
The Journal of Defense Software Engineering

Sponsored by the
Embedded Computer

Resources Support
Improvement Program

(ESIP)

September 1999
Volume 12 Number 9

Published by the
Software Technology Support Center

Providing a Common Platform for

Building Interoperable Systems

DII COE

The Strategic Battlefield

Reuel Alder
Software Technology Support Center

Chess is a game of position, material, and
time. The four squares in the center of the
board are the most important positions to con-
trol. However, if you cannot see where your
opponent’s pieces are located, your attack
might proceed in traditional military style with
a series of outflanking maneuvers. In the battle
of Gettysburg, Gen. Robert E. Lee lost contact

with his cavalry, the eyes of the army. He did not know the Union
army’s position or strength and was unaware of his near success in
the first two attacks because he lacked communication.

Battles, like chess, are best fought with a continuous flow of
accurate information.

The military understands the need for strategic battles, but
building systems in the Department of Defense that effectively
communicate has always been a challenge. Each service has its
own way of doing business and its own set of contractors develop-
ing new and improved weapon systems. Too often the result is
independently developed weapon systems that have unique meth-
ods of communication. Without an integrating strategy, interoper-
ability is but a dream.

Computers add speed, but without an integrating strategy we

merely increase the rate at which we fail to communicate. Our
experience in developing computers would indicate there are infi-
nite ways to transmit a message without really communicating.
The Defense Information Infrastructure (DII) Common
Operating Environment (COE) is an essential component to
effective computer communications in the military.

In this issue Pamela Engert and Julie Surer (page 4) provide
an introduction to building interoperable systems with DII COE
as a foundation. Beginning on page 6, Lt. Col. M.J. Robillard, Dr.
H. Rebecca Callison, and John Maurer outline the need and pro-
posed approach for extending the DII COE to real-time systems.
The DII COE may be viewed as “an architecture, a collection of
reusable software elements, a software infrastructure, and a set of
guideline and standards” used to achieve interoperability. This
approach to software development can provide substantial savings
in production as well as enhanced interoperability, provided the
technical architecture is of good quality and continuously updated.

DII COE is an important systematic approach to the age-old
problem of accurate communications in battle. The battlefield —
whether military or industry — is a place where what you don’t
know can and will hurt you. ◆

2 CROSSTALK The Journal of Defense Software Engineering September 1999

On the cover: Salt Lake photographer Tom Anastasion used building tools and architectural concepts to illustrate September’s theme
of Defense Information Infrastructure (DII) Common Operating Environment (COE).

A Comment on Reaching Capability Maturity ModelTM

(CMM) Level 2

I’d like to comment on the article in the June issue that
describes how a government organization became “certified” at
Level 2. (By the way, how does an organization get “certified”?)

The author asserts, and I think it’s true, that getting man-
agement on board is the first and biggest step when an organi-
zation decides to start climbing the ladder of process improve-
ment. The direction from the board governing the Department
of Agriculture organization — go in 10 months from never
assessed to Level 2, or lose funding — misses the point by a
mile.

The resulting organizational behavior often then becomes
“gaming the number.” That type of behavior results in the kind
of deadline-motivated personal heroics the author mentions. It
also, in this case, seems to have modified Software Quality

Assurance’s mission from one of participating with developers
and management to ensure process/product quality, to one of
monitoring “to meet Level 2 goals.”

Most disturbing to me in this article was the complete
absence of the word “finding,” which is the heart and soul of
the CMM-based appraisal for internal process improvement
(CBA-IPI) method. The IPI is about improvement along the
continuum that leads to reliable software that satisfies its
requirements, costs, and schedules that are congruent with
plans, and continuous process improvement — not about
achieving a level. Focusing on levels harmfully directs attention
from process improvement and process maturity.

It is encouraging to see more federal government organiza-
tions beginning the walk to quality. It would be even more
encouraging to see them do it for all the right reasons.

Name withheld by request

From the Publisher

Letter to the Editor

September 1999 CROSSTALK The Journal of Defense Software Engineering 3

What was the best and/or worst software technology innovation of the 20th century?

Respond in writing at:
fax: 801-777-8069

e-mail: custserv@software.hill.af.mil
mail: CrossTalk
OO-ALC/TISE

7278 Fourth Street
Hill AFB, UT 84056-5205

We will print your responses in our special December issue on the Evolution of Software Technology.

SIGAda ’99 Annual International Conference
Dates: Oct. 17-21, 1999
Location: Redondo Beach, Calif.
Topic: The Engineering of Industrial Strength Real-Time

and Distributed Systems Using Ada and Related
Technologies

Sponsor: ACM SIGAda
Contact: Hal Hart (TRW), conference chairman
E-mail: Hal.Hart@ac.org
Internet: http://www.acm.org/sigada/conf/sigada99

International Function Point Users Group Annual
Conference and Workshops

Dates: Oct. 18 - 22, 1999 — workshops Oct. 18-19;
conference Oct. 20 - 22

Location: New Orleans, La.
Theme: New Millennium New Metrics
Sponsors: International Function Point Users Group

(IFPUG), Outsourcing Center
Contact: IFPUG, 5008-28 Pine Creek Drive, Westerville,

Ohio 43081-4899
Voice: 614-895-7130
Fax: 614-865-3466
E-mail: ifpug@ifpug.org
Internet: http://www.ifpug.org

DCI’s Data Warehouse World Exposition
Dates: Oct. 25-26, 1999
Location: Boston, Mass.
Focus: DCI’s Data Warehouse World is the premier data

warehouse event in the industry. Our prestigious
training staff and advisory board features virtually all of
the expert data warehouse practitioners and thought
leaders who are shaping the industry today.

Contact: http://www.dci.com/datawhse/

Software Testing Analysis & Review (STAR) ’99 West
Dates: Nov. 1-5, 1999
Theme: Improving Software Testing and Quality

Engineering Practices Worldwide
Location: San Jose, Calif.
Sponsor: Software Quality Engineering
Topics: Specific ways to improve testing efforts and results.

Field-proven techniques for testing client/server,
object-oriented, GUI, and Internet applications. How
to use test engineering to consistently achieve greater
software quality. The best Internet/Web testing tools
and how to use them effectively. How to lower
development costs and boost productivity with test
engineering.

Voice: 1-800-423-8378 or 904-278-0707
Fax: 904-278-4380
E-mail: sqeinfo@sqe.com

Third International Software Quality Week Europe ’99
(QWE ’99)

Dates: Nov. 8-12, 1999
Location: Brussels, Belgium
Sponsor: Software Research Institute
Topic: The conference theme, “Lessons Learned,” reflects

the tremendous accomplishments of the past few years,
and aims to see what can be learned from such efforts
as the Y2K, Euro Conversion, the push for e-
Commerce, and the widespread use of mature software
quality processes.

Contact: Rita Bral
E-mail: bral@soft.com

CrossTalk Would Like to Ask You a Question

Coming Events

THE DII COE PROVIDES A founda-
tion for building interoperable
systems through the use of

reusable software components (building
blocks). The DII COE can be character-
ized as a number of things, depending
upon one’s point of view. It is an archi-
tecture, a collection of reusable software
elements, a software infrastructure, and a
set of guidelines and standards. More
importantly, however, is that it provides a
common platform (or foundation) for
building interoperable systems. Therefore,
one could think of the DII COE as one
component of a system architecture, as it
is an implementation of the Joint
Technical Architecture (JTA). One could
also think of the DII COE as an
approach to software development —
how to go about building interoperable
systems on a common platform. Finally,
it is important to realize that the DII
COE is not a system, but a set of build-
ing blocks from which a system can be
built. Global Command and Control
System, Global Combat Support System,
and service unique programs (like Air
Force Theater Battle Management Corp.
Systems) are building their systems on
top of the DII COE foundation.

Definition of DII COE
DII COE is a software infrastructure, a
collection of reusable software compo-
nents, a set of Application Program
Interfaces (APIs), and a series of specifica-
tions and standards for developing inter-
operable systems.

The DII COE taxonomy defines two
layers of reusable software components:
infrastructure services, which include the

DII COE kernel services, and the under-
lying commercial-off-the-shelf (COTS)
operating systems. Infrastructure services
address the movement of data through
the network and includes distributed
computing and web services. The kernel
provides low-level services, including a
desktop environment, runtime tools, and
basic system and security administration.

Common support applications pro-
vide services that address common com-
mand and control functionality, for exam-
ple, mapping and message processing.

Standard APIs provide the interfaces
between mission applications and
reusable software components of the DII
COE. Mission applications are developed
on top of the DII COE and provide mis-
sion domain specific functionality.

DII COE Compliance
DII COE compliance measures the
degree to which a software component,
including mission applications, can plug-
and-play (the degree of interoperability)
in the COE. The goal of meeting DII
COE compliance is to ensure seamless
software component integration and sys-
tem operation. A software component is
assessed in four categories for COE com-
pliance: runtime environment, style
guide, architectural compatibility, and
software quality. Although all four cate-
gories of compliance are considered in an
assessment, the primary focus is on the
runtime environment.

Runtime Environment
The runtime environment category
assesses how well the proposed software
segment or system (collection of seg-

ments) functions within the COE envi-
ronment and the extent that the software
reuses COE components. The evaluation
determines if the proposed software seg-
ment can be added to the system without
adversely affecting system interoperability.
Segments are evaluated against the check-
list in the DII COE integration and run-
time specification.

Style Guide
This category assesses the user interface of
a segment for consistency and confor-
mance to the checklist in the user inter-
face specification for the DII.

Architectural Compatibility
This category determines if proposed
software is architecturally sound and
compatible with the COE. Unlike the
runtime environment and style guide cat-
egories, the architecture compatibility
category has not been defined to date.

Software Quality
This category assesses software for porta-
bility and integration into the COE. The
level of life cycle maintenance support
associated with the proposed COE com-
ponent is estimated. The assessment of
software quality compliance level is
achieved by using complexity and quality
metrics collections, portability analysis,
and COE API compliance analysis.
COTS analysis tools are used for automat-
ed, nonintrusive compliance checking.

Runtime compliance is expressed in
terms of eight levels of compliance
defined in the DII COE integration and
runtime specification. Level 5 compliance
is considered “minimal DII” and indi-

Introduction to the Defense Information Infrastructure
(DII) Common Operating Environment (COE)

Pamela Engert and Julie Surer
The MITRE Corp.

The Defense Information Infrastructure (DII) Common Operating Environment (COE) provides a foun-
dation for building interoperable command and control systems using reusable software components. The
DII COE is comprised of many concepts. It is, in one sense, a set of reusable software components. In addi-
tion, the DII COE is also a system architecture that allows the components to be reused in command and
control systems, as well as the standards and guidelines that define how the components can be constructed.
This article briefly defines the DII COE architecture and describes the defined compliance criteria.

4 CROSSTALK The Journal of Defense Software Engineering September 1999

DII COE

September 1999 CROSSTALK The Journal of Defense Software Engineering 5

cates that segmented applications can
share the same DII COE kernel without
interfering with one another, that the seg-
ments can be installed using standard
tools, and that the segments conform to
the DII user interface specification. Level
8, or “full DII,” implies 100 percent
compliance with all DII COE runtime
and user interface criteria.

DII COE Compliance Mandates
Several DII COE mandates exist for
Department of Defense systems. The
Office of the Under Secretary of Defense
has issued a directive that all command,
control, communications, computers,
and intelligence systems (C4I) be JTA
compliant and mandates DII COE com-
pliance Level 5 for legacy systems and
Level 6 for new systems. The goal is to
reach Level 7. The JTA mandates DII
COE Level 5 compliance with a goal of
Level 8 for all C4I systems.

Summary
The DII COE will be a key contributor in
achieving the C4I vision of providing war-

riors with technically advanced, interoper-
able command and control systems. The
DII COE provides a foundation for build-
ing interoperable systems through the use
of reusable software components. ◆

About the Authors
Pamela Engert joined
the MITRE Corp. in
Bedford, Mass., in 1986
and is now a lead engi-
neer. She supports the
System Engineering
Process Office and the
Acquisition

Development Office. She has a bachelor of
science degree in mathematics and comput-
er science and a master’s degree in engineer-
ing management.

The MITRE Corp.
202 Burlington Road
Bedford Mass. 01730-1421
Phone: 781-271-3138
Fax: 781-271-2101
E-mail: pengert@mitre.org

Julie Surer is a principal
engineer at the MITRE
Corp. in Bedford,
Mass., where she sup-
ports the ESC/DIE
(Electronic System
Center) Chief
Architect’s Office. Surer

is the Air Force DII COE chief engineer.
She is also the corporate representative
responsible for DII COE technical activities
in the Air Force. She is also the corporate
representative to The Open Group, an
international standards consortium. She has
a bachelor’s degree from the University of
Florida in engineering science and a mas-
ter’s degree from the University of South
Florida in electrical engineering.

The MITRE Corp.
202 Burlington Road
Bedford Mass. 01730-1421
Phone: 781-377-6809
Fax: 781-377-7779
E-mail: jsurer@mitre.org

Introduction to the Defense Information Infrastructure (DII) Common Operating Environment (COE)

For extensive, up-to-the-minute information on DII COE,
visit DISA’s DII COE site at
http://spider.dii.osfl.disa.mil/dii

DISA home page
http://www.disa.mil

For current information on DII COE in the Air Force, visit
http://www.esc-dii.hanscom.af.mil/Chief_Architect/Ca_
home.htm.

For current information on DII COE mandates, visit
http://www.escdii.hanscom.af.mil/Chief_Architect/dii-coe/
faq/faq.html

Note: The AF ESC/DII Web pages are restricted to clients with a
.mil primary domain.

HQ AFCA DII COE home page
http://www.afca.scott.af.mil/

DII COE Web Information Resources

6 CROSSTALK The Journal of Defense Software Engineering September 1999

THE DII COE ORIGINATED with a
simple observation about C2 sys-
tems: certain functions (mapping,

track management, and communication
interfaces) are fundamental to virtually
every C2 system. Yet, these functions are
built repeatedly in incompatible ways
even when the requirements are the same
or vary only slightly between systems. If
these common functions could be
extracted, implemented as a set of exten-
sible building blocks, and made readily
available to system designers, develop-
ment schedules could be accelerated and
substantial savings achieved through soft-
ware reuse. Moreover, interoperability
would be significantly improved if com-
mon software was used across systems for
common functions. Realizing these bene-
fits is DII COE’s goal as stated in [1].

Several DoD systems, notably the
Global Command and Control System,
Global Command Support System, and
Theater Battle Management Core
System, utilize the DII COE, with addi-
tional systems planning anticipated for
the DII COE. They are being connected
into a global grid that will include, in
addition to C2, sensor systems and
weapons platforms. With sensors and
weapons intrinsically operating in a real-
time arena, and with time-sensitive tar-
gets becoming increasingly important, the
application of the DII COE concepts to
real-time C2 becomes more compelling.

Background

In 1996, at the Air Force Electronic
Systems Command (ESC) Hanscom Air
Force Base, Integrated Command and

Control System (IC2S) planners began to
explore the application and viability of
DII COE concepts. Since critical IC2S
missions were expected to respond to
stringent real-time requirements that
could not be satisfied by the DII COE,
the ESC Commander, Lt. Gen. Ronald T.
Kadish, directed that all C2 programs
develop a set of requirements for real-time
extensions to existing DII COE capabili-
ties. In the spring of 1997, Air Force,
Army, and Navy representatives met to
discuss the high correlation of real-time
requirements across the services. In July
1997, the Air Force, Army, Navy, and
Marine Corps jointly petitioned the
Defense Information Systems Agency
(DISA) to charter a DII COE real-time
technical working group (TWG) aimed at
developing common requirements and
recommendations for potential products
to provide real-time capabilities to the DII
COE. DISA approved the services’
request, and the real-time TWG began
meeting in August 1997.

Initial studies, conducted at ESC,
highlighted numerous, relevant character-
istics of real-time systems, subsequently
suggesting that a piece-part approach to
assembling real-time components would
not be effective. In late 1997, the Air
Force designated the Airborne Warning
and Control System (AWACS) Program
Office as executive agent for the DII
COE real-time extensions. The DII COE
real-time integrated product team (DII
COE RT IPT) embodies that executive
authority. Because their missions are so
closely related, the real-time TWG and
IPT are in continuous coordination, con-
duct joint meetings, and share data. Both

the TWG and IPT enjoy the benefits
from the active support and participation
of Army, Air Force, Navy, and intelli-
gence community representatives.

The concepts described here are the
product of these two groups, working in
collaboration with DISA.

Understanding Real-Time
Real-time process is where the computa-
tion’s validity depends on logical correct-
ness and time-sensitive completion. In a
real-time system, the time that an
activity1 takes to complete and deliver
results is as important to correctness as,
for example, the computation’s precision
or accuracy. What is important is not
how fast the system responds but that it
responds predictably at appropriate times.
For example, a protocol for synchronizing
clocks across a communication network
(distributed time service) is required to be
accurate, not fast.

Hard real-time applies to activities
that must be deterministic; critical activi-
ties have deadlines. When this processing
fails to meet a deadline, the system has
failed. For example, a missile-warning
radar fails if the radar processor com-
pletes its computation, but is unable to
deliver target reports before an incoming
missile passes through a designated inter-
cept envelope. The design emphasis when
building systems with hard deadlines is to
guarantee that all deadlines will be met.

Soft real-time is nondeterministic to
the extent that an occasional missed
deadline can be tolerated as acceptable
degraded performance, not a system fail-
ure. The value of completing a soft real-

Extending the DII COE for Real-Time

Lt. Col. Lucie M.J. Robillard
ESC/AWW

Dr. H. Rebecca Callison
The Boeing Company

John Maurer
The MITRE Corp.

The Defense Information Infrastructure Common Operating Environment (DII COE) provides an environ-
ment in which common reusable infrastructure and applications across information systems help achieve goals
for interoperability. The Department of Defense (DoD) has a vision for extending these ideas for reuse and com-
monality to improve the effectiveness of systems performing real-time command and control (C2) missions. This
article outlines the need and proposed approaches for extending the DII COE with real-time capabilities.

September 1999 CROSSTALK The Journal of Defense Software Engineering 7

time activity decreases after its deadline
has passed, but the rate at which the
value decreases differs between activities.
The operational procedures for dealing
with missed deadlines also vary. For
example, systems may:

• choose to complete a late action
anyway

• abandon an ongoing computation in
favor of beginning the next cycle

• attempt a less complex computation
instead, and/or

• begin to shed low priority, non-
critical functions in an effort to
correct the overload problem in
future cycles.

The RT TWG recognizes a require-
ment for real-time extensions to the DII
COE to support systems with both hard
and soft real-time requirements.

Three fundamental properties are
often cited as keys to building systems in
which required events occur on time,
every time: priority, pre-emption, and
predictability. Tasks are assigned priorities
according to a real-time scheduling algo-
rithm under which theoretical scheduling
guarantees can be made2. A pre-emptive
real-time scheduler then grants system
resources to the highest priority task that
is ready to run, even if it must interrupt
— or even starve — lower priority tasks.
This real-time scheduler will often use
some form of priority inheritance to limit
the length of time that low priority tasks
can hold shared resources and block high-
er priority tasks waiting for resource
access. These techniques differ from pri-
ority assignments and scheduling algo-
rithms used in general purpose comput-
ing where fairness to all users and good
average response times are the objectives.

Achieving predictability depends on
the component parts’ design. Com-
ponents must be designed as independ-
ently schedulable entities (tasks or
processes) whose precise execution sched-
ule may be determined dynamically at
runtime by the real-time scheduler. They
cannot be hard-coded to a particular exe-
cution schedule. To limit priority inver-
sions, each component should minimize
the time it holds any shared resource
and/or disables pre-emption by a higher
priority task. Components must use tech-

niques that can be provably correct and
analyzed for sharing access to resources
such as peripherals, networks, and partic-
ularly shared data.

Each component also needs to be
constructed for inherently predictable
timing behavior. In practical terms, this
restriction means that real-time applica-
tions must avoid the use of programming
features with unpredictable timing. The
list of unpredictable constructs includes
programming approaches such as the use
of dynamic allocation of memory from a
heap, garbage collection, and dynamic
paging of virtual memory3.

Other Characteristics
of the Real-Time Domain
While predictable timing is the defining
characteristic of real-time computing,
there are other characteristics typical of
these systems as well.

Concurrency
To respond effectively to events that
occur asynchronously in the environment
with which the system interacts, real-time
systems are often constructed as collec-
tions of concurrently executing tasks and
processes. In contrast with the concurrent
processing inherent in general purpose
computing, where processes compete for
resources without interacting in other
ways, the tasks and processes of real-time
systems cooperate closely to achieve mis-
sion objectives.

Reliability and Availability
Since military real-time systems perform
activities critical to the success of military
missions, they typically have rigorous reli-
ability and availability requirements.

Operation in Harsh Environments
Real-time systems often must operate in

extreme environments that are far less
accommodating than a typical office or
computer facility. These systems are often
installed on vehicle platforms, e.g., air-
craft, tank, or missile. Environmental
conditions can be expected to exert sig-
nificant space, weight, and power con-
sumption constraints. Also, the hardware
often must be designed to withstand
environmental stresses such as extremes of
temperature, shock, vibration, corrosive

atmospheres, poorly conditioned electri-
cal power, and severe electromagnetic
fields. These considerations significantly
restrict the choice of equipment that can
be packaged with the real-time system. As
such, the impact on the DII COE config-
uration, operating in a real-time environ-
ment, cannot be overstated.

Vision for a Real-Time

Common Operating

Environment
The vision of extending DII COE for
real-time systems, as depicted in Figure 1,
begins with the layered architecture in
place for DII COE today.

The DII COE Kernel provides the
basic interfaces and functions to be used
by standards-based infrastructure compo-
nents and DII COE-compliant applica-
tions to achieve portability between sys-
tems. The planned DII COE Config-
urable RT Kernel4 extends basic DII
COE concepts in two ways:

• to build the foundation of
predictable execution on which
real-time systems depend. The RT
Kernel is hosted only on real-time
operating systems (RTOSs) that
provide real-time scheduling
capabilities, reasonably predictable
operating system performance, and
the services required for timely
execution of real-time tasks and
processes.

• because many real-time systems
operate with limited computing
resources, the RT Kernel is
configurable. RT Kernel services are
selectable, rather than mandatory,
and only those services compatible
with the capabilities of the RTOS are
provided for each platform. For
example, the RT Kernel services for a
small RTOS like VxWorks®, which
supports only single-process, single-
user configurations, would not
include services that manage
concurrent access by multiple users.
The integrator of a DII COE-
compliant system tailors the RT
Kernel by selecting only those
services required for the specific

Extending the DII COE for Real-Time

VxWorks is a registered trademark of Wind River
Systems.

DII COE

8 CROSSTALK The Journal of Defense Software Engineering September 1999

computing configurations of the
target system.

Since real-time applications often
need a very efficient operating system
with small memory footprint for per-
formance reasons, the design philosophy
of the DII COE RT Kernel allows a sys-
tem integrator to tailor the RTOS to
meet system needs5. Portable Operating
System Interface (POSIX®) APIs for
operating system services, including APIs
for threads and real-time extensions speci-
fied in [3], form part of the RT Kernel
API. Each DII COE RTOS will be rated
for its ability to provide key functional
units associated with real-time profiles in
the POSIX.13 standard [4]. The depend-
encies of DII COE RT segments on
other DII COE segments and services
and on RTOS units of functionality will
be documented during the segmentation
of a RT software component for the DII

COE. A designer of a real-time system
can match system requirements to choices
of DII COE applications, infrastructure,
kernel services, and RTOS.

A real-time infrastructure lies above
the RT Kernel to provide services for
information handling. To support pre-
dictable end-to-end execution of system
real-time activities, the RT infrastructure
must be aware of priority and timing
constraints. In the near term, the vision
architecture includes a Common Object
Request Broker Architecture (CORBA)-
based distributed computing infrastruc-
ture for real-time. Common implementa-
tions of military communications proto-
cols, now available in the DII COE, also
must be ported or adapted as necessary
for the real-time mission.

It also is envisioned that real-time
data management, multi-level trust, and
real-time management services will
emerge as infrastructure capabilities.
Therefore, the infrastructure must be
real-time and standards-based to promote

interoperability between computing con-
figurations and reuse of applications
across systems.

Interoperability and flexibility are
key issues at the level of common support
applications. Real-time exchange of the-
ater situational awareness is a keystone of
emerging concepts for network-centric
warfare. The DII COE vision for real-
time embraces a common interpretation
of information communicated. Beyond
the infrastructure components required
for basic communication between com-
puters and systems, DII COE is expected
to include other applications that con-
tribute to a common understanding of
and response to the operational situation:
track management, correlation, combat
identification, and fusion of sensor data
across systems.

Where feasible, components of
today’s DII COE will migrate to real-
time platforms. In other cases, the real-
time environment will provide standard
access mechanisms through which real-
time components may “reach back” to
access nonreal-time functions executing
on nonreal-time platforms. In other cir-
cumstances, new capabilities may be
added for the real-time domain.

The Domain of DII COE

for Real-Time
The range of real-time systems runs from
small, tightly coupled embedded con-
trollers to large-scale data-intensive track-
ing and control systems. It is reasonable
to ask which of these systems should use
DII COE for real-time. The overriding
requirement for C2 interoperability in
real-time drives the initial definition of
the domain of DII COE for real-time.
Anytime a real-time system needs to
interoperate with other computing sys-
tems for effective execution of C2, it
becomes a candidate for DII COE com-
pliance assessment. When the system’s
interactions involve time-critical calcula-
tions or the exchange of time-critical data
(activities that have real-time constraints),
DII COE for real-time is a concern.

DII COE compliance in real-time
systems, however, does not imply that
every computer of a real-time system
must achieve compliance in the samePOSIX is a registered trademark of the Institute of

Electrical and Electronics Engineers.

RT
Distributed
Computing

Infra-
structure

RT Data
Manage-

ment

Tactical
Data
Link

Proto-
cols

DII COE Kernel for RT Common API, Portability I/F

Common Distributed Computing API
Interoperable Products

Common Data Management API
Common data items

Application Program Interfaces

User
Interface
Services

T
r
a
c
k

ID

F
u
s
i
o
n

M
g
m
t

Common Support Applications,
including example applications for
common understanding

Common Implementation
for interoperability,
easy, consistent upgrade

Common API’s
and algorithms;
Common implementation
were coordinated upgrades
essential?

Application Program Interfaces
Style Guides

Adaptation

Common Labels, Data Items, and
Symbology

Common Controls and Display
Formats

Common, Adaptable Look and Feel

Application Program Interfaces

Infrastructure

Figure 1. Vision architecture of DII COE for real-time.

September 1999 CROSSTALK The Journal of Defense Software Engineering 9

way. DII COE-compliant real-time sys-
tems will often be comprised of a distrib-
uted computing system in which some
computers execute the existing nonreal-
time DII COE, others are DII COE RT
platforms, and exceptions from DII COE
compliance are made for others.

Exceptions to DII COE compliance
will be made for computing nodes that
perform specialized tasks such as signal
processing, which typically use specialized
hardware and operating systems to
achieve their goal. Likewise, DII COE-
compliance requirements will not be
applied to computer processing units
embedded in hardware line replaceable
units like network interface cards, con-
troller cards for other computing periph-
erals, and other controllers that are tight-
ly integrated with commercial or military
hardware devices.

Guidelines for assessing how DII
COE compliance requirements should be

applied in a system are available in [5].
Using this procedure, each computer in a
system is uniquely classified as DII COE
(non-RT), DII COE RT, or exempt.
Figure 2 depicts the allocation that might
result in a typical weapons C2 system with
external interfaces to other C2 and
weapons systems.

Real-Time Capabilities

in DII COE 5.0
In DISA Release 5.0, scheduled for
October 2000, the following real-time
capabilities will be available for incorpo-
ration into military C2 platforms:

1. a configurable DII COE RT Kernel
for Lynx Operating System
(LynxOS™) and Sun Solaris™;

2. a CORBA product with extensions
for real-time; and

3. support tools to aid users in
developing DII COE RT segments
and building customized DII COE-

compliant configurations for real-
time.

Configurable RT Kernel
As noted earlier, the DII COE Config-
urable RT Kernel has two parts: an
RTOS with POSIX application program
interfaces and selectable DII COE Kernel
services for real-time.

LynxOS was chosen for the reference
implementation for real-time. It provides
determinism for hard real-time execution,
supports the full range of units of func-
tionality defined in the POSIX.13 stan-
dard for real-time profiles, and has the
sponsorship of system program offices for
several current weapon system develop-
ment programs. LynxOS provides a solid
foundation to support real-time software
applications in the DII COE.

Extending the DII COE for Real-Time

Weapons
Control
•Ultrahigh
frequency
compute cycle
for weapons
control

Intel and
Planning:
•Local data
base subsets
•Nonreal-time
interaction
with offboard
systems

DII COE Not applicable

Mission:
targets,
intel,
other asset
data

Mission
results;
reach-back
requests

ATO,
Intel,
Planning
db updates

Mission
results;
db
updates

Tactical data links:
Tracks,
Sensor reports,
RT Coordination

Target
cues

Engage-
ment
status

Update rates in seconds to
minutes; best effort
scheduling okay;
interoperability key

Update rates in milliseconds to
low seconds; deadlines crucial to
correctness; RT interoperability
key

Update rates in
microseconds;
internal i/f only

Weapon
Commands

Weapon
Status

Tactical C2:
•Situation
awareness
•High
frequency
track update
•Real-time ex-
change with
sensors and
weapons

RT DII COE

Legend:
 Areas in w hich DII CO E enhances interoperabi lity

Figure 2. Breakdown for typical weapons C2 system: DII COE (non-RT), DII COE RT, and exempt.

LynxOS is a trademark of Lynx Real-time Systems
Inc. Sun and Solaris are trademarks of Sun
Microsystems Inc.

10 CROSSTALK The Journal of Defense Software Engineering September 1999

The RT Kernel services to be provid-
ed in the initial release 5.0 of DII COE
for real-time are 1) commercial off-the-
shelf products for X, Motif, and Domain
Name Server, and 2) government off-the-
shelf services for system startup and shut-
down, setting system time, and starting
and stopping DII COE processes. These
services are documented in [6]. Figure 3
depicts a representative tailoring of the
RT Kernel through selection of kernel
services and operating system capabilities.

CORBA Infrastructure

for Real-Time
CORBA is an international standard [7]
for distributed computing that is gov-
erned by the object management group
(OMG). The CORBA standard provides
for flexible interconnection of objects in a
client/server model for distributed com-
puting. Four of CORBA’s key objectives
are support for location independence,
operating system independence, hardware
independence, and language independ-
ence in the design of software compo-
nents. Figure 4 shows the role that an
object request broker (ORB), appropriate-
ly extended for real-time, plays in inte-

grating independently developed compo-
nents into a flexible real-time architecture.

Additions to the CORBA standard
to enable real-time computing with end-
to-end predictability are documented in
the Real-Time CORBA Joint Revised
Submission [8], which the OMG is con-
sidering adopting. These extensions allow
for associating real-time priorities with
tasks and requests, passing priority infor-
mation between communicating compo-
nents, and the expressing and monitoring
of timing constraints for requests. The
proposed RT CORBA specification also
defines a scheduling service that will pro-
vide a consistent real-time scheduling
model across a CORBA-based system.

HARDPack by Lockheed-Martin
Federal Systems (LMFS) is the leading
candidate as the initial RT ORB.
HARDPack is a commercial ORB that
supports Ada, C, and C++ and includes
extensions for real-time performance.
HARDPack is cognizant of real-time
request priorities and provides the capa-
bility to associate deadlines with requests.
It extends the CORBA standard with reli-
able and unreliable broadcast and multi-
cast capabilities, features commonly used
for efficient communications in real-time

C2 systems. HARDPack also implements
the Encapsulated Scheduler to assist in
implementing real-time scheduling.

HARDPack is used on at least two
Air Force C2 programs: AWACS and
Region/Sector Air Operations Center
(R/SAOC). Because the RT CORBA
standard has not yet been formalized, the
real-time extensions to HARDPack are
proprietary. LMFS actively participates in
standardization and is committed to align
its product with the commercial standard
within a year of its adoption.

Including CORBA in the DII COE
infrastructure for real-time enables the
construction of components that can be
used in a variety of configurations in dif-
ferent systems. However, it is imperative
that components are properly designed to
take advantage of this flexibility. When it
is reasonable to expect that a given appli-
cation component will not always execute
on the same central processing unit with
another component with which it inter-
acts, the component(s) should be
designed in such a way that introducing a
network between the components can be
tolerated6. In general, this consideration
will drive designs toward relatively large-
grained components with coarse-grained

DII COE

RT
Infrast ruct ure

Segm ent

O ptional I/O
Servi ces

O ptional Run
Tim e Tools

M
o

n
ito

r

..
.

O ptional Net
Servi ces

T
C

P
/IP

N
F

S

F
T

P

S
o

ck
et

s

Optional HW Platform Specific Device Drivers ...

O S Core Servi ces (e.g. Interrupt Handling,
RT M ulti Threaded Schedul ing,

Thread/ Task Creat ion/Delet ion, etc. ..)

Configurabl e #'s of threads & processes,
cache si zes, #'s of port s, etc.

..
.

Optional
Network
Comms

D
N

S

S
M

T
P

S
tre

am
 I

/O

...

... . ..

RT Com m on
Support App

Segm ent
... . ..

S
ta

rt
 U

p
...

PO SIX API's Support ed by underl yi ng conf igurabl e RTO S (G rouped By Units of Funct ional ity)

...

T
im

e
S

et

X

M
o

tif

T
B

D

T
B

D

T
B

D

S
h

u
t

D
o

w
n

S
ys

te
m

 In
it

T
B

D

T
B

D

Singl e
Process

M ulti
Process

Signal s
User

G roups
File

Syst em
Async

IO
Tim ers Si gnal s Pri ori tized

IO
M essage
Passi ng

Thread Pri o
Prot ect

Thread Proc
Shared

Thread
Attr

StackAddr

Thread Safe
Funcs...

RT M issi on
Applicat ion

Segm ent
... . ..

*Actual OS configuration depends on packaging options provided by RTOS vendor

RT Mission
Applications

RT Common Support
Applications

RT Infrastructure
Services

RT M issi on
Applicat ion

Segm ent

RT M issi on
Applicat ion

Segm ent

RT Com m on
Support App

Segm ent

RT Com m on
Support App

Segm ent

RT
Infrast ruct ure

Segm ent

RT
Infrast ruct ure

Segm ent

Configurable RT
Kernel

Selectable RT
Kernel Services

Configurable
RTOS* with POSIX

APIs

Optional
GUI Stack

O ptional
Runtim e
Servi ces

O ptional
Syst em
M gm t

O ptional
Securi ty
M anager

F
il
e

I/
O

Figure 3. Reference architecture for configurable RT Kernel.

Extending the DII COE for Real-Time

September 1999 CROSSTALK The Journal of Defense Software Engineering 11

interactions rather than designs involving
fine-grained interactions between distrib-
uted objects.

Build-Time Integration

and Supporting Tools
With a goal of constructing a real-time
system with predictable performance and
reliable behavior, the integration of real-
time segments will take place in the inte-
gration laboratory using build-time tools
rather than run-time plug-and-play
installation. The functions of configura-
tion, link, load, and test in the laboratory
will need to be performed using new
tools with the DII COE inventory. These
Build-Time Tools assist the systems engi-
neer to accomplish several functions in
series:

1. select the complete list of DII COE
real-time segments for the target
environment

2. analyze the inter-segment
dependencies

3. choose the selectable RT Kernel
Services required by the segments

4. analyze the inter-kernel
dependencies

5. and select the required POSIX units
of functionality to be provided by
the RTOS. The product of the tools

is a list of components that must be
configured to provide the required
functional capabilities. The RT
Kernel can then be configured using
commercial development tools. The
specification for the Build-Time
Tools appears in [9].

The Future of DII COE

for Real-Time
This effort is on the ground floor to pro-
vide a solid foundation on which to build
future real-time capabilities in the DII
COE. A great deal of work remains to
enable widespread reuse of DII COE RT
application software; most critical is the
establishment of an architecture at the
application program interface level. In
addition, further requirements analysis
and real-time product nominations will
be done in the following DII COE func-
tional areas: management services, multi-
level trust, mapping, alerts, correlation,
message processing, data management,
track management, combat identification,
and communications. System program
offices are being sought out which already
utilize software products built with an
open architecture and POSIX confor-
mance approach that meet the real-time
requirements for C2 interoperability. The

goal is to improve C2 interoperability for
weapon platforms as the DoD reaches
toward the goal of Joint Vision 2010. ◆

About the Authors
Lt. Col. Lucie
Robillard is the Air
Force Executive Agent
for Real-Time DII
COE at Hanscom AFB,
Mass. She is chair-
woman for the DII
COE real-time integrat-

ed product team (IPT) that has the charter
to make real-time extension to DII COE a
reality for all services. She is a Level 3 certi-
fied acquisition professional. She has joint
assignment experience. A majority of her
assignments have dealt with software acqui-
sition and engineering. She has a bachelor’s
degree in electrical engineering from the
University of Vermont and a master’s degree
in systems management from University of
Southern California.

ESC/AWW
3 Eglin St.
Hanscom AFB, Mass. 01730
Voice: 781-377-2679
Fax: 781-377-1069
E-mail: robillardl@hanscom.af.mil
Internet: http://spider.osfl.disa.mil/dii/
aog_twg/twg/DISAWEB.HTML

Dr. H. Rebecca Callison
leads the Boeing team
supporting Lt. Col.
Robillard and the DII
COE real-time IPT. She
has 25 years of experi-
ence in the design and
implementation of real-

time systems, principally in the area of
defense systems. She has a bachelor’s degree
from the University of South Carolina, a
master’s degree in computer science/systems
analysis/design from the University of
Pennsylvania, and a doctorate degree from
the University of Washington. She has served
on the faculty of Oregon State University.
She has research interests in the areas of soft-
ware architectures for real-time systems and
concurrency control for real-time.

The Boeing Co.
20403 68th Avenue S.
Kent,Wash. 98032
Voice: 253-657-3952
Fax: 253-657-0505
E-mail: rebecca.callison@boeing.com

Scheduler

Application Software

Function
1

Function
2

Function
3

Function
4

Object
Request
Broker

RTDB

Message Passing Shared Memory

Hardware

Real-Time POSIX Operating System (e.g., LynxOS)

• Event-driven
• Priority-based
• Rate Monotonic
• Real-time
• Encapsulates OS
• Easily upgraded

• No component communicates
directly with any other component
• Independent of scheduling policy
• Independent of information mgt.
• No direct access to hardware
• Many small, isolated components

• Common Object Request
 Broker Architecture (CORBA)
• Isolates objects from each other
• Handles data dependencies

• Enforced IDL interfaces
• Real-time Extensions

• COTS
• Rugged

• Priority Based

• Deterministic
• Hard Real-time

Figure 4. RT CORBA infrastructure.

12 CROSSTALK The Journal of Defense Software Engineering September 1999

John Maurer leads
MITRE’s real-time and
performance engineer-
ing section. Maurer also
chairs the DII COE
real-time technical
working group. He has a
bachelor’s degree in

mechanical engineering from MIT and 24
years experience implementing software-
intensive DoD systems. His work experi-
ence includes real-time system development
for airborne surveillance systems and Army
vehicle systems.

The MITRE Corp.
202 Burlington Road
Bedford, Mass. 01730
Voice: 781-271-2985
Fax: 781-271-4686
E-mail: johnm@mitre.org
Internet: http://spider.osfl.disa.mil/dii/

aog_twg/twg/rttwg/rttwg_page.html

References
1. DISA, Defense Information

Infrastructure (DII) Common
Operating Environment (COE)
Baseline Specification, version 3.1,
April 29, 1997, DISA Joint
Interoperability and Engineering
Organization, Reston, Va.

2. Klein, Mark H. et al., A Practitioner’s
Handbook for Real Time Analysis,
Kluwer Academic, ISBN
0-7923-9361-9.

3. Information Technology — Portable
Operating System Interface (POSIX)
Part 1 — System Application Program
Interface (API) [C Language], ISO/

IEC 9945-1:1996 (E) ANSI/IEEE Std.
1003.1.

4. Draft Standard for Information
Technology — Standard Application
Environment Profile — POSIX
Realtime Application Support (AEP),
P1003.13 Draft 9, September 1997.

5. DII COE RT TWG, “DII COE Real-
time Decision Tree & Assessment
Process: Deciding What’s in the
Domain,” Jan. 20, 1999, http://spider.
osfl.disa.mil/dii/aog_twg/twg/
RTASSESS.html.

6. DII COE RT TWG, Software
Requirements Specification for
Kernel Services for the Real-Time
Defense Information Infrastructure
Common Operating Environment (RT
DII COE), (Draft) Revision 1.0, Jan.
8, 1999.

7. Object Management Group, The
Common Object Request Broker:
Architecture and Specification,
Revision 2.2, February 1998. (http://
www.omg.org/corba/corbaiiop. html)

8. Object Management Group, Real-
Time CORBA 1.0: Joint Revised
Submission, Dec.10, 1998. (http://www
.omg.org/techprocess/meetings/
schedule/Realtime_CORBA1.0_RFP.html)

9. DII COE RT TWG, Build Time Tools
Use Case Specification for Real-Time
Extensions to the Defense Information
Infrastructure Common Operating
Environment (RT DII COE), (Draft)
Revision 1.0, Jan. 15, 1999.

Notes
1. We use the term “activity” to capture

the notion that a time-constrained

operation of the system may include
computation, communication, and
other input/output and may traverse
multiple computing nodes.

2. A discussion of real-time scheduling
algorithms is outside the scope of this
paper. The interested reader is referred
to [2] for an overview of available
scheduling techniques.

3. The degree to which these techniques
must be avoided depends somewhat on
the type of real-time system for which
the component is intended and the
situation in which the feature will be
used. If it must perform acceptably in
hard real-time systems, the ban on
features with loosely bound
performance must be strict. If soft real-
time is the objective; the restrictions
may be relaxed with caution.

4. In the rest of this paper, we will use
the term “RT Kernel” as an
abbreviation for “DII COE
Configurable RT Kernel.”

5. Commercial-off-the-shelf (COTS)
tools provided by the operating system
(OS) vendor are used to configure the
OS, not DII COE unique software.
The degree to which a specific RTOS
can be configured depends on the
flexibility the RTOS vendor provides.

6. As in all other situations in which a
component is asked to adapt to a new
computing environment, it is assumed
that developers will not attempt to use
the component in any way that violates
the laws of physics.

DII COE

We welcome reader comments regarding CROSSTALK articles or matters pertaining to software engineering. Please send your com-
ments and Letters to the Editor to crosstalk@stsc1.hill.af.mil or mail to

OO-ALC/TISE
Attn: CROSSTALK staff
7278 Fourth Street

Hill AFB, UT 84056-5205

Please limit letters to less than 250 words. Include your name, phone number, and e-mail address with any letter. We will with-
hold your name if you desire.

CROSSTALK Wants to Hear from You

September 1999 CROSSTALK The Journal of Defense Software Engineering 13

The following article can be found in its entirety on the Software Technology Support Center Web site at http://www.stsc.hill.af.mil/
CrossTalk/crostalk.html. Go to the “Web Addition” section of the table of contents.

Overview of the DII COE 4.0 Kernel

Sherrie Chubin, DISA
Dr. Thomas I. McVittie, JPL

Robert B. Miller, JPL

On April 2, the Defense Information Systems Agency (DISA) released version 4.0 of the Defense Information Infrastructure Common
Operating Environment (DII COE). Since the release is only eight months away from the millennium, fielding systems on this new version
of the COE becomes prohibitive because of the amount of time it takes to complete year 2000 testing. As a result, COE 4.0 was released as
a “developer’s release” or “beta release” so that the services and agencies have ample time to become familiar with the new version and to pro-
vide DISA with problem reports. By releasing COE 4.0 as a “beta release,” more developers will be able to provide input to DISA to help to
build a stable COE 4.1, scheduled for release in October 1999.

With the 4.0 release, a modified kernel architecture and many functional enhancements to COE provided the software dominate
improvements found in this new version. The 4.0 kernel incorporates a number of new items that improve performance and provide for
greater flexibility in configuring and deploying DII COE-compliant systems. These items require changes to how developers construct future
segments, and how integrators, site administrators, and security managers interact with the system. 3.x segment formats will continue to be
supported in the 4.x series, however, the new 4.0 kernel does provide new capabilities that a developer can opt to take advantage of for future
segment development.

This paper provides an overview of the 4.0 kernel changes specifically addressing 1) account and profile management, 2) common
data store, 3) services, 4) features, and 5) bindings. The amount of detail that is presented here is intentionally kept to a minimum so that
the reader becomes familiar with the changes made and why they were made, not necessarily how to write software that relies on kernel serv-
ices. Detailed documentation is available with the COE 4.0 release. ◆

Web Addition

The Software Technology Support Center (STSC) provides
hands-on, process improvement assistance in software acquisi-
tion, development, and sustainment to government organiza-
tions. If we have not helped you lately, perhaps it is time you
tried one of our five specialties:

ASSESSMENTS. These can range from a quick Snapshot to a
comprehensive Capability Maturity Model-Based Assessment
for Internal Process Improvement. Assessments can help you
know where you are so you can begin your process improve-
ment efforts. All STSC assessments are led by Software
Engineering Institute (SEI)-certified lead assessors.

PROCESS IMPROVEMENT. We can help develop a business case
for process improvement. We can also guide the selection of
the appropriate process improvement model and help imple-
ment the model.

SYSTEMS AND SOFTWARE ENGINEERING. Wherever you are in
the system life cycle, we can offer assistance. Specialty areas
include risk management, risk tracking, requirements engineer-
ing, object-oriented development, coding, testing, and software

quality assurance. We also have four SEI-certified Personal
Software Process instructors on staff.

PROJECT MANAGEMENT. We offer project management
training, counseling, and coaching based on the Project
Management Institute’s Project Management Body of
Knowledge.

SOFTWARE ACQUISITION. If you listen closely to software devel-
opers at major conferences, you hear comments such as “How
do they expect me to be a Level 3 developer when I have a
Level 1 customer?” The STSC also helps those who acquire
software to improve their acquisition processes.

Call the STSC for help in software process improvement
at 801-777-7214 or DSN 777-
7214 or send e-mail to
spi@stsc1.hill.af.mil. We will dis-
cuss your needs and formulate a
plan of action to help you on
your way.

What Have We Done for You Lately?

14 CROSSTALK The Journal of Defense Software Engineering September 1999

Introduction
The implementation of architecture-based software engineering
not only introduces new activities to the software development
process, such as domain analysis and domain modeling, it also
impacts other activities of software engineering including con-
figuration management, testing, quality control, and verification
and validation. Activities in each of these areas must be adapted
to address the entire domain or product line rather than a spe-
cific application.

V&V methods are used to increase the level of assurance of
critical software, particularly that of safety-critical and mission-
critical software. Software V&V is a systems engineering disci-
pline that evaluates software in a systems context [1]. The V&V
methodology has been used in concert with various software
development paradigms, but always in the context of developing
a specific application system. However, an architecture-based
software development process separates domain engineering
from application engineering in order to develop generic
reusable software components that are appropriate for use in
multiple applications.

The earlier a problem is discovered in the development
process, the less costly it is to correct the problem. To take advan-
tage of this, V&V begins verification within system application
development at the concept or high-level requirements phase.
However, an architecture-based software development process has
tasks that are performed earlier — possibly much earlier — than
high-level requirements for a particular application system. In
order to bring the effectiveness of V&V to bear within an archi-
tecture-based software development process, V&V must be incor-
porated within the domain engineering process.

On the other hand, it is not possible for all V&V activities
to be transferred into domain engineering, since verification
extends to the installation and operation phases of development,
and validation is primarily performed using a developed system.
This leads to the question of which existing and/or new V&V
activities would be more effectively performed in domain engi-
neering rather than in — or in addition to — application engi-
neering. Related questions include how to identify the reusable
components for which V&V at the domain level would be cost-
effective, and how to determine the level to which V&V should
be performed on the reusable components.

Differences Between V&V

and Component Certification
Much work has been done in the area of component certifica-
tion, which is also called evaluation, assessment, or qualifica-
tion. These terms can have slightly different meanings, but refer
in general to rating a reusable component against a specified set
of criteria. Reuse libraries often use levels to indicate the degree
to which the library has evaluated a component. The Asset
Source for Software Engineering Technology (ASSET) library
and the Army Reuse Center library both have four levels of cer-
tification, although the use of the term “levels” is operationally
different in the two libraries [2]. Component-based libraries
evaluate reusable components against criteria such as reusability,
evolvability, maintainability, and portability, as well as expend-
ing various levels of effort to ensure the component meets its
specification. Other schemes for component certification
include the certification framework developed by the
Certification of Reusable Software Components Program at
Rome Laboratory [3], and the suitability testing performed by
the National Product Line Asset Center on behalf of the Air
Force Electronic Systems Center [4].

The common thread through all of these certification process-
es is the focus on the component rather than on the systems in
which the component will eventually be (re)used. Michael Dunn
and John Knight [5] note that with the exception of the software
industry, customers purchase systems and not components.
Ensuring that components are well designed and reliable with
respect to their specifications is necessary, but not sufficient, to
show that the final system meets the needs of the user.
Component evaluation is but one part of an overall V&V effort,
analogous to code evaluation in V&V of an application system.

Another distinction between V&V and component certifi-
cation is the scope of the artifacts that are considered. While
component certification is primarily focused on the evaluation
of reusable components (usually code-level components), V&V
also considers the domain model and the generic architecture,
along with the connections between domain artifacts and appli-
cation system artifacts. Some level of component certification
should be performed for all reusable components, but V&V is
not always appropriate. V&V should be conducted at the level
determined by an overall risk mitigation strategy.

Performing Verification and Validation in Architecture-
Based Software Engineering

Edward A. Addy
Logicon Advanced Technology

Verification and validation (V&V) now is performed during application development for many
systems, especially safety-critical and mission-critical systems. The application system provides the
context under which the software artifacts are validated. This article describes a framework that
extends V&V from an individual application system to a product line of systems that are devel-
oped within an architecture-based software engineering environment. The product line architec-
ture provides the context for evaluation in this approach.

Software Engineering Technology

September 1999 CROSSTALK The Journal of Defense Software Engineering 15

Framework for Performing V&V within

Architecture-based Software Engineering

A draft framework for performing V&V within architecture-
based software engineering is formed by adding V&V activities
to a two life cycle model involving both domain engineering
and application engineering. The application-level V&V tasks
described in IEEE STD 1012 [6] serve as a starting point.
Domain-level tasks are added to link life cycle phases in the
domain level, and transition tasks are added to link application
phases with domain phases. This draft framework was refined
by a working group at Reuse ’96 [7], and the resultant frame-
work is shown in Figure 1.

Domain-level V&V tasks are performed to ensure that
domain products fulfill the requirements established during ear-
lier phases of domain engineering. Transition-level tasks provide
assurance that an application artifact correctly implements the
corresponding domain artifact. Traditional application-level
V&V tasks ensure the application products fulfill the require-
ments established during previous application life cycle phases.
More details on the framework than allowed by the space of this
article can be found in [8].

Performing V&V tasks at the domain and transition levels
will not automatically eliminate any V&V tasks at the applica-
tion level. However, reduction in the level of effort for some
application-level tasks might be possible. The reduction in effort
could occur in a case where the application artifact is used in an
unmodified form from the domain component, or where the
application artifact is an instantiation of the domain component
through parameter resolution or through generation. Domain
maintenance and evolution are handled in a manner similar to

that described in the operations and maintenance phase of appli-
cation-level V&V. Changes proposed to domain artifacts are
assessed to determine the impact of the proposed correction or
enhancement. If the assessment determines that the change will
impact a critical area or function within the domain, appropriate
V&V activities are repeated to assure a correct implementation.

Although not shown as a specific V&V task for any particu-
lar phase of the life cycle, criticality analysis is an integral part of
V&V planning. Criticality analysis is performed in V&V of
application development in order to allocate V&V resources to
the most important (i.e. critical) areas of the software [9]. This
assessment of criticality and the ensuing determination of the
level of intensity for V&V tasks also are crucial within architec-
ture-based software engineering. Not all domain products will be
used in critical application systems, and some of those used in
critical application systems may not be in a critical area of the
software. Some reusable components may be used in multiple
systems, but may be a part of the critical software in only one or
two of the systems. V&V should be performed only on domain
products that are involved in the critical software in one or more
application systems, and V&V tasks should be performed at a
level of intensity appropriate to the level of criticality.

Determining the domain products for which to perform
V&V, and the appropriate level of intensity for the V&V tasks,
is complicated by the use of the products in multiple systems,
some of which may only be in early stages of planning. If a com-
ponent is used in only one critical application system, it may be
more cost-effective to perform V&V during application engi-
neering for that system rather than during domain engineering.
Extension of criticality analysis from application engineering to
domain engineering is an important area of this framework.

System
Specification

Domain
Analysis

Domain
Design

Domain
Implementation

Requirements
Analysis

System
Design

System
Implementation

Domain Engineering

Application Engineering

New and
Existing System

Artifacts and
Requirements

(Domain
Concepts)

System
Requirements
(Common and

Unique)

Domain
Model

Domain
Architecture

Domain
Components

New
System

Domain Management

System
Architecture

Program Management

Verification
Development

Validation
Correspondence

Figure 1. Framework for V&V in architecture-based software engineering.

Performing Verification and Validation in Architecture-Based Software Engineering

16 CROSSTALK The Journal of Defense Software Engineering September 1999

Software Engineering Technology

V&V of Domain Artifacts
Many of the same justifications for performing V&V in a prod-
uct line that includes critical systems also apply to V&V of gen-
eral purpose reusable components. These general purpose com-
ponents include domain artifacts for systems that are not criti-
cal, as well as reusable components that are developed for gener-
al usage rather than for a specific product line. The Component
Verification, Validation, and Certification Working Group at
WISR 8 found four considerations that should be used in deter-
mining the level of V&V of reusable components [10]:

• Span of application — the number of components or
systems that depend on the component

• Criticality — potential impact due to a fault in the
component

• Marketability — degree to which a component would be
more likely to be reused by a third party

• Lifetime — length of time that a component will be used

The domain architecture serves as the context for evaluating
software components in a product-line environment. However,
this architecture may not exist for general use components. The
working group determined that the concept of validation was
different for a general use component than for a component
developed for a specific system or product line. In the latter case,
validation refers to ensuring that the component meets the needs
of the customer. A general use component has not one customer,
but many customers, who are software developers rather then
end-users. Hence validation of a general use component should
involve the assurance — and supporting documentation — that
the component satisfies a wide range of alternative usages, rather
than the specific needs of a particular end-user.

Related Work
Although work is lacking specifically in the area of V&V as
applied to architecture-based software engineering, there is relat-
ed work that is applicable to some of the tasks within the frame-
work. Component certification was discussed in a previous sec-
tion, and this work is certainly applicable (although not suffi-
cient) for V&V activity at the domain level. The analysis of
architectures is the focus of attention and discussion [11, 12],
but there is not as yet consensus on methods and approaches
and much of this work is directed toward system architectures
rather than product line architectures. One of the approaches
being researched is a scenario-based analysis approach, Software
Architecture Analysis Method [13]. In the area of correspon-
dence tasks, the Centre for Requirements and Foundations at
Oxford is developing a tool (TOOR) to support tracing
dependencies among evolving objects [14].

Future Work
An initial, high-level framework for performing V&V in archi-
tecture-based software engineering has been developed. Once
completed, this framework will allow the V&V effort to be
amortized over the systems within a domain or product line.
However, this framework is an outline with few details. V&V
tasks that now are performed at the application level need to be

adapted for the domain level, and traceability tasks need to be
adapted for the transition level. New methods not used on
applications but appropriate for domain models or architectures
need to be considered. Since V&V should be performed as part
of an overall risk mitigation strategy within the domain or prod-
uct line, methods of domain criticality analysis need to be devel-
oped, with attention paid to support from emerging architec-
ture description languages. The methods identified need to be
validated by use in projects having an architecture-based soft-
ware engineering approach to producing applications that
require V&V. ◆

About the Author
Edward A. Addy is currently a project manager
with Logicon Advanced Technology. The work
on which this article is based was done while
Addy was a research associate with the
NASA/WVU Software Research Laboratory, a
cooperative effort between West Virginia
University and the NASA Ames Software IV&V

Facility in Fairmont, W. Va. His research interests are in the areas
of IV&V, software product lines, component-based software
reuse, software safety, and risk analysis. Addy is a doctoral candi-
date in computer science at West Virginia University.

Logicon Advanced Technology
2003 Apalachee Parkway
Suite 211
Tallahassee, Fla. 32301
Voice: 850-219-8033
Fax: 850-219-8034
E-mail: eaddy@logicon.com
Internet: http://research.ivv.nasa.gov/~eaddy

References
1. Wallace, Dolores R. and Roger U. Fujii, “Software

Verification and Validation: Its Role in Computer Assurance
and Its Relationship with Software Project Management
Standards.” NIST Special Publication 500-165, National
Institute of Standards and Technology, Gaithersburg, Md.
1989.

2. Poore, J.H., Theresa Pepin, Murali Sitaraman, and Frances L.
Van Scoy, “Criteria and Implementation Procedures for
Evaluating Reusable Software Engineering Assets.” DTIC AD-
B166803, prepared for IBM Corporation Federal Sectors
Division, Gaithersburg, Md. 1992.

3. Software Productivity Solutions Inc., “Certification of
Reusable Software Components, Vol. 2 - Certification
Framework.” Prepared for Rome Laboratory/C3CB,
Griffiss AFB, N.Y. 1996.

4. Unisys, Valley Forge Engineering Center, and EWA Inc.,
“Component Provider’s and Tool Developer’s Handbook.”
STARS-VC-B017/001/00, prepared for Electronic Systems
Center, Air Force Material Command, USAF, Hanscom AFB,
Mass. 1994.

5. Dunn, Michael F. and John C. Knight, “Certification
of Reusable Software Parts.” 1993 Technical Report CS-93-41,
University of Virginia, Charlottesville, Va.

September 1999 CROSSTALK The Journal of Defense Software Engineering 17

6. IEEE STD 1012-1986 (R 1992), IEEE Standard for Software
Verification and Validation Plans, Institute of Electrical and
Electronics Engineers, Inc., New York, N.Y.

7. Addy, Edward A., “V&V Within Reuse-Based Software
Engineering.” In proceedings of the Fifth Annual Workshop
on Software Reuse Education and Training, Reuse ’96,
http://www.asset.com/WSRD/conferences/proceedings/
results/addy/addy.html. 1996.

8. Addy, Edward A., “A Framework for Performing Verification
and Validation in Reuse-Based Software Engineering.” Annals
of Software Engineering, Vol. 5, 1998.

9. IEEE STD 1059-1993, IEEE Guide for Software Verification
and Validation Plans, Institute of Electrical and Electronics,
Inc., New York, N.Y.

10. Edwards, Stephen H. and Bruce W. Wiede, “WISR8: 8th
Annual Workshop on SW Reuse.” Software Engineering

Notes, 22, Sept. 5, 1997, pp 17-32.
11. Tracz, Will, “Test and Analysis of Software Architectures.”

In proceedings, International Symposium on Software Testing
and Analysis (ISSTA ’96), ACM Press, New York, N.Y, pp 1-
3, 1996.

12. Garlan, David, “First International Workshop on
Architectures for Software Systems Workshop Summary.”
Software Engineering Notes, 20, July 3, 1995, pp 84-89.

13. Kazman, Rick, Gregory Abowd, Len Bass, and Paul Clements,
“Scenario-Based Analysis of Software Architecture.” IEEE
Software, 13, Nov. 6, 1996, pp 47-55.

14. Goguen, Joseph A., “Parameterized Programming and
Software Architecture.” In proceedings of the Fourth
International Conference on Software Reuse, IEEE Computer
Society Press, Los Alamitos, Calif., pp 2-10, 1996.

The Data & Analysis Center for Software (DACS) announces

another new technical report
“Using Defect Tracking and Analysis to Improve Software Quality”

This state-of-the-art report discusses five defect categorization and analysis efforts from four different organizations. The analysis
efforts at these organizations generally focus on one of three goals: finding the nature of defects, finding the location of defects,
and finding when the defects are inserted. The intent is to use this information to characterize or analyze the environment or a
specific development process. The report also presents some suggestions for how companies could begin or expand their defect
classification efforts.

This report may be viewed free on the Internet or downloaded for free in PDF at: http://www.dacs.dtic.mil/techs/defect/

A bound, hard copy of this report, is available for $50 and may be ordered from the DACS product order form at:
http://www.dacs.dtic.mil/forms/orderform.shtml or by calling the DACS at (800) 214-7921.

Performing Verification and Validation in Architecture-Based Software Engineering

18 CROSSTALK The Journal of Defense Software Engineering September 1999

Background
The Y2K problem centers on the interpretation of a two-digit
code representation of a year. Simplified, the Y2K problem may
be seen as many computer software applications that have been
programmed to interpret the two-digit year range of 00 ... 99 as
meaning the years ranging from 1900 to 1999. Other software
applications interpret 99 as an end-of-file or end-of-data mark-
er. Regardless of how the problem is defined, one will interpret
it as catastrophic when one’s critical need is not addressed or
addressed incorrectly — sometimes with irretrievable results.

Because of costs or lack of programmer resources to correct
the source code (assuming that the source code is available and
that an executable image may be generated) the basic quick
fixes for the Y2K problems often cause two effects:

1. delaying the impact of the Y2K problem by using
techniques to interpret various ranges of dates such as
bridging, sliding, or fixing windows.

2. exchanging what is essentially either a single date or a well-
defined collection of dates for multiple dates with unknown
impacts.

Regardless of the “fix” used for the Y2K problem, formal
Y2K testing to a set of Y2K objectives should be done to assess
the level of risk to which the users of those applications are
exposed.

Unit Testing vs. Integration

(Interoperability) Testing

In more traditional software testing environments, unit testing
of an application (e.g. software using services and facilities pro-
vided by an information system specific to the satisfaction of a
set of user requirements) usually involves the testing of a mod-
ule within a larger, whole software application entity. In the
context of this article, unit testing of an application involves the
whole of a single software application entity. The software appli-
cation may perform specified function(s) within the computer
system. Unit testing usually is performed on a hardware plat-
form (e.g. a collection of hardware and software components
that provides the services used by support and mission-specific
software applications) with or without other software programs
being visible, such as an operating system. Note that the hard-
ware platform may include a client/server-based system or a
Web-based system and their respective required software to
enable each system to function as designed. Unit testing is not
integration testing but is generally performed prior to integra-

tion testing.
Again, in more traditional software testing environments,

integration testing usually involves the testing of the aggregate
of the modules comprising the whole of the software application
entity. In this article, integration testing is defined as an orderly
testing of each of the pieces of the software applications, as
defined by the user or the system specifications, in which soft-
ware applications, hardware elements, or both are combined
and tested to show compliance with the program design, and
capabilities and requirements of the system and/or the user’s
needs and uses. Integration testing is aimed at exposing prob-
lems that arise when two or more applications are combined on
a hardware platform. As with unit testing, the hardware plat-
form may include a client/server-based system or a Web-based
system and its respective required software to enable each sys-
tem to function as designed. Typical problems identified during
integration testing are improper call or return sequences, incon-
sistent data validation criteria, or inconsistent handling of data
objects. Integration testing generally is performed following suc-
cessful unit testing or “software developer” integration testing of
a collection of applications.

One important objective in software testing is the valida-
tion of the application(s) under test (e.g. those applications that
are subject to testing requirements). Validation testing is a
process of assessing the conformance of one or more software
applications to one or more standards or to a set of specifica-
tions. This process includes the administrative procedures to set
up conformance assessment and to issue some formal docu-
ment, such as a certificate or test report, that an agreed upon or
recognized process was followed and that records which of all
tests presented were passed. For tests that were failed, the formal
document notes which tests failed and specifies the functionality
assessed. The user of the formal report documenting failed tests
may find that the functionalities represented by the tests are not
needed.

Why Perform Integration Testing?
The primary purpose of testing is to satisfy a customer’s needs
and requirements. Unit testing primarily assesses the validation of
an application by itself. However, when multiple applications
share resources, the closer the testing environment is to that of
the customer’s environment the more likely that testing will
detect anomalies. By design, integration testing encompasses mul-
tiple applications and uses either the customer’s environment or a
separate test environment that closely duplicates the customer’s

A Y2K Integration Test Model

Dr. William H. Dashiell
National Imagery and Mapping Agency

An Integration Test Model provides Year 2000 (Y2K) integration test
objectives keyed to specific integration test cases. This article describes a
suggested basic year 2000 (Y2K) test model with lessons learned.

September 1999 CROSSTALK The Journal of Defense Software Engineering 19

environment.

Customers
Identify the customer when designing the integration test envi-
ronment and test script. For example, consider the following
four categories of customer sets:

• End-users — should be the highest support priority
customer set.

• Operators — should be the second priority customer
because they usually are individuals who are an integral part
of the production process. This customer set often operates
and manages data centers.

• Maintainers — are hardware, software, and network
infrastructure personnel who maintain the operational
systems and provide on-the-floor support to the system user
community.

• Developers — the individual product developers, such as
the project managers, technology thrust managers, and
capability security certification administration.

Year 2000 Integration Testing
The Y2K integration testing is designed to ensure the continuing
integrity of a user’s base line and to provide customers and end
users with continuing integrity of that base line. While perform-
ing all integration testing, integration testers should seek to pro-
vide operational acceptance with zero open discrepancy reports
(DRs). The Y2K test scripts and test reports are designed to
ensure that the reported test results are accurate and repeatable.

The Y2K Integration Test Model involves its customers and
end-users in the integration testing process to ensure user
acceptance as well as technical base line acceptance for newly
delivered capabilities.

There are five basic phases in the Y2K Integration Test
Plan. While these phases were implemented in the order pre-
sented below, the awareness phase is an ongoing phase because
of software changes (e.g. through application of patches, new
builds, request for new functionality(ies), and results of the ren-
ovation phase) that occur throughout an application’s life cycle.

Awareness
In the awareness phase, all personnel responsible for the devel-
opment, testing, or who use the information technology (IT)
system have been educated about the importance and impact of
Y2K problems.

Assessment
This phase requires that all IT components are first unit tested
by a separate unit test group. Once the unit test group success-
fully tests a software component, that component is transferred
to the Y2K integration testers, who perform the Y2K integra-
tion test scripts on the set of software/hardware components
comprising the applications under test. When applications
under test are not unit tested, this Integration Test Model sug-
gests that integration testers should perform the integration test
script with the knowledge that sources of errors may not be eas-
ily traced. The assessment phase includes a strategy and plan to

correct the deficiencies with full regression testing of the appli-
cations under test.

Renovation
The renovation phase documents the software/hardware
changes, obsolescence of software/hardware, and upgrades to
software/hardware. (Renovation is performed by other activities
or organizations.) Full regression testing of renovated applica-
tions is strongly recommended.

Validation
This phase describes the test and verification process for all IT
software components possibly affected by the Y2K problem. All
validation testing is designed to occur in an isolated testing
environment wherein regression and future software integration
testing may be performed without impact on operational pro-
duction systems. Full regression testing of all replaced or con-
verted system components should be done.

Baseline
The base line phase describes the operational base line of soft-
ware wherein the newly tested software is integrated. A properly
constructed baseline

• supports multiple control levels;
• provides for storage and retrieval of configuration items/

units;
• provides for the sharing and transfer of configuration

items/units between control levels within the library;
• provides for the storage and recovery of archival versions of

configuration items/units;
• ensures correct creation of products from the software

base line library;
• supports generation of reports; and,
• provides for the maintenance of the library structure.

Objectives

The primary objective is to ensure full regression testing of all
software components for Y2K compliance.

In carrying out the integration testing responsibility, specif-
ic goals have been derived to govern the general operational test-
ing procedures and particularly Y2K integration testing to:

• maintain a focused commitment to and support of the
migration of legacy systems into a base line;

• identify and respond quickly to changing priorities;
• partner with your software system control personnel (e.g.

executive decision makers) and your user community to
ensure compatible, integrated test planning, scheduling,
and execution to minimize the need for partial capability
acceptance and retest;

• adhere to all of your software community standards,
policies, and procedures;

• provide testing that ensures the continuing integrity of your
operational base line;

• involve your customers and end-users to ensure user
acceptance as well as technical base line acceptance for
newly delivered capabilities;

A Y2K Integration Test Model

20 CROSSTALK The Journal of Defense Software Engineering September 1999

Software Engineering Technology

• ensure test scripts and test base lines are developed that can
produce accurate and repeatable results in satisfying the test
requirements;

• achieve scheduled testing deadlines established by the
customer;

• proceed to operational acceptance with zero open DRs.

Scope of Y2K Integration Testing
As a first step, the integration tester is urged to test for proper
processing of the current date and time prior to starting the
Y2K test dates. The integration tester should be a software tester
with professional experience who will review each test objective
and decide its applicability to the applications under test and to
modify those test objectives and test procedures to more proper-
ly match the functionality of the applications under test. This
professional experience allows the tester to make professional
judgements and evaluations based upon the test objective and
his or her testing experiences.

The integration tester must provide an audit trail. The rec-

ommended methodology is to leave each test objective and pro-
cedure as written. In the test report, the tester should document
each deviation from the objectives or procedures, with a ration-
ale for each change.

Certain dates are widely recognized as among the most
important in Y2K integration testing. These dates, which form
the basis for the Y2K test script, are shown in Table 1.

Global Positioning System Note: Users of the Global
Positioning System (GPS) should note that GPS does not have a
Y2K problem. However, a clock overflow problem, called the “Z-
count roll-over” does exist and is sometimes erroneously labeled as a
Y2K problem. This clock roll-over occurs every 1,024 weeks; the
first roll-over having occurred Aug. 21, 1999. Despite the publica-
tion of a GPS specification, some receiver manufacturers did not
account for the Z-count roll-over in the satellite clock. Some affected
receivers can be manually reset, or if they have flash memory or
removable Programmable Read Only Memory (PROM), they can
be reset to accommodate the roll-over. Those that cannot be reset
must be replaced.

The following selected generic test objectives are widely rec-
ognized as the important test objectives in Y2K integration test-
ing. It is the responsibility of the integration tester to select those
objectives that are applicable to the applications under test and
to develop a formal test procedure and a formal expected results
for each selected test objective. The selected generic test objec-
tives are shown in Table 2.

Sample Integration Test Script
Each Y2K test objective is developed into a specific test that the
tester uses as a basis for assessing conformance to Y2K require-
ments. Each tester is encouraged to pursue additional testing
when errors or abnormalities appear.

All testing procedures are reported in the test report with
the observed test results. Below is an example of a test objective
with its associated test procedure(s) and expected results.

Note for tester: When a test objective is not applicable to an
applications under test, use the following statement:

Recording results: The test objectives are not applicable to
the applications under test because the required functionality is
not supported.

Test No. 1
Test objective (TO) No. 1: Tests roll-over of the GPS 10 bit
epoch. Days are correctly recognized as Saturday and Sunday,
respectively.

Test procedure, Part A for TO No. 1A: Set system date to
Saturday, Aug. 21, 1999 (1999-08-21) at or about 23:00 hours.
Check each commercial-off-the-shelf (COTS)/government-off-
the-shelf (GOTS) application in turn for the correct date and
time. Exchange the current date and time between appropriate
applications and check that the date is correct within the time
period.

Note to tester: Set time sufficiently prior to midnight to
allow you to assess each of the applications under test in a time-
ly manner.

Expected results: Date must be Saturday Aug. 21, 1999

Test
Obj.#

Target Date to be Tested Description

0.0 Current day, date, and time Tests whether software properly processes
current day, date, and time. A basis to start
testing.

1.0 Saturday, Aug. 21, 1999
through Sunday, Aug. 22,
1999

Tests roll-over of the Global Positioning
System (GPS) 10 bit epoch. Days are
correctly recognized as Saturday and
Sunday, respectively. See GPS note.

2.0 Wednesday, Sept. 8, 1999
through Thursday, Sept. 9,
1999

The numeric value of the day (999) is equal
to the null void code sometimes used in
programming. Day is correctly recognized
as Thursday.

3.0 Thursday, Sept. 30, 1999
through Friday, Oct. 1,
1999

Tests critical roll-over of federal fiscal year
2000 roll-over. Days are correctly
recognized as Thursday and Friday,
respectively.

4.0 Friday, Dec. 31, 1999
through Saturday, Jan. 1,
2000

Critical midnight crossing from 1999 into the
year 2000. Days are correctly recognized as
Friday and Saturday, respectively.

5.0 Monday, Jan. 3, 2000 First day back to work for most employees
after year 2000 begins. Day is correctly
recognized as Monday.

6.0 Sunday, Jan. 9, 2000
through Monday, Jan. 10,
2000

Tests roll over from single digit days to
double digit days in year 2000. Day is
correctly recognized as Monday.

7.0 Tuesday, Feb. 29, 2000
through Wednesday, March
1, 2000

Tests critical roll-over of first leap day in the
first leap year after year 2000 begins. Days
are correctly recognized as Tuesday and
Wednesday, respectively.

8.0 Saturday, Sept. 30, 2000
through Sunday, Oct.1,
2000

Tests roll-over from single digit month to
double digit month in year 2000. Days are
correctly recognized as Saturday and
Sunday, respectively.

9.0 Sunday, Dec. 31, 2000
through Monday, Jan. 1,
2001

Critical midnight crossing from 2000 into
2001. Tests roll over to new millennium.
Days are correctly recognized as Sunday
and Monday, respectively. This date is the
last day of the second millenium on the
Gregorian calendar. The ordinal date
00.365 was the last day of 1900 (Julian
Calendar). Since 2000 is a leap year, its last
day is 00.366. An incomplete algorithm for
determining the length of the year might
cause an ordinal- based system to transition
into the new millennium a day too early.

10.0 Sunday, Feb. 29, 2004
through Monday, March 1,
2004

Tests roll over from first leap year not
affected by a century or millennium
transition. Days are correctly recognized as
Sunday and Monday, respectively.

Julian date (sometimes called Ordinal Date)
function should return Nth day of year.

Table 1. Y2K test script dates.

September 1999 CROSSTALK The Journal of Defense Software Engineering 21

between 23:00 and 23:59 hours.
Recording results: Record the result

for each application as “passed,” “failed,”
or “n/a.”

Test procedure, Part B for TO No. 1B:
Wait long enough to allow date to roll
over. Check applications for date and
time and again exchange the current date
and time between appropriate applica-
tions and check that the date is within
the correct time period.

Expected results: Date must be
Sunday, Aug. 22, 1999 between 00:00
and 00:59 hours.

Recording results: Record the result
for each application as “passed,” “failed,”
or “n/a.”

Test No. 9
Test objective No. 9: Critical midnight
crossing from 2000 into the year 2001.
Tests roll-over to new millennium. Days
are correctly recognized as Sunday and
Monday, respectively. This date is the last
day of the second millennium on the
Gregorian calendar. The ordinal date

00.365 was the last day of 1900 (Julian
Calendar). Since 2000 is a leap year, its
last day is 00.366. An incomplete algo-
rithm for determining the length of the
year might cause an ordinal-based system
to transition into the new millennium a
day too early.

Test procedure, Part A for TO No. 9:
Set system date to Sunday, Dec. 31, 2000
(2000-12-31) at or about 23:00 hours.
Check each COTS/GOTS application, in
turn, for the correct date and time.
Exchange the current date and time
between appropriate applications and
check that the date is correct within the
time period.

Note to tester: Set time sufficiently
prior to midnight to allow you to assess
each of the applications under test in a
timely manner.

Expected results: Date must be
Sunday, Dec. 31, 2000 between 23:00
and 23:59 hours.

Recording results: Record the result
for each application as “passed,” “failed,”
or “n/a.”

Test procedure, Part B for TO No. 9:
Wait long enough to allow date to roll
over. Check applications for date and
time and again exchange the current date
and time between appropriate applica-
tions and check that the date is within
the correct time period.

Expected results: Date must be
Monday, Jan. 1, 2001 between 00:00 and
00:59 hours.

Integration Test Report
The Integration Test Report should pro-
vide:

• a full description of the software/
hardware test environment

• a test number to identify the test
report

• the test preparations (e.g. obtaining
all software in a correctly configured
format)

• the test script (or a reference to the
formal test script to allow future
replication)

• a full description of the testing
procedures, including any additional
testing resulting from observed
abnormalities, or changes to the test
objective and/or test procedure and
the rationale for the changes

• the operator notes (e.g. background
information, history, glossary,
rational), as needed

• any acronyms used in the test report
• any points of contact (e.g. names,

addresses, and telephone numbers)
• a recommendation (e.g. whether the

software is approved for inclusion
into the standard build/up-grade; or
approval is denied with an
explanation.)

Lessons Learned
• There are several COTS products

that vendors claim are Y2K
compliant. These products are Y2K
compliant with a shift in the way
end-users enter their data into the
application; there are no technical
workarounds. It is the responsibility
of upper management to provide the
basis for a policy directive to change
the way end-users enter data. These
known problems were not used when
developing the suggested Y2K
integration testing script.

Generic Test Objective Rationale Example Test Elements
Event triggers: processes that
cause the automatic invocation
of a procedure at a specified
time.

Event triggers generally start
the execution of a procedure
when the current time is equal
to or greater than the
scheduled event time. Events
scheduled in 1999 to occur in
the year 2000 may be
misinterpreted when the
applications compare dates
with only two digit year
information.

Alarm systems should notify the
recipient on time.

E-mail should send a message
after a specified time.

Project management tools
should correctly schedule
milestone/dates into the next
century or millennium.

Automated periodic reports such
as MIS systems should produce
timely reports as scheduled.

Error handling: the process of
detecting and responding to
any discrepancy between a
computed, observed, or
measured value or condition
and the true, specified, or
theoretically correct value or
condition.

Whether the user interactively
inputs date information or
whether date data is supplied
via some other source, an
application should possess a
means to assess the legitimacy
of the date data. If the input
date data is not acceptable to
the processing logic, then an
error should be reported.

Error messages should report
that input date(s) are out of
range.

Error messages must display
dates in a format that reliably
differentiates centuries.

Queries, Filters, and Data
Views: These are higher-order
functions that accept a
predicate and a list and return
those elements of the list for
which the predicate is true.

These higher-order functions
generally operate by taking
portions of dates and
comparing values to similar
portions of other dates. The
ability to correctly complete
numerical comparisons on
dates is essential to these
functions.

All comparison (e.g. <, >=, >, =<)
and logical operators, (e.g. and,
or, not, xor) must be properly
processed.

Comparing or sorting dates:
sorted dates should be
correctly sorted in either
ascending or descending order.

All date-based comparisons or
sorts must be performed
correctly.

Data containing dates that are
passed between applications
must be correctly sorted, both
ascending and descending.

Table 2. Y2K generic test objectives.

A Y2K Integration Test Model

22 CROSSTALK The Journal of Defense Software Engineering September 1999

Software Engineering Technology

• Y2K integration testing is not
validating the results of unit testing.
A tester should review the documents
associated with unit testing and may
use them as a basis for the
integration testing. In some
instances, the tester may find
omissions of, or inconsistencies in,
required data in the unit test reports.
In these instances, the tester should
work to resolve these discrepancies
because inaccurate unit test reports
could invalidate the integration
testing efforts.

• Some applications may not coexist
on the same operational system. For
example, different versions of
Microsoft Office will not coexist on
the same testing system at the same
time. Therefore, two tests must be
conducted for each system. For
example, integration testing should
be conducted with one version of
MS Office and all other applications,
then with a different version of MS
Office and all other applications. ◆

About the Author
William H. Dashiell is a
computer scientist at the
Department of Defense
National Imagery and
Mapping Agency. He
has worked on the devel-
opment of software test-

ing by statistical methods using binomial
models, coverage designs, mutation testing,
and usage models. He has contributed to
the development of conformance and test-
ing protocols for federal, national, and
international information technology stan-
dards. He has a bachelor’s degree in busi-
ness administration and education, a mas-
ter’s degree in education technology, and a
doctorate in mathematics education from
the University of Maryland. He also has a
master’s degree in computer science from
Hood College in Maryland.

National Imagery and Mapping Agency
1200 First St. SE M/S N-61
Washington DC 20303-0001
Voice: 703-281-8836
Fax: 703-281-8957

Further Readings
1. U.S. General Accounting Office,

Accounting and Information
Management Division;
GAO/AIMD-10.1.21. Year 2000
Computing Crisis: A Testing Guide;
Exposure Draft; June 1998.

2. URL: http://www.nist.gov/y2k/datetest.
htm (Test Assertions for Date and
Time Functions).

3. URL: http://www.state.de.us/ois/y2000
/testplan.htm (Year 2000 Conversion
Directive Test Plan).

4. URL: http://www.microsoft.com/tech
net/topics/year2k/default.htm
(MicroSoft Year 2000 Readiness
Disclosure and Resource Center Web
site).

5. URL: http://tecnet0.jcte.jcs.mil:9000
/htdocs/teinfo/directives/soft/ds2167a.
htm (DoD-STD-2167A Defense
System Software Development).

6. URL: http://www.stsc.hill.af.mil/
Crosstalk/crostalk.html

If your experience or research has produced information that
could be useful to others, CROSSTALK will get the word out.We
welcome articles on all software-related topics, but are espe-
cially interested in several high-interest areas. Drawing from
reader survey data, we will highlight your most requested
article topics as themes for future CROSSTALK issues. In future
issues, we will place a special, yet nonexclusive, focus on

Risk Management
February 2000

Article Submission Deadline: Oct. 1, 1999

Education and Training
March 2000

Article Submission Deadline: Nov. 3, 1999

Cost Estimation
April 2000

Article Submission Deadline: Dec. 4, 1999

We will accept article submissions on all software-related top-
ics at any time; issues will not focus exclusively on the featured
theme.

Please follow the Guidelines for CROSSTALK Authors, available on
the Internet at http://www.stsc.hill.af.mil.

Ogden ALC/TISE
ATTN: Heather Winward
CROSSTALK Associate Editor/Features
7278 Fourth Street
Hill AFB, UT 84056-5205

Or e-mail articles to features@stsc1.hill.af.mil. For more infor-
mation, call 801-775-5555 DSN 775-5555.

Call for Articles

September 1999 CROSSTALK The Journal of Defense Software Engineering 23

Introduction

The United State’s quality guru, W.
Edwards Deming, won the respect of
Japanese management after World War II
by preaching a philosophy of commit-
ment to quality and continuous improve-
ment of company-wide processes. His
recognition that quality cannot be
inspected in, but must be designed in,
raised an awareness in American business-
es. The companies that are industry lead-
ers and retain their customer base contin-
uously evaluate their processes, services,
and delivery mechanisms and improve
them [1, 2].

We think Deming was right. We also
think that the pioneers in the software
field were on the right track. Their publi-
cations indicated both the right software
development problems to be solved and
the right way to solve them. These publi-
cations include:

• D.L. Parnas [3] with his definition
and justification of modularity via infor-
mation hiding.

• Wayne Stevens, Larry Constantine,
and Glenford Myers [4] with their defini-
tion and justification of minimizing
dependencies via composite design.

• Edsgar Djikstra [5] with his defini-
tion and justification of structured pro-
gramming.

This paper focuses on modular and
composite design, and structured pro-
gramming — and the need for quality

controls to insure such. Adherence to
these three principles at the design and
coding phases insures a higher quality
product — even before it goes to test.
These software development guidelines
were known in the 1960’s, early enough
to have avoided the year 2000 bug (Y2K).

We choose to focus on the “quality”
principles that, had they been followed,
would have avoided the Y2K problem.
These include both architectural and cod-
ing quality principles, defined below:

Architectural Quality
Architectural quality insures that software
is designed to be modular, to minimize
dependencies and states, and to maximize
reusability. Architectural quality reduces
the number of modules created by recog-
nizing functional similarities and design-
ing one generic module in place of several
“one-offs.”

A component that is reused is
designed to be state independent. An
anti-virus software product, for example,
gives the user the ability to configure an
automatic action if a virus is found. The
user will want to choose the automatic
action for real-time virus scanning, for
screen-saver scanning, for scheduled scans
— and for servers and clients. The con-
figure automatic actions component
should be designed, coded, tested, and
translated once, but reused in all of the
scenarios presented above. Driven by the

need for reusability, the component will
be designed to work the same regardless
of which scan type is being defined. It
will be state independent; independent of
the context from which it was triggered.
A good architecture also separates data
from functionality. An example is a data-
driven diagnostic tree where each node
contains a trigger, an expected response,
and further directions based on the actual
response. A second example is a data-
driven installation component. We have
seen a successful setup architecture that
compartmentalizes the functionality
(add/delete/start/stop services;
copy/delete files; etc.) then lists the actual
files to be managed as data. Different
applications can be installed, upgraded,
and uninstalled with no code changes to
the setup component, requiring only
changes to the data.

How to Design-In

Architectural Quality
We propose developing a Graphical User
Interface (GUI) prototype based on mar-
keting requirements. It is our experience
that such a prototype hastens identifica-
tion of reusable objects, is a good tool for
communicating the design, and can be
mapped to marketing requirements (one
should be able to identify in the proto-
type how each function in the marketing
document can be triggered). The
approved prototype is examined for

Who is to Blame for the Y2K and Similar Bugs?

Alka Jarvis
Cisco Systems

Dr. Vern J. Crandall
Vern J. Crandall & Associates Inc.

Cindy Snow
Intel Corp.

In the beginning, programming and software architectural design were considered an art. Programmers
used their creative skills to build software. Constraints were viewed in terms of “compilers” and “oper-
ating systems,” not in terms of fundamental design criteria. Quality assurance personnel and testing
organizations still are considered to come at the end of the “food chain” and their job is to find any errors
that might exist in the software. These people are told, “You must accept the software product the way
it has been designed and programmed, and make it work.” The implication is that you are at the mercy
of the software developers. The real problem is not inadequate testing. It is the lack of quality controls
during the crucial design and coding stages. Insufficient controls at this stage interpolate to insufficient
design and architecture. The year 2000 bug is a prime example of the lack of such quality controls. It
could have been avoided. Someone is to blame.

Open Forum

24 CROSSTALK The Journal of Defense Software Engineering September 1999

Open Forum

objects that appear multiple times, such
as the configure automatic actions com-
ponent. Common functions are com-
bined into one component/module. The
goal is to minimize components and
maximize reuse. Components are repre-
sented in the architecture. Architectural
constructs include:

1. Executive modules: Modules in
which high-level logic is packaged,
making it possible for direct trace-
ability back to the specification.

2. Fan-in modules: Normally, the term
describes a situation where multiple
modules call a single module. This
concept is used for module reuse and
for building libraries of reusable
functions. We use the term fan-in to
describe a method of removing
dependencies. When dependencies
have been identified across various
pieces of code, the code is extracted
from the modules in which it appears
and fan-in is used to package that
code, and dependency, in one place.

3. Massage modules: These modules
are used when a fan-in module can
almost be used. That is, a condition
is slightly different than that
expected by the fan-in module. The
massage module then modifies the
format so that a nonconforming
condition is made to conform, and
the fan-in module can be used.

4. Informational strength modules: If
the dependencies within a set of
modules are so different that they
cannot be related by fan-in or
massage modules, they can be
packaged in informational strength
modules. These modules have
multiple interfaces and multiple
entry points allowing each
dependency to be considered as a
separate program.

5. Transaction (event) processors:
Transaction processors use the menu
to identify the desired state and
transfer the system to that state,
defining it as an independent sub-
system. Each transaction processor
system has its own set of independ-
ent states.

The finalized architecture points out
all modules that need coding. The GUI
prototype will demonstrate how the code

should look and feel. The combination
allows for novel task assignment. Senior
engineers should be working on proof-of-
concept and new technology research.
Junior engineers should be assigned to
the basic coding tasks, and should repre-
sent the critical path. That way, if they
get behind on the schedule, senior engi-
neers can be pulled back to help catch
up. If proof-of-concept, the most difficult
to predict schedule for, takes longer than
expected (within bounds) the critical path
time is not affected.

We recognize that composite design
stressing independence usually involves
tradeoffs with performance and efficiency.

Code Quality
Code is produced for the modules identi-
fied in the architecture. Quality code
reduces dependencies, is correct, is logi-
cal, and is easy to certify. Code quality is
controlled by constraint to three canoni-
cal forms (sequence, iteration, and selec-
tion) defined later. Code quality is certi-
fied via manual pattern matching of each
piece of code. We know of one company
where two different reviewers look at
code. If it does not follow the proposed
constructs, or if it is not easily under-
stood, it is looked at by a third reviewer
who usually sends it back for redesign.
Code quality should be verified before a
module is sent to the test group.

Further, coded algorithms should be
reviewed and certified for correctness.
The quality controls proposed by this
paper guarantee architectural quality and
code quality as defined above.

Legacy Software Wisdom
As mentioned in the introduction, we
consider three discoveries in software
development over the last 35 years to be
most significant. Each of these discover-
ies has been based on the work of oth-
ers, and each has influenced various
methodologies.

Modularity via Information Hiding
The major concept Parnas introduced
was “information hiding” as the basis of
modularity. This has been interpreted as
the hiding of a function, leading to
reusability. Reusability is maximized
when dependencies are minimized. This

leads to our approach.

Minimizing Dependencies
via Composite Design
Composite design, based on the 1974
paper and presented by Myers [6, 7, 8],
addresses the development of architec-
tures focused on minimizing dependen-
cies. While module strength, module
coupling, and other design issues have
been enumerated by those describing
composite design or structured analysis
and design or the “Yourdon
Methodology,” no one after Myers
attempted to explain the reasons for the
various module strengths and couplings
in terms of dependencies — except, per-
haps, Lawrence Peters [9] and Vern
Crandall [2]. The elimination of depend-
encies, initially considered an integral
part of composite design, is a guiding fac-
tor to insure architectural quality. We
think it has a far more critical impact
than might be expected.

Structured Programming
Another concept we will discuss regards
the work of Djikstra. While he deserves
the credit for publicizing structured pro-
gramming, others have had an influence.
The original paper leading to this
approach to programming comes from
professors C. Boehm and G. Jacopini
[10] from Italy. (Actually, the concepts
originally appeared in a 1938 textbook
on linear algebra, but we cannot find the
reference.)

The late Harlan Mills of IBM proba-
bly had as much to do with popularizing
structured programming as anyone. He
simplified the proofs of Djikstra, who
proved the second half of the structure
theorem, and publicized the approach
throughout IBM — and the English-
speaking world. Structured programming
is based on the definition of a proper
program in conjunction with the struc-
ture theorem, and the correctness theo-
rem. These theorems and definition are
paraphrased below:

Definition of a Proper Program
• It contains a single entry and a single

exit for the entire structure and for
any structures inside.

• It contains no “dead code,” i.e. it
contains no code or logic structures

September 1999 CROSSTALK The Journal of Defense Software Engineering 25

that cannot be reached or have no
effect on the results.

• It contains no “eternal loops,” i.e. all
loops are finite and cannot continue
to run forever.

Some interpret a proper program
“single entry/single exit” to mean “no GO
TO’s.” GO TO’s, however, may be neces-
sary to implement structured program-
ming forms in some languages such as
assembly language and Basic.

Structure Theorem as Understood
by R.C. Linger, H.D. Mills,
and B.I. Witt [11]

• It can be shown that any proper
program is the equivalent of one
composed of sequence, iteration, and
selection, plus some logical
functions. In other words, any proper
program can be written using only
these three canonical forms.

The major value of the Structure
Theorem is in its proof of the reduction
of the number of patterns necessary to
produce any process. It also certifies that
any “spaghetti program” can be “reverse
engineered” to the three canonical forms,
which helps greatly when searching out
Y2K-type problems.

We further propose implementing
the three canonical forms as suggested
below:
Sequence: Sequence should flow forward.
Do not use GO TO to jump back to
code with a lower sequence number. Do
not use C’s ++ notation because it is error
and typo prone. ‘X++’ can easily, more
dependably, and more understandably be
coded as ‘x = x + 1.’
Iteration: Use DO WHILE loops (pre-
test loops) exclusively. Do not use
REPEAT UNTIL or FOR loops.
Selection: Use case statements instead of
nested IF THEN ELSE structures, except
in the case of success-oriented nesting.
Success-oriented nesting requires a nested
IF THEN ELSE structure where the
innermost structure is the success situa-
tion. Test for the first or highest percent-
age error first in the nested set.

Limiting the coding structures to
three canonical forms, and further speci-
fying the already validated constructs
used to implement the three canonical

forms, provides an outline or pattern that
can be quickly and easily pattern matched
to prove correctness. One can easily out-
line the flow of any module to verify that
it represents a proper program. If the
solution has been correctly defined, then
pattern matching can quickly validate the
correctness of the code. This pattern-
matching process is manual, but studies
have confirmed that a manual code walk-
through is as effective in locating code
defects as any other method.

Correctness Theorem, Linger,
Mills, and Witt [11]
It can be shown that if the formula of a
program contains at most the three
canonical forms (sequence, iteration, and
selection), it can be proved correct by a
tour of the program tree. In other words,
if all steps of the program are correct in
its decomposition, then the program will
be correct.

If P is a proper program, then it can
be equivalently written using only three
canonical forms. This means that no mat-
ter how bad the “spaghetti” that appears
in a program, or any process in the world
— from a cooking recipe, to directions to
reach a destination, to instructions for
building computer programs — the logic
or logic structure can be replaced with
logic or logic structures involving simple
sequences of instructions, iterations
(loops), and selections (branches). This is
a very powerful concept.

Architectural and Code Quality

Minimize Inefficient Testing

Some prescribe running software systems
for a year or more to “certify” the ade-
quate correction of the Y2K problem.
The software system is tested by repeated-
ly executing production runs, with the
hope that rarely executed code or rare
conditions will be triggered and point out
remaining Y2K defects. We propose that
the real test issue is not one of covering
the code, it is one of covering the states
the code generates. Most everyone who
has attempted to install and execute com-
plex software knows that the number of
states the software can take on approaches
infinity. As the number of states
approaches infinity, traditional testing
efficiency approaches zero, defined as the

percentage of the software states actually
tested.

Assuring that the dependencies have
been eliminated or “certified” as being
transparent to the millennium bug is a
better approach. Events that are inde-
pendent of other events cannot cause the
other events to fail.

The Year 2000 Bug

was Preventable
The cost of fixing the Y2K bug already is
in the millions. The societal and business
costs are unknown, and even the most
conservative projections seem unbeliev-
able. Surely “Divine Providence” will not
let such a profound catastrophe affect
mankind, especially now that the Cold
War is over.

The entire issue can be wrapped up
in terms of information hiding. The mil-
lennium bug is not that an algorithm was
coded over a period of more than 30
years, which would become defective
around the year 2000; the bug was that
the knowledge of the problem was dis-
tributed through millions of lines of
code. Had quality-oriented, well-known
“information hiding” strategies been
employed at the time they were known,
the year 2000 bug would have been a 10-
to 45-minute fix in even the largest pro-
grams, because all impacted code would
have been located at one point, and the
impact would have been restricted to
only the “code actually necessary to make
use of the need to restrict the year to two
digits to save ‘needed memory or storage
space.’”

Industry leaders call attention to the
lack of programmers who know the early
programming environment, reasoning
that such knowledge is a prerequisite to
searching for Y2K defects. This should
not be an issue. For years, forward-look-
ing teachers have insisted on their stu-
dents programming in “pseudo-code,” the
eternal principle of “design before imple-
mentation.” That means that the entire
software industry should contain pro-
grammers who program in English and
code in any of thousands of implementa-
tion languages. The Structure Theorem of
Structured Programming guarantees that
any program, however large, which is a
“proper program,” can be “equivalently

Who is to Blame for the Y2K and Similar Bugs

26 CROSSTALK The Journal of Defense Software Engineering September 1999

Open Forum

written” using only the canonical forms.
What this means is that any program —
be it COBOL or Basic, Assembly
Language or whatever — can be “reverse
engineered” into a structured equivalent,
which can easily be expressed in English.
This has been taught to secretaries and
clerks by one of the authors for more
than 20 years in companies where the
available personnel is limited. You do not
need to be a professional programmer to
“reverse engineer code.” But once these
people have performed their task, profes-
sional programmers can quickly decipher
the code structure and determine how it
functions. There are efficient, time-
proven ways to determine the logic struc-
ture around a potential millennium bug
and to create a solution.

Other Preventable Bugs
The “Christmas bug” occurred when a
new employee of a major corporation sent
an e-mail Christmas card to several of his
new colleagues. He included their aliases
in the address. As the card was received by
each friend, it was immediately forwarded
to all on the friend’s alias list, and their
aliases. This proliferation recursed until
the e-mail storm brought the entire mail
network to a screeching halt. Either a fail-
ure mode was not comprehended in the
original design, or recursion was improp-
erly implemented.

Mistakes can happen to trained users
under natural operating conditions.
Have you ever hit the wrong key on the
keyboard, or clicked the mouse at the
wrong point as it swooped across the
screen? Mistakes with huge consequences
are sometimes explained away as viruses.
Such accidents more appropriately repre-
sent failure modes that were not compre-
hended or appropriately planned for.
Recursion problems are common with
loops which process differently for each
iteration, and with calling sequences
which repeat themselves with different
results for each sequence.

Another victim tells of an $8,000
check that did not get deposited to the
right account. This caused his check to
bounce. A new check to cover the
bounced check was cashed twice, causing
a $16,000 overdraft. Due to constraints
on the banking software, all subsequent

bounced checks had to be processed by
hand. The knowledge of the overdraft
was automatically available to Visa and
MasterCard. They promptly cancelled.
Credit reporting agencies then produced
a damaging credit rating. The bank error
rippled through the entire banking and
credit rating system, and cost the bank
$50,000 to correct. Knowledge of the
first bounced check should have been
contained in one spot, and then process-
ing inactivated until an alert could be
addressed. Instead, the knowledge was
duplicated, without verification of the
problem, to an undetermined number of
places. Errors of this type appear in sys-
tems with extremely large numbers of
states. Testing is not comprehensive even
if it covers all code; it must cover all
states the code generates. As the number
of states increase, sometimes towards
infinity, the software’s complexity increas-
es to the point where comprehensive test-
ing is impossible to define or execute.
State proliferation occurs when program-
mers do not pay attention to dependen-
cies among input variables and functions.

New Bug Watch:

The Year 2038 Bug
American National Standards Institute
(ANSI) provides a standard for date/time
representation called time_t. This time
standard has received wide acceptance,
most notably in the Unix world. The
time value is represented by a 32-bit
signed integer that denotes the number of
elapsed seconds from Jan. 1, 1970. The
maximum time-period (or epoch as it is
called in date/time lingo) will rollover at
20:14:07 Jan. 18, 2038. Depending
on implementations of this ANSI stan-
dard, once again computers will be faced
with a date representation problem and
may not be able to distinguish between
2038 and 1970. The problem is com-
pounded by conversion functions and
interpretations of the standards. Some
known variations will actually run out as
soon as 2036.

We propose that software develop-
ment managers and engineers discuss the
alternatives to time_t use (for both user
interface [UI] and non-UI implementa-
tion) now. The alternatives are easily

comprehended and easily implemented.

Summary

We claim that the year 2000 and similar
bugs could have been avoided by adher-
ence to the architectural and coding qual-
ity standards insured by modularity,
structured programming, and composite
design. At every point where these bugs
occur, they were “designed in.” We pro-
pose that such defects be “designed out.”
We think such defects can be eliminated,
and at design time. If a bug must be
allowed to exist, its impact — and the
knowledge of its existence — should be
contained in only one module.

The cost of ignoring architectural
and code quality is now obvious. We
encourage those responsible for solving
the Y2K problem to concentrate on the
real problem. We encourage them to add
and execute quality controls at the design
and coding stages. We hope that execu-
tives and software engineers have learned
the awful cost of ignoring these simple
quality principles.

About the Authors
Alka Jarvis, a senior
quality consultant at
Cisco Systems, in San
Jose, Calif., has an
international reputation
in the area of software
quality and last year was
named Outstanding

Woman Professional for Silicon Valley. She
has written three books, ISO 9000-3, pub-
lished in 1995 by Spriner-Verlag, Inroads to
Software Quality, published in 1997 by
Prentice Hall, and Dare To Be Excellent,
published by Prentice Hall in December
1998. Jarvis is a Registration Accreditation
Board-certified quality systems lead auditor
(ISO 9000) and a certified quality analyst.
She has 19 years of experience in software
development, eight years of which have
been in total quality management. Her
background consists of management of
large systems — development processes,
quality control, specification reviews, man-
agement of the testing process for large
companies, and teaching. She has been a
frequent speaker on quality-assurance issues
at international and domestic events and
has worked in the quality management field
in a variety of capacities at Cisco Systems,

Bank of America, Pacific Gas & Electric,
Pacific Bell, Charles Schwab, and Apple
Computers Inc. She serves as an instructor
for University of California at Berkeley,
Extension and University of California at
Santa Cruz, Extension. She also is an adjunct
professor at Santa Clara University in the
field of quality and software engineering.

CISCO Systems
360 Everett Ave., Suite 1A
Palo Alto, Calif. 94391
Voice: 408-325-2758
Fax: 408-527-7995
E-mail: ajarvis@cisco.com

Dr. Vern J. Crandall,
president of Vern J.
Crandall & Associates
Inc., just completed
serving as vice president
of Digital Technology
International of
Springville, Utah. He

received his doctorate degree at the
University of Washington. For 25 years, he
was professor of computer science at
Brigham Young University, Provo, Utah.
During this time, he wrote the first soft-
ware engineering curriculum for BYU and
also for IBM technical education. He has
consulted with Hewlett-Packard, IBM,
Microsoft, Corel WordPerfect, Novell,
Pacific Bell, UNISYS, and approximately
45 other companies in the computer indus-
try. He pioneered the first software testing
course ever taught in a university and has
given keynote addresses at major confer-
ences in the areas of software engineering,
comparative methodologies, enterprise-wide
information management, getting software
products to market, software testing, and
software quality assurance. He also served
as vice president of software development at
Novell, and on the senior staff in the soft-
ware engineering group at SunSoft, a divi-
sion of Sun Microsystems.

Vern J. Crandall & Associates Inc.
3549 N. University Ave., Suite 200
Provo, Utah 84604-4417
Voice: 801-375-1415
Fax: 801-375-2295
E-mail: v_crandall@sprynet.com

Cindy Snow, an engi-
neering manager at
Intel Corp., in
American Fork, Utah,
has a background in
aerospace and acade-
mia. She worked on
Naval submarines and

Marine radar systems at Hughes Aircraft in
Fullerton. She taught in the mathematics
department at Boise State University, Idaho
and in both the mathematics and computer
science departments at Brigham Young
University for more than 10 years. Her
teaching emphasis has been in the area of
operating systems. Drawing on develop-
ment experience with a variety of method-
ologies from Waterfall to Rapid Application
Development (RAD), she also taught soft-
ware life cycle classes at the university level.
She has designed and managed production
of multiple expert systems, including a
medical diagnosis expert system, and a
comprehensive on-line class scheduler for
university students. Recently, Snow man-
aged software product development at a
consulting company using a 4GL while
helping to design and implement an appli-
cable RAD life cycle. She continues to
study in the field of software product deliv-
ery to enhance the quality of, and reduce
development time for, software products.

INTEL Corp.
734 E. Utah Valley Dr., Suite 300
American Fork, Utah 84003
Voice: 801-763-2274
Fax: 801-763-2895
E-mail: cindy.l.snow@intel.com

References
1. Jarvis, Alka, and Vern Crandall,

Inroads to Software Quality: A “How To”
Guide with Toolkit, Prentice-Hall,
New York, 1997.

2. Crandall, Vern J, Computer Science
427: Software Design and
Implementation, Lecture Notes,
Alexander’s Print Shop, Provo, Utah.
1984.

3. Parnas, D L, “On the Criteria to be
Used in Decomposing Systems into
Modules,” Communications of the
ACM, December 1972, pp. 1053-
1058.

4. Stevens, Wayne, Larry Constantine,
and Glenford Myers. “Structured
Design,” IBM Systems Journal, Vol. 13,
No. 2, pp. 115-139.

5. Dijkstra, Edsgar, “Go To Statement
Considered Harmful,” Communications
of the ACM, Vol. 11, No. 3, pp. 147-
178.

6. Myers Glenford, Software Reliability
Principles and Practices, John Wiley &
Sons, New York. 1976.

7. Myers, Glenford, Composite/Structured
Design, Van Nostrand-Reinhold, New
York. 1978.

8. Myers, Glenford, Reliable Software
Through Composite Design, Van
Nostrand-Reinhold, New York, 1979.

9. Peters, Lawrence, Advanced Structured
Analysis and Design, Prentice-Hall,
Englewood Cliffs, N.J. 1987.

10. Böhm, C., and G. Jacopini, “Flow
Diagrams, Turing Machines and
Languages with Only Two Formation
Rules.” Communications of the ACM,
Vol. 9, No. 5, pp. 366-371.

11. Linger, R. C., H. D. Mills, and B. I.
Witt, Structured Programming: Theory
and Practice, Addison-Wesley, Reading,
Mass. 1979.

September 1999 CROSSTALK The Journal of Defense Software Engineering 27

Who is to Blame for the Y2K and Similar Bugs

28 CROSSTALK The Journal of Defense Software Engineering September 1999

Ring… Ring…
Contractor Point of Contact (CPOC): Hello?
SCE Team Leader (STL): Hello. This is [name] with the [gov-
ernment agency]. Did you receive our e-mail stating that we are
intending to perform a SCE on your organization within the
next six weeks?
CPOC: Yes. But I was a bit surprised by it.
STL prepares for Denial No. 1.
STL: Why were you surprised?
CPOC: We do not do software development in our organiza-
tion.
Denial No. 1 confirmed.
STL: Hmmm. Curious. We were under the impression that you
are doing software development, so maybe there is a mistake
some place. Would you please tell me, at a very high level, how
you view the type of work you are doing for us?
CPOC: Well, mostly we design database schemas, develop and
debug Structured Queries Language queries, build interactive
Web sites using Java, JavaScript, and CGL, integrate all that
with most of the leading commercial-off-the-shelf database
tools, and, of course, we do exhaustive testing and code modifi-
cation.
STL: I see. And you do not consider any of this to be software
development?
CPOC: Nope. No software development. None at all. Not even
the littlest bit.
STL: And the other projects in your organization? Are they
doing software development?
CPOC: Definitely not! The other projects are building virtual
classrooms. These are completely interactive, totally customiz-
able, entirely user-sensitive neutral network systems driven by
state-of-the-art knowledge bases and enhanced by genetic algo-
rithms.
STL: But you do not consider this to be software development?
CPOC: Oh no, absolutely not!
STL: Well, as I am sure you are aware, our contract with you
requires you to be a Level 3 software development organization.
You are about 30 seconds from convincing me that you do not
do any software development and, hence, are clearly not a soft-
ware development organization. Is this what you are saying?
CPOC: Arrrraaaggghhhh!
STL: I’m sorry, what was that?
CPOC: Acckkkkkkkkkkk!

STL: Do you need to get a glass of water or something? I’ll
hold…
CPOC: (cough, cough) Aaaghh. Actually, I guess you could say
that some of our work is software development.
Contractor successfully moves beyond Denial No. 1.
STL: Very well. What is the best date for us to perform this
SCE?
CPOC: Actually, a SCE really isn’t necessary.
STL prepares for Denial No. 2.
STL: Would you please elaborate?
CPOC: Sure. Even though we do software development, we are
subject to highly unusual circumstances and, hence, we deserve
a waiver.
Denial No. 2 confirmed.
STL: I see. What are these circumstances?
CPOC: Our work is unique. No one on the planet does any-
thing like what we do. The software Capability Maturity Model
really does not apply to us.
STL: We typically find that all projects are unique.
CPOC: But we are very, very, very unique!
STL: You certainly sound unique. This is good, because we are
quite used to evaluating unique projects. So, this really won’t be
a problem. Unless, of course, you are so unique that you have
found a way to reliably develop complex software systems with-
out using project plans, without managing requirements or con-
figurations, without ensuring quality, and without tracking
actual progress.
CPOC: From that perspective I suppose that just maybe we are
not all that unique.
Contractor successfully moves beyond Denial No. 2.
STL: Very well. So when can we schedule the SCE?
CPOC: There is another little problem we have to discuss first.
STL prepares for Denial No. 3.
STL: Yes?
CPOC: It is going to cost us a lot of money to prepare for the
SCE and I’m wondering if I can just send the invoice directly to
you. It should be for somewhat less than a million dollars, I
think. I will have to work the numbers a bit to know for sure.
Denial No. 3 confirmed.
STL: We always advise that you do not take any special steps to
prepare for the SCE. Generally, we are only interested in look-
ing at documentation and evidence that already exists, and ask-
ing people about what they are currently doing. Very little

The Five Stages of Denial

Dr. Richard Bechtold
Abridge Technology

It is probably safe to say that most contractors are not especially fond of software capability evalu-
ations (SCEs). Anyone who performs SCEs eventually verifies this. It can easily result from watching a
contractor go through the five stages of denial.

In lieu of providing a pedantic explanation of the denial process, the following fictional, if slight-
ly exaggerated, telephone conversation is used to illustrate the five stages a contractor typically goes
through while you attempt to schedule him or her for a SCE, and while the contractor attempts to con-
vince you that, somehow or another, you really have dialed a wrong number…

September 1999 CROSSTALK The Journal of Defense Software Engineering 29

preparation is necessary. Unless, of course, you are telling me
that you have a lot of documentation to create.
CPOC: Oh no! I’m not saying that.
STL: Is it the evidence then? Is that what you need to create?
CPOC: No, no, of course not!
STL: That is good to hear. How about if we do everything we
can to minimize your costs associated with this SCE, and you
do the same?
CPOC: I guess that will probably work.
Contractor successfully moves beyond Denial No. 3.
STL: So when can we schedule the SCE?
CPOC: That depends.
STL prepares for Denial No. 4.
STL: On what?
CPOC: The SCE is going to completely disrupt all our man-
agement and project personnel, so we will need to slip our criti-
cal milestones, deadlines, and delivery dates.
Denial No. 4 confirmed.
STL: By how much?
CPOC: I’m just kind of estimating, but I think two years ought
to do it.
STL: But the entire on-site period only lasts a week.
CPOC: I know. But no one has a moment of spare time.
Everyone is already working massive overtime. They work 167
hours per week, then take an hour for lunch. Junior people skip
their lunch and try for an hour’s sleep. The schedule is really
quite tight.
STL: And this is how you planned it?
CPOC: Well, no, we did not plan for it to be this way.
STL: The project is not occurring according to plan? Is this
because the project is subject to some type of massive unrecov-
erable problem that you would like to tell me about?
CPOC: Oh, no! No problem at all. It’s just, uh, we’ve got a lot
of really enthusiastic project personnel who love their work.
Yes, that is it! Teamwork! High morale! They cannot stand to
leave their cubicles!
STL: But you think that they will be able to find 45 minutes
where they can come to an interview?
CPOC: Probably. I guess. But it is really hard to pry them away

from software development. I mean nonsoftware development. I
mean software nondevelopment. Anyway, did I mention how
high morale is?
Contractor successfully moves beyond Denial No. 4. Barely.
STL: Yes, you did. Do you have any preferences as to when we
can schedule the SCE?
CPOC: Sure, let me check the calendar.
STL prepares for Denial No. 5.
STL: How does the calendar look?
CPOC: You are not going to believe this.
STL: Trust me, we have heard it all before.
CPOC: Well, it looks like the earliest possible window where
we can do this is the month immediately after my retirement.
STL: And that will be?
CPOC: Hard to say. I’m only 22.
Denial No. 5 confirmed. ◆◆

About the Author
Dr. Richard Bechtold is president of Abridge
Technology and an independent consultant
who supports industry and government in the
analysis, design, development, and deployment
of improved software management, engineer-
ing, acquisition, and risk-reduction processes.
He has more than two decades of experience in
the software industry and holds a doctorate

degree from George Mason University, where he also is an adjunct
professor teaching software project management and process
improvement. He has written more than two dozen works relating
to software project management, software process improvement,
risk management, and related topics. His latest book, Essentials of
Software Project Management, was published this summer.
(Management Concepts Inc.)

42786 Oatyer Court
Ashburn,Va. 20148
Voice: 703-729-6085
Fax: 703-729-3953
E-mail: rbechtold@mindspring.com

The Five Stages of Denial

30 CROSSTALK The Journal of Defense Software Engineering September 1999

The 12th Annual Software
Technology Conference promises to be
the most exciting software technology
conference for the Department of
Defense yet.

Presentations will be given in concur-
rent tracks occurring Monday, May 1
through Thursday, May 4, 2000 in areas
relating to the many aspects of software
and systems technology and support. The
program will include tutorials, presenta-
tions, exhibits, and “birds-of-a-feather”
sessions. The general sessions will provide
attendees an excellent opportunity to hear
leaders in the fields of management infor-
mation systems, command and control,
and embedded computers espouse their
vision for software and systems technolo-
gy.

The STC is particularly looking for
speakers who can share findings and les-
sons learned in applying the technologies
related to our theme for STC 2000:
“Software and Systems — Managing
Risk, Complexity, Compatibility, and
Change.”

Abstracts must be submitted no later
than September 17, 1999 to be consid-
ered. Three ways of submitting abstracts*
listed in order of preference, are:

1. Complete the web-based form at
http://www.stc-online.org

2. Send an e-mail request for an
electronic form to stcabstracts@
ext.usu.edu; complete the electronic
form and e-mail to abstract_
submit@ext.usu.edu

3. Complete the submittal form in the
brochure, include a one-page abstract
on disk, and mail to the Utah State
University address in that section of
the brochure.

*Please note: Abstracts submitted for the
intelligence track should follow the spe-
cific instructions in that section of the
abstract submittal brochure.

If you have any problems submitting
your abstract, please call 435-797-0046
or e-mail stcabstract@ext.usu.edu with
your questions.

We will acknowledge receipt of all
complete abstract submittals via e-mail
with a short message to the sender.

Only one-page submittals will be
reviewed. Please be sure to maximize your
one-page abstract with concise, clear, and
complete information. Highlight how
this presentation would benefit the con-
ference attendees. Abstracts should
emphasize processes, methods, tools, and
technologies, and not the marketing of
specific products, books, or services.
Technologies that have been used in the
operational field are preferred. Abstracts
of interest to the joint services are impor-
tant.

Please remember to allow sufficient
time for approval from the necessary
authorities in order to meet the deadline,
as late abstracts will not be considered.

Abstracts can be submitted in the
following categories:

• Capability Maturity — Models,
Assessments, Evaluations

• Collaborative Engineering
• Configuration Management
• Data Management/Sharing
• DII COE
• Distributed Computing
• Education and Training
• Electronic Commerce
• Embedded Software
• Emerging Technologies
• Information Assurance
• Intelligence
• Internet/Intranet
• Interoperability
• Knowledge Management
• Measurement
• Modeling and Simulation
• Network Centric Systems
• OO Technology and Languages
• Open Systems and Architectures
• Outsourcing and Privatization
• Process Improvement
• Project Management
• Quality Assurance
• Re-engineering

• Risk Management
• Simulation Based Acquisition
• Software Acquisition
• Software Architecture
• Software Estimation
• Software Implementation
• Software Testing
• System Requirements
• Total Ownership Cost

If you know of anyone who would be
a potential speaker for the conference,
please share this information with him or
her. They can obtain a Speaker Abstract
Submittal Package by connecting to the
http://www.stc-online.org Web site.

New exhibitors will find background
information on this conference, its histo-
ry, and attendance statistics helpful in
planning for the conference. This infor-
mation may be accessed at our Web site,
http://www.stc-online.org.

To assist exhibitors in selecting booth
locations, an updated exhibit hall layout
— including assignments and organiza-
tions registered to date — will be main-
tained on the internet.

Reservations for exhibit space may be
made by mail or fax only. Applications will
be date- and time-stamped upon receipt.
Faxed registrations will be accepted 24
hours daily. Courier deliveries will be
accepted from 8 a.m. to 5 p.m. MT,
Monday through Friday, excluding holi-
days. Postal delivery occurs at approximate-
ly 10 a.m., Monday through Friday,
excluding holidays.

We welcome your participation! Please
call us with any questions you may have.

Dana Dovenbarger
STC 2000 Conference Manager

OO-ALC/TISEA
7278 4th Street

Hill AFB, Utah 84056-5205
Phone: 801-777-7411 DSN 777-7411

Fax: 801-775-4932 DSN 775-4932
E-mail: Dana.Dovenbarger@hill.af.mil

Call for Speakers and Exhibitors for the 12th Annual

Software Technology Conference (STC)
“Software and Systems — Managing Risk, Complexity, Compatibility, and Change”

April 30 - May 4, 2000 — Salt Lake City, Utah

Lt. Col. Joe Jarzombek

Reuel S.Alder

Tracy Stauder

Kathy Gurchiek

Heather L. King

Heather Winward

801-775-5555 DSN 775-5555
801-777-8069 DSN 777-8069
crosstalk@stsc1.hill.af.mil
http://www.stsc.hill.af.mil
http://www.stsc.hill.af.mil/
Crosstalk/crostalk.html
http://www.esip.hill.af.mil

Subscriptions: Send correspondence concerning subscrip-
tions and changes of address to the following address:

Ogden ALC/TISE
7278 Fourth Street
Hill AFB, Utah 84056-5205
E-mail: custserv@software.hill.af.mil
Voice: 801-775-5555
Fax: 801-777-8069 DSN 777-8069

Editorial Matters: Correspondence concerning Letters to
the Editor or other editorial matters should be sent to the
same address listed above to the attention of CROSSTALK Editor.

Article Submissions: We welcome articles of interest to the
defense software community.Articles must be approved by the
CROSSTALK editorial board prior to publication. Please follow the
Guidelines for CROSSTALK Authors, available upon request.We do not
pay for submissions. Articles published in CROSSTALK remain the
property of the authors and may be submitted to other publica-
tions.

Reprints and Permissions: Requests for reprints must be
requested from the author or the copyright holder. Please
coordinate your request with CROSSTALK.

Trademarks and Endorsements: This DoD journal is an
authorized publication for members of the Department of
Defense. Contents of CROSSTALK are not necessarily the official
views of, or endorsed by, the government, the Department of
Defense, or the Software Technology Support Center. All
product names referenced in this issue are trademarks of
their companies.

Coming Events:We often list conferences, seminars, sympo-
siums, etc., that are of interest to our readers.There is no fee
for this service, but we must receive the information at least
90 days before registration. Send an announcement to the
CROSSTALK Editorial Department.

STSC Online Services: This can be reached on the Internet.
World Wide Web access is at http://www.stsc.hill.af.mil.
Call 801-777-7026 or DSN 777-7026 for assistance, or e-mail
to schreifr@software.hill.af.mil.

Back Issues Available:The STSC sometimes has extra copies
of back issues of CROSSTALK available free of charge. If you
would like a copy of the printed edition of this or another
issue of CROSSTALK, or would like to subscribe, please contact
the customer service address listed above.

The Software Technology Support Center was established
at Ogden Air Logistics Center (AFMC) by Headquarters U.S.
Air Force to help Air Force software organizations identify,
evaluate, and adopt technologies that will improve the quality
of their software products, their efficiency in producing them,
and their ability to accurately predict the cost and schedule of
their delivery. CROSSTALK is assembled, printed, and distributed
by the Defense Automated Printing Service, Hill AFB, Utah
84056. CROSSTALK is distributed without charge to individuals
actively involved in the defense software development
process.

What attracted you to software engineering as a profession? Money, fame,
toys, independence, intellectual challenges?

What did you find? Unrealistic deadlines, clueless leaders, long pointless
meetings, carpal-tunnel syndrome, cut-throat colleagues, life as a social outcast?

What profession adopts Dilbert as its poster boy? Why do we passionately
defend our profession as an engineering discipline and then genuflect to cowboys,
hackers, Bill Gates, and a cartoon character with no life and a bent tie?

I recently participated in a brainstorming session to determine the best soft-
ware innovation of the 20th century. Three out of four answers were actually
hardware innovations. What profession prides itself in its innovation and then
articulates that innovation in terms of another profession?

What profession wants its lasting legacy to be Y2K?
Are we crazy? Ken Kesey’s novel One Flew Over the Cuckoo’s Nest may give us

a parallel. Through the Big Chief ’s eyes we gain an interesting perspective on con-
formity and the dangers of being socially pigeonholed. A cast of crazy characters,
as sane as you and I, choose to exist within the confines of insanity. For a moment
Jack P. McMurphy exposes them to freedom, choice, and life outside. In a shock-
ing end McMurphy dies; Taber, Harding, Ellis, and Martini return to the com-
forts of conformity; and Chief flies the coop.

Software engineers follow an eerily similar path, caught in a struggle between the
software we must tame and the monsters we have created to do so. We are no more
insane than our neighbors; however, thanks to Dilbert, Y2K, and our inability to meet
any schedule or budget, we appear to reside, rather than work, in the asylum. What is
most disturbing is that like Taber, Harding, Ellis, and Martini, we seem not to care. In
fact, we revel in such images. If you question that, take a stroll around a software engi-
neering conference. It’s not so much about dress as it is attitude. We want to be
respected, but only on our terms. We have set a dangerous professional precedence.

In Introduction to Psychology, 8th Edition, Stanford researcher David Rosenhan
and 10 colleagues were admitted to a psychiatric hospital by pretending to hear
voices. After their admission they acted completely normal. The staff was not sus-
picious. The pseudo-patients were seen by the staff in the context of a mental ward
and labeled schizophrenic. Anything they did was viewed as part of their illness.
When they came clean and explained they were faking and not crazy, staff mem-
bers diagnosed them with paranoid delusions.

Resembling Rosenhan’s group, software engineers have admitted themselves
into the cubical asylum. In doing so we have pigeonholed our profession into a
category that does not necessarily lead to our professional hopes or dreams.
Money, respect, and responsibility seem rather scarce while deadlines, clueless
leaders, meetings, and tedium are in abundance. We want out, but our appeals,
like Rosenhan’s, fall on deaf ears. Owners, managers, and customers alike ask how
long we have been having these delusions.

Gates, Steve Jobs, and Larry Ellison have exceeded their dreams. But they do not
engineer software, they make money off of software engineers. Their true talent and
success is in business, not software engineering.

We have a choice for our profession. We can bite the dust like McMurphy,
settle for the comforts of conformity, or throw the water fountain out the window
and create a profession that earns respect, responsibility, and rewards.

The echoes from the playground are faint but they grow stronger — Wier
blier limber lock, three geese in a flock, one flew east, one flew west, and one flew over
the cuckoo’s nest. O. U. T. spells out!

Wake up Chief! It’s time to fly.
— Gary Petersen, TRI-COR Industries

September 1999 CROSSTALK The Journal of Defense Software Engineering 31

One Flew Over the Cuckoo’s Cubical

Got an idea for BACKTALK? Send an e-mail to backtalk@stsc1.hill.af.mil

SPONSOR

PUBLISHER

ASSOCIATE
PUBLISHER

MANAGING
EDITOR

ASSOCIATE
EDITOR/LAYOUT

ASSOCIATE
EDITOR/FEATURES

VOICE

FAX

E-MAIL

STSC ONLINE

CROSSTALK ONLINE

ESIP ONLINE

BackTALK

Introduction to the Defense Information Infrastructure (DII)
Common Operating Environment (COE)

A foundation for building interoperable command and control systems.

Extending the DII COE for Real-Time
Using DII COE to improve the effectiveness of systems performing real-time C2 missions.

Overview of the DII COE 4.0 Kernel
An abstract on the overview of the DII COE 4.0 kernel changes.

CROSSTALK

Ogden ALC/TISE
7278 Fourth Street
Hill AFB, UT 84056-5205

BULK RATE
US POSTAGE PAID

Permit No. 481
Cedarburg,WI

COE

Pamela Engbert 4
Julie Surer

DII

2 From the Publisher: The Stratigic Battlefield
3 Coming Events

5 DII COE Web Information Resources
22 Call for Articles

31 BackTALK: One Flew Over the Cuckoo’s Cubical

Letter to the Editor 2
CrossTalk Poll 3
DACS Tech Report 17
STC Call for Speakers 30

AnnouncementsDepartments and

TechnologySoftware Engineering

Edward A.Addy 14

Dr.William H. Dashiell 18

Performing Verification and Validation in Architecture-Based
Software Engineering

Extending V&V from an individual application system to a product line of systems.

A Y2K Integration Test Model
A basic year 2000 test model with lessons learned.

ForumOpen

Alka Jarvis 23
Dr.Vern J. Crandall
Cindy Snow

Dr. Richard Bechtold 28

Who is to Blame for the Y2K and Similar Bugs?
Lack of quality controls in the design and coding stages has led to many of today’s software problems.

The Five Stages of Denial
A fictional acount of a contractor trying to avoid a software capability evaluation.

Lt. Col. Lucie M.J. Robillard 6
Dr. H. Rebecca Callison
John Maurer

Sherrie Chubin 13
Dr.Thomas I. McVittie
Robert B. Miller

