

2 C R O S STA L K The Journal of Defense Software Engineering March 2001

Perspectives on the Software Engineering Process Group
Six employees within a government organization, ranging from the director, vice deputy director down to brand
new SEPG members, share their views on the SEPG’s role.

by Paul Kimmerly, Maj. Joel Ogren, Carol Mullins, Shannon Morten, Pamela Yancey, and Capt. Wendell Bazemore

Raytheon Stands Firm on Benefits of Process Improvement
This interview with two top engineers details the ins and outs of going from Capability
Maturity Model® Level 2 to Level 5.

by Pam Bowers

The Best Measurement Tool Is Your Telephone
This article provides some practical advice on implementing a software measurement program
based on experience at the U.S. Army Software Metrics Office.

by Don Scott Lucero and Fred Hall

Ada in the 21st Century
The language is evolving smoothly as a prime choice in many environments where reliability
is critical in the government and private sector.

by Benjamin M. Brosgol

SPMN Director Identifies 16 Critical Software Practices
There appear to be 16 critical software practices that are common threads running through successful software projects.

by Michael W. Evans

4

9

15

Departments

On the Cover:
Kent Bingham,
Digital Illustration
and Design, is a
self-taught graph-
ic artist/designer
who freelances
print and Web
design projects.

3

31

From the Publisher

13 Coming Events

14 STC Speaker Announcement

19 Web Sites

26 Letters to the Editor

13 DoDTech ListServer Expands
into IT Issues (Update)

BackTalk

20

27
Open

Software Technology

Forum

Engineering

ImprovementProcess

LLtt.. CCooll.. GGlleennnn AA.. PPaallmmeerr

TTrraaccyy SSttaauuddeerr

EElliizzaabbeetthh SSttaarrrreetttt

PPaamm BBoowweerrss

MMaatttthheeww WWeellkkeerr

HHeeaatthheerr WWiinnwwaarrdd

AAbbbbyy HHaallll

801-586-0095
801-777-5633
crosstalk.staff@hill.af.mil
www.stsc.hill.af.mil/
Crosstalk/crostalk.html
www.crsip.hill.af.mil

SSuubbssccrriippttiioonnss: Send correspondence concerning
subscriptions and changes of address to the follow-
ing address.You may e-mail or use the form on p. 31.

Ogden ALC/TISE
7278 Fourth St.
Hill AFB, Utah 84056-5205

AArrttiiccllee SSuubbmmiissssiioonnss:We welcome articles of interest to the
defense software community. Articles must be approved by
the CROSSTALK editorial board prior to publication. Please fol-
low the Author Guidelines, available at www.stsc.hill.af.mil/
CrossTalk/xtlkguid.pdf. CROSSTALK does not pay for submis-
sions. Articles published in CROSSTALK remain the property of
the authors and may be submitted to other publications.
RReepprriinnttss aanndd PPeerrmmiissssiioonnss:: Requests for reprints must be
requested from the author or the copyright holder. Please
coordinate your request with CROSSTALK.
TTrraaddeemmaarrkkss aanndd EEnnddoorrsseemmeennttss:: This DoD journal is an
authorized publication for members of the Department of
Defense. Contents of CROSSTALK are not necessarily the
official views of, or endorsed by, the government, the
Department of Defense, or the Software Technology
Support Center.All product names referenced in this issue
are trademarks of their companies.
CCoommiinngg EEvveennttss: We often list conferences, seminars, sym-
posiums, etc. that are of interest to our readers. There is
no fee for this service, but we must receive the informa-
tion at least 90 days before registration. Send an announce-
ment to the CROSSTALK Editorial Department.
SSTTSSCC OOnnlliinnee SSeerrvviicceess:: at www.stsc.hill.af.mil
Call 801-777-7026, e-mail: randy.schreifels@hill.af.mil
BBaacckk IIssssuueess AAvvaaiillaabbllee:: The STSC sometimes has extra
copies of back issues of CROSSTALK available free of charge.
TThhee SSooffttwwaarree TTeecchhnnoollooggyy SSuuppppoorrtt CCeenntteerr was established
at Ogden Air Logistics Center (AFMC) by Headquarters
U.S. Air Force to help Air Force software organizations
identify, evaluate, and adopt technologies to improve the
quality of their software products, efficiency in producing
them, and their ability to accurately predict the cost and
schedule of their delivery.

SSPPOONNSSOORR

PPUUBBLLIISSHHEERR

AASSSSOOCCIIAATTEE PPUUBBLLIISSHHEERR

MMAANNAAGGIINNGG EEDDIITTOORR

AASSSSOOCCIIAATTEE
EEDDIITTOORR//LLAAYYOOUUTT

AASSSSOOCCIIAATTEE
EEDDIITTOORR//FFEEAATTUURREESS

GGRRAAPPHHIICC DDEESSIIGGNNEERR

VVOOIICCEE

FFAAXX

EE--MMAAIILL

CCRROOSSSSTTAALLKK OONNLLIINNEE

CCRRSSIIPP OONNLLIINNEE

CrossTalk

Best Practices

March 2001 www.stsc.hill.af.mil 3

From the Publisher

Publisher Leaves a Process Improvement Legacy

Process Improvement has always been a key interest for Reuel “Rudy” S. Alder.
In fact, process improvement was so important to him that in May of 1988, he
was one of the founders of the Air Force’s Software Technology Support Center

(STSC). There were only five members when the STSC first started, but these five
people sat down together and did some planning on how to achieve their goal of shar-

ing process improvement ideas with the rest of the software community. Their successful ideas
helped create one of the leading organizations for software process improvement. One of those
initial ideas was to publish a newsletter with process improvement information. CROSSTALK

started with about four pages of articles and 200 subscribers, but the useful information com-
bined with the great price [free] generated a much larger audience during the years. CROSS-
TALK now has more than 18,000 subscribers, and we estimate that we have an additional
20,000 on-line readers.

Rudy has been involved with CROSSTALK through this entire effort. While he will con-
tinue to help lead STSC efforts, he is moving out of the position of publisher. As a result,
Tracy Stauder is moving into the publisher’s position. Tracy is not new to CROSSTALK; she
was the associate publisher from 1996 through 1999. She also believes in process improve-
ment; one of her first tasks as associate publisher was to work with Rudy to lead CROSSTALK’s
own process improvement effort. They started this effort by restructuring and documenting
the journal’s development process. Before this process was created, we never knew when the
next issue would be published until it was actually sent to the printer. Now with a clear
process that starts months in advance for each issue, we know that CROSSTALK will be pub-
lished each month and are confident that the articles will contain useful information. Our
process improvement efforts continue with planning new and exciting issue themes and
implementing color covers.

By the way, I’m not totally new to CROSSTALK myself. I have had three articles published,
written a Publisher’s Note, and helped with other supporting functions to the CROSSTALK staff.

We start this month’s issue with Perspectives on the Software Engineering Process Group.
Change is not easy; it takes exceptional people to effectively lead a process improvement effort.
This article includes several perspectives of and from the Software Engineering Process Group
at the Defense Finance and Accounting Service. Raytheon Stands Firm on Benefits of Process
Improvement is an interview that delves into process improvement successes gained on the path
to Level 5 while undergoing three mergers.

Process improvement can take many avenues, and Mike Evans discusses a process improve-
ment method developed by the U.S. Navy’s Software Program Manager’s Network in SPMN
Director Identifies 16 Critical Software Practices and Don Lucero and Fred Hall discuss their
practical approach to software measurement in The Best Measurement Tool Is Your Telephone.

In our December issue, we promised you a contrasting point of view when we presented
Don Reifer et al.’s, Is Ada Dead or Alive within the Weapons System World? Now we deliver on
that promise with Ben Brosgol’s Ada in the 21st Century and a few letters to the editor.

We always welcome readers’ comments on the content of the journal and how we can
improve. We will continue to improve under CROSSTALK’s new leadership.

Elizabeth Starrett
Associate Publisher

Process Improvement

4 C R O S STA L K The Journal of Defense Software Engineering March 2001

The Software Engineering Process Group (SEPG) in any
organization serves numerous roles from educator to orga-

nizational counselor. Its roles change with circumstances and
audiences. The SEPG must listen to concerns and successes at
all levels of the organization. From these conversations, the
SEPG must become a communication channel between differ-
ent groups and different levels from senior management to prac-
titioner. In performing their duties, the SEPG interacts with
people of wide ranging backgrounds. Its success and the success
of process improvement efforts depend on its effectiveness with
these different groups and activities. How the SEPG is perceived
by the organization and its interactions with the organization
are vital to process improvement success.

In this article, individuals from the Defense Finance and
Accounting Service (DFAS), Technology Services Organization
(TSO), Kansas City, Mo., will discuss their perception of the
SEPG and the role it fills within the organization.

Experienced SEPG Member by Paul Kimmerly
First, an experienced SEPG member writes about the SEPG’s role
as a communicator and a salesperson.

I was once asked to draw a picture depicting my job. While
I am no artist, I tried to represent a chameleon wearing a used-
car salesman’s plaid jacket and a priest’s collar. The SEPG’s job
may be easy to define in academic terms, but it becomes difficult
when observing the practical day-to-day efforts of the group.

I chose a chameleon because the SEPG’s job is always
changing. The SEPG does not work for a single project or divi-
sion within the organization; it must work with all of them. To
successfully accomplish its goals, the SEPG must know the
entire organization and how it works. This goes beyond the for-
mal and overt organizational structure. We must understand the
underlying culture and unwritten rules. This helps the SEPG
choose which colors to present when working with different
areas of the TSO.

To serve as a communication link and coordinator for the
TSO’s process improvement efforts, the SEPG must be able to
find the right ways to approach each layer of the organization.
Those layers separate line divisions from support divisions, and
managers from practitioners. The SEPG deals with and across all
divisions. Just as the chameleon must adapt its colors to its envi-
ronment, the SEPG must adjust its approach to the organization.

The salesman’s plaid jacket helps with the sales aspect of the
SEPG’s job. As stated above, we need to be persuasive. Our
organization has a long history of successful software develop-
ment. It is sometimes hard for the managers and practitioners to

understand why change is necessary or even desired.
After analyzing our audience and knowing which color

jacket to wear, the SEPG must work with “clients” to identify
their areas of need and find a solution that will fit. One division
may need a family cruiser process that is steady and dependable
over the long haul. Another may need a sportier model to
respond to rapidly changing road conditions. The SEPG must
find the model that makes sense to its client. Then, it closes the
deal and offers extended service to support the sale.

The insincerity implied by the used-car salesman’s jacket is
balanced by the priest’s collar. Since the SEPG deals with all lev-
els of the organization, establishing an atmosphere of trust is
extremely important. The SEPG must listen to managers’ con-
fessions and comfort the practitioners’ fears. In its communica-
tion role, the SEPG brings the concerns and accomplishments
of practitioners up to managers, then takes explanations and
guidance from the managers back down. To successfully accom-
plish this, both groups must trust the SEPG to deliver its mes-
sage honestly and without attribution. By fostering an air of
open communication, the SEPG can coordinate improvement
efforts throughout the organization.

I have always felt the best description for an SEPG’s efforts
can be found in the title of a Jimmy Buffett song, Quietly Making
Noise. The SEPG moves quietly through the organization chang-
ing approaches as needed to sell, educate, assist, listen, support,
coordinate, and facilitate. By building a series of little connected
sounds, the SEPG can build process improvement successes into
bigger organizational fanfare.

Director, Vice Deputy Director by Major Joel Ogren
The SEPG’s activities must align themselves with the organization’s
goals. To do this, the SEPG must work with senior management. In
this section, the TSO’s director, vice deputy director talks about his
view of the SEPG’s efforts.

It is not possible to know everything that you do not know
about software process improvement—that is where the SEPG
comes into play within our organization. Within the structural
concept of our organization, the SEPG works for me; but in
reality, it is a support group for the whole organization. At the
most abstract level, I hold these people responsible for the orga-
nization’s software process improvement activities. Once you get
beyond the abstract, you realize the level of effort, personal
commitment, and professionalism associated with this august
group of individuals. The SEPG is a driving force for facilitating
the definition, maintenance, and improvement of the software
processes used within our organization.

Perspectives on the Software Engineering Process Group
This article looks at the Software Engineering Process Group (SEPG) and its role from several different perspectives
within an organization. The article centers on the SEPG at the Defense Finance and Accounting Service, Technology
Services Organization (TSO), Kansas City, Mo. The authors represent the director, vice deputy director of the TSO;
the project officer of the Marine Corps Total Force System; two experienced SEPG members; and two brand new
SEPG members. Each discusses his or her view of the SEPG’s role and its activities within the organization.

March 2001 www.stsc.hill.af.mil 5

Within the confines of my organizational role, I have
watched the SEPG implement and facilitate organizational goals
discussed with and defined by senior management. I have also
witnessed them gently nudging senior management back inside
the box of a defined software process.

The SEPG, by its very nature, is aware of every facet of our
organizational process. This is a necessary component of its job.
Without this, an SEPG is not empowered to facilitate the neces-
sary changes within its organization. This is similar to the
Japanese philosophy of Kaizen, which involves your whole
organization on a daily basis in its quest to find continuous,
measurable improvement in all (business) areas. The SEPG
attends many of the management meetings, both at the senior
management and project management level. In this role, they
clarify the organization’s mission and values within the organiza-
tional roadmap for process improvement. The SEPG is a tool to
help guide the organization along the defined path of the
Capability Maturity Model® (CMM).

Key to our view of the Kaizen philosophy is the way we
choose our SEPG members, and the way that each member influ-
ences the organization. This process starts by selecting credible
members of the organization and providing increased education
in CMM-related topics. They are more apt to be in tune with the
changing current at the grass-roots level of the organization, and
can therefore influence the entire organization on a day-to-day
basis. If they find that they truly believe in CMM, and what it
can do for our organization, they become its staunchest support-
ers and the greatest influence on each and every member of the
organization. Once this occurs, the SEPG naturally takes on a
leadership role within the organization, in many cases mentoring
their knowledge of CMM processes.

The SEPG’s role in project implementation walks hand in
hand with the key process areas (KPAs) associated with a CMM
Level 3 organization. It compares and contrasts our current prac-
tices against the CMM’s goals and key practices. While there is
no magic formula for this, the SEPG helps the organization
manage our processes through measurement. Establishing an
implementation plan is done in an ascending hierarchy. This
hierarchy begins with a vulnerability assessment, followed by
resource analysis, analysis of priorities, education and awareness,
a basic measurement of expected outcomes, inserting our current
organizational software development plan framework, and finally
the senior management decision support for program selection.

The SEPG plays a key part in establishing an enabling
structure for process improvement. This is realized through the
SEPG’s enhanced support functions, which are readily available
for the organization’s stakeholders. These functions allow the
organization to adequately capitalize on the available structure,
allowing the organization to manifest through a process of
change. The SEPG manages this process of change through met-
rics. These metrics continue to spell out the strengths and weak-
nesses of our structure, enabling us to benefit from an informed,
proactively managed process improvement methodology.

The SEPG has built a partnership environment within our
organization. By practicing strong communication techniques,
the SEPG minimizes conflict and empowers itself at the same
time. The SEPG has created a trusted environment that is nec-
essary for widespread information sharing. This also ensures that
sanctuary and anonymity are readily available to the stakehold-
ers of the organization, when necessary. These managed efforts
are key to the SEPG’s success and the organization’s process
improvement efforts.

A change effort needs a guiding force to begin the change
process and enhance the organization’s capability to accept the
change. Political sponsorship helps improve the acceptance of
this change. The SEPG helps facilitate this change through a
causal relationship it has developed between the CMM’s KPAs
and the software developers themselves. It effectively provides
assistance in restructuring our processes and policies. It is an
effective role model, reinforcing why new behavior is needed.
It communicates the vision in a manner that is attainable and
provides sustainable successes, both individually and organiza-
tionally. The metrics it maintains provide the results that rein-
force these new behaviors and values. These new behaviors and
values become our baseline for our organization’s core compe-
tencies. With a strong SEPG in place within our organization,
we have realized many tangible as well as intangible benefits.

Project Officer by Carol Mullins
After establishing a role in the organization, the SEPG must work
with the projects to assist in implementing KPAs within the CMM.
This requires support and buy-in of the lead project managers. In this
section, a project officer discusses the SEPG’s support of her project.

The SEPG in the TSO is more than a group of individuals
devoted to working on software process improvement (SPI) activ-
ities. This group provides “support, expertise, persuasion, and
guidance” as the Marine Corps Total Force System (MCTFS)
software developers and managers go about their day-to-day jobs.
MCTFS is the largest automated information system maintained
and modified by the Kansas City TSO. MCTFS achieved CMM
Level 2 in January 1997. Since then, the staff has completed four
software releases and a large Year 2000 conversion effort. In
December 2000, MCTFS and four other systems within the
TSO conducted a CMM-Based Appraisal for Internal Process
Improvement; their process capability was rated at CMM Level
3. These efforts would not have been successful without the
SEPG’s support.

This group collects all the metrics from a variety of sources
that are used during the Post Implementation Review (PIR)
held at the conclusion of each release. The SEPG also facilitates
three separate PIR sessions with practitioners, section managers,
and branch managers. It presents the final results and recom-
mendations to me as the project officer. The findings from these
sessions combined with the metrics reports help me identify
areas in need of improvement. The SEPG’s support and impar-
tiality combined with its knowledge of MCTFS has made the
PIR a very successful event.

The SEPG provides a level of expertise about software
process improvement that cannot be found elsewhere in the
TSO. As MCTFS moved along the path to a Level 3 assess-

Perspectives on the Software Engineering Process Group

® The Capability Maturity Model and CMM are registered trademarks
of the Software Engineering Institute and Carnegie Mellon University.

6 C R O S STA L K The Journal of Defense Software Engineering March 2001

ment, the SEPG was instrumental in identifying the actions
that needed to be taken, the processes that required documenta-
tion, and the areas that must be addressed to successfully move
forward in our process improvement efforts. The SEPG worked
closely with MCTFS management staff reviewing work prod-
ucts to ensure that they were accurate and that they addressed
the applicable KPAs. The SEPG relied on SEPG members in
other parts of the DFAS organization for alternative ways to
approach issues raised by the MCTFS development staff.

The SEPG’s metrics expertise, and the support it has pro-
vided to MCTFS developers were instrumental in formalizing
the methods used to estimate the size and effort of each change
to MCTFS. The SEPG started with the estimating spreadsheets
built by MCTFS programming staff and modified them to
include estimating and tracking features for both size and effort.
From these spreadsheets, the SEPG worked with MCTFS man-
agers to develop management summary reports. It has contin-
ued to make minor modifications to these spreadsheets, which
are now used without exception in all of the development areas
within MCTFS.

SEPG members are the first to tell anyone that they are
strictly advisors—they help process improvements happen.
While that is generally true, there are occasions where their sub-
tle but persistent persuasion leads to some significant changes.
The SEPG had been suggesting that the use of burn rate metrics
would assist in identifying possible problem projects before they
got out of hand. At first, branch and section managers were
lukewarm to the idea. Undaunted, the SEPG developed burn
rate reports and updated them regularly. They continued to do
this and continued to remind the staff of their availability, and
even noted items of interest. Slowly, these reports have become a
part of the standard tool-set used by MCTFS managers.

As the manager in charge of MCTFS, I must continually
strive to balance the software development activities of the
MCTFS staff with the need to continually access how we do
business, and how we can develop software more effectively and
efficiently. The SEPG helps me achieve this balance. Having
been software developers before joining the SEPG, each SEPG
member provides me with a unique perspective of the impact
that new ideas, procedures, or initiatives will have on the staff.
This “having-been-there” perspective provides valuable input
and often times guides me in making decisions. The SEPG fre-
quently offers me a variety of alternatives as I contemplate new
things to try. Again, their guidance has proven to be invaluable.

New SEPG Member by Shannon Morten
As part of their efforts, the SEPG must periodically rotate members.
This allows the experienced members to return to projects bringing
their new process knowledge with them. It also allows the SEPG to
keep a project-level focus by bringing in new people from the devel-
opment staff. In this section, two new SEPG members talk about the
transition from being a member of the development staff to being the
new person on the SEPG.

“So, what does the SEPG do again?” That was the question I
asked after one day in their ranks. I came to the SEPG after serv-
ing as a test analyst for MCTFS. During that time, I spent my
days searching for needles in haystacks. My first day in the SEPG

was a major eye-opener. Suddenly, I found myself no longer
searching for needles, but looking at every haystack in the field!

Based on my experience from having served on the SEPG
for several months, I have learned the answer to my initial ques-
tion. We support the organization by providing assistance in SPI
activities, meeting facilitation, and in identifying and addressing
its needs. That sounds so general and expansive, but that is what
we do. The number of little details that goes into our job every
day constantly surprises me. This job did not turn out to be
what I expected, but it has proven to be everything I wanted,
and everything I did not know I wanted.

I find that my knowledge and experience as a tester along
with college courses I have taken provided me with a strong
base of knowledge about software development. I can apply this
knowledge when we work with each system within the TSO.
The attention to detail that I brought with me from test has
proven to be a strong asset. I tend to approach my duties from a
techie point of view instead of a management view. It takes more
effort for me to think like management and look at the big pic-
ture. I tend to focus on all of the individual pixels on the screen.
However, since the SEPG works with all levels of the organiza-
tion, I have found that my skills complement those held by
other members of the group.

After joining SEPG, I discovered that I was involved with
SPI activities daily as a practitioner and did not know it. As a
tester, whenever a CMM-related acronym was mentioned my
flags immediately went up, and I dismissed it as a waste of my
time. I had a product to get out after all. SPI should be man-
agement’s concern, not mine. My first week with the SEPG
was a massive eye-opener. I started wondering how I could
have been so blind for so long. By stepping back, I can see how
process improvement efforts related to what I was doing. Now,
I find myself trying to explain this revelation to my fellow
practitioners. I often wind up fighting the same battle SEPG
fought with me. Some people listen, and some do not. I think
that my background gives credence to what I am saying now,
and that I can put SPI terms into language that practitioners
can understand.

As I learn more about CMM and how to apply it, I am
realizing that I am also applying the principles to myself. As a
practitioner, I maintained a Level 1 attitude. Funny how it hap-
pens this way, but now as an SEPG member, I find my own
behavior maturing.

New SEPG Member by Pamela Yancey
During my career, I have always sought opportunities to grow
professionally, contribute, and make a difference. This led me to
become an advocate for Total Quality Management (TQM) in
the early 1990’s. I knew the concepts were viable, and it seemed
like a practical solution to address inefficiencies in an organiza-
tion, as well as a means to foster teamwork.

When I joined SEPG, I understood CMM principles. I saw
how it related to TQM, and I supported the concept whole-
heartedly. I was prepared to take an active role as an SEPG
member; however, I was unprepared for the emphasis and level
of dedication within TSO to improve their software develop-
ment processes. It was obvious to me from the beginning that

Process Improvement

March 2001 www.stsc.hill.af.mil 7

TSO equated implementation of the software-CMM to the suc-
cess of their business objectives. Time and again, I saw how the
TSO was willing to invest the time, effort, and money required
to implement a flourishing SPI program.

My first month or so on the SEPG was overwhelming to say
the least. The TSO is a collection of widely diverse projects, each
with different needs. Quite frankly, after meeting with most of
the project managers, I had difficulty seeing a standardized
approach to process improvement within such a diverse organiza-
tion. Besides, I wondered how I would ever become proficient
when I felt that I had so much to learn. Though I felt disheart-
ened at times, I continued to remind myself of the apparent suc-
cess achieved within our organization. I knew that there had to be
a connection between the SEPG’s efforts and that level of success.

I took more than a few months to fully appreciate my role
on the SEPG, and the group’s role in the success of our organiza-
tion’s SPI efforts. I discovered that my success on the SEPG
depended upon my ability to understand and embrace the diver-
sity of our organization. I also recognized that one of the SEPG’s
greatest strengths lies in its ability to listen to the needs and con-
cerns of our projects. In turn, the SEPG works with the projects
to develop solutions. While these solutions address the projects’
needs, they also bring about subtle organizational changes that
enable future process improvement efforts. We celebrate these
small changes as successes, recognizing that change cannot be
approached abruptly or aggressively.

I saw that my role, and that of the SEPG, involves constantly
working behind the scenes to promote heightened awareness of
SPI and CMM-based process improvement initiatives. The SEPG
allows the projects to resolve their unique issues while weaving a
consistent thread throughout the organization. To be effective,
my contributions are not only based on my expertise, but my
ability to support the project managers and their staff. I had to
maintain a delicate balance between my ability to provide guid-
ance, direction, and training with my ability to foster support,
encouragement, and open communication in all daily activities.

More than a year has passed since I joined the SEPG. I
now feel at ease with my role, and feel like I am part of a cohe-
sive team. We share a common commitment and belief in SPI.
As a SEPG member, I have the unique opportunity to make a
viable contribution to our organization’s success in implement-
ing or encouraging continued CMM-based process improve-
ment initiatives. Additionally, I have the opportunity to grow
and make a difference in our organization.

Experienced SEPG Member by Capt. Wendell Bazemore
Experienced SEPG members have seen the good and the bad. They
have brought their project-based knowledge to SEPG and supported
the organization and the projects. In this section, an experienced
SEPG member talks about what it takes to succeed in supporting
process improvement efforts.

Of the many things I’ve learned during the past two years
as an SEPG member, three are most important: aligning SPI
initiatives with business goals, the value of metrics for influenc-
ing culture change, and the importance of taking a project
approach to process improvement initiatives.

The challenge for SEPG is aligning process improvement

efforts with the day-to-day and strategic business objectives.
Everyone at TSO can relate to the activities involved in develop-
ing a quality software product. It is the main thing. Concepts
like SPI, CMM, or a certain maturity level may not be as rele-
vant as software baselines, estimates, quality reviews, or defects to
the software developer. This is not to downplay the importance
of the CMM as a framework for process improvement; however,
we (SEPG) have been most successful when we can show the
business impact of process improvement initiatives. After all, the
main thing is keeping the main thing the main thing.

In terms of influencing behavior change and reinforcing
process improvement concepts, we have gotten the most mileage
out of our metrics program. There is a perception among some
in the SPI community that “you must wait until the organiza-
tion is well on its way to Level 3 before implementing a metrics
program.” Indeed, CMM starts talking about the software
process database in the Organizational Process Definition KPA.
However, based on what I have observed in this organization, I
would encourage SEPGs in any organization to begin collecting
measures as soon as possible. There is a minimum set of data—
effort, schedule, and defect numbers—that will prove useful to
any organization. Our metrics program has grown and continues
to grow as managers gain confidence in the existing measures
and consider other measures that will provide insight into key
project issues and concerns.

To enhance the success of the process improvement effort
we must treat it like a project. Our organization is like most in
that we think in terms of projects. Like company commanders
in a rifle battalion, project officers are trusted with carrying out
those most important functions of the organization. The TSO’s
structure supports the project officer’s ability to ensure the pro-
duction of quality software, on time and within budget. That
structure includes a strategic plan, a chain of command, mile-
stone reviews, and meetings with senior management. Resources
are constantly being evaluated and frequently tradeoffs are made.
Recently the TSO capitalized on the existing structure to imple-
ment key process initiatives, culminating in a successful assess-
ment for CMM Level 3.

Summary

As you can see, SEPG represents different things to different
people. However, there are common themes that run through-
out. Communication, coordination, and support appear to be
the main SEPG duties. All of the parties above talk about the
SEPG’s ability to relate to the different levels of the organization
in language they understand. This helps the SEPG establish and
foster process improvements throughout the organization. In
order to do that, the SEPG must coordinate the activities of dif-
ferent areas to ensure the organization is moving in the right
direction. This coordination comes from the different forms of
support the group provides. The SEPG stands ready with servic-
es ranging from metrics analysis and reporting, to meeting facil-
itation, to counseling. All levels of the organization can benefit
from the SEPG’s efforts without being able to specifically say
what they do. “It depends,” is a favorite answer given by the
SEPG when a question is asked. It also applies when trying to
describe what they do.u

Perspectives on the Software Engineering Process Group

8 C R O S STA L K The Journal of Defense Software Engineering March 2001

Paul Kimmerly has 13 years of experience in software
development for the Defense Finance and Accounting
Service (DFAS) Information and Technology Direct-
orate in Kansas City, Mo. Since 1993 he has been a
member of the Software Engineering Process Group,

and its chair for the past five years. He also chaired a group that
addressed DFAS-wide process improvement issues. He is a member
of and presenter to the Software Process Improvement Network, and
a past CROSSTALK contributor. He presented at the 1997 SEI
Symposium and participated on a panel discussion there in 2000.

Paul J. Kimmerly
DFAS-TKZ/KC
1500 E. 95th Street
Kansas City, Mo. 64197
Voice: 816-926-5364 DSN 465-5364
Fax: 816-926-6969 DSN 465-6969
E-mail: paul.j.kimmerly@.dfas.mil

Maj. Joel Ogren joined the Defense Finance and
Accounting Service in Kansas City, Mo., in June
1999 and is currently director, vice deputy director
for the Information and Technology Directorate
(TSO). He also serves as a software process improve-

ment champion for the TSO, and is a reviewer for the Institute of
Electrical and Electronics Engineers on topics relating to software
processes, information assurance, and communications engineering.
He is a member of and presenter to the Kansas City SPIN, and is a
graduate of the Naval Postgraduate School in Monterey, Calif.

Maj. Joel Ogren
DFAS-TK/KC
1500 E. 95th Street
Kansas City, Mo. 64197
Voice: 816-926-7374 DSN 465-7374
Fax: 816-926-6969 DSN 465-6969
E-mail: joel.ogren@dfas.mil

Carol Mullins has been director of the Marine Corps
Total Force System (MCTFS) division since August
1996. She is responsible for the design, program-
ming, and testing of all changes to MCTFS, as well
as all maintenance functions that support MCTFS.

Previously Mullins worked for more than 13 years at the Navy
Personnel Research and Development Center, where her final posi-
tion was supervisory operations research analyst.

Carol Mullins
DFAS-TKT/KC
1500 E. 95th Street
Kansas City, Mo. 64197
Voice: 816-926-5360 DSN: 465-5360
Fax: 816-926-6969 DSN 465-6969
E-mail: carol.m.mullins@dfas.mil

Shannon Morten joined the Software Engineering
Process Group (SEPG) at the Defense Finance and
Accounting Service in Kansas City, Mo., in December
1999. Previously she worked three years in software
development in the Test and Evaluation Division

within the Information and Technology Directorate to the SEPG.
She is a member of the Kansas City SPIN and presented to them in
April 2000.

Shannon Morten
DFAS – TKZ/KC
1500 E. 95th Street
Kansas City, Mo. 64197
Voice: 816-926-5364 DSN 465-5364
Fax: 816-926-6969 DSN 465-6969
E-mail: shannon.morten@dfas.mil

Pamela Yancey joined the Software Engineering
Process Group (SEPG) at the Defense Finance
and Accounting Service in Kansas City, Mo., in
December 1999. Yancey has held a variety of posi-
tions with DFAS and brings experience from both

the functional and software development communities to the
SEPG. She was active in the total quality management efforts
within DFAS during the 1990s. She is a member of the Kansas
City SPIN and presented to them in April 2000.

Pamela Yancey
DFAS-TKZ/KC
1500 E. 95th Street
Kansas City, Mo. 64197
Voice: 816-926-5364 DSN 465-5364
Fax: 816-926-6969 DSN 465-6969
E-mail: pamela.a.yancey@dfas.mil

Capt. Wendell Bazemore joined the Software
Engineering Process Group (SEPG) at the Defense
Finance and Accounting Service (DFAS), Kansas
City, Mo., in October 1998 after completing his
studies at the Naval Postgraduate School in

Monterey, Calif. His master’s thesis focused on the process
improvement efforts at DFAS-KC. He has been involved in local
and corporate levels for DFAS, is a member of the Kansas City
SPIN, and has made several presentations to that group. He
recently transitioned out of SEPG to become the lead of DFAS-
KC Software Quality Assurance efforts.

Capt.Wendell Bazemore
DFAS-TKZ/KC
1500 E. 95th Street
Kansas City, Mo. 64197
Voice: 816-926-5364 DSN 465-5364
Fax: 816-926-6969 DSN 465-6969
E-mail: wendell.bazemore@dfas.mil

About the Authors

Process Improvement

Shortly after the turn of the 20th Century, the Wrights flew the first plane.

Now it’s your turn.

Design and Fly a 21st Century (Paper) Plane ... Details in the April issue.

March 2001 www.stsc.hill.af.mil 9

Raytheon Stands Firm on Benefits of Process Improvement

CrossTalk: What was Raytheon’s motivation to initiate a
software process improvement program?

Tonkin-Sugimoto: Our motivation for software process
improvement is to produce higher quality products at lower
cost and within schedule. Achieving these goals will ensure
we remain the contractor of choice. The Software Engineering
Institute’s (SEI) Capability Maturity Model® (CMM) provides
a worldwide-accepted model for achieving these goals. A sec-
ondary benefit of the assignment of a CMM rating is that it
represents a significant competitive advantage. It’s an observable
rating, far more concrete than simply saying, ‘We have great
processes. You just have to believe us.’

Keys: Since we began progressing from CMM Level 2 in 1994
to Level 4 in 1998, we have concrete evidence of an increase in
financial performance and of a 144 percent productivity improve-
ment. So we believe that progressing to the next level of CMM
maturity will continue to reap benefits for us.

CrossTalk: What were the hardest internal obstacles you over-
came in moving from CMM Level 3 to Level 5? What was nec-
essary to overcome them?

Tonkin-Sugimoto: The hardest internal obstacles in the move
from Level 3 to Level 5 have been misconceptions and a lack
of understanding. We have heard “We have Level 3, why go
farther?”, “Is Level 5 worth it? Is it really value-added?” [and]
“We didn’t sign up to do that!”
The major factors in overcoming these attitudes are:
• Senior management buy-in.
• SEPG support for process improvement across the organization.

But this is not all that process improvement requires. Many
activities support process improvement. Training that facilitates
the implementation of new processes and metrics is necessary.
These new processes and metrics must be used consistently
across the organization. We require monthly program review
packages with both reports and metrics. Our software quality
engineers monitor both product and process. Metrics are moni-
tored across the organization and senior management measures
projects via these metrics. With this, process improvement takes
on a new importance. To further support process improvement,
our SEPG mentors projects in using their metrics to define the
root causes of problems. We get project personnel involved in
developing and analyzing their process improvements.

CrossTalk: What are the most difficult obstacles you overcame
when dealing with process improvement resistance from your
clients? How do you overcome these struggles?

Tonkin-Sugimoto: Few of the customers we work with are obsta-
cles to process improvement. We have occasionally heard that
they don’t care about process improvement (“It’s a contractor
problem.”) or they don’t see the value in process improvement
(“We aren’t paying you to do that. Process costs too much.”) or it
doesn’t apply to their projects (“We’re special.”). Primarily, our
customers are concerned with cost and schedule. When our cus-
tomers understand that process improvement has a positive effect
on productivity and quality, they no longer resist. Here is how
these potential obstacles are overcome:
• Providing real data that demonstrates a positive return

on investment resulting from process improvement.
• Training to show our customers that process improvement

improves productivity and product quality.
• Offering assistance to projects (developing metrics and

analysis as needed).
• Senior management support of process improvement

across projects.

CrossTalk: Can you provide an example of how a higher rat-
ing has helped you to deliver a better product, or other benefits?

Tonkin-Sugimoto: Our Advanced Medium Range Air-to-Air
Missile (AMRAAM) projects are operating to the Level 5 prac-
tices and procedures of the Raytheon Missile Systems Software
Directive System (RMS SDS). Early in the AMRAAM Foreign
Military Sales Tape 8 project, both budget and schedule were
deemed at risk. With our continuous improvement culture, proj-
ect management developed the Design Impact Assessment Process
to reuse previous work while training less experienced engineers.
Project metrics showed that this process allowed them to quickly
create a basis for the detailed design, to build confidence that
schedule and budget constraints could be met, and to enable less
experienced engineers to be effective within the time constraints.
This process is currently being piloted on another project.

Keys: The corporation developed a set of standard operating
instructions (SOIs). We used these as a starting point then
instantiated them into the RMS software development process.
In some cases we used the SOIs as they were. In other cases,
they required some modification. For example, we augmented
them for our metrics program with very specific templates for
each metric so that we have a common look and feel to all of
our program review packages.

CrossTalk: Do higher CMM level teams consistently perform
better? How do you measure this?

Tonkin-Sugimoto: We have found that higher CMM level teams
consistently perform better. Our organizational productivity has
shown improvement in our journey from Level 2 to Level 4 . Our

CROSSTALK Managing Editor Pam Bowers interviewed Robert L Keys, senior principal software engineer,
and Ginger Tonkin-Sugimoto, principal software engineer, Software Engineering Process Group, about
benefits they have seen and experienced during Raytheon Missile Systems’ advance from Capability
Maturity Model® Level 2 to Level 4. This interview is part two of an investigation into the relationship
between acquisition reform and process improvement that was initiated in November 2000 CROSSTALK

in the AMRAAM and JASSM programs article. The final part in this series will appear in a later issue.

10 C R O S STA L K The Journal of Defense Software Engineering March 2001

organizational Cost Performance Index
(CPI) and Schedule Performance Index
(SPI) have shown improvement between
1998 and the present. Organizational
defect containment has shown improve-
ment since 1995. These metrics measure
both product and process performance.

Keys: The measurements we generate,
which include productivity, show improve-
ment as an organization. While our CPI
and SPI numbers as an organization have
been getting better, they also are less
volatile than they once were. There are
contributing factors such as defect con-
tainment that have a significant impact on
productivity and financial performance.
We’re detecting our defects during peer
reviews within the current phase (in phase)
as opposed to finding them in later soft-
ware development phases where they are
much more expensive to find and fix.
We’ve been showing more than a 10 per-
cent improvement per year.

CrossTalk: Can you provide hard data
on defect containment or productivity
improvement between Levels 2 and 5?

Tonkin-Sugimoto: The data in Figures 1
and 2 show that our organization’s produc-
tivity has improved 144 percent from
1995 when we were a Level 2 to 1998
when we were a Level 4. During the peri-
od that productivity was increasing by 144
percent, we expended 6 percent of the
annual budget on process improvement.
This yields a 6-to-1 return on investment.
Our overall defect containment during the
same period increased from 32 percent in
phase to 72 percent in phase.

CrossTalk: Is productivity translated
into faster coding?

Keys: Yes, we are producing more lines of
code per staff-hour. Our 144 percent pro-
ductivity improvement in the rate of creat-
ing lines of code is because we’re doing it
right the first time. There are lots of
parameters to increased productivity. The
learning curve decreases dramatically as
engineers move from project to project
and the same for managers. All these
things add up to improve productivity,
which we measure starting with the design
activity and ending prior to formal qualifi-
cation testing. Requirements analysis is
excluded from our productivity number.

CrossTalk: How do you measure project
success? Is it different for teams at differ-
ent CMM levels?

Tonkin-Sugimoto: We measure both
product and process status monthly via 14
metrics and 14 reports on each software
project. These include the Enterprise
Metrics: Software Size, CPI, SPI, Equiva-
lent Productivity, and Fault Density that
are collected throughout Raytheon. Our
CMM Level 5 frontrunner projects moni-
tor and report all of these metrics. Lower
CMM level projects are not able to report
all of these metrics or reports and must
tailor some metrics. This inhibits their
ability to manage their projects but it
provides improvement opportunities that
are addressed in their software process
improvement plans (SPIPs).

Process measurement begins with the
definition of project goals. Thresholds are
established and actual project perform-
ance is monitored via the metrics. This
provides fact-based management with
early insight into unexpected results and
allows for early root-cause analysis and

mitigation planning.

Keys: Each program fills out a blank
monthly metrics template. The tem-
plates are all Excel, Word, and Power-
Point files that automatically link all the
underlying data into the presentation
package. Less mature projects tailor the
templates while a Level 5 project will
adopt the full process. Less mature proj-
ects might tailor out the cost of quality
metric because it is very advanced and
very mature. All reviewers—the software
lead, the department managers, the
SEPG and the Team of Five (TOF)—are
looking for negative trends or unexpect-
ed results, which exceed control limits in
either a positive or negative direction.
We like to investigate either situation.

CrossTalk:How did the merger between
Raytheon and Hughes impact your soft-
ware process improvement effort?

Tonkin-Sugimoto: The Tucson facility
has undergone three recent transitions:
1. The merger of General Dynamics

and Hughes Missile Divisions.

Date 4Q '94 1Q '95 2Q '95 3Q '95 4Q '95 1Q '96 2Q '96 3Q '96 4Q '96 1Q '97 2Q '97 3Q '97 4Q '97 1Q '98 2Q '98 3Q '98 4Q '98
Productivity 1.00 1.00 1.01 1.01 1.18 1.24 1.57 1.57 1.91 1.90 1.90 2.20 2.20 2.35 2.54 2.44 2.44

0.00

0.50

1.00

1.50

2.00

2.50

3.00

4Q
'94

1Q
'95

2Q
'95

3Q
'95

4Q
'95

1Q
'96

2Q
'96

3Q
'96

4Q
'96

1Q
'97

2Q
'97

3Q
'97

4Q
'97

1Q
'98

2Q
'98

3Q
'98

4Q
'98

N
or

m
al

iz
ed

P

ro
du

ct
iv

it
y

Date 3Q '95 4Q '95 1Q '96 2Q '96 3Q '96 4Q '96 1Q '97 2Q '97 3Q '97 4Q '97 1Q '98 2Q '98 3Q '98 4Q '98
Defects in Phase 32% 39% 35% 33% 25% 28% 38% 40% 54% 56% 58% 67% 72% 72%

0%

20%

40%

60%

80%

100%

3Q
'95

4Q
'95

1Q
'96

2Q
'96

3Q
'96

4Q
'96

1Q
'97

2Q
'97

3Q
'97

4Q
'97

1Q
'98

2Q
'98

3Q
'98

4Q
'98

Figure 1. Organizational Productivity

Figure 2. Percentage of Defects Found in Phase

Process Improvement

March 2001 www.stsc.hill.af.mil 11

2. The transition of the Hughes Canoga
Park, Calif. work to Tucson.

3. The merger of Raytheon, Texas Instru-
ments, and Hughes Missile Divisions.

The Tucson software process effort was
greatly impacted when projects from
Massachusetts (legacy Raytheon) and
Texas (legacy Texas Instruments) were
moved to the Tucson facility in a consoli-
dation effort. It was at this point that the
corporation developed the Raytheon SOIs
from the three sets of best practices.

The SOIs were instantiated for use at
RMS in the form of the RMS SDS, which
all frontrunner projects have adapted.
Others are in transition as documented in
their project SPIPs. This has been a major
effort and took up much of our software
process effort. We had originally planned
to prepare for a Level 5 CMM-Based
Appraisal Internal Process Improvement
in 2000 but that has moved to 2001
(see Figure 3). We completed a Process
Baseline Assessment in 2000 to measure
our preparation for the 2001 assessment.
It showed that we have maintained our
quantitative process management/software
quality management capabilities in spite of
the merger of the three organizations.

It was a difficult process because it
was such a massive undertaking. A large
team reviewed every procedure or SOI
that we developed with various program
representatives. They each had the oppor-
tunity to provide input. If you don’t have
all the various parts working together to
develop your best practices, someone is
not going to go with you.

Keys: Communication was our greatest
problem during the transitions. I would
be talking to someone from Texas about
what we called “earned value” in Tucson,
which is a measure of cost and schedule
performance; but it would mean some-
thing completely different to him. It took
about 12 grueling months to complete
the procedures to define the process, but
it was key. If you talk to any of our folks
now, you can’t tell which legacy organiza-

tion they came from. We’re all talking the
same language now.

CrossTalk: Does a higher level of matu-
rity help with modifications? Is current
code at Level 5 easier to modify in the
future?

Keys: Yes, the code we’re developing now
will be much more maintainable then
perhaps some of the code from a long
time ago. That is because the CMM
emphasizes the peer review process. We
also emphasize having clear, well-defined
work instructions and standards, which
may not have always been the case in the
past. The process causes us to more care-
fully evaluate our approach to doing the
job, documenting it more clearly, and
establishing clearer exit criteria.

CrossTalk: When you come up against
a brick wall in funding process improve-
ment, how do you overcome that?

Tonkin-Sugimoto: A brick wall in fund-
ing process improvement is brought
about by a lack of understanding. Process
improvement is not expendable. It
improves productivity and quality of prod-
ucts. If funding is an issue, the first step is
to demonstrate its importance to the orga-
nization’s future. From there we get buy-in
from either senior management or from
program management. They are the source
of the funding. How well you demonstrate
process improvement can determine future
funding. We use real data and actual suc-
cess stories from projects to demonstrate
the value of process improvement.

CrossTalk: Do CMM rankings provide a
level playing field to compare contractors?

Tonkin-Sugimoto: CMM rankings only
provide a level playing field when they are
performed to the same standard and are
performed regularly. The Raytheon
Software Assessment Team has held to
strict standards when assessing the various
Raytheon facilities. We are aware that
some outside assessors do not necessarily
hold the same standards. When you look
at an organization’s assessments you need
to know who did the assessment.

When comparing contractors, confi-
dence is greatest when the project is part
of the assessment. Confidence is reduced
if the project is not part of the assessment.

Keys: Another important factor on this
level playing field is to take into account
the date of the assessment because there is
no expiration date on the SEI ratings. So
an assessment performed five years ago,
especially considering industry mergers
and transitions, could be invalid even
within two or three years.

CrossTalk: What effect does a perform-
ance level rating have on past perform-
ance evaluations?

Tonkin-Sugimoto: It depends upon the
organization that you are evaluating. Past
performance evaluations for lower process
level companies do not readily forecast
how that company will perform on a new
contract. When a company has been
rated at least CMM Level 3, its processes
are institutionalized. The tools, proce-
dures, and training are in place to enable
personnel to perform at least as well as
they did in the past.

CrossTalk: What steps do you take to
ensure you maintain your capability level?

Tonkin-Sugimoto: The RMS SDS is
CMM Level 5 compliant, and we assure
our capability by having all projects tailor
their processes from the RMS SDS.

We maintain our capability through
monthly TOF meetings that include the
project software lead, software configura-
tion management representative, software
quality engineer, product line SEPG repre-
sentative, and department manager. The
TOF evaluates software project metrics,
accomplishments, risks, and problems, and
can initiate mitigation efforts. Our capa-
bility is assured at three different levels:
1. Organizationally, a software process

engineer is assigned for each product
line and process training is required for
all engineers. At the project level, SQE
audits of project software processes are
performed throughout the life of each
software project. At the directorate
level, engineering process reviews are
held each month to evaluate and report
process status across all disciplines.

2. Organizationally, we develop a SPIP
every year that details our improvement
goals for the year. We measure our
efforts against this plan monthly.

3. SEI suggests that CMM assessment
ratings be reviewed every 18 to 30
months. As part of Raytheon, we are
assessed on this schedule. The Tucson

Raytheon Stands Firm on Benefits of Process Improvement

“We have found that
higher CMM level
teams consistently
perform better.”
–Ginger Tonkin-Sugimoto

12 C R O S STA L K The Journal of Defense Software Engineering March 2001

facility was assessed in 1996 as a CMM
Level 3 and in 1998 as a CMM Level 4.

4. Recently, we underwent a Process
Baseline Assessment to determine our
weaknesses in reaching CMM Level 5.
Our next CMM assessment is in 2001.

CrossTalk: What do you see in the
future for process improvement? What
would you like to see? Do you plan a
transition to CMMI? Why?

Tonkin-Sugimoto: Software process
improvement at this facility is institution-
alized. This was brought about by
Raytheon’s software process improve-
ments specifically but also across the
board by Raytheon Six Sigma. This pro-
gram encourages every employee to
improve their activities, to make them
more efficient, faster, less costly, and
improve quality. We’re beginning to feel
empowered to make improvements.

The Engineering Directorate for the
enterprise is actively moving to CMMI by
building on our software successes.
Raytheon has had two pilot CMMI proj-
ects: one in Bedford, Mass., and one in St.
Petersburg, Fla. Our CMMI activity will
represent another competitive advantage
for Raytheon in the same way that the
software CMM maturity has. As all engi-
neering disciplines reach a culture of con-
tinuous process improvement, we will be
able to produce better and better products.

Keys: The value of software CMM
process maturity is diluted by the fact
that other disciplines don’t have the same
type of controlled processes and maturity
that we do. This is particularly true in the

area of systems engineering and require-
ments development. If we can bring those
organizations up to our level of maturity,
then we’re going to get tremendous bang

for the buck. It will increase the benefits
of software maturity as well as help out
other disciplines, program management,
and all other areas.u

Wrestling with legacy code?
Slaved to proprietary hard-
ware? Having difficulty hir-
ing the talent you need?

The Air Force Computer
Resources Support
Improvement Program
(CRSIP) is listening!

CRSIP invites your input to the
Air Force’s Software Technology
Investment Strategy and your par-
ticipation in a roundtable and panel
discussion of software needs (tech-
nology, acquisition management,
and process improvement) on
Tuesday, May 1 from 12:00 to 1:00
p.m. during the 2001 Software
Technology Conference in Salt Lake
City, Utah. The complete confer-
ence schedule will be posted soon at
www.stc-online.org

To gain wider input to Air Force
requirements for software improve-
ment projects, CRSIP is interviewing
engineers and program managers of
software intensive programs for
inputs. The results of the needs
analysis will be summarized at STC,
and used to structure the Air Force’s
investment strategy for software
improvement. If you would like your
input to be a part of this effort, see
http://crsip.hill.af.mil for a question-
naire and more information.

Good

Better

P
R
O
C
E
S
S

HMSC Common Software
Process Established

HMSC Formed

HMSC Achieves Level 3

ISO Registered

1992 1994 1996 1998 2001

HAC Receives Software Process
Award

RMS Achieves
Level 4

Level 5
PBA

Raytheon - Hughes merger

SQA Achieves Navy Best Practices
Status

RMS Release
of Level 5 Metrics

RMS Release
of Level 5 Process

Massachusetts and Texas Programs Transition To Tucson

Figure 3. Raytheon’s Process Improvement Timeline

Process Improvement

Attention Air Force Software Program Managers!

Robert L. Keys is a senior principal soft-
ware engineer at Raytheon Missile
Systems (RMS) in Tucson, Ariz. He has
23 years of experience developing and
managing real-time embedded software
for various defense-oriented applications,
including command and control systems
and missile systems. For the past four
years he has worked in the Software
Engineering Process Group (SEPG) as
RMS has progressed from Software
Engineering Institute’s CMM Level 3 to
Level 4. He is currently the metrics-based
management specialist within the organi-
zation and has been the leader of the soft-
ware metrics program since 1998. He is
also currently involved in developing the
Level 5 processes and providing support
for Level 5 project activities in prepara-

tion for certification in May 2001. Keys
earned a bachelor’s degree in computer
science from San Diego State University.

Ginger Tonkin-Sugimoto is a principal
software engineer at Raytheon Missile
Systems in Tucson, Ariz. She has 28 years
of experience developing and managing
real-time embedded defense software. For
the past four years she has worked in the
Software Engineering Process Group
(SEPG) and currently represents process
for the air-to-air software product line. She
is an active member of assessment teams
working throughout Raytheon to mentor
other organizations and to improve soft-
ware development processes. She earned a
bachelor’ s degree in mathematics from the
University of California, Santa Barbara.

March 2001 www.stsc.hill.af.mil 13

DoDTech Listserver Covers All IT Issues
George Hellstern

Office of the Secretary of Defense

During the year 2000 (Y2K) effort, the Office of the Secretary of
Defense established a technology news service for the entire

Department of Defense (DoD). The Y2K Technical Listserver was created
to get important Y2K information to the program managers who needed
it. Throughout 1999 the listserver distributed unclassified news highlights,
technical developments, briefings, published policies, and upcoming Y2K
events to more than 2,000 defense and government Y2K program man-
agers. The listserver became a means for program offices to share newly
discovered solutions across commands, services, and agencies.

The Y2K Technical Listserver provided information on the latest test-
ing tools, the Microsoft Windows patch levels and their states of compli-
ance to Y2K, as well as falsely reported problems such as the fabled
Crouch-Echlen effect. Members of NATO, the Japanese Ministry of
Defense, and the White House Y2K Directorate commented on its quick
analysis of relevant facts, and its general usefulness. Users submitted arti-
cles as well, opening up an information flow across DoD organizational
boundaries.

After the successful transition through Y2K, the listserver was
renamed the DoDTech Listserver and continues its life. DoDTech main-
tains the intent and spirit of its predecessor, and has an expanded focus to
include all information technology (IT) issues. DoDTech has addressed
the topics of information security, migration to Windows 2000, mobile
code, electronic commerce, product reliability, and Lucent’s new Peta-bit
all optical Internet-protocol based routers and switches.

To keep the audience informed of what’s happening in the depart-
ment, DoDTech includes highlights of hot IT initiatives such as the
Global Information Grid, a set of programs to bring the DoD Network
infrastructure as a whole into the 21st century. Other programs, policies-
and IT-related events will all be listed and analyzed by the listserver.
DoDTech continues to foster communication and information sharing
across the government by featuring new policies signed at the executive
level, and initiatives that are proving successful in other agencies.

DoDTech could not be successful without the continued interest of
its audience, and the excellent coverage of IT news in the press, where it
leverages the majority of its content. This electronic newsletter is currently
published bimonthly, via email, to approximately 2,000 readers across the
globe. DoD hopes to expand the listserver’s reach by promoting the value
of information sharing at DoD-sponsored conferences and events. To view
an archive of DoDTech issues, visit www.c3i.osd.mil/org/cio/dodtech

To Join
Simply follow the steps outlined below to be added to the distribution:
1. Send message to: listserv@listservsas.c3i.osd.mil
2. Leave the subject line BLANK.
3. In the message body type: SUB DoDTech Your Name (for example:

John Smith, not your e-mail address).
Once you have signed up you will start receiving biweekly news-mails

compiled and published by the DoD DCIO Software and Advanced
Solutions Directorate. If at any time you no longer wish to be a member
of the list, follow these steps:
Send message to: listserv@listservsas.c3i.osd.mil
Leave the subject line BLANK (as always)
In the text section type: SIG DoDTech

We look forward providing you with useful and timely information,
and to receiving your comments and suggestions. If you have any ques-
tions about the listserver please contact Kelli Gillis at 703-604-1484.u
Contact Info: Voice: 703-602-2720 E-mail: George.Hellstern@osd.mil

Coming Events
March 5-8

Software Testing Analysis and Review
www.sqe.com/stareast

March 5-8
Mensch and Computer 2001

http://mc2001.informatik.uni-hamburg.de

March 12-15
Software Engineering
Process Group Conference

www.sei.cmu.edu/products/events/sepg

March 31-April 5
Conference on Human Factors in Computing Systems

www.acm.org/sigs/sigchi/chi2001

April 22-26
Twentieth Annual Joint Conference of the IEEE

Computer and Communications Societies
www.ieee-infocom.org/2001

April 29-May 4
Software Technology

Conference
(STC 2001)

www.stc-online.org

May 1-3
2001 IEEE Radar Conference

www.atlaessgrss.org/radarcon2001

May 12-19
23rd International Conference on Software Engineering, and

International Workshop on Program Comprehension
www.csr.uvic.ca/icse2001

June 11-13
E-Business Quality Applications Conference

http://qaiusa.com/conferences/june2001/index.html

June 18-22
ACM/IEEE Design Automation Conference

www.dac.com

June 25-27
2001 American Control Conference

www.ece.cmu.edu/~acc2001

July 1-5
11th Annual International

Symposium of the International
Council on Systems Engineering
http://incose.org/symp2001

July 7-13
2nd International Symposium on Signal Processing and Analysis

http://ispa.zesoi.fer.hr

July 29-August 2
TOOLS USA – Software Technologies for the Age of the Internet

www.tools-conferences.com/tools/usa/index.html

14 C R O S STA L K The Journal of Defense Software Engineering March 2001

Join us in beautiful Salt Lake City, Utah, for the Thirteenth Annual

Software Technology Conference

22000011 SSooffttwwaarree OOddyysssseeyy:: CCoonnttrroolllliinngg CCoosstt,, SScchheedduullee,, aanndd QQuuaalliittyy
April 29 – May 4, 2001

The Software Technology Conference (STC) is co-sponsored by the Departments of the Army, Navy, and Air Force, the Defense Information
Systems Agency, and Utah State University Extension. Over 3,000 participants are expected to attend more than 110 presentations (offered in
10 concurrent tracks) and the accompanying trade show. The trade show offers participants the opportunity to visit over 180 exhibiting
organizations and learn about the latest products and services they offer.

Today’s leading technology experts will look toward the future and guide participants in exploring opportunities for perfecting today’s tech-
nology. Presentations are geared toward effectively managing the daily challenges that IT professionals face. This is one of the best opportu-
nities for software professionals and managers in the DoD, contractors supporting the DoD mission, and individuals in industry and acade-
mia to learn of proven technologies, policies, and practices regarding issues common throughout the DoD. It’s not too late! Register today!

Concurrent Speaker Luncheons
Monday, April 30 • 11:30 a.m. – 1:00 p.m.

Luncheon speakers will discuss their perspectives on the conference theme. Participants may register for the
luncheon of their choice by marking the appropriate box on the registration form. Speaker choices include:

Opening General Session
Monday, April 30 • 1:30 p.m. – 3:00 p.m.

DR. VITALIJ GARBER

Director of Interoperability,
Under Secretary of Defense
(Acquisition and Technology)

Plenary Speakers

Luncheon A
MITRA AZIZARAD

General Manager,
Microsoft Federal Systems

Luncheon B
DR. BARRY BOEHM

Director, USC Center
for Software Engineering

Discounted Registration Fees
Completed registrations received by
Monday, March 26 will be processed at the
discounted registration fee of $560 mili-
tary/government or $685 business/indus-
try/other. Credit cards will be processed
beginning Monday, April 2.

Registrations received after March 26 and
those received without payment in full or a
completed purchase order will be held for
onsite registration at the regular fee of $620
military/government or $770 business/
industry/other.

Registration instructions and forms are
available at the STC Web site in PDF for-
mat. You may also register online using our
secure server.

Updated Conference Information
Complete conference information is avail-
able on the STC Web site. Presentation
summaries and speaker biographical infor-
mation is posted there as it is received. Visit
www.stc-online.org for up-to-date confer-
ence information as well as a dynamic con-
ference schedule that allows you to “build”
your conference week online.

Side Meetings
Side meetings are held in the evenings
throughout the week and on Friday. There
is a limited number of meeting rooms avail-
able. Requests to hold a meeting and
reserve space must be made no later than
Monday, March 26. Rooms are assigned on
a space available basis. To schedule a room,
contact STC management at 801-777-
9828 or lynne.wade@hill.af.mil. All meet-
ings scheduled prior to March 26 will be
listed in the Conference Pocket Agenda
provided at onsite registration. Reminder:
Side meetings will not be scheduled to con-
flict with conference events.

Luncheon C
RADM PATRICK MONEYMAKER

USN (Ret.); Chief Operations Officer,
Ocean Systems Engineering Corp.

Industry Speaker
STEVEN R. PERKINS

Senior Vice President, General
Manager of Oracle’s Federal and
Global Financial Services
Wednesday, May 2
8:00 a.m. – 8:45 a.m.

Academic Speaker
DR. ELIYAHU M. GOLDRATT

Educator,
Creator of the
Theory of Constraints
Thursday, May 3
8:00 a.m. – 9:40 a.m.

www.stc-online.org

General Information Technical Content Inquiries
stcinfo@ext.usu.edu stc@hill.af.mil

435-797-0423 801-777-7411

Trade Show Inquiries Media Relations
stcexhibits@ext.usu.edu stcmedia@ext.usu.edu

435-797-0047 435-797-1349

Watch for more information about STC 2001 in the April issue of CrossTalk.

March 2001 www.stsc.hill.af.mil 15

Everyone should know why the organ-
ization wants to measure. The most

effective measurement programs are tai-
lored to the important issues that must
be managed in an organization. Although
many software metrics programs are
based on this issue-driven measurement
approach, many are not effective because
the selected issues are not commonly
endorsed. One lesson learned by the
Army Software Metrics Office (ASMO) is
that the members of the organization that
implement a measurement program must
feel that they were involved in defining
the issues to be measured.

The Army learned this lesson early. In
1990, the Software Test and Evaluation
Panel (STEP) initiated an issue-driven
process to define a standard set of software
metrics for all Army programs. Members
of the STEP metrics working group
defined the Army-wide software manage-
ment issues based on their experiences in
Army software acquisition and test. Table
1 describes the Army issues and the met-
rics that were selected to address them.
The selected set of 12 metrics was imple-
mented in 1991 as a mandatory require-
ment for all Army programs. As expected,
the STEP mandatory metrics program
was received with extreme hostility from
most acquisition program managers.

Hostility and marginal success were
expected because the first objective of the
mandatory metrics program was to shock
managers to comply with software metrics
policy requirements that had been ignored
for years. However, the STEP members
were surprised to learn that the most sig-
nificant cause of this hostility was not the
financial impact on the projects. Army

managers were more upset by their percep-
tion that an outside organization had man-
dated how they would do their job. The
underlying problem with this approach
was that the Army program managers who
had to implement the metrics were not
involved in defining their issues.

The Army policy for the 12 manda-
tory metrics was superceded in 1996 with
a policy [1] that requires each project to
implement a set of software metrics to
support its own project-specific issues in
six common issue areas. The ASMO has
found that the best approach to define
project-specific issues is through a series
of measurement-tailoring workshops. The
workshops provide the forum to allow
persons at all levels of the organization to
define the project’s issues in terms of
their own problems, concerns, and lack
of information in their day-to-day jobs.
Employees tend to support a measure-
ment program if they feel that they had a
part in developing the process.

Never change an existing process
to obtain a measure. The second
most important lesson the ASMO learned
is to only use data currently produced by
an organization’s process. This principle
dictates that measurement programs
should start small and not require any sig-
nificant additional resources to imple-
ment. Radical change of any process in an
organization (business, management, or
technical) will usually render the process
ineffective for a period of time until the
new process is learned and becomes insti-
tutionalized. A radical process change may
cause employees to no longer understand
or support their daily activities. Employees
will spend their time relearning their jobs
or complaining about the new order. The
overall result is that both the organization’s

new measurement process and other
processes objectives are not achieved.

However, the lesson is not that an
organization’s process should not be
improved to be able to provide more
effective measures. The point is that radi-
cal change of any process is usually
destructive. Managers should realize and
accept the fact that organizational change
to improve a process will be slow. For
example, the empirical data that has been
collected in the Software Engineering
Information Repository (SEIR) shows
that the median time to move from
Capability Maturity Model® (CMM)
Level 1 to Level 2 is 26 months for those
organizations that began process improve-
ment programs after 1992. The SEIR is
sponsored by the Software Engineering
Institute (SEI) and provides an extensive
body of empirical evidence on software
process improvement. The SEIR can be
reached at www.seir.sei.cmu.edu

Measurement provides managers
with an important, but limited,
opportunity. The greatest benefit of a

The Best Measurement Tool Is Your Telephone

More and more people are becoming interested in software measurement for three reasons: Measurement and
analysis are a Level 2 process area of the Capability Maturity Model IntegrationSM, the International Standards
Organization measurement standard ISO 15939 is being drafted, and Practical Software and System Measure-
ment version 4.0 is being released. This paper provides some practical advice on implementing a software measure-
ment program based on lessons learned at the U.S. Army Software Metrics Office during the last 10 years.

Don Scott Lucero
U.S. Army Software Metrics Office

Fred Hall
Independent Engineering Inc.

Table 1. Army issues, metrics selected to address them.
Army Experience Issue Metric
Software user requirements Requirements
are not achieved in the code. Traceability
Software fails under unexpected Reliability
operational load levels. Breadth of Testing
Unexpected changes are Requirements
made to user requirements. Stability
Software is released without Breadth of Testing
adequate test. Depth of Testing
Excessive design changes Design Stability
are made to the software.
Inadequate cost estimates Cost
are overrun.
Inadequate schedule estimates Schedule
are slipped.
Software problems are Fault Profiles
not resolved prior to release. Complexity
Physical computer resource Computer Resource
capabilities are exceeded. Utilization
The software developer Software Engineering
does not have the capability Environment
to deliver an adequate product.

Best Practices

SM The Capability Maturity Model Integration
and CMMI are service marks of Carnegie
Mellon University.

16 C R O S STA L K The Journal of Defense Software Engineering March 2001

measurement process is to improve objective communication
within an organization. Fred Brooks’ experience [2] in develop-
ing the IBM Operating System/360 in the 1960s convinced
him that "all programmers are optimists." Brooks also found
that optimism was pervasive throughout most software develop-
ment organizations: “When a first-line manager sees his small
team slipping behind, he is rarely inclined to run to the boss
with this woe. The team might be able to make it up, or he
should be able to invent or reorganize to solve the problem.”

The ASMO has learned that these observations are still gen-
erally true after 35 years. They define the underlying need for
measurement in a software development organization. As software
can be rewritten and replaced, persons at all industry levels tend
to feel that any technical problem can be resolved if they work
hard enough. Communication in the software industry on the
current status of software products is generally optimistic. The
result is that bad news is not easily reported, but is retained at
various levels of a software organization because employees feel
they can resolve a problem before they will report it.

It is best that customers and managers at all levels realize
that any subjective communication will tend to be optimistic.
Problems will only be reported when they have grown too big
for an employee to admit that he can no longer resolve them.
For example, software development projects get behind one day
at a time; however, schedule slips are usually reported to a cus-
tomer only when they are several months behind, and some
product must now be delivered. What a manager needs is objec-
tive data that is routinely collected as a by-product of an estab-
lished process in the organization. This objective data will pro-
vide unbiased testimony on the status of a process.

Measurement is only one technique in an effective
software management process. The process to define the
project issues may show that other actions are more important for
an organization than collecting data. For example, product quali-
ty metrics such as software trouble reports are ineffective if the
software complexity prohibits adequate testing. If the system does
not require complex software, managers should dedicate their
resources to reducing software design complexity before measur-
ing product quality.

Also, if software managers are not willing to make decisions
based on software measurement data, a software measurement
program is of little use.

Many software measurement reports are only as
good as initial estimates of measures’ target values.
Many software metrics (cost, schedule, computer resource uti-
lization, etc.) report a comparison of planned versus actual val-
ues. The most obvious information that is obtained from the
metrics data is a comparison of the actual values to the planned
values at some point in time. In most cases, this information
only reflects how good the initial estimate was to the actual val-
ues that are achieved.

Because a manager will gain little by revising the initial esti-
mate, these metrics often provide nothing but bad news that a
manager cannot change. Spending too much time and effort to
report and evaluate these metrics will provide little return on

investment. Remember that the primary return on investment
for a metrics program is the information that allows a manager
to make an informed decision on an issue.

The underlying fact is, going back to Brooks’ advice, that
many estimates in software engineering are optimistic and are
not based on reality. For example, in a section entitled Gutless
Estimating, Brooks made this observation on schedule estimates:

“Now I do not think software managers have less inherent
courage and firmness than … other engineering managers.
But false scheduling to match the patron’s desired date is
much more common in our discipline than elsewhere in
engineering. It is very difficult to make a vigorous, plausible,
and job-risking defense of an estimate that is derived by no
quantitative method, supported by little data, and certified
chiefly by the hunches of the managers.”

The key to using metrics that are based on an initial estimate
is to understand the basis of the estimate and the link to reality.
If an initial estimate was unrealistic, users should adjust to the
fact that the variances between planned and actual values will
always look bad. However, these measures should not be discard-
ed. These measures’ users must adhere to one of the lessons that
the ASMO has learned to achieve a good measurement process:
“Do not focus only on the quantitative value of the data, but
capture other information from the objective communication
that usually results from the measurement process.” For example,
if you know that the schedule estimate is unrealistic, encourage
persons in the organization to think of actions that may be taken
to reduce the adverse impact of the upcoming schedule slip.

Late delivery makes any metrics data useless. The
fundamental return on investment in a measurement program is
the action that can be taken to effectively manage an issue.
Measures provide relatively unbiased testimony on the issue’s sta-
tus, but do nothing to resolve the issue. Therefore, the most
common measurement program benefit is early warning of a
problem that allows time to avoid it. A slow data reporting
process will delay any information that can be derived in time to
take corrective action. Late reports may eliminate management
options and reduce usefulness of a measurement program. Long
delays only report a painful history, and the measurement
process becomes a management burden.

The optimum solution is to use the measurement process
to support instant information through improved communica-
tion. Army managers have learned that a defined set of software
metrics will identify the important issues in a software process
to all members of the organization. If the members of an organ-
ization understand the importance of data on status reporting
for an issue, they tend to derive and report the information
before the data reports are formally delivered.

Improved communication is a valuable objective in manag-
ing a software process. By the time measurement data is formal-
ly delivered to the appropriate management level, some signifi-
cant time has already elapsed. A reasonable time between collec-
tion and reporting usually is 30 days. A slow measurement
process may take two to three times as long. This lapse in time
may limit the ability of the manager to take effective action.
Data that is reported too late to support management informa-

Best Practices

March 2001 www.stsc.hill.af.mil 17

The Best Measurement Tool Is Your Telephone

tion and action is useless. It is important that all participants in
a measurement process understand this principle and report the
results of data as soon as they are available.

Actually, the least important elements of an effective met-
rics program are the data reports and indicators that are eventu-
ally delivered. Since the objective is to allow managers to derive
information as early as possible, the telephone is the most
important measurement tool. If the tool is effectively used,
managers at the data source will immediately broadcast any
important information on the measured issues. In the best pos-
sible measurement process, the phone will ring long before
measurement reports are delivered.

Data reports symptoms, not causes. Clever data presen-
tation and intricate analysis methods may not be worth the effort.
Data reports should confirm the expectations of the manager who
understands the process and the issues that are measured. If the
data is a surprise, the manager should pick up the phone and ask
what happened. If the manager does not know whom to call to
get the answer, that manager needs to learn more about the soft-
ware process. More information on the underlying process is
needed before the manager should use the data to draw conclu-
sions and make decisions.

Data reports should not be used for a management decision
without also reviewing other supporting information that pro-
vides insight into the software process. For example, a data
report showing that some element of a project has exceeded
planned cost does not independently allow a manager to derive
information on the actual budget status. The reason for the high
cost may have been that the organization made an early pur-
chase of additional equipment to support a prototyping effort.
Although expenditures are higher than scheduled, the early
expense and prototype capability will allow a stable require-
ments baseline to be defined and will eventually lower the over-
all project costs. If a data report shows that a project has over
planned cost, a manager is able to ask intelligent questions only
if that manager understands current events in the project.

The information value of metrics data depends on
who reads the data. Metrics data reports provide two limit-
ed opportunities to a manager:
1. The data confirms the manager’s expectations and

assumptions on the current status of an issue.
2. The data is a surprise, and it allows the manager to ask

intelligent (issue-driven) questions.
A manager who obtains news on a project only by reading met-
rics data reports should not make significant management deci-
sions. The manager who reacts to only data reports probably does
not know enough about the project to make an informed deci-
sion. Management decisions and actions usually must balance
several competing objectives and issues within an organization.

Most objective metrics data is influenced by
someone’s subjective judgment. Quantitative data usu-
ally is assumed to be accurate and unbiased because it is
expressed as a precise number. However, managers should be
aware that every data item that is defined and collected by

another person will reflect some degree of subjective judgment.
For example, metrics data on the number of design units that
have passed integration test usually is assumed to be a precise
number, determined only by technical characteristics of the soft-
ware under test. However, the number of tests that have been
passed depends primarily on the criteria used for the test.
Examples of changes to integration test criteria follow:
• Level of assembly or the size of software components that

are integrated for each test case.
• Number of inputs or conditions required for each test case.
• Level of conditional stress during test (concurrent tasking,

shared memory availability, processor utilization, etc.).
The pass/fail criteria for a test is not reported in the metrics

data, but any changes may radically drive data up or down. The
principle that managers should understand is that the quantities
that are reported by metrics data are a by-product of another
process that may or may not be stable. Deriving information from
metrics data requires a manager to understand that other process.

Not all organizations benefit from a metrics program.
The process to identify the project issues will often determine
that an organization is just not ready for measurement. The
ASMO’s experience in administering measurement-tailoring
workshops has shown that many organizations must improve
other software processes before an effective measurement process
can be established.

For example, when selecting issue-driven measures, the data
that is currently collected in the organization’s configuration
management (CM) process should be considered. If the data
that is collected in the existing CM process cannot support a
very basic measurement program, it is more important to first
improve the CM process than to start collecting metrics data.
Often, differences in the environments and methodologies with-
in an organization or with software vendors make communica-
tion and software data collection difficult, at best.

Not all numbers are equal. Managers should have insight
into the measured software project to know what numbers are
most important. For example, it is understood that software prob-
lems or trouble reports must be assigned a priority according to
the impact on the system or project. However, many other met-
rics should also be provided with a priority ranking. All software
requirements, software components, test cases, etc. are not equal
in their impact on the software process and products.

Managers must understand the priority or criticality of a
measured element to the overall objectives of the system or proj-
ect. The guideline is that managers should know which meas-
ured elements have the most impact on their project issues.

Data indicators should be tailored to a project issue.
When building a data report or graphic indicator, managers
should consider the specific kinds of information that is most
useful. For example, when measuring schedule progress in a
software development effort, the change of dates usually is not
as important as the developer’s reaction to the schedule changes.
The ASMO’s recommended display for the schedule metric is
provided in Figure 1 as an example. In this indicator, we plot

18 C R O S STA L K The Journal of Defense Software Engineering March 2001

planned versus actual dates of events. Although this indicator is
confusing, the data display focuses attention on the changes to
future events that are mandated by schedule slips.

The ASMO’s experience is that the final delivery date for a
software product usually is established by system delivery or
marketing promises that have little to do with the schedule
needed to develop the software. Early software schedule slips
will rarely delay the promised final delivery date. When sched-
ule slips occur, future activities between events are compressed
to ensure the planned delivery date is achieved.

The data display in Figure 1 shows that in month six the
Preliminary Design Review (PDR) has slipped by five months,
but Critical Design Review (CDR) remains within two months
of the original schedule. The data display highlights the most
important schedule issue. The developer now must complete the
detailed design between PDR and CDR in three months, not
the six months that were originally proposed.

Never implement an expensive measurement program.
The only realistic reason that a measurement process will incur
some significant cost is that the metrics data is not currently
produced by the organization.

Two basic rules that must be observed to define an eco-
nomical metrics program are:
• Only use the metrics data that is currently available from the

organization.
• Do not require a metric to be reported if it would require the

organization to immediately adopt or change an engineering
or management process.

The ASMO has found that most violations of these rules occur
when a customer requires a software vendor to provide metrics
data. Often a customer will request data that is an effective
practice for software engineering but is not a requirement ele-
ment for all software processes. A common example of this type
of metric is "cyclomatic complexity." This metric is commonly
misused when a customer requires this data to be reported, and
the vendor’s process does not currently measure cyclomatic
complexity. To report this metric the vendor must either (1)
measure the complexity of design and code after it is completed,

or (2) adopt a new quality process that is based on cyclomatic
complexity. The new process will require new tools, training,
and procedures for the software design team.

The first option to report cyclomatic complexity will pro-
duce a number but does nothing to change the vendor’s process
or the product that is delivered. The second option may eventu-
ally improve the vendor’s process and the complexity of deliv-
ered software. However, while the vendor is learning the new
complexity-driven quality process, his overall productivity and
product quality may be degraded. The customer should adopt
neither option. All managers should follow rule No. 1 and only
use data that is currently available from an organization.

Any software engineering organization should be able to
report basic configuration management data for little additional
cost to a customer. If a software vendor is unable to provide this
basic data at reasonable cost, it is clear that the customer has
not learned the most important guideline for an effective metric
program: “Do not hire a dummy to develop your software.”u

References
1. Memorandum, Director of Information Systems for Command,

Control, Communications and Computers (DISC4) policy
SAIS-ADW, subject: Acquisition Reform and Software Metrics,
Sept. 19, 1996.

2. Brooks, Fredrick P., The Mythical Man-Month, Essays on Software
Engineering, Addison-Wesley Publishing Company, 1975.

About the Authors
Don Scott Lucero is a software engineer on the head-
quarters staff of the Army’s Evaluation Center. He is
responsible for the Army’s Software Metrics Office as
well as Army Test and Evaluation Command’s software
test and evaluation policy and methods. Lucero has 17

years of experience working on Army software development projects
and has both bachelor’s and master’s degrees in computer science.

U.S.Army Software Metrics Office,Attn: CSTE-AEC-MA
Park Center IV, 4501 Ford Avenue
Alexandria,Va. 22302-1458
Phone: 703/681-3823
DSN: 761-3823
Fax: 703/681-2840
E-mail: lucerodon@atec.army.mil
Internet: www.armysoftwaremetrics.org

Fred Hall provides training and product assurance engi-
neering support, including software reliability, quality
assurance, and systems reliability and maintainability.
Hall has supported the Army Software Metrics Office
from November 1989 to the present. He has also pro-

vided support to the Department of Defense Practical Software and
Systems Measurement program. He received a master’s degree from
George Washington University in 1974, and a bachelor’s degree in
mechanical engineering from the U.S. Naval Academy in 1970.

Independent Engineering Inc.
4 Old Station Road
Severna Park, Md. 21146-4619
Phone: 703/979-9674
Fax: 703/979-8187
E-mail: fhalliei@aol.com

Best Practices

Figure 1. The ASMO’s recommended display for the schedule metric focuses
attention on the changes to future events that are mandated by schedule slips.

March 2001 www.stsc.hill.af.mil 19

Software Technology Support Center
www.stsc.hill.af.mil
The Software Technology Support Center (STSC) was established
in 1987 as the command focus for proactive application of soft-
ware technology in weapon, command and control, intelligence
and mission-critical systems. The STSC provides hands-on assis-
tance in adopting effective technologies for software-intensive sys-
tems. It helps organizations identify, evaluate, and adopt technolo-
gies that improve software product quality, production efficiency,
and predictability. STSC uses the term technology in its broadest
sense to include processes, methods, techniques, and tools that
enhance human capability. Its focus is on field-proven technologies
that will benefit the Department of Defense (DoD) mission.

Software Engineering Institute
www.sei.cmu.edu
The Software Engineering Institute (SEI) is a federally funded
research and development center sponsored by the Department of
Defense to provide leadership in advancing the state of the prac-
tice of software engineering to improve the quality of systems that
depend on software. SEI helps organizations and individuals to
improve their software engineering management practices. The
site features a software engineering management practices work
area that focuses on the ability of organizations to predict and
control quality, schedule, cost, cycle time, and productivity when
acquiring, building, or enhancing software systems.

Software Process Improvement Network
www.sei.cmu.edu/collaborating/spins/spins.html
The Software Process Improvement Network (SPIN) is a leader-
ship forum for the free and open exchange of software process
improvement experiences and practical ideas. It promotes achiev-
ing higher levels of process maturity, software quality, and mutual
respect. The goal is to help sustain commitment and enhance
skills through an active program of networking, publications,
recognition of excellence, and mutual support. The individuals
are organized regional groups called SPINs who meet annually at
the Software Engineering Process Group conference.

DoD Data and Analysis Center for Software
www.dacs.dtic.mil
The Data and Analysis Center for Software (DACS) is a Depart-
ment of Defense Information Analysis Center. It is a software
information clearinghouse that serves as an authoritative source
for state-of-the-art software information and provides technical
support to the software community. A software process improve-
ment topic area provides a summary of findings on return on
investment from software process improvement (SPI). Users will
be able to see the cost benefits that can be achieved through per-
formance of a SPI program, including success stories.

Software Engineering Process Office
http://sepo.nosc.mil
The Software Engineering Process Office (SEPO) is the software
engineering focal point for the Space and Naval Warfare Systems
Center, San Diego (SSC SD). SEPO provides software engineering
processes and consulting services to projects, conducts and facilitates
software engineering training, and acts as a software engineering
clearinghouse for SSC SD. SEPO’s goal is to raise software capabili-
ty maturity in a concerted effort among the SSC SD software com-
munity, industry partners, and other government associates.

The Software Engineering Laboratory
http://sel.gsfc.nasa.gov
The Software Engineering Laboratory (SEL) is an organization
sponsored by the NASA/Goddard Space Flight Center (GSFC). It
was created to investigate the effectiveness of software engineering
technologies when applied to the development of applications soft-
ware. For more than two decades the SEL has been collecting and
analyzing software development metrics from development projects
within the GSFC Flight Dynamics Division. Its other sponsors are
the Software Engineering Branch, University of Maryland, and
Computer Sciences Corp., Space and Earth Technology Systems.

Software Productivity Consortium
www.software.org
The Software Productivity Consortium is a nonprofit partnership
of industry, government, and academia. It develops processes,
methods, tools, and supporting services to help build high-quality
component-based systems, and continuously advance systems and
software engineering maturity pursuant to the guidelines of all the
major process and quality frameworks. The consortium’s technical
program builds on current best practices and IT to create project-
ready processes, methods, training, tools, and supporting services
that meet our customers’ needs in systems and software develop-
ment. The site has a quarterly news letter and on-line news section.

European Software Process Improvement Foundation
www.espi.co.uk
The European Software Process Improvement (ESPI) Foundation
promotes good software practice through software process improve-
ment. It provides information and training to assist those beginning
the process improvement journey, and facilitate exchange of knowl-
edge and experience between practicing organizations. The site has
a latest news section and a monthly-featured periodical.

EGroups
www.egroups.com/group/spi
This particular eGroup site is an open forum for exchanging soft-
ware process improvement information. If you like using the
Capability Maturity Model® (CMM) for software, you have come
to the right place. There is an electronic copy of the CMM in the
files area, some good links, calendar items, and polls to take.

Software Process Improvement and Capability dEtermination
www.sqi.gu.edu.au/spice/contents.html
Known as SPICE, this is an international initiative to develop an
international standard for software process assessment. A draft stan-
dard for this was achieved in June 1995 with the release of Version
1. The SPICE trials are now the principal focus of the project. Five
international technical centers have been established to coordinate
the effort on the project. More information about the trials is avail-
able on this site, including how to register as trial participants,
more about the SPICE Assessor Training syllabus, or the annual
Inter-national SPICE Symposium, and various articles and books.

Improvement
P

ro
c

e
s
s

20 C R O S STA L K The Journal of Defense Software Engineering March 2001

Ada became an international standard (ISO) in the mid-
1980s and was revised (with full support for object-oriented pro-
gramming) in the mid-1990s. Its advocates observe that Ada has
met its initially intended goals, and that it is an effective and
methodology-neutral language for teaching software engineering.
Ada implementations, tools, and libraries are available on a wide
variety of platforms through a number of vendors. The language
is especially applicable to safety-critical and high-integrity appli-
cations, and it is heavily used in industries such as transporta-
tion. Ada offers more security than languages such as C and
C++, and better efficiency and a simpler run-time model than
Java. Indeed, an impartial observer, the respected real-time
authority E. Douglas Jensen, offered this technical assessment:

“Ada 95, including its Real-Time Systems Annex D, has
probably been the most successful real-time language in
terms of both adoption and real-time technology. One reason
is that Ada is unusually effective (among real-time languages
and also operating systems) across the real-time computing
systems spectrum, from programming-in-the-small in tradi-
tional device-level control subsystem, to programming-in-
the-large in enterprise command and control systems [1].”

Nevertheless, Ada has not enjoyed the commercial success
or publicity of other languages. Occasionally the question is
posed whether Ada is “dead or alive.” This article offers a snap-

shot of the Ada industry as of late 2000, concludes that Ada is
indeed alive (especially in the domain for which it was initially
intended), and offers some predictions on its future.

The first several sections of this article provide some per-
spective: reviewing the history of the DoD’s Ada policy, showing
how the choice of a language affects productivity, and addressing
the issue of commercial penetration as a factor in choosing a lan-
guage. The paper then summarizes the supply side of Ada (com-
piler vendors, tools, bindings, etc.), looks at how Ada is being
used today, identifies the main reasons it is chosen, and describes
the lessons learned from user experience. Lastly, the article dis-
cusses Ada’s role in teaching and academic research.

Ada Policy in the DoD
Ada is one of a small number of programming languages that is
accompanied by a comprehensive test suite that reflects a compil-
er’s conformance with the language standard. This suite, originally
called the Ada Compiler Validation Capability and more recently
designated the Ada Conformance Assessment Test Suite, compris-
es several thousand individual tests that exercise the core lan-
guage, the standard library, and the specialized needs annexes. A
compiler that successfully passes all applicable tests in the current
suite is labeled validated. Although the evolutionary nature of the
test suite precludes trying to standardize the tests themselves, the
test procedures became an ISO in 1999.

From 1983 until 1997, the DoD’s Ada Joint Program Office
promoted a stringent Ada usage and validation policy requiring
Ada on weapons systems applications and specifying that any
project using Ada employ a validated compiler to produce deliv-
ered code. The policy had dual consequences. The Ada mandate
seeded the market encouraging hardware vendors to supply Ada
implementations and spurred a furious competition among Ada
compiler vendors. However, it was imposed before Ada environ-
ments had become mature. Thus early experiences were often
disappointing, especially given the pent-up demand and overly
ambitious expectations that often accompany a new technology.
A required waiver for not using Ada—and justifying the decision
on projected cost saving—was widely ignored. Moreover, if an
Ada project failed, it was convenient, even if not often justified,
to blame problems on Ada language or implementation.

The validation policy also had mixed effects. On the positive
side, it forced compiler vendors to focus on implementing the full
language versus a subset. This was instrumental in realizing a high

Ada in the 21st Century
Benjamin M. Brosgol
Ada Core Technologies

Although Ada does not receive the publicity of some other languages, it is alive and well in a broad range of
applications that include hard real-time embedded systems, safety critical programs, desk-top graphical user inter-
face environments, and the Internet. The first internationally standardized object-oriented language, Ada is a
language of choice in many environments where reliability is critical. It continues to play a significant role in
teaching and research at computer science departments around the world. The Ada infrastructure, including the
validation testing for implementation conformance with the standard, has been successfully transitioned from the
government to the private sector. The language is evolving smoothly to meet the demands of the 21st century.

Editor s Note:
When Donald Reifer’s Is Ada Dead or Alive Within the Weapons
Systems World was published in December 2000, we said, “Ada
has been surrounded by controversy almost since its inception.
In this issue we offer one perspective on the current state of Ada
and how this affects technology decisions for weapons systems.
An upcoming issue will provide an opposing point of view.”
Here is another Ada report. Letters to the editor follow.

Software Engineering Technology

The U.S. Department of Defense (DoD) had two major goals
when it sponsored development of the Ada programming

language in the early 1980s. First on the technical side, Ada was
designed to meet the requirements of large-scale, reliability-criti-
cal applications (specifically, embedded real-time systems).
Second, Ada was intended as a common DoD language to
reverse the language proliferation trend that was making source
code portability all but impossible. Ada was the product of an
international effort led by a team from France and involving rep-
resentatives from government, private industry, and academia.

March 2001 www.stsc.hill.af.mil 21

Ada in the 21st Century

degree of portability for Ada source code across a wide variety of
platforms—a benefit that should not be underestimated. Ada has
had an excellent track record for source code portability. In some
areas such as task scheduling, it is significantly more portable
than Java despite the latter’s claim of “write once, run anywhere.”

At least in early Ada industry, achieving necessary valida-
tion sometimes led to distorted priorities as compiler vendors
paid less attention to other important traits such as efficient
run-time performance and support for external tools. By the
mid-1990s the DoD took a new look at compiler validation.
They recognized its importance in preventing the proliferation
of subsets and dialects—real problems with earlier languages.
But they perceived this was no longer a critical risk since the
range of language choices was much narrower.

The DoD ultimately rescinded both the Ada mandate and
the validation requirement in April 1997. Ironically, Ada was
required before it was ready, and then the requirement was
removed once implementations had matured. Concluding that
the Ada language no longer required external support, the DoD
subsequently dissolved the Ada Joint Program Office. Ada infra-
structure elements—maintenance of the validation test suite and
oversight on the language’s evolution—were taken over by the
Ada Resource Association, a vendor trade group described below.

Programming Language Effects
A programming language is not a magic bullet that will prevent
or cure software ills. It should be regarded as one element of
technology used in a software project that is complemented by
additional factors: tool support, people issues like developers’
talents and ability to work on a team, and the efficacy of the
development process. Indeed, it is sometimes argued that the
choice of a specific language is one of the less critical factors in
terms of effect on project outcome.

A good language will not turn unskilled developers into
software wizards, but it can leverage the talents of a skilled team
making them more productive. Sometimes an inspection of
technical features makes this obvious. For example, Ada allows
the integer value 263-1 to be expressed in hexadecimal format as
16#7FFF_FFFF_FFFF_FFFF#, which is easy to read with the
underscore character serving to separate the 4-digit groups. In
contrast, C (and also C++ and Java) require the same value to
be written much less clearly as 0x7FFFFFFFFFFFFFFFL. The
absence of a separator character in the number is of no conse-
quence to a compiler but is an invitation for human error.

It is difficult to conduct comparative quantitative studies of
programming languages in an objective manner, especially for
large projects. However, an impartial and thorough analysis [2]
documented a significant difference in productivity between
Ada and C on the components of the Verdix VADS product
line. This development comprised roughly the same amount of
code in the two languages. Zeigler’s study considered all the rel-
evant factors (such as the effect of programmer skills) and con-
cluded that Ada performed approximately twice as well as C
(i.e., costs for Ada were half that for C). Some of the reasons
cited were Ada’s additional compile-time checking, its higher-
level features, and the Ada culture that encouraged up-front
design. Interestingly, the study observed that using C++ rather

than C would not change the underlying result, since bug rates
in C++ were higher than in C. It concluded:

“Our data indicates that Ada has saved us millions of devel-
opment dollars. For every development dollar, we could
make a case for another three dollars for customer support,
sales, marketing, and administration costs”

This result should not be surprising since Ada was specifical-
ly designed to save life-cycle costs through software engineering
support. Quantitative data provides evidence that this goal has
been met, even if percentage of improvement varies per project.

Commercial Penetration
For a variety of reasons Ada has not had the commercial penetra-
tion of other languages. This raises an issue: How important is a
language’s popularity when an organization needs to choose a
technology for future software development? A recent article [3]
argued that commercial success should be a guiding factor in lan-
guage choice for large-scale DoD weapons systems. We believe
this is the wrong way to look at the issue for several reasons:
• Commercial success is almost always more strongly influenced

by marketing factors than by technical characteristics. From a
software engineering perspective, Algol 60 and Pascal were
better languages than Fortran and BASIC but did not achieve
the latter pair’s high market share. An enterprise needs to look
beyond the popularity of a language and make sure that it
satisfies the technical requirements of the application.

• In the commercial software market the way to succeed is
to release products that are good enough, at a price that
customers will accept, in a timely fashion. In a market-
oriented software industry, reliability is not the most
important criterion. This is reasonable for many kinds of
applications; if a Web browser locks up or a word processor
crashes, the damage is relatively localized. But weapons
systems do not have such luxuries.

• Times change and what is popular one day may be a nostalgic
memory the next. If commercial penetration had been the
deciding factor in earlier times, then weapons systems would
have chosen COBOL during the 1960s and 1970s, and
BASIC in the 1980s.

• Relative market share data can lead to the erroneous conclu-
sion that non-market-leading technology has failed. This is
partly due to the media’s tendency to portray commercial
competition as a sports event with only one winner. In fact,
a number of technologies that do not receive much publicity
today are indeed financially successful: Examples are OS/2
in the operating systems arena and PL/I and Pascal in the
language area. Judging from the infrequent press coverage
these technologies receive, one would deduce that they are
all but extinct. Yet in fact they are still in heavy use.

• The market dynamics of a commercially popular product
sometimes conflict with the requirements of a major long-term
project such as a weapons system. To stay ahead of the compe-
tition, a tool vendor needs to upgrade and enhance its product
at regular intervals. However, developers cannot afford the
risks that disruptions of the underlying tool base would bring.
They instead need to baseline a particular version for use

22 C R O S STA L K The Journal of Defense Software Engineering March 2001

throughout the project (or at least until a major upgrade).
Support for older versions is not generally a high-priority item
for vendors whose products have a high market share.

Perhaps most importantly, commercial penetration itself is
not what is important, but rather the effects it seems to bring—
an adequate and varied supply of compilers and tools1, and a
pool of programmers already skilled in the language. Let’s look
at how Ada fares in regard to these factors.

The Commercial Players
Principal Ada compiler vendors are the members of the Ada
Resource Association trade group: Ada Core Technologies,
Aonix, Averstar, DDC-I, Green Hills Software, OC Systems,
and Rational Software Corp. Several smaller companies such as
Irvine Compiler Corp. also sell Ada compilers into specialized
markets. All of these companies are established players in the
field. The oldest were founded in the early 1980s, and the
youngest was formed in the mid-1990s. The companies vary
in their business models, with different mixes of off-the-shelf
products, contract work, and support/consulting services.

Although the number of Ada compiler vendors is smaller
today than it was 10 years ago, this is a common phenomenon
throughout private industry as mergers and acquisitions have
become standard business practice. Moreover, there is not a large
number of compiler vendors for more widely used languages.

The Ada compiler industry today can be characterized as
fairly stable with competition on the most popular platforms.
The size of the Ada market is difficult to quantify with any pre-
cision. Based on an informal analysis by the Ada Resource
Association and public data provided by some vendors, the
worldwide market is about $80 million or so annually. This fig-
ure has been fairly steady during recent years and is not likely to
change significantly in the near term.

Ada is available across a wide range of platforms. A partial list
of Ada ‘95 compiler host environments includes Compaq/Digital
Alpha (OpenVMS, UNIX), Concurrent/PowerMax, HP9000/
HP-UX, IBM 390/MVS, Intel x86 (Windows-NT/9X/2000,
Linux, OS/2, UNIX), PowerMac/Tenon, PowerPC/AIX,
RS6000/AIX, SGI/IRIX, Siemens-Nixdorf/SINIX, SPARC/
Solaris, and Vax/OpenVMS.

Target environments include all the above hosts plus
ADI-SHARC/EONIC, ADI-21020/Bare, HP7xx/HP-RT,
IBM390/CICS, i960/HAOS, Intel/ETS Intel/RTLinux, the
Java Virtual Machine, M68k/VXWorks, MIPS/VXWorks,
Nighthawk/6800, PowerPC/Bare, PowerPC/LynxOS,
PowerPC/VXWorks, and also optimized ANSI C.

Several compiler companies use automated code generator
technologies and layered run-time systems with a clear interface
to target-dependent components. This makes it relatively easy to
produce Ada compilers targeted to new chips and operating sys-
tems/real-time kernels. Implementing Ada on a new target is
roughly comparable in effort to implementing C++ (except for
needed concurrency support in the run-time system since C++
lacks this facility).

Ada compilers are supplemented by an assortment of pro-
ductivity-enhancement tools, component libraries, and bindings
to popular software systems. The compiler developers supply

some of these: source-level debuggers, graphical user interface
(GUI)-based tool environments, browsers, tools for memory
monitoring, GUI builders, and target OS interfaces. Third-
party developers provide others. These products include source
analyzers (DCS, McCabe & Associates, Vector Software), formal
verification tools (Praxis Critical Systems), automated design
tools (TNI), interfaces to X-Windows (TopGraph’X), Ada sup-
port for CORBA (TopGraph’X, Objective Interface Systems),
real-time embedded graphics (DCS), a thick binding to the
Windows API (RR Software), and many others.

The availability of Ada Core Technologies’ GNAT Ada com-
piler under the General Public License (GPL) of the Free Soft-
ware Foundation has inspired the development of a variety of
tools and bindings that are also available under the GPL. A
number of these are available though the Ada Power Web site (see
On-Line Resources). Examples include a COM/DCOM/COM+
framework and bindings to the Windows API.

A wealth of libraries is available in other languages: mathe-
matical algorithms in Fortran, low-level communications func-
tions in C, network-ready classes in Java, etc. This has been cited
as an Ada weakness, but in fact one of Ada’s unique strengths is
the ability to interface with software in other languages in a stan-
dard and straightforward manner. Tools for several languages are
available that automatically generate the appropriate glue specifi-
cations that provide the Ada interface to foreign components. If
you need to mix C and Fortran, this is easier in an Ada environ-
ment than in either a C or a Fortran compilation system.

Ada is unique among programming languages in having a
standardized interface for tool developers: the Ada Semantic
Interface Specification (ASIS). This high-level interface contains
relevant information about an Ada program in a format that is
convenient for processing. Several of the tools previously men-
tioned work from an ASIS version of the source program. More-
over, most Ada 95-compiler vendors have made an effort to inte-
grate their development environments with non-Ada tools such
as configuration management systems. This results in Ada devel-
opment environments that are as comprehensive as other lan-
guages with higher commercial penetration.

Another side effect of a language’s market share is the sup-
ply of skilled programmers. It is a tautology to observe that the
more popular the language, the higher the number of program-
mers who know it. How significant is this issue for a project
that will continue over many years with a large team that pro-
duces perhaps a million lines of code?

On one hand it cannot be denied that starting with a team
already familiar with the programming language will save some
up-front costs. But this is largely a red herring issue. Most large
projects need to reserve time for new team members to assimi-
late possibly unfamiliar technology. Any programmer who is
skilled in C or C++ can come up to speed in Ada through a
variety of approaches, including on-line tutorials, books, or pro-
fessional courses. A professional programmer in any language
can become Ada-proficient in a five-day course. In the process
he or she will also learn software development techniques (pack-
age design, use of tasking features, and reuse through generics)
that carry over to other languages.

While Ada may not have the commercial penetration of

Software Engineering Technology

March 2001 www.stsc.hill.af.mil 23

other languages, this should not be a major factor in choosing it
for a large, long-lived project. Indeed, basing a decision on com-
mercial popularity may even increase some risks due to the mis-
match between market dynamics of the software industry and
the requirements of enterprise-critical software. Ada tools and
environments are also mature, competitive, widely available, and
the apparent training gap in the supply of professional program-
mers is a problem that is easily addressed.

Ada Usage
Ada applications range from hard real-time processing to com-
mercial desktop tools. Ada users include small start-ups, large
established firms, all points in between, and encompass govern-
ment agencies, the private sector, and academia around the globe.

The language has shown particular strength in the safety-
sensitive domain, especially in the transportation industry.
Boeing used Ada heavily for their 777 aircraft and continues to
require it for all software of the highest safety criticality certifi-
cation levels—DO178b levels A and B. Ada has been used on
subway systems, including the London Jubilee, and the recent
extension of the Paris Metro, and for work on the Carnarsie line
of the New York City subway. It has been used on the French
TGV trains and metrorail systems in Europe, Asia, and Latin
America. It has also been used in commercial shipboard control.

Other domain uses include the TV and entertainment
industry, medical computing, communications network switch-
es, and financial and information systems. It has been used in
industrial control, including safety-critical nuclear reactor shut-
down, and in desktop software. It has of course been used tradi-
tionally for military programs in the United States and allied
countries. Ada has also seen heavy use by nonmilitary govern-
mental agencies such as NASA and the European Space Agency.
There are hundreds of millions of lines of Ada code in opera-
tion today worldwide and in outer space.

It is beyond the scope of this article to document even a
small fraction of these applications in much detail. Nevertheless,
several consistent themes emerge among the reasons that Ada has
been chosen, and from the experience and lessons learned that
have ensued. Further information may be found through links at
Professor Michael Feldman’s Web site (of the George Washington
University), and the sampling of success stories on the Ada
Resource Association’s Web site (see On-Line Resources).

Why Ada?
Since its inception, the decision to adopt Ada has been a con-
scious choice commercially, and also for military applications
after the Ada mandate was eliminated. In all cases the main
reasons cited are the same: Ada was deemed to be a more reli-
able language than the alternatives, with run-time performance
meeting the efficiency requirements of the application, and suf-
ficiently mature compilers and support tools.

In some cases, bad experience with buggy or nonportable
software written in other languages made Ada an attractive choice.
In other cases, particular Ada functionality guided the decision
(e.g., concurrency support, low-level and real-time features, or
interfacing facility). Its status as an internationally standard lan-

guage, backed by a validation suite measuring a compiler’s com-
pliance, has also been a relevant factor.

These reasons, especially Ada’s security and focus on checks
at all levels, have been convincing factors in the safety-critical
and high-integrity software domain. A number of applications
such as the French TGV rail system have found that Ada and
formal methods make a happy marriage. Several Ada compiler
vendors directly support safety certification through certified
run-time kernels and other means. Ada is at the forefront of
safety-critical technology with its Ravenscar profile [4], a
reduced set of tasking features whose implementation can be
certified against the highest levels of safety criticality. This pro-
file strikes a delicate balance. It is restricted enough to allow a
simple, efficient, and certifiable implementation, yet powerful
enough to express common real-time idioms such as periodic
and event-driven activities.

The safety-critical market is a small but important sector,
and one where Ada continues to see strong interest.

Experience and Lessons Learned
Users have reported that expected Ada benefits have largely been
realized: fewer bugs, easier maintenance, and higher portability
than other languages. If there has been any disappointment, it has
generally not been with the language or the compilers and tools,
but rather with Ada’s slow rate of commercial penetration and the
resulting smaller supply of Ada-knowledgeable developers.

Projects that have chosen Ada tend to continue using the
language as their systems evolve. This is neither surprising nor
unique to Ada; if a technology works, there is no compelling
reason to spend time and money converting to something else.
A corollary is that many Ada 83 projects are continuing with Ada
83—using a baselined compiler or an Ada 95 compiler with an
Ada 83 option—rather than moving to Ada 95, although Ada 95
is generally used for major upgrades.

Ada and Other Technologies
User experience shows that Ada fits well with modern technolo-
gies. In distributed applications and components Ada is sup-
ported for CORBA, and also for frameworks such as Microsoft’s
COM, DCOM, and COM+. In the free software/open source
community, the GNU Visual Debugger, a new tool that will be
part of the standard GNOME desktop environment, has an
Ada graphical toolkit as its basis. In the safety and security
domain, a seminal report on the relationship between Ada lan-
guage features and techniques for integrity assurance identifies
how the level of certification can affect the choice of features,
and vice versa.

Ada historically and presently continues to influence many
other technologies. Its exception handling, generics, and pack-
ages affect the design of exception handling (in C++, Eiffel and
Java), and templates and namespaces in C++, respectively. Ada’s
real-time features directly influenced the real-time extensions
proposed for Java. The Ravenscar profile influenced the Java
real-time core High-Integrity profile. Ada’s picture string local-
ization affected choices made in COBOL, and the structured
Ada syntax influenced PL/SQL.

Ada in the 21st Century

Ada and Academia
A combination of factors affects the selection of a programming
language for teaching and research. Several are technical:
Pedagogy. Does the language reflect sound software engineer-
ing practice (encapsulation, abstraction, object orientation,
genericity, etc.)?
Teachability. Can the language
be partitioned such that simple
concepts can be covered first
and more advanced topics later,
with a minimum of forward
references? Are textbooks and
supporting educational material
available?
Applicability. Does the language reflect the state of the art in the
software industry and facilitate interoperability with elements
such as modern windowing systems, network software, etc.?
Generality. Does the language span a variety of domains (such as
systems programming, real-time applications, enterprise software,
etc.)? Does it fit in with current research areas (formal models,
proofs of correctness, parallelism, and distributed computing)?
Portability. Are programs easily ported across different hardware
platforms (for example UNIX, Linux, and Windows)?
Tool Quality. Are compilers and supporting tools available that
are applicable in a teaching/research setting (for example, with
good diagnostic messages, an easy-to-use interactive development
environment, and access to the source code of the components)?

Other factors are nontechnical:
Marketability. Will learning the language increase students’
employment prospects?
Price. Are low-cost or free compilers and environments available?

Against this backdrop it is useful to look at Ada’s history in
academia. During the requirements phase and the development
and review of the preliminary designs from 1977 to 1983, the
academic community was heavily represented. Consultants from
computer science departments at major universities in the
United States and abroad helped shape the final design. There
was some hope in the DoD that Ada would replace Pascal as the
dominant language for teaching introductory programming.

On the technical side, Ada offered significant benefits such
as language support for encapsulation, concurrency, and gener-
icity, and a standard input-output library. However, several fac-
tors prevented Ada from realizing widespread penetration. The
compilers available for Ada 83 tended to be expensive. Although
the major compiler vendors gave academic discounts, the price
still tended to be too high for most university budgets. Also,
Ada was not widely supported on one of the primary machines
then used in academia, the Macintosh.

Ada 83 did not support subprograms as data objects or
parameters, making it complicated to express applications such
as mathematical integration and awkward (and nonportable) to
realize callback. As the 1980s drew to a close a language named
C++ began to attract attention as a way to bring object-oriented
programming (OOP) into the mainstream. Ada 83 supplied the
major elements of object orientation but intentionally, in the
interest of avoiding the need for implicit storage reclamation,
fell short of full support.

Realizing the importance of penetrating academia, the Ada
95 effort attempted to address these issues. Complete support
for OOP was provided; whatever can be done in languages such
as C++, Java, and Eiffel can be done in Ada 95. Subprograms in
Ada 95 are first class data objects, and the common callback
idiom is easily and portably expressed. Most importantly, the

Ada 95 project sponsored the
development of the original
GNAT compiler at New York
University, based on the Free
Software Foundation’s General
Public License. Thus an open-
source Ada 95 compiler, free in
both pricing and usage senses,

was available when the language was standardized in late 1994.
Ada 95 has addressed the necessary technical issues for suc-

cess in academia. It reflects sound methodology and, unlike
Java, supports several traditional approaches and not just OOP.
Indeed, it was the first widely-used language to be designed
based on software engineering principles. The language can be
effectively taught in several tiers: introductory concepts (the
“Pascal subset” of data types and data structures, subprograms/
algorithms); encapsulation; abstraction (generics); concurrency;
and OOP. A number of high-quality books are available, includ-
ing several targeted at universities. A CD-ROM with Ada
resources is distributed annually by the SIGAda technical socie-
ty. Ada is an ISO and a highly portable language. Free or low-
cost (but high-quality) compiler implementations are readily
available on platforms common in the academic community.

These traits have made Ada 95 an attractive option at a
large number of colleges and universities around the world, and
usage in computer science programs appears to be fairly stable.
According to data gathered by Professor Michael Feldman (See
On-Line Resources), approximately 150 institutions worldwide
cover Ada in their computer science curricula, around 75 per-
cent introduce Ada in a foundation course, and the remaining
25 percent cover it in an upper-level course. These figures have
been consistent since 1997.

Of course, criteria beyond technical features play a role in
language selection. The most obvious factor in the past 10 years
has been the rise in usage of C++, and more recently Java.
Universities often try to ensure that their offerings are relevant
in the job market and thus will tend to teach subjects and tech-
nologies that reflect trends in the broader computer industry.
This is not a new phenomenon; in the 1970s Fortran was heavi-
ly used for teaching introductory programming in universities
even though Algol 60 was arguably the better choice pedagogi-
cally. It is thus not surprising now to see heavy adoption of
widely-used languages such as C, C++, and Java in computer
science curricula. Nonetheless, considering the substantially
greater publicity that these languages receive, Ada continues to
be a language of choice for teaching, research, or both at many
colleges and universities.

Experience teaching Ada has been positive. In an article [5]
comparing the performance of students in different introducto-
ry computer science courses at the U.S. Military Academy, the
authors observed that students did better with Ada than with

24 C R O S STA L K The Journal of Defense Software Engineering March 2001

Software Engineering Technology

“Although the DoD removed the Ada mandate in
1997, the Ada market has been fairly stable in
recent years. Projects using Ada have tended to
stay with the language as their systems evolve.
Ada works, and the job of converting to another
language is not worth the cost.”

March 2001 www.stsc.hill.af.mil 25

Pascal, and pointed out that this experience was duplicated at
the U.S. Air Force Academy. Another article [6] relating the
author’s experience conducting a real-time embedded systems
lab course reported that the students were far more successful
in Ada than in C.

Beyond its advantages as a teaching language, Ada is also
proving a useful vehicle for research. Here are some examples:

• Ada and Real-Time Systems: Florida State University, York
University (U.K.), the Technical University of Madrid
(Spain), and the Naval Postgraduate School.

• Ada and Distributed Technology: University of Brest (France).
• Formal Methods and Ada for Safety Critical Software: Uppsala

University (Sweden).
• Tools and Components: U.S. Air Force Academy

In summary, although Ada is not about to overtake better-
known languages in academia, it has a strong and energetic fol-
lowing and is not about to disappear. Ada educators have been
regularly providing experience reports at the annual Association
for Computer Machinery Computer Science Education confer-
ence. Computer science faculty members are aware of Ada and
its role in the curriculum.

Conclusion
Although Ada does not receive the publicity of other languages,
it continues to play an important role in the software industry,
both directly (through actual usage) and indirectly (through
effects on other technologies). Ada has proved to be particularly
strong in long-lived, reliability-intensive applications. This is
hardly a surprise since the language was initially designed for
this area. Although the DoD removed the Ada mandate in
1997, the Ada market has been fairly stable in recent years.
Projects using Ada have tended to stay with the language as
their systems evolve. Ada works, and the job of converting to
another language is not worth the cost.

As we look toward the future, there are reasons for opti-
mism. Arguably the period when Ada was most at risk was just
after the Ada Joint Program Office’s closing. There was uncer-
tainty concerning the support of the necessary infrastructure for
Ada’s continued evolution. But the Ada Resource Association
has successfully taken over this support role, in a smooth transi-
tion of responsibilities from a government organization to the
private sector.

The Ada standard continues to evolve in an orderly fashion.
The Ada Rapporteur Group, a collection of language experts in
ISO’s Ada Working Group, is considering a number of proposed
extensions, including a mechanism that will make it easier for
Ada to interface with Java classes.

The key to significant new growth for Ada is expansion in
academia. Ada is well poised to make new inroads with docu-
mented advantages as a language for teaching software engineer-
ing, a track record of success as a vehicle for research (especially
in the real-time domain), and with an open source Ada compiler
technology available. In short, Ada has fulfilled the goals that the
DoD had established for it at the outset of the project almost 25
years ago. It promises to continue that fulfillment in both the
near term and long range.u

References
1. Bollella, G., et al., The Real-Time Specification for Java;

Addison-Wesley, 2000.
2. Zeigler, S.F., Comparing Development Costs of C and Ada,

March 1995 [www.adaic.com/docs/reports/cada/cada_art.html].
3. Reifer, D., et al., Is Ada Dead or Alive within the Weapon

System World?, CROSSTALK, December 2000.
4. Burns, A. The Ravenscar Profile; Ada Letters, Vol. XIX, No. 4

(1999), pp. 49-52. Available as www.cs.york.ac.uk/rts/papers/p.ps
5. Hamilton, J.A., Jr., J.L. Murtagh, J.L., Zoller R.G. Programming

Language Impacts on Learning, Ada Letters, Vol. XX, No. 3,
Sept 2000, p. 18.

6. McCormick, J., Software Engineering Education: On the
Right Track with Ada, Ada Letters, Vol. XX, No. 3, Sept 2000,
pp. 47-48.

Note
1 A choice of suppliers is not always a consequence of commercial

success; an obvious illustration is a proprietary but widespread
product such as Microsoft’s Windows.

Additional Readings
• N. Audsley, Ada Yearbook Millennium Edition, Ada Language

U.K. Ltd; York U.K., 2000.
• Language Impacts on Learning, Ada Letters, Vol. XX, No. 3,

Sept. 2000, p. 18

On-Line Resources
• ACM SIGAda technical society: www.acm.org/sigada
• Ada Resource Association: www.adaresource.org
• David Botton’s Ada Power site: www.adapower.org
• Professor Michael Feldman’s summary of Ada usage:

www.seas.gwu.edu/~mfeldman/ada-project-summary.html
• Professor Michael Feldman’s summary of Ada in academia:

www.seas.gwu.edu/~mfeldman/ada-foundation.html
• Usenet newsgroup: comp.lang.ada

Ada in the 21st Century

About the Author
Benjamin M. Brosgol is a senior member of the technical staff
of Ada Core Technologies Inc. with more than 25 years’ experi-
ence in the software industry. He has been involved with Ada
since its inception, as a language designer, educator, implementer
and user; he was the principal author of the Information Systems
Annex in the Ada 95 standard. Brosgol is currently chair of the
Association for Computing Machinery’s Special Interest Group
on Ada. He has presented Ada papers and related technologies
at conferences both in the United States and abroad. He was
awarded a Certificate of Distinguished Service and a Certificate
of Appreciation by the Department of Defense for contributions
to the Ada language effort. He has a doctorate in applied mathe-
matics from Harvard University and a bachelor’s degree in math-
ematics from Amherst College.

Benjamin M. Brosgol
Ada Core Technologies
79 Tobey Road
Belmont, Mass. 02478
brosgol@gnat.com

26 C R O S STA L K The Journal of Defense Software Engineering March 2001

Letters to the Editor
Dear CROSSTALK:

The Ada article in the December 2000 issue of CROSSTALK is a
good example of government folks letting contractors blow smoke
where it doesn’t belong. The deceit is subtle, but I’ll try to expose it.

First, as always, they are comparing Ada to C++. But which C++
are they talking about? Borland C++ is different from Microsoft C++,
which is different from Symantec C++. The language was standardized
in 1999, but no one is following the standard. The standard is weak,
and is already being studied for changes. Table 1 of the article should
drop the degree of standardization for C++ down to 2 or 3, and object-
oriented (OO) support down to 3 or 4; C++ is not a very good OO
language. In fact, C++ isn’t a very good language at all! And has anyone
beside myself noticed how much Delphi code is in those C++ journals?
I don’t expect C++ to last; it would be gone already if it weren’t for the
well-funded Microsoft propaganda machine. Microsoft has recently
come out with C#; even they see the writing on C++’s grave marker.

Second, they didn’t look very hard for compiler/tool availability.
From the article, I got the impression they went to one Web site. I
recommend they try Adapower.com, or any of the other great Web
sites that support Ada. Ada compilers are as cheap as any these days,
including free. But $1000 will get one a good compiler with lots of
documentation and graphical user interface (GUI) support.

In Table 3, I will agree that Ada training is scarce, but the last two
rows in that table contradict each other. Good Ada programmers are
hard to find, but I maintain that there is no such thing as a good C++
programmer. If they were good, they would know better.

The Tri-Ada conference is smaller these days, but it does exist.
The ACM doesn’t have a special interest group on C++.

My personal experience as a government software engineer is that
software engineers want to use C++ because it will make them more
marketable on the outside, period.

They don’t care, and in most cases don’t even know, that it is an
inferior language. They pick up a trade journal, turn to the back and
count job offerings that list C++ as a requirement, then reason that it
must be a good language.

I have heard of a program in C that won’t compile with the newer
compilers because the language has changed so much. Much searching
was done to find an old version of the compiler. I am aware of a similar
problem with a C++ program. To be fair, I am also familiar with an
Ada program that didn’t upgrade well when the operating system
changed, and most of the problem was in the GUI. They would have
had the same problem if the software had been in C to C++.

Ada 95 greatly improved on Ada 83. The language is here to stay.

– Dennis Ludwig, Electronic Engineer,Warner Roberts-ALC

Editor,
The article Is Ada Dead or Alive Within the Weapons System World?

contains three Figures showing graphs over time. It says “Figure 1
summarizes our findings relative to the availability of vendors, com-
pilers and tools. This chart and Figures 2 and 3 were developed using
public data available on www.adahome.com .…”

Since the owner of www.adahome.com stopped maintaining it some
time ago, the currency of statistics derived from it is in grave doubt. I
ran a Web crawler on www.adahome.com that found 5,600 files, 60 per-
cent modified in 1996, and 5% (280) in 1998 to 2000. The same pro-
gram found 1,300 files on www.adapower.com; 97 percent (1,270) mod-
ified from 1998 to 2000. The activity shown in the figures clearly
reflects a fading four-year-old snapshot data source, not current reality.

– Tom Moran, Decision Aids

Editor,

The article by Reifer, Craver, Ellis, and Strickland illustrates
several deficiencies in the DoD software management process:
1. The article employs an obsolete source [www.adahome.com]

instead of a current one [www.adapower.com].
2. It fails to mention or take into account both the fragmentation

of the C languages and the Web revolution.
3. It primarily describes a Delphi exercise rather than being based

on statistical process control data.
4. It does not describe the reasons for failure to transfer Ada to

the civilian economy.
Java and C# were developed because of C++’s gross deficiencies.

In Table 1 of Reifer et al. C/C++ and Ada are given the highest
value of 5 for object-oriented support. In fact, the claimed great
virtue of C++ was that it extended C to permit object-oriented pro-
gramming with its potential for reuse. The true utility of C++ is
summed up by this quotation from Microsoft’s C# Web site [1]:

“Yeah, yeah. C++ is object oriented. Right. I've personally known
people who have worked on multiple inheritance for a week, then
retired out of frustration to North Carolina to clean hog lagoons.
That's why C# ditches multiple inheritance in favor of native sup-
port for the COM+ virtual object system. Encapsulation, poly-
morphism, and inheritance are preserved without all the pain.”

In fact, an Ada generic that contains a tagged type (metaclass)
can provide an excellent model of a physical entity. Perhaps the
greatest fallacy of conventional object-oriented programming is
the lack of appreciation of the power of generics, which both C#
and Java lack. Table 2 includes “Bindings to graphical user inter-
faces and generators available (Fresco, etc).” No mention was
made of the World Wide Web and XML. XML will be the major
tool for human interfaces (screens and print). Fortunately, Ada is
an excellent match for XML.

I do not fault the authors for the use of a Delphi exercise. I
suspect that this was all they could do. However, as a taxpayer, I
am appalled at the apparent lack of statistical process control data,
which is fundamental to good manufacturing practices. A pro-
gramming language is a tool used to manufacture software. The
only reference was for a 1995 snapshot of Reifer Consultants
Inc.’s databases published in 1996. Therefore, it does not contain
any data on Ada 95. Since C++ has proliferated at the DoD, there
should be a good opportunity to compare Ada, C++, and perhaps
Java in terms of both development and maintenance costs. The
DoD should have an ongoing system to monitor this data.

The “Colleges in the United States Teaching Ada” graph is a
compelling example of the lack of DoD’s ability to do technology
transfer. Many of us would prefer to have reliable, efficient com-
mercial off-the-shelf programs. It is also a good explanation of
why the U.S. commercial software development process is so inef-
ficient that we are compelled to import a huge number of pro-
grammers. It should be noted that, “By the National Science
Foundation Act of 1950 the Congress established the National
Science Foundation (NSF) to promote the progress of science; to
advance the national health, prosperity, and welfare; to secure the
national defense; and for other purposes [2].” Unfortunately, there
appears to have been a lack of communication between the DoD
and NSF on Ada and Software Engineering.

– Robert C. Leif, Ph.D., Newport Instruments (Ada_Med Division)

1. http://msdn.microsoft.com/msdnmag/issues/0900/csharp/csharp.asp
2. http://www.nsf.gov/od/lpa/nsf50/history.htm

Author and Atlantic Systems Guild Principal Tom DeMarco
makes an important observation in his book Why Does

Software Cost So Much [1]. Instead of asking, “Why does software
cost so much?” he says that we need to begin asking, “What have
we done to make it possible for today’s software to cost so little?”
Like the question, the response seems to be “very little.”

We as an industry seem to search in vain for the magic sil-
ver bullet—the right combination of methods and tools that
would make predictable software cost, schedule, and quality
performance a reality across the industry without a significant
cost or schedule expenditure. Program managers, company pres-
idents, controllers, and customers are continually surprised and
disappointed when the magic does not appear.

Norm Brown, director of the U.S. Navy’s Software Program
Managers Network (SPMN), has recognized that, at least in the
Department of Defense (DoD) and probably in other segments
of the economy, the silver bullet is not now, or never will be a
reality. Together with software industry leaders who meet regular-
ly as part of the Airlie Software Council of 13, he has document-
ed first a set of nine best practices, and now 16 Critical Software
Practices for Performance-Based Management™, which appear to
be common threads running through successful software projects.
These 16 practices provide managers with specific methods that
directly affect the bottom-line cost, schedule, quality, and user
satisfaction metrics. Without exception, these practices may be
implemented in less than a year.

Developers realize that implementation of the 16 Critical
Software Practices requires the adaptation of each individual
practice to each project, as well as cultural acceptance by the
team who will do the work. As Tim Lister has pointed out,
“Common processes represent 10 percent of the problem, adap-
tation is 90 percent [2].” The complexity of successful adapta-
tion is as much due to cultural insertion as it is to tailoring to
project needs and realities.

This paper discusses issues addressed by the 16 Critical
Software Practices for Performance-Based Management, the
rationale behind some key practices, and what can be expected
when bringing the practices into a company culture or project
environment.

The Basic Problem
As R.A. Radice and R. Philips point out in Software Engineering:
An Industrial Approach, “We are still at the beginnings of becom-
ing a science. We call ourselves computer scientists or software
engineers, but it is more out of anticipation of what these roles
offer than from a fully earned position. We, as an industry, still
do not keep, analyze, or make public the necessary data to sub-

stantially prove our theories or to enable others to repeat our suc-
cesses … We still cannot do as good a job on a new project as we
did on the last [3].”

A reality since 1943, the software profession has had more
than half a century to mature. However, since 1975, when The
Mudd Report [4] was published, the DoD software community
has been in a state of almost continuous crisis. Its attempts—
without apparent result—to resolve crises through new technolo-
gy, management practices, tools, or other actions have, at best,
not improved the problems and have, at worst, compounded the
effects. Reality is that in 1995, an estimated 53 percent of soft-
ware projects cost nearly 190 percent of their original estimates,
31 percent of software projects were canceled before completion,
and an estimated $81 billion was spent for canceled software
projects by American companies and government agencies [5].
Apparently, we do not practice effective crisis management.

In an attempt to resolve the software crisis, DoD estab-
lished the Software Engineering Institute (SEI) in 1984 as a
federally funded research and development center at Carnegie
Mellon University. SEI’s mission is to provide leadership in
advancing the state of the practice of software engineering to
improve the quality of systems that depend on software. The
SEI vision is to bring the engineering discipline to software
development and maintenance.

The Strategic Improvement Model
A key component of the SEI strategy is to establish a process to
facilitate continuous process improvement within the software
community. In SEI’s view, continuous process improvement is
based on many small, evolutionary steps rather than evolution-
ary innovations. The Capability Maturity Model® (CMM) pro-
vides a framework for organizing these evolutionary steps into
five maturity levels that lay in order successive foundations for
continuous process improvement [6].

In my view, the CMM has caused software providers to refo-
cus on the benefits of, and the essential steps required for, improv-
ing software-engineering processes. Advancing up the CMM lad-
der is an essential strategy that many organizations follow to
improve their software processes and enhance their image as seri-
ous software engineering contractors. CMM improvement
requires significant time (12 to 18 months) and a significant com-
mitment of resources to move up one level. Significant improve-
ments in bottom-line metrics can be expected as new levels are
achieved in projects where improvements have been applied (this
does not include all organizations within the company).

However, this leads us to a dilemma. How do we guard
against cost and schedule impacts, quality shortfalls, and user dis-

SPMN Director Identifies 16 Critical Software Practices
Michael W. Evans

Integrated Computer Engineering Inc.

There are two distinct stages in improving a software process. The first stage is defining the optimum
processes that can be applied successfully across multiple projects; to this end, tactical software processes have
been developed. The second stage is embedding these processes in the project cultures that must apply them.

Open Forum

March 2001 www.stsc.hill.af.mil 27

Open Forum

28 C R O S STA L K The Journal of Defense Software Engineering March 2001

satisfaction with software systems produced or maintained by
non-assessed projects or organizations? And how do we address
the many projects and organizations that are just starting their
climb up the CMM ladder? Current data show that for a total of
901 organizations assessed for SEI CMM implementation, 34.9
percent are at Level 1, 38.2 percent at Level 2, 18.5 percent at
Level 3, 5.5 percent at Level 4 and 2.9 percent at Level 5.

A second problem in using CMM solely as a means to
improve project performance is that the interpretation of the
CMM focus is strategic in nature. It does not implement the tac-
tical guidance required by individual projects to improve their
performance to achieve immediate goals. Achievement of imme-
diate goals may mean the difference between project continuity
and project extinction.

Prior to further discussion on strategic versus tactical project
implementation, it is important to define the two terms. Strategic
processes are those of importance to the integrated whole or to
the overall planned effect. While tactical processes are smaller in
scale, serve the larger purpose when performed collectively, and
are carried out with an immediate end in sight.

It is clear that the application and harmonious coexistence
of both strategic and tactical processes will achieve overall proj-
ect success.

CMM’s five levels are a model for improving the software
organization’s capability. The CMM priorities, as expressed by
these levels, do not address the root cause of problems faced by
individual projects, nor do they point to remedies that are
under the direct control of the project leader.

A troubled project’s solutions might be of limited value to
the rest of the organization. Other projects might have different
problems or be unable to take advantage of its solutions because
they lack the necessary foundation to implement the solutions [7].

There are two distinct stages in improving a software
process. The first stage is defining the optimum processes that
can be applied successfully across multiple projects. The second
stage is embedding the process in the project cultures that must
apply it. The process identification approach is fun and reward-
ing, while achieving cultural acceptance is tedious, frustrating,
and difficult to accomplish. The truth is that if these improved
common processes do not find their way into the project culture,
project improvement of bottom-line metrics becomes a myth.

For example, a recently visited organization spent significant
effort achieving CMM Level 3. They documented common pro-
cesses, modifying them as necessary, and formed a very active soft-
ware engineering process group (SEPG) composed of the “best
software people in the company.” The most frequent comment
from projects was that the SEPG lived in an ivory tower. Manage-
ment discounted the comment as sour grapes by a group of engi-
neers who did not understand the real need to improve process.

As this organization moved up the CMM ladder, it became
increasingly obvious that the expected improvements in devel-
opment cost, schedule, product quality, and relationships with
various user communities were not being realized and were, in
some cases, getting worse. What was going on?

As the SEPG tried to force change on ongoing software
projects, they were being gamed. The projects declared they had
implemented the required key process areas (KPAs) but had seg-

regated the project into two distinct teams—development and
systems. The development team included all the software-related
activities prior to delivery to the systems team, which integrated
the products and delivered them to the customers. To minimize
impact on the development culture, the KPAs were only applied
to the products when they were released to the system team.
Company management felt that directly impacting the develop-
ment teams incurred too much risk.

I wish this example were the exception, but in my experi-
ence it is not. Too many organizations focus on the obvious
recognition and marketing advantage that a higher CMM rating
confers, without recognizing that the reason for pursuing con-
tinuous improvement is to improve bottom-line metrics, there-
by improving the quality of products delivered within planned
timeframes and within budget.

The strategic process role is to establish an environment
within an organization that actively promotes, finances, and
supports applying improved best practice initiatives. The strate-
gic process should not attempt to precisely detail what steps
need to be taken at any instant in time by each respective mem-
ber of the project team. The strategic process should be tailor-
made to specific project scenarios. It should give latitude to the
project team to apply applicable solutions to specific project
problems. In other words, the strategic process must allow the
project team tactical freedom to achieve project objectives.

The Tactical Improvement Model
Brown and the SPMN recognized the need to develop a tactical
model for software process improvement. SPMN is a grassroots
organization of software managers formed by Brown in 1992 to
share lessons learned and improve the bottom-line metrics of cost,
schedule, quality, and user satisfaction on software projects.

Far too many large-scale software projects have become
unaffordable and unable to deliver needed quality, reliability, and
capability within the required time frame. Their outputs are not
predictable. Their processes are little more than chaotic and do
not effectively utilize the kinds of disciplines necessary to achieve
success. They have not yet taken advantage of the types of prac-
tices used to effectively manage large-scale hardware projects [8].

From its inception, SPMN has focused on tactical issues
and practical solutions that have been proven in industry and
that focus on project rather than organizational issues. As part
of its charter, SPMN has been a major identifier of software
acquisition best practices both within and outside the DoD.

The [1995] Software Acquisition Best Practices Initiative
[performed by the SPMN] was established to bring about sub-
stantial improvements in productivity, quality, timeliness, and
user satisfaction by implementing best practices as a new foun-
dation for DoD software management. Two purposes of the ini-
tiative include focusing the defense acquisition community on
employing effective high-leverage software acquisition manage-
ment practices, and enabling managers to exercise flexibility in
implementing practices within disparate program cultures. The
initiative is intended to influence both government software
program managers and their industry counterparts.

Solutions are taken from successful programs’ practices.
When effectively implemented and given competent staff these

practices help bring order, predictability, and higher levels of pro-
ductivity and quality. Each one includes key applicability factors
enabling adaptation to particular situations and environments.

These practices are focused upon effective management
processes, techniques for finding defects as they occur, eliminat-
ing excessive and unnecessary costs, increasing productivity, and
other beneficial effects. The Airlie Software Council and other
industry experts and consultants are convinced that projects effec-
tively utilizing the Software Acquisition Best Practices and other
appropriate best practices will achieve significant cost reductions
while simultaneously increasing quality and reliability [9].

Originally SPMN defined nine practices as being essential
elements of a successful project. The original nine practices were
applicable to all large-scale projects (i.e., projects relying on the
full-time efforts of 12 or more people annually). Observably
best practices should appropriately be used according to the par-
ticular circumstances and environment of a given project. From
the outset, SPMN recognized that the practices, as with any
best practice, are of little value unless they are adapted to specif-
ic project environments and cultures and are embraced by those
who must implement them.

The software development process consists of many compo-
nents that must fit together to create a total and integrated proj-
ect environment. These individual project pieces must interface
and interact efficiently within other project segments if the
project is to function efficiently [10].

Concern about internal project consistency and practicality
of recommended practices in light of project realities and con-
straints has always been a SPMN concern when recommending
practices. SPMN practices are termed best, not because they have
been intensively studied and analytically proven to be best, but
simply because they are practices used by and considered critical
to successful software projects. SPMN does not feel that the orig-
inal list of nine and the current set of 16 practices are presumed
to be best; nor that there may not be other, perhaps even better,
practices. The practices that comprise the 16 critical software
practices, when implemented in projects, will go far toward
engendering successful software development and maintenance.

Before engineers can work effectively in an integrated team
environment, they need to know precisely what to do. Teams can
waste a great deal of time trying to establish goals, resolve their
working relationships, and determine what to do [11]. SPMN’s
16 critical software practices provide specific guidance as to
which practices have been proven to work on similar projects,
and how they can be implemented within a specific project.

As illustrated in Figure 1, the 16 critical software practices
address three primary areas of software management: project
integrity, construction integrity, and product stability and
integrity. Project integrity includes practices that identify basic
project constraints, requirements, and expectations. It also
encompasses planning and implementing practices for a project
environment to predictably satisfy them. Construction integrity
comprises those activities that specify the basic product require-
ments, maintain traceability to these basic requirements, plan
and control content and change, and ensure that all components
of the project communicate. Product stability and integrity
ensures that defects, which are inserted in products as part of the

software process, are identified and removed in a timely fashion.
It also ensures that testing is complete and effective and results
in the right product consistent with the agreed-to requirements
and actual expectations.

Although these 16 practices are useful individually, their
complementary nature provides a strong synergistic effect when
used as an integrated set. Using them will not guarantee success,
but they can help facilitate it and avoid failure. Those familiar
with process improvement models such as CMM will quickly
realize that these practices supply tactical solutions that compli-
ment the model’s strategic orientation. The practices map to
many of the model’s KPAs, and should assist organizations striv-
ing to advance to the next CMM maturity level.

SPMN has developed a software evaluation model (SEM)
that is based on the 16 critical software practices [12]. The
SEM provides for each of the critical practices, practice essential
elements, implementation guidelines, and a detailed question
set to assist in implementation. In addition to the SEM, a map-
ping matrix is available that maps each of the critical practices
with SEI’s CMM Level 2 and 3 activities.

These practices are not rocket science. They can be readily
implemented. Although some practices may require training in
basic skills such as conducting effective meetings as a necessary
foundation for formal inspections, for the most part they can be
implemented without making investments in new equipment,
technologies, or staff.

Figure 1. 16 Critical Software Practices for Performance-Based Management

• Adopt continuous risk management.

• Estimate cost and schedule empirically.

• Use metrics to manage.

• Track earned value.

• Track defects against quality targets.

• Treat people as the most important resource.

• Adopt life cycle configuration management.

• Manage and trace requirements.

• Use system-based software design.

• Ensure data and database interoperability.

• Define and control interfaces.

• Design twice, code once.

• Assess reuse risks and costs.

• Inspect requirements and design.

• Manage testing as a continuous process.

• Compile and smoke test frequently.

SPMN Director Identifies 16 Critical Software Practices

March 2001 www.stsc.hill.af.mil 29

Project Integrity

Construction Integrity

Product Stability, Integrity

30 C R O S STA L K The Journal of Defense Software Engineering March 2001

Successful Implementation
More than 200 risk assessments conducted during the past five
years along with effective risk mitigation advice to software
developers and government software program management
offices has proven that the 16 critical software practices are a
successful tactical software project process

Typical of the success stories is one in-process program that
suffered from being over budget, late in delivery, and producing
product that failed to meet specified requirements. This program’s
management recognized that it was in crisis when a major system
it was preparing for delivery failed to meet its operational evalua-
tion. The program manger initiated a problem analysis that iden-
tified three contributing factors. First, the program team was con-
tinually reacting to crises and never had time to plan ahead and
anticipate problems. Second, there was no focus on success or
failure accountability in the program office, nor did this account-
ability flow down to the contract suppliers. Third, there was no
process in place that would ensure that a quality software product
was fielded.

To address crisis management and effectual program con-
trol, an effective risk management process was implemented. To
anticipate actions to be taken in managing the program, the
program office utilized risk management process and risk man-
agement tools. This was not easy culturally because risk predic-
tion was associated with bad news and failure. In addition con-
tractors had signed up for unrealistic tasks, milestones, technical
commitments, and delivery agreements that rightfully pointed
to gloomy risk assessment outcomes. Crisis management rather
than effective risk management occurred because of the signifi-
cant overcommitment of resources.

All project and supplier management staff were provided
with risk management training, while the program office was
given expert assistance to help develop and implement risk poli-
cies and plans. The risk training program focused on both pro-
cedural risk issues and problems with cultural acceptance of the
risk process within the program. To track individual risks, risk
management experts assisted program staff in identifying risks
and seeding them into an appropriate risk management tool.
Risk experts assisted the program staff in identifying what could
go wrong and mapping the road ahead.

Risks were assessed on the basis of their impact and likeli-
hood of occurrence. Risks with high impact and high likelihood
of occurrence were given the highest level of scrutiny and atten-
tion. A monthly risk reporting process was implemented that
initiated corrective action taken by the program manager. After
implementing the risk management process, the program took
an about turn. It shifted from unsuccessful crises management
to a process that identified potential problems early and permit-
ted effective corrective action well before disastrous or costly
failures had occurred.

Setting and enforcing clear goals addressed the second
problem of accountability. Goals included setting quantitative
targets that could be measured. Progress reports that described
the progress toward assigned goals were required on a regular
basis. Five targets were established:

• Bring the reliability of all developed systems to a specified
number of hours within a 12-month period.

• Deliver all future products within cost and schedule.
• Have all contractors’ risk management process in place and

compliant with the risk management plan within six months.
• Deliver software that is supported by adequate documentation.
• Deliver software that meets user requirements.

Finally, to address software process development standardi-
zation, training was provided to program staff on the 16 critical
software practices. A practice assessment of all the program sup-
pliers was performed, and each supplier was evaluated by prac-
tice area and rated on a five-point scale (one being the practice
was nonexistent and five being the procedure was in place in the
culture of the organization).

The first assessment scores averaged 1.8. By the third assess-
ment the average score was greater than four. The established
process improvement was evident in the measured metrics of
cost, schedule, quality, and user satisfaction. The program made
great strides in software process improvement during a one-year
period. The program manager rated the cost of installing the
improved process as extremely cost effective (approximately 1
percent to 2 percent of the program cost).

Program suppliers measured success not only by product
quality, but also by adherence to set program goals and their
degree of implementing the 16 critical software practices. The
program progressed from having consistent software acquisition
problems to a competent software acquisition organization with
a reputation for delivering quality product, on time, and within
budget.u

References
1. DeMarco, Tom, Why Does Software Cost So Much? New York:

Dorsett House Publishing Co., 1995.
2. Lister, Timothy, Software Management for Adults, Salt Lake

City: Software Technology Conference, 1996.
3. Radice, R.A. and Philips R., Software Engineering, An Industrial

Approach; Prentice Hall, 1988, pp. 2-3.
4. Weiss, David, The Mudd Report: A Case Study of Navy Software

Development Practices, Washington, D.C.: Naval Research
Laboratory, May 21, 1975.

5. Standish Group International, Chaos, Open Computing,
March 1995.

6. Paulk, Mark C. et al., The Capability Maturity Model:
Guidelines for Improving the Software Process, Version 1.1,
Reading, Mass., Addison-Wesley, pp. 15-17.

7. Ibid.
8. Software Program Managers Network, The Program Manager’s

Guide to Software Acquisition Best Practices, V. 2.2, Arlington,
Va., SPMN, 1998, IV.

9. Ibid.
10. Evans, Michael W. and Marciniak, J., Software Quality:

Management and Assurance, New York: John Wiley & Sons,
1987, p. 20.

11. Webb, David and Humphrey, Watts, Using the TSP on the
TASKVIEW Project, CROSSTALK, February 1999.

12. SPMN, Software Evaluation Model (SEM), version 5.3.1,
May 2000 [www.spmn.com].

Open Forum

Get Your Free Subscription
Fill out and send us this form.

OO-ALC/TISE
7278 Fourth Street
Hill AFB, UT 84056

Fax: 801-777-8069 DSN: 777-8069
Voice: 801-775-5555 DSN: 775-5555

Or request online at www.stsc.hill.af.mil

N A M E:______________________________

R A N K/ GR A D E:______________________

P OSITION/ TITLE:_____________________

O RGANIZATION:______________________

A D D R E S S:___________________________

B A S E/ CITY:_________________________

STATE:______ ZIP:____________

V OICE: ______________________

FA X:__________________________

E-MAIL: _____________@______________

C H E C K B O X(E S) T O REQUEST B A C K ISSUES:

JU L 2 0 0 0____ CMMI

A U G 2000____ PR O C E S S IM P R O V E M E N T

S E P 2 0 0 0____ COTS

O C T 2000____ NE T W O R K SECURITY

N O V 2000____ SO F T W A R E A CQUISITION

D E C 2000____ PRO J E C T M A N A G E M E N T

JA N 2 001____ MODELING/ SIMULATION

F E B 2 001____ ME A S U R E M E N T

How Process People View Life
“You want Daddy to read you a bedtime story? How about Goldilocks and the Three Bears?”

Once upon a time [What accuracy of time? How many digits of precision are needed?
Is real-time really necessary here?] there was a little girl named Goldilocks [Why Gold? Did
the customers request a specific color this early in the design phase?] who packed a picnic
basket to go visit her grandmother. [What are the grandmothers’ dietary requirements? What
are her nutritional needs? Are there any food allergies?] Goldilocks set off through the forest
to grandma’s house [Why did she set off so quickly? What life-cycle model is she using that
suggested implementation so early? Did she have a prior visit to base her projected arrival
date upon?] to deliver the basket. [Was Goldilocks goal-oriented and quality-driven? There
seems to be no evidence of an enabling infrastructure to help her self-actualize and fulfill her
needs. Does Goldilocks need a nurturing work environment to be truly productive?]

At the same time, there lived three bears in the forest. [Same time? Is this a potential
concurrent-processing problem? Are we going to have to worry about parallelism? Does our
design methodology support real-time interfacing? We should probably use Ada for imple-
mentation.] The three bears were daddy bear, mommy bear, and little baby bear. [Is this a well
designed, object-oriented system? Is inheritance correctly used?] Mommy bear had just pre-
pared porridge [Was this on her list of deliverables for the current milestone?] and the family
sat down to eat. Unfortunately the porridge was too hot, so they decided to take a walk to let
it cool. [Is this interruption necessary? Once the team loses focus, it is difficult to recapture a
synergistic mindset. Couldn’t other team goals be worked on to ensure the team stays cohe-
sive? Why didn’t mommy bear perform a personal review prior to conducting a peer review?]

While the bears were out walking, Goldilocks wandered upon the house and, lost and
hungry, smelled breakfast and decided to eat. [What kinds of protection scheme for critical
resources are in place? Doesn’t Goldilocks have both milestones and inch-pebble deliverables to
keep her on track?] The first bowl of porridge was too hot, the second too cold, and the third
was just right. [Good fence-post testing techniques. However, shouldn’t independent verifica-
tion and validation be contracted to ensure that her testing parameters were realistic and cus-
tomer-oriented?] After eating, she went upstairs for a nap. [Good idea. Studies show that neu-
ral activity begins to decline after sustained exertion. Rest breaks promote quality and reduce
rework.] Upstairs, Goldilocks found three beds. The first bed was too hard, the second too
soft, and the third was just right. [Is she qualified to test both porridge and beds? Seems like a
reusable test case, but is it correctly tailored and parameterized for beds? A dedicated test team
might be needed, with both porridge and bed domain experts available] She laid down to rest.

While she was sleeping, the bears returned. Daddy bear found his porridge, mommy
bear found her porridge, but baby bear discovered that his porridge was all gone! [Poor allo-
cation of resources. Is the work breakdown structure set up to handle dynamic reallocation so
that baby bear will not be the critical path?] Suspecting something was wrong, all three bears
went upstairs. Daddy bear found his bed disturbed, as did mommy bear. Baby bear, however,
found someone sleeping in his bed. [This is the second time baby bear has found serious
defects in his personal deliverables that effect other team members’ schedules. If this trend
continues, we might have to assign baby bear some additional quality training. In the worst
case, we might have to bring in a better team player.]

Hearing the commotion, Goldilocks awoke with a start, and ran down the stairs, out
the door, and straight to her grandma’s house. [When the bears saw the problem, did they
take proactive steps to prevent a future occurrence? Are they using root-cause analysis to fix
the problem, rather than just fixing the symptom? More importantly, if Goldilocks knew
the way under pressure, was she just slacking off early in the project? Were sufficient key
process areas in place to ensure her original schedule was realistic? Was she revising her
schedule during each iteration of the life-cycle model? She wasn’t self-assessed, was she?]

Along the way to her grandma’s house, Goldilocks ran into the big bad wolf. The wolf
convinced Goldilocks to accept work for a competing grandmother, at a higher salary with
better benefits. Unfortunately, the basket to the original grandmother was delivered over-
budget and behind schedule. Luckily, a source of continuing funding exists, so errors are still
being fixed in Grandma’s Basket release version 4.3a. [Gosh, I just LOVE a happy ending!]

“What, honey? What do you mean, you want Mother to read to you from now on?

– David Cook, Shim Enterprise Inc.

BACKTALK

March 2001 www.stsc.hill.af.mil 31

About the Author
Michael W. Evans is president of
Integrated Computer Engineering Inc.
He is experienced in providing direct tech-
nical services and support in software engi-
neering methods and processes, software
standards, quality assurance, configuration
management, and testing. He is cofounder
and prime contractor for the Software
Program Managers Network, the driving
force behind the Department of Defense’s
Software Acquisition Best Practices
Initiative. Evans is the author of Principles
of Productive Software Management,
Productive Test Management, Software
Quality Assurance and Management, and
The Software Factory.

ICE Inc.
142 North Central Avenue
Campbell, Calif. 95008
E-mail: candca@aol.com
Internet: www.iceincUSA.com

CrossTalk / TISE

5851 F Avenue
Building 849, Room B04
Hill AFB, UT 84056-5713

PRSRT STD
U.S. POSTAGE PAID

Kansas City, MO
Permit 34

Sponsored by the
Computer Resources
Support Improvement

Program (CRSIP)

	Cover
	Index
	From the Publisher
	Perspectives on the Software Engineering Process Group
	Raytheon Stands Firm on Benefits of Process Improvement
	DoDTech Listserver Covers All IT Issues
	Coming Events
	STC 2001
	The Best Measurement Tool is Your Telephone
	Process Improvement Web Sites
	Ada in the 21st Century
	Letters to the Editor
	SPMN Director Identifies 16 Critical Software Practices
	BackTalk
	Back Cover

