to determine what
constitutes the total savings or return
and what constitutes the total invest-
ment. Although much of the value that
goes into the terms total return and total
investment may be straightforward and
measurable, these terms often include
various intangibles that are not only
valid but also crucial to an accurate
measurement of ROI. Less tangible
items could include customer confi-
dence, competitiveness, effects of down-
time, impact on productivity, and lost
opportunities.

Gaining Confidence in Using Return on Investment
and Earned Value

Larry W. Smith, Software Technology Support Center
A. Todd Steadman, TRW Avionics Systems Division

The terms “earned value” and “return on investment” (ROI) are frequently heard in
the world of project management; however, they are often used incorrectly or incon-
sistently. This article summarizes the major principles and purposes of these manage-
ment tools with the intent on moving them into the mainstream of proper use.

CROSSTALK The Journal of Defense Software Engineering 19April 1999

When such complexities are factored
in, the ROI computation usually
changes, considering diverse elements
inherent in the improvement effort it is
meant to quantify. Therefore, because it
is less costly to compute an estimated
ROI (because of the intangible values),
one could reasonably conclude that
most stated ROIs are heavily estimated
rather than measured. This causes diffi-
culty in comparing ROI information.

To better understand the ROI con-
cept, examine different uses and ap-
proaches to compute and report ROI.
Any organization that desires to success-
fully deliver products or services over a
long term requires a positive ROI. It
follows that good management plan-
ning will outline steps necessary to
reach such an ROI. This includes select-

ing the proper method to compute
ROI, accurately reporting ROI, identi-
fying necessary success factors that re-
late directly to your product and organi-
zational structure, then strategically
leveraging them.

Improvement-Based ROI – De-
pending on the type of improvement
being attempted, approaches to com-
pute ROI may be drastically different.
The end product of one type of im-
provement may yield highly quantifi-
able, or at least estimable, results. For
example, research of the potential ben-
efits of document inspections has led to
estimated hourly savings to find and fix
defects upstream in the lifecycle as op-
posed to finding and fixing them in
later development phases [4, 5]. The
estimated savings per defect, although

questioned by some, translate directly to
personnel hours and dollars saved by
the inspection process improvement,
due to earlier and more efficient detec-
tion and removal of defects.

Conversely, the insertion of a net-
work management system, for example,
may not yield an easily quantifiable
ROI. Although there would be some
readily quantifiable costs (design, devel-
opment, operation, acquisition, train-
ing, and maintenance), many critical
costs and benefits may be far less tan-
gible, as discussed earlier.

In such cases, the difficult task for
managers is to quantify these intan-
gibles. Although difficult, the task is not
impossible. One often overlooked
method is the strategic use of customer
satisfaction surveys [6]. For example,

ROI Terms
Payback Period – The amount of time following a project or

improvement effort, either estimated or measured, during which the
total investment of the improvement will be repaid by the savings it
brings.

Investment – The estimated or measured total cost in hours,
dollars, or other units that an improvement effort requires to be
planned, executed, and completed.

Return on Investment – The total quantitative savings or return,
in hours, dollars, or other measurable units, generated by an improve-
ment effort, divided by the total cost of the improvement effort.

Cost of Quality – A popular factor in the computation of ROI for
quality-related improvement efforts. Cost of quality is the cost of not
doing things right the first time, and may include preparation costs,
execution costs, and follow-up costs for the effort as well as other
measures that contribute to the quality effort.

Cost of Conformance – The estimated or measured cost for an
organization or project to conform to stated requirements. Cost of
conformance generally includes assessment costs and prevention
cost.

Cost of Nonconformance – The estimated or measured cost
incurred by an organization or project for reworking an effort or
project because things were not done correctly the first time.

Earned-Value Terms
Budgeted cost of work scheduled (BCWS) – The sum of the

budgets for all planned work scheduled to be accomplished within a
given period.

Budgeted cost of work performed (BCWP) – Also called the
earned value, it has three definitions: (1) The estimated (in contrast
to the planned) value of work performed as of a specific point in
time, (2) a method for measuring project performance comparing the
amount of work that was planned with what was actually accom-
plished to determine if cost and schedule performance is as planned
[2], and (3) the sum of the budgets for completed work and the
completed portions of open work [3].

Actual cost of work performed (ACWP) – The costs incurred
in accomplishing the work performed.

Schedule variance (SV) – The numerical difference between
the budgeted cost of work performed and the budgeted cost of work
scheduled.

Cost variance (CV) – The numerical difference between the
budgeted cost of work performed and the actual cost of work per-
formed.

Schedule performance indicator (SPI) – The planned schedule
efficiency factor representing the relationship between the value of the
initial planned schedule and the value of the physical work performed.

Cost performance indicator (CPI) – The cost efficiency factor
representing the relationship between the actual costs expended and
the value of the physical work performed.

Budget at completion (BAC) – The sum of all budgets allo-
cated to a project. The BAC is synonymous with the performance
measurement baseline.

Performance measurement baseline (PMB) – The time-
phased budget plan against which project performance is measured.
The PMB is synonymous with the BAC.

Common Terminology
A discussion of the terminology associated with ROI and earned value will assist in understanding their usefulness and fostering practical
implementation. Note that the ROI terms and associated definitions were compiled in part from [1]; earned-value terms and associated defini-
tions were compiled in part from [2] and [3]. See Figure 3 for a graphical representation of some of these terms.

Gaining Confidence in Using Return on Investment and Earned Value

20 CROSSTALK The Journal of Defense Software Engineering April 1999

frequently surveying key customers
might reveal that when the overall satis-
faction level exceeds a given threshold,
customers are a certain percentage more
likely to request additional support, add
task orders to contracts, and rule favor-
ably on contract incentives. Similar
information gathering at the marketing
level may reveal that an estimated dollar
value of contracts were won due in part
to the improvement effort and its effect
on the organization’s capabilities and
performance. Understanding what the
intangibles are and how they affect the
organization is key to understanding
how to compute ROI for them.

Reporting ROI – In many cases, the
method of reporting ROI is as much a
key to success as the computation of
ROI. For this reason, organizations
often report ROI measurements along
with additional reference points, such as
payback period, risk mitigation strate-
gies, and forecasted ROI estimates.
Upper management is continually inter-
ested in the “quick win” or “low-hang-
ing fruit” in an improvement effort.
Factual and substantiated estimates that
reinforce a stated ROI value provide
that benefit to management—benefits
that go a long way toward continued
sponsorship of the effort, professional
credibility, and willingness to accept risk
and continue in improvement initia-
tives.

As members of an organization
become better at the computation and
management of ROI, they become
more adept in computing the amount
of time in which an improvement will
pay for itself. The organization will be
more able to identify risks to the effort
and propose mitigation that will pre-
serve and even increase the ROI. In this
optimized environment, the organiza-
tion will be able to estimate with con-
siderable accuracy the ROI expected in
the coming months and years as the
improvement effort progresses.

ROI Success Factors – Organiza-
tions that are likely to achieve the best
ROI are those that embrace it as a strat-
egy [6]. The natural product of any
strategy is a plan or road map that, if
followed, will achieve some measure of

success. The following elements will
contribute to such a plan.
• Use the principles of cost-and-ben-

efit analysis to completely identify
all potential costs and savings ex-
pected as a result of the improve-
ment effort.

• Rank all costs and savings of the
effort with respect to the severity or
importance of their impact.

• Identify the subset of costs and sav-
ings that will be used to compute
the ROI.

• Develop a plan to monitor and
manage the selected costs and sav-
ings.

• When computing ROI, plan for the
inclusion of input from people who
have a direct understanding of the
non-tangible benefits or savings,
e.g., marketing, engineering, or
contracting departments.

• Frequently communicate about the
plan with all relevant parties.

• Compute and use additional sup-
porting metrics such as payback
period.

• Determine strategies to improve the
estimated and forecasted ROI for
the coming months or years.

• Strengthen sponsorship by including
key people in ROI plans and man-
agement activities.

Earned Value
The earned value approach to project
tracking originated over 100 years ago
as a result of improvement efforts in the
operation of factories and has gained
considerable popularity in the
last few decades. Earned value
was formally proposed ap-
proximately 30 years ago and
was implemented as a pilot
project in the Minuteman
missile program. Success in
that effort prompted what has
become known today in the
DoD as the Cost/Schedule
Control Systems Criteria (C/
SCSC) and in private industry
as the Earned Value Manage-
ment System (EVMS). The
C/SCSC currently consists of
32 management criteria de-
tailed in the DoD’s acquisi-

tion policy document DoD Instruction
5000.2R. Refer to [7] for an excellent
treatment of the management control
factors that originally made up the C/
SCSC.

Before earned value, the traditional
approach to cost and funding manage-
ment was based on a project expendi-
ture plan. This plan identified a specific
funding expense rate over the duration
of the project. As progress on the
project was made, the total cost ex-
pended on the project to date was com-
pared to the planned funding rate. This
comparison enabled management to
determine whether expenditures were
ahead of or behind the amount planned
for the project at that time.

The current approach of earned value
adds a third dimension to this process: A
quantitative estimate is made of the value
of the work performed. This estimate
represents a measure of “what you got for
what you paid.” Comparing the earned
value to the planned cost for a given
period identifies whether the project is
ahead of or behind schedule, also called
schedule variance (SV). Likewise, com-
paring the earned value to the costs ex-
pended during the period identifies
whether the project is underrunning or
overrunning its budget, also called cost
variance (CV).

Figure 1 illustrates the basic, but
often nonintuitive, principles of earned
value. Assume you have contracted with
an excavator to dig a 100-foot ditch
over the next five days. You carefully
plan the effort, deciding that total ditch

Figure 1. The earned-value approach to project tracking.

Software Engineering Technology

CROSSTALK The Journal of Defense Software Engineering 21April 1999

length dug will be the primary measurement. You scientifi-
cally calculate that 20 feet will be dug each day at an agreed
hourly wage. The project begins, and after the first day, a 20-
foot length of ditch is done. You measure progress and see
that according to your plan, you are on schedule and within
budget.

The next day is different. Because of unforeseen delays
(equipment malfunction, zoning problems, volcanic intru-
sion, etc.), only 10 more feet are completed. Measuring
progress, you find that the “earned value” of your trench is
now a total of 30 feet. However, your planned value is 40 feet
(two days at 20 feet per day). Furthermore, your actual ditch
cost is based on two full days of digging. Therefore, the differ-
ence between your earned value of 30 feet and the planned
value of 40 feet indicates that after two days, the ditch is 10
feet behind schedule or 10 percent of the planned total ditch
length.

Similarly, the difference between the earned value cost of
the ditch and the actual ditch cost indicates a potential cost
overrun. Additional costs (replacement equipment, zoning
fees, explosives, etc.) will simply add to the actual ditch cost,
increasing the cost overrun. Assuming no further delays and
no acceleration of the digging, 10 more feet of ditch will have
to be dug at the end of the five days, adding to the total cost
of the ditch.

The measurements of budgeted costs, earned value, and
actual costs are generally expressed in dollars or hours. Perfor-
mance estimates of earned value may be based on lines of
code developed, functional units completed, etc., which are
then converted to the appropriate units. Earned value pro-
vides the cost and expenditure forecast capabilities of tradi-
tional cost and funding management but adds the crucial
capability of schedule estimation that the traditional approach
lacks.

The biggest challenge the earned-value approach has faced
has been its association with C/SCSC. C/SCSC has a proven
track record as a means to manage and control large projects.
From a general perspective, projects for which C/SCSC is
both appropriate and usually mandated constitute only 1
percent of all projects [3]. However, the 32 criteria contained

in the current version of C/SCSC are considered cumbersome
and likely overkill for the remaining 99 percent.

Still, the principles behind the earned-value approach are
both applicable and appropriate for these projects. These
principles include proper use of work breakdown structures,
cost accounts, performance measurement baselines, selection
of appropriate methods to compute earned value, forecasting
project performance, and capitalizing upon proven success
factors.

The Work Breakdown Structure (WBS) – The use of an
appropriate WBS is at the heart of C/SCSC and earned value.
All work defined and subsequently tracked by the project can
be located within the structure of the WBS. C/SCSC projects
usually consist of a two-part WBS. The first two or three
levels constitute the contract work breakdown structure
(CWBS). The CWBS is often defined by the project owner
and shows the way that cost and schedule will be monitored
and reported throughout the project lifecycle. The project
managers and technical team members define the subsequent
levels constituting the project work breakdown structure
(PWBS). At the lowest level of the PWBS, the tasks can be
traced directly to project deliverables called out in the
project’s technical statement of work. At the lowest levels is
the primary tracking mechanism of C/SCSC and earned
value: the cost account.

The Cost Account – Cost accounts are created at the
intersection of the organizational breakdown structure and
the PWBS (see Figure 2). The resulting intersection creates a
performance measurement unit that combines the schedule,
cost, and technical aspects of the project. C/SCSC defines the
cost account as, “A management control point at which actual
costs may be accumulated and compared to the budgeted cost
of work performed. A cost account is a natural control point
for cost and schedule planning and control, because it repre-
sents the work assigned to one responsible organizational
element on one contract work breakdown structure (CWBS)
element.” [8]

Cost accounts provide a correlation between the amount
of work that is planned and the resources available to accom-
plish that work. Each cost account generally contains three
pieces of information: the scope of work for the associated
WBS element, its schedule, and its budgeted cost.

Performance Measurement Baseline – When the collec-
tion of cost accounts are summarized upward, the entire
project scope, schedule, and planned cost can be determined.
In C/SCSC and earned value, this information is called the
“performance measurement baseline” (PMB). C/SCSC de-
fines the PMB as, “The time-phased budget plan against
which contract performance is measured. It is formed by the
budgets assigned to scheduled cost accounts and the appli-
cable indirect budgets. … It equals the total allocated budget,
less management reserve.” Using the PMB at any time during
the performance of the project, the PMB allows the project
manager to compare tracking information. Comparing the
estimated earned value with the PMB at a given time yields
the schedule variance for the project. Similarly, comparing the

Figure 2. Diagram showing the creation of earned-value cost accounts as the
intersection of the organizational breakdown structure and the work
breakdown structure.

Gaining Confidence in Using Return on Investment and Earned Value

22 CROSSTALK The Journal of Defense Software Engineering April 1999

earned value with the actual costs
posted against the PMB yields the cost
variance for the project.

Earned-Value Measurement Meth-
ods – With the PMB in place, perfor-
mance measurements can be made. The
specific methods to measure perfor-
mance and earned value must be se-
lected before the start of the project. A
variety of methods to measure earned
value have been proposed, and different
methods are appropriate for different
projects. Patricia W. Hurst presented
the “binary reporting” method for
earned-value measurement. According
to Hurst, binary reporting is useful for
projects of which their lowest level
WBS work units are relatively small in
effort, i.e., four to 80 staff-hours. Bi-
nary reporting maintains that work
packages are in one of only two states:
complete or incomplete. This gives the
project manager a specific measure of
the progress made with respect to the
effort expended [9].

Other methods exist to measure
earned value, including methods based
on percent complete and weights ap-
plied to milestones [3]. Project and cost
account managers have the responsibil-
ity to determine the most appropriate
and effective method. Table 1 lists sev-
eral categories of these measures.

Forecasting – Perhaps one of the
most important benefits of earned value
is its ability to forecast the final cost and
schedule of a project. Successful fore-
casting is based on a foundation of a
good baseline plan, tracking perfor-
mance against that plan, and the com-
mitment of upper management to use
and act on the performance data. Sev-
eral methods have been proposed to
forecast project performance.

Q.W. Flemming and J.M. Koppel-
man present a forecast approach based
on the work remaining, the cost perfor-
mance indicator (CPI) and schedule
performance indicator (SPI), and the
actual costs for the project [3]. In this
approach, the cost forecast is deter-
mined by computing the remaining
work (usually the budget at completion
minus the total earned value to date).
This factor is then divided by either the
CPI or the product of CPI and SPI.

dohteMtnemerusaeM noitpircseD setoN

enotseliMdethgieW tegdubdethgieW.sksatnaps-trohsroflufesU
detubirtsidsenotselimotdeilppaerastnuoma

enotselimehtsA.ksatehtfonoitarudehtssorca
.denraesitnuomategdubeht,dehcaersi

;001/0(alumroFdexiF
)05/05;57/52

tnuomanA.sksatnaps-trohsdeliatedroflufesU
s�ksatehtfotnecrep001ot0morfgnignar
ehT.snigebksatehtnehwdenraesitegdub

siksatehtnehwdenraesiegatnecrepgniniamer
.etelpmoc

eraserusaemesehT
kcartotdesuyllacipyt

-nonnoeulavdenrae
.sksatgnirrucer

etelpmoCtnecreP
setamitsE

�evitcejbus�A.retsinimdaotdohtemtseisaE
sidetelpmockrowfoegatnecrepehtfoetamitse

denifed-llewseriuqeR.eulavdenraeehtrofdesu
naenimretedotsenilediugdnasegakcapkrow

.eulavetelpmoc-tnecrepetarucca

dnaetelpmoCtnecreP
setaGenotseliM

tnemnrevogybdesudohtemralupoP
dethgiewfonoitanibmocasesU.snoitazinagro
�evitcejbuS�.etelpmoctnecrepdnasenotselim

aotpudewollaerasetamitseetelpmoc-tnecrep
.enotselimhcaehtiwdetaicossagnilieccificeps
dewollatonsienotselimehttsaptnemecnavdA
ehtecneh,temneebevahairetircelbignatlitnu

�.etag�mret

detelpmoCtnelaviuqE
stinU

.sksatevititeperdnanoitaruddednetxeroflufesU
fostinutcnitsidotnidedividsitcejorpllarevoehT

ybdetupmocsieulavdenraE.tnemhsilpmocca
.detelpmocstinuehtgnimmus

sdradnatSdenraE ehtspahreP.krowepyt-noitcudorproflufesU
denraeetupmocotdohtemdetacitsihpostsom

nodesabecnamrofrepfosdradnatS.eulav
,seidutsnoitomdnaemit,atadtsoclacirotsih

anoeulavdenraeehtetupmocotdesuera,.cte
desuerasdradnatslareves,netfO.ksatnevig
susnesnoctnemeganamadna,ylsuoenatlumis
.desuyletamitlusidradnatshcihwsenimreted

eraserusaemesehT
kcartotdesuyllacipyt
rehtienoeulavdenrae

rognirrucernon
.sksatgnirrucer

denoitroppA
etercsiDotpihsnoitaleR

kroW

sahecnamrofrepriehthcihwnisksatroflufesU
denraeehT.sksatrehtootpihsnoitalertcerida

ehtfoyrammusasisksatdenoitropparofeulav
otkrowehtnoedamstnemerusaemeulavdenrae

ehtnisecnairaveludehcS.detalersitihcihw
otlacitnediyllausuerakrowdenoitroppa

,revewoH.krowdetalerstinisecnairaveludehcs
erakrowdenoitroppaehtnisecnairavtsoc
krowdetalerehtmorftnereffidyllaitnatsbus

.stsoclautcafoscimanydehtfoesuaceb

nactnemerusaemsihT
ehtfoynayolpme
.sdohtemxisevoba

troffEfoleveL tahtesohterasksattroffefolevel,yllareneG
sksatesehtesuaceB.tcejorpllarevoehttroppus
revetahw,nevirdksatnahtnevirdemiteromera
denraeehtsyawlasieulavdennalpehtsatessi

.enodsawkrowtahwfosseldrager,eulav

sidohtemsihT
tonyllareneg

kcartotdednemmocer
.eulavdenrae

Table 1. Different earned-value measures adapted from [3].

Software Engineering Technology

CROSSTALK The Journal of Defense Software Engineering 23April 1999

This gives the remaining work with respect to the relative
efficiency with which it will be completed. The actual costs
expended to date are then added to this amount, yielding the
forecasted cost of the project.

The schedule forecast can be determined graphically by
examining the earned value and planned costs. Figure 3 dis-
plays a line graph in which budget is expressed on the vertical
axis, and time is expressed on the horizontal axis. For a given
status date, the BCWS, ACWP, and BCWP curves are plot-
ted on the graph. Note that the date corresponds to the point
at which the BCWP value intersects the BCWS curve. This
date is compared with the status date, yielding the SV. This
variance can be applied to critical path information to predict
the potential completion date for the project.

Earned-Value Success Factors – As discussed earlier in
summarizing ROI, it may be beneficial to consider a plan or
road map to implement earned-value analysis in an organiza-
tion (also see [11]). The following elements will contribute to
such a plan.
• Ensure that the project is described by an appropriately

detailed WBS with individual work packages at the lowest
level.

• Create cost accounts for the project by ensuring that a
specific organizational unit has responsibility for each
work package.

• Establish a PMB, which incorporates schedule and budget
information and against which progress will be measured.

• Identify the method that will be used to compute earned
value.

• Identify reporting periods that are appropriate to the
project, and identify the earned-value method selected.

• As each reporting period is achieved, measure values for
BCWS, BCWP (the earned value), and ACWP. Use these
values to compute other indicators, including the CV, SV,
CPI, SPI, and other indicators of interest.

• Use the indicators to track and manage the schedule.

DoD and Industry Implementation Examples
ROI and earned value have been implemented with varying
results in countless organizations over the past three decades.
The following examples illustrate how ROI and earned value
are being implemented in the real world.

In 1991, a software technology strategy for the DoD was
drafted with three national objectives of note. The objectives
included reducing lifecycle costs, reducing software problem
rates, and increasing mission capability and interoperability.
Over a period of five years, nearly 800,000 source lines of
code were inspected. Using the number of major and minor
defects identified and the total time to prepare for and inspect
the documentation, an estimated ROI of a 4.48-to-1 ratio
was computed [5].

Recently, the International Data Corporation conducted
several in-depth economic analyses at major corporations.
The corporations were inserting new technology to imple-
ment software process improvement. In computing ROI, the
corporations emphasized four issues: rapid deployment on

heterogeneous platforms, browser-based interfaces, ease of
use, and leveraging openness and its impact on maintenance.

The projects were significant in size, ranging from $1.4
million to $4.2 million. A standard definition of ROI was
used: ROI equals the amount above a dollar that was returned
for every dollar spent in the implementation of the project.
Two of the companies were Silicon Graphics and Amdahl.
Over a three-year period, Silicon Graphics showed an ROI of
1,427 percent with a payback period of 0.18 years. Amdahl
computed their ROI over three years to be 2,063 percent with
a payback period of 0.13 years [10].

In 1993, the privately funded, multibillion-dollar IRI-
DIUM® satellite program began. Because the program was
not federally funded, no government requirement was levied
for the project to comply with the C/SCSC standard. How-
ever, the management group for the project implemented a
tailored earned-value approach to manage the project. The
earned-value approach was based on a product-type WBS.
Earned value was embedded within the project’s scheduling
activities. Employees were rewarded based on the project’s
earned-value performance, which included cost and schedule
performance and managing the critical path against key mile-
stones. Therefore, this project created a unique approach to
establish earned value as a valid and visible management tool.

Summary
ROI and earned value are relatively complex terms with enor-
mous potential to enhance success at improvement activities
or any other project. Both have been implemented, but nei-
ther consistently nor accurately, in the DoD and private in-
dustry. However, significant cost savings are available if their
underlying principles are administered properly.

Earned value is related to ROI and is primarily based
upon tangible estimates. It is an augmentation of traditional
cost and funding management that provides the schedule
management aspect that the traditional approach lacks.
Earned value is a measure of “what you got for what you

Figure 3. Illustration of the earned-value curves BCWS, BCWP, and ACWP.
Representative cost and schedule variances are shown with respect to a given
status date. Adapted from [3].

Gaining Confidence in Using Return on Investment and Earned Value

24 CROSSTALK The Journal of Defense Software Engineering April 1999

paid” and is based on a foundation of
work breakdown structures, cost ac-
counts, performance measurement
baselines, mathematical value computa-
tion, and schedule and cost forecasting.
Any given method to compute earned
value could be appropriate for some
projects and inappropriate for others, so
thought and planning are needed to
select the best approach.

ROI is more difficult to uniformly
measure and use in a practical manner
than earned value. ROI can be com-
puted by summing earned-value mea-
sures consistently and combining them
with the less tangible estimates. Math-
ematically, ROI is the ratio of total
savings achieved from an improvement
effort to the total cost incurred to
implement the effort. Some ROI esti-
mates are easy to quantify, particularly
those related to specific monetary ex-
penditures and earnings; however, the
definition of costs and savings could be
expanded into multiple intangibles,
which are much more difficult to esti-
mate. Likewise, multiple methods to
compute ROI may exist for each project
and for each organization.

Ultimately, organizations that use
earned value and ROI as a consistent
strategy also will base their business
tactics upon strong project management
principles. The case for ROI measures
can benefit from further study, includ-
ing methods to compute ROI and iden-
tify intangibles and how to address
them. ◆

About the Authors
Larry W. Smith is a
software engineer at
the STSC, where he
has managed investi-
gation and implemen-
tation of software
reuse, software engi-

neering, and other software process im-
provement activities for the Air Force and

other DoD organizations. He has a
bachelor’s degree in electrical engineering
from the University of Utah and a
master’s degree in computer science from
Utah State University. He currently
teaches project management and software
engineering courses for the University of
Phoenix.

Software Technology Support Center
Ogden ALC/TISE
7278 Fourth Street
Hill AFB, UT 84056
Voice: 801-777-9712 DSN 777-9712
Fax: 801-777-8069 DSN 777-8069
E-mail: smithl@software.hill.af.mil

A. Todd Steadman is
a software develop-
ment engineer at
TRW Avionics Sys-
tems Division. He has
provided software
engineering technical

services to the STSC for eight years,
focusing on software project management
technology, research, evaluation, and tool
insertion in various DoD organizations
and other federal organizations. He has
written CROSSTALK articles and STSC
technology reports on project manage-
ment and cost estimation. He has a
bachelor’s degree in electrical engineering
from the University of Utah and a
master’s degree in computer science from
Utah State University.

TRW Avionics Systems Division
Ogden Avionics Engineering Center
1104 Country Hills Drive
Ogden, UT 84403
Voice: 801-625-8019
Fax: 801-625-8081
E-mail: todd.steadman@trw.com

References
1. Haley, T., et al., “Raytheon Electronic

Systems Experience in Software Process
Improvement,” SEI/CMU-95-TR-017,
Software Engineering Institute, Carn-
egie Mellon University, Pittsburgh, Pa.,
November 1995.

2. Project Management Institute, A Guide
to the Project Management Body of
Knowledge, Project Management Insti-
tute, Upper Darby, Pa., 1996.

3. Flemming, Q.W. and J.M. Koppelman,
Earned Value Project Management,
Project Management Institute, Upper
Darby, Pa., 1996.

4. Gilb, T. and D. Graham, Software
Inspection, Addison-Wesley Longman,
Ltd., Essex, England, 1993.

5. O’Neill, D., “National Software Quality
Experiment – A Lesson in Measure-
ment: 1992 – 1997,” CROSSTALK, Soft-
ware Technology Support Center, Hill
Air Force Base, Utah, December 1998,
http://www.stsc.hill.af.mil/CrossTalk/
1998/dec/oneill.html

6. Desai, V., “When Computing ROI,
Don’t Forget the Intangibles,” Data
Communications Magazine (Web Edi-
tion), www.data.com, April 1998.

7. Flemming, Q.W., Cost/Schedule Control
Systems Criteria: The Management Guide
to C/SCSC, Probus Publishing Co.,
Chicago, Ill., 1992.

8. Department of Defense Instruction
7000.2, Performance Measurement for
Selected Acquisitions, Washington,
D.C., 1967.

9. Hurst, P.W., “Software Project Manage-
ment: Threads of Control,” Software
Engineering Project Management, R.
Thayer and E. Yourdon, eds., IEEE
Computer Society Press, Los Alamitos,
Calif., 1997, pp. 410-422.

10. Weiderman, N., et al., “Implications of
Distributed Object Technology for
Reengineering,” SEI/CMU-97-TR-
005, Software Engineering Institute,
Carnegie Mellon University, Pittsburgh,
Pa., June 1997.

11. Flemming, Q.W. and J.M. Koppelman,
“Earned Value Project Management: A
Powerful Tool for Software Projects,”
CROSSTALK, Software Technology Sup-
port Center, Hill Air Force Base, Utah,
July 1998, p. 19.

Software Engineering Technology

CROSSTALK The Journal of Defense Software Engineering 25April 1999

What Is So Great About
Simulation?
Simulation can be applied in many criti-
cal areas. It allows issues to be addressed
before they become problems. Simula-
tion is more than just a technology be-
cause it forces one to think in global
terms about system behavior and about
systems being more than the sum of
their components. Simulation can pro-
vide insight into the designs of processes,
architectures, or product lines before
significant time and cost have been in-
vested and can be of great benefit in
support of training. Simulation is being
increasingly emphasized in the Depart-
ment of Defense (DoD) community,
where there is documented evidence that
its impact on cost, quality, and schedule
is nontrivial. I believe that the software
engineering community needs to take a
stronger role in exploiting the technol-
ogy [1].

The DoD Emphasis on Simulation
The Office of the Secretary of Defense
has recently initiated an effort focused
on the use of modeling and simulation
to support improvement of the acquisi-
tion process. Jacques Gansler, under-
secretary of defense for acquisition and
technology, states, “A directive which I
issued this year [1998] requires the inte-

gration of modeling and simulation in
our acquisition process—across func-
tional disciplines—and throughout the
lifecycle of systems. We are committed
to reforming the acquisition system and
recognize that an essential tool for ac-
complishing that reform will be model-
ing and simulation.” [4] Although
Gansler does not explicitly include the
software acquisition process, there is no
reason to doubt that software acquisition
can benefit as much as any other DoD
acquisition area, as will be explained
further.

Gansler’s remarks are reinforced by
those of Patricia Sanders, director of
defense, test, system engineering, and
evaluation. In “Simulation-Based Acqui-
sition,” [5] she states that the DoD
needs to become a smart buyer and that
in evaluating what to buy, simulation
will be a key component. She says that,
“Without question, the Defense Depart-
ment is moving toward greater use of
simulation-based system acquisition.”
She indicates that,

“The Defense Department envi-
sions an acquisition process sup-
ported by the robust, collaborative
use of simulation technology that is
integrated across acquisition phases
and programs. The objectives of
Simulation-Based Acquisition
(SBA) are to:
1. Reduce the time, resources, and

risk associated with the acquisi-
tion process;

2. Increase the quality, military
utility, and supportability of
systems developed and fielded;
and

3. Enable integrated product and
process development from re-
quirements definition and initial
concept development through
testing, manufacturing, and
fielding.” [5]

Sanders provides evidence from com-
mercial and military programs to show
that the use of simulation has had major
positive impacts from the perspectives of
cost, schedule, and productivity. Follow-
ing are some of her examples.

“Cost – … In the Joint Strike
Fighter program, it is projected
that virtual manufacturing tech-
niques may save as much as 3
percent of the program’s estimated
lifecycle cost, which could be $5
billion.
Schedule – The use of modeling
and simulation tools and processes
by the “big three” auto manufac-
turers has reduced the time from
concept approval to production
from 5 to 3 years. …
Productivity – … It took 38
Sikorski draftsmen approximately
six months to develop working
drawings of the CH-53E Super
Stallion’s outside contours. In
contrast, using modeling and simu-
lation, one engineer was able to
accomplish the same task for the

Simulation: An Enabling Technology
 in Software Engineering

Alan M. Christie
Software Engineering Institute

This article suggests three reasons why the software engineering community could ex-
ploit simulation to a much greater advantage. First, the Office of the Secretary of
Defense has indicated that simulation will play a significant role in the acquisition of
defense-related systems to cut costs, improve reliability, and bring systems into opera-
tion more rapidly. Second, there are many areas where simulation can be applied to
support software development and acquisition. Such areas include requirements speci-
fication, process improvement, architecture trade-off analysis, and product-line prac-
tices. Third, commercial simulation technology, capable of supporting software devel-
opment needs, is now mature, easy to use, low cost, and readily available.

The Software Engineering Institute’s work is sup-
ported by the Department of Defense.
Capability Maturity Model, CMM, and CERT
are registered with the U.S. Patent and Trademark
Office.

26 CROSSTALK The Journal of Defense Software Engineering April 1999

Commanche helicopter in just one
month. …” [5]

Clearly, the use of simulation in the
above examples is different from that in
software development; however, there
are sufficient parallels that would tend to
indicate that similar advantages can be
accrued in the software arena. For ex-
ample, although physical mock-ups are
not used in software development, early
prototypes are used to the same advan-
tage, e.g., determining system character-
istics prior to large investments in imple-
mentation.

There are other common problems
shared between the physical systems and
software systems. Examples are
• The management of changing re-

quirements and predicting the conse-
quences of such changes.

• The development and optimization
of effective processes through which
the product is built.

• The estimation and tracking of
project costs and schedules.
In addition, in 1998, the DoD devel-

oped an overall action plan to integrate
the various simulation-based acquisition
activities ongoing at the DoD. This
action plan was developed by a joint
SBA task force whose aim is “an acquisi-
tion process in which the DoD and
industry are enabled by robust, collabo-
rative use of simulation technology that
is intended to integrate across acquisi-
tion phases and programs.” [6]

The Need for Simulation in
Software Engineering
Why can simulation enhance traditional
software engineering? An important
factor is that it provides insights into
complex process behavior. Like many
processes, software processes can contain
multiple feedback loops such as those
associated with correction of defects in
design or code. Delays that result from
these effects may range from minutes to
years. The complexity that results from
these effects and their interactions makes
it almost impossible for human (mental)
analysis to predict the consequences.
Unfortunately, traditional process analy-
sis does not shed much light on these
behavioral issues, and the usual way to

cess modifications. One person’s experi-
ence may not correspond to another’s,
and subjective judgment comes into play
as to whose opinion is correct. Usually,
the person with greater authority wins.
With the ability to quantify the effects
through simulation, a much greater
degree of insight and understanding can
be brought to bear on the decision-
making process. Therefore, simulation
can be a significant influence in commu-
nication and consensus building. In this
context, alternate process designs can be
considered in a quantitative manner
with respect to such issues as bottle-
necking, resource availability, through-
put, and costs. These analyses should
result in processes that, once installed,
will have a considerably higher probabil-
ity of satisfactory operation.

A Discrete Simulation Model
There are many approaches to simula-
tion. Some simulations are based on the
need to visualize the airflow across a
wing section, whereas others designed
for combat or flight training need a
virtual reality component. However, the
types of simulations presented here use
symbolic networks of linked elements
that model processes or products. For
example, it is possible to model entities
flowing through the departments of an
organization or model information flow-
ing between a set of integrated software
tools. Techniques such as discrete event
simulation and systems dynamics are
often used here.

To make concrete the type of simula-
tions to which I refer, Figures 1 and 2
show components of a discrete simula-
tion model (“discrete” because the enti-
ties that flow through the system are
modeled discretely). The model was
developed with the Extend tool [2] and
depicts a call-center type of process for a
computer security incident response
team (CSIRT). CSIRTs, such as the
CERT® Coordination Center at the
Software Engineering Institute (SEI),
support organizations that have been
compromised by unauthorized computer
intrusions or that wish to obtain infor-
mation about guarding against such
intrusions. CSIRTs have to communi-
cate with many victimized organizations,

resolve them is to run the process and
observe the consequences. This can be
an extremely costly way to perform
process improvement.

Assessing the Costs of Software
Development
At an applied level, simulation can sup-
port project costing, planning, tracking,
and prediction. In a competitive world,
accurate prediction provides a significant
advantage. If cost estimates are too high,
bids are lost; if too low, organizations
find themselves in debt. In this context,
simulation can provide not only esti-
mates of cost but also estimates of cost
uncertainty. Simulation is a powerful
tool to aid activity-based costing and can
incrementally accumulate costs to an
extremely fine degree of resolution. In
addition, it can assess the uncertainty of
costs based on the interacting uncertain-
ties of independent variables [7, 8].

Supporting Metric Collection
Simulation is effective only if both the
model and the data used to drive the
model accurately reflect the real world.
There is a tight connection between the
model and the data in the sense that a
simulation can only be executed if it is
supplied with numerical drivers, which
forces the developer to identify points in
the model where these drivers are
needed. For example, one set of data that
needs to be entered in the model may be
what percentage of design documents
pass review and what percentage must be
returned for further work. Thus, in the
construction of the model, points where
metric data must be collected fall out as
a bonus. This approach forces the collec-
tion of metric data in a consistent sense
from a systems perspective—it is not
merely “nice to have” data. Often, too
much or too little metric data is col-
lected because the analyst does not have
clear guidelines on what is essential.

Building Consensus and
Communication
When changes to a process are proposed,
experience is likely to be the most im-
portant influence. However, experience
may not be enough to correctly assess
behavioral changes resulting from pro-

Software Engineering Technology

CROSSTALK The Journal of Defense Software Engineering 27April 1999

Figure 1. Top-level view of a CSIRT process. This simulation models the flow of information through a
CSIRT. Triage handles all incoming new messages. Load balancing distributes new requests for help
among the incident-handling team. Incident resolution is the collective name for the team members
who resolve incidents. Information management provides responses to routine requests for information.

Figure 2. The load-balancing subprocess. The load-balancing activity attempts to assign incoming
incidents to the appropriate incident handlers, i.e., those with lower current loads or those with
expertise in the specific incident.

Leveraging Simulation Across
Applications
As illustrated in the next section, simula-
tion can support a wide variety of appli-
cations; therefore, the marginal invest-
ment in simulation tools, training, and
experience building diminishes as the
technology is introduced to successively
new applications.

Target Applications for
Simulation in Software
Engineering
Simulation has been applied in many
fields, such as aerospace and energy
production, but to date, it has not seen
broad practical application in software
engineering. This may be because it is
more difficult to accurately model hu-
man and organizational behavior than to
model physical systems, or it may be
that the emphasis on software process is
a relatively recent phenomenon. What-
ever the reason, it is unfortunate because
the rewards from its use are myriad. In
this section, I briefly review applications
of simulation (in no particular order)
and some of the benefits that can be
obtained.

Requirements Management
Simulation can be extremely helpful in
pinning down software system require-
ments early in the product lifecycle,
particularly when examining temporal
behavior. Simulation can mimic the
performance characteristics of software
components and their interactions, the
effects of time delays and feedbacks, and
of finite capacities and resource bottle-
necks [9, 10]. The CSIRT example in
Figure 1 illuminates these issues. Alter-
nate architectures and designs can

Combine All
Incoming
Messages.

Queue Up All
Incoming
Messages.

Perform Load-
Balancing
Activity.

Separate Out
Requests for
Information.

Allocate
Incidents to
Handlers.

Plot Number
of Incidents
Managed
by Each
Handler.

Simulation: An Enabling Technology in Software Engineering

and one incident may be composed of
numerous E-mail dialogs; hence, the
need for a formal work-flow process to
manage the large number of interactions
while making sure that efficiency and
responsiveness are maintained.

Figure 1 shows the top-level compo-
nent of the incident-handling model.1

New incidents are inserted into the
process at the left, where they queue up
to be handled by triage. In triage, E-mail
is assigned to either the load-balancing
function or to information management.
In load balancing, the incidents are
assigned to incident handlers based on
the incident handlers’ loads or their areas
of expertise. Subprocesses take care of
the details of the four activities identified
in Figure 1 (triage, load balancing,
incident resolution, and information
management), which are all modeled in
the simulation. Figure 2 illustrates the
subprocess for the load-balancing area.

Upon running the model, various
plots can be produced. In this example,
both the queue in front of Incident
Handler 3 (see Figure 3) and the num-
ber of completed E-mail completed for
each of the incident handlers are plot-
ted (see Figure 4).

Simulations such as this can be ex-
tremely useful for designing effective
processes and for predicting the re-
sources needed (both human and com-
puter) so that the anticipated loads can
be handled. This model contributed to
generating synthetic incident data that
supported performance tests on a
CSIRT work-flow environment. With-
out such data, SEI would not have been
able to assess performance at such an
early state of the work-flow system’s
development.

For more background on technical
issues associated with simulation model-
ing, consult [3].

28 CROSSTALK The Journal of Defense Software Engineering April 1999

be evaluated in a safe environment prior to implementation. In
addition, requirements are rarely static but evolve as experience
grows with product development. Thus, simulation is not only
a valuable tool in defining the initial requirements but also can
be used to test alternate modifications prior to their implemen-
tation. Finally, a system simulation can be viewed as a compo-
nent of the requirements and can provide quantitative mea-
sures against which the target software system must comply.

The processes through which the requirements are man-
aged also are critical. However, as far as modeling is concerned,
such processes have much in common with other project man-
agement processes, e.g., design, development, and test. Thus,
the discussion in the next section is relevant to requirements
management.

Project Management
Simulation can allow managers to make more accurate predic-
tions about both the schedule and the accumulated costs asso-
ciated with a project [11, 12]. This approach is inherently
more accurate than costing models based on fits to historical
data because it accounts for the dynamics of the specific pro-
cess. With regard to schedule, simulation can account for de-
pendencies between tasks, finite capacity resources, and delays
resulting from probable rework loops. Some simulation tools
also allow one to compute the accumulation of costs on an
activity-dependent basis. These features are useful for generat-
ing proposals that are more accurate in cost and schedule and
therefore more likely to keep a company in business.

Training
Because of the complex dependencies between attributes of
organizational systems, these systems can respond in counter-
intuitive ways. (The classic example is Brooke’s law, which
states that hiring people late in a project can further delay the
project.) Simulation can play an important role in sensitizing
managers to the consequences of instabilities that result from
the system feedbacks often inherent in badly designed organi-
zational processes. Simulation-based training also can provide

software development managers with the insights necessary to
establish effective processes and to operate these processes in a
stable manner. Thus, the focus is to train management in the
design and operation of software processes, not in the tech-
nologies that support software development.

Simulation-based training can be performed by individual
managers who interact with the simulated software develop-
ment activities. This person has control over certain control
parameters (such as hiring rate and salaries), and the decisions
made alter the course of the subsequent simulation history.
Analysis of a training session can be performed after the session
to see what went right and what went wrong in the decision-
making process and to reinforce effective decision making.

To bring groups of managers to a central location for train-
ing can be both costly and time consuming. In the near future,
such groups may be trained in a geographically distributed
manner using a simulator with displays on the managers’ local
terminals. Interaction between trainees (which allows for joint
decision making) can be provided through the use of collabo-
ration technology. With the increasing interest in this technol-
ogy, distributed training may soon become practical.

Process Improvement
Simulation can be used to support process improvement at all
levels of the Capability Maturity Model® (CMM) but particu-
larly at the higher levels [13,14,15]. Because simulation forces
one to address metrics and process behavior in a methodical
way (see “Supporting Metric Collection” section), one may
argue that simulation can accelerate the introduction of pro-
cess improvement. Consistent with the philosophy of the
CMM, simulation capability at each CMM level incrementally
builds on the simulation capabilities of the preceding levels
and matches the needs of the software engineering practices at
that level [16].

Traditionally, revised or new processes are improved
through operational experience. This can be expensive and
risky. Simulation can provide considerable insights into how a
process will work prior to its implementation. These insights

Figure 4. The cumulative number of E-mail messages addressed by each of
the incident handlers.

Figure 3. The E-mail queue for Incident Handler 3.

Software Engineering Technology

CROSSTALK The Journal of Defense Software Engineering 29April 1999

can help the process designer assess alter-
natives and show that a specific process
design performs in a manner that meets
expectations. In this way, processes can
be pretested, and buy-in is more likely
obtained from management. Subjective
criticisms are less likely, since quantita-
tive simulation of validated models can
produce specific and credible answers to
perhaps hostile questions.

Architecture and Commercial-Off-
the-Shelf Integration
Building complex software systems usu-
ally begins with addressing the system’s
architecture. Without a firm notion of
how the major components of a software
system interact, there is little likelihood
that the system will reflect performance
effectively. One would like to know early
in the development cycle that such at-
tributes as reliability, reusability, main-
tainability, portability, performance, and
modifiability are above some acceptable
level. There are complex dependencies
between these attributes. For example, in
improving performance, reusability
might be sacrificed; or in improving
portability, maintainability might re-
quire increased effort. Making trade-offs
in this multidimensional space is not
easy, but if they are not made at a high
level of design abstraction, there is little
chance they can be dealt with once cod-
ing begins. Simulation is a tool that can
be used to examine some of these archi-
tectural trade-off issues [17]. Simulation
can provide early insights into timing,
resource usage, bottlenecking, and us-
ability. In addition, one can rapidly gain
insight into the implications of design
changes by running simulations with
varying independent parameters. Finally,
one can assess sensitivities to parameter
changes in a Monte Carlo (statistical)
sense.

Product-Line Practices
Simulation makes considerable sense in
the economic analysis of product lines.
In particular,

“Because product-line development
involves changes in product com-
position and production, software
size measures, such as lines of code,

The subject of simulation-supported
acquisition has been addressed in some
detail by Walt Schacci and Barry
Boehm [19, 20]. In their articles, they
address the issues of how simulation
can support the acquisition lifecycle.
They give specific examples of potential
applications and suggest that a research
and development effort be established
to explore issues such as virtual proto-
typing, incremental iterative acquisition
supported by simulation, and the use of
wide-area collaboratories.

Every Silver Lining Has a Cloud
As a cautionary note, it is well to re-
member that simulation is not a pana-
cea. The predictive power of simulation
is strongly dependent on how well the
models are validated. Although many
scientific and engineering fields can base
their models on established physical law,
organizational models have to deal with
human and other less quantifiable issues.
Not only is gathering data difficult when
that data must come from human actors,
the reproducibility of scenarios used to
validate models cannot as easily be stan-
dardized as in experiments based on
physical law.

Simulation is a simplification of the
real world and is thus inherently an
approximation. As indicated by S.
Robertson,

“It is not possible that a model is
absolutely correct. Therefore,
model [verification and validation]
is concerned with creating enough
confidence in a model for its results
to be accepted. This is done by
trying to prove that the model is
incorrect. The more tests that are
performed in which it cannot be
proved that the model is incorrect,
the more confidence in the model
is increased.” [21]

However, the usual alternative to simula-
tion is to rely on human intuition,
which Massimo Piattelli-Palmarini warns
is often biased by “‘mental blindspots’ or
‘mental tunnels’ where we systematically
make grave errors and get sidetracked
into the wrong answer in certain kinds
of problems.” [22]

are not good predictors of produc-
tivity improvements. To estimate,
track, and compare total costs of
disparate assets, adaptation of other
cost modeling techniques, particu-
larly activity-based costing to asset-
based software production, is
needed.” [18]

Some simulation tools incorporate activ-
ity-based costing such that, as entities
flow through the simulated process, the
cost associated with the processing of
each entity at each stage can be accumu-
lated. In this way, detailed cost predic-
tions can be made with respect to differ-
ent product-line strategies.

Risk Management
Projects are often vulnerable to risks
resulting from things like requirements
ratcheting, changing staff levels, funding
cuts, and organizational disruptions.
Simulation can help identify associated
project risks early. By quantitatively
predicting the consequences of alternate
decisions, simulation can help design
more objective, less risk-prone strategies.
There also are risks associated with alter-
nate system architectures or commercial-
off-the-shelf integration strategies. By
using simulation to examine the poten-
tially complex interactions of alternate
component configurations, the pros and
cons of different design decisions can be
identified.

Acquisition Management
Acquisition management is likely to be
dependent on many of the practices
described above, e.g., requirements man-
agement, project management, and risk
management. Because all these practices
can benefit from the use of simulation,
acquisition management can, too. Spe-
cifically, simulation can help validate a
contractor’s estimates of costs and sched-
ules and provide insight into the ability
of the contractor’s design to meet system
requirements. Therefore, through the use
of simulation, a project manager can
predict potential contractor problems
before they become reality. Simulation
also has the effect of keeping the con-
tractor honest in estimates of cost and
schedule.

Simulation: An Enabling Technology in Software Engineering

30 CROSSTALK The Journal of Defense Software Engineering April 1999

The State of Simulation
Technology
Less than a decade ago, one could only
develop a simulation by textual coding
of the model. However, since the early
1990s, graphical simulation tools have
become available. These tools
• Allow rapid model development by

using, for example,
• Drag-and-drop iconic building

blocks.
• Graphical element linking.
• Syntactic constraints on how

elements are linked.
• Are less error prone.
• Require significantly less training.
• Are easier to understand, reason

about, and communicate to nontech-
nical staff.
Because of these features, network-

based simulation tools allow one to
develop large, detailed models rapidly.
The focus thus becomes less on the
construction of syntactically correct
models and more on the models’ seman-
tic validity and the accuracy of their
numerical drivers.

The simulation tools in today’s
marketplace are robust and reasonably
inexpensive. Most tools cost in the
range of $500 to $1,000. They there-
fore are accessible by organizations that
wish to explore the applications de-
scribed above. ◆

Acknowledgments
I thank Jim Withey, Bill Riddle, An-
thony Earl, and Caroline Graettinger for
their review of this article.

About the Author
Alan M. Christie is a
senior member of the
technical staff at the
Software Engineering
Institute. He actively
promotes the application
of process, collaboration,

and simulation technologies to make
software development more effective. He
has extensive experience with process
automation and barriers to its adoption.

He published Software Process Automation:
The Technology and Its Adoption (Springer-
Verlag, 1995). He recently managed the
implementation of a collaborative process
support environment to meet the needs of
computer security incident response
teams. He also actively promotes simula-
tion as an important element to under-
standing process behavior and to support-
ing process improvement. He has a
master’s degree in computer science and
holds a doctorate in nuclear engineering.

Software Engineering Institute
Carnegie Mellon University
Pittsburgh, PA 15213-3890
Voice: 412-268-6324
Fax: 412-268-5758
E-mail: amc@sei.cmu.edu

References
1. Kirby, K. and R. Sawhney, “Simulation:

Shifting the Competitive Edge for the
Next Generation,” MDC Update, Uni-
versity of Tennessee, Vol. 6, 1997.

2. http://www.imaginethatinc.com
3. http://www.pitt.edu/~wjyst/

whatissim.html
4. http://www.acq.osd.mil/ousda/

speech/modeling.html
5. http://www.acq.osd.mil/te/speeches/

sanders/simbasedacq.htm
6. http://www.msosa.dmso.mil/sia-sba/

sba_sia_documents.asp
7. Summary of CAPI-Developed Simula-

tions for the U.S. Postal Service, http://
idt.net/~capi99/usps.htm

8. Gardner, L.L., M.E. Grant, and L.J.
Rolston, “Using Simulation to Bench-
mark Traditional vs. Activity-Based
Costing in Product Mix Decisions,”
WSC ’94: Proceedings of the 1994 Con-
ference on Winter Simulation, pp. 1050-
1057.

9. Belscher, R., “Evaluation of Real-Time
Requirements by Simulation-Based
Analysis,” First IEEE International Con-
ference on Engineering of Complex Com-
puter Systems, IEEE Computer Society
Press, Los Alamitos, Calif., November
1995.

10. Lerch, F., et al., “Using Simulation-Based
Experiments for Software Requirements
Engineering,” N. Mead, ed., Annals of
Software Engineering, Vol. 3, 1997.

11. Kellner, M.I., “Software Process Model-
ing Support for Management Planning
and Control,” First International Confer-
ence on the Software Process, Redondo
Beach, Calif., 1991, pp. 8-28.

12. Abdel-Hamid, T. and S.E. Madnick,
Software Project Dynamics, Prentice-Hall,
Englewood Cliffs, N.J., 1991.

13. Raffo, D.M. and M.I. Kellner, “Using
Quantitive Process Modeling to Forecast
the Impact of Potential Process Improve-
ments,” Proceedings of the 10th Interna-
tional Forum on COCOMO and Software
Cost Modeling, Pittsburgh, Pa., October
1995.

14. Hansen, G.A., “Simulating Software
Development Processes,” IEEE Com-
puter, January 1996.

15. Tvedt, J.D. and J.S. Collofello, “Evaluat-
ing the Effectiveness of Process Improve-
ments on Software Development Cycle
Time via System Dynamics Modeling,”
Proceedings of the 19th Annual Interna-
tional Computer Software and Applications
Conference, 1995.

16. Christie, A. M., “Simulation in Support
of CMM-Based Process Improvement,”
Journal of Systems and Software (forth-
coming).

17. http://www.sei.cmu.edu/publications/
documents/97.reports/97tr029/
97tr029chap03.htm

18. http://www.sei.cmu.edu/plp/
modeling_costs.html

19. http://sunset.usc.edu/SAMSA
20. Schacci, Walt and Barry Boehm, “Vir-

tual Systems Acquisition: Approach and
Transitions,” Acquisition Review Quar-
terly, Vol. 5, No. 2, spring 1998.

21. Robertson, S., “Simulation Model Verifi-
cation and Validation: Increase the Users’
Confidence,” Proceedings of the 1997
Winter Simulation Conference, pp. 53-59.

22. Piattelli-Palmarini, Massimo, Inevitable
Illusions: How Mistakes of Reason Rule
Our Minds, John Wiley, 1994. Also
http://public.logica.com/~stepneys/
bib/nf/piattell.htm

Note
1. In these diagrams, double lines represent

the flow of things, and the single lines
represent the flow of numerical data.

Software Engineering Technology

CROSSTALK The Journal of Defense Software Engineering 31April 1999

Got an idea for BACKTALK? Send an E-mail to backtalk@stsc1.hill.af.mil

Sponsor Lt. Col. Joe Jarzombek
801-777-2435 DSN 777-2435
jarzombj@software.hill.af.mil

Publisher Reuel S. Alder
801-777-2550 DSN 777-2550
publisher@stsc1.hill.af.mil

Managing Editor Tracy Stauder
801-775-5746 DSN 775-5746
managing_editor@stsc1.hill.af.mil

Senior Editor Sandi Gaskin
801-777-9722 DSN 777-9722
senior_editor@stsc1.hill.af.mil

Graphics and Design Kent Hepworth
801-775-5798
graphics@stsc1.hill.af.mil

Associate Editor Lorin J. May
801-775-5799
backtalk@stsc1.hill.af.mil

Editorial Assistant Bonnie May
801-777-8045
editorial_assistant@stsc1.hill.af.mil

Features Coordinator Denise Sagel
801-775-5555
features@stsc1.hill.af.mil

Customer Service 801-775-5555
custserv@software.hill.af.mil

Fax 801-777-8069 DSN 777-8069

STSC On-Line http://www.stsc.hill.af.mil
CROSSTALK On-Line http://www.stsc.hill.af.mil/

Crosstalk/crostalk.html
ESIP On-Line http://www.esip.hill.af.mil

Subscriptions: Send correspondence concerning subscriptions and changes
of address to the following address:

Ogden ALC/TISE
7278 Fourth Street
Hill AFB, UT 84056-5205

E-mail: custserv@software.hill.af.mil
Voice: 801-775-5555
Fax: 801-777-8069 DSN 777-8069

Editorial Matters: Correspondence concerning Letters to the Editor or other
editorial matters should be sent to the same address listed above to the atten-
tion of CROSSTALK Editor or send directly to the senior editor via the E-mail
address also listed above.

Article Submissions: We welcome articles of interest to the defense software
community. Articles must be approved by the CROSSTALK editorial board prior to
publication. Please follow the Guidelines for CROSSTALK Authors, available upon re-
quest. We do not pay for submissions. Articles published in CROSSTALK remain the
property of the authors and may be submitted to other publications.

Reprints and Permissions: Requests for reprints must be requested from the
author or the copyright holder. Please coordinate your request with CROSSTALK.

Trademarks and Endorsements: All product names referenced in this issue
are trademarks of their companies. The mention of a product or business in
CROSSTALK does not constitute an endorsement by the Software Technology
Support Center (STSC), the Department of Defense, or any other govern-
ment agency. The opinions expressed represent the viewpoints of the authors
and are not necessarily those of the Department of Defense.

Coming Events: We often list conferences, seminars, symposiums, etc., that are
of interest to our readers. There is no fee for this service, but we must receive
the information at least 90 days before registration. Send an announcement to
the CROSSTALK Editorial Department.

STSC On-Line Services: STSC On-Line Services can be reached on the Inter-
net. World Wide Web access is at http://www.stsc.hill.af.mil.
Call 801-777-7026 or DSN 777-7026 for assistance, or E-mail to
schreifr@software.hill.af.mil.

Publications Available: The STSC provides various publications at no charge
to the defense software community. Fill out the Request for STSC Services
card in the center of this issue and mail or fax it to us. If the card is missing, call
Customer Service at the numbers shown above, and we will send you a form
or take your request by phone. The STSC sometimes has extra paper copies of
back issues of CROSSTALK free of charge. If you would like a copy of the printed
edition of this or another issue of CROSSTALK, or would like to subscribe, please
contact the customer service address listed above.

The Software Technology Support Center was established at Ogden Air
Logistics Center (AFMC) by Headquarters U.S. Air Force to help Air Force
software organizations identify, evaluate, and adopt technologies that will im-
prove the quality of their software products, their efficiency in producing them,
and their ability to accurately predict the cost and schedule of their delivery.
CROSSTALK is assembled, printed, and distributed by the Defense Automated Printing
Service, Hill AFB, UT 84056. CROSSTALK is distributed without charge to individu-
als actively involved in the defense software development process.

BACKTALK

I’ve learned that a fundamental rule of good writing and public speaking is to
grab your audience with a witty, relevant opener that sets the tone for the remain-
der of the presentation. I intend to ignore this rule. Instead, I’ll try to follow the
standard established by software symposium speakers, which is to open with a
corny joke that is only nominally related to the subject matter at hand:

Q: What is an Ethernet?
A: Something you use to catch the Ether bunny!
Ha-ha! And if that one has you doubled up on the floor in wheezing convul-

sions, hold on to that oxygen mask for another big jolt: That’s the only joke in this
column. And it’s just as well, because what software developers do is no laughing
matter, such as fixing the latest round of post-release flaws that were inserted while
fixing the previous round of post-release flaws, or being tasked to implement your
organization’s objective of “leveraging team empowerment to facilitate synergistic
initiatives,” or attending weekly staff meetings.

However, the “Ether bunny” joke is somewhat related to this month’s fatally
grim software topic—software Easter eggs—because it affords me the opportu-
nity to share some rambling, unrelated Easter nostalgia.

When I was a child, near this time every year, my siblings and I would lie
awake and excitedly listen to the bunny in the next room romp through the house
delivering hidden goodies. We knew that the next morning, we would be leaping
from our beds the moment we heard those magical words: “There are rabbit
doots behind the couch and the stereo wire’s been gnawed through!” Dad would
yell. “Who left the @!#% rabbit cage open last night?”

However, sometimes another bunny would come to our house and leave choco-
late Easter eggs! But we won’t be talking about the candy eggs that children snarf
down on Easter Sunday before wiping their hands of the matter on the upholstery,
forgetting the sugary feast by the following Thursday when it wears off and they
finally go to sleep again. No, we’ll be talking about the hidden bonuses found in
software called Easter eggs, which is geek jargon for “the real reason a stupid word
processing program takes up 20 MB of disk space.”

But forget the cute-but-useless Easter eggs like cheat codes in “Doom,” or the
Magic Eight Ball in “Access,” or 3-D developer credits in “Delphi.” Instead, I’ll
reveal some simple key combinations that, when held down all at the same time,
open some of the most powerful Easter eggs in programs you may already use.

Microsoft PowerPoint – (7+Esc+&+F11) Makes slides look less like they were
created by an engineer. Limits number of boxes and arrows per slide to 25, and
limits dissimilar pieces of clip art per slide to 12. Changes clashing color combina-
tions like pink and orange to a more pleasing burgundy and neon purple.

Novell GroupWise – (Scroll Lock+Å+~+9) Interprets E-mail from manage-
ment, as seen in the following verbatim example.

Original: Original: Original: Original: Original: “Seeing as our budgetary blah blah blah, we can foresee a shortfall in this, that, and the other,
forcing us to mumbo jumbo gumbo. Your future input will prevent any unexpected yada yada yada.”

InterpretatiInterpretatiInterpretatiInterpretatiInterpretation: on: on: on: on: “I’m too brilliant to have caused this mess, so the problem must be with you. Hey, now that
I’ve hit that little envelope button, can someone show me how to run this E-mail through the postage meter?”

Lotus 1-2-3 – (Shift+4+#+U) Puts a little frowny face [:-(] next to num-
bers that are based on faulty logic. Figures that are massaged according to
someone’s political agenda are displayed in flashing neon green while the song
“Liar, Liar, Pants on Fire” plays in the background (sound card required).

Norton AntiVirus – (Shift+§+ß+Æ) Cleans off not only malignant viruses
but also anything politically damaging from your drive, including unsent hate
mail, nonmission-related Web hits, and plagiarized material sources.

Microsoft Windows ’95 – (Ctrl+Alt+Delete) Drastically improves system
reliability and performance by zapping flawed, error-prone software. (For best
results, insert a Linux installation disk in the “A” drive immediately prior.)

Adobe PageMaker – (Esc+Ctrl+F7+)) Automatically generates a witty
closing line when you can’t think of one. – Lorin May

Vinegar and Dye Pellets Not Included

