
The Journal of Defense Software Engineering

Sponsored by the
Embedded Computer

Resources Support
Improvement Program

(ESIP)

December 1999
Volume 12 Number 12

Published by the
Software Technology Support Center

The

EEVVOOLLUUTTIIOONN
of Software

Special Issue:

Endless Possibilities

Reuel Alder
Software Technology Support Center

We started the 20th century heavily com-
mitted to the industrial revolution. We
employed machines to augment our physical
abilities, lifting the burden of manual labor
from our shoulders. This allowed us more
time to reflect upon the state of existence.
Who could have predicted that our thoughts
and desires, backed by generations of condi-

tioning, would prompt the consumption of massive resources to
build bigger, better, and shinier possessions. Our great-great-
grandparents raised 14 children in a one-room log cabin. We
raise one or two in a palace that rivals that of the kings of
medieval Europe. This affluence was made possible by the
industrial revolution, but it pales in comparison to the informa-
tion revolution that we are immersed in now.

In the information revolution, we have learned to add arti-
ficial intelligence to the machines we create. The F-16, B2, and
other systems cannot function without the aid of computers.
They hold the distilled human knowledge of pilots, engineers,
programmers, and others who have created software to antici-
pate and react to every conceivable situation. Software controls
our cars, microwaves, televisions, phones, and washing
machines. We fantasize of a day when computers will become
self-aware like Data on the Starship Enterprise.

The information revolution is dependent upon computer
systems with the capacity to store, retrieve, and analyze massive
amounts of data and information. Computer systems are con-

trolled by software created by humans using a higher order lan-
guage to communicate their instructions to the computer. In
this issue of CrossTalk, Dr. David Cook discusses the evolution
of computer languages and how they have evolved to capture
our ideas (page 7).

Ultimately, all computer languages must be broken down
into patterns of ones and zeroes for the computer to execute
them. In the computer world, a defective pattern of ones and
zeros will lead to a programming error, such as the slowly
degrading capability of the Patriot missiles during the Gulf War
(described by Lt. Col. Scott Dufaud and Lynn Robert Carter in
their article on page 14). Similarly, in the biological world,
DNA stores our genetic makeup in a specific pattern that
defines how our bodies function. One pattern out of place may
communicate the wrong biological information, making our
bodies susceptible to a number of diseases. Recent advances in
genetic research, facilitated by computer software programs,
have enabled the permanent repair of genetic imperfections in
animals.

What does this mean to computer professionals? Are the
lines between engineer, programmer, and geneticist becoming
blurred? With advancements in software technology, the future
of programming will conceivably extend beyond complex hard-
ware and software to human design. The possibilities are endless.

Join us as we devote the last CrossTalk issue of the 20th cen-
tury to the Evolution of Software and explore the past, present,
and future of software engineering. ◆

2 CROSSTALK The Journal of Defense Software Engineering December 1999

From the Publisher

See You in the Next Century

CrossTalk is pleased to bring this special issue to
readers on the eve of a new century. Staff mem-
bers, from left to right, are Kathy Gurchiek,
Managing Editor; Heather King, Associate
Editor/Layout; back row : Rudy Alder, Publisher;
Heather Winward, Associate Editor/Features; and
Tracy Stauder, Associate Publisher.

December 1999 CROSSTALK The Journal of Defense Software Engineering 3

On the cover: Cover artist Anthony Peters has worked as a professional artist since he graduated from the University of Utah in 1995.
His work has appeared in movies, books, web sites, multimedia CDs, and television commercials. His most recent ventures include
3-D graphics and computer animation. He is a full-time artist for L-3 Communications. Anthony lives in Layton, Utah.

Nature abhors a vacuum, thus it
comes as no surprise when an individual
supplies his or her own guesses and
assumptions to fill in factual gaps. Such
apparently happened to the author of the
Letter to the Editor in the September
1999 CrossTalk. As a principal participant
in the Thrift Savings Plan Division’s
(TSPD) Software Process Improvement
(SPI) effort at the USDA’s National
Finance Center, I would like to address the
inferences drawn by that [letter writer].

First, a brief background. The TSPD
develops and maintains the Thrift Savings
Plan software for the Federal Retirement
Thrift Investment Board under a fee-for-
all-service agreement. SPI was initiated
and funded by the customer in the inter-
est of the program’s million-plus partici-
pants. The customer, not the software
engineers, established the immediate goal
of Capability Maturity Model® Level 2,
with substantial progress toward Level 3
by October 1998. The customer is also
backing continued process improvement.
On reflection, though, the author of the
[letter] might surmise the difficulty of
preventing Level 2 from becoming the
primary focus of engineers whose jobs
were riding on the Software Capability
Evaluation (SCE) results.

The division’s initial assessment was
via the Capability Maturity Model-Based
Appraisal for Internal Process
Improvement (CBA-IPI) method in
August 1995. Subsequent assessments
were via the SCE. The SCEs were
extremely rigorous (more so than a typi-
cal CBA-IPI), and were led by the princi-
pal author of the SCE method, Paul
Byrnes. The [letter] neither stated nor
implied that the first assessment occurred
10 months prior to the successful assess-
ment. In fact, it states that, “…efforts
began in earnest in November 1997 with

the organization and rollout of several
key processes.” Prior to that date, there
was a lot of motion, very little progress.
The Software Engineering Process Group
(SEPG) spent two years in attempts to
build real management commitment,
involvement, and direction. When they
obtained it, with assistance from the
Software Technology Support Center, the
real improvements began. The real
improvement journey to Level 2 took
place in 10 months.

I have been involved in SPI for some
five years now—successfully. I have had
many opportunities to discuss elements
of success and failure with many organi-
zations conducting SPI activities. I have
found job insecurity to be perhaps one of
the primary motivators of engineers to
adopt and practice process improvements.
They and their managers tend to recog-
nize SPI as nice in a perfect world, but
are usually too deep in firefighting to
spare time for fire prevention. I have
found that most of the successful organi-
zations I have talked to had to hit some
type of significant low point before SPI
really took hold. In a perfect world, we
would all embrace SPI for the right rea-
sons, but I have not seen that as the most
common motivator for initial SPI. On
the other hand, we saw and appreciated
real improvements in quality derived
from implementing basic project manage-
ment. Are they invalidated by initially
misplaced motivation?

A primary lesson learned through
findings of an interim SCE, in which we
failed to satisfy the verification common
feature of all the Level 2 Key Process
Areas, was that it would behoove an
improvement organization to develop
Software Quality Assurance (SQA) first.
The SQA process can be developed in the
absence of other software processes. As

other new processes come on line, they
simply become inputs to SQA. The
Capability Maturity Model makes a clear
distinction between quality control
(inspection of the product as it rolls off
the line), and quality assurance (review
and inspection for fidelity to the process,
procedures, and standards). Product quali-
ty remained the responsibility of the proj-
ect team; SQA ensured that quality activi-
ties were planned into the projects and
conducted as planned. In the latest SCE
in September, the assessors had high
praise for the SQA effort, finding it proac-
tive, observed through the life cycle, and
respected by practitioners to the degree
that SQA personnel were sought out for
consulting throughout the project.

A second lesson learned via interim
SCEs: it would be difficult to “game” an
assessment. To know enough to present a
consistent picture of the software process-
es and practices, and to be able to back
assertions of institutionalization with arti-
facts, managers and practitioners have to
be practicing the improvements. Each
member of the software organization has
to know his or her roles on the project as
well as being familiar with the roles of
others. To go to the lengths it would take
to achieve that result, and not implement
and institutionalize the practices, would
be monumentally absurd.

—Linda Giffen,
SEPG Leader,

USDA National Finance Center

Chuck Stenzrude,
SQA Leader,

USDA National Finance Center

Letter to the Editor

Capability Maturity Model and CMM are regis-
tered in the U.S. Patent and Trademark Office.

Level 2 Achievement

CROSSTALK: What kind of advancements have you seen in the
Air Force since you entered it in 1968?

LYLES: Technology has rampantly exploded in almost every mis-
sion area for the United States Air Force, and for the
Department of Defense in general. Software and software-inten-
sive systems and computer-based systems have been part of the
backbone for that growth. Everything we do today is dependent
on microprocessors. To some extent software has become the
glue that holds everything together. We are totally dependent on
good, mature, viable, testable software and I do not think peo-
ple really appreciate how much software has become the back-
bone of everything that we are doing.

One of the difficulties we have in software management is
we tend to treat it as somewhat ethereal because it is something
you do not see. We
have some basic
management tech-
niques we use for
hardware systems,
and we forget that
sometimes when it
comes to software, people do not know how to treat it, they do
not understand it. In terms of managing it, we almost have to
treat it the same as hardware systems. The fact that it is not visi-
ble is sort of a blessing but it also is a curse.

CROSSTALK: One of your goals is to enhance the Air and Space
integration in the Air Force. How large a role will software play?

LYLES: Tremendous. When we talk Air and Space or aerospace,
and the integration of air and space missions and systems and

capabilities, the space realm is the one that probably is more
dependent on good software and processing than anything else
we do. Since we do not normally have the opportunity—as with
space shuttle programs or space shuttle satellites—to operate a
man in space, we are dependent on automated systems. Those
systems have decision processes or decision processors, and vari-
ous other computing processors, all of which have the basic
software language that makes them operate. As we grow more
and more in our space capabilities, dependence on software is
going to grow exponentially.

CROSSTALK: If you had a crystal ball and looked ahead at soft-
ware and your goals, is there anything specific that you see?

LYLES: Two things. One: software development. Two: Use of
processing systems.

All the different
mission areas are
going to get more
complex in the
future. We are
going to be

dependent more on automated systems. Unmanned aerial vehi-
cles, unmanned aerial combat vehicles, seem to be growing sig-
nificantly in today’s age. We are going to be depending even
more so on them and without having a man in the loop, rapid
processing systems and capabilities are going to be almost
mandatory to actually make those things perform properly.
Software will be extremely important to make sure we can get
them to do what we want them to do on a reliable basis.

I wish that somehow we could break the code in terms of
how to manage software development. Before I took over as a

4 CROSSTALK The Journal of Defense Software Engineering December 1999

Policy and Management

Up Close with General Lester L. Lyles
Kathy Gurchiek

CrossTalk Managing Editor

CrossTalk recently caught up with Gen. Lester L. Lyles, Vice Chief of Staff, Headquarters, for the Air
Force in Washington D.C. The general talked about the role software has played in the Air Force, and his
plans to leverage off of software technology advancements in the new millennium.

Lyles entered the military in 1968 as a distinguished graduate of the Air Force Reserve Officer Training
Corps program. He received his master of science degree in mechanical and nuclear engineering in 1969
from the Air Force Institute of Technology Program, New Mexico State University. He also is a graduate
of the Defense Systems Management College, the Armed Forces Staff College, the National War College,
and the National and International Security Management Course at Harvard.

His various assignments include program element monitor of the Short-Range Attack Missile in 1974,
and special assistant and aide-de-camp to the commander of Air Force Systems Command in 1978. In
1981 he was assigned to Wright-Patterson AFB in Ohio as Avionics Division Chief in the F-16 Systems
Program Office. He served as director of tactical aircraft systems and director of the Medium-Launch
Vehicles Program and space-launch systems office. In 1992 he became vice commander of Ogden Air
Logistics Center, Hill AFB in Utah, where he served until 1994. He commanded the Space and Missile

Systems Center at Los Angeles AFB until 1996 and became the director of the Ballistic Missile Defense Organization in 1996. He was
promoted to his current position in July.

The biggest challenge of some of the contractors that we have
dealt with was software development and keeping good

software programmers.

Vice-Chief, I led the Department of Defense’s ballistic missile
defense system program—often referred to as the old Star Wars
program. I cannot tell you how many of our programs were
hindered, delayed, over-cost, and way over schedule primarily
because of poor software management, poor software develop-
ment. Contractors always misestimated what it took to develop
software.

I have no idea—with all the advances we have made in the
last two years—why
we cannot figure
out exactly how
many lines of code
you need to do
basic functions,
develop that capa-
bility, get it tested,
and then field it as
rapidly as we possi-
bly can. I daresay that if you were to do a trace of major prob-
lems behind most of our systems that we develop today, soft-
ware probably will come out—if not the top—very near the top
of the factors of why things cannot get done quickly.

CROSSTALK: Is it because programs are underestimated in terms
of the budget, and in terms of the time needed to complete the
project successfully?

LYLES: It is a poor estimation of how many lines of code and
how complex the lines of code need to be. And the amount of
time to develop those lines of code, get them into a system, get
them tested, get the bugs out, and be able to operate it.

Part of that problem for the United States Air Force, and I
daresay the entire Department of Defense, is that we are losing
software developers rapidly. The commercial industries, enter-
tainment industry, all the other industries out there [need soft-
ware developers] because more and more depend on process
capabilities also.

The biggest challenge of some of the contractors that we
have dealt with in the ballistic missile defense program, as an
example, was not the hardware development. It was software
development and keeping good software programmers. Some
companies like Lockheed Martin in Sunnyvale, Calif.—in the
heart of the Silicone Valley—had a difficult time keeping good
software developers, code developers, and anybody who could
test [software]. They were always being lured away by some new
start-up company or Internet company.

CROSSTALK: So how do you keep them?

LYLES: Probably the best solution for us in the Department of
Defense is to learn how to take advantage of commercial soft-
ware a lot more. We all talk about reuse of off-the-shelf soft-
ware, reuse of software that has already been developed for other
purposes. We talk about it, we give it lip service. I am not sure
how much we actually take advantage of it. I know we need to
do a lot better job in that regard because we just will not be able

to attract the kind of people we need to take on that very
important function.

CROSSTALK: What plans do you have to leverage off software
technology advancements as we enter the new millennium?

LYLES: We need to do a better job of leveraging commercial
software development — particularly code developers [and]

software engineers.
We are going to
have a difficult
time motivating
people just to come
on board to do mil-
itary-related or
defense-related
business. We have
to do a better job

of leveraging the technologies, leveraging the software capabili-
ties for commercial entities, and figure out how we can reuse it
for military defense applications. Or modify it slightly so it is
not a major redevelopment and recoding [effort] and still get
the job accomplished.

CROSSTALK: With today’s trend of outsourcing software acquisi-
tion, development, and maintenance functions to contractors,
what new roles do you see the 21st century United States Air
Force software engineer performing?

LYLES: Management—how to manage in an environment like
that. We are already beginning to experience it. I will use the
example of our old Star Wars program. We found that we could
not attract people to work on defense-related software develop-
ment programs with a major company, and it had to subcon-
tract its software development to smaller companies, smaller
entities in the Silicon Valley area. The company could not
afford to hire on and could not retain the software developers in
its own company. It had to subcontract that function to small
software development houses. That is a whole management
entity that is new to all of us—new to industry and new to the
Department of Defense. We know how to do it with hardware;
it is not unusual to have a major company like Lockheed
Martin or Pratt Whitney subcontract to a small vendor to do a
part of the development of a hardware piece and then integrate
that into a larger whole. We need to figure out how to do that
with software also, because we will not be able to depend on a
“Lockheed” or a “Boeing” to develop everything internally.
They are going to be subcontracting code developments to
smaller companies. We need to figure out how to manage that,
how to integrate that, to give us the capability we need.

CROSSTALK: How do you do something like that?

LYLES: I go back to my earlier comment that we tend to treat
software as being special—[keeping it] almost at arm’s length—
in part because people do not understand it. I think we need to

December 1999 CROSSTALK The Journal of Defense Software Engineering 5

Up Close with General Lester L. Lyles

The Secretary of the Army [Kenneth C. Royall], went to the
entertainment industry to ask it to help develop simulators—

training devices—for the things that we are doing or that he is doing
in the Army. The things that they are doing for games have a lot
better fidelity than some of the things we use to train our troops.

take a lesson learned from how we do hardware subcontracting
and how we manage that. We need to take the best of those
capabilities and apply them to software development.

CROSSTALK: How are you planning to use software to retrain
the troops?

LYLES: Software is a major part of all of the simulation modeling
and simulation systems that we are trying to expand to help us
in our education
and training activi-
ties. As our budgets
go down or stabi-
lize, we are finding
we are not able to
do as many things as we used to, like flying itself. Simulators are
becoming more and more important to us in everything we are
involved in. I think we are going to see an explosion in the
modeling and simulation industry. We have talked about it a lot
in the Department of Defense over the last couple of years. We
supposedly have some joint modeling and simulation activities
under way but they have not really taken hold yet. We will be
dependent more and more on modeling and simulation.

The Secretary of the Army [Kenneth C. Royall], went to
the entertainment industry to ask it to help develop simulators
—training devices—for the things that we are doing or that he
is doing in the Army. Going to the [Steven] Spielbergs, going to
[George] Lucas, going to those companies to try to take advan-

tage of that. The things that they are doing for games have a lot
better fidelity than some of the things we use to train our
troops. I love the idea that we are trying to tie-in to the enter-
tainment industry.

The fear is that some of these entertainment companies may
not want to help work defense-related programs, so the jury is
still out as to whether or not it is going to be successful. But if
you are focusing on training and simulation, maybe you would
not scare people away who do not want to be involved in war-

related activities.
One of the

things we are not
able to do, or can-
not do as much, is
fly complex mis-

sions [due to] budget, space training areas, and time. If we have
a complex mission today that involves several different airplanes
of several different types, it is very hard to get all those planes
together to train a mission. We are now trying to figure out
ways of doing sort of “distributive simulation” and have them
all tied-in with very complex software and computer systems so
that they, in real-time, can train with each other even though
they are all over the country.

We are doing more of that and you will probably hear a lot
more of that in the future. It might even become the way we do
most of our training. ◆

6 CROSSTALK The Journal of Defense Software Engineering December 1999

Policy and Management

Software is the language that makes all of that happen. It is really
a major part—sort of the unsung hero—of all the things we

do and all the missions we try to accomplish.

Best
• the concept of context-free grammars for compilers
• WYSIWYG [What You See Is What You Get]
• binary computer language and the microchip
• databases
• MS Word
• C++
• CD player in personal computers
• the computer
• Internet
• MS Windows
• television
• e-mail
• MULTICS (Multiplexed Information and Computing Service.

It is a mainframe timesharing operating system begun in
1965 and still in use today)

• computers for scuba diving
• machine code

W orst
• Internet
• C++
• e-mail
• World Wide Web
• the computer
• MULTICS (Multiplexed Information and Computing Service.

It is a mainframe timesharing operating system begun in
1965 and still in use today)

• MS Word
• MS Windows
• television
• ENABLE software program
• databases

What was the best and/or worst software
technology innovation of the 20th century?
In preparation for the new millennium, CrossTalk posed this question to its readers.

Here are their responses.

“As long as there were no machines, programming was
no problem at all; when we had a few weak comput-
ers, programming became a mild problem and now

that we have gigantic computers, programming has become an
equally gigantic problem. In this sense the electronic industry
has not solved a single problem, it has only created them — it
has created the problem of using its product” [1].

E.W. Dijkstra spoke these prophetic words almost 28 years
ago in his Turing Award lecture. At that time, the ‘gigantic com-
puters’ he spoke of probably had between 64 and 128 kilobytes
of real memory, and at best a few megabytes of direct access stor-
age devices. If he thought that the problem was gigantic then...

Generations
Most books and articles on the history of programming lan-
guages tend to discuss languages in terms of generations. This is
a useful arrangement for classifying languages by age. I agree
that whenever a few of we ‘more mature’ software engineers get
together, we cannot ever seem to agree on what constitutes the
generations of computer languages. We know that Formula
Translation (FORTRAN) was probably a first-generation lan-
guage. Does that make FORTRAN 77 and WatFor second-gen-
eration languages? Is the newest FORTRAN (FORTRAN 90)
third or fourth generation? How about Common Business-
Oriented Language (COBOL)? It has been around since 1959,
and yet COBOL 2000 will be an object-oriented (OO)
COBOL. Does this make it fourth generation or is it still first
generation? I have the feeling that an OO-COBOL is either the
eth or pth generation, or perhaps some other transcendental
number.

To prevent numerous readers from e-mailing me and telling
me that I do not understand the basic facts on the history of
programming languages, I will pass on this phase of the discus-
sion. There are numerous articles and books on the generations
of programming languages. For immediate gratification, refer-
ence Byte Magazine online for an article on “A Brief History of
Programming Languages” [2].

Data Abstraction and Topology
One of the keys to successful programming is the concept of

abstraction. Abstraction is the key to building complex software
systems. A good definition of abstraction comes from [3], and
can be summed up as concentrating on relevant aspects of the
problem and ignoring those that are not currently important.

The psychological notion of abstraction permits one to
concentrate on a problem at some level of generalization with-
out regard to irrelevant low-level details; use of abstraction also
permits one to work with concepts and terms that are familiar
in the problem environment without having to transform them
to an unfamiliar structure.

As the size of our problems grow, the need for abstraction
dramatically increases. In simple systems, characteristic of lan-
guages used in the 1950s and ’60s, a single programmer could
understand the entire problem, and therefore manipulate all
program and data structures. Programmers today are unable to
understand all of the programs and data — it is just too large.
Abstraction is required to allow the programmer to grasp neces-
sary concepts. To understand how abstraction works, it is help-
ful to show the topology or mapping of a language to the data
structures and program modules that the language provides.
Once we see the topology of early languages, we can better
understand the problems and solutions. The clearest comparison
between languages and their topology that I have discovered can
be found in [4]. The material on topologies of languages comes
from his book.

December 1999 CROSSTALK The Journal of Defense Software Engineering 7

Evolution of Software

Evolution of Programming Languages and Why
a Language is Not Enough to Solve Our Problems

David Cook
Software Technology Support Center

Over the last 50 years, programming languages have evolved from binary machine code to pow-
erful tools that create complex abstractions. It is important to understand why the languages have
evolved, and what capabilities the newer languages give us. This article reflects on the capabilities
and features of each generation of programming languages. It evaluates each language in terms of
the software engineering concept of abstraction from both a data and machine viewpoint, and
shows how more powerful languages can build higher-quality systems. The concept of the topology
of a language also is discussed, along with the inherent limitations of a programming language.

Data Program

Figure 1. The topology of assembly and machine languages.

Topology of Assembly and Machine Languages
Early languages (pre-FORTRAN and pre-COBOL) had little
distinction between programs and data (see Figure 1). The data
and program co-existed. Because the data and program often
were ill-defined, the boundary was irregular. It often was hard to
distinguish between data and code. If a true hacker needed to
use the number 62, and he or she knew that the Instruction
BGD (Bump and Grind Drum) was coded as a hex 4E —
which is equal to decimal 62 — the hacker would reference the
BGD instruction elsewhere in the program to refer to decimal
62. Sounds confusing? It was. To understand how difficult pro-
gramming and debugging could be with this topology, refer to
“The Story of Mel, a Real Programmer” in [5] under Appendix
A, “Hacker Folklore.” Without any abstractions, the programs
were complex, difficult to debug, and almost impossible to
modify. Some structure was needed.

Topology of Early Languages
The first programming languages widely used, such as the early
version of FORTRAN and COBOL, had a clear separation
between the data and the program. These languages had a glob-
al data structure, but permitted modularization of program
structure. Typically, there was only single-level modularization
of the program (see Figure 2). While this separation of data and
program was a good thing, all program segments were at a sin-
gle level, and typically referenced each other in very complex
ways. In software engineering terms, the cohesion was typically
very low, and the coupling was quite high [6]. In other words,
modules tended to perform many tasks, and there was a lot of
dependence on the workings of other modules. In addition,
each module had unlimited access to all data because the data
was global to all modules. Global data is bad — it makes main-
tenance extremely difficult, since it is hard to determine which
module is ‘trashing’ the data.

To build larger and larger systems, which were more and
more complex, improvements were needed to make large-scale
development easier.

Topology of Later-Generation Languages
Most of us who learned to program in the 1970s and ’80s
learned to program with languages such as PL/1, Pascal,
ALGOL, later versions of FORTRAN, or C. These provided
hidden modules within larger modules, which led to an increase

in cohesion; it was easier to put logically related routines togeth-
er and a decrease in coupling. This resulted in a marked increase
in maintainability and robustness. See Figure 3 for an example
of the topology of these languages. However, the same problems
that existed for earlier languages remained, because there were
no improvements on the data’s topology. Because the data was
unsegmented and unprotected — all modules that had access
had full access to read and modify the data — problems still
existed. What was needed was a way to enforce limitations on
the data so that effective abstractions could be created and
enforced.

Topology of Modern Languages
Most of us who learned to program in the 1990s were exposed
to languages such as Ada, Ada95, or C++. Languages such as
these permit abstractions in both the data and the program
units, which in turn permit us to not only create abstractions,
but also enforce the abstractions. In Ada and Ada 95, the con-
cept of private types permit sharing of data that has limited, and
compiler-enforced, restrictions on the use of the data. In C++
and Java, classes can define method access, such as public and
private (refer to Figure 4). These modifications to the way we
access data allow us to create powerful abstractions, and then
control the way the data is accessed. We can even control who
can access the data, and limit access to certain program modules.

What did the increasing complexity of topology gain us? To
ask it another way, how has the evolution of program and data
abstractions helped us do our job? The answer: it has allowed us
to “abstract away” more and more low-level knowledge about
the solution domain, and concentrate more on the solution
domain.

Languages Shape How We Think,

But so does Experience

I have always thought that there are only two types of problems
in this world — complex problems and simple problems. Those
problems that I can understand are simple; the rest are complex.
By the same analogy, there are two types of solutions — simple
and complex. Simple solutions are those I could have come up
with, given time; complex solutions are those that are beyond
me, and require me to learn or expand my knowledge. There
often exists a disconnect between these types of solutions and

8 CROSSTALK The Journal of Defense Software Engineering December 1999

Data

Program
Module

Program
Module

Program
Module

Program
Module

Figure 2. The topology of early languages (‘50s and ’60s).

Data

Program
Module

Program
Module

Program
Module Program

Module

subprogram
modulesubprogram

module

Figure 3. The topology of later languages (‘70s and ’80s).

Evolution of Software

problems. Referring to Figure 5, we begin to see the problem.
Most of us learn to program while in college or (for

Department of Defense types) at a technical school. We are first
given simple problems. What we want is Figure 5, Line A (Easy
Problem - Easy Solution). What we get is Line B (Easy Problem
- Complex Solution). Why? Because we simply do not know
enough yet to be able to see the solution in terms of the prob-
lem. I remember giving a simple sort assignment to a beginning
programming class in the mid-1980s. I expected a simple bub-
ble sort of a 10-element array. Imagine my surprise when one
student turned in 40-plus pages of code. It worked, but it was
so much more complex than necessary. Once the student under-
stood how simple the problem was, and my expectations, his
solution dropped to one page. Moral of the story: It takes
understanding to be able to see the simple solution when you
are struggling with a language at the same time.

After college or tech school ends we are thrust into the real
world. There we are faced with complex problems. We expect to
achieve Figure 5, Line D (Complex Problem - Complex
Solution). Unfortunately, nothing we learned prepared us for
extremely complex problems. We instead produce Line C
(Complex Problem - Simple Solution). Our lack of under-
standing the complexities of the complex problem force us to
only code a solution to the parts of the problem that we under-
stand.

What does this have to do with programming languages? It
is simple. “The tools we use have a profound (and devious)
influence on our thinking habits, and, therefore, on our think-
ing abilities” [7]. Imagine that you have the task of writing an
operating system for a real-time embedded processor that will
eventually run the heads-up display for an aircraft. Your only
programming language experience has been with FORTRAN
and COBOL. Can you even comprehend the concept of parallel
processing? How can your mind formulate a design when criti-
cal concepts necessary to the solution of the problem are foreign
to you? On the other hand, assume that you understand Ada.
Tasking is an integral part of all Ada implementations, so the
concept of parallel processing is part of the “necessary tool set”
that your brain has been trained to think with.

In light of the concept of “we program based on what con-
cepts the programming language provides,” let us re-examine
how programming languages have evolved.

Ignore the Solution — Concentrate on

the Problem! Languages as Abstractions

In the beginning, we coded in machine code. Given a problem,
typically the implementation of the solution was harder than
the problem. An in-depth understanding of the machine was
necessary for even the simplest problem. Most of the effort was
expended in learning how to program. The hardest problem was
coding a program, not meeting the users’ needs. (See Figure 6).
The block labeled “machine code” still leaves the programmer
far from the users’ needs. The inherent barrier to understanding
and solving the user problem is vast. The programming lan-
guage used (machine code) is so hard to use that most of the
programmer’s efforts is spent understanding the language, not
the problem. The language used does nothing to help the pro-
grammer break through the wall of understanding. Because
machine language is so far from the users’ needs, changes to the
user needs will take a long time and great effort to implement.

December 1999 CROSSTALK The Journal of Defense Software Engineering 9

“Main”
Module Program

Module

Program
Module

subprogram
module

Program
Module

subprogram
module

Data

Data

Data

Data

Data

Figure 4. The topology of modern languages.

The Evolution of Programming Languages — and Why a Language isn’t Enough to Solve our Problems

Easy Problem

Complex Problem

Easy Solution

Complex Solution

C.

B.

A.

D.

Figure 5. The real world.

10 CROSSTALK The Journal of Defense Software Engineering December 1999

Hiding the Machine — Assembly Language
The first major programming improvement was the abstraction
of the machine. Instead of learning what bit accomplished what
tasks, I could instead learn mnemonics that stood for bits. For
example “LDA” for “LoaD the A register” was a lot easier to
memorize than hex 47. Learning that PRINTIT “test”
actually called a channel program that transferred a string to the
printer was much easier than learning to program an input/out-
put channel. You were still tied to the machine, but you could
spend less time learning to program, and a bit more under-
standing the problem. I am getting closer to the problem by
spending less time understanding how to understand the solu-
tion. Figure 6 shows that assembly language “abstracted away”
the need to understand the hardware intimately.

Hiding all Hardware —
Early Programming Languages
The next obvious step was to totally hide the hardware. In a
sense, the first generation of programming languages, such as
COBOL and FORTRAN, made the programmer hardware-
independent. For the most part, early programming language
brought you one step closer to the solution by hiding any direct
reference to a real machine. You were one step closer to under-
standing the problem — you no longer had to concentrate on
the machine to understand the problem. More time could be
spent understanding the problem, and almost no time spent
understanding the hardware. More of our knowledge can be put
to work solving user problems, rather than learning and remem-
bering arcane machine operations.

Getting Closer to the Problem — Using Real-World
Data and Programming Structures
Modern languages, such as C++ and Ada, not only allow
abstractions, but permit the enforced implementation of restric-
tions on abstractions. Most modern languages are object-orient-
ed, which allows me to model the real world using my language.
In addition, I can limit access to model real-world restrictions
on data. The key is that I used the term “real world.” For the
first time, I am concerned with modeling my solution in terms
of the problem. I want my solution to be problem-oriented, so
that the solution reflects the real world in terms of data struc-

tures and access to the data. I also can directly implement and
model real-world objects using classes (in C++ or Java) or pack-
ages (using Ada). Figure 6 shows that I am concerned with ana-
lyzing the problem in a manner that my coding will directly
reflect. For the first time I can realistically try and cross the
“wall” to the user, and try and capture the real-world problem
in terms that I can directly reflect in my code.
Limitations on access and “hidden” information can be captured
in my design and code. In addition, because of these language
features, I can concentrate more on what a problem is rather
than how the problem will be solved. The concepts of reuse in
C++ and Ada and other similar languages permit me to create a
standard library of routines common to a problem space, and
reuse these routines when convenient.

Understanding the Real Problem
Prior to modern languages, we often viewed software as the
actual solution to a problem (see Figure 7). Software is not the
solution. In fact, as many seasoned practitioners already know
— software is often the problem!

We have reached the crux of the matter. The real problem
in programming is (and always has been) understanding the
problem, and trying to implement it directly in code. Early
attempts (using machine and assembly language) added extreme
complexity by requiring knowledge of the implementation hard-
ware. Using current languages, however, I can implement my
solution by concentrating more on the problem. Real-world
entities can easily be modeled and abstracted using objects. The
biggest difficulty in solving a problem is studying the problem
domain and making discoveries about it [8]. Modern languages
give us the luxury of being able to spend more time on the
problem, and less on the solution. I am not afforded the luxury
of being able to design my solution in terms of the problem,
and then implement it using the same design.

As a further note, most practitioners of software engineer-
ing understand that the code is not the final solution. In mod-
ern, large-scale systems, our code is usually a small piece of the
overall system. Because of the large-scale problems we are solv-
ing, we also are faced with the task of integrating the “code
solution” into a larger overall system. This complicates our task,
as we now create only pieces of the solution, not the entire solu-
tion. This system integration forces us to acknowledge that our
“code-world solutions” must directly map back into the real
world and interact with many other entities (Figure 8).

Dijkstra was right. We have created more difficult problems
for ourselves because our more powerful languages permit us to

The
Problem

The
Machine

Problem Space Solution Space

Assembler

Early
Languages

Modern
Languages

This “wall” represents the
barrier of understanding and
solving the users’ problems

Figure 6. Languages.

Real-World
Problem

WRITE CODE Code-World
Solution

Early view of
the role of
software

Figure 7. An incorrect view of software.

Evolution of Software

solve more complex problems.

Why We Still have a Long Way to Go —

the Problem is not in the Language
Note that in Figure 6, the gap between the problem and solu-
tion is not closed. We have not reached the point where we can
solve problems in a reliable manner.

First, notice that there has been a vertical bar separating
the problem space from the solution space in Figure 6. This
bar represents, to me, the limitations of any programming
language. To be blunt, a language is just a language. The ver-
tical bar represents the “understanding gap.” To bridge the
gap, such topics as requirements analysis, design, verification,
and validation must be considered [9]. The languages we have
are sufficient for the problems we are currently solving. If
your organization is considering switching from one program-
ming language to another, I have one word of advice: stop. I
will place a large wager that your problems are not language-
based, but are based on improper processes and requirements
engineering.

Do You Really Want To Solve the Problem?

Here is the complex solution to a complex problem — bridge
the gap with quality tools and techniques, not language (see
Figure 9). If you are interested in bridging the gap between
modern languages and user needs, stop worrying about lan-
guages and concentrate on understanding requirements by
focusing on analysis, tools, techniques, and processes. Consider
object-oriented methods. Acquire and train users in modern
tools and methods. Require conformance to a process. Use the
Software Engineering Institute’s Capability Maturity Model®
(CMM®) to implement a process. Train your programmers to
be productive by using the Personal Software Process and the
Team Software Process (PSP and TSP). Use metrics. Use mean-
ingful metrics. Use common-sense metrics. Review the metrics,
and change your processes accordingly.

To put it another way, we already have the tools and knowl-
edge to code. If you are having coding problems, it is probably
because you do not follow common-sense standards. If you
want to have a simple checklist, I highly recommend 201
Principles of Software Development by Alan Davis [10].
Principles 87-106 give guidance on coding. Some are simplistic

(Principle 105: Format your code, and Principle 88: Avoid
Global Variables). They are simple, yet almost every consulting
job I have undertaken over the last two years has managed to
profoundly break these two simple principles. Does your organi-
zation have coding standards? Are they enforced? When is the
last time you looked at your code? Do you ever look at the code
your contractors provide?

Improving Your Situation
My opinion is that current language is sufficient for our needs.
Object-oriented languages are good and here to stay. C++ and
Ada95 are two languages heavily used in the Department of
Defense, and both rely heavily on object-oriented features to
produce robust code that models the real world.

Despite the earlier slam on COBOL, object-oriented
COBOL will bring object-oriented processes into a predomi-
nately non-OO-oriented data processing arena. Sure, many soft-
ware engineers make fun of COBOL and COBOL program-
mers, but the bottom line is that the COBOL language has
changed drastically over the last 40 years to allow it to meet
increasingly complex customer needs. Adding object-oriented
features will increase its usefulness and allow developers to cre-
ate more robust code. In addition, it will ensure that the mil-
lions of lines of legacy COBOL code will continue to work.
There is the potential that the multitude of COBOL program-
mers will be able to incorporate the advantages of object-orient-
ed design and coding without having to retrain and learn anoth-
er language [11].

What we will see in the future is less reliance on the lan-
guage, and more on the modeling tools, such as the Unified
Modeling Language (UML). The output of the modeling tool
will produce much of our code for us; at the very least, it will
produce architectural and design models and the structure of
our code. This will produce a design (and possibly code) that
can be validated by the customer prior to complete imple-
mentation and testing. As everyday problems that we solve
become larger, we have less and less time to “redo” the code.
The days of saying, “we will just write a Beta version and the
customer can then tell us what they really want,” are past.
Organizations that fail to get complete and correct customer
requirements prior to writing the code will go out of business.

December 1999 CROSSTALK The Journal of Defense Software Engineering 11

The Evolution of Programming Languages — and Why a Language isn’t Enough to Solve our Problems

Real-World
Problem

WRITE CODE
Code-World

Solution

Abstraction of
the Problem in
“Coder Terms

Analysis & Design

Real-World
Solution

Integration

Which Solves

Figure 8. Correct view of software.

The
Problem

The
Machine

Problem Space Solution Space

Assembler

Early
Languages

Analysis

Tools

Tech-
niques

Modern
Languages

Process

Figure 9. What comes next?

12 CROSSTALK The Journal of Defense Software Engineering December 1999

Why? Because it takes too long, and costs too much, to write
code two or more times. Organizations that have a commit-
ment to verification and validation prior to producing code
will prosper — others will fail. One of the biggest problems
today is communicating with domain experts (users) [12].
Use of a tool to facilitate this will help you stay in business. If
your current customers are not involved in the validation of
your requirements (and probably your design), you are head-
ed for trouble. If you cannot get your customers to understand
the methodology, consider using things such as use-cases [13]
and scenarios [14] and to allow customer input and validation.

Finally, remember that a programming language is a small
part of the overall software development effort, which in turn is
just part of the systems development. We are not really having a
problem coding a solution — we are having a problem under-
standing what solution to code. If you want a quality product,
you cannot start with the coding. Concentrate on having a
quality process, such as the (CMM) [15]. Focus on good
requirements engineering and a quality process. Use and follow
a good life cycle model, such as spiral or UML. If you focus on
requirements and verification and validation, the coding will
take care of itself.

About the Author
David Cook is a principal member of the tech-
nical staff, Charles Stark Draper Laboratory,
under contract to the Software Technology
Support Center. He has more than 25 years
experience in software development and has lec-
tured and published articles on software engi-
neering, requirements engineering, Ada, and

simulation. He has been an associate professor of computer science
at the U.S. Air Force Academy, deputy department head of the
software engineering department at the Air Force Institute of
Technology, and chairman of the Ada Software Engineering
Education and Training Team. He has a doctorate degree in com-
puter science from Texas A&M University and is an SEI-authorized

PSP instructor.

Software Technology Support Center
7278 Fourth Street
Hill AFB, Utah 84056

Voice: 801-775-3055
Fax: 801-777-8069
E-mail: david.cook@hill.af.mil

References
1. Edsger. W. Dijkstra. “The Humble Programmer” (Turing

Award Lecture), Communications of the ACM, Vol 15, No.
10 (October 1972).

2. Byte Magazine 25th Anniversary issue. Located online at
http://www.byte.com/art/9509/sec7/sec7.htm. Refer to
http://www.byte.com/art/9509/sec7/art19.htm for the article
entitled “A Brief History of Programming Languages.”

3. Wasserman, A. “Information System Design Methodology”
Software Design Techniques, P. Freeman and A. Wasserman
(eds). 4th Edition, IEEE Computer Society Press, 1983.

4. Booch, Grady. Software Engineering with Ada, 2nd edition.
Benjamin Cummings, 1987.

5. Raymond, Eric. The New Hacker’s Dictionary MIT Press,
1983.

6. Roger Pressman. Software Engineering: A Practitioner’s
Approach, 4th edition. McGraw Hill, 1997.

7. Dijkstra, Edsger. W. Selected Writings on Computing: A
Personal Perspective Springer-Verlag, 1982.

8. Coad, Peter and Edward Yourdon. Object-Oriented Analysis,
2nd Edition. Prentice Hall, 1991.

9. Van Buren, Jim and David Cook. “Experiences in the
Adoption of Requirements Engineering Technologies,”
CrossTalk, The Journal of Defense Software Engineering,
December 1998, Vol 11, Number 12.

10. Davis, Alan M. 201 Principles of Software Development,
McGraw-Hill, 1995.

11. Grauer, Robert T., Carol Vasquez Villar, and Arthur R. Buss.
COBOL From Micro to Mainframe, 3rd edition, Prentice Hall,
1998.

12. Fowler, Martin. UML Distilled, Addison Wesley Longman,
Inc. 1997.

13. Jacobson, Ivar, Grady Booch, and James Rumbaugh. The
Unified Software Development Process, Addison Wesley, 1999.

14. Fowler, Martin. Analysis Patterns: Reusable Object Models
Addison-Wesley, 1997.

15. M. Paulk, et.al. “Capability Maturity Model for Software,”
Software Engineering Institute, Carnegie Mellon University,
Pittsburgh, Pa. 1993.

Evolution of Software

Quote Marks

“640K ought to be
enough for anybody.”

— Bill Gates,
Microsoft

“Computer viruses are

an urban myth…”

— Peter Norton “There is no reason for any individual to have a computer in his home.”
— Kenneth H. Olson, president of DEC, Convention of the World Future Society, 1977

"But
what… is it
good for?"

— engineer at t he
Advanced Computer
Systems Division of
IBM, 1968, c omment-
ing on the microchip

“Our computer
has never had
an undetected
error.” —
Weisert

“Man is still the
most extraordinary
computer of all.”

— John F. Kennedy,
1963 speech

“Men have
become the
tools of their

tools.”
— 19th century

writer Henry
David Thoreau

Did You Know...
How long has CrossTalk been in existence?

11.5 years — the first CrossTalk was published in July of
1988.

How many subscribers did CrossTalk originally have?
Approximately 200

What were some of the topics addressed in the July 1988 issue?
a. Artificial Intelligence
b. Recap of Ada conference for Air Force users. The

conference included briefings on:
• Standard Automated Remote to Autodin Host)

— a software package which allowed a user in and out of
the Autodin system without punch cards or paper.

• Software Life Cycle Support Environment
— a computer-based environment of integrated software

tools, which included one to evaluate software in DOD-
STD- 2167 format.

c. Software Technology Support Center’s (STSC) Electronic
Bulletin Board System

d. Software Engineering Institute Affiliates Program

Who was on the CrossTalk staff in 1988?
Bill Frost, publisher, and Susan Kelsey, editor

When did CrossTalk become an official Department of Defense
publication?

June 1994 — Maj. Peter Vaccaro was the publisher.

When did CrossTalk go purple?
July 1996. The format change included adding purple color

to the cover. The purple signifies the tri-service coverage of soft-
ware issues affecting all United States armed forces as we all
share the same software concerns and needs.

What happened to the Curmudgeon’s Corner?
It never went away. In July 1997, with the help of our read-

ers, we changed the title from Curmudgeon’s Corner to
BackTalk. The column makes light of the many engineering and
management obstacles that are so common in the software engi-
neering workplace. BackTalk continues to be one of our readers’
favorite monthly features.

How many subscribers does CrossTalk have today?
More than 19,000 — although readership is hard to quan-

tify as many of our issues are sent to libraries and organizations.
We also receive comments from readers wanting to subscribe
after they have repeatedly borrowed a co-worker’s copy.

How many monthly hits does CrossTalk entertain on its web site
today?

An average of 50,000 per month.

A Look Ahead
As CrossTalk enters the 21st century, its mission remains the
same:

to encourage the engineering development of software in order
to improve the reliability, maintainability, and responsiveness of our
warfighting capability and to instruct, inform, and educate readers
on up-to-date policy decisions and new software engineering tech-
nologies.

Upcoming themes will include risk management, education
and training, cost estimation, software security, and Capability
Maturity Model IntegrationSM (CMMI). As a forum for sharing
your knowledge and ideas, CrossTalk is counting on your con-
tinued excellent ideas and quality articles (see the Call for
Articles on page 30).

December 1999 CROSSTALK The Journal of Defense Software Engineering 13

The EVOLUTION of CrossTalk
Tracy Stauder

CrossTalk Associate Publisher

As this issue takes a look back in time at software technology and practices, it is inter-
esting to see how CrossTalk has also evolved.

Capability Maturity Model Integration and CMMI are service marks of
Carnegie Mellon University.

The Journal of Defense Software Engineering

Sponsored by the
Embedded Computer

Resources Support
Improvement Program

(ESIP)

December 1999
Volume 12 Number 12

Published by the
Software Technology Support Center

The

EEVVOOLLUUTTIIOONN
of Software

Special Issue:

new CrossTalkold CrossTalk

14 CROSSTALK The Journal of Defense Software Engineering December 1999

Foundations
It is difficult to find any single definition
of engineering that generates uniform
agreement, but many are similar to the
following:

“The art of the practical application of
scientific and empirical knowledge to the
design and production or accomplishment of
various sorts of constructive projects,
machines, and materials of use or value to
man [1].”

For most of history, this definition
would not have been useful. It was not
until the middle of the 18th century that
the first civilian engineering school was
created [1], and that education program
was little more than a structured form of
apprenticeship with very little depend-
ence on mathematics, physics, or other
related scientific fields. From this begin-
ning to the middle of the 19th century,
the addition of the scientific method, the
creation of professional societies, and the
growth of engineering schools led to the
golden age of engineering — the middle
of the 19th century to the middle of the
20th century [2]. This is not to say that
many fine examples of engineering had
not been created before then, but the
labor was more craft than profession.
Early work was the culmination of solid
common sense and the wisdom of experi-
ence, while the golden age benefited from
the application of scientific principles. It
is also important to recall that a handful
of traditional engineers would produce
the drawings and guidance to potentially
hundreds or thousands of skilled crafts-
men on the factory floor. It was there that
physical reality was created and it would
be foolish to ignore the contributions of
these laborers beyond just performing the
work described by the engineering
department.

The middle of the 20th century

brought about many changes, including a
rapidly growing technology base, an
equally growing consumer marketplace,
and the advent of computing. With this
explosive growth came a shift in public
opinion about engineering. The creators
of the many marvels that had trans-
formed our lives were no longer perceived
as the source of solutions to society’s
problems [2]. While it is unfair to unload
all of the blame on computing, the issues
of complexity and speed of change —
hallmarks of computing — along with a
naïve understanding of engineering are
the likely root causes. Engineering grew
from a skilled craft based on apprentice-
ship to a profession based on rigorous
engineering school education and careful
development programs in a myriad of
engineering departments. Little of either
of these remain on the path many take in
today’s world of more, cheaper, faster.

The change did not happen
overnight. In the early days of comput-
ing, the shift from a classical engineering
discipline began. To the United States
military, the computer provided solutions
for a world full of lethal enemies and
increasing nuclear powers. From the cal-
culation of trajectories for big guns, to
the fusion of data to detect first-strike
missile launches, no mechanical or single-
function machine could fit the bill. A cal-
culating machine with modifiable func-
tionality was precisely what was needed
and the United States military took the
lead. From the 1940s through the ’60s,
the state-of-the-art in computing was
defined by the work produced by or on
contract for the military. While several
noted institutions of higher education
provided specific technical courses in
computing, the bulk of the software was
developed by engineers from the classical
engineering fields or by mathematicians.

As the military continued to find ever
more sophisticated ways to employ com-
puting, a trend became obvious. A large
portion of the total life cycle costs of sys-
tems shifted from hardware to software at
an alarming rate, far faster than new soft-
ware developers were being produced.

As the complexity and costs of sys-
tems shifted from hardware to software,
the need disappeared for a factory of
skilled craftsmen to transform the output
of engineering into physical reality. A
hidden downside was the loss of a critical
system review by involved but independ-
ent people. It was common for factory
personnel to uncover problems and
resolve them before the customer saw the
result. The lack of effective feedback
mechanisms to engineering was one of W.
Edwards Deming’s complaints about
North American manufacturers [3] and
now the people best positioned to pro-
vide that feedback were being eliminated.
Where the skillful eye and ingenuity of
the factory worker had served to back up
creative engineering departments, new
products are assembled by compilers,
linkers, and computer-driven duplicators,
none of which have common sense or
insight about the real need of the cus-
tomer. It is true that this automation can
be less costly and far faster; it assumes the
output of engineering is perfect. If it is
not, a critical quality control function
was eliminated and few firms took the
initiative to effectively place those old
responsibilities onto engineering.

Prior to the shift toward software,
quality was built into the product
through a self-imposed process where
engineering on paper and tube-bending
realism had to meet and work. In addi-
tion, turning out more product was large-
ly a manpower issue. Leaning on the
manufacturing process to turn out more

21st Century Engineer
Lynn Robert Carter

Software Engineering Institute
Lt. Col. Scott Dufaud

Air Force Y2K Program Office

Editor’s note: The following is an excerpt from a forthcoming book by Lynn Robert Carter
of the Software Engineering Institute and Lt.Col. Scott Dufaud.

December 1999 CROSSTALK The Journal of Defense Software Engineering 15

21st Century Engineer

product only required working longer
hours, working more people (maybe in
shifts), or both. If the factory employed
skilled workers, provided them adequate
tools, and allowed them to build quality
products, quality products resulted, even
if the drawings from engineering were
flawed. Software does not fit this para-
digm. Because software quality is not a
characteristic of the physical world, this
aspect of the product could not be deter-
mined by visual inspection by either the
producer or the consumer. Quality was
no longer a partnership of the engineer-
ing department and the factory floor with
its skilled craftsmen. Quality is an exer-
cise in mental understanding of what the
product is supposed to do and shaping
creative possibilities into code. In the
software paradigm, turning out more
product also is different as the market is
always looking for the next release with a
set of new features. No longer does using
more factory workers putting in more
hours turn out more quality product. In
order to do this, we must now lean on
engineering. In response to the need for
more software, many elected to hire more
developers and compressed the time line
to develop them. This has led to an even
further degradation in the spectrum of
quality, with fewer and fewer software
developers receiving even the most basic
formal training or skill development in
the application of scientific
methods to their work.
Without the formalisms or
the apprenticeships of old,
where are they supposed to
develop their skills?

Situational Assessment
We have become so used to poorly
designed software and throw-away hard-
ware that we do not even think about it.
While it is common for the military to
think in terms of 30- to 50-year weapon
system life spans, the commercial off-the-
shelf (COTS) hardware and software sys-
tems used to feed data to these weapon
systems and to link them together via
networks are nearly obsolete the day they
are installed. In addition, the lack of
long-term vendor support seldom seems
to be a concern. Sadly, quality problems
are not just problems in the COTS hard-

ware and software. The destruction of the
space shuttle Challenger (faulty seal
design), the distortion in the Hubble
images (improperly ground lens), the
slowly degrading capability of the Patriot
missiles during the Gulf War (software
error), and the long string of Delta
launch vehicle failures (cause not publicly
known) are all high-profile examples of
quality problems from firms from which
we expected more. Rather than design-
ing-in quality up front, the attitude of
many seems to be to test quality in with
huge beta-test efforts, even in the face of
mathematical proof that such testing can
not ensure quality.

Even more disturbing is the growing
dependence of the military on technolo-
gies, such as those supporting the World
Wide Web and the Windows operating
system, that have been repeatedly shown
to be vulnerable to even teenage hackers.
What usually goes unspoken is what
could be accomplished by an elite infor-
mation warfare team. Since these tech-
nologies were designed for commercial
applications by commercial firms address-
ing a commercial marketplace, many
issues critical to our war-fighting military
were not design requirements. As a result,
our military services struggle to obtain
and keep enough qualified and skilled
network engineers, to keep these critical
systems running, and to keep them

secure. Some of these people can cost
more per year than the cost of the com-
puting systems on the network they sup-
port. Better network implementations are
being pursued, but in the current climate
of “more with less,” these are being
addressed in a piecemeal fashion, at best.
Attributes like quality, standardization,
and repeatability are most often found in
organizations with people having strong
personalities that believe in these attrib-
utes. That is to say, these organizations
are personality-driven and these attributes
are part of those personalities as opposed
to being core attributes of the overall

organization. The problem with this situ-
ation is that when the proponent leaves
the organization or is forced to reorder
his or her priorities, the organization’s
products and processes cease to possess
these characteristics.

This situation results in wasted
resources and increased mission risk when
we can least afford it. The shift of costs
from hardware to software has led to a
shortage of adequate software develop-
ment capacity, labeled “the software cri-
sis,” and it continues to grow at rates
commensurate with the increasing com-
plexity of our systems and technologies.
While many have fought to bring the
title “engineer” to the field of software
development as the solution to this crisis,
the pressures of the marketplace and
rapid rates of technology change have
resulted in an interesting split. We use the
phrases “blue-collar software developer”
and “gold-collar software developer” to
highlight this split.

Two Paths to the Future
The trends seem clear. Consumer
demand for ever more sophisticated sys-
tems at lower costs will continue to drive
commercial and military development.
In turn, the development community
must take a similar economic approach
for solvency. Survival will depend upon
the ability to increase efficiency, shorten

cycle time, and focus on the
bottom line, without sacrific-
ing quality. As we have indicat-
ed above, there appear to be
two very different approaches
to address this trend: blue-col-
lar and gold-collar develop-

ment strategies. We offer the following
distinctions to differentiate the compet-
ing philosophies.

The first difference between these
developers can be found in how their
employers go about addressing the need
for more output. Blue-collar organiza-
tions believe the solution is to hire more
workers and find ways to keep the cost of
each as low as possible. The hiring
process is little more than verifying that
the developer has the needed skills, is

The Capability Maturity Model and CMM are
registered in the U.S. Patent and Trademark office
to Carnegie Mellon University.

The software crisis continues to expand at
rates commensurate with the increasing com-

plexity of our systems and technology.

16 CROSSTALK The Journal of Defense Software Engineering December 1999

Evolution of Software

willing to work long hours, and is willing
to take lower pay in exchange for stock.
(It is sad to note how few engineers are
able to redeem their stock for cash and
recover the income they have deferred.)
Gold-collar firms look for ways to better
leverage their existing resources by elimi-
nating waste, obtaining better tools, and
ensuring that barriers to progress have
been removed. Fast, flexible, and cost-
effective solutions seldom occur on proj-
ects buried under developers and gold-
collar firms always look for alternatives to
the “piling-on” approach to shorten the
development time. Watts Humphrey has
stated that performance differences of fac-
tors greater than 10 have been seen
between organizations with basically the
same business, workers, and tools. This
observation led to his effort to better
understand these differences and to devel-
op methods to leverage the understand-
ing. From this came the Capability
Maturity Model® (CMM®). Again and
again, the Air Force and commercial
firms have shown that the application of
these concepts can produce dramatic
results. Yet many firms still look for large
numbers of people with the right design,
coding, and testing skills while they
ignore the nonsoftware skills required to
progress up the CMM levels.

The second difference is the attitude
toward process by the people in a firm.
Blue-collar development firms talk about
the costs and the delays associated with
the overhead of process and the damaging
constraints it places on creativity. Gold-
collar development firms point out the
dramatic improvements in productivity
and quality found in a balanced focus,
including process. Having reaped the
benefits, they are somewhat amused by
the notions that process slows develop-
ment or constrains creativity. Firms that
have successfully climbed CMM levels
report amazing returns on their process
improvement investments and point out
how process reduces waste, allowing their
developers to spend more time develop-
ing code likely to appear in finished sys-
tems. The results from the shuttle on-
board software engineers align nicely with
the results from Boeing and numerous
others. Yet, blue-collar firms remain
unswayed by these results.

The relationship between a firm and
its customers is the third difference
between these two philosophies. Blue-col-
lar developers are kept far away from the
ultimate users with buffers of managers,
marketers, salespeople, and support per-
sonnel. There is a concern about loss of
control and the need to keep the blue-
collar developer focused on writing code.
Firms obtaining full benefit from gold-
collar developers see the need to have
their developers fully integrated with the
customer. From these firms’ perspective,
technology has decreased cycle time, and
any nonvalue-added role in the develop-
ment process can only slow things down.
As technology grows in complexity, the
challenge of working closely with cus-
tomers grows in its importance. Blue-col-
lar firms point to the lack of appreciation
many customers have about current tech-
nology issues, the lack of clarity about
product requirements, and their unreal
expectations about the time and effort to
accomplish the ill-defined work. These,
they say, are reasons enough to maintain
this distance. Gold-collar firms point to
the same things and assert that this
demonstrates the need to be closer. Some
go even further, insisting that they must
help develop their customers to ensure
higher mutual satisfaction in the future.
They advocate the use of the spiral model
in development and in customer relation-
ships, and trust in their gold-collar work-
ers’ use of process to keep things under
control. Blue-collar firms scoff at such
notions as wishful thinking and a waste
of time and resources in a turbulent
world. After all, they claim, we are talk-
ing about human beings, human nature,
and no one can make guarantees about
which firms will exist in the future, let
alone who will be the market leader.

The use of scientific methods, math-
ematics, risk management, and lessons
learned are the fourth major difference.
Gold-collar workers easily separate work
into well-known and novel classes of
effort. Effort and work can be classified as
either, “we have already done this,” or
“this is something new.” With a solid
discipline for employing process and data,
they strive to leverage the work of others
as well as their own experiences to build
an ever-growing foundation. When

results differ from expectations, they take
time to understand the root cause and
employ mechanisms to reduce the proba-
bility of similar difficulties in the future.
Their process focus provides the basis for
using statistical methods. This supports
understanding common vs. special causes,
allowing effectively designed improve-
ments to address the former. Blue-collar
firms point to the decrease in cycle time
and the increase of complexity as proof
that nothing stays the same long enough
for statistical methods to be useful, even
if there was enough extra resources
around to waste on process and data cap-
ture.

The fifth major difference is in the
perception of the skills workers need to
have and the best way to organize and
manage those workers. Blue-collar organi-
zations tend toward numerous groups of
specialists and organizational structures to
ensure the work gets done. There are
clear lines of authority and control in
order to ensure no one is working on
things other than what is currently
required. (In many such organizations,
few of those in a position of authority
and control are particularly good at this.
Few blue-collar firm managers are able to
produce a list of projects under their con-
trol or indicate who is working on what.)
Gold-collar organizations strive to popu-
late their work force with generalists,
each having one or more areas of unique
skill that complements others. The goal is
to have small, customer-involved, self-
directed work teams. They leverage mod-
ern technologies and tools, but most
importantly they leverage the other team
members to do it all. They think that
such tight integration of small teams
leads to faster results with products that
better fit the customers’ needs, including
making it harder for operational mistakes
to occur because the common cause for
such errors have been designed out of the
system. (After all, gold-collar firms know
how to use statistics to their benefit as
well as to their customers’ benefit.)

Choices to be Made
Looking at the exponential growth
curves, it is clear that something will have
to change. Gordon Moore, of Intel,
observed that the density of storage, in

December 1999 CROSSTALK The Journal of Defense Software Engineering 17

bits per square inch, from integrated cir-
cuits appears to be doubling each year
to 18 months. This observation has been
called Moore’s Law [4], and it appears to
apply, in modified form, to the doubling
of the number of engineers it takes to
produce each new generation of Intel
processors. In not too many more genera-
tions, if these trends continue, everyone
in the United States will be a
processor designer for Intel. This
should be a clear signal that the
approach of many blue-collar
firms will not work. Even if they
could find people to hire, many
are reaching the point of diminish-
ing returns. The easiest approach
of hiring more people is not really
a reasonable long-term solution.
A second approach is to acquire
and employ higher performance
tools. At first glance, this seems
more reasonable. The capability of mod-
ern software tools can be very empower-
ing. The question that must be asked
revolves around the long-term benefit of
these tools. Tektronix was one of the first
firms to employ high-level languages in
the development of microprocessor soft-
ware in embedded systems using a retar-
getable compiler system. The Tesla pro-
gramming language was used in more
than 60 products over the years, and its
gamble paid off. The decision to leave
Tesla for C was a difficult one, but the
lack of a large enough pool of developers
willing to learn Tesla forced the change.
No technology will remain in first place
forever. The trick is to pick technologies
likely to remain useful long enough for
the firm to recover its investment as well
as to place itself in a position to leverage
the next big technological advancement.
This can be very difficult. (Ask the peo-
ple who selected Beta over VHS because
of the superior picture Beta delivered.)

Another aspect of a tool-based
approach to the problem lies in the
nature of high-performance tools. Long-
term benefit from these tools requires dis-
cipline throughout the development
process. Most of these tools require a
heavy investment during the early phases
of the life of the project in order to yield
big wins at the end. While blue-collar

workers may have the skills to use these
tools, their firms often lack the wisdom
to stay the course charted at the begin-
ning of the project. Decisions are made
with no appreciation of the impact on
the project. Gold-collar firms, with their
disciplined processes, are able to appreci-
ate the impact at the end of a project to a
decision being made much earlier. This

does not imply they will not make bad
decisions, but at least the issues surfaced
and an informed choice was made.
Short-term decision making is more often
based on considerations that have little to
do with the projects that are ultimately
affected by those decisions. Political, eco-
nomical, and personality-based short-
term decision making is a symptom of a
blue-collar mentality that says we can
overcome any setback with more people
and more hours. The gold-collar mentali-
ty understands that good project engi-
neering is too important to the enterprise
and must be bullet-proof to these other
considerations. As a result, gold-collar
practitioners have processes and set
ground rules that minimize the chance
their projects will be derailed by consider-
ations outside of the team’s control. Too
often, blue-collar firms are surprised by
the failure of their new tool, cannot see
what caused the failure, and reach the
faulty conclusion that the tool does not
work. Ineffective implementations are at
the heart of a majority of tool adoption
and process improvement failures [5].

From our position, the optimal
approach is to chart a course toward
becoming a gold-collar development firm
leveraging gold-collar developers utilizing
gold-collar processes. While we acknowl-
edge the accomplishments of heroics, we

see the long-term costs. Success comes
from a wise combination of tactical skill
and strategic wisdom. Championship
pool is an excellent metaphor. It is not
enough to have the skill needed just to
make the next shot. True champions
know where they want to leave the cue
ball for the next shot as well as the rest of
the shots on the table. Gold-collar work-

ers are able to see the conse-
quences of their actions and reg-
ularly leave themselves and their
project teams better positioned
for the next project than they
were for the last. At the heart of
a gold-collar firm is a focus on
effectively leveraging the lessons
others have learned. We believe
an effective deployment of
process is the method of choice
to accomplish this.

As individual contributors,
the choice should also be clear. The days
of the solo developer coding a sequence
of market-winning products are over.
(That is assuming they ever existed.) The
future is in high-performance teams of
flexible gold-collar workers striving to
bring real engineering to software devel-
opment. As quoted above, a critical
aspect of engineering is the “... applica-
tion of scientific and empirical knowl-
edge....” Being an engineer is not about
what you know. It is how you go about
applying what you and others know and
what you can learn.

A 21st century engineer is more than
someone with a set of skills, including
process skills. These skills must be bal-
anced with discipline and wisdom needed
to be an effective member of a high-per-
formance team. The Navy’s elite flight
demonstration team, the Blue Angels, is
an excellent metaphor. A high-perform-
ance team does not happen overnight
simply because a collection of experts is
told it is a team. Building a team requires
the right kinds of individuals and the
right assembly process. Once again, poor
implementations have given team-build-
ing exercises a bad name, but one can
learn a great deal from the Blue Angels.
Year after year, 50 percent of the team
rotates and year after year the new team
is formed. A critical aspect of the team’s

Large-scale changes in the way we do
business are often thwarted

at the highest levels of leadership
because the new paradigms are not

compatible with the thinking and
ideas that put our leaders where

they are today.

21st Century Engineer

18 CROSSTALK The Journal of Defense Software Engineering December 1999

Evolution of Software

success is the time it spends becoming a
team before its first public performance
of the year [6]. If carefully selected team
candidates are guided through truly
meaningful team-building exercises, it is
reasonable to assume the results might be
as stunning as those of the Blue Angels.

Implementation Success
The concept of high-performance teams
is not new or unproven. There are
numerous examples from recent United
States history where highly disciplined
teams consisting of thousands of engi-
neers not only undertook what were con-
sidered impossible goals, but succeeded.
The Manhattan Project produced the
nuclear bomb. The teams at NASA not
only produced the Apollo series of space
missions that put a man on the moon in
10 years, but also produced the incompa-
rable Shuttle program. An oft-cited
group, Lockheed’s Skunkworks Division,
produced the SR-71 Blackbird, a feat of
technology that was three generations
ahead of its day. In many ways, most of
the military technology today is a result
of high-performance teams leveraging
state-of-the-art technology in ways previ-
ously unimagined. We believe it is our
next task to make the creation of these
teams and their successes more common-
place and at the basic level of all systems
engineering, not just for high-value mili-
tary systems.

There has been progress in software.
Many technology consulting firms also
possess high-performance teams aimed at
improving the state of systems
or enterprise engineering.
Andersen, Deloitte & Touche,
and Coopers & Lybrand, as well
as other look-a-like companies
have created their own brand of
enterprise-engineering services.
The Air Force also has had its
share of success developing organic high-
performance gold-collar teams. The point
is that these teams already exist, as well as
the process for creating them. Three
examples help demonstrate our assertions.

Software Process

Improvement
In the early 1990s, when the need for

military software and software resources
underwent a huge expansion, the Air
Force made a deliberate decision to pur-
sue excellence in the way it developed
and maintained software. What followed
was almost a decade of cooperation with
the Software Engineering Institute in
order to improve the state of Air Force
software development. The CMM for
software essentially was institutionalized
across all Air Force software houses as
well as within the contractor communi-
ties supporting the Air Force. In 1999,
even though philosophical changes forced
most of the Air Force away from primari-
ly organic software efforts, organizations
still controlling their own software proj-
ects retain a strong recognition and desire
to use mature development techniques
and processes as defined by the CMM.
Such institutionalization is a result of the
early commitment the Air Force made to
create lasting results via a high-perform-
ing Software Process Improvement (SPI)
team. There was a commitment to pro-
vide the people and resources necessary to
develop critical skills and disciplines,
build the programs necessary to take the
fight to the units in the field, fund the
temporary duties needed to work face-to-
face with commanders, and stay the
course in the face of early efforts that
appeared, on the surface, to be failures.
As results showed progress, the SPI team
regularly evaluated options for improve-
ment, with new capabilities and services
continually added to their toolbox. The
result has been impressive. Even though

the SPI team officially disbanded in
1997, the cultural change within the Air
Force software community has been sur-
prising. At the height of the SPI team’s
activities, the most common remark
heard from commanders was that there
was not enough time and resources to
make SPI happen via CMM. Almost
three years later, we continue to hear

about current commanders — those who
were O-1 to O-4 at the height of the SPI
effort — who claim they cannot develop
good software without the guiding princi-
ples provided by the CMM.

Year 2000
When the Year 2000 (Y2K) problem
emerged as a serious threat to Air Force
systems, it became a top priority almost
immediately within the Communications
and Information communities. Again, the
Air Force made a conscious decision that
Y2K must be urgently addressed by the
highest levels of leadership within the Air
Force. The Air Force Y2K Program
Management Office (PMO) was devel-
oped and patterned after the Air Force
SPI team. (Some personnel were on both
teams.) The Air Force Y2K effort would
utilize the guiding principle of centralized
Air Force management and decentralized
execution at the field and organization
levels. Therefore, the processes and tools
the PMO developed were key, as they
would serve as the standard baseline for
all Y2K remediation efforts undertaken
by units in the field at all the various lev-
els within the hierarchy. It is interesting
to note that as in the SPI example, the
Air Force was out in front of the other
Department of Defense components for
the Y2K effort. Many of the products,
processes, training, and tools created by
the Air Force PMO were subsequently
adopted and used by various other gov-
ernmental organizations for use in their
respective Y2K efforts. It is noteworthy

that many of the Air Force
PMO-developed processes and
tools were based on the concepts
and practices defined by CMM.
As in SPI, the Y2K PMO team’s
primary role was to develop the
best practices and then shepherd
the rest of the Air Force in using

practices through face-to-face interaction
that would include training, consulting,
inspecting, and feedback conferences.

Network Management
The emerging network installation and
network management teams provide a
final Air Force example. At a time when
networks are proving to be a most valu-
able and critical resource, network per-

The future is in high-performance
teams of flexible gold-collar workers
striving to bring real engineering to

software development.

December 1999 CROSSTALK The Journal of Defense Software Engineering 19

formance is sporadic and less than opti-
mal. The Air Force response once again
has been to turn to a high-performance
gold-collar team to ensure that all base
networks work, and work well. The high-
ly trained SCOPE Network teams spe-
cialize in network management disci-
plines and have been created to standard-
ize and optimize the performance of all
Air Force base networks. These gold-col-
lar teams travel to all sites to perform
fine-tuning of networks, ensure adequate
security, improve operations, train local
personnel, and share best practices. As in
the previous two examples, they utilize a
disciplined process as they perform their
work. As the Air Force experts, they shep-
herd the training and development of all
network management personnel through
face-to-face interaction, which includes
training, consulting, and feedback. The
SCOPE Network effort has proven to be
a highly effective use of gold-collar devel-
opment teams and has the data to prove
its success.

If we step back and examine these
three examples with respect to the differ-
ences described earlier, we find some
interesting commonalities. Each of the
examples required:

• dramatic improvement in specialized
functions

• changes of core attitudes toward the
use of disciplined processes (in the
first two, this required changes of
priorities by command-level
leadership)

• merging of disparate, and sometimes
confrontational, consumer and
producer groups into integrated
interdisciplinary teams with common
goals

• use of the latest scientific methodolo-
gies, data and statistics, risk
management, best practices, lessons
learned, and other applicable leading-
edge technologies into standardized,
predictable, and repeatable processes

• change of old patterns of thought
that people can only employ one or
two specialized skills

Conclusion

From experience, it appears that the suc-
cessful application of high-performance
gold-collar teams has less to do with the

technology being implemented than it
does with other factors. Deciding if and
when a gold-collar team is required is a
crucial task that should not be taken for
granted and is at least as important as the
implementation of such teams.

We offer the following considerations
as key criteria for helping to determine
when high-performance gold-collar teams
are an appropriate enterprise strategy:

• when an enterprise has deemed a
capability or asset to be at the core of
its capability to compete and survive
in the marketplace;

• when an enterprise action is a
priority that must meet specific
performance levels, meet schedule
time lines, and/or meet cost
constraints.

The key ingredient, crucial for success, is
twofold. First, there must be an identifi-
able need that can be articulated to the
senior decision-makers of the enterprise
in a way that causes them to take some
action outside of the status quo. Second,
there must be a conscious decision that
the enterprise will pursue the gold-collar
strategy for the long run. Once the deci-
sion is made to pursue, the commitment
to its end must be total. These strategies
are no longer off-the-wall experiments to
achieve extraordinary results. If the enter-
prise will make the long-term investment,
the results will be there in the end.

In all of the examples cited here,
each has a common, yet subtle, character-
istic that cannot be overlooked. Each of
the situations required a change in the
mindset of the prevailing culture of the
day. All of today’s leaders grew up with a
frame of reference that was generally two
to three iterations or more behind
today’s. As a result, large-scale changes in
the way we do business are often thwart-
ed at the highest levels of leadership
because the new paradigms are not com-
patible with the thinking and ideas that
put our leaders where they are today. This
single fact is a primary reason why the
success of efforts like these are so depend-
ent upon the ability to interact face-to-
face and work collaboratively, in a
process-disciplined manner, to implement
the change. Human interaction and the
ability to manage resistance to the effort
is as key to the high-performance team as

any other aspect.

Final Thought
If software is mission-critical, design an
environment to ensure it works. The
decision to outsource is easy, but the cost
to outsource and to ensure mission-criti-
cal capabilities survive is not trivial.
Firms that outsource should follow the
Air Force’s approach to outsourcing the
development and manufacture of fighters
and bombers. The best pilots the Air
Force has are intimately involved in every
step of the process. What is the equiva-
lent in your organization for your soft-
ware-intensive systems? Gold-collar firms
know when it is appropriate to outsource
and they bring the same discipline to that
task as they do to all the others. It is time
for us all to make some critical choices
and make the future a reality.

About the Authors
Lynn Robert Carter is a
senior member of the
technical staff of the
Software Engineering
Institute. From his office
in Phoenix, Ariz., he
supports the adoption of

technology at a number of customer sites as
a vehicle to learn how technology adoption
can be made more predictable and less cost-
ly. Carter’s focus is currently on the roles
and responsibilities project leaders, man-
agers, and executives must honor in order
to establish environments conducive to the
adoption of new technology without sacri-
ficing mission capability. Carter has served
as the director of Systems Engineering at
EdgCore Technology, as president and
CEO of Network Solutions, as a researcher
at Motorola, and as a principal engineer at
Tektronix. Carter served as an officer of the
IFIP Working Group (2.4) on System
Implementation Languages for 14 years, has
published numerous papers, and has writ-
ten and co-written three books. He received
his bachelor’s and master’s degrees in math-
ematics from Portland State University and
holds a doctorate in computer science from
the University of Colorado at Boulder.

Software Engineering Institute
Carnegie Mellon University
3857 East Equestrian Trail
Phoenix,Ariz. 85044-3008

21st Century Engineer

20 CROSSTALK The Journal of Defense Software Engineering December 1999

Voice: 480-598-1247
Fax: 480-496-9464
E-mail: lrc@sei.cmu.edu

Lt. Col. Scott Dufaud is
deputy program manager
for the U.S. Air Force
Year 2000 Program
Management Office at
the Air Force
Communications
Agency (AFCA), Scott

AFB, Ill. Prior to assuming these duties in
November 1996, he was the chief of the
Software Management Division at AFCA.
Dufaud specializes in software management
issues, software engineering process groups,
software process improvement via the
Capability Maturity Model, technology
insertion, and issues of accelerating organi-
zational change. He previously served at

Headquarters Strategic Air Command and
U.S. Strategic Command, the Air Force
Manpower and Personnel Center, and
Headquarters Air Force Space Command.
He has a bachelor’s degree in computer sci-
ence from Southwest Texas State University
and a master’s degree in systems manage-
ment from the University of Southern
California.

HQ AFCA/ITY
203 W. Losey St, Rm 1065
Scott AFB, Ill. 62225-5224
Voice: 618-256-5697 DSN 576-5697
Fax: 618-256-2874 DSN 576-2874
E-mail: scott.dufaud@scott.af.mil

References

1. Kirby, Richard Shelton, et. al.,
Engineering in History, Dover
Publications, New York, 1990.

2. Florman, Samuel C, The Existential
Pleasures of Engineering, Second
Edition, St. Martin’s Griffin, New
York, 1996.

3. Deming, W. Edwards, “Out of the
Crisis,” M.I.T. Center for Advanced
Engineering Study, Cambridge, Mass.
1991.

4. Raymond, Erics S., editor, The New
Hacker’s Dictionary, The MIT
Press, Cambridge, Mass. 1991.

5. Rummler, Geary A., Alan P. Brache,
Improving Performance, Jossey-Bass
Publishers, San Francisco, Calif., 1995.

6. Rear Adm. Moneymaker, Patrick
D., personal conversations with a
former commander of the Blue Angels.

Evolution of Software

16th International Conference on Data Engineering
Dates: Feb. 28-March 3, 2000
Location: San Diego, Calif.
Sponsor: IEEE Computer Society
Web site: http://www.research.microsoft.com/icde2000/

13th Conference on Software Engineering
Education and Training

Theme: Software Engineering Coming of Age
Dates: March 6-8, 2000
Location: Austin, Texas
Sponsor: IEEE Computer Society
Web site: http://www.se.cs.ttu.edu/CSEET2000/

confhome.htm

12th Software Engineering Process Group
Conference (SEPG 2K)

Theme: 2000 Ways to Make Software Better
Dates: March 20-23, 2000
Location: Seattle, Wash.
Sponsor: Software Engineering Institute
Web site: http://www.sei.cmu.edu/products/events/sepg/

FOSE Leading-Edge Technology
for Leaders in Government

Dates: Apr. 18-20, 2000
Location: Washington D.C.
Topic: FOSE offers a variety of educational opportunities

for all levels of IT professionals.
Web site: http://www.fedimaging.com/conferences/

12th Annual Software Technology Conference
Theme: Software and Systems — Managing Risk,

Complexity, Compatibility, and Change
Dates: Apr. 30-May 4, 2000
Location: Salt Lake City, Utah
Co-Sponsor: U.S Air Force, U.S. Army, U.S. Navy, U.S.

Marine Corps, Defense Information Systems Agency,
Utah State University Extension

Contact: Dana Dovenbarger
Voice: 801-777-7411
Fax: 801-775-4932
E-mail: dana.dovenbarger@hill.af.mil

First Software Product Line Conference (SPLC1)
Dates: Aug. 28-31, 2000
Location: Denver, Colo.
Sponsor: Software Engineering Institute
Web site: http://www.sei.cmu.edu/plp/conf/SPLC.html

23rd International Conference on
Software Engineering

Dates: May 12-19, 2001
Location: Toronto, Ontario, Canada
Sponsor: IEEE Computer Society TCSE and Association

for Computing Machinery SIGSOFT
Web site: http://www.csr.uvic.ca/icse2001/

Coming Events

December 1999 CROSSTALK The Journal of Defense Software Engineering 21

“Stuff Happens” — so do Standards
If you sit down and try to categorize all the types of standards,
the list gets really long really fast [1]. Under each type you start
to come up with multiple entries. Standards seem to proliferate
and infiltrate any aspect of human endeavor that involves any
degree of complexity. Standards are not inherently good or bad,
they just seem to inherently “be” — meaning that whether they
are developed formally by a big, slow-moving international
committee or whether they grow spontaneously from an innova-
tive free market, standards are not going away.

While standards as a life-form will survive, evolving a spe-
cific species can be (and probably always is) difficult. Standards
have to be cared for, they have to be fed, they have to evolve or
they become extinct. Two examples:

1. Something as basic to the military as the ability of joint
task forces to share standardized location data, just “ain’t”
that easy [2];

2. J-STD-016 has been going through the revision and ballot
process for more than a year and should be undergoing
re-balloting as you read this, but delays in this process have
threatened its existence.

Software Standards

Evolved Over 30 Years
Table 1 is a representative list of standards. Common school of
thought has software standards evolving from the black ooze of
hardware standards of the 1970s to early ’80s. Some hardware
standards began including words, sometimes in the form of
appendices, to deal with software, e.g. MIL-STD-483 [3] and
MIL-STD-490 [4]. Later, software-specific standards evolved
that talked like software animals using software terminology, but
walked liked hardware animals because they were direct hard-
ware descendants, e.g. DOD-STD-2167 [5]. Today, the soft-
ware community has troubled over the differences between soft-
ware and hardware enough that software standards (EIA/IEEE
J-STD-016 [6], IEEE/EIA 12207 [7]) are genuine software
standards rather than feathered lizards.

Both MIL-STD-498 and J-STD-016 promote a more flexi-
ble approach to defining the software process and collaboration
among all stakeholders, e.g. with joint technical and manage-
ment reviews. Compared to older standards, MIL-STD-498 and
J-STD-016 provide:

• a more complete life cycle perspective with links to system
engineering

• better consistency with modern development models
(incremental, evolutionary, reuse/re-engineering)

• improved accommodation of nonhierarchical design
methods

• more flexibility with documentation formats and media
• attention to reusability, security, safety, and risk manage-

ment
• improved references to metrics and indicators
• more responsive in-process evaluation and review activities
• significantly improved transition to software support and

sustainment activities

Meanwhile, IEEE/EIA 12207 provides a higher-level view,
with fewer specific requirements, and spans not only develop-
ment, but acquisition, supply, operation, and maintenance.

Software Standards:
Their Evolution and Current State

Reed Sorensen
TRW

This article touches on the last 30 years of software standards development in the Department of
Defense, the purpose of and the difference between formal and de facto standards, the Ada expe-
rience, some current thinking regarding the documentation monster, and an update on J-STD-
016 status.

Date Designator Topic
1968 MIL-STD-490 Specification Practices
1970 MIL-STD-483 Configuration Management Practices
1978 DOD-STD-480A Configuration Control
1979 MIL-S-52779A Quality
1983 MIL-STD-1815A Ada83 Language Reference Manual
1983 DOD-STD-7935 Documentation Standards
1983 DOD-STD-

1679A
Software Development

1984 DOD-STD-
1644B

Trainer System Software Development

1985 MIL-STD-490A Specification Practices
1985 MIL-STD-1521B Technical Reviews and Audits
1985 DOD-STD-2167 Defense System Software Development
1988 DOD-STD-

7935A
Documentation Standards

1988 DOD-STD-
2167A

Defense System Software Development

1988 DOD-STD-2168 Defense System Software Quality
1992 MIL-STD-973 Configuration Management
1994 M I L S P E C R E F O R M
1994 MIL-STD-498 Software Development and Documentation
1995 J-STD-016-

1995
Software Life Cycle Processes, Software
Development, Acquirer-Supplier Agreement

1998 IEEE/EIA 12207 Software Life Cycle Processes
1998 EIA-649 Configuration Management
1999 J-STD-016 Software Life Cycle Processes, Software

Development

Table 1. Chronological list of some major software and software related stan-
dards.

22 CROSSTALK The Journal of Defense Software Engineering December 1999

Standards Enable Communication
Standards are about communication — communication
between organizations, e.g. between the acquirer and developer,
among developers, between the developer and the maintainer,
communication between two commercial-off-the-shelf software
products or two software units, and communication between a
fax machine built by Canon and another built by Sharp.
The revolution in knowledge that accompanied the printing
press was a communication revolution. The printing press pro-
vided the means to build upon the experience of those who
came before1. A standard is either a specialized document that
captures the experience of the many for the use of those who
follow, or it is a groundswell that, by virtue of inertia, establish-
es default experience. In the first case, many may meet in com-
mittee and have a balloting process to gather experience from
the broadest base of useful knowledge. In the second, a compa-
ny may flood the marketplace with its solution to a problem in
hopes that it will become a de facto standard — not that the
solution is inherently the best but if the solution becomes
omnipresent it will provide the most effective mechanism for
most people to deal with most others (Microsoft Windows 3.1
for example).

Formal Standards Influence

Software Development
Entire cottage industries pop up around formal standards. There
are a lot of consulting organizations offering CMM® and ISO
90002 expertise. Seminars are available and tools are marketed to
support “498” [8] and “12207.” All of these kinds of free market
ventures do their best to influence software development.

But not everyone buys into the concept of formal stan-
dards. Formal standards tend to be imposed by management
rather than because the programmers sign a petition demanding
that they want to be CMM Level 3, though life for the pro-
grammer is often better at Level 3 than Level 1.

The Interplay of Formal Standards,

De Facto Standards, and Best Practices
Alex Polack of ATA, a vendor of software documentation tech-
nology, sees standards as a way to canonize best practices.
Whether canonized or not, some advocates for best practices see
them as a more natural and useful approach to improving soft-
ware development than are formal standards. In Rise and
Resurrection [9], Edward Yourdon suggests:

“If the standards/methods procedures group wants to rename
itself as the best practices group, then it should realize that its job is
to act like social scientists visiting an alien race deep in the forest:
observing behavior, documenting existing practices, and offering
advice on which practices have been observed to produce good
results, e.g. higher levels of quality.”

In concert with evolving best practices, the more recent
high-level commercial standards, such as IEEE/EIA 12207, take
a process-oriented approach and expect a software development
organization to define and continuously improve its software

process, then customize that process for individual develop-
ment projects. The Department of Defense (DoD) Single
Process Initiative further encourages developers to define and
utilize its own processes.

A grassroots approach to standards is observed in the devel-
opment tools, platforms, and graphical user interfaces that pro-
liferate in the marketplace. Resulting de facto standards obvi-
ously influence development. A software development organiza-
tion may be a “Windows shop” or a “Unix shop” or “Linux
shop.”

The Influence of the Ada Experiment
The Ada experiment caused some to step back and consider the
purpose of requirements and design. You do not just sit down
and start coding in Ada. It takes considerable work to get to a
piece of Ada code that can be compiled, so you end up thinking
a lot about the design. This thinking is indispensable in large
systems.

Systems developed in Ada are arguably easier to maintain
than had they been developed in C or another language less ver-
bose than Ada. Because Ada is verbose it is easier for a main-
tainer to read than many languages, such as C, which are
designed to be easy to write rather than easy to read. Ada is
designed to be easy to read.

Did Ada influence the object-oriented community? While
it is hard to measure such an influence, clearly Ada was the first
language that enforced rather than simply permitted encapsula-
tion and abstraction. You can argue that Java was influenced by
Ada by observing that Java is C++ syntax with Ada semantics.
Ada’s contributions to software engineering aside, it was not a
public relations success for the standards community. The 1986
mandate that Ada be used in new defense systems left a bad
taste for many software development organizations, an aftertaste
that remained even when free Ada compilers, trained Ada pro-
grammers, and Ada development tools became plentiful some-
time later.

Data Item Descriptions and the “D” Word
With the announcement in 1994 by Secretary of Defense
William Perry on Mil Spec Reform [10], the pendulum of com-
bined thought had reached the zenith of its swing regarding the
enforcement of formal standards. To a large extent, DoD got
out of the expensive business of caring for and feeding stan-
dards. As the pendulum has swung from rigid enforcement of
standards to total lack of enforcement3, Data Item Descriptions
(DIDs) often disappear from the contractual setting. This leaves
many developers confused about how the data should be pre-
sented. Acquirer and developer find themselves reinventing the
wheel. It is a little like discarding all known languages and
developing your own, even though both parties speak English
fluently. Like English, the DIDs provided a basis for communi-
cation. Time need not be used reinventing nor rediscovering, if
acquirer and developer agree from the start to follow the J-

Evolution of Software

The Capability Maturity Model and CMM are registered in the U.S. Patent
and Trademark office to Carnegie Mellon University.

December 1999 CROSSTALK The Journal of Defense Software Engineering 23

STD-016 DIDs (called Software Product Descriptions or
SPDs).

Often, the misapplication of 2167A resulted in docu-
mentation — the “D” word — that took on a life of its own.
Whereas the software standards evolved from the primordial
goo at the fringe of the hardware disciplines, the emergence
of the associated software documentation was seemingly
from a lab in Dr. Frankenstein’s basement. It escaped to ter-
rorize the DoD village, consuming lots of dollars, and caus-
ing general havoc among the defense populace. In an
attempt to drive a wooden stake through the documentation
monster’s heart, no DIDs appear in IEEE/EIA 122074.

The apparent lack of DIDs has been/is troublesome for
acquirers and developers who were accustomed to the
detailed guidance provided by DoD-STD-2167A and even
by MIL-STD-498. Much like a communist society without
an iron curtain, the software acquisition/development com-
munity is confused by the new-found freedom of no DIDs.
The developer is directed to provide “data,” the popular
euphemism for the “D” word. But what is this data to look
like? Developers often want an example so they do not have
to start from scratch. While IEEE/EIA 12207 does not leave
one to start from scratch, some developers almost feel that
way. Tables 3 and 4 show samples of the level of guidance
provided by IEEE/EIA 12207. But the solution is available;
one can use the materials referenced by IEEE/EIA 12207.1-
1997 “Table 1 - Information item matrix,” which includes
the J-STD-016 SPDs and other IEEE standards or one can
use J-STD-016, as shown in Table 2. Further, while MIL-
STD-498 was cancelled in May 1998, the DIDs from MIL-
STD-498 have not been cancelled, although they may be
cancelled when the full use J-STD-016 is available.

The latest thinking on documentation is to use the nat-
ural work products of the development process for today’s
complex systems that are likely to need continuing evolution.
Rather than requiring the developer to add extra steps to the
development processes to transform software development
products into a prescribed standard format, the developer
may generate the required information directly from the
development environment — as long as the information is
usable by all stakeholders during initial and continued devel-
opment and sustainment. Thus, documentation may be in
the form of a requirements database, Computer-Aided
Software Engineering (CASE) tool data, software develop-
ment folders, and other artifacts produced during software
development. For these reasons, EIA/IEEE J-STD-016 and
MIL-STD-498 relaxed the requirements for documentation
form to concentrate on usable content, i.e. capturing engi-
neering and planning information in the form used for proj-
ect management and development activities.

Software Standards: Their Evolution and Current State

Table 2. A partial list of obsolete DIDs and usable replacements, excerpted
from Army Communications-Electronics Command Common
Equivalent (ECOM) Software Engineering Center Request for Proposal
Guidebook (www.sed. monmouth.army.mil/se), Operations, Strategic
Planning & Policy, RFP Guide.

J-STD-016 & MIL-STD-
498

22 Product
Descriptions

Titles & MIL-STD-498
DID#s

Computer Programming
Manual (CPM)
DI-IPSC-81447

Data Base Design
Description (DBDD)

DI-IPSC-81437

Interface Design
Description (IDD) DI-

IPSC-81436

Interface Requirements
Specification (IRS)

DI-IPSC-81434

Operational Concept
Description (OCD)

DI-IPSC-81430

Software Design
Description (SDD) DI-

IPSC-81435

Software Development
Plan (SDP) DI-IPSC-

81427

Software Product
Specification (SPS)

DI-IPSC-81441

Software Requirements
Specification (SRS)

DI-IPSC-81433

System/Subsystem
Design Description

(SSDD)
DI-IPSC-81432

Software Transition Plan
(STrP) DI-IPSC-81429

System/Subsystem
Specification (SSS)

DI-IPSC-81431

Software Test
Description (STD) DI-

IPSC-81439

Software Test Plan
(STP)

DI-IPSC-81438

Software Test Report
(STR)

DI-IPSC-81440

Software User Manual
(SUM)

DI-IPSC-81443

Software Version
Description (SVD)

DI-IPSC-81442

DOD-STD-2167A
17 DIDs

Titles & DID#s

Software Programmer’s
Manual DI-MCCR-

80021A

IDD
DI-MCCR-80027A

IRS
DI-MCCR-80026A

systems concept from
SSDD

SDD
DI-MCCR-80012A

SDP
DI-MCCR-80030A

SPS
DI-MCCR-80029A

plus maintenance pro-
grammers' procedures

from CRISD

SRS DI-MCCR-80025A

S/Segment DD DI-
CMAN-80534 (without

OCD data)

Computer Resources
Integrated Support
Document (CRISD)
DI-MCCR-80024A

(without maintenance
programmers' proce-

dures)

S/Segment S
DI-CMAN-80008A

STD
DI-MCCR-80015A

STP
DI-MCCR-80014A

STR
DI-MCCR-80017A

SUM
DI-MCCR-80019A

Version Description
Document

DI-MCCR-80013A

DOD-STD-7935A
11 DIDs

Titles & DID#s

Database
Specification

DI-IPSC-80692

interface design from
Unit Specification (US)

DI-IPSC-80691

interface requirements
from US DI-IPSC-

80691

systems concept from
Functional Description
(FD) DI-IPSC-80689

design from US, MM

section 7 of FD

Maintenance Manual
(MM) DI-IPSC-80696

requirements from Unit
Specification

DI-IPSC-80691

design data from FD
and System/

Subsystem Spec (SS)
DI-IPSC-80690

MM planning data

requirements from
FD, SS

detailed portion of Test
Plan (PT)

DI-IPSC-80697

high level portion of
PT

Test Analysis Report
DI-IPSC-80698

End User Manual
DI-IPSC-80694

DIDs
Superceded by MIL-

498 DIDs

MCCR-80021A

IPSC-80692; MCCR-
80305

MCCR-80027A

MCCR-80026A, 80303

IPSC-80689

MCCR-80012A, 80304,
80306; IPSC-80691

MCCR-80030A, 80297,
80298, 80299, 80300,

80319

MCCR-80029A, 80317;
IPSC-80696

MCCR-80025A, 80301

CMAN-80534; MCCR-
80302

MCCR-80024A

CMAN-80008A; IPSC-
80690

MCCR-80015A, 80310

IPSC-80697; MCCR-
80014A, 80307, 80308,

80309

MCCR-80017A, 80311;
IPSC-80698

MCCR-80019A, 80313,
80314, 80315; IPSC-

80694

MCCR-80013A, 80312

Useable Obsolete DIDS
Replacements

24 CROSSTALK The Journal of Defense Software Engineering December 1999

Are Current Software Standards Used?
Yes. Gary Hebert, a civilian electronics engineer at Hill AFB,
says he used IEEE/EIA 12207 to understand the current think-
ing on documentation. He had come from a 2167A back-
ground. He found that IEEE 12207 provided flexibility allow-
ing the use of electronic documents rather than hardcopy. Based
on this direction, his organization uses Ives Development’s
“Team Studio Analyzer” to capture the design of a Lotus Notes
database system. In this case, the tool generates a record describ-
ing the attributes for each of the Lotus Notes components, e.g.
forms, views, subforms, agents, scripts or subroutines. These
records are part of a documentation database. According to
Nigel Cheshire, CEO for Ives Development, one of the advan-
tages of a database over a traditional collection of documents is
the ability to generate reports against the database to verify that
the software design complies with an organization’s standards.
For example, you could generate a report to verify that each
user-editable field has help text attached as per your internal
corporate standard.

And no. In speaking with some Air Force personnel, I find
that early this year they were using MIL-STD-498 as a reference
document to recommend a series of software development doc-
uments and also to develop a concept of operations using the
Operational Concept Description Data Item Description
(DID). They were just barely aware of the commercial version
of the standard (J-STD-016) and were unaware of IEEE/EIA
12207.

An Update on J-STD-016
While MIL-STD-498 was cancelled in May 1998, the J-STD-
016 is still alive and well and is being updated. Those interested
can get the trial-use J-STD-016-1995 now, and will be able to
get the updated J-STD-016 when it is available. Both the trial-
use version and the full-use version will provide that same refer-

ence functionality they were getting from MIL-STD-498, but
with the benefit of the latest thinking.

With the DoD prohibition of putting standards on con-
tract, the provisions in J-STD-016 for contractual use will be
changed to provide for use as a basis of agreement on the activi-
ties and work products of the development process, where the
agreement may take any form, from a handshake to a formal
contract, and may be within an organization or between organi-
zations. The full-use standard will be intended for project-spe-
cific application, on legacy systems and in organizations that
have legacy processes (i.e., processes based on the old DoD stan-
dards), not as a basis of defining an organizational life cycle
process. The expectation is that defense and commercial devel-
opers and acquirers will use international and professional stan-
dards such as IEEE/EIA 12207 as a basis for their long-term
organizational process definition.

The conversion of J-STD-016 to a full-use standard was

Evolution of Software

Purpose: Describe the interface characteristics of one or more system, subsystem, hardware item, soft-
ware item, manual operation, or other system component. May describe any number of interfaces.

IEEE/EIA 12207.0 reference 5.3.5.2, 5.3.6.2

Content: The software item interface design description should include:
a) generic description information (See Table 3)
b) external interface identification
c) software component identification
d) software unit identification
e) external-software item interface definition (e.g., source language, diagrams)
f) software item-software item interface definition (e.g. source language, diagrams)
g) software component-software component interface definition (e.g., source language, diagrams)

Characteristics: The software item interface design description should:
a) support the life cycle data characteristics from annex H of IEEE/EIA 12207.0 (see 4.2 of this guide)
b) define types of errors not specified in the software requirements and the handling of those errors

Table 4. Description — software interface design from IEEE/EIA 12207.

Purpose: Describe a planned or actual function,
design, performance, or process.

A description should include:
a) date of issue and status
b) scope
c) issuing organization
d) references
e) context
f) notation for description
g) body
h) summary
i) glossary
j) change history

Table 3. Description — generic content guideline from IEEE/EIA 12207.

December 1999 CROSSTALK The Journal of Defense Software Engineering 25

delayed in Environmental Impact Analysis (EIA) balloting and
has been further delayed in combined EIA and IEEE ballot res-
olution due to a lack of resources to complete the resultant revi-
sions. Hopefully, by the time this article is published, re-ballot-
ing will be in progress and the schedule for its completion will
be available from the EIA and the IEEE.

EIA/IEEE J-STD-016 and MIL-STD-498 DIDs vs.

DOD-STD-2167A and DOD-STD-7935A
Table 2 provides usable product descriptions from J-STD-016
and DIDs from MIL-STD-498. The DIDs from DOD-STD-
2167A and DOD-STD-7935A were harmonized to produce the
DIDs of MIL-STD-498. The product descriptions in the
annexes of J-STD-016 are the commercial equivalents of the
DIDs in MIL-STD-498, and have the same names.

For each obsolete DID associated with DOD-STD-2167A
and 7935A, the table shows the corresponding usable J-STD-
016 product description and MIL-STD-498 DID. The table
also shows the DIDs that each MIL-STD-498 DID officially
superceded; some were from DOD-STD-2167A or 7935A and
some were from other MIL-STDs.

(Note that 498 has been cancelled, but as of this writing, the
DIDs have not been cancelled.)

Acknowledgements
I want to thank Marilyn Ginsberg-Finner for providing her com-
ments, the J-STD-016 updates, and Table 2. Les Dupaix, Dr. David
Cook, Gary Hebert, and Alex Polack, also contributed to this article.

About the Author
Reed Sorensen has more than 20 years experience
with TRW developing and maintaining software
and documentation of embedded and manage-
ment information systems; providing systems
engineering and technical assistance to program
offices, and consulting with many DoD organiza-
tions regarding their software configuration man-

agement and documentation needs. He provides configuration man-
agement, software control, interface control, and systems require-
ments analysis in support of intercontinental ballistic missile sustain-
ment, modifications, and replacement programs. Sorensen has pub-
lished several articles in CrossTalk on various software related subjects.

TRW ICBM Systems
Attn: Reed Sorensen N14GC

888 South 2000 East
Clearfield, Utah 84015-6216
Voice: 801-525-3357
Fax: 801-525-3355
E-mail: Reed.Sorensen@siinet.trw.com

References
1. Some sources of lists — http://www-library.itsi.disa.mil./,

http://standards.ieee.org/catalog/index.html,
http://global.ihs.com/cgi-bin/litmus_test.cgi?FRIT
TER=134547&NODE=PC

2. Polydys, M.L., “Operation Data Storm: Winning the
Interoperability War through Data Element
Standardization,” CrossTalk, July 1999.

3. MIL-STD-483, Configuration Management Practices,
1970.

4. MIL-STD-490, Specification Practices, 1968.
5. DOD-STD-2167, Defense System Software Development,

1985.
6. J-STD-016, Software Lifecycle Processes, 1999.
7. IEEE/EIA 12207, Industry Implementation of

International Standard ISO/IEC 12207:1995 (ISO/IEC)
Standard for Information Technology, 1998.

8. MIL-STD-498, Software Development and
Documentation, 1994.

9. Yourdon, Edward, Rise and Resurrection of the American
Programmer, Yourdon Press Computing Series, page 128.

10. Perry,William J., Secretary of Defense, DoD Policy on the
Future of MILSPEC, CrossTalk September 1994.

Notes
1. This came when the advent of written language by the

press made it available on a scale of a magnitude greater
than handwriting provided.

2. A series of international standards on quality.
3. Alex Polack notes that from the mid-1980s to the mid-’90s,

there was a tendency to use standards as a club to beat up or
monitor developers. Marilyn Ginsberg-Finner notes that
within current DoD acquisition reform policy, standards are
primarily guidance to developers in defining their software
process and standards are still essential as a basis for acquirers
to evaluate the processes, activities, and work products that an
offeror proposes and provides.

4. IEEE/EIA 12207.1-1997 “Table 1 - Information item
matrix” references standards, including J-STD-016 that
have DID-like guidance.

Software Standards: Their Evolution and Current State

— current and past issues (1994-present)
— author guidelines
— subscription form (to subscribe or update

reader contact information)

— theme announcements (editorial calendar)
— send us an e -mail or letter to the editor
— search for articles on many software engineering

topics

What is on the Web?
CrossT alk online!

Visit http://www.stsc.hill.af.mil to find:

26 CROSSTALK The Journal of Defense Software Engineering December 1999

18
50

19
40

George Boole
represents
logic states
with zeros,
numbers

Claude Shannon recog-
nizes relationship

between Boolean logic
and electronic circuits

19
47

Howard Aiken, part of an IBM-backed
team at Harvard, predicts that the

United States will need a total of six
electronic digital computers.

19
50

Adm. Grace Murray Hopper
invents the modern concept of the

compiler and is instrumental in
Common Business-Oriented

Language (COBOL).

FORTRAN (FORmula
TRANslator) is born,

designed by John Backus for
IBM. Oldest high-level pro-

gramming language.

La
te

19
50

s

Douglas Engelbart, working at
Stanford Research Institute,

receives a patent on the
mouse; he demonstrates his
keyboard, keypad, mouse,

and windows system in 1968.

19
63

19
65

Internet is born when
Leonard Kleinrock, a

professor at the
University of California
at Los Angeles, gives
the order to send the
first message over the

Net. After typing in “log,”
the system crashed.

19
69

Ted Nelson
introduces
concept of

hypertext, the
language of
the World
Wide Web

and an alter-
native con-

cept in data-
base design.

Influential Men and Women of Software
Kathy Gurchiek

CrossTalk Managing Editor

Looking at the Evolution of Software would not be complete without a nod to those software
heavyweights whose contributions furthered software development. Below, CrossTalk recog-
nizes some of those people.

Charles Babbage
Inventor in the early 1800s of the difference engine and
design for the analytical engine. He was a well-educated
young man in Great Britain who wanted to be a mathemati-
cian and scientist. One evening in 1812 while studying a
table of logarithms, he realized calculating them could be
automated and he began to design the Analytical Engine for
that purpose. Like projects since, it was never completed
due to cost overruns and reluctance by the British to provide

additional funding.

Lady Ada
Augusta Byron
Countess of Lovelace and
daughter of poet Lord
Byron, she was a 19th
century mathematician

who has unofficially been called the first
computer programmer. Through lengthy
correspondence and notes during the 1800s,

she interpreted Babbage’s “thinking
machine,” and was able to foresee,

and describe in simple terms, the
symbolic processing by machine.

Alan Turing
In the 1930s he developed what is now known as the Turing Machine, a theo-
retical computer that could “compute all that is computable” using limited
instructions and infinite working storage. Using it as standard, two Italian
mathematicians proved that any programming language needed only the
sequence, the decision statement, and the iterative looping structure to imple-
ment any computable algorithm.

"It would appear that we
have reached the limits of what it is

possible to achieve with computer tec h-
nolog y, although one should be careful
with such statement s, as they tend to

sound pretty silly in five year s.”
— John Von Neumann,

1949

SO F TWARE TIME LINE

Alan Kay
Credited with coin-

ing the term
“object-oriented”

(OO) programming
language, a term
which came into
use in 1970, four
years after the first
OO programming
language (Simula)
was introduced.

December 1999 CROSSTALK The Journal of Defense Software Engineering 27

Influential Men and Women of Software

Barry W. Boehm
While employed by
TRW Corp., Boehm
wrote Software
Engineering Economics.
Published in 1981, it
completely described the
Constructive Cost Model
(COCOMO) used in software
cost and schedule estimation.
With his book, this model quickly
gained popularity and user’s
groups emerged throughout the
world.

Edward Yourdon
The publisher of American Programmer is
widely known as the developer of the
method of structured systems analysis and
design.

W atts S. Humphrey
Research scientist for the
Software Process Program he
founded as part of the Software
Engineering Institute located in

Pittsburgh. He is the author of A
Discipline for Software Engineering

(1995), Managing Technical People (1996),
and Introduction to the Personal Software Process
(1997).

References:
1. Marciniak, John J., Editor-in-Chief, Encyclopedia of Software Engineering, John Wiley & Sons Inc., New York, 1994, pages 25, 36,

103, 408, 605, 688-89, 691, 721.
2. World Wide Web History Project, http://www.webhistory.org/historyday/abstracts.html
3. Humphrey, Watts, CrossTalk: The Journal of Defense Software Engineering, February 1999
4. Keyes, Jessica, Software Engineering Productivity Handbook, McGraw Hill, 1992, pp. 80, 116, 332.
5. A Brief History of the Computer, http://www.qvctc.commnet.edu/classes/csc277/timeline.html

A d m .
“A m a z i n g ”
Grace Murray
H o p p e r
Creator of Common Business

Oriented Language (COBOL). She was an officer in
the Navy who became an Admiral. COBOL came
about in the 1950s when the need for higher order
languages was seen as a way to increase the produc-
tivity of programming computer applications.

Xerox engineers create
the Alto, a graphical
user interface (GUI)-

based computer.

19
70

IBM introduces
the first floppy
disk, an 8-inch

plastic disk.

19
71

Xerox’s Gypsy
word-processing
system is one of
the first termed

WYSIWYG (What
You See Is What

You Get).

19
75

Constructive Cost Model
developed by Barry Boehm.

19
81

In July, AT&T Bell
Labs designs the
C++ programming

language.

19
83

Christmas Day,
Berners-Lee

completes the
first web

browser and
server.

19
90

19
93

February, the Center for
National Supercomputing
Applications releases the
Mosaic, the first widely
accepted web browser.

The language that
was to become

known as Ada is
officially named.

19
79

Software industry is $200
billion-plus, and the industry

continues to grow.

19
99

Editor’s note:
For a humor-
ous look at the
history of com-
puter science,
check out the
time line at
http://baet-
zler.de/humor/
hist_cs.html

Capers Jones
Known for work in the quantification of software productivity and quality,
and in developing estimation and measurement tools, which use his quantifi-
cation methods. In the early 1970s, he noticed there was a consistent bias in
software project data. The discovery of bias patterns in lines of code metric
confirmed the economic validity of Allan Albrecht’s function point metric.
His book, Programming Productivity, was the first to quantify the paradox of
lines of code metrics and show the bias by language level.

"Technology
makes it possible for

people to gain control
over ever ything, except

technology. "
— John Tudor

Tim Berners-Lee
Inventor of the World Wide Web, which runs on the Internet, and hailed by
Time magazine as one of the 100 greatest minds of this century. The web made
the Internet useable and useful to all types of people and applications. Before the
web was born, the Internet was used mostly by scientists and the military and one
had to be a progammer to make use of it. He is the director of the World Wide
Web Consortium at the MIT Laboratory for Computer Science.

28 CROSSTALK The Journal of Defense Software Engineering December 1999

Article Author Month

Best Practices
“Improving Software Engineering Practice” P. Sanders January
“High-Leverage Best Practices — What Hot Companies are N. Brown October

Doing to Stay Ahead and How DoD Programs Can Benefit”
“16 Critical Software Practices for Performance-Based Management” J. Lochner October
“Software Mini-Assessments: Process and Practice” G. Natwick, G. Draper, October

L. Bearden
“Experience in a Bottle: How Boeing D. Corbin, R. Hamerly, October

Captured its Assessment Best Practices” R. Cox, K. Knight
“A Multi-Site Software Process Framework” R. Porter Jr. October

D. DeToma
“A Problem-Based Approach to Software Process Improvement: J. Rothman October

A Case Study”
“Best Practices — Presentation is as Important as the Issue” G. Jackelen October

CMM Level 5
“The Capability Maturity Model: A Summary” M. Paulk, et. al May
“The Journey to CMM Level 5: A Time Line” P. Cosgriff May
“Benefits Realized from Climbing the CMM Ladder” L. Oldham, D. Putman, May

M. Peterson, B. Rudd,
K. Tjoland

“The Right Things for the Right Reasons” P. Cosgriff May
“Assessing a Level 5 Organization” M. Paulk, D. Putman May

Configuration Management
“CCB — An Acronym for “Chocolate Chip Brownies”? R. Sorensen March
“Using CM to Recapture Baselines for Y2K Compliance Efforts” R. Starbuck March
“Configuration Management: Coming of Age in The Year 2000” C. Burrows March

Defense Information Infrastructure Common Operating Environment
“Introduction to the DII COE Environment” P. Engbert, J. Surer September
“Extending the DII COE for Real-Time” Lt. Col. Robillard, September

H. Rebecca Callison,
J. Maurer

+ “Overview of the DII COE 4.0 Kernel” S. Chubin, T. McVittie, September
R. Miller

Evolution of Software
“Software Standards: Their Evolution and Current State” R. Sorensen December
“Evolution of Programming Languages and Why a Language is Not Enough D. Cook December

to Solve Our Problems”
“21st Century Engineer” L. Carter, S. Dufaud December
“Influential Men and Women of Software” K. Gurchiek December

Interviews
“Up Close with Dr. Etter” K. Gurchiek July
“Up Close with Gen. Lyles” K. Gurchiek December

Java
“Real-World Java Development Experiences” J. Soller, J. Clingenpeel, January

P. Hayes Jr., M. Muday,
B. Larsen, T. Jones

CrossTalk Article Index: 1999
+ Articles marked with a plus sign appear only in the web edition of CrossTalk.

December 1999 CROSSTALK The Journal of Defense Software Engineering 29

Measures and Metrics
“An Effective Metrics Process Model” Capt. T. Augustine, June

C. Schroeder
“PSM Insight: The Army-DoD Tool to Implement D. Lucero June

Issue-Driven Software Measurement”
“It Is the People Who Count In Measurement: C. Dekkers, M. Bradley June

The Truth about Measurement Myths”

Miscellaneous
“Software Product Lines” P. Clements February
“Design Maturity Model” D. Przebowski June
“Privatization of the Web: Hidden Economic Backhand” J. Brower June
“Operation Data Storm: Winning The Interoperability M. Polydys July

War through Data Element Standardization”
“Determining the Completed Effort of Adapting Existing Software” R. Cobb, D. Wood, November

L. Smeraglinolo
“Evolution of CrossTalk” T. Stauder December

Project Management
“Managing (the Size of) Your Projects” C. Dekkers February
“Applying Management Reserve To Software Project Management” W. Lipke March
“Gaining Confidence in Using Return On Investment and Earned Value” L. Smith, April

A.Todd Steadman
“PAIR: A Rational Approach to Fighting Software Project Fires” G. Daich June
“Earned Value Project Management: An Introduction” Q. Fleming, J. Koppelman July
“Something from Nothing” J. Smedra July
“Managing Risk Management” A. Neitzel Jr. July

Requirements Management
“Writing Effective Natural Language Requirements Specifications” W. Wilson February
“Making Requirements Management Work For You” A. Davis, D. Leffingwell April
“Validating Software Requirements” J. Sharp November

Simulation
“Building Self-Reconfiguring Distributed Simulations Lt. Col. Welch, January

Using Compensating Reconfiguration” J. Purtilo
“Simulation: An Enabling Technology In Software Engineering” A. Christie April

Software Acquisition
“Outsourcing and Privatizing Information Technology” J. Brower January
“Acquisition Software Oversight” D. Etter August
“Using Contractor Capability Evaluations to Reduce B. Troup, B. Gallagher August

Software Development Risk”
“Effective Acquirer/Supplier Software Document Reviews” G. Daich August
“Product Line Acquisition in the DoD: The Promises, The Challenges” L. Jones August
“The Software Insight Tool: A Tool and Methodology J. Kastning, J. Herman, August

for Risk Mitigation and CIO Assessments” M. Ginsberg-Finner,
J. Heil

“Outsourcing Acquisition and Procurement Shops” J. Brower November

Software Process Improvement
“Using the TSP on the TaskView Project” D. Webb, W. Humphrey February
“The Rosetta Stone” D. Reifer, B. Boehm, February

S. Chulani
“Sponsoring Process Improvement” Col. H. Mason April
“USDA’s National Finance Center: A 10-Month Journey to Level 2 A. Todd Steadman June
“Mission-Critical and Mission-Support Software: E. Clark, J. Forbes, June

A Preliminary Maintenance Characterization” E. Baker, D. Hutcheson
“The Five Stages of Denial” R. Bechtold September

CrossTalk Article Index: 1999

30 CROSSTALK The Journal of Defense Software Engineering December 1999

1999 Article Index

Software Quality Assurance
“Effective Software Defect Tracking” B. Subramaniam April
“Software Quality Assurance in a CMM Level 5 Organization” R. Craig May
“Confusing Process and Product: Why the Quality is not There Yet” D. Cook July
“Performing V&V in Architecture-Based Software Engineering” E. Addy September

Technology Change Management
+ “Managing Software Innovation And Technology Change Workshop” E. Forrester, P. Fowler, November

S. Guenterberg
“Integrating Knowledge and Processes In the Learning Organization” [pt. 1] L. Levine November
“Structured Approaches to Managing Change” M. Paulk November
“Addressing People Issues when Developing and Implementing C. Laporte, S. Trudel November

Engineering Processes”
“Rapid Emerging Knowledge Deployment” K. Marler November

Y2K
“ Year 2000 Compliance 1999 Reporting Requirements” A. Money January
“The Network is Down…” Capt. C. Walter January
“Estimating Y2K Rework Requirements” L. Fischman, P. McQuaid January
“Effective Methods for Testing Year 2000 Compliance” W. Perry January
“The Upside of Y2K” J. Hubbs February
“Logical Event Contingency Planning for Y2K” R. Moore, R. Krupit March
“A Y2K Integration Test Model” W. Dashiell September
“Who is to Blame for the Y2K and Similar Bugs?” A. Jarvis, V. Crandall, September

C. Snow
+ “Y2K Defect Propagation Risk Assessment using Achilles” D. Welch, K. Greaney November

BackTALK
How Far Have We Come? D. Cook December
What is the Buzz about Change? G. Petersen November
Who Knows Best? G. Petersen October
One Flew Over the Cuckoo’s Cubicle G. Petersen September
Software and the 15th Century G. Petersen August
Farewell from Lorin May L. May July
The Acid Test: Measuring Your Success G. Petersen June
The Key to Effective Writing and Coding: Quality Assurance L. May May
Vinegar and Dye Pellets Not Included L. May April
Don’t Forget the Feather Boa L. May March
Legacy of the Information Age L. May February
Need Proof? Call 1-900-Y2K-SHAM L. May January

From the Publisher

Endless Possibilities R. Alder December
CMMI Offers an Enterprise Focus for Teahnology Change Management Lt. Col. J. Jarzombek November
Practice Makes Perfect T. Stauder October
The Strategic Battlefield R. Alder September
Integrating Acquisition with Software and Systems Engineering Lt. Col. J. Jarzombek August
Sharpening Your Management Skills T. Stauder July
The Need for a Measurement and Analysis Process: Lt. Col. J. Jarzombek June

Focusing on Guidance for Process Improvement
Process Maturity Pays Off in Many Ways D. Wynn May
Test Drive Your Software T. Stauder April
Who Needs John Wayne? R. Alder March
Software Knowledge Management-Strengthening Our Community of Practice Lt. Col. J. Jarzombek February
Short-Term Fixes Shade Future F. Brown January

Lt. Col. Joe Jarzombek

Reuel S.Alder

Tracy Stauder

Kathy Gurchiek

Heather L. King

Heather Winward

801-775-5555 DSN 775-5555
801-777-8069 DSN 777-8069
crosstalk.staff@hill.af.mil
http://www.stsc.hill.af.mil
http://www.stsc.hill.af.mil/
Crosstalk/crostalk.html
http://www.esip.hill.af.mil

Subscriptions: Send correspondence concerning subscrip-
tions and changes of address to the following address:

Ogden ALC/TISE
7278 Fourth Street
Hill AFB, Utah 84056-5205
E-mail: stsc.custserv@hill.af.mil
Voice: 801-775-5555
Fax: 801-777-8069 DSN 777-8069

Editorial Matters: Correspondence concerning Letters to
the Editor or other editorial matters should be sent to the
same address listed above to the attention of CROSSTALK Editor.

Article Submissions: We welcome articles of interest to the
defense software community.Articles must be approved by the
CROSSTALK editorial board prior to publication. Please follow the
Guidelines for CROSSTALK Authors, available upon request.We do not
pay for submissions. Articles published in CROSSTALK remain the
property of the authors and may be submitted to other publica-
tions.

Reprints and Permissions: Requests for reprints must be
requested from the author or the copyright holder. Please
coordinate your request with CROSSTALK.

Trademarks and Endorsements: This DoD journal is an
authorized publication for members of the Department of
Defense. Contents of CROSSTALK are not necessarily the official
views of, or endorsed by, the government, the Department of
Defense, or the Software Technology Support Center. All
product names referenced in this issue are trademarks of
their companies.

Coming Events:We often list conferences, seminars, sympo-
siums, etc., that are of interest to our readers.There is no fee
for this service, but we must receive the information at least
90 days before registration. Send an announcement to the
CROSSTALK Editorial Department.

STSC Online Services: This can be reached on the Internet.
World Wide Web access is at http://www.stsc.hill.af.mil.
Call 801-777-7026 or DSN 777-7026 for assistance, or e-mail
to schreifr@software.hill.af.mil.

Back Issues Available:The STSC sometimes has extra copies
of back issues of CROSSTALK available free of charge. If you
would like a copy of the printed edition of this or another
issue of CROSSTALK, or would like to subscribe, please contact
the customer service address listed above.

The Software Technology Support Center was established
at Ogden Air Logistics Center (AFMC) by Headquarters U.S.
Air Force to help Air Force software organizations identify,
evaluate, and adopt technologies that will improve the quality
of their software products, their efficiency in producing them,
and their ability to accurately predict the cost and schedule of
their delivery. CROSSTALK is assembled, printed, and distributed
by the Defense Automated Printing Service, Hill AFB, Utah
84056. CROSSTALK is distributed without charge to individuals
actively involved in the defense software development
process.

To put the evolution of software in perspective, you need to understand the
typical mentality of new programmers and coders fresh from college and technical
school. It will really make you feel “mature” and “experienced” — both
euphemisms for “old” — to understand that today’s new programmers . . .

• Think that seven- and nine-track tapes were variations of eight-track tapes.
Somehow, the “Beach Boys” come to mind when you mention them.

• Think that Core Memory has to do with business values.
• Have never used a punch card, cannot tell you how many columns are on a

punch card, and do not understand what a keypunch machine is.
• Have never saved the confetti-like bits of paper from a keypunch to use later.

Of course, the correct use was to trash a friend’s desk or car. (The bits of
paper were called chaff or chad. If you want to know why it was called chad,
e-mail me at david.cook@hill.af.mil).

• Vaguely remember when floppy drives were floppy. If they remember “real”
floppies, they think they were always 5¼ inches (remember 8-inch floppies?).

• Do not feel fear and revulsion when they hear the acronym JCL. They do not
even know it means Job Control Language.

• Think that loading a word processor that consumes 40-plus megabytes of
memory is no big deal.

• Think that leasing a machine means going to CompUSA and spending under
$100 per month.

• Cannot remember not having a hard drive to copy files to. Remember
copying files on a one-floppy machine? It was like playing the accordion to
copy multiple files.

• Cannot comprehend editing a file without using a mouse — and if they have
Unix experience, never used VI (visual information) and probably like
EMACS!

• Have never coded in a language that required segmentation or overlays of code.
• Never used a calculator — or heaven forbid, a slide rule — to check the

correctness of a FORTRAN program.
• Have never read — or probably even seen — a core dump, and have never

had to calculate a physical vs. virtual address to debug.
• Think that ASCII (the American National Standard Code for Information

Interchange) is the only character set, and have never heard of EBCDIC
(Extended Binary Coded Decimal Interchange Code). (Remember?
Nonsequential character sequences, multiple versions, and important
characters missing).

• Have never waited hours — or days — for the results of a compile. (Because
of this, they have never understood the importance of desk-checking code
prior to a compile.)

• Cannot remember when compile-link-load-execute were separate steps in
running a program. (Each step took a separate deck of JCL cards!)

• Think that “booting” a machine only requires one to turn on the power.
• Have always used WYSIWYG (What You See Is What You Get) word

processors. If you did not already know that acronym, you are the youngster
this column is aimed at.

• Never sweet-talked an operator into upping the priority of a job to get a
quicker compile. (They probably do not understand what a computer
operator really does.)

• Have become accustomed to using an operating system that crashes or hangs
routinely, sometimes multiple times per day.

— David Cook, Software Technology Support Center

December 1999 CROSSTALK The Journal of Defense Software Engineering 31

How Far Have We Come?

Got an idea for BACKTALK? Send an e-mail to crosstalk.staff@hill.af.mil

SPONSOR

PUBLISHER

ASSOCIATE
PUBLISHER

MANAGING
EDITOR

ASSOCIATE
EDITOR/LAYOUT

ASSOCIATE
EDITOR/FEATURES

VOICE

FAX

E-MAIL

STSC ONLINE

CROSSTALK ONLINE

ESIP ONLINE

BackTALK

Evolution of Programming Languages and Why a Language
is Not Enough to Solve Our Problems

Why the languages have evolved, and what capabilities the newer languages give us.

The Evolution of CrossTalk
A look back at the history of CrossTalk The Journal of Defense Software Engineering.

21st Century Engineer
An excerpt from a forthcoming book by Lynn Robert Carter of SEI and Lt. Col Scott Dufaud.

Software Standards:Their Evolution and Current State
The last 30 years of software standards development in the Department of Defense.

Influential Men and Women of Software
Software heavyweights whose contributions furthered software development.

CROSSTALK

Ogden ALC/TISE
7278 Fourth Street
Hill AFB, UT 84056-5205

BULK RATE
US POSTAGE PAID

Permit No. 481
Cedarburg,WI

David Cook 7

2 From the Publisher: Endless Possibilities
6 Poll Question responses

20 Coming Events
31 BackTALK: How Far Have We Come?

Letter to the Editor 3
Quote Marks 12
CrossTalk Article Index: 1999 28
Call for Articles 30

AnnouncementsDepartments and

Lynn Robert Carter 14
Lt. Col. Scott Dufaud

Kathy Gurchiek 4

Reed Sorensen 21

Up Close with General Lester L. Lyles
General Lyles’ thoughts on the history and future of software engineering in the Department of Defense.

ManagementPolicy and

Kathy Gurchiek 26

SoftwareEvolution of

Tracy Stauder 13

	Cover
	From the Publisher
	Letter to the Editor
	Up Close with General Lester L. Lyles
	Poll Question Responses
	Evolution of Programming Languages
	Quote Marks
	The Evolution of CrossTalk
	21st Century Engineer
	Coming Events
	Software Standards
	Influential Men and Women of Software
	CrossTalk Article Index: 1999
	BackTALK
	Index

