

2 CROSSTALK The Journal of Defense Software Engineering February 2001

Software Measurement Programs and Industry Leadership
A review of consulting studies shows that companies that are successfully improving quality
and schedules are the ones with the best measurements.

by Capers Jones

Applying Function Point Analysis to Requirements Completeness
Function point analysis provides analysts with one extra frame of reference to gauge
completeness of known user requirements.

by Carol Dekkers and Mauricio Aguiar

Measure Size, Complexity of Algorithms Using Function Points
Breaking down algorithms into functional components is a repeatable and reliable way
to measure size and complexity, estimate cost, and develop schedule.

by Nancy Redgate and Charles B. Tichenor

The Nine-Step Metrics Program
The Software Technology Support Center at Hill AFB, Utah, developed a process that
logically groups the SEI’s CMMI measurement steps by activity type.

by Timothy K. Perkins

CMM Level 4 Quantitative Analysis and Defect Prevention
Statistical process control can provide valuable information that is used in defect prevention and lessons learned
during software development.

by Al Florence

Evolving Function Points
Findings show that simple semantic changes eliminate inconsistencies and make function points easier to learn.

by Lee Fischman

4

8

12

16

Departments

On the Cover:
Kent Bingham,
Digital Illustration
and Design, is a
self-taught graph-
ic artist/designer
and freelances
print and Web
design projects.
His portfolio is at
www.adobe.com/
eportfolio/
kentbingham

3

31

From the Publisher

19 Measurement Web Sites

7 Letter to the Editor

27 Quote Marks

27 Coming Events

28 STC 2001 Announcement

BackTalk

20

24
Open

Best

Forum

Practices

MeasurementSoftware

LLtt.. CCooll.. GGlleennnn AA.. PPaallmmeerr

RReeuueell SS.. AAllddeerr

EElliizzaabbeetthh SSttaarrrreetttt

PPaamm BBoowweerrss

MMaatttthheeww WWeellkkeerr

HHeeaatthheerr WWiinnwwaarrdd

AAbbbbyy HHaallll

801-586-0095
801-777-5633
crosstalk.staff@hill.af.mil
www.stsc.hill.af.mil/
Crosstalk/crostalk.html
www.crsip.hill.af.mil

SSuubbssccrriippttiioonnss: Send correspondence concerning
subscriptions and changes of address to the follow-
ing address.You may e-mail or use the form on p. 30.

Ogden ALC/TISE
5851 F Ave., Bldg 849, Rm B-04
Hill AFB, Utah 84056-5713

AArrttiiccllee SSuubbmmiissssiioonnss:We welcome articles of interest to the
defense software community. Articles must be approved by
the CROSSTALK editorial board prior to publication. Please fol-
low the Author Guidelines, available at www.stsc.hill.af.mil/
CrossTalk/xtlkguid.pdf. CROSSTALK does not pay for submis-
sions. Articles published in CROSSTALK remain the property of
the authors and may be submitted to other publications.
RReepprriinnttss aanndd PPeerrmmiissssiioonnss:: Requests for reprints must be
requested from the author or the copyright holder. Please
coordinate your request with CROSSTALK.
TTrraaddeemmaarrkkss aanndd EEnnddoorrsseemmeennttss:: This DoD journal is an
authorized publication for members of the Department of
Defense. Contents of CROSSTALK are not necessarily the
official views of, or endorsed by, the government, the
Department of Defense, or the Software Technology
Support Center.All product names referenced in this issue
are trademarks of their companies.
CCoommiinngg EEvveennttss: We often list conferences, seminars, sym-
posiums, etc. that are of interest to our readers. There is
no fee for this service, but we must receive the information
at least 90 days before registration. Send an announcement
to the CROSSTALK Editorial Department.
SSTTSSCC OOnnlliinnee SSeerrvviicceess:: at www.stsc.hill.af.mil.
Call 801-777-7026, e-mail: randy.schreifels@hill.af.mil.
BBaacckk IIssssuueess AAvvaaiillaabbllee:: The STSC sometimes has extra
copies of back issues of CROSSTALK available free of charge.
TThhee SSooffttwwaarree TTeecchhnnoollooggyy SSuuppppoorrtt CCeenntteerr was established
at Ogden Air Logistics Center (AFMC) by Headquarters
U.S. Air Force to help Air Force software organizations
identify, evaluate, and adopt technologies to improve the
quality of their software products, efficiency in producing
them, and their ability to accurately predict the cost and
schedule of their delivery.

SPONSOR

PUBLISHER

ASSOCIATE PUBLISHER

MANAGING EDITOR

ASSOCIATE
EDITOR/LAYOUT

ASSOCIATE
EDITOR/FEATURES

GRAPHIC DESIGNER

VOICE

FAX

E-MAIL

CROSSTALK ONLINE

CRSIP ONLINE

CrossTalk

February 2001 www.stsc.hill.af.mil 3

From the Publisher

Software Measurement Is Inherent to Project Success

My belief and dedication in the notion that institutionalized measurement is a crit-
ical factor in the success of software projects goes back many years. As a quality
manager for a state-of-the-art computer-aided engineering software system, I ver-

ified the needs and benefits of measuring and analyzing software product quality more than
15 years ago. Since then I have spent many years in the promotion and improvement of

measurement as a basic tool in software and systems development. This issue of CROSSTALK aims to
give our readers a few ideas regarding using measurement in a software environment.

In The Nine-Step Metrics Program, Tim Perkins covers the basics in considering how to set up a
measurement program. He provides some insight for beginners on what measurements to collect
and how to use measurements once they are collected.

At the other end of the maturity scale, Al Florence’s article CMM Level 4 Quantitative Analysis
and Defect Prevention gives project examples of how the use of rigorous statistics can easily and
effectively be used in a software setting. His real-project examples detail how focusing on product
quality allows a high maturity organization to move forward in defect prevention.

Lee Fischman’s article Evolving Function Points analyzes the question: “What is wrong with
function points?” He recommends a few changes to current function point methods that would
result in a more user-friendly function point standard.

This issue also contains two articles focusing on somewhat unique uses of function points. The
first relates to using function points to help measure size and complexity of software algorithms and is
written by Nancy Redgate and Charles B. Tichenor. They describe a method that breaks down a math-
ematical algorithm into its functional components to produce a repeatable and reliable method for
determining algorithm size and complexity. The second article is Applying Function Point Analysis to
Requirements Completeness by Carol Dekkers and Mauricio Aguiar. As the title indicates, this article
highlights how the software sizing technique “function point analysis” can be a valuable tool and a
structured method for doing a requirements review.

In Software Measurement Programs and Industry Leadership, Capers Jones significantly points
out that the most successful companies are those with very sophisticated quality and productivity
measurement programs in place. He reviews the measures used by leading businesses showing how
these are the companies most successful in improving quality and shortening delivery schedules.

Readers should also be aware that a new version of Practical Software and Systems Measure-
ment is being released. The effort has now evolved into an updated version encompassing systems
engineering measurements as well as software measurements. Check the Web site at www.psmsc.com
for this latest version and information on PSM’s Technical Working Group meeting scheduled Feb.
13-14, 2001 in Herndon, Va.

I hope this issue of CROSSTALK along with other resources pointed to within this issue will
provide the ability to move forward in improving your organization’s understanding and use of
measurement.

H. Bruce Allgood
Section Chief, TISEA

Software Measurement Programs and Industry Leadership
Capers Jones

Software Productivitiy Research Inc.

This author and Software Productivity Research Inc. were
able to gather data on software projects from more than

600 companies and about 25 government agencies. The total
volume accumulated since 1985 amounts to more than 10,000
software projects. Most of our clients are large Fortune 500 cor-
porations although we have done studies for several defense
contractors, as well as for the Air Force and Navy.

This article summarizes the best measurement practices
noted among these clients, which are in the upper quartile of
overall productivity measured in terms of function points per
staff month. Unfortunately there are no military or defense
projects in the upper 25 percent of productivity data, or even
in the upper half. This is due to older military standards such as
the Department of Defense (DoD) 2167, which triggered the
production of specifications and control documents nearly three
times larger than civilian norms for the same size projects.
Although many military projects are in the upper quartile in
terms of software quality, the DoD is on the bottom in terms
of productivity levels. Therefore most of the measurement prac-
tices described here were noted among large Fortune 500 com-
panies. However, we have observed similar sets of measurements
among top defense contractors.

In general, software is a troubled technology plagued by
project failures, cost overruns, schedule overruns, and poor
quality levels. Even major corporations such as Microsoft have
trouble meeting published commitments, or shipping trouble-
free software. But not all companies experience software disas-
ters. Some have mastered software development and can achieve
better than average results. When assessing successful software
development companies, we always encounter sophisticated
measurement programs.

In every industry there are significant differences between
the leaders and the laggards in terms of market shares, techno-
logical sophistication, and quality and productivity levels. In the
software industry one of the most significant differences is that
the leaders know their quality and productivity levels because
they measure them. The laggards do not measure. Therefore the
laggards do not have a clue as to how good or bad they are.
Consider three basic comparisons between your company and
its competitors:
• Is your software quality better?
• Is your software productivity better?
• Is your company’s time to market better?

If you cannot answer these questions, what do you think
are your chances to compete against enterprises that do know
the answers? If you do not know your software quality and pro-
ductivity rates, your company and your job are at risk. Your

company may also face litigation risk.
Measurement is only part of a suite of key factors leading to

software excellence that includes:
• Good measurements.
• Good managers and technical staffs.
• Good development and maintenance processes.
• Complete software tool suites for managers and developers.
• Good organization structures.
• Specialized staff skills.
• On-the-job training.
• Good personnel policies.
• Good office environments.
• Good communications.

But measurement is a root technology that allows companies
to make visible progress in improving the other factors. Without
good measurements, progress is slow and may even turn negative.

Companies that do not measure tend to waste scarce invest-
ment dollars on approaches that consume time and energy but
accomplish very little. Surprisingly, investment in good quality
and productivity measurement programs has one of the best
returns on investment of any known software technology.

Qualities that Industry Leaders Measure
The best way to decide what to measure is to find out what
industry leaders measure, and then measure the same things.
Following are the kinds of measurements we have noted at com-
panies that have achieved or exceeded Level 3 on the Software
Engineering Institute’s (SEI) Capability Maturity Model®, have
won Malcolm Baldrige awards, and are widely respected within
the industry. These same companies were in the top quartile for
all companies in terms of software quality and productivity levels.

Every leading company measures software quality. There are
no exceptions. If a company does not measure quality, it is not an
industry leader, and there is a good chance that software quality
levels are hazardous. Quality is the most important topic of meas-
urement. Here are the most important quality measures:

Customer Satisfaction
All leaders perform annual or semiannual customer satisfaction
surveys. They also provide blank defect reports or customer
complaint forms as part of the user manuals or inside software
packaging. Defect reports via the Internet are also supported by
industry leaders. Many leaders in the commercial software
world have very active user groups and forums on information
services. These groups often produce independent quality and
satisfaction surveys.

Software Measurement

4 CROSSTALK The Journal of Defense Software Engineering February 2001

Consulting studies carried out by the author and his colleagues at several hundred companies and some
government agencies shows that the leading organizations tend to have very sophisticated quality and pro-
ductivity measurement programs in place. This article covers the highlights of the measurement programs
noted among companies in the top 25 percent of productivity and quality results in the United States.

® The Capability Maturity Model and CMM are registered trademarks
of the Software Engineering Institute and Carnegie Mellon University.

Defect Quantities
Leaders keep accurate records of bugs or defects found in all
major deliverables; they start early during requirements or
design. At least five categories of defects are measured:
1. Requirements defects.
2. Design defects.
3. Code defects.
4. Documentation defects.
5. Bad fixes (secondary bugs introduced accidentally while fixing

another bug).

Defect Removal
Leaders know the average and maximum efficiency of every major
type of review, inspection, and test; they select optimum series of
removal steps for projects of various kinds and sizes. Pretest
reviews and inspections are normal among organizations with
ultra-high quality, since testing alone is not efficient enough.
Leaders remove from 95 percent to more than 99 percent of all
defects prior to software delivery. Laggards seldom exceed 80 per-
cent defect removal efficiency, and may drop below 50 percent.

Delivered Defects
Leaders begin to accumulate user-reported error statistics as
soon as the software is delivered. Monthly reports are prepared
and given to executives to show the defect trends against all
products. These reports are summarized on an annual basis.
Supplemental statistics such as defect reports by country, state,
industry, client, etc. are also included.

Defect Severities
All industry leaders, without exception, use some type of severity
scale to evaluate incoming bugs or defects reported from the field.
The number of plateaus vary from one to five. In general,
“Severity 1” are problems that cause the system to fail completely,
then the severity scale descends in seriousness.

Reliability/Availability
Application reliability is normally measured using mean time
between failures, or for new products mean time to failure.
These measures are easier to gather for in-house applications
than for commercial software since failure reports are indirect if
external customers are involved. Availability is another aspect of
reliability, i.e. the percentage of normal work periods the appli-
cation can be used as intended. Availability is normally meas-
ured as a percentage of the work period during which the appli-
cation is ready and can be run successfully. Anything under
about 99 percent tends to generate dissatisfaction.

Service Response Time
This is a measure of how long it takes the software maintenance
group to perform key activities such as acknowledge an incom-
ing bug report, repair the bug, and get the fix back out to the
user. Another key metric for commercial software is how long
it takes a customer to report a bug to a live person. Being put
on hold for more than two minutes is a bad sign. Best-in-class
organizations are good in all of these factors and can turn around
high-severity bugs in 24 hours or less.

Complexity
It has been known for many years that complex code is difficult

to maintain and has higher than average defect rates. A variety
of complexity analysis tools are commercially available that sup-
port standard complexity measures such as cyclomatic and
essential complexity.

Test Coverage
Software testing may or may not cover every branch and pathway
through applications. A variety of commercial tools are available
that monitor the results of software testing, and help identify por-
tions of applications where testing is sparse or nonexistent.

Cost of Quality
The basic cost-of-quality concept originated with Philip Crosby
when he worked at ITT [1]. It was aimed at manufacturing and
was not a perfect software fit. Therfore most major software
shops have modified the original Crosby concepts when measur-
ing. One significant aspect of quality measurement is to keep
accurate records of the costs and resources associated with vari-
ous forms of defect prevention and removal. For software these
measures include the following costs:
• Software assessments.
• Quality baseline studies.
• Reviews, inspections, and testing.
• Warranty repairs and post-release maintenance.
• Quality tools; the costs of quality education.
• Your software quality assurance organization.
• User satisfaction surveys.
• Any litigation involving poor quality or customer losses

attributed to poor quality.

Productivity and Schedule Measures
Measuring software schedules, effort, and costs are important
areas that differentiate leaders from laggards. Many software
leaders have also adopted function point metrics rather than
the flawed lines of code metric. Almost all of the published
benchmarks for software are expressed in terms of function
points, so there are no viable alternatives for comparative stud-
ies. Here are the key productivity-related measures of leading
software producers:

Size Measures
Industry leaders measure the sizes of major deliverables associat-
ed with software projects. Size data are kept in two ways. One
method records the sizes of actual deliverables such as pages of
specifications, pages of user manuals, screens, test cases, and vol-
umes of source code. The second method normalizes the data
for comparative purposes. Here function point metrics are the
most common. Examples would be pages of specifications pro-
duced per function point, source code produced per function
point, and test cases produced per function point.

Function point metrics were developed by IBM and put
into the public domain in 1978. The rules for counting func-
tion point metrics are defined by the nonprofit International
Function Point Users Group (IFPUG).1

Activity-Based Schedule Measures
Leading companies measure the schedules of every activity, and
how those activities overlap or are carried out in parallel. Lag-
gards, if they measure schedules at all, simply measure the gross

SSooffttwwaarree MMeeaassuurreemmeenntt PPrrooggrraammss aanndd IInndduussttrryy LLeeaaddeerrsshhiipp

February 2001 www.stsc.hill.af.mil 5

schedule from the rough beginning of a project to delivery,
without any fine structure. Gross schedule measurements are
totally inadequate for any kind of serious process improvement
analysis.

Activity-Based Cost Measures
Leaders measure the effort for every activity, from requirements
to maintenance. When measuring technical effort, leaders meas-
ure all activities, including requirements, design, coding, techni-
cal documentation, integration, quality assurance, etc. Leaders
tend to have a rather complete chart of accounts with no serious
gaps or omissions. Laggards either do not measure at all, or col-
lect only project-level data that is inadequate for serious eco-
nomic studies.

Three kinds of normalized data are typically created:
• Work hours per function point by activity and in total.
• Function points produced per staff month by activity and in

total.
• Cost per function point by activity and in total.

Costs are the most subtle and difficult of the productivity-relat-
ed measures because of large variances in salaries and even larger
variances in burden or overhead rates.

Indirect Cost Measures
Leading companies measure costs of direct and indirect activi-
ties. Some of the indirect activities such as travel, meeting costs,
moving, living, and legal expenses are so costly that they cannot
be overlooked.

Monthly Milestone Reports
Leading companies are very good in monitoring progress and
normally track every large and important project on a monthly
basis. Monthly status reports include cost variance reports, mile-
stone reports, and red-flag items, which are defined as situations
that might delay the project or cause an overrun. Examples of
red-flag items might be loss of key personnel, a sudden change in
requirements, or some other major issue. These monthly reports
are usually five to 10 pages. For large systems, first-line managers
create the lowest level reports, and their work is summarized
upwards. There are also reports on the completion of major mile-
stones such as internal design, coding, and inspections.

Annual Software Reports
One of the surest signs that an organization has reached best-in-
class status is when they produce an annual report on software
demographics, productivity, quality, assessment results, and
other key factors. These reports are usually produced on the
same cycle as corporate annual reports (i.e. within 90 days from
the close of the prior business year). Because software is usually
one of the most expensive and labor-intensive commodities in
history, it is appropriate to create an annual report for top cor-
porate executives. The annual software reports for a Fortune
500 company are about 60 to 75 pages with sections for each
major business unit, industry trends, technology trends, and
quantitative and qualitative results.

Assessment Measurements
Even accurate quality and productivity data are of limited value
unless they can explain why some projects are better or worse
than others. The influential factors that affect the outcomes of

software projects are normally collected by software assessments
such as those performed by the SEI, Software Productivity
Research, Howard Rubin Associates, Quantitative Software
Management, or other consulting companies. In general, assess-
ments cover the following topics:
• Software Processes. This deals with the activities from early

requirements through deployment. Topics include how the proj-
ect is designed, what quality assurance steps are used, and how
configuration control is managed.
• Software Tools. There are more than 3,500 software develop-

ment tools on the commercial market, and companies have built
at least the same number of proprietary tools. It is considerably
important to explore the usefulness of these available tools.
Thoughtful companies identify gaps and missing features, and
use this kind of data for planning improvements.
• Software Infrastructure. The number, size, and kinds of

departments within large organizations are important topics, as
are types of communication across organizational boundaries.
Whether a project uses matrix or hierarchical management, and
whether or not a project involves multiple cities or countries,
exerts a significant impact on results.
• Software Skills. Large corporations can have more than 100

different occupation groups within their software domains.
Some of these specialists include quality assurance, technical
writing, testing, integration and configuration control, network
specialists, and many more.
• Staff and Management Training. Software personnel, like

medical doctors and attorneys, need continuing education to
stay current. Leading companies tend to provide from 10 to 15
days of education per year for both technical staff members and
software management. Assessments explore this topic.
• Environment. Physical office layout and noise levels exert

a surprisingly strong influence on software results. The best-in-
class organizations typically have fairly good office layouts, while
laggards tend to use crowded cubicles or densely packed open
offices. Recent additions to environmental measures include
telecommuting factors and Web access. Some companies provide
home computing facilities and portable computers, too.

Business and Corporate Measures
To this point, measurement has mainly been discussed at the
level of individual software projects. There are also important
measurements at the corporate level. Here are a few samples of
corporate measurements noted among our leading clients:

Salary and Benefit Measures
Many companies perform annual benchmark studies of staff
compensation and benefit levels. These are not software studies
per se, but are carried out in support of the entire corporation.

Portfolio Measures
Major corporations can own from 250,000 to more than 1 mil-
lion function points of software apportioned across thousands of
programs and dozens of systems. Leading enterprises know their
portfolio’s size, their growth rate, replacement cost, quality levels,
and many other factors. This information is important for merg-
ers and acquisitions. It has also been a factor in tax litigation,
such as ascertaining the value of the software assets when General
Motors acquired Electronic Data Systems.

SSooffttwwaarree MMeeaassuurreemmeenntt

6 CROSSTALK The Journal of Defense Software Engineering February 2001

Market Share Measures
The industry and global leaders know a lot more about their
markets, market shares, and competitors than the laggards. For
example, industry leaders in the commercial software domain
tend to know how every one of their products is selling in every
country, and how well competitive products are selling globally.

Competitive Measures
Few companies lack competitors. Industry leaders know much
about their competitors’ products, market shares, and other
important topics. A lot of this kind of information is available
from various industry sources such as Dun & Bradstreet, Mead
Data Central, Fortune and other journals, and from industry
studies produced by organizations such as Auerbach, the
Gartner Group, and others.

Summary and Conclusions
The software industry is struggling to overcome a very bad reputa-
tion for poor quality and long schedules. The companies that have
been most successful in improving quality and shortening sched-
ules have also been the ones with the best measurements.

The U.S. software industry is about to face major challenges
from overseas vendors with markedly lower labor costs than U.S.
norms. Measurement of software quality and productivity is
already an important business tool. As off-shore software vendors
use metrics and measurements to attract U.S. clients, good meas-
urements may well become a business weapon.�

References
1. Crosby, Philip B., Quality is Free, Mentor Book, New York,

N.Y., 1979.

Note
1. Readers wanting more information about function point

metrics can access the IFPUG Web site at www.IFPUG.org

February 2001 www.stsc.hill.af.mil 7

SSooffttwwaarree MMeeaassuurreemmeenntt PPrrooggrraammss aanndd IInndduussttrryy LLeeaaddeerrsshhiipp

About the Author
Capers Jones is chief scientist of Artemis
Management Systems and director of Software
Productivity Research Inc., Burlington, Mass.
Jones is an international consultant on software
management topics, a speaker, a seminar leader
and author. He is also well known for his compa-

ny’s research programs into critical software issues:
• Software Quality: Survey of the State of the Art.
• Software Process Improvement: Survey of the State of the Art.
• Software Project Management: Suvey of the State of the Art.

Formerly, Jones was assistant director of programming technology
at the ITT Programming Technology Center in Stratford, Conn.
Prior to that, he was at IBM for 12 years. He received the IBM
General Product Division’s outstanding contribution award for his
work in software quality and productivity improvement methods.

Software Productivity Research Inc.
6 Lincoln Knoll Drive
Burlington, Mass. 01803
Phone: 781-273-0140
Fax: 781-273-5176
E-mail: CJones@SPR.com
Internet: www.spr.com

• Austin, Robert D., Measuring and Managing Performance in
Organizations, Dorset House, New York, N.Y., 1996.

• Boehm, Barry W. Software Engineering Economics Prentice
Hall, Englewood Cliffs, N.J., 1981.

• DeMarco, Tom, Controlling Software Projects, Yourdon Press
(Prentice Hall), Englewood Cliffs, N.J., 1982.

• Dreger, J. Brian, Function Point Analysis, Prentice Hall,
Englewood Cliffs, N.J., 1989.

• Grady, Robert B. and Caswell, Deborah L., Software Metrics:
Establishing a Company Wide Program, Prentice-Hall Inc., 1987.

• Humphrey, Watts, Managing the Software Process, Addison-
Wesley, Winthrop, Mass., 1989.

• Jones, Capers, Applied Software Measurement, McGraw-Hill,
New York, N.Y., 1996.

• Jones, Capers, Software Assessments, Benchmarks, and Best
Practices, Addison Wesley Longman, Boston, Mass., 2000.

• Kan, Stephen H., Metrics and Models in Software Quality
Engineering, Addison Wesley Longman; Reading, Mass., 1995.

• Paulk, M.C., Curtis, B., Chrissis, Mary Beth, et al, Capability
Model for Software, Software Engineering Institute, Pittsburgh,
Pa., August 1991, SEI Technical Report 24.

• Putnam, Larry, Measures for Excellence, Prentice-Hall,
Englewood Cliffs, N.J., 1992.

• Rubin, Dr. Howard, Annual Software Benchmark Report for
1999, Howard Rubin Associates, Pound Ridge. N.Y., 2000.

• Symons, Charles, Software Sizing and Estimating Mk II
Function Point Analysis, John Wiley and Sons, 1992.

Additional Readings

Letter to the Editor
Dear Editor:

It was so exciting to read through the articles in the
November 2000 CROSSTALK and see my company and division
mentioned in Acquistion Reform May Resemble Madness, but the
Method is Real. It feels great to be recognized for the work we
have done at Raytheon, Command and Control Division here
in Fullerton, Calif. Here are some corrections to the dates listed
in the article for the Raytheon assessments:
• The Raytheon Command and Control Division, Fullerton,

Calif., assessment was performed in October 1998. The press
release was released in January 1999.

• The Raytheon Missile Systems, Software Engineering Center,
Tucson, Ariz., assessment was performed in November 1998.

I was fortunate to be able to participate in both externally
led assessments. Again, thank you for the article. It made my day!

Sally Cheung
Engineering Process Group
Integrated Systems Division,
formerly Command and Controls Division,
Raytheon

8 CROSSTALK The Journal of Defense Software Engineering February 2001

There is a wide diversity of traditional approaches for identify-
ing and gathering software requirements, including joint

application design sessions, requirements management tech-
niques, prototyping, rapid application development, eXtreme
Programming, and others. When done properly these techniques
typically deliver a form of documented user requirements. After a
series of user and peer reviews, these formal requirements are typi-
cally assumed to represent the complete set of user requirements.

However, the full set of user requirements is generally not
complete until the project’s end and continues to emerge as it
progresses. As a result the project encounters rework, schedule
slippage, and budget overruns, the extent of which depends on
the degree of originally unknown requirements. With some
Department of Defense projects this problem is further com-
pounded due to requirements that are outcome- or perform-
ance-based, and functional requirements are developed as part
of the design process. When these projects emerge, they chal-
lenge traditional requirements approaches. For example, how are
software requirements documented when the performance
requirement is to launch a projectile from a range of 200 miles
with an impact of X? This article is not intended to solve these
types of requirement issues.

This article addresses projects where user requirements are
articulated (or should be) and outlines how function point
analysis (FPA) can be an additional tool to identify missing
requirements, gauge requirements completeness, and uncover
potential defects. Our experience shows that FPA is often more
effective than peer or user walkthroughs in identifying the full
set of functional user requirements and uncovering potential
defects. In fact, benefits gained by applying FPA to functional
user requirements can be more valuable than the mere function
point size of the software.
There are two audiences for this article:
1. Development teams that already use or are considering

using FPA on their projects. The information provided
here is intended to increase the cost-effectiveness of FPA,
and leverage its use as a requirements completeness check.

2. Development teams that do not use FPA, but would like
additional tools to increase requirements effectiveness.

The concepts outlined in this article can be applied to any
project without the need to complete all steps in the method.

Requirements
Why is it that the right, i.e. correctly and accurately stated, set
of software requirements is so elusive in our industry? Among
various reasons, problems involve getting the requirements
right, getting the right requirements (the complete set of func-

tional user requirements), and often involve getting more than
the specifications of requirements. One of the biggest problems
software developers encounter is being able to judge whether
requirements are sufficiently complete before beginning formal
design and coding.

Before we discuss how to apply FPA to requirements com-
pleteness, it is worthwhile to identify the three major types of
software requirements. Together, these form the overall project’s
user requirements. First are functional user requirements, which
are the logical business or user functions the software must per-
form. All software from real-time missile guidance systems to
business accounting software has functional requirements that
must be performed. These include elementary processes that must
be supported to input, process, manipulate, output, and interface
data to, from, and within the software. FPA specifically addresses
this type of user requirements.

Second are nonfunctional user requirements. These are the
technology-independent user/business constraints that the soft-
ware must meet. Nonfunctional requirements include quality
and performance requirements such as portability, usability,
security, dependability, reliability, and speed. Part of the FPA
technique can assist with these types of requirements.

Lastly, technical requirements are the user requirements for
a specific hardware/software configuration or a particular techni-
cal configuration that must be delivered. For example, the tech-
nical requirements may specify an Oracle database or a multi-
tiered hardware solution. While these software specifications are
as important as the other two types, FPA does not address this
type of requirements.

The remainder of this article specifically pertains to func-
tional and nonfunctional requirements.

Traditional Completeness Checks
While both the functional and nonfunctional requirements strive
to be unambiguous, correct, and complete, it is easy to write
down and check business rules for ambiguity and correctness with
a user. The problem, however, is to ensure that the full set of
functional user requirements has been identified. One or two
frames of reference are needed. Such a frame of reference is typi-
cally provided using two existing techniques:
1. Theory-Based Model. A theory-based frame of reference may
be used as structured analysis, information engineering, or data
modeling. The analyst will decompose the problem and look for
abstract structures like data flows, processes, and data stores.
Requirements will be considered complete when the abstract
structures make sense to the analyst, e.g., data stores have both
incoming and outgoing data flows.

Applying Function Point Analysis to Requirements Completeness

Requirements issues abound in system development despite many models and methods intended to verify that
requirements are complete. This article highlights how function point analysis (FPA), the software sizing tech-
nique, delivers value as a structured requirements review. While its historical usage has been confined almost exclu-
sively to quantifying software size, FPA is gaining popularity as a useful, structured method for reviewing require-
ments. When used during software development to verify requirements completeness, FPA delivers more than mere
numbers for software size—the FPA documentation reflects the full, known set of functional user requirements.

Carol Dekkers
Quality Plus Technologies Inc.

Mauricio Aguiar
Caixa Economica Federal

February 2001 www.stsc.hill.af.mil 9

2. Personal Experience. The analyst may have worked with
other business systems similar to the one being analyzed. In that
case, he will possess a subjective frame of reference composed of
all the business structures and rules he has previously encoun-
tered. The analyst will decompose the problem and look for
known structures and rules conformant to his own model of reali-
ty. Requirements will be considered complete when the identified
structures match the analyst’s model of completeness, which is
subjective, e.g., accounts receivable will have been either received
or marked as delinquent.

Ordinarily, the analyst will work with a mixture of the first
two frames of reference to increase quality and clarity of the
documented set of known software requirements and to increase
the relative percentage of the known to total requirements.
Throughout the project he will integrate his personal experi-
ences with the theoretical knowledge. Increasingly, however, this
is insufficient to gain enough completeness coverage. It is in the
analyst’s interest to use as many frames of reference as possible.

Ideally, frames of reference should be orthogonal, i.e., they
should not overlap. Each frame of reference should provide
unique information not available in the other models.

Why Function Point Analysis?
Along with some of the nonfunctional requirements, FPA pro-
vides an additional frame of reference for checking the complete-
ness of functional requirements. FPA is different from the first
two frames of reference because it provides a unique, user-focused
perspective. FPA examines the set of functional user requirements
in terms of data and movement/manipulation (transactions) as
understood and expressed by users; on this basis, it determines
software’s functional size. As such, FPA can be used in addition to
the theory-based and personal experience models previously men-
tioned to ensure that functional user requirements are complete.

Function Point Basics
Function points (FPs) measure the size of a software project’s
logical user functionality as opposed to the physical implemen-
tation of those functions as measured by lines of code (LOC).
FPA examines the functional user requirements to be supported
or delivered by the software. It then assigns a weighted number
of FPs to each logical user function as outlined in Function
Point Counting Practices Manual [2] and calculates the soft-
ware’s FP size.

In simplest terms, FPs measure what the software must do
from an external, user perspective irrespective of how the soft-
ware is constructed. While analogies from other industries such
as building construction and manufacturing attempt to describe
how function point analysis works with software, none provides
a perfect fit. In basic terms, FPs reflect the functional size of
software, independent of the development language and physi-
cal implementation.

FPs can be likened to the functional area of a building by
summing up its floor plan size. FPs quantify the functional user
requirements (the floor plan) by summing up the size of its func-
tional components. As with building construction, project manage-
ment is not possible if only square foot size is known. System
development cannot be managed purely on the basis of FP size.1

Using FPA to Gauge Completeness
For an introductory article on FPs, see the February 1999 issue of
CROSSTALK. When performing a FP count, all the known func-
tional user requirements for the software are analyzed, weighted,
and counted using the standard identification method. It is dur-
ing analysis of functional user requirements that most errors and
omissions in the requirements are uncovered, as described below.
Following are the steps in the actual FP counting process:
1. Determine the project scope and purpose of the function
point count. For example, FPs can be counted to quantify the
size of a new development or enhancement/renovation project,
or to size an existing base application.

In this step it is useful to document the specific name and
date of the source document(s) used as a basis for the count (e.g.,
system ABC requirements document V1, March 22, 2000). This
provides traceability of logical functions included within the func-
tional requirements as a specific point in time, and is useful for
gauging scope creep during the project. It can also contribute to
the historical base for gauging future projects as outlined below.

By documenting—even in a few lines of text—the project
scope and purpose of the FP count, project assumptions are clar-
ified and requirements oversights identified. For example, if the
purpose of the FP count is to size the amount of customization
required for a commercial off-the-shelf package, the scope will
include only the customized functions, not the entire package.
This provides a delineation of what is included in the project.
2. Identify the application’s logical boundary. This step identi-
fies the functions that the software must perform, together with
external users interfaces, departments, and other applications. The
application boundary for FP counting is not the same as a physi-
cal one. Instead it is the logical boundary that envelops self-con-
tained user functions that must exist to deliver the user require-
ments. This boundary separates the software from the user
domain (users can be people, things, other software applications,
departments, and other organizations). Software may span several
physical platforms and include batch and on-line processes—all
of which are included within the logical application boundary.
For example, an accounts payable system would typically be con-
sidered one application in FPA, even though it may reside across
multiple hardware platforms in its physical installation.

Because each application or software system has a separate
application boundary (e.g., accounts payable would typically be
one application, fixed assets may be another) a project context
diagram consisting of several circles denoting various application
boundaries is often drawn as a part of the functional sizing
process. In cases where an enhancement project renovates an
application that has little documentation, this step provides a
context diagram that can be used later for communicating with
the users about the software system. In a particular client situa-
tion, this visual depiction of various application boundaries and
interfaced applications opens a discussion of client/server migra-
tion of certain applications because our diagrams showed which
applications would be affected by the migration of a central
application. Because these context diagrams are visual in nature
and independent of technology, their review often leads to the
discovery of interfaces that were previously discussed, but that
are missing from the written requirements.

AAppppllyyiinngg FFuunnccttiioonn PPooiinntt AAnnaallyyssiiss ttoo RReeqquuiirreemmeennttss CCoommpplleetteenneessss

In addition, this step with subsequent steps, clearly demar-
cates logical boundaries between user applications. By clarifying
which functions lie within which applications, there is less likeli-
hood of a set of requirements being overlooked. For example, if a
project team assumes that another application will maintain a set
of common data, a review of the context diagram showing the
interface to the other application may reveal potential oversights.
3. Count the Data Functions. This step considers internal and
external data entities. It consists of:
• Identify, weigh, and count the internal logical files (ILFs).

These are the persistent logical entities or data groups to be
maintained through a standard function of the software.

• Identify, weigh, and count the external interface files (EIFs)
that are persistent, logical entities referenced from other appli-
cations but not maintained. Typically these data are used in
editing, validation, or reporting types of software processes.

When identifying and classifying the persistent logical entities as
internal (maintained) and external (referenced-only), it is help-
ful to draw circles around the entities and their included suben-
tities on a data model or entity-relationship diagram. If there is
no data model or entity-relationship model, one is essentially
created in this step by building on the context diagram created
in the previous application boundary step.

Note that FPA does not count hard-coded data or any tables/
files created only because of the physical or technical implementa-
tion. The data step records the number and types of logical data
elements if they are known, and if they are not already identified
in the requirements. This provides a checklist of data entities to
gauge the consistency and completeness of transactional (manipu-
lation of data) functions.

By reviewing the entities, whether on a data model or hand-
drawn context diagram, and whether they are inside the applica-
tion boundary (i.e., to be maintained by the software) or external
(i.e., to be referenced only) often clarifies comments. Such com-
ments might include: “Why is that entity external? I thought we
needed to be able to update that entity.” These would lead to a
discussion that either confirms the original requirements or
reveals an inconsistency in understanding and a change in the
diagram. When the review is combined with the transactions out-
lined in the next step, the majority of (potential) requirements
mismatches are identified.
4. Count the transactional functions. Use the following:
• External Inputs (EIs) that are the elementary processes whose

primary intent is to maintain the data in one or more per-
sistent logical entities or to control the behavior of the sys-
tem. Note that these EIs are functional unit processes and
not physical data flows or data structures.

• External Outputs that are the elementary processes whose
primary intent is to deliver data out of the application
boundary, and which include at least one of the following:
mathematical calculation(s), derive new data elements,
update an ILF, or direct the behavior of the system.

• External Queries that are the elementary processes whose
primary intent is to deliver data out of the application
boundary purely by retrieval from one or more of the
ILFs or EIFs.

This step is where the majority of missed, incomplete, or incon-
sistent requirements are identified. This list provides some exam-

ples of the types of discoveries that can be made using FPA:
• If a persistent, logical entity has been identified as an ILF,

i.e., maintained through a standard maintenance function of
the application, but there are no associated EIs processes,
there are one or more mismatched requirements:
– Either the entity is actually a reference-only entity (in

which case it would be an EIF), or
–There is at least one missing requirement to maintain the

entity, such as add entity, change entity, or delete entity.
• If there are data maintenance (or data administration) func-

tions identified for data, but there is no persistent logical
entity to house the data (ILF), the data model may be
incomplete. This would indicate the need to revisit the data
requirements of the application.

• If there is a data update function present for an entity identi-
fied as reference only (EIF), this would indicate that the
entity is actually an ILF. The data requirements are inconsis-
tent and need to be reviewed.

• If there are data entities that need to be referenced by one or
more input, output, or query functions, and there is no such
data source identified on the data model/entity-relationship
diagram/context diagram, the data requirements are incom-
plete and need to be revisited.

• If there are output or query functions that specify data fields
to be output or displayed that have no data source (i.e., no
ILF or EIF), and the data is not hard-coded, there is a mis-
match between the data model and the user functions. This
indicates a need to revisit the data requirements.

Most maintained entities (ILFs) follow the Add, Update,
Delete, Inquiry, Output (AUDIO) convention rule [3]; each
persistent logical entity typically has a standard set of functions
associated with it. Not all entities will follow this pattern, but
AUDIO is a good checklist to use with the ILFs.
5. Evaluate the complexity of nonfunctional user constraints
using a value adjustment factor. Through an evaluation of the
14 general systems characteristics (GSCs) of FPA (e.g., the GSCs
include performance, end-user efficiency, transaction volumes,
and others), a software complexity assessment can be made. The
impact of user constraints in these areas is often not enunciated
or even addressed until late in the software development life cycle,
even though their influence can be major on the overall project.

Examining the user requirements with these nonfunctional,
user business constraints in mind can provide the following
types of valuable information:
• The nonfunctional requirement due to transaction rate peak

loads may necessitate 24-hour, 7-day-a-week availability.
This will have a critical impact on the resulting project.

• Special protection against data loss may be of critical impor-
tance to the users’ business and must be specially designed
into the system. This must be identified up front to avoid
any unforeseen impact.
FPA provides an objective project size input for use in soft-

ware estimation equations (together with other factors), or to
normalize measurement ratios. The process checks whether the
full set of functional user requirements has been identified and
can uncover defective and missing requirements. Table 1 sum-
marizes how to use FPA to uncover requirements defects. The
far-right column of Table 1 illustrates where and what type of
potential requirement problem there might be.

10 CROSSTALK The Journal of Defense Software Engineering February 2001

SSooffttwwaarree MMeeaassuurreemmeenntt

Benefits After the Requirements Phase
Having a documented set of functional user requirements (and
the nonfunctional requirements that FPA addresses) such as that
provided by the FPA process goes far beyond merely the require-
ments phase. Hill and Tinker Air Force Bases’ Materiel Systems
Groups (MSGs) found this to be the case. An example from Hill
serves to illustrate this point: The MSG would attach a full list-
ing of functional requirements (using the FPA-documented
breakdown of FP components counted) to the software project
estimate sent in to headquarters. Later, when questions arose
about a particular set of functionality and whether it had been
included, the group would refer to the FP listing to see if the par-
ticular functionality was listed. If it was not, it was clear that the
functionality had not been included. A decision was then made
about whether or not to include it and increase the estimate.

This simple set of documented functions minimized the
finger pointing and blaming of “who said what and when,” and
reduced the discussion to whether or not the functions were
included in the specifications submitted. Additionally, when
scope changes emerged later in the project, as they inevitably
do, both groups were in a position to adjust their FPA sizing
and quickly assess the impact of scope change on the project.

While other requirements review and tracking techniques
can also provide value, FPA is a simple method that delivers
both a functional size of the software (useful for estimating) and
can assist with the requirements processes.

Summary
Today’s software analyst needs all the assistance he or she can find
to help in the quest for complete (and known) user requirements.
The framework provided by the structure of the FPA technique
gives the analyst one extra frame of reference to gauge the com-
pleteness of the known user requirements. Requirements defects

will still occur no matter how many frames of reference are used,
however, the use of FPA to augment the traditional theory-based
and personal experience frames of reference will increase the ana-
lyst’s ability to ensure that software requirements are complete.

Is FPA worthy of your organization’s consideration? The
answer will vary depending on your organizational structure,
goals, and measurement objectives. FPA is one tool that can
assist with your requirements processes and also provide a quan-
titative value to size your software. For those of you who have
been using FPA only to arrive at a software size, you can gain
valuable benefits by applying FPA as a structured review, espe-
cially when your requirements are deemed complete.�

References
1. Quality requirements can be found in the ISO/IEC 9126:2000

suite of standards that address many of the ility constraints such
as portability, security, usability, reliability, etc. Contact ISO
for further details.

2 The Function Point Counting Practices Manual (CPM) is
maintained by the International Function Point Users Group
(IFPUG) and is currently in Release 4.1 (1999).

3. Per personal discussions with John VanOrden, certified
function point specialist, formerly of Gartner Group and a
member of the Quality Plus Technologies Inc. consulting team.
VanOrden uses the AUDIO checklist.

Note
1. When matters of software estimating are discussed, many more

factors are involved beyond the functional size of software,
including the type of software, technical requirements, number
of users, geographic locations, etc.

February 2001 www.stsc.hill.af.mil 11

About the Authors
Carol Dekkers is vice-chair of the Project
Management Institute Metrics Special Interest Group.
She is president of Quality Plus Technologies Inc., a
management consulting firm specializing in helping
DoD and private organizations succeed with function
points, make wise investments in software measure-

ment, and achieve bottom-line improvements through process
improvement. Dekkers is a past president of the International Function
Point Users Group and an International Organization for Standardiza-
tion project editor on the Functional Size Measurement project. She
was named one of the 21 New Faces of Quality for the 21st century by
the American Society for Quality. She is a professional engineer, certi-
fied function point specialist, and a certified management consultant.

E-mail: Dekkers@qualityplustech.com

Mauricio Aguiar is a software manager with Caixa
Economica Federal, a leading Brazilian government
bank with more than 2,000 branches. He has 25 years’
experience in software management, including the
application of accelerated learning in information tech-
nology. Aguiar is president of the Brazilian Function

Point Users Group and serves on the International Function Point
Users Group (IFPUG) board of directors. A professional engineer and
systems analyst with a master’s degree in neuro-linguistic programming,
he is a member of Project Management Institute, American Society for
Quality, and the IFPUG.

E-mail: mauricioaguiar@yahoo.com

AAppppllyyiinngg FFuunnccttiioonn PPooiinntt AAnnaallyyssiiss ttoo RReeqquuiirreemmeennttss CCoommpplleetteenneessss

Table 1. Using FPA to Uncover Requirement Defects

Data ILF EIF Transaction EI EO EQ Requirement Potential
Function Function Problem Requirement

Indicator Problem(s)

Employee X X X 1. Same entity can’t
Entity be maintained and
(maintained) externally referenced

2. No maintenance
functions.

Monthly X Add Sales X X Can errors be cor-
Sales Delete Sales X rected/updated? Are

there no reports that
use or query data?

Account Report X X 1. No data source in
application identified
containing account
info. Where is data
source?

% of FPA 50% 0 10% 7% Based on standard %
Component profile questions
Breakdown include:

FPA 30% 10% 40% 10% 10%
Component
Standard %
Profile*

1. Why no external files
– were they overlooked?
2. Why no queries in
requirement when “stan-
dard” profile shows 10%
of FP allocated to
browse/query.
3. Are all transactional
functions identified?

* The breakdown of standard percentages here is fictitious and intended to show a sample profile that could be
developed using FP counts of a sample size of several similar applications.

12 CROSSTALK The Journal of Defense Software Engineering February 2001

An algorithm is a set of equations
that is executed in a logical

sequence to produce an external output.
In the fields of function point analysis
and operations research, an algorithm
can be seen as a critical tool to reduce
effort needed to solve a complex series
of calculations. We have written this
paper focusing on intermediate func-
tion point analysis theory, and use lin-
ear programming to exemplify our
points. Some readers may want to refer
to the Definition of Terms at the end
of this paper, or to [1, 2, and 3] for
detailed references describing function
point analysis, linear programming, and
operations research, respectively.

An algorithm we counted recently
was one used to compute pay. This
required solving a set of equations to
calculate such pay subcomponents as
base pay rate, holiday pay, temporary
duty (travel) expenses, and foreign
exchange rates. All subtotals were added
to yield the final pay amount. Using the
method of the International Function
Point Users Group (IFPUG), beginning
function point counters would probably
recognize the input screen needed to
enter a traveler’s pay/expense data and
count six or fewer function points.
They would probably recognize the
resulting earnings/expense statement as
an external output and count it as seven
or fewer function points. However, they
may overlook other, more substantial
functionality inherent in this algorithm.

Measure Size, Complexity of Algorithms Using Function Points

Software developers and software metrics analysts have long known that algorithms can be of important function-
ality in software applications. Examples of these algorithms’ functions are: controlling a nuclear reactor, calculating
complex pricing arrangements, optimizing production levels in manufacturing, and finding the shortest routes
through transportation networks. These algorithms can require considerable effort to develop, and can contribute
significantly to the size and complexity of the software. There have been a number of attempts to quantify the size
and complexity of these algorithms using function point metrics; however, no such method is generally recognized as
satisfactory. This leads to situations where functionality is only partly accounted for, or the current function point
methodology is “patched up” in academically controversial ways. In contrast, our research shows that no “patches”
are needed to account for many of these algorithms. We show how to identify them, disassemble them into func-
tional components, and measure their size and complexity while remaining within the strict interpretation of cur-
rent counting rules. Complete accounting of these algorithms leads to better software sizing accuracy, which pro-
duces better forecasts of costs, schedules, and measures of quality in terms of defects per function point delivered.

Nancy Redgate
PRI Automation

Charles B. Tichenor
Defense Security Cooperation Agency

Conditions for Sizing an Algorithm Using Function Points*
• An algorithm must represent a step-by-step procedure based on mathematical calculations

and perhaps logic statements. It contains a set of equations that are executed according to
business rules. The solutions to the equations are stored until later combined to produce
an external output (EO) the user can recognize.

• It must be complete, solvable, feasible, and should not contain redundant constraints. (If it
contains redundant constraints, they are considered nonunique and, therefore, not countable.)

• It must have a logical storage area to hold solutions to intermediate equation calculations
until they are finally combined into a meaningful EO. This logical storage area is counted
as one or more internal logical files (ILFs). We count the number of data element types
(DETs) as the number of unique algorithm variables that must be populated plus the
number of unique instances of DET control information that must be used to operate the
algorithm. We also count the number of record elements types (RETs) if the algorithm
contains logical subgroups of data and/or control information.

• The ILFs must be maintained by externally inputting values of variables and of stored control
information; therefore, there must be at least one external input (EI) for each algorithm. We
count one DET for each ILF variable maintained and one for each instance of maintained
control information. The file types referenced (FTRs) by the EIs include the algorithm’s ILFs.

• Data in the algorithm’s ILF must be used to perform one or more intermediate calcula-
tions. The result of this calculation sequence must be recognizable by the user. There
must be at least one EO in the application, which contains the DETs resulting from this
calculation sequence. We count the ILFs of the algorithm when determining the number
of EO FTRs; moreoever, we include the number of unique DETs output from the algo-
rithm in the number of EO DETs.

• As an option, the application may have an external inquiry (EQ) capability to permit the
user to view the values of the algorithm’s variables and control information. If so, we
count the number of viewable variables and control information in the EQ DET count
and count the number of ILFs touched by the EQ process as the number of FTRs.

• We also recognize that algorithms may exert a greater degree of functionality influence
than software without algorithms. The function point general system characteristics
(GSCs) must therefore also be considered during the analysis. Examples include:
– GSC 5, On-Line Data Entry, may be influenced if the algorithm’s variables are

populated on-line.
– Since there must be at least one algorithm ILF updated during real-time processing,

GSC 8, On-Line Update, may need to be considered.
– GSC 9, Complex Processing, is likely to be a characteristic affected by complex

algorithms. The function point counter should examine the algorithm for functionality
such as extensive logical and/or mathematical processing and adjust the function point
count accordingly.

– GSC 14, Facilitate Change, may need to be examined—especially the fifth item,
“Business control data is kept in tables that are maintained by the user with on-line
interactive processes and the changes take effect immediately.”

* All definitions and conditions are as defined by International Function Point Users Group.

February 2001 www.stsc.hill.af.mil 13

Example: Linear Programming
Formulating the Problem
To illustrate the algorithm function point counting process, a
linear programming algorithm can serve as an example. This is
because linear programming fits the criteria for an algorithm as
previously described. Linear programming is a repeatable, step-
by-step process based on mathematical calculations and logic
statements depending on how the problem is solved.

Formulating and solving a linear programming problem
requires externally inputting and storing the values of certain
variables and instances of control information until they are
needed, to perform intermediate calculations according to a
logical sequence, and to externally output the solution. It is
complete, solvable, feasible, and should not contain redundant
constraints when well formulated (if a formulation contains
redundant constraints, these are not counted).

We illustrate by performing a function point analysis of the
Joseph Ecker’s and Michael Kupferschmid’s Brewery Problem [3].
Microbrewers Inc. makes four products called Light, Dark, Ale,
and Premium. These products are made using the resources of
water, malt, hops, and yeast. Microbrewers Inc. has a free sup-
ply of water, so it is the amount of other resources that restricts
production capacity. Table 1 shows how these resources are
used to produce each corresponding gallon of beer, the avail-
able amount of resources, and the revenue realized from selling
each type. The problem is to calculate the product mix to brew
to maximize revenue.

Table 1. Pounds of Resource Needed to Produce 1 Gallon of Beer

We can formulate this problem using the Simplex linear
programming algorithm methodology from the field of
Operations Research. Following this methodology, we define
each of the products as follows:

• X1 – Gallons of Light.
• X2 – Gallons of Dark.
• X3 – Gallons of Ale.
• X4 – Gallons of Premium.
We can also define the objective function as: Max: 6X1 +

5X2 + 3X3 + 7X4.
The resources are constrained by the available amount of

each resource. Therefore, the objective function is subject to
the following:

• X1 + X2 + 3X4 <= 50 (Malt)
• 2X1 + X2 + 2X3 + X4 <= 150 (Hops).
• X1 + X2 + X3 + 4X4 <= 80 (Yeast).
Also, each variable must be greater than or equal to 0, or,

X1, X2, X3, X4 >= 0.
In its traditional Simplex form, then, this algorithm

appears as follows:

Max: 6X1 + 5X2 + 3X3 + 7X4

Subject to:

X1 + X2 + 3 X4 <= 50 (Malt)
2X1 + X2 + 2 X3 + X4 <= 150 (Hops)
X1 + X2 + X3 + 4X4 <= 80 (Yeast)
X1, X2, X3, X4 >= 0
This formulation of the linear program could be consid-

ered the primal formulation. However, every linear program
can be formed in both a primal and a dual formulation and
each method produces identical results. Suppose we set the fol-
lowing as the resource variables:

• Y1 – Pounds of Malt.
• Y2 – Pounds of Hops.
• Y3 – Pounds of Yeast.

Then, the dual can be formulated as follows:
Min: 50Y1 + 150Y2 + 80Y3
Subject to:
Y1 + 2Y2 + Y3 >= 6 (Light)
Y1 + Y2 + Y3 >= 5 (Dark)
2Y2 + Y3 >= 3 (Ale)
3Y1 + Y2 + 4Y3 >= 7 (Premium)
Y1, Y2, Y3 >= 0

Counting the Unadjusted Function Points
Solving linear programs is an algorithmic procedure because a set
of equations is executed in a logical sequence to produce an EO.
Reaching the solution using the graphical method requires con-
structing several constraint lines, determining the feasible region,
and then finding the corner point of the feasible region that
optimizes the objective function. Solving using the Simplex
method requires building tableaus according to a certain proce-
dure until the optimal solution is found. Each data element type
(DET) must be stored in a logical storage area until it is needed.

In this example, the logical data storage area consists of one
ILF. This ILF is the set of equation variables and control infor-
mation containing the objective function and constraints. This
meets the test of an ILF because it will be demonstrated that it is
a logical, user-identifiable group of data or control information;
and the group of data is maintained through an elementary
process within the counted application boundary. ILFs have
record element types (RETs) and DETs as components. Here is
our approach for determining their number in this algorithm.

RETs
In a linear program, there are several logically distinct sub-
groups of data. The first is the objective function. It contains
the control information telling us to either maximize or mini-
mize. It also contains the coefficients for the decision variables
that, in this example’s primal formulation, indicate the revenue
corresponding to each product. The other subgroups are repre-
sented by the constraint equations. Graphically, each constraint
equation represents a unique set of data points in the plane (or
space) that are feasible contributions to the solution of the lin-
ear program.

Either the primal or dual formulation of a linear program
is mathematically sound. However, one may have fewer con-
straint equations. Extending the notion of the elementary
process we always choose the smallest unit of activity meaning-
ful to the user. In principle this means counting the formula-

MMeeaassuurree SSiizzee,, CCoommpplleexxiittyy ooff AAllggoorriitthhmmss UUssiinngg FFuunnccttiioonn PPooiinnttss

Light Dark Ale Premium Available (lb.)

Malt 1 1 0 3 50

Hops 2 1 2 1 150

Yeast 1 1 1 4 80

Revenue($) 6 5 3 7

14 CROSSTALK The Journal of Defense Software Engineering February 2001

tion containing the fewest constraint equations. In this exam-
ple, it is the primal:
• We count five RETs in this algorithm.
• We count one RET for the optimization function.
• We count the minimum number of variables and number of

constraints. This guarantees that the same number of RETs is
counted regardless of the primal or dual formulation of the
problem. This is three RETs since the primal formulation is
the smaller unit of activity according to our reasoning.

• We count one RET for the nonnegativity constraint.
DETs
• We count 24 DETs in the algorithm.
• We count one DET for the

maximum (or minimum)
function, which is an
instance of control informa-
tion telling us how to opti-
mize the objective function.

• We count one DET for each nonnegative variable or con-
straint. This is analogous to the number of variables in
Table 1. In this example we count 18 such DETs.

• We count one DET for the number of variables and num-
ber of constraints in the primal or dual formulation used
to count RETs, and we add one for the zero. This accounts
for the nonnegativity condition. In this case there are five
such DETs (X1, X2, X3, X4, and zero) for the nonnegativ-
ity constraint.
The unadjusted function point count of this ILF of five

RETs and 24 DETs is 10, and is therefore an average ILF.
To maintain the data in the ILF, we must use an EI. In this

example, there is one FTR and there are 24 DETs (one for
each data element plus one for minimum/maximum function).
If this were a simple EI, there would probably be one further
DET representing invoking the enter key to initiate the EI
process and perhaps another DET if there were an associated
error/confirmation message. This would be an average EI and
would contribute four unadjusted function points.

The number of EOs will vary depending on the user
requirements. Suppose the user wanted an output screen show-
ing the optimal value of the objective function for this linear
program, the optimal assignment for each of the variables, and
the shadow price of each variable:
• We count one DET for the optimal value of the objective

function, or one.
• We count one DET for each optimal variable assignment,

or four.
• We count one DET for each shadow price or three.

To show all three of these aspects we count eight DETs.
Since there is one FTR this would be a low EO of four unad-
justed function points.

In this example, we count the total unadjusted function
points as 18:

10 (ILF) + 4 (EI) + 4 (EO) = 18

Counting Large Algorithms
Some algorithms contain a few variables, like the preceding
example; however, algorithms can contain many hundreds of
variables. If the function point counter believes that there is
more functionality inherent when counting these types of algo-
rithms, then the counter may want to consider the super file
rule (SFR).

A super file is defined as an ILF or ELF that contains more
than 100 DETs if it contains multiple, countable RETs. If this
is the case, each RET is considered a unique ILF (or EIF) and
is counted as such. Although the SFR is not recognized by
IFPUG, it is statistically significant. Some organizations infor-

mally adopt the SFR as part of
their own local counting prac-
tice resolutions, and footnote
their counting documentation
accordingly.

Conclusion
An algorithm is a set of equations that are executed in a logical
sequence to produce an external output. Algorithms appear in a
variety of software applications. They can be used to help pro-
duction planning in a brewery, perform many sets of calcula-
tions in sales applications, control nuclear reactors, schedule
training, and determine the shortest route for telephone calls
through a city telephone line network. The widely accepted
IFPUG function point methodology can be used to count
many algorithms. The paradigm described in this paper
requires breaking down an algorithm into its functional com-
ponents. These include its ILFs, EIs, and EOs. It also includes
examining the corresponding GSCs. This paradigm is repeat-
able and reliable.

Recognizing and counting these kinds of algorithms is
important. Their function point count helps quantify the work
effort required to develop them that otherwise would have been
overlooked. It also better portrays the size and complexity of
the software. Finally, it helps quantify better cost and schedule
forecasts, and can improve software quality measurement for
overall software development.�

References

1. International Function Point Users Group (IFPUG), Function
Point Counting Practices Manual Release 4.1., 1999

2. Function Point Counting Practices Manual 3.4, 1991.
3. Ecker, Joseph G. and Kupferschmid, Michael, Introduction to

Operations Research, Malabar, Fla., Krieger Publishing
Company, 1988.

4. Ibid., pp. 16-17.
5. Sedgewick, Robert, Algorithms, Addison-Wesley Publishing

Co., Reading, Mass., 1983.

SSooffttwwaarree MMeeaassuurreemmeenntt

Solving linear programs is an algorithmic proce-

dure because a set of equations is executed in

a logical sequence to produce an external output.

Visit www.ifpug.org for more information on
International Function Points User Group.

February 2001 www.stsc.hill.af.mil 15

Additional Reading
• Garmus, David and Herron, David, Measuring the Software

Process: A Practical Guide to Functional Measurements, Upper
Saddle River, N.J., Prentice Hall PTR, 1996.

• Jones, Capers, Applied Software Measurement: Assuring
Productivity and Quality, New York, McGraw-Hill, Inc., 1991.

• Monks, Joseph G. Operations Management, New York,
McGraw-Hill Publishing Company, 1985.

• Shapiro, Roy D., Optimization Models for Planning and
Allocation: Text and Cases in Mathematical Programming, New
York: John Wiley & Sons, 1984.

Definition of Terms
Note: Some of these terms have two definitions. We have provid-
ed explanations in layman’s terms. The italicized definitions are
the precise ones from the IFPUG Counting Practices Manual.

Algorithm. An algorithm is the set of rules that must be com-
pletely expressed in order to solve a significant computational
problem [4].

Application. This is a software package, such as a word process-
ing, spreadsheet, or checkbook package.

Application User (simply referred to as “user”). A user is
someone who needs a software application to perform his or her
duties. For example, a user set might include data entry clerks,
managers who need certain reports, customers who receive bills,
system administrators who need to query the software’s databas-
es, et al. A user set does not normally refer to those whose role is
software production such as programmers, database designers, or
release managers; their role is to develop the software, not to use
it after its market implementation.

Data Element Type (DET). Usually a DET is a field of data. It
can also be an element of control information, such as the Enter
key when it is needed to initiate the process of data input into an
internal data file. In general, the more DETs in a function type
(such as an external input), the higher its function point size. “A
unique, user-recognizable, nonrecursive field. The number of DETs
is used to determine the complexity of each function type and the
function type’s contribution to the unadjusted function point count.”

Dual. This is a certain perspective of defining the resources avail-
able to reach the stated objective in linear programming. It is
essentially a reflection of the primal perspective.

External Input (EI). EI is the process of adding, changing,
and/or deleting data from an internal database. An example
would be entering check numbers and amounts into a checkbook
software package. An EI has three, four, or six unadjusted func-
tion points depending on whether it is of low, average, or high
size/complexity. The textbook definition includes “... processes data
or control information that comes from outside the application’s
boundary. The external input itself is an elementary process. The
processed data maintains one or more [internal logical files] ILFs. The
processed control information may or may not maintain an ILF.”

External Inquiry (EQ). The process that allows the user to sim-
ply read or retrieve existing data from a database using certain
criteria, much like an automated card catalog system in a public
library. An EQ has three, four, or six unadjusted function points
depending on whether it is of low, average, or high size and com-

plexity. The textbook definition includes “... an elementary process
made up of an input-output combination that results in data
retrieval. The output side contains no derived data. No ILF is main-
tained during processing.”

External Interface File (EIF). A database maintained in another
application, but accessed by the application being counted on a
read-only basis. An EIF has five, seven, or 10 unadjusted func-
tion points depending on whether it is of low, average, or high
size/complexity. The textbook definition includes “... a use-identi-
fiable group of logically related data or control referenced by the
application, but maintained within the boundary of another appli-
cation. This means an EIF counted for an application must be an
ILF in another application.”

External Output (EO). The process that yields a completed
report, output file, or any other type of message set, which is sent
to users. The report often contains data in fields that require cal-
culations to derive. Examples could include credit card bills, com-
pleted spreadsheet reports, or state tax refunds. An EO has four,
five, or seven unadjusted function points depending on whether it
is of low, average, or high size and complexity. The textbook defi-
nition includes “... is an elementary process that generates data or
control information sent outside the application’s boundary.”

MMeeaassuurree SSiizzee,, CCoommpplleexxiittyy ooff AAllggoorriitthhmmss UUssiinngg FFuunnccttiioonn PPooiinnttss

Definition of Terms for this article is continued on page 30.

About the Authors
Nancy Redgate has a bachelor’s degree in indus-
trial engineering/operations research from the
University of Massachusetts at Amherst. She
received master’s degrees in operations research,
statistics, and business administration from
Rensselaer Polytechnic Institute (RPI). She was

the primary author of this paper, submitted as the requirement
for an independent study in operations research at RPI.

PRI Automation
805 Middlesex Turnpike
Billerica, Mass. 01821
Voice: 978-670-4270
E-mail: nancy.redgate@prodigy.net

Charles B. Tichenor has a bachelor’s degree in
business administration from Ohio State
University, a master’s degree in business adminis-
tration from Virginia Polytechnic and State
University, and a doctorate degree in business from
Berne University. He serves as an information

technology operations research analyst for the Department of
Defense, Defense Security Cooperation Agency. Tichenor holds
part-time positions as a senior consultant for Development
Support Center in Elm Grove, Wis., and as an adjunct faculty
member at Strayer University’s Anne Arundel, Md. campus. He
served as technical advisor for this paper.

Defense Security Cooperation Agency
1111 Jefferson Davis Hwy., Suite 303
Arlington,Va. 22202-4306
Voice: 703-601-3746
Fax: 703-602-7836
E-mail: tichenor@erols.com
Internet: tichenor@erols.com

While evaluating and commenting on the Measurement
and Analysis Process Area of the Software Engineering

Institute’s (SEI) Capability Maturity Model Integration
(CMMISM) version 0.2, members of the Software Technology
Support Center at Hill Air Force Base, Utah, developed a nine-
step measurement process with the steps logically grouped by
activity type. The three activity groups are measurement plan-
ning, measurement implementation, and measurement program
evaluation. Following is a presentation of these steps.

Activity Group 1
Measurement Planning
There are four measurement planning activities, the results of
which are documented in the measurement plan. The following
are the four activities:

1. Define Information Needs.

All measurements should adhere to the following criteria:
• Criterion 1 – Measurements should induce the parts to do

what is good for the system as a whole.
• Criterion 2 – Measurements should direct managers to the

point that needs their attention [1].
These criteria support the goal–question–metric (GQM) para-
digm developed by Victor Basili. The key concepts of this para-
digm are:
• Processes (software development, program management,

acquisition management, etc.) have associated goals.
• Each goal leads to one or more questions regarding the

accomplishment of the goal.
• Each question leads to one or more metrics that will answer

the question.
• Each metric requires two or more measurements needed to

create the metric.
• Measurements should be selected that provide the data

needed to create the metrics necessary to answer the ques-
tions that determine goal accomplishment.
Eliyahu Goldratt supports the GQM paradigm in his state-

ment “Measurements are a direct result of the chosen goal.
There is no way that we can select a set of measurements before
the goal is defined [2].”

Another point to remember, according to Joseph Juran, is
that different organizational levels require different metrics. At
the worker level, measurements are usually taken in terms of
deeds performed or in things produced, e.g., how many, how
much, or physical things (time, mass, space). Top level managers
usually speak in terms of dollars—the impact on the bottom line.
Those in the middle must be capable of communicating using

both frames of reference. For example, the company financial
statement is in the language of dollars. The sales forecasts and the
results are in dollars and units. The production schedules, order
points, and material requisitions are all in units [3].

2. Define Metrics and Analysis Methods.

This step is a continuation of the GQM paradigm described
above, with the additional task of defining the analysis methods
that will be used to create information from the data collected.
The topic of proper data analysis is not trivial, and is well beyond
what can be covered in a short article. The handbook [4] is an
excellent starting point regarding measurement in general and
includes several chapters that discuss analyzing data. Best of all, it
can be downloaded free from the SEI Web site [www.sei.cmu.edu].

3. Define the Selected Measures.

This is the final step of the GQM paradigm. The selected meas-
ures are chosen not only to provide the information needed to
answer the questions, but also to allow analysis using the meth-
ods determined in Step 2 above. Measurements used to charac-
terize process performance should:
• Relate closely to the issue under study.
• Have high information content.
• Pass a reality test.
• Permit easy and economical collection of data.
• Permit consistently collected, well-defined data.
• Show measurable variation.
• Have diagnostic value as a set [4].

Let’s look at each of the above points in some depth.

Relate closely to the issue under study. As mentioned in the
paragraph discussing GQM, measurements must enable us to
answer the questions related to individual goals.

Have high information content. A single measurement that
provides a significant amount of information is more valuable
than a set of three, four, or more measurements required pro-
viding the same information.

Pass a reality test. Does the proposed measurement really pro-
vide information necessary to answer a question regarding a
goal? Or is it just a feel-good measurement that has been collect-
ed traditionally, but offers no real value?

Permit easy and economical collection of data. This is one
goal of a measurement program. Data that are readily available
and answer the questions regarding a goal are more desirable
than similar data that are difficult or expensive to gather. Do
not hesitate to perform a cost benefit analysis regarding data
that appear to be difficult or expensive to collect.

The Nine-Step Metrics Program

Metrics are essential in evaluating program or project performance. However, several organizations remain
confused regarding what measurements to collect, and how to use the measurements after they are collected.
Before addressing these questions, some terms need to be defined. For the purpose of this article, a metric is
defined as a combination of two or more measurements. Measurements are the raw data gathered from com-
paring an entity to a standard. After reading the article, feel free to use your own definition of the above terms.

Timothy K. Perkins
Software Technology Support Center

16 CROSSTALK The Journal of Defense Software Engineering February 2001

February 2001 www.stsc.hill.af.mil 17

Permit consistently collected, well-defined data. Once again,
repeatability of data is the reason for strict identification of col-
lection points.

Show measurable variation. Data that does not exhibit varia-
tion is useless in determining how to improve a process. It is the
range of the variation that determines whether or not a process
is under statistical control and indicates whether or not process
changes are achieving desired results.

As a set, have diagnostic value. As stated, measurements com-
bine to form metrics that are used to answer questions regarding
goals. The set of measurements selected must provide the infor-
mation needed to determine goal accomplishment, otherwise the
measurement set is insufficient. According to Florac et al., “They
should be able to help you identify not only that something
unusual has happened, but what might be causing it [4].”

In the process of selecting measurements, do not forget to
spend some time determining how collected data will be ana-
lyzed. Some analysis techniques require a certain volume of data
collected at regular frequencies with a minimum level of accura-
cy in order to provide meaningful results. Make sure you under-
stand how the data will be analyzed and plan accordingly.

4. Define the Collection Process of Measurement Data.

The points in the process where measurements are to be collect-
ed should be identified. Are measurements to be taken before or
after a certain procedure has been performed, prior to or subse-
quent to certain integration efforts, etc.? Additionally, the man-
ner whereby data is to be collected and the individual responsi-
ble for collecting the data should be specified by job title. If at
all possible, the data generation should be a normal part of or
step in the process.

Measurements must be clearly defined. This definition
should explicitly state what is included in and excluded from
the measurement. This allows those who use the data to thor-
oughly understand what the data represent, to permit the repeti-
tion of data collection, and to compare data samples. A good
example of the necessity of clearly defining measurements is to
ask a group of individuals to determine the number of lines of
code in a short program listing. Depending on the language,
arguments can be made regarding control code, comment lines,
multiple executable statements on a single line, etc.

The frequency of data collection also needs to be specified.
Measurements should be taken frequently enough to identify
problems, and allow their correction prior to generating substan-
tial scrap, creating substantial rework, or missing critical mile-
stones. For example, if an organization cannot afford to lose the
month-long effort of five individuals working on a project prior
to identifying a problem in product production, measurements
frequency must be substantially more than monthly. In deter-
mining the collection frequency, do not forget to include the
time required to process the data into measurements and met-
rics, and to get the metrics into decision-makers’ hands.

The Nine Steps in Action — An Example
The following example of how the steps are used in a measure-
ment program is based on the idea that an organization has
been tasked to deliver a new software release within 120 days.

See [5] for an example of how the desired metric is calculated.
Step 1: Define information needs. Suppose one of the goals of
the organization was to deliver the product on time. Questions
regarding this goal are:
• Does the schedule estimate allow sufficient time to produce

the product, or is the schedule artificially constrained?
• How much time is allocated for product development?
• Is there sufficient staff to provide the estimated needed

hours within the required schedule?
• How much work has been accomplished on the critical path?
• How much work should have been accomplished on the

critical path?
• How much time is remaining?

Step 2: Define metrics and analysis methods to address
information needs. For the sake of this example, let’s look at
the third bullet from Step 1: Is there sufficient staff to provide
the estimated needed hours within the required schedule? The
metric used may be staff hours available per day. The analysis
method chosen could be the use of X-Bar and R charts to
determine if the number of hours delivered per day is within
statistical control. The term “staff hours available per day”
should be explicitly defined so that everyone on the project
understands what is meant by an available staff hour.
Step 3: Define the selected measures. The measure to be col-
lected would be the number of productive hours per person
assigned to the project per day. For example, time spent in a team
meeting discussing the project may be included while time spent
answering e-mail on an unrelated project may not be included.
Step 4: Define the collection process of the measurement
data. The collection process is to record the time reported
against the project per person per day.

Activity Group 2
Measurement Implementation
The next activity group is measurement implementation.
Continue with the following procedures:
5. Collect the Measurement Data.

This activity is simply the execution of the measurement data
collection process methods.
6. Analyze the Measurement Data to Derive Metrics.

Metrics are derived from the analysis performed on the meas-
urement data. The quality of the metric is tied to the rigor of
the analysis process and the quality of the data collected.
7. Manage the Measurement Data and Metrics.

The measurement data and metrics must be managed properly
according to the requirements defined in the measurement plan.
8. Report the Metrics.

Once the metrics are derived from the analysis of the measure-
ments, they are made available to all those either affected by the
metrics or by the decisions made because of the metrics.

Continuing the Example
Step 5: Collect the measurement data. The hours per day
accomplished on the project per person is collected from the
time cards the workers complete daily.
Step 6: Analyze the measurement data to derive metrics. Daily
measurements are used to calculate additional points on X-Bar

TThhee NNiinnee--SStteepp MMeettrriiccss PPrrooggrraamm

and R charts, which are then analyzed to determine if the process
is in statistical control and to determine if the average number of
hours delivered are equal to or greater than the average number
expected. Remember that the process can be within statistical
control without meeting the average number of hours needed.
Step 7: Manage the measurement data and metrics. Archive
the data in a manner that it can be readily retrieved, if needed.
Step 8: Report the metrics. Report whether or not the process
is in statistical control and whether or not the necessary number
of hours is being delivered.

Activity Group 3
Measurement Program Evaluation
9. Review the usability of the selected metrics.

Initially, the selection of metrics, analysis methods, and specific
measurement data may be a best guess. Whether or not they meet
specified information needs must be determined by experience.
Over time, through a review of the usefulness of the metrics, the
selection can be refined to a high correlation between the metrics
selected and the information needs. This will be an iterative process.

The old adage “keep it simple” is a good rule to follow
when establishing a metrics program. Remember to focus the
metrics on the organization’s goals. Because an organization will
have a limited number of goals, there should be a limited num-
ber of necessary metrics. In other words, do not go overboard in
collecting all potential measures. Collect only those necessary to
determine goal achievement.

In a study performed in the early 1990s, Rifkin and Cox
sampled organizations that had excellent software measurement
practices. Their finding was that none of the organizations sam-
pled had more than a dozen metrics [5]. Start small, collect and
evaluate the data, and make changes as necessary. It is better to
implement the 70 percent solution and evolve to the 100 per-
cent solution rather than allow the analysis paralysis of trying to
hit 100 percent on the first try to keep the organization from
implementing anything.

Continuing the Example
Step 9: Review the usability of the selected metrics. After
analyzing and reporting on staff hours per day, you may realize
those hours alone are not a sufficient metric. Maybe productivi-
ty should be included, e.g., how much work on the project is
being accomplished for each hour delivered. This would involve
measuring task accomplishment per hour delivered.

A Caution in Selecting Metrics
Goldratt offers the following caution regarding measurements,
“Tell me how you measure me, and I will tell you how I will
behave. If you measure me in an illogical way… do not complain
about illogical behavior [6].” This implies that the measurements
you take may cause individuals within an organization, or an
organization as a whole, to behave in a given manner.

To illustrate, Goldratt uses the example of a steel mill that
was losing money where the primary performance measurement
was tons per hour. At the end of the month, when the monthly
measurement of tons per hour was coming due, the organiza-

tion concentrated on producing tons of steel without regard to
customer orders. In the rolling operation, thick steel plate took
less time to produce than thin steel plate. Can you guess the
thickness of plate produced? Customer orders went unfulfilled,
and customers complained, but to no avail. Only when the
measurement was changed from tons per hour to orders satisfied
did the steel mill begin to use black ink rather than red ink [7].
Make sure the measurements you select cause the organization
to behave in the desired manner.

Goldratt further warns, “Change my measurements to new
ones that I don’t fully comprehend and nobody knows how I
will behave, not even me [8].” Make sure the organization’s
members understand the reason for the measurements and how
they will be used before attempting to institute the collection of
a set of new measurements.�

References
1. Goldratt, Eliyahu M., Critical Chain, The North River Press

Publishing Corp., Great Barrington Mass, 1997, pp. 81-82.
2. Goldratt, Eliyahu M., The Haystack Syndrome, North River

Press, Croton-on-Hudson, N.Y., 1990, p. 14.
3. Juran, Joseph M., Managerial Breakthorugh, 30th Anniversary

Edition, McGraw-Hill, New York N.Y., 1995, pp. 240-241.
4. Florac, William A., Park, Robert E., Carlton, Anita D.,

Practical Software Measurement: Measuring for Process
Management and Improvement (CMU/SEI-97-HB-003),
Software Engineering Institute, Carnegie Mellon University,
Pittsburgh, Pa, 1997, p. 19

5. Rifkin, S. and Cox C., Measurement in Practice (CMU/SEI-91-
TR-016), Software Engineering Institute, Carnegie Mellon
University, Pittsburgh, Pa, 1991.

6. Goldratt, The Haystack Syndrome, p. 28.
7. Goldratt, Critical Chain, pp. 104-112.
8. Goldratt, The Haystack Syndrome, p. 88.

18 CROSSTALK The Journal of Defense Software Engineering February 2001

SSooffttwwaarree MMeeaassuurreemmeenntt

About the Author
Timothy K. Perkins has been involved in software
process improvement for the past 11 years, since he
led the effort to initiate the software process improve-
ment effort at the (then) five Air Force Air Logistics
Centers. As the Software Engineering Process Group
leader at the Software Engineering Division at Hill

Air Force Base, Utah, he led the division in reaching CMM Level 3.
The division has gone on to achieve CMM Level 5. Since retiring
from the Air Force, he has been employed by Science Applications
International Corp. as a process improvement consultant currently
under contract with the Software Technology Support Center,
which provides consulting services to Air Force and other DoD and
government agencies. Perkins holds a bachelor’s degree in electrical
engineering from Brigham Young University and a master’s degree
in business administration from the University of Phoenix.

OO-ALC/TISE
7278 4th Street
Hill AFB, Utah 84056
Voice: 801-775-5736
Fax: 801-777-8069
E-mail: tim.perkins@hill.af.mil

February 2001 www.stsc.hill.af.mil 19

International Council on Systems Engineering
www.incose.org
The International Council on Systems Engineering (INCOSE) is a
not-for-profit membership organization founded in 1990 to devel-
op, nurture, and enhance the system engineering approach to mul-
tidisciplinary system product development. The organization works
with industry, academia, and government to disseminate systems
engineering knowledge, promote education and research, and estab-
lish standards. The Web site lists conferences, workshops, seminars
and courses, and features bulletins, technical journals, and electron-
ic bulletin boards on systems engineering. INCOSE serves more
than 3,200 multinational systems engineering professionals.

International Function Point Users’ Group
www.ifpug.org
The International Function Point Users’ Group (IFPUG) is a non-
profit organization committed to increasing the effectiveness of its
members’ IT environments through the application of function
point analysis (FPA) and other software measurement techniques.
IFPUG endorses FPA as its standard methodology for software siz-
ing and maintains the Function Point Counting Practices Manual,
the recognized industry standard for FPA. It also provides a forum
for networking and information exchange, and provides an annual
conference, educational seminars and workshops, professional cer-
tification, industry publications and more. IFPUG serves more
than 1,200 members in more than 30 countries.

Practical Software and Systems Measurement
Support Center
www.psmsc.com
Practical Software and System Measurement is a U.S. Army site-
sponsored by the Department of Defense (DoD). The goal of the
project is to provide project managers with the objective informa-
tion needed to successfully meet cost, schedule, and technical objec-
tives on programs. PSM is based on actual measurement experience
with DoD, government, and industry programs. Measurement pro-
fessionals from a wide variety of organizations participate in the
project, which includes systems and product engineering as well as
software measurement. The Web site has the most current version
of the PSM Guidebook, and is being updated to include an online
search, a user’s forum information exchange and automatic notifica-
tion of product enhancements for registered users.

Software Metrics Sites
http://user.cs.tu-berlin.de/~fetcke/metrics-sites.html
The Software Metrics Sites are a guide to Internet resources on
software measurement, process improvement, and related areas.
Topics featured include electronic papers, bibliographies, and

conferences on software measurement, object-oriented metrics,
function point analysis, and software process improvement. The
Software Metrics Sites list research institutes and people who are
active in the area of software measurement. Several mailing lists
that are used for discussions and ideas exchange can be found as
well as software measurement tools that are available for download.

Association for Computing Machinery
www.acm.org
The Association for Computing Machinery (ACM), is an interna-
tional scientific and educational organization dedicated to advanc-
ing IT arts, sciences, and applications. With a worldwide mem-
bership of 80,000, ACM functions as a locus for computing pro-
fessionals and students working in the various IT fields. The site
features news and publications, conference listings, and a library.

Computer Measurement Group Inc.
www.cmg.org
The Computer Measurement Group (CMG) is a nonprofit,
worldwide organization of data processing professionals commit-
ted to the measurement and management of computer systems.
CMG members are primarily concerned with two areas: perform-
ance evaluation of existing systems to maximize performance (e.g.
response time, throughput, etc.); capacity management where
planned enhancements to existing systems or the design of new
systems are evaluated to find the necessary resources required to
provide adequate performance at a reasonable cost.

The Institute of Measurement and Control
www.instmc.org.uk
The Institute of Measurement and Control brings together thinkers
and practitioners from many disciplines that have a common inter-
est in measurement and control. It organizes meetings, seminars,
exhibitions, and national and international conferences on a large
number of topics. It has a very strong level of local section activity,
providing opportunities for interchange of experience and for intro-
ducing advances in theory and application. It provides qualifica-
tions in a rapidly growing profession and is one of the few char-
tered engineering institutions that qualifies incorporated engineers
and engineering technicians as well as chartered engineers.

Society for Software Quality
www.ssq.org
The Society for Software Quality (SSQ) promotes increased knowl-
edge and interest in quality software development and maintenance
technology. Its charter is to advance the arts, sciences, and tech-
nologies of quality software and to nurture and promote profession-
alism in those who engage in these pursuits. The SSQ is a federally
recognized public benefit corporation organized and operated
exclusively for educational purposes. It is dedicated to improving
software quality and to providing communication between acade-
mia, industry, and software professionals.

Software Productivity Consortium
www.software.org
The Software Productivity Consortium is a unique, nonprofit part-
nership of industry, government, and academia. It develops process-
es, methods, tools, and supporting services to help members and
affiliates build high-quality, component-based systems, and continu-
ously advance their systems and software engineering maturity pur-
suant to the guidelines of all of the major process and quality frame-
works. The site features an interactive section to discuss new trends.

Measurement
S
o
ft

w
a
re

The project used here is a large information system with a
database of more than 30 million records developed on net-
worked, client/server, workstations, and a multiprocessor paral-
lel server utilizing C, UNIX, and ORACLE. The project was
developed during five years with a staff of more than 100 with
300,000 lines of code and many commercial off-the-shelf pack-
ages. The project had achieved Level 3 in the SW-CMM, and
the organization was pursuing Level 4. All Level 4 and Level 5
processes were installed and conducted on the project during a
period of time.

This author was the software manager of the project at the
time Level 3 was achieved. The author was also the SEPG lead
during Level 4 activities and developed and installed Level 4
and Level 5 processes on the project.

The main quantitative tool used was SPC, utilizing control
charts along with other methods. The project analyzed life-cycle
data collected during development for requirements, design,
coding, integration, and during testing. Defects were collected
during these life-cycle phases and were quantitatively analyzed
using statistical methods. The intent was to use this analysis to
support the project in developing and delivering high quality
products, and at the same time use the information to make
improvements, as required, to the development process.

Rigorous statistics have been used in manufacturing but
have had limited use in software development. The SEI’s
Capability Maturity Model IntegratedSM (CMMI) calls for
rigorous statistics at Level 4 and emphasizes SPC. This paper
shows that control charts and other statistical methods can
easily and effectively be applied in a software setting.

Control Chart Analysis
Figure 1 demonstrates how control charts are used for this
analysis [2]. According to the normal distribution, 99 percent of

all normal random values lie within +/- 3 standard deviations
from the norm, 3-sigma [3]. If a process is mature and under
SPC, 99 percent of all events should lie within the upper and
lower control limits. If an event falls out of the control limits
the process is said to be out of SPC; the reason for this anomaly
needs to be investigated for cause, and the process brought back
under control.

Control charts are used because they separate signal from
noise. Thus when anomalies occur they can be recognized.
They identify undesirable trends and point out fixable prob-
lems and potential process improvements. Control charts show
the capability of the process, so achievable goals can be set.
They provide evidence of process stability, which justifies pre-
dicting process performance [2].

Control charts use variables and attributes data. Variables
data are usually measurements of continuous phenomena.
Examples of variables data in software settings are elapsed time,
effort expanded, and memory/CPU utilization. Attributes data
are usually measurements of discrete phenomena such as number
of defects, number of source statements, and number of people.
Most measurements in software used for SPC are attributes data.
It is important to use the correct data on a particular type of
control chart [2].

When attributes data are used for direct comparisons, they
must be based on consistent areas of opportunity if the compar-
isons are to be meaningful. In general, when the areas of oppor-
tunity for observing a specific event are not equal or nearly so,
the chances for observing the event will differ across the observa-
tions. When this happens, dividing each count by its area of
opportunity normalizes the number of occurrences [4].

Charts for averages (X-bar charts) and range (R charts) are

CMM Level 4 Quantitative Analysis and Defect Prevention
Al Florence

MITRE Corp.

The Software Engineering Institute’s Software Capability Maturity Model® (SW-CMM) Level 4 quantitative analysis leads to SW-
CMM Level 5 activities. Level 4 Software Quality Management (SQM) key process area analysis, which focuses on product quality,
feeds the activities required to comply with defect prevention (DP) at Level 5 [1]. Quantitative Process Management (QPM) at
Level 4 focuses on the process that leads to technology change management and process change management at Level 5. At Level 3,
metrics are collected, analyzed, and used to status development and to make corrections to development efforts, as necessary. At Level
4, measurements are quantitatively analyzed to control process performance of the project and to develop a quantitative understand-
ing of the quality of products to achieve specific quality goals. This paper presents the application of statistical process control (SPC) to
accomplish the SQM and QPM and apply these results to DP. Real project results are used to demonstrate the use of SPC as applied
to software development. An overview of control charts is presented along with Level 4 quality goals and plans to meet these goals.

20 CROSSTALK The Journal of Defense Software Engineering February 2001

Best Practices

Figure 1. Control Chart

An organization performing Level 4 quantitative analysis
recognizes that it leads to Level 5 activities. This article
presents this progressive relationship in project examples

where statistical process control (SPC) is used to analyze meas-
urements. Results of this analysis are used to gain a quantitative
understanding of process capability, manage progress toward
achieving quality goals, and for defect prevention.

Capability Maturity Model Integrated (CMMI) is a service mark of
the Software Engineering Institute and Carnegie Mellon University.

February 2001 www.stsc.hill.af.mil 21

used to portray process behavior when the option exists to col-
lect multiple measurements within a short period of time
under basically the same conditions. When the data are collect-
ed as such, measurements of product or process characteristics
are grouped into self-consistent sets (subgroups) that can rea-
sonably be expected to contain only common cause variation.
The results of the subgroups are used to calculate process con-
trol limits, which in turn are used to examine stability and
control the process [4].

The following is a list of control charts that should be used
for variable data and for attributes data:

Attributes Data: Variable Data:

• u charts • X-bar charts

• Z charts • R charts

• XmR charts • XmR charts

Level 4 Leads to Level 5
Figure 2 shows how data collection, analysis, and management
from Level 4 activities leads to Level 5 activities of defect pre-
vention, technology change management (TCM), and process
change management (PCM) [5].

Quantitative process management (QPM),which focuses
on the process, leads to making process and technology
improvements. Meanwhile software quality management,
which focuses on quality, leads to preventing defects.

Level 4 Goals and Plans

The Capability Maturity Model V1.1 requires that Level 4 qual-
ity goals, and plans to meet those goals, be based on the process-
es implemented, that is, on the processes’ proven ability to per-
form. Goals and plans must also reflect contract requirements.
As the project’s process capabilities and/or contract requirements
change, the goals and plans may need to be adjusted.

The project this paper is based on had the following key
requirements:
• Timing: subject search response in less than 2.8 seconds 98

percent of time.
• Availability: 99.86 percent seven days, 24 hours.

These are driving requirements that constrain hardware and
software architecture and design. To satisfy these requirements,
the system needs to be highly reliable and have sufficiently fast
hardware.
The quality goals are:
• Deliver a near defect-free system.
• Meet all critical computer performance goals.

The plans to meet these goals are:

• Defect detection and removal during:
– Requirements peer reviews.
– Design peer reviews.
– Code peer reviews.
– Unit tests.
– Thread tests.
– Integration and test.
– Formal tests.

• Critical computer resource monitoring:
– General purpose million instructions per second (MIPS).
– Disc storage read inputs/outputs per second (IOPS).
– Write IOPS per volume.
– Operational availability.
– Peak response time.
– Server loading.

The following quantitative analyses are real project exam-
ples applying SPC to real data over a period of time.

Example 1
Table 1 shows raw data collected during code peer reviews.
• Sample – series of peer reviews.
• Units – number of software units reviewed.
• SLOC – number of source lines of code reviewed.
• Defects – number of defects detected for each sample.
• Defects/1000 SLOC – defects normalized to 1000 SLOC

for each sample.

The calculations are shown in Table 2.
The formulas for constructing the control chart follow [2].

The control chart used is a u chart.
• Defects/1000 SLOC = Number of Defects * 1000/SLOC

reviewed per sample (calculated for each sample). These are
plotted as Plot.

• Control Limit (CL) = total number of defects/total number of
SLOC reviewed * 1000.

• A(1) = SLOC reviewed/1000 (calculated for each sample).
• Upper Control Limit (UCL) = CL+3(SQRT(CL/a(1))

(calculated for each sample).
• Lower Control Limit (LCL) = CL-3(SQRT(CL/a(1))

(calculated for each sample).
The control chart is shown in Figure 3.

CCMMMM LLeevveell 44 QQuuaannttiittaattiivvee AAnnaallyyssiiss aanndd DDeeffeecctt PPrreevveennttiioonn

Level 4 Level 5

 Quantitative
Process Management

 Software
Quality Management

Defect Prevention

 Technology

Change Management

 Process
Change Management

Sample Units SLOC Defects Defects/KSLOC
1. Feb 1997 17 1705 62 36.36
2. Mar 1997 18 1798 66 36.70
3. Mar 1997 15 1476 96 65.04
4. Mar 1997 19 1925 57 29.61
5. Mar 1997 17 1687 78 46.24
6. Apr 1997 18 1843 66 35.81
Totals 104 10,434 425

Sample Plot CL UCL LCL A(1)
1. Feb 1997 36.4 40.73 55.4 26.09 1.7
2. Mar 1997 36.7 40.73 55.01 26.45 1.8
3. Mar 1997 65.0 40.73 56.49 24.97 1.5
4. Mar 1997 29.6 40.73 54.53 26.93 1.9
5. Mar 1997 45.2 40.73 55.47 25.99 1.7
6. Apr 1997 35.8 40.73 54.84 26.63 1.8

Table 1. Code Peer Review Defects

Figure 2. Level 4 and Level 5 Paths of Influence

Table 2. Calculations for Code Peer Review Defects

22 CROSSTALK The Journal of Defense Software Engineering February 2001

The process is out of SPC in the third event. Causal analysis
revealed this was caused when the project introduced coding
standards and many coding violations were injected. The root
cause is lack of knowledge of the coding standards. The defect
prevention is to provide training whenever a new process or
technology is introduced.

Example 2
Table 3 shows raw data collected at code peer reviews over a
period of months:

Table 4 shows the calculations. LCL is set to zero when it
is negative.

The control chart is shown in Figure 4.

An anomaly occurred in the fifth sample. Causal analysis
revealed that data for that sample were for database code, all oth-
ers were applications code. Control charts require similar data for
similar processes, i.e., apples to apples analogy. The database sam-
ple was removed and the data charted again as shown in Figure 5.

The process is now under SPC. The root cause is that data
gathered from dissimilar activities cannot be used on the same
statistical process on control charts. Data from design cannot
be combined with data from coding. The process for database
design and code is different from that used for applications
design and code as are the teams and methodologies. The
defect prevention is against the process of collecting data for
SPC control charts.

Example 3
During integration testing, the defects were categorized against
the test plan, test data, code logic, interfaces, standards, design,
and requirements. Defects against these attributes are shown in
Table 5.

Figure 6 plots the defects discovered during integration tests.

BBeesstt PPrraaccttiicceess

Sample Units SLOC Defects Defects/KSLOC
1. Mar 1998 6 515 15 29.12
2. Apr 1998 10 614 16 26.06
3. Apr 1998 7 573 7 12.22
4. Apr 1998 7 305 7 22.95
5. Apr 1998 4 350 21 60.0
6. Apr 1998 3 205 2 9.76
7. Apr 1998 8 701 11 15.69
8. May 1998 3 319 3 9.40

Totals 76 3,582 72

0

10

20

30

40

50

60

70

0 2 4 6 8 10

 Plot
 CL
 UCL

 LCL

Sample Plot CL UCL LCL a(1)
1. Mar 1998 29.13 20.1 38.84 1.36 0.515
2. Apr 1998 26.06 20.1 37.27 2.96 0.614
3. Apr 1998 12.22 20.1 37.87 2.33 0.573
4. Apr 1998 22.96 20.0 44.45 0 0.305
5. Apr 1998 60.00 20.1 42.84 0 0.35
6. Apr 1998 9.76 20.1 49.80 0 0.205
7. Apr 1998 15.71 20.1 36.16 4.04 0.701
8. May 1998 9.40 20.1 43.91 0 0.319

0

10

20

30

40

50

60

0 2 4 6 8

 Plot

 CL

 UCL

 LCL

Figure 5. Control Chart without Database Defects

0

10

20

30

40

50

60

70

1. Feb
1997

2. Mar
1997

3. Mar
1997

4. Mar
1997

5. Mar
1997

6. Apr
1997

Plot

CL

UCL

LCL

Figure 3. Control Chart for Code Peer Review Defects

Table 3. Code Peer Review Defects

Table 4. Calculations for Code Peer Review Defects

Figure 4. Control Chart for Code Peer Review Defects

Totals

0

20

40

60

80

100

120

Tes
t P

lan

Tes
t D

at
a

Lo
gic

Int
er

fa
ce

Sta
nd

ar
ds

Des
ign

Req
uir

em
en

ts

Figure 6. Integration Test Defects Bar Chart

Samples Test Plan Test Data Logic Interface Standards Design Requirements
1 2 6
2 10
3 1 9 3
4 2 1 13
5 1 7
6 10 14
7 4 2
8 28
9 6

10 1 3 2
11 10
12 9 1
13 6 2 1
14 5 7

Totals 6 102 55 1 2
Table 5. Integration Test Defects

February 2001 www.stsc.hill.af.mil 23

Test data would not be expected to
have the majority of defects. The root
cause was that the test data in the test
procedures had not been peer reviewed.
The defect prevention mechanism is to
peer review the test procedures and the
test data.

Example 4
During preliminary design and prior to
acquiring hardware, a simulated perform-
ance model was used to monitor critical
computer resources. Figure 7 shows some
results of monitoring the required MIPS.
The model tracked estimated usage, the
amount of MIPS required based on func-
tional requirements to be implemented;
availability, the amount of available MIPS
in the model’s design; and threshold, the
number of MIPS that threaten the avail-
ability that requires remedial action.

Around November 1995, many new
requirements were added to the system
and the architecture’s MIPS threshold
was threatened because of increased
computations. In May 1996, additional
MIPS were added to the hardware
design and the problem was corrected.

Conclusion
The use of rigorous statistics using SPC
(control charts) and other statistical
methods can easily and effectively be
used in a software setting. SPC can iden-
tify undesirable trends and can point out
fixable problems and potential process
improvements and technology enhance-
ments. Control charts can show the
capability of the process, so achievable
goals can be set. They can provide evi-
dence of process stability, which can jus-
tify predicting process performance. SPC
analysis can provide valuable informa-
tion used in defect prevention and for
lessons learned. SPC is new to software
development but shows great promise
that, in this author’s opinion, will sup-
port process improvement, and will
improve the productivity of develop-
ment and the quality of products.�

References
1. Paulk, Mark C.; Curtis, Bill; Chrissis,

Mary Beth; Weber, Charles V., February
1993, Capability Maturity Model for
Software, V1.1, Software Engineering
Institute (SEI).

2. Florac, William A., Park, Robert E.,

Carleton, Anita D., Practical Software
Measurement: Measuring for Process
Management and Improvement, SEI,
April, 1997.

3. Baumert, John H., McWhinney, Mark
S., Software Measures and the Capability
Maturity Model, SEI, 1992.

4. Florac, William A., Carleton, Anita D.,
Measuring the Software Process, Statistical
Process Control for Software Process
Improvement, SEI, 1999.

5. Radice, Ron, Getting to Level 4 in the
CMM, 1997 SEI Software Engineering
Process Group Conference, San Jose,
Calif.

Suggested Readings
• Pyzdek, Thomas, An SPC Primer,

Quality America Inc., 1994.
• Carleton, Anita; Paulk, Mark C.;

Statistical Process Control for Software,
1997 Software Engineering Symposium,
Pittsburgh, Pa.

• Chambers, David S.; Wheeler, Donald
J., Understanding Statistical Process
Control, SPC Press, 1995.

• Juran’s Quality Control Handbook, 4th
Edition, McGraw-Hill Book Company,
1988.

• Florence, Al, CMM Level 4 and Level 5
Plan, 1999 Software Engineering
Process Group Conference Proceedings,
Atlanta, Ga.

• Donald J. Wheeler, Advanced Topics in
Statistical Process Control, SPC
Press, 1995.

• Deming, W. Edwards, On Probability
As a Basis For Action, The American
Statistician, November 1975,Vol. 29,
No. 4, pp.146-152.

• Florence, Al, CMM Level 4 Quantitative
Analysis and Level 5 Defect Prevention,
2000 Software Technology Conference
Proceedings, Salt Lake City, Utah.

• Humphrey, Watts S., Managing the
Software Process, SEI Series in Software
Engineering, Addison-Wesley
Publishing Company, September 1997.

0

500

1000

1500

2000

2500

3000

Mar-94 Sep-94 Apr-95 Oct-95 May-96 Dec-96 Jun-97

DATE

Estimated Usage

Available
Threshold

M
IP

S

CCMMMM LLeevveell 44 QQuuaannttiittaattiivvee AAnnaallyyssiiss aanndd DDeeffeecctt PPrreevveennttiioonn

About the Author
Al Florence has worked at
Hughes Aircraft, TRW,
Martin Marietta, Science
Applications International
Corp., and currently at the
MITRE Corporation. He has

worked in all software life-cycle phases from
concept to retirement in several disciplines,
including systems, software, development,
test, configuration management, and quality
assurance, as both a developer and manager.
He has diversified experience in real-time
command and control, aircraft, spacecraft,
missiles, weapon systems, particle accelera-
tors, simulation, and information systems
projects. He has developed processes for all
CMM® key process areas at all CMM levels
and is a trained evaluator and assessor. He
has a bachelor’s degree in mathematics and
physics from the University of New Mexico
and did graduate work in computer science
at the University of California Los Angeles
and the University of Southern California.

MITRE Corp.
1820 Dolley Madison Blvd.
McLean,Va. 22102-3481
Voice: 703-883-7476
Fax: 703-883-1889
E-mail: florence@mitre.org

Figure 7. General Purpose MIPS

24 CROSSTALK The Journal of Defense Software Engineering February 2001

Evolving Function Points
Lee Fischman
Galorath Inc.

Open Forum

Functional size metrics for software emerged a generation ago with the invention of the function point. Since then, they have
become the most common alternative to lines of code. Function points gauge software size in terms of delivered functionality
rather than gross physical size, providing a valuable alternative perspective that often is preferred. Despite being a key inno-
vation in software sizing, the software engineering community has not been entirely satisfied with function points.
Consequently, alternative functional metrics (Mark II, Feature Points, and Full Function Points) have been proposed to
remedy perceived deficiencies. This diversity, however, does not lead the software community to a standard that achieves
widespread use. Moreover as the leading functional metric, function points deserve to be evolved rather than abandoned.
This article outlines the findings of a metrics research program conducted during the last several years. The program explored
function points’ underlying framework, reviewed previous research, and considered changes to the current standard. The goal
is to reconcile lingering criticisms of function points with the tremendous investment made in them during the past 20 years.

What do critics claim is wrong with function points? The cri-
tique below may be a long list, but hold your breath. It is

not damning. Function points have been shown to be a definite
indicator of development effort, and are still fundamentally sound.

Semantically Difficult. Function point standards were
codified in the early 1980s by a standards body hailing from a
traditional management information system world. Since then
the standards document has not been drastically overhauled. Its
language reflects this with seemingly arcane terms such as
“record element types, external inputs, etc.” While such careful
language insulates a relatively complex metric from everyday
misunderstanding, it also impedes learning and acceptance by a
wider audience.

Too Many Steps. The function point counting method-
ology is complex. It takes several days to learn function points,
which is more time than most harried software engineers are
willing to spend. Furthermore, some of that methodology is
mathematically suspect while potentially adding no benefit.

Incomplete. Function points were defined from the user
interface’s vantage. Although a clever angle, this caused major
criticism that all the functionality built into a software system
might not be captured. Many argued that substantially internal
functionality, without much manifestation at the user interface,
might be missed.

Arbitrary Weightings. Once identified, raw function
points go through two numeric transformations. The first is meant
to weight them for relative size—low, average, high. The second is
intended to make different types of points comparable such as
equating an external input to an external output. The problem is
that the scalar values behind these transformations were developed
more than 20 years ago under very particular circumstances. At
worst, these values may now be arbitrary.

No Automatic Count. No generally automated method is
available for counting function points, even in completed sys-
tems. In contrast, lines of code counts can be
obtained using simple line counting utilities.
This paper does not address the automatic
counting issue; innovations eventually may
emerge from computer aided software engi-
neering vendors.

Simple Semantic Changes
The following changes are intended to make function points
easier to learn and eliminate inconsistencies.

Simpler Names. Function points’ key innovation is that
they approach software size from an intuitive perspective—user
interface artifacts such as inputs, outputs, and files a software
developer understands. Why call these external inputs, external
outputs and internal logical files when more straightforward terms
work equally well? Figure 1 offers a simplified nomenclature.
Figure 1. Simplified Naming Scheme

Simplified Weighting Terms. The function point
methodology describes a function in terms of size. Actually, the
standard refers to “complexity” but complexity is an algorithmic
factor that should be orthogonal to a size metric, so we are uni-
laterally changing the label. Consistent with this change, low,
average, and high complexity become small, medium, and large.

Size is determined by counting a function’s attributes. The
standard refers to these as data element types, record element
types, and file types referenced—simpler terms are field for the
first item and data groupings accessed for the latter two. Figure 2
illustrates how size is determined then labeled using the alterna-
tive nomenclature outlined here.

Accounting for Hidden Functionality
Function points are determined at an application’s external

Figure 2. Size Determination Matrix

interface, the layer where interaction with the outside world
occurs. However, attributes at the external interface sometimes
provide little indication of how substantial underlying code is.
Examples include algorithmically intense software (encryption,
image processing) or systems with underlying “layers” that are
out of the user’s view. Judged from the external interface, the
size of these systems will be understated. Two very different
methods for capturing hidden size have been suggested but
never before specified for use in a single framework.

An Internal Function Point. Numerous researchers have
suggested a new function point to capture functionality missed
by the other categories. It even has been implemented in com-
peting functional metrics schemes. Figure 3 illustrates the idea
behind the “internal function.”

As depicted an internal function is a truly extraordinary
input or output. It easily bests other functions that form an
external perspective resembling it in size but have nowhere near
the underlying amount of code. Keep in mind that these func-
tions should occur rarely, no more than a few times in the aver-
age system.

When an internal function is found, it probably should be
sized by analogy against standard function points. Compare an
internal function against other known inputs or outputs in the
system—it could equal several. Remember that an internal func-
tion is an input or output with a misleadingly simple external
interface; sizing by analogy corrects this misjudgment.

Layers. Other hidden functionality can be captured by a
change of perspective. A cornerstone of the function point frame-
work is that software functionality, except key data structures,
is not functional unless it interacts with the outside world. This
external interface provides a consistent vantage while accounting
for the entire system. However, this level can also conceal the
inner workings of a complex system (see Figure 4).

Component-to-component interaction can be revealed with
internal layers, an innovation first proposed for full function
points. Beneath the external interface, layers are intended as
equally valid perspectives from which to count function points.
To prevent misinterpretation and overcounting, a layer must be
strictly defined. All software has many functions interacting

with one another; these do not justify layers.
Internal layers are characterized by a well defined internal

interface that every function in a system lies either above or
below. They are tantamount to secondary application boundaries.
Layers certainly exist when there are wholly constituted systems
within systems, such as with middle-ware and operating system
utilities. Inputs or outputs counted at each layer still must satisfy
the counting rule that an internal file (data grouping) is modified.

Methodology Changes that Aid Learning
It takes several days to learn function point counting and more
time to become proficient. This hurdle has limited the pool of
trained counters. However, an exploration of the standard
reveals potentially easier ways to learn to count.

Start from Artifacts. An alternative approach to learning
function points is to start with a set of recognizable design arti-
facts and provide clarification only when necessary. This should
be a much faster way to learn that establishes a critical intuitive
link for skeptical software developers, the target audience. Figure
5 suggests mappings between artifacts and function points.

Counting Rules Only as a Last Resort. Judging func-
tion points from artifacts is a shortcut that every experienced
counter takes. However, a function is not a “point” unless spe-
cific rules are satisfied. These reinforce the formal framework
behind function points and help to resolve discrepancies. The
rules have been reformulated to make them slightly easier; these
are not currently endorsed by any formal standards organiza-
tion. The counting rules for transactional functions (inputs,
outputs, input/output) can be reduced to three core rules that
establish which observations constitute a point:
• Does this process leave the system in an equilibrium state?

From the user’s perspective, this means that nothing is left to
be done. The entire sequence of actions until a feature is sat-
isfied should be considered part of a single point.

• Is this the smallest meaningful unit of activity? If adjacent
pieces of functionality can work separately and each satisfy
discrete functional requirements, then count them separately.

• Is the logic or data being handled unique to this process? If
not unique, this functionality should not be counted.

The counting rules for files, recast in this article as data
groupings, are:
• Is this group of data visible to the user via an input or out-

put? Groupings of data are evaluated at the external interface

February 2001 www.stsc.hill.af.mil 25

EEvvoollvviinngg FFuunnccttiioonn PPooiinnttss

Figure 3. The Internal Function “Iceberg”

Figure 4. Layers

Standard Function Point

Functional ity is
gauged by
counting the
number of data
elements at the
interface

Applicat ion
interface

Under lying
code

“ Internal Function”

Number of data
elements at the
interface is
misleading -- the
functionali ty is
internal, out of
view

Figure 5. Mapping from artifacts

or internal layer (if you can accept the latter as an extension)
and so they must naturally be evident there.

• Does this group of data logically belong together? If certain
data items are always associated, then they belong in a single
group. This reinforces the idea that function points are based
on specifics of design rather than implementation. As such,
physical attributes (tables, flat files, etc.) can delineate logical
groupings of data.

• Has this group of data been counted before? A data grouping
may be encountered in a system many times, but it only is
designed (and counted) once.

The Math
Alongside the qualitative definition of function points there is a
mathematical framework that is necessary for quantifying and
summarizing them. Function points can be used for quantita-
tive purposes such as for effort estimation only after they are
transformed into a numeric value such as in effort estimation.
Yet the standard methodology involves a loss in information
and may be somewhat arbitrary.

Do not summarize into unadjusted function points. A cru-
cial step in orthodox function point analysis is taking separately
counted inputs, outputs, files, etc., and combining these into a
single value, the unadjusted function point count. However,
whether a function point is a file, input, or output is important
information that is lost when function points are rolled into a
single value. Function point counts by type should be retained
so a maximum amount of information is available for later use.

If you are going to use weightings, be careful. Function
points are counted by type and then weighted by size (see Figure
2). However, the weighting factors in common use were deter-
mined from IBM applications in the late 1970s. There is no
proof they can be generalized to other organizations, technolo-
gies, and eras.

A few things can be done. First, accept the weightings.
There is no alternative to them, and the standard weightings are
required for comparison against third-party actuals databases.
Alternatively, ignore the weightings and simply count by type,
ignoring size. This approach could work if the function point
count is used only for in-house purposes. A final option is to
develop your own weighting scheme, perhaps backed up by
another metric or by known effort relationships.

Conclusion
If every recommendation in this article were to be adopted, the
result would be a function point standard that is markedly simi-
lar to the current one. The various simplifications proposed do
not change counting results; meanwhile, extensions to account
for hidden functionality would only rarely apply. Other sugges-
tions are intended to increase the acceptance of function points
and involve no changes to the underlying standard.

Functional size metrics are here to stay. As software technol-
ogy continues to evolve, they eventually may be preferred to
lines of code. The question is whether lingering concerns about
function points will remain unanswered or whether many of the
changes advocated here will be adopted.

Acknowledgments
Thanks to Alan Clark for editing assistance.

Epilogue
For a further understanding of function points, go to www.galorath.
com/fp_tutorial. The internal function defined here is different from
those previously proposed in that it must manifest at the user inter-
face. The reason for this difference is the simultaneous provision for
internal layers, which should capture truly internal functionality. If
you have better ideas on how to size internal functions or how to
transform a qualitative size scale to a numeric value, contact me.�

Recommended Readings
• Abran, Alain and Robillard, Pierre N., Function Points Analysis:

An Empirical Study of Its Measurement Processes, IEEE
Transactions on Software Engineering, Vol. 22, No. 12,
pp. 895-910, December 1996.

• Albrecht, Allan J., Gaffney, John E., Software Function, Source
Lines of Code, and Development Effort Prediction: A Software
Science Validation, IEEE Transactions on Software Engineering,
Vol. SE-9, No. 6, pp. 639-648, Nov. 1983.

• Bock, Douglas B., Klepper, Robert, FP-S: A Simplified Function
Point Count Method, The Journal of Systems and Software, July
1992, Vol. 18, No. 3, pp. 245-254.

• Briand, Lionel, El Emam, Khaled, and Morasca, Sandro
Theoretical and Empirical Validation of Software Product
Measures, Technical Report, Centre de Recherche Informatique
de Montréal, Number ISERN-95-03, 1995.

• Fischman, Lee, Analysis Of Function Point Rules In A Tree,
presented at the 1999 International Workshop On Software
Metrics, available at www.galorath.com

• Fischman, Lee, The Place of Function Points In An Underlying
Model of Software Content, presented at the 1999 IFPUG
National Conference, available at www.galorath.com

• Fischman, Lee, Function Point Counting For Mere Mortals,
presented at the 1999 Applications of Software Metrics
Conference, available at www.galorath.com

• Harrison, Warren and Miluk, Gene. The Impact of Within Size
Variability on Software Sizing Models, unpublished, available at
www.galorath.com

• Ho, V.T., Abran, A., Oligny, S., Using COSMIC-FFP to
Quantify Functional Reuse in Software Development,
Escom-Scope 2000, available at www.lrgl.uqam.ca/ffp.html

• International Function Points User Group, IFPUG Counting
Practices Manual, Version 4.1, www.ifpug.org

• Jones, Capers, Feature Points (Function Point Logic for Real
Time and System Software), presented at the fall 1988 IFPUG
National Conference.

• Kemerer, Chris F., Reliability of Function Points Measurement:
A Field Experiment, MIT Sloan School of Management.
WP#3193-90-MSA.

• Kitchenham, Barbara and Pfleeger, Shari L., and Fenton, Norman
Towards a Framework for Software Measurement Validation,
IEEE Transactions on Software Engineering, 21(12), pp. 929-943,
December 1995.

• Oligny, Serge and Abran, Alain, On the Compatibility Between
Full Function Points and IFPUG Function Points, unpublished,
available at www.uqam.ca

• Symons, Charles R., Software Sizing and Estimating Mk II
Function Point Analysis, John Wiley & Sons, 1991.

26 CROSSTALK The Journal of Defense Software Engineering February 2001

OOppeenn FFoorruumm

February 2001 www.stsc.hill.af.mil 27

About the Author
Lee Fischman is a special projects director at
Galorath Incorporated and is responsible for
applications development, design, and research
projects. Fischman is also a frequent speaker at
national conferences. He studied economics at
the University of Chicago and UCLA.

Galorath Incorporated
100 North Sepulveda Boulevard, Suite 1801
El Segundo. Calif. 90245
Voice: 310-414-3222
Fax: 310-414-3220
E-mail: info@galorath.com

Coming Events
February 7-9

Network and Distributed System Security Symposium
www.isoc.org/ndss01/call-for-papers.html

February 12-16
Software Management Conference

www.sqe.com/sm

February 12-16
Applications of Software Measurement Conference

www.sqe.com/asm

March 5-8
Software Testing Analysis and Review

www.sqe.com/stareast

March 5-8
Mensch and Computer 2001

http://mc2001.informatik.uni-hamburg.de

March 12-15
Software Engineering

Process Group Conference
www.sei.cmu.edu/products/events/sepg

March 31-April 5
Conference on Human Factors in Computing Systems

www.acm.org/sigs/sigchi/chi2001

April 22-26
Twentieth Annual Joint Conference of the IEEE

Computer and Communications Societies
www.ieee-infocom.org/2001

April 29-May 4
Software Technology Conference

(STC 2001)
www.stc-online.org

May 1-3
2001 IEEE Radar Conference

www.atlaessgrss.org/radarcon2001

May 12-19
23rd International Conference on Software Engineering, and

International Workshop on Program Comprehension
www.csr.uvic.ca/icse2001

June 03-06
2001 IEEE Southwest Test Workshop

E-mail: william.mann@ieee.org

June 11-13
E-Business Quality Applications Conference

http://qaiusa.com/conferences/june2001/index.html

June 18-22
ACM/IEEE Design Automation Conference

www.dac.com

June 25-27
2001 American Control Conference

www.ece.cmu.edu/~acc2001

28 CROSSTALK The Journal of Defense Software Engineering February 2001

Sponsors
The Software Technology Conference (STC) is co-sponsored by
the Departments of the Army, Navy, and Air Force, the Defense
Information Systems Agency (DISA), and Utah State University
Extension. In its thirteenth year, STC is the premier software
technology conference. We anticipate more than 3,000 partici-
pants this year from the military services, government agencies,
defense contractors, industry, and academia.

The government co-sponsors are Lt. Gen. Harry D. Raduege
Jr., director, DISA; Lt. Gen. Peter M. Cuviello, director of
Information Systems for Command, Control, Communications,
and Computers, U.S. Army; Rear Adm. Kenneth D. Slaght,
vice commander, Space and Naval Warfare Systems Command,
U.S. Navy; and Dr. Donald C. Daniel, deputy assistant secre-
tary of the Air Force for Science, Technology, and Engineering,
U.S. Air Force.

General Sessions, Panel Discussion, Plenary Speakers
The general session will be held Monday afternoon and features
keynote speaker Dr. Vitalij Garber, director of Interoperability,
Under Secretary of Defense (Acquisition, Technology, and
Logistics). The co-sponsors will host a panel discussion Tuesday
morning, moderated by Dawn C. Meyerriecks. Wednesday and
Thursday mornings will begin with plenary speaker sessions,
with Steven R. Perkins, senior vice president and general man-
ager of Oracle’s Federal and Global Financial Services, as
Wednesday’s featured speaker, and Dr. Eliyahu M. Goldratt,
educator and creator of the Theory of Constraints, as Thursday’s
featured speaker. Gen. Lester Lyles, commander, Air Force
Materiel Command, has been invited to speak at Thursday
afternoon’s closing general session with Maj. Gen. John L.
Barry, director of Strategic Planning, deputy chief of staff for
Plans and Programs, Headquarters U.S. Air Force.

Special Sessions
Sponsored track presentations will be offered throughout the
week by the following organizations:
Navy CIO: Data Management and Interoperability.
Air Force: DII COE Real-Time Extensions– A Year’s Worth

of Accomplishments for Warfighter Platform
Development.

OSD: DoD Software Intensive Systems Initiative.
GSA: Federal IT Accessibility Initiative – Section 508.
CAC: Common Access Card (Smart Card).
INCOSE: Supporting, Simplifying, and Streamlining

the Odyssey.
STSC: Theory of Constraints.
IEEE: Putting IEEE Best Practices to Work Today

for DoD Software Engineering Success.
DACS: Intelligent Software Agents.

Federal IT Accessibility Initiative — Section 508
HHooww ddooeess SSeeccttiioonn 550088 iimmppaacctt yyoouurr oorrggaanniizzaattiioonn?? Section 508 is a
portion of the Rehabilitation Act that requires access for dis-
abled persons to the federal government’s electronic and infor-
mation technology. We are excited to partner with the U.S.
General Services Administration (GSA) in offering a Monday
tutorial and a sponsored track, including a panel discussion, to
aid in educating our participants on the new standards set forth
by Section 508. These sessions will address issues such as
Webmaster training, procurement guidelines, legal and budget-
ary implications, team building, and strategic planning. In addi-
tion, GSA will host their Cyber Café in the exhibit hall, which
will showcase assistive technology through actual hands-on
demonstrations. For more information on Section 508, visit
their Web site at www.section508.gov

THE THIRTEENTH ANNUAL

Software Technology Conference
2001 Software Odyssey: Controlling Cost, Schedule, and Quality

APRIL 29 – MAY 4, 2001 • SALT LAKE CITY, UTAH

How far has technology come since the dawn of the computer age? Have we reached the perfection of intelligence demonstrated by HAL
9000 in 2001: A Space Odyssey? After all, HAL never committed a recordable error. We continue this fantastic journey, searching the
depths of software and systems technology for solutions to controlling cost, schedule, and quality. Join us in Salt Lake City, in the real
year 2001, as today’s leading technology experts look toward the future and explore opportunities for perfecting today’s technology.

On the Agenda
Presentation track topics include, but are not limited to:

• Assessments and Evaluations
• CMM®

• CMMI®

• Collaborative Engineering
• Configuration Management
• COTS
• Critical Systems
• Data Management –

Mining/Warehousing/Sharing
• DII COE

• Distributed Computing
• Earned Value
• E-Commerce
• Education and Training
• Embedded Software and

Systems
• Emerging Technologies
• Information Assurance
• Internet/Intranet
• Interoperability

• Knowledge Management
• Measurement
• Middleware
• Network Security
• Object-Oriented

Technology and Languages
• Open Systems
• Outsourcing and

Privatization
• Project Manager Training

• Process Improvement
• Program Management –

Postmortem/Methodologies/
Certification

• Quality Assurance
• Risk Management
• Simulation-Based

Acquisition
• Software Acquisition
• Software Architecture

• Software Estimation
• Software Implementation
• Software Policies and

Standards
• Software Sustainment
• Software Testing
• System Acquisition
• System Requirements
• Web-Based Solutions
• XML

Navy CIO – Data Management and Interoperability
Getting the most from our information technology infrastruc-
ture requires effective data management. The Data
Management portion of this track will provide attendees an
opportunity to hear about data management initiatives within
the DoD that are focused on improving interoperability and
efficient operations. Interoperability implies the existence of
diverse systems that need to exchange data and services. The
interoperability portion of this track will focus on interoper-
ability across each phase of the software engineering life cycle.
Common Access Card
In October 2000, the DoD began issuing smart cards as the
newest and most technologically advanced type of identification
card, the DoD Common Access Card (CAC). The CAC will be
the standard identification card for approximately four million
active duty uniformed services personnel, selected reserve, DoD
civilian employees and eligible contractor personnel. It offers the
same benefits and privileges as the current identification card and
will also be the principal card used to enable physical access to
the department’s buildings and controlled spaces or gain access
to the department’s computer networks and systems. Tuesday’s
track six presentations focus on this new identification card.
Networking Events, Optional Activities
STC 2001 features daily networking opportunities with the
Opening Welcome Reception Monday, Tuesday night’s optional
Salt Lake City Overview tour, Wednesday’s “Drag ‘n Drop”
Social, and “1964”… The Tribute—an evening of entertain-
ment, the “Light Byte” luncheon in the exhibit hall Thursday,
and the optional dinner cruise that evening. Space for these
events is limited; companion packages are available.
Registration
Completed registration form and payment must be received by
March 26, 2001 to take advantage of the early registration fees.
Credit cards will not be charged until April 2, 2001. The con-
ference fee structure for STC 2001 is as follows:
Discounted registration fee (paid by March 26, 2001):

Active Duty Military/Government* $560
Business/Industry/Other $685

Regular registration fee (paid after March 26, 2001):
Active Duty Military/Government* $620
Business/Industry/Other $770

* Military rank (active duty) or government GS rating or equivalent is required to
qualify for these rates.

Housing Reservations
Housing reservations are handled by the Housing Bureau of the
Salt Lake Convention and Visitors Bureau using the on-line
Passkey system. Housing has been available since May 2000,
therefore some government rate guestrooms at specific hotels
may not be available. To access the Passkey system, log on to the
STC Web site at www.stc-online.org and select the Housing
reservation button. You will receive immediate “real-time” con-
firmation of your reservation. If you prefer to make your reser-
vation using a traditional method, a PDF version of the housing
form is available on-line.
Trade Show
STC 2001 will again feature its accompanying trade show, pro-
viding more than 180 exhibitors the opportunity to showcase
the latest in software and systems technology products and serv-
ices. This year’s schedule has been adjusted to allow participants
more time to interact with the vendors without conflicting with
conference presentations.

Exhibit space is sold in increments of 10’ x 10’ at a rate of
$1,575 per 10’ x 10’ space if application is received on or before
February 16, 2001. Should space still be available after this date,
booth space shall be processed at the rental rate of $1,775 per
10’ x 10’ space. Special fees and restrictions may apply to certain
types of booth space. Complete trade show rules, regulations,
and updated hall layout are available on the STC Web site.

New this Year! All badged exhibit personnel wishing to attend
the entire conference are eligible for a discounted conference
registration fee. Please utilize the conference registration form
that was mailed to the exhibit manager in early January to regis-
ter for the full conference.

February 2001 www.stsc.hill.af.mil 29

Ada Core Technologies Inc.
Air Mobility Command Computer

Systems Squadron
Amdahl Software
AP Labs
BEA Systems Inc.
BMC Software Inc.
Boeing Co.
CDW Government Inc.
Cognos Corp.
Computer Resources

Support Improvement
Program Legacy Software
Support

DCS Corp.
DDC-I
DISA
EDS
Federal Data Corp.

Fuentez Systems Concepts
Galorath Inc.
Harris Corp.
Health Information Resources Service
IBM Corp.
Integrated System Diagnostics Inc.
Jacada Inc.
Lockheed Martin
Logicon
Lotus Development Corp.
MapInfo Corp.
MARCORSYSCOM
MERANT
Novell Inc.
NXi Communications Inc.
Objective Interface Systems Inc.
OO-ALC/TIS
Open Systems Joint Task Force
PeopleSoft Inc.

Platform Computing Corp.
pragma SYSTEMS CORP.
Praxis Critical Systems
Predicate Logic Inc.
QSM Inc.
Quality Plus Technologies Inc.
Rational Software
Real-Time Innovations Inc.
RS Information Systems Inc.
RSA Security Inc.
Science Applications Intl. Corp. (SAIC)
Scitor Corp.
Section 508 / General Services

Administration
SilverStream Software Inc.
Software Configuration Solutions Inc.
Software Engineering Institute
Software Productivity Consortium
Software Technology Support Center

SPAWAR
SSG/MSG
TeraQuest
Tivoli Systems
Tumbleweed Communications Corp.
United Defense
U.S. Air Force
U.S. Army
U.S. Army Information Systems

Engineering Command
U.S. Army Strategic and Advanced

Computing Center
USAA
USACECOM
Utah State University Extension
Vitech Corp.
WesTest Engineering Corp
WR-ALC/ LYS Software Engineering

Division

STC 2001 Exhibiting Organizations (As of 11/30/00)

wwwwww..ssttcc--oonnlliinnee..oorrgg

General Information Technical Content Inquiries
stcinfo@ext.usu.edu stc@hill.af.mil

435-797-0423 801-777-7411

Trade Show Inquiries Media Relations
stcexhibits@ext.usu.edu stcmedia@ext.usu.edu

435-797-0047 435-797-1349

30 CROSSTALK The Journal of Defense Software Engineering February 2001

Function Point. One standard unit of delivered or finished
software size, analogous to a gallon of milk, a case of beer, or a
cord of wood. The size of a software package, from the view-
point of a user, is its number of function points. A function
point is unadjusted until it is weighted according to the overall
application value adjustment factor. When using the term func-
tion point, it is usually understood that it refers to the adjusted
or final function point. The textbook definition describes it as
“A metric that describes a unit of work product suitable for quanti-
fying application software.”

General Systems Characteristics (GSCs). GSCs are 14 addi-
tional factors used to determine size/complexity of software.
These include the degree of importance of such factors as
reusable code, on-line data entry, and complex processing.
These are used to increase or decrease the unadjusted function
points by a value adjustment factor of up to +/- 35 percent.

Graphical Method. This method of solving certain small linear
programs requires the analyst to plot the available resource
equations on a graph. Then the analyst finds the point of inter-
section of two of the equations that represents the highest
degree of achievement of the stated goal.

Internal Logical File (ILF). The ILF is a database that is
inside the application. An ILF has seven, 10, or 15 unadjusted
function points depending on whether it is of low, average, or
high size/complexity. The textbook definition includes “... a
user identifiable group of logically related data or control informa-
tion maintained within the boundary of the application.”

Linear Programming. Linear programming is an approach to
solving problems using specially designed algorithms. One or
more of these algorithms are usually taught in graduate schools
of business. Two such algorithms are the “graphical method,”
and “Simplex.”

Objective Function. The objective function is the goal to be
reached, to the best possible degree, using linear programming.
This goal is expressed in mathematical terms.

Primal. This is a certain perspective of defining the resources
available to reach the stated objective in linear programming.

Record Element Type (RET). An RET is a logical subgroup
type of data within a database, also defined as “User recogniza-
ble subgroups of data elements within an ILF or EIF”

Super File. A super file is a database (ILF or EIF) which con-
tains more than 100 DETs. This is defined in CPM 3.4.
According to the super file rule (SFR), if an ILF or an EIF con-
tains more than 100 DETs, each RET is considered a unique
ILF or EIF and is counted as such. This SFR is not currently
recognized by IFPUG, although it was previously recognized in
CPM 3.4.

Redundant Constraint. It is theoretically possible to formulate
some algorithms with equations that do not affect their solu-
tions. The algorithm correctly executes, but does not need the
extraneous equation(s). This type of extraneous equation is
called a redundant constraint. Since it does not contribute to
the functionality of the algorithm, it is not included in the
algorithm’s function point count.

Simplex. Simplex is an algorithm for solving linear program-
ming problems. George Dantzig developed it in 1947. In princi-
ple, Simplex is executed by first expressing the goal of a problem
in mathematical terms (the objective function). Then, the
resources available to use to reach the goal are expressed in terms
of equations. By solving these equations simultaneously in a cer-
tain fashion, one calculates the best possible degree of achieve-
ment of the goal and the resulting blend of the resources needed.
See [2] for an example of a text that treats linear programming.

Unadjusted Function Point. This is the size and complexity of a
unit of software, before considering the effect of the value adjust-
ment factor (VAF). For example, an EI that updates seven data
fields in one ILF has the size and complexity of three unadjusted
function points. When the effect of the VAF is considered, the
three function points can be adjusted upward or downward by up
to 35 percent depending on the degree of GSC contribution.

Value Adjustment Factor (VAF). The VAF is the computed
variable used to convert an unadjusted function point to an
adjusted or final function point. It is computed from the con-
tribution to the software requirements of the GSCs. Using alge-
bra, the VAF can be shown to have values from 0.65 to 1.35.

Get Your Free Subscription
Fill out and send us this form.

OO-ALC/TISE
5851 F Ave., Bldg 849, Rm B-04

Hill AFB, UT 84056-5713
Attn: Heather Winward

Fax: 801-777-5633 DSN: 777-5633
Voice: 801-586-0095 DSN: 586-0095

Or use our online request form at www.stsc.hill.af.mil

NAME:_________________________________

RANK/GRADE:_________________________

POSITION/TITLE:_______________________

ORGANIZATION/COMPANY:_________________________

ADDRESS:_____________________________

BASE/CITY:__________________________

STATE:______ ZIP:____________

VOICE: ______________________

FAX:__________________________

E-MAIL: ______________@________________

Definition of Terms, continued from page 15

Feng Shui for Not-Really-Dummies, aka Engineers

Feng shui [pronounced fung shway] is the ancient art of situating or orienting objects to promote a healthy flow of qi (vital
energy, pronounced key). Its postulate is that all areas, large and small, have a distinctive energy that is guidable by rearranging

objects [1]. Feng shui is not chop suey, and there is no corresponding number on the menu to use if you cannot figure it out.
Describing feng shui (FS) to an engineer can be like … describing FS to an engineer. It helps to incorporate acronyms. Also a

non sequitur figure dropped into the article with little to no explanation (see Figure 1) can help them stroke qi instead of keys.
I found myself consulting FS experts after our

office was recently remodeled. Everyone was happy
with the new systems furniture except for me.
Something was not quite right. I had been placed
with my back directly opposite the door, and I felt
drained, edgy, and irritable. My qi was being
replaced by sha, or disruptive, negative energy.

Richard Craze and Roni Jay say “It is consid-
ered bad feng shui to sit with your back to a door.
In ancient China this was considered an ill omen
and you were bound to suffer a loss of face … if
you sit with your back to a door you will feel
uncomfortable as you can’t see/know … what’s
going on behind you. That’s common sense—but
it is also feng shui [2].”

Oh oh, they said common sense (CS). As we
read in a previous BACKTALK [D. Cook, June ‘00], some engineers don’t know CS from a hole in the ground.

Craze and Jay continue, “Feng shui is about putting practical common sense into a clear and coherent form so we can all benefit.”
According to FS, a dripping faucet indicates that one is squandering wealth, allowing it all to wash down the drain. According to engi-
neers, a dripping faucet indicates poor plumbing. Per FS, one should never leave the seat up while flushing. Most engineers have
already heard this maxim, and are probably more concerned with whether the TP spools from the top or the bottom of the roll.

FS states that the ideal house should face south and be situated alongside running water or a winding (not straight) road. The
eight trigrams come together at compass points to form the bagua (pronounced pah kwa), which may be placed over any house or
room to diagnose and remedy FS. Have I lost you yet? Come on engineers—it’s geometry! [See Figure 2.] The fame enrichment is
always placed over your front door, whether it faces south or not. If your door faces a different direction or your house is an odd shape,
you simply realign/stretch the bagua accordingly. See Table 1 for the eight enrichments and remedies.

When I applied the bagua to the floorplan of our new systems-furnished office, which faces
north and thus is like a mirror [which you shouldn’t rush out to buy unless you are told to do so by
an FS consultant, your spouse, and an interior decorator (note may be out of sequence; I love this
lengthy sentence)] image of the one you see to your right, I discovered that the area had neither a
health nor a pleasure octant. Imagine that … and I was still sitting with my back to the door.

So I asked my boss, who ironically sits in the wealth octant, to go to the FS shop and buy me
a remedy. She came back with a lovely red, black, and gold bagua straight-lines remedy with a
mirror in the middle to bounce the bad behind-my-back qi out the door from whence it came.

Oh by the way, FS is based on the Wu Hsing (not a condiment), or Theory of Five Aspects,
which states that we are all a combination of elements—wood, fire, metal, water, and earth—with
one of them in a position of dominance determined by the year we were born. I am a metal dog. This is not a place mat. Get it?

– Matt Welker, Shim Enterprise Inc.,
has read two books on feng shui and
therefore considers himself an expert.

References
1. C-Health’s Alternative Health Diction-

ary [www.canoe.ca/AltmedDictionary].
2. Craze, R. and Jay, R., Teach Yourself

Feng Shui. Hodder and Staughton,
London, England, 1998.

FS myths are debunked at www.qi-whiz.com

BACKTALK

February 2001 www.stsc.hill.af.mil 31

Heaven/Yang/South Earth/Yin/North

Summer
South

Spring
East

Winter
North

Autumn
West

South
The Creative

Southeast
The Lake

East
The Clinging

Northeast
The Arousing

North
The Receptive

Northwest
The Stillness

West
The Dangerous

Southwest
The Wind

Figure 1. The Eight Trigrams

Table 1. FS Enrichments/Remedies

Figure 2. The South-Facing Bagua

Relationship

Fame

Health

Pleasure

Friends

Wealth

Wisdom

Children

South

Enrichment Remedy Examples

Fame Light Mirrors or reflective surfaces.
Health Straight Lines Flutes, swords, fans, scrolls, etc.
Pleasure Stillness Statue or a large rock.
Friendship Sound Wind chimes or bells; also fountains.
Relationship Movement Flags, banners, mobiles, fountains.
Children Color Lucky colors: red, white, gold, black.
Wisdom Mechanical Device Engineers’ complete toy set …
Wealth Living Things Plants or fish.

THE THIRTEENTH ANNUAL

Software Technology
Conference

2299 AApprriill -- 44 MMaayy 22000011

SSaalltt LLaakkee CCiittyy,, UUttaahh

Complete Conference Information and
Registration Available at

2001 Software Odyssey:

Controlling Cost, Schedule, and Quality

www.stc-online.org

The Premier Software
Technology Conference

CrossTalk / TISE
5851 F Avenue
Building 849, Room B04
Hill AFB, UT 84056-5713

PRSRT STD
U.S. POSTAGE PAID

Kansas City, MO
Permit 34

Sponsored by the
Computer Resources
Support Improvement

Program (CRSIP)

	Cover
	Index
	From the Publisher
	Software Measurement Programs and Industry Leadership
	Letter to the Editor
	Applying Function Point Analysis to Requirements Completeness
	Measure Size, Complexity of Algorithms Using Function Points
	The Nine-Step Metrics Program
	Measurement Web Sites
	CMM Level 4 Quantitative Analysis and Defect Prevention
	Evolving Function Points
	Coming Events
	Quote Marks
	STC 2001
	BackTalk
	Back Cover

