

On the Cover:
Kent Bingham,
Digital Illustration
and Design, is a
self-taught graph-
ic artist/designer
who freelances
print and Web
design projects.

LLtt.. CCooll.. GGlleennnn AA.. PPaallmmeerr

TTrraaccyy SSttaauuddeerr

EElliizzaabbeetthh SSttaarrrreetttt

PPaamm BBoowweerrss

BBeennjjaammiinn FFaacceerr

NNiiccoollee KKeennttttaa

JJaannnnaa JJeennsseenn

801-586-0095
801-777-5633
crosstalk.staff@hill.af.mil
www.stsc.hill.af.mil/
Crosstalk/crostalk.html
www.crsip.hill.af.mil

SSuubbssccrriippttiioonnss: Send correspondence concerning
subscriptions and changes of address to the follow-
ing address.You may e-mail or use the form on p. 31

Ogden ALC/TISE
7278 Fourth St.
Hill AFB, Utah 84056-5205

AArrttiiccllee SSuubbmmiissssiioonnss:We welcome articles of interest to the
defense software community. Articles must be approved by
the CROSSTALK editorial board prior to publication. Please fol-
low the Author Guidelines, available at www.stsc.hill.af.mil/
CrossTalk/xtlkguid.pdf. CROSSTALK does not pay for submis-
sions. Articles published in CROSSTALK remain the property of
the authors and may be submitted to other publications.
RReepprriinnttss aanndd PPeerrmmiissssiioonnss:: Requests for reprints must be
requested from the author or the copyright holder. Please
coordinate your request with CROSSTALK.
TTrraaddeemmaarrkkss aanndd EEnnddoorrsseemmeennttss:: This DoD journal is an
authorized publication for members of the Department of
Defense. Contents of CROSSTALK are not necessarily the
official views of, or endorsed by, the government, the
Department of Defense, or the Software Technology
Support Center.All product names referenced in this issue
are trademarks of their companies.
CCoommiinngg EEvveennttss: We often list conferences, seminars, sym-
posiums, etc. that are of interest to our readers. There is
no fee for this service, but we must receive the informa-
tion at least 90 days before registration. Send an announce-
ment to the CROSSTALK Editorial Department.
SSTTSSCC OOnnlliinnee SSeerrvviicceess:: at www.stsc.hill.af.mil
Call 801-777-7026, e-mail: randy.schreifels@hill.af.mil
BBaacckk IIssssuueess AAvvaaiillaabbllee:: The STSC sometimes has extra
copies of back issues of CROSSTALK available free of charge.
TThhee SSooffttwwaarree TTeecchhnnoollooggyy SSuuppppoorrtt CCeenntteerr was established
at Ogden Air Logistics Center (AFMC) by Headquarters
U.S. Air Force to help Air Force software organizations
identify, evaluate, and adopt technologies to improve the
quality of their software products, efficiency in producing
them, and their ability to accurately predict the cost and
schedule of their delivery.

SSPPOONNSSOORR

PPUUBBLLIISSHHEERR

AASSSSOOCCIIAATTEE PPUUBBLLIISSHHEERR

MMAANNAAGGIINNGG EEDDIITTOORR

AASSSSOOCCIIAATTEE
EEDDIITTOORR//LLAAYYOOUUTT

AASSSSOOCCIIAATTEE
EEDDIITTOORR//FFEEAATTUURREESS

GGRRAAPPHHIICC DDEESSIIGGNNEERR

VVOOIICCEE

FFAAXX

EE--MMAAIILL

CCRROOSSSSTTAALLKK OONNLLIINNEE

CCRRSSIIPP OONNLLIINNEE

CrossTalkDepartments
3 From the Publisher

15 Authors’ Meeting

18 Web Sites

25 Coming Events

25 Letter to the Editor

26 STC 2001 Conference

31 BackTalk

4

5

11

16

19

27

2 CR O S S TA L K The Journal of Defense Software Engineering April 2001

NNeewwss aanndd UUppddaatteess

WWeebb--BBaasseedd AApppplliiccaattiioonnss

OOppeenn FFoorruumm

CrossTalk’s Top Five Software Projects
The Office of the Director of Defense Research and Engineering is sponsoring an effort to
recognize the top five software projects in the government.

The Vulnerabilities of Developing on the Net
The commercial software used to build systems is an often overlooked security
weakness that could be solved by adopting common vulnerability naming practices.
by Robert. A. Martin

The Ideal Collaborative Environment
The Intelligence Community Collaboration Forum envisions the ideal environmental mix of
e-mail, bulletin boards, chat sessions, and virtual rooms, and the challenges in achieving it.
by P.A.Dargan

The Potential of Extensible Markup Language
Here is a family of technologies – the modern foundation of some of the commercial best
practices – to consider in upgrading the Department of Defense's BMC41.
by David A. Hayes

Does Your Internal Management Meet Expectations?
Although project delays are sometimes inevitable, managers can apply critical chain project
management to aid in schedule planning
by Eli Schragenheim and H.William Dettmer

Cyber Warfare: A New Doctrine and Taxonomy
Attacking system software is a revolutionary method of pursuing war against critical military
systems that can be executed without violence.
by Lt. Col. Lionel D. Alford Jr.

BBeesstt PPrraaccttiicceess

April 2001 www.stsc.hill.af.mil 3

From the Publisher

TThhee TTwwoo SSiiddeess ooff tthhee WWeebb WWee WWeeaavvee

Doesn’t there seem to be some good and bad in almost everything we do these
days? And aren’t there always “two sides of the coin?” Take the World Wide Web.

I’d say it has two sides, too.
There is no doubt that the Web has been a very positive influence and conven-

ience in our everyday lives. From travel agencies to bookstores, we now have resources
just a few mouse-clicks away instead of miles away as in the not so distant past. Unfortunately,
the web has brought another dark side to our society. Whether it’s an expensive hobby or a
time sink for some, it’s just another medium of vices for others.

As you will read in this month’s issue, the Department of Defense is dealing with its
own two sides of the web. Pam Dargan writes of the bright side in Ideal Collaborative
Environment. In our workplace today, we enjoy many electronic collaboration capabilities such
as bulletin boards and chat rooms to share information and lessons learned. And after some
technical challenges are overcome, our future at work may soon include virtual teams and vir-
tual meetings. The airlines won’t be happy with these near-term ways of doing business.

On the other side, Robert Martin warns us of The Vulnerabilities of Developing on the
Net and how through the Common Vulnerabilities and Exposures Initiative we can reduce our
risks when working with vulnerable commercial software on the shelf today. In addition, Lt.
Col. Alford Jr writes of the risk our nation faces in Cyber Warfare: A New Doctrine and
Taxonomy. He explains how cyber systems can make nations vulnerable to warfare without vio-
lence, and how cyber warfare may be the greatest threat that nations have ever faced. This is a
scare that not many have taken seriously yet.

Also, I was surprised to learn at an information technology seminar recently that
there now exists more than 30,000 hacking oriented Web sites. Amazingly, “click and hack”
programs can be downloaded from these sites. You no longer need to be a guru to be a hacker.
Thus it has never been more important to safeguard your personal and workplace computers
with appropriate security precautions.

Fortunately, because of the Web, most of us can say that we work in a more produc-
tive and user-friendly environment than we did just five years ago. Web technologies and
applications continue to progress and enter into almost every workplace. I believe that the
defense software community is just beginning to discover the benefits of the World Wide Web.

One benefit that you may not have experienced yet is CROSSTALK online at
www.stsc.hill.af.mil. This month’s issue and all of our back issues are available along with sub-
scription forms, theme announcements, and author guidelines. I’d like to thank all of our on-
line readers for coming back each month. Don’t forget to drop us a line to let us know how we
can better meet your on-line needs.

I am pleased to feature in this month’s issue our first announcement on our search for
finding successful software projects (See page 4). The Office of the Director of Defense
Research and Engineering is sponsoring an effort to recognize the top five software projects in
the government. This effort is one response to the recommendations of the Defense Science
Board Task Force on Defense Software. CROSSTALK, is coordinating this effort, and we are
looking for projects focused on quality, performance, and customer value. We are currently
accepting nominations from project managers, teams, and customers.

Tracy L. Stauder
Publisher

4 CR O S S TA L K The Journal of Defense Software Engineering April 2001

The Vulnerabilities of Developing on the Net
Robert A. Martin

The MITRE Corporation

Web-Based Applications

While most organizations have addressed the various
aspects of implementing cyber security, many are failing

to successfully address the one security area where someone can
bypass all other efforts to secure the enterprise. That area is
finding and fixing known security problems in the commercial
software used to build the systems. There may be an answer,
however, that will transform this area from a liability into a key
asset in the fight to build and maintain secure systems. The
answer rests in an initiative to adopt a common naming practice
for describing the vulnerabilities, and the inclusion of those
names within security tools and services. The initiative has been
in practice for more than a year across a broad spectrum of the
information security and software products community: It is
called the Common Vulnerabilities and Exposures (CVE)
initiative.

To Err Is Human

Every programmer knows they make mistakes when writing
software, whether it be a typo, a math error, incomplete logic,
or incorrect use of a function or command. Sometimes the mis-
take is even earlier in the development process – reflecting an
oversight in the requirements guiding the design and coding of
a particular function or capability of a software program. When
these mistakes have security implications, those with a security
bent will often refer to them as vulnerabilities and exposures.1

All types of software, from large complex pieces to small
and focused ones, are likely to contain software mistakes with
security ramifications. Large complex software like operating
systems, database management systems, accounting systems,
inventory management systems, as well as smaller applications
like macros, applets, wizards, and servlets need to be evaluated
for mistakes that can impact their security integrity. Remember
that when we put these various software products together to
provide an overall system, each of the software elements that
make up the system could be the one that compromises it.

Things were different in the past when an organization's
computer systems were stand-alone and only interacted with
other systems within the same organization. Only a few systems
used tapes and file passing to exchange information with outside
systems. The same holds true for government and military sys-
tems, including weapons. This isolation meant that errors in
commercial or developed software usually had limited impact,
at least from the public's point of view. In fact, most errors,

crashes, and oversights went unnoticed by the general public. At
most, these problems would cause occasional troubles for an
organization's closest business partners.

There Is No Hiding Now
The same is not true today. Very few of today's organizations,
whether in the private sector or government, have or build self-
contained systems. It is the norm for employees, customers,
business partners, and the general public to have some degree of
access and visibility into the minute-by-minute health and per-
formance of an organization's software environment. Processing
delay, calculation mistakes, system downtime, even response
time slowdowns are noticed and often draw criticism.

Accompanying this increased visibility is an explosion in
the different ways systems are accessed and used. Web and
application servers have been created to help make systems
interconnect and leverage Internet-based technologies. Access to
web sites, purchase sites, online help systems, and software
delivery sites makes the organizations that own the sites very
visible. To better support business partners and employees work-
ing at remote locations, on the road, or from home, we have
connected our backroom systems to the corporate Intranet and
extranet. New technologies have emerged, like instant messag-
ing, mobile code, and chat, whose functionality requires effort-
less access by users across organizational boundaries. The move-
ment to highly accessible systems, driven by the need to save
time and make businesses more efficient, and the reality of hav-
ing to do more with less, has dramatically increased the impact
of mistakes in commercial software.

While errors in self-developed software can still have a
major impact on an organization's ability to function, it is the
vulnerabilities and exposures in the commercial software they
use to build systems that creates the bigger problem. A mistake
in a commercial program can open a front or a back door into
situations that most organizations strive to avoid. A mistake per-
mitting unauthorized access can expose private information
about customers and employees. It can allow hackers to change
information or perform services with your systems to their own
advantage. In addition, a vulnerability can allow them to shut
down your internal and publicly accessed systems, sometimes,
without your knowledge. In those cases where the vulnerability
or exposure allows someone to make changes or bring down sys-
tems, or when the theft of services and information is eventually

Disaster has struck. You would think that firewalls, combined with filtering routers, password protection, encryption,
and disciplined use of access controls and file permissions would have been enough protection. However, an over-
looked flaw in the commercial web server application allowed a hacker to use a buffer overflow attack to leverage the
application's privileges into administrator-level access to the server. From there it was easy to gain access to other
machines within the Intranet and replace the public Web pages with details of the hack. With the company's public
site showing a live video stream of an ongoing internal, private and sensitive company meeting, it left little room for
doubt as to how badly they had been hacked.

April 2001 www.stsc.hill.af.mil 5

noticed2, there can be a huge impact to the organization's public
image3. There can also be legal liability and direct operational
impact.

What Can You Do?

Determining the vulnerabilities and exposures embedded in
commercial software systems and networks is a critical "first
step" to fixing the problems. A simple patch, upgrade, or con-
figuration change could be sufficient to eliminate even the most
serious vulnerability, if you know what you need and how to get
it.

To find information about vulnerabilities in commercial
software that your organization uses, you have to do some
research and probably spend some money. With commercial
software, the customer has little or no insight into the imple-
mentation details. At the very best you may have an under-
standing of the general architecture and design philosophy of a
package. Companies offering commercial software treat the
design details and software code as business-critical private
information. In addition, since most of these companies are
highly competitive, commercial software vendors are sometimes
reluctant to share their problems, even with their customers.

Who Knows?

So how do you find out about commercial software vulnerabili-
ties if the vendors are not going to tell you? During the last
decade, three groups have emerged who share the same curiosi-
ty. For sake of discussion we will refer to these as the hackers4,
the commercial interests, and the philanthropists. The hackers,
unfortunately, want to find vulnerabilities and exposures so they
can exploit them to gain access to systems.

Those with commercial interests want to be hired to find
the mistakes, or they want you to buy their tools to help you
find the vulnerabilities and exposures yourself. They offer their
services through consultants who will evaluate your software
systems, and through tools that you can buy and run yourself.
Some proffer the use of their tools as an Internet-based service.
This group includes software and network security companies
that provide security consulting services and vulnerability assess-
ments, databases of vulnerabilities and exposures, and the tools
for security services and vulnerability evaluations.

The philanthropists include security researchers in various
government, academic, and non-profit organizations, as well as
unaffiliated individuals that enjoy searching for these types of
mistakes, usually sharing their knowledge and tools freely.

Each group has members focused on sharing information:
among like-minded hackers, for a price in most cases for the
commercial interests group, and generally for free in the philan-
thropists group. For all three groups the search for vulnerabili-
ties and exposures in commercial software is challenging since
the commercial marketplace is constantly developing and
authoring new classes of software capabilities and new ways of
using them. This mushrooming of commercial software capabil-
ities also creates an ever-changing challenge for organizations
using commercial systems. The challenge is to correctly config-
ure and integrate the offerings of various vendors without open-
ing additional vulnerabilities and exposures from configuration

and permission mistakes.

How to Find Out

In response to the arduous task of tracking and reacting to new
and changing vulnerabilities and exposures, the members of
these three groups are using Web sites, news groups, software
and database update services, notification services like e-mail
lists, and advisory bulletins to keep their constituents informed
and current.

So information on vulnerabilities in commercial software is
available. That is great, right? Well, not quite. There are several
problems. The biggest is that each organization (or individual)
in these three groups has been pursuing their vulnerability dis-
covery and sharing efforts as if they were the source of informa-
tion on vulnerabilities. Each uses its own approach for quantify-
ing, naming, describing, and sharing information about the vul-
nerabilities that they find. Additionally, as new types of software
products and networking are introduced, whole new classes of
vulnerabilities and exposures have been created that require new
ways of describing and categorizing them.

Another problem is that finding the vulnerabilities and
exposures within systems is just the first step. What we really
want to do is to take the list of vulnerabilities and get them
fixed. This is the software vendors' domain – those who create
and maintain our commercial products. Unless they use the
same descriptions and names as the hackers, commercial inter-
ests, and philanthropists groups, it is difficult, confusing and
frustrating to get the fix for any particular problem you find.

A Closer Look at Who Knows What

The Internet is the main conduit hackers use to share informa-
tion on vulnerabilities and how to exploit them. Different
member organizations in the commercial interests group have
their own mechanisms for sharing vulnerability information.
For example, the tool vendors create vulnerability scanners that
are driven by their own vulnerability databases. The intrusion
detection system (IDS) vendors build different types of software
systems for monitoring your network and systems for attacks.
There are also scanner and IDS tools available from the philan-
thropists group as freeware. Both the scanner and IDS providers
have to continuously update their tools with new information
on what and how to look for problems. Examples of these
organizations and tools are shown in Table 1.

Scanners typically include tests that compare version infor-

Table 1. Scanner and IDS Offering Examples

6 CR O S S TA L K The Journal of Defense Software Engineering April 2001

Web-Based Applications

Service Type Organization
Bugtraq E-mail list Bugtraq
Casandra Alerts CERIAS/Purdue University
CERT Advisories Advisory CERT Coordination Center
CyberNotes Monthly newsletter NIPC
Razor Advisory Bindview Corporation
S.A.F.E.R. Monthly newsletter The Relay Group
SANS NewsBites E-mail list SANS Institute
Security Alert Consensus E-mail list Network Computing and SANS
SecurityFocus Newsletter Newsletter summary of Bugtraq e-mails SecurityFocus.com
SWAT Alerts Alerts Axent Technologies
X-Force Alert Advisory Internet Security Systems

mation and configuration settings of software with an internal
list of vulnerability data. They may also conduct their own
scripted set of probes and penetration attempts. IDS products
typically look for indications of actual attack activities, many
can then be mapped to the specific vulnerabilities that these
attacks could exploit. The scanner market recently developed a
self-service-based capability. It uses remotely hosted vulnerabili-
ty scanners on the Internet that you can hire to scan your
Internet resident firewalls, routers, and hosts. The results of the
scans are provided through a secure link, and you can usually
run the scans whenever you want. These scans are shielded from
everyone but you, including the service provider. IDS capabili-
ties are often available as part of a managed security service,
where the organization contracts out the intrusion detection
and monitoring to a security services vendor.

Both IDS and scanner tool providers harvest information
about vulnerabilities and exposures from public information
sites, hacker sites, newsletters, and advisories. They also have
their own investigative researchers who continuously look for
new vulnerability information that will make their company's
offering better than the competition5, as well as providing them
with the "free" advertising that comes with finding and publicly
reporting new vulnerabilities and exposures. Typically, these
researchers serve as consultants within the company, offering
their services to evaluate an organization's systems and net-
works. Their parent companies also offer databases of vulnera-
bilities for a fee, although some also share the information
openly as raw information on a Web site.

Some members of the philanthropists group also offer very
sophisticated search and notification services for free, but their
veracity, quality, and levels of effort vary considerably. Examples
of vulnerability-sharing organizations are shown in Table 2.

In addition to freeware scanner, IDS tools, and vulnerability
databases, the philanthropists group’s government and academic
members offer several announcement, alert, and advisory servic-
es that are widely used and highly valued. Some commercial
interests group companies offer these types of free services as
well. Examples are shown in Table 3.

There are numerous venues for finding out what vulnerabil-
ities and exposures exist in your organization's commercial soft-
ware systems, as well as many tools and service providers willing
to help you determine which vulnerabilities and exposures you
have.

The three groups we've covered -- hackers, commercial
interests, and philanthropists – all address locating the
vulnerabilities and exposures in the commercial software that

forms the base of your live systems and networks.
We will now address finding the "fixes." The product ven-

dors who make the software in which these vulnerabilities were
found provide the solutions for vulnerabilities. Many of them
have their own methods of providing their customers with soft-
ware fixes and updates. Until recently, most vendors were not
very proactive in distributing patches and updates outside of
their normal software development cycle. This has improved
considerably. Now, many major vendors provide alerts and advi-
sories concerning security problems, fixes, and updates (See
Table 4).

But can these various vulnerability services, tools, and data-
bases, along with the software vendor's update announcements
effectively combine to help you assess, manage, and fix your
vulnerabilities and exposures? The short answer is that it used to
be very difficult, but now a way to do it seems to be at hand. So
what was wrong, and what changed?

The Tower of Babel

In 1998 if you tried to use these various tools, services, and
databases you were faced with a problem rooted in each ones
heritage. Each had developed its own naming standards and
methods for defining individual entries in their respective vul-
nerability data stores. Table 5 shows how the same vulnerability
was referred to by 12 different names by 12 leading organiza-
tions. With such confusion, it was very hard to understand
what vulnerabilities were faced, and what vulnerabilities were or
were not being looked for by each tool. Then the vulnerability
or exposure still had to be mapped to the software vendor's
name for the problem to get a fix.

Driven by our own attempts to develop an integrated pic-
ture of what was happening in our networks and in trying to
select some new tools, The MITRE Corporation6 started to
design a method for working through the confusion of vulnera-
bility and exposure information. This method was based on the
creation of a reference list of unique names that would then be
mapped to the appropriate items in each tool and database. In
January 1999 the first public statement of our idea for a

Table 2: Vulnerability Sharing Examples

Table 4: Vendor Alert and Advisory Services Examples

April 2001 www.stsc.hill.af.mil 7

The Vulnerabilities of Developing on the Net

Table 3: Alert and Advisory Services Examples

reference list of unique names for vulnerabilities and exposures
was presented at the 2nd Workshop on Research with Security
Vulnerability Databases, held at Purdue University. MITRE pre-
sented a paper [1] at this conference that outlined the basic
ideas and approach for what is today called the Common
Vulnerabilities and Exposures (CVE) initiative.

Our vision for CVE was to provide a mechanism for linking
together vulnerability-related databases or concepts – and
nothing more (See Figure 1). Rather than viewing this narrow
scope as a limitation, we saw it as an advantage. By agreeing to
limit the use of CVE to the role of a logical bridge, we could
avoid competing with existing and future commercial efforts.
This was important, since it was critical that commercial organ-
izations concur with the CVE concept and proceed to incorpo-
rate the initiative into their various products and services.

By March 2001 the CVE effort had evolved into a, cross-
industry effort involving more than 30 occupations in creating
and maintaining a standard list of vulnerabilities and exposures.
Almost half of the known vulnerabilities and exposures are
either listed or under review, and presently 29 organizations are
building nearly 50 products or services that use CVE names as a
key element of their functionality.

How CVE Works
The CVE initiative is an international community activity
focused on developing a list that provides common names for
publicly known information security vulnerabilities and expo-
sures. The CVE list and information about the CVE effort are
available on the CVE Web site at cve.mitre.org/cve/.

The common names in CVE result from open and collabo-
rative discussions of the CVE editorial board. This board, as
shown in Table 6, includes members from numerous informa-
tion security-related organizations around the world, including

commercial security tool vendors, members of academia,
research institutions, government agencies, and other prominent
information security experts. The board identifies which vulner-
abilities or exposures will be included in CVE, then determines
the common name, description, and references for each entry.
The CVE name, for example CVE-1999-0067, is an encoding
of the year that the name was assigned and a unique number N
for the Nth name assigned that year.

MITRE maintains the CVE list and Web site, moderates
editorial board discussions, and provides guidance throughout
the process to ensure that CVE remains objective and continues
to serve the public interest. Archives of board meetings and dis-
cussions are available for review on the CVE web site at
cve.mitre.org/board/archives/. Other information security
experts are invited to participate on the board on an as-needed
basis, based upon recommendations from board members.

The key tenets of the CVE initiative are: · One name for one vulnerability or exposure.· One standardized description for each vulnerability or
exposure.· Existence as a dictionary rather than a database.· Publicly accessible for review or download from the
Internet.· Industry-endorsed via the CVE editorial board and CVE-
compatible products.

What Does CVE-Compatible Mean?
CVE-compatible is a phrase that indicates that a tool, Web site,
database, or service uses CVE names in a way that allows for a
cross-link with other repositories that use CVE names. To be
CVE-compatible, the product, service, database, or Web site
must meet the following three requirements: · CVE Searchable: A user can search using a CVE name to

find related information. · CVE Output: Information is presented that includes the
related CVE name(s).· Mapping: The repository owner has provided a mapping
relative to a specific version of CVE, and has made a good
faith effort to ensure accuracy of that mapping.
Different products and repositories address different por-

tions of the complete CVE list. For example, some might deal
with UNIX, while others cover Windows NT. When looking at
CVE-compatible items, you will need to evaluate them against
your organization's specific needs in terms of platforms coverage
and the software products that you use.

Table 6: CVE Editorial Board Composition

Web-Based Applications

8 CR O S S TA L K The Journal of Defense Software Engineering April 2001

Figure 1: CVE List as a Bridge

Table 5: Vulnerability in the Tower of Babel

Why Use CVE-Compatible Products?

CVE compatibility allows you to use your vulnerability databas-
es and tools together since they can "talk" to each other through
shared CVE names. For example, if a report from a vulnerabili-
ty scanning tool incorporates CVE names, you can quickly and
accurately locate fix information in one or more of the separate
CVE-compatible databases and Web sites to determine how to
fix the problems identified by the vulnerability scanner. Also,
with CVE-compatible tools, you will know exactly what each
tool covers because the CVE list provides a baseline. Simply
determine how many of the CVE entries are applicable for your
platforms, operating systems, and commercial software pack-
ages, and use this subset to compare against the tool's coverage.
Before the use of common names, it was extremely difficult to
identify the vulnerabilities of your systems7, or to determine
whether a particular tool or set of tools covered them.

Improving the Process

The CVE effort is changing the way organizations use security
tools and data sources to address their operational security pos-
ture. The example organization in Figure 2 is able to detect an
ongoing attack with its CVE-compatible IDS system (A). In a
CVE-compatible IDS, specific vulnerabilities that are suscepti-
ble to the detected attack are provided as part of the attack
report. This information can then be compared against the lat-
est vulnerability scan by your CVE-compatible scanner (B) to
determine whether your enterprise has one of the vulnerabilities
or exposures that can be exploited by the attack. If it does, you
can turn to a CVE-compatible fix database at the software ven-
dor or you can use the services of a vulnerability Web Site like
ICAT Metabase8, which lets you identify (C) the location of the
fix for a CVE entry (D), if one exists.

Identifying Your Risk

Another thing you can accomplish with CVE-compatible
products, that would be hard if not impossible to do before
common names were adopted, is improve how your organiza-
tion responds to security advisories. If the advisory is CVE-
compatible it will include CVE entries. With that information
you can see if your scanners check for these vulnerabilities, and
determine whether your IDS has appropriate attack signatures
for the alert.

Additionally, for systems that you build or maintain for cus-
tomers, the CVE compatibility of advisories and announce-
ments will help you directly identify any fixes from commercial
software vendors in those systems (if the vendor fix site is CVE
compatible). This is a much more structured and predictable
process for handling advisories than most organizations current-
ly possess.

Making Guidance Actionable

Earlier this year, a group of concerned security professionals put
together a "Top 10" list [2] that outlined the most common,
critical Internet security threats. The effort was orchestrated by
the System Administration, Networking, and Security (SANS)
Institute and brought together a consensus list from a wide vari-
ety of security experts. To help bring specificity and make the
recommendations actionable, each of the top 10 suggestions
had the appropriate CVE names, detailing each of the specific
issue areas for a variety of platforms and products. A total of 68
CVE names were called out in the list of 10 threats.

Who Is CVE-Compatible?

While the list of organizations with CVE-compatible products
is expanding, at this writing the vendors in Table 7 are those
working toward compatibility. For a current list visit the CVE
web site at cve.mitre.org/compatible/.

Today, there are several members of each type of tool, serv-
ice, repository, and announcement capability that support CVE
names. Underrepresented areas are vendor announcement and
vendor fix sites; however, several vendors are actively discussing
adding CVE names to their announcements. By the time you
read this article there should be several vendors using CVE
names in their announcements and alerts. In addition, like the
CVE editorial board, the list of organizations working on or
delivering CVE-compatible products has become international
in scope.

Conclusion

The application of all known security fixes and patches is the
complement of standard security protection mechanisms.
Keeping current on fixes offers a robust method for keeping the
commercial software that makes up your organization's software
infrastructure healthy. Vulnerabilities and exposures will always
be a part of our systems, as will the groups that find and share

The Vulnerabilities of Developing on the Net

Figure 2: A CVE-enabled process

Table 7: Organizations Developing CVE-Compatible Products

April 2001 www.stsc.hill.af.mil 9

information about vulnerabilities and exposures in commercial
software. With common name integration and cross-referencing
abilities emerging in vulnerability and exposure tools, web sites,
and databases, it is becoming possible to deal with these mis-
takes and improve our systems' security. Handling security inci-
dences is more systematic and predictable as CVE is supported
within the commercial and academic communities. As vendors
respond to user requests for CVE-compatible fix sites, the com-
plete cycle of finding, analyzing, and fixing vulnerabilities will
be addressed.◆

On-Line Resources

The on-line resources of this article contain hyperlinks to fur-
ther references. For the full list please see page 32 of this on-lne
version.

References

1. Mann, David E. and Christey, Steven M., Towards a
Common Enumeration of Vulnerabilities, 2nd Workshop on
Research with Security Vulnerability Databases, Purdue
University, West Lafayette, Ind., Jan. 21-22, 1999.

2. Jackson, William, Top 10 System Security Threats Are
Familiar Foes, Government Computer News, Jun. 12, 2000.

3. Sullivan, Bob, Hospital Confirms Hack Incident, MSNBC,
Dec. 9, 2000.

4. Lemos, Robert, Power Play: Electric Company Hacked,
ZDNet News, Dec. 15, 2000.

5. Mell, Peter, The ICAT Metabase, Computer Security
Division at the National Institute of Standards and
Technology, icat.nist.gov/icat.taf Dec. 19, 2000.

Notes

1. Vulnerability is a mistake that someone can directly use to
gain access to things they are not supposed to have. An expo-
sure is a mistake that gives that person access to information
or capabilities that he or she can then use, as a stepping
stone, to gain access.

2. A computer hacker broke into a hospital in the Seattle area
and thousands of medical records were downloaded. The
hacker's activities went unnoticed by the hospital, and when
the hacker went public with his accomplishment, his claims
were initially denied. The next day, the hospital confirmed
the intrusion [3].

3. A Microsoft Web site was penetrated by a Dutch hacker
through the Web server's "IIS Unicode" vulnerability that let
him copy files, execute commands, and change files [4].

4. Unlike its original meaning that referred to a hacker as a pro-
lific and inventive software programmer, hacking during the
past few years has come to refer to the act of circumventing
security mechanisms of information systems or networks.
"Black-hat" hackers are those intent on doing harm, as
opposed to "white-hat" hackers, who are usually working in
support of organizations to help them assess and understand
the vulnerabilities and exposures in their systems. Black-hat

hackers are sometimes referred to as crackers.
5. As an alternative to tracking and recording each update,

patch, and upgrade that gets applied to each platform in the
enterprise, the use of vulnerability scanners is an attractive
choice for monitoring the health of software applications.
These tools are benefiting from the vigor of the market
place's hunt for vulnerability information and the develop-
ment of testing approaches that can turn up the presence of
vulnerabilities or exposures in the "deployed" systems of an
organization. However, due to "false positives," "false
negatives," and incomplete coverage to date, these tools are
not a panacea.

6. MITRE, working in partnership with government, is an
independent, nonprofit corporation working in the pub-
lic interest.

7. The CVE initiative is in the process of analyzing and cate-
gorizing all of the "legacy" vulnerabilities and exposures, and
assigning them CVE numbers. Numerous members of the
security vulnerabilities reporting and tracking community
have donated their legacy databases to the CVE effort to
support this effort.

8. The ICAT Metabase is a searchable index of computer
vulnerabilities and exposures. ICAT is not itself a
vulnerability and exposure database, but is instead a
searchable index leading to vulnerability resources and patch
information [5].

About the Author
RRoobbeerrtt AA.. MMaarrttiinn is a co-lead for MITRE's Cyber
Resource Center Web-site, and a principal engineer in
MITRE's Information Technologies Directorate. At the
culmination of his five years of Y2K leadership and
coordination efforts, Martin served as the operations
manager of the Cyber Assurance National Information
Center, a 24x7 cyber security watch center within the

President's Y2K Information Coordination Center. Today, Martin's
efforts are focused on the interplay of cyber security, critical infrastructure
protection, and e-Business technologies and services. Martin received a
bachelor's degree and a master's degree in electrical engineering from
Rensselaer Polytechnic Institute and a master's of business degree from
Babson College. He is a member of the ACM, AFCEA, Institute of
Electrical and Electronics Engineers (IEEE), and IEEE Computer
Society.

Robert A. Martin
The MITRE Corporation, MS B155
202 Burlington Road
Bedford, MA 01730-1420
Voice: 781-271-3001
E-mail: ramartin@mitre.org

Web-Based Applications

10 CR O S S TA L K The Journal of Defense Software Engineering April 2001

Did this article pique your interest?

Would you like to learn more about correcting vulner-
abilities and exposures in commercial software that is used to
develop your organizations infrastructure? Then attend the
Thirteenth Annual Software Technology Conference 2001 on
April 29-May 4 in Salt Lake City. Robert A. Martin will speak on
this topic in Track 9 on May 2.◆

The Intelligence Community Collaborative Operations
Network (ICON) Program Office was established in

December 1998 to facilitate collaboration and the free flow of
information across the intelligence community (IC). As its main
starting point, the ICON Program Office initiated an IC collab-
oration forum in March 1999 to identify collaboration pro-
grams and systems within the IC and Department of Defense
(DoD) and to achieve a consensus on common goals. During its
first year, more than 150 IC members attended the forum. Its
membership included representatives from the majority of intel-
ligence agencies as well as the DoD. This paper highlights key
findings of forum sessions from its inception to the present,
defines common terms, and describes today's electronic collabo-
ration capabilities, and the ideal collaboration environment for
the future.

Current Collaboration Capabilities
At the forum outset, participants discovered a need for a com-
mon framework of collaboration terms. Basic terms such as
"collaboration" and "interoperability" held different meanings
for participants depending upon their organizational back-
ground. This section defines key terms.

Collaboration is "the process of shared creation: two or
more individuals with complementary skills interacting to create
a shared understanding that none had previously possessed or
could have come to on their own [1].” The following list defines
levels of collaboration:· Level 1: At a basic level, individuals operate independently

and interact to accommodate their own specific needs
passing documents back and forth and sharing information,
but not as part of a working group or team [2].· Level 2: At the next level, a group of individuals exchange
information as part of a community of interest, but not to
achieve a common goal [2].· Level 3: At the highest level, collaborators operate as a team
to achieve a common purpose by working together and gain
ing new insights [2].
Asynchronous collaboration allows data (e.g., a message)

to be sent as soon as it is ready, regardless of whether recipients
are ready to receive it. Asynchronous collaboration includes e-
mail with attachments, threaded discussion databases, bulletin
boards, and persistent electronic "rooms" where members can
store and access common documents and files at their conven-
ience. Table 1 lists asynchronous collaboration capabilities.
Asynchronous collaboration capabilities emphasize support for
collaboration levels one and two.

Synchronous collaboration manages (synchronizes) the
sending and receiving of dynamic text, audio, and video, such
that only a single user can dominate a discussion at a time.
However, a group of users can work together to share ideas in
real-time. This mode of collaboration is also referred to as "real-
time collaboration." It supports collaboration at the highest
level and includes text-based chat sessions, electronic white-
boards, awareness knowledge, and live audio/video conferenc-
ing.

Point-to-point and multi-point communication are the two
modes of communication provided for synchronous collabora-
tion. Collaboration tools that feature point-to-point communi-
cations require each computer system to handle all of its com-
munication with other computer systems involved in a synchro-
nous collaboration session. Point-to-point tools are effective
only for a small group of users because communication band-
width can rapidly become saturated as more users join a session.
Collaboration tools that feature multi-point communication are
applicable for small and large groups of users, since they provide
server capabilities that manage bandwidth and facilitate com-
munications between user platforms.

The International Telecommunications Union has defined
several communications standards used by collaboration tools
for both multi-point and point-to-point communications.
H.323: defines audio and video conferencing protocol for net-
works based on the Internet protocol (IP). T.120 provides stan-
dards for data-conferencing capabilities, including application

The Ideal Collaborative Environment
P. A. Dargan

Litton-TASC Inc.

What immediately springs to mind when discussing cross-organizational electronic collaboration are the capabilities
of today's collaboration tools: e-mail, bulletin boards, chat sessions, and virtual rooms. However, today's tools provide
only a framework for the ideal environment. This paper builds on current collaboration capabilities to describe the
Intelligence Community Collaboration Forum's vision for the ideal collaboration environment and the challenges in
achieving it.

April 2001 www.stsc.hill.af.mil 11

Table 1: Asynchronous Collaboration Capabilities

Table 2: Synchronous Collaboration Capabilities

sharing, electronic whiteboard, chat, and
file transfer functions.

Commonly Used Collaboration Tools

• Collaborative Virtual Workstation
(CVW): This is a software prototype
developed by MITRE that supports a
collaborative environment optimized
for supporting persistent, geographi-
cally dispersed virtual rooms. CVW
provides chat, audio/video conferenc-
ing, application sharing, electronic
whiteboarding, and multi-point com-
munications. At the time this paper
was written, MITRE was looking for a
vendor who would assume responsibil-
ity for managing and improving the
software [4].

• Information Workspace (IWS): General
Dynamic developed IWS as a Web-
based, collaboration environment
featuring virtual rooms, audio/video
conferencing, chat, electronic white-
boarding, and application sharing with
multipoint communications.

• Microsoft NetMeeting: A Microsoft
product that supports point-to-point
communications for its audio/video
conferencing, chat, application shar-
ing, and electronic whiteboarding.

• IBM Lotus Sametime: A Lotus product
that interfaces with most Web
browsers and provides audio/video
conferencing, chat, application shar-
ing, electronic whiteboarding, and
awareness with multipoint communi-
cations. Considered by Giga to be the
leading collaboration tool [5].

The Ideal Collaboration

Environment
While e-mail, bulletin boards, chat ses-
sions, and virtual rooms are powerful fea-
tures to enable cross-organizational elec-
tronic collaboration, they are only initial
capabilities.

This section builds on existing collab-
oration capabilities to describe the forum
participants' vision of the ideal collabora-
tion environment. The capabilities are
not described in any particular order
because participants considered each one
critical for the ideal environment.

Following each capability, the author
discusses technical challenges to overcome
before it can become a reality.

Capability No. 1: Rapidly find the right

people with the right expertise.

To enable collaboration, users are able to
quickly identify, locate, and contact spe-
cific staff or subject-matter experts from
community organizations, academia, and
industry; they are provided with detailed
information such as the contact's full
name, job title, organization, phone
number(s), pager number(s), address(es),
levels of access, and areas of expertise. For
example, the collaboration system could
display a menu that enables users to select
from technical subject-matter areas such
as telecommunications, data warehouses,
parallel processing, and enterprise portals
to find experts from industry, academia,
DoD, or another IC organization, along
with sufficient contact information. A
user could also search for names with
only partial information. For instance, if
a user knew part of the last name,
"Bran," and that he was located at the
Pentagon, the collaboration system could
perform a partial name-string search for
all Army personnel at the Pentagon and
return a list of possible matches.

Challenges

The real challenge is being able to identi-
fy and locate experienced personnel and
subject-matter experts from external
organizations since each employs staff
with particular areas of expertise. To
achieve this capability, it is necessary to
link each organization's directory through
a mechanism like a meta-directory.
Today's collaboration tools rely on the
directory services provided by the net-
work or third-party vendor products. The
schema can often be tailored to provide
additional information about staff. For
example IBM provides directory services
for Lotus Sametime through Domino,
another Lotus product. However, because
most commercial products are not inter-
operable, organizations need to consider
using either the same directory service
products, or defining point-to-point cus-
tomer interfaces that interconnect the
directories.
There is another challenge: Collaboration
tools need open Java ports to exchange
data using communication protocols such
as User Datagram Protocol (UDP).
Because firewall systems have difficulty
filtering UDP, especially for malicious

code and new viruses, organizations may
not be willing to open these ports for col-
laboration.

Currently, two standards compete to
support directory service protocols:
Lightweight Directory Access Protocol
(LDAP) and X.500. The protocol stan-
dards are not compatible, although cus-
tom interfaces can be developed to
exchange packets between the various
commercial products used by different
organizations. Vendors have begun devel-
oping software to implement meta-direc-
tory mechanisms, generally using LDAP
as the preferred standard. However, they
are only in the preliminary stages of
developing the required capabilities.

A number of vendors united recently
to establish a directory services standards
consortium, the Directory Interoper-
ability Forum, to achieve the vision for
unified, cross-organizational, open stan-
dard directory services. Its membership
includes IBM, Lotus, Novell, Oracle,
Cisco, Sun-Netscape, Citrix, and Unisys
[6].

Capability No. 2: Quickly organize and

conduct virtual teams and meetings.

This capability builds on capability No. 1
by organizing key personnel and subject-
matter experts from around the world
into virtual teams as soon as the need
arises, coordinating and conducting ad
hoc and formal virtual meetings using
electronic collaboration tools. The collab-
oration system could provide a set of vir-
tual conference rooms to conduct a desk-
top teleconferencing session at any time
of day. Virtual conference rooms could be
scheduled so that sessions could be con-
ducted at an appointed time. During the
session, the collaboration system could
project team member images talking and
sitting around a conference room table –
just as if the session was being held in a
video teleconference room – even though
each desktop teleconferencing user was
remotely located.

Of critical concern is the ability to
contact an individual in another organi-
zation when a crisis occurs. Lotus'
Sametime and AOL's Instant Messenger
provide a feature that will instantly notify
on-line users that “John Doe” wants to
talk to them If he/she is not on-line,
Lotus Sametime will phone the individ-

Web-Based Applications

12 CR O S S TA L K The Journal of Defense Software Engineering April 2001

ual and/or page him/her to obtain a time-
ly response. This should be a standard
feature in collaboration tools.

Challenges

The most conspicuous challenges relate
to providing sufficient communications
connectivity across all organizations,
quality of service, and trusted security
mechanisms to support virtual meetings.
Unless the same collaboration tools are
used by each organization, conducting
virtual meetings with attendees from vari-
ous organizations is simply not possible
today. Further, many organizations do
not provide the necessary transmission
speed, reliability, and communications
bandwidth necessary to avoid problems
with spotty audio quality or choppy
video. Users want phone quality audio
and smooth video.

Many vendors are unable to supply
details on how many concurrent
audio/video conferencing and chat ses-
sions can occur simultaneously, and how
many users it would take to significantly
degrade performance. These are signifi-
cant questions concerning service quality.
More businesses are engaging in cross-
organization virtual meetings through
information provider (IP)-based networks
– and industry is pushing the envelope.
Vendors will be forced to define more
efficient data compression algorithms for
convergent networks where data, voice,
and video are carried over the same trans-
port mechanism, whether they are wire-
less, optical, coaxial, or some entirely new
innovation.

Forum participants said that as infor-
mation exchanges with foreign personnel
and academic experts increase, the need
for language translation tools will become
more prominent. Commercial speech-
recognition translation modes include
speech-to-text, text-to-text, and text-to-
speech. However, commercial tools – no
matter what their level of sophistication –
have not achieved direct speech-to-speech
translations. Vendors such as Lernout and
Hauspie [7] offer a suite of tools that can
be combined to translate from speech-to-
speech using the incremental steps. The
tools can be integrated with the leading
commercial collaboration tools. But lan-
guage translation tools have a long way to
go before they achieve highly accurate

translations for all languages and dialects.

Capability No. 3: Enable cross-organi-

zational collaboration to support the

business lifecycle.

This capability gives interagency and
internal staff the ability to brainstorm
together, exchange insights, and develop
products electronically according to busi-
ness workflows that unify related work
activities to enhance the timeliness of
product delivery. For instance, the collab-
oration system would include a workflow
tool that automatically tracked the status
of an intelligence product developed by
several organizations through its origina-
tion, revision, approval, release, and final
dissemination.

Challenges

Modern vendor group-ware/workflow
tools can be readily adapted to coordinate
well-defined business processes such as
logistics, proposal development, and retail
services. However, these tools are not eas-
ily adapted for highly complex activities
and business rules such as those repre-
sented by the community's business life
cycle.

In addition, the lack of interoperabili-
ty across available tools poses another
viable concern when individual organiza-
tions come to rely on different tools.
Industry will have to develop more
sophisticated workflow tools than cur-
rently available. The tools will also need
to include expert system capabilities to
implement the community's business
rules in the workflows.

Meanwhile, collaboration tools that
enable personnel from different organiza-
tions to develop a joint product raise new
questions: Who becomes the product
originator? Who owns it? Who is respon-
sible for updating and maintaining it?
The answers to these questions are critical
to determining where it should be stored,
how it should be stored, when it should
be archived, who should be able to review
it, who can access it, how data conflicts
should be resolved, and who should
update it. Organizations need to develop
common rules of engagement for proce-
dures on handling information manage-
ment and configuration management
issues related to joint products.

Capability No. 4: Build, find, and

exchange information across

organizational boundaries.

Forum participants described an environ-
ment that uses rapid, intelligent search
tools across organizational servers to find
information that looks for keywords
within their required context, pruning
the search space to provide a few relevant
matches. The collaboration system would
allow users to use or define the context of
a keyword or phrase. For example, a
search for White House news could apply
specific search criteria such as public
newscasts about the president, vice presi-
dent, first lady, first family, and White
House staff.

Challenges

There are three major challenges: more
powerful search and retrieval tools;
immediate access to information; and
mechanisms that effectively link cross-
organizational products, databases, and
information. Current search and retrieval
tools typically provide hundreds of mean-
ingless keyword matches, often too many
to review. Companies are beginning to
develop "intelligent" search tools that use
clustering mechanisms to select matches
from documents then show paragraphs
(rather than partial sentences) where a
match occurred. Keyword/context search-
es are more difficult and require a knowl-
edge base association with keywords.
Associative databases are being investigat-
ed as one means of improving search rou-
tines for keyword/context matches.

Immediate access to information,
especially as it grows beyond terrabytes,
will remain a significant challenge.
Several mechanisms are in use to speed
information access: networking caching
technologies and storage area networks
(SANs). Companies such as Akami and
Inktomi provide network caches com-
posed of hardware and software to store
web pages and other information for
rapid retrieval. SANs employ a high-
speed network (via fibre channel) that
interconnects storage devices enabling
users to share devices through network
servers. These are just the beginning of
innovations as network technologies
experience vast performance improve-
ments, and network appliances provide
more sophisticated services.

The Ideal Collaborative Environment

April 2001 www.stsc.hill.af.mil 13

To consolidate and display information, metadata models
are employed to interconnect cross-organizational servers, data-
bases, products and information of different organizations. But
metadata models do not resolve data inconsistencies and con-
flicting data, nor fuse information from different sources. As
time progresses and metadata modeling approaches are more
mature, best practices will exist for developing models that take
care of data inconsistencies and conflicts, present the informa-
tion in an understandable format, and employ expert knowledge
to fuse information to improve reporting accuracy.

Capability No. 5: Deliver the right information to the right

people as soon as it is available.

Participants described a "smart product delivery" capability that
profiles users to deliver targeted information considered relevant
to their areas of interest even if it is not specifically requested. In
addition, the information is provided as soon as it is received in
the required user format that is compatible with his or her local
applications. For example, a user asks to be notified when the
London Stock Exchange drops to a certain level and to be pro-
vided with a list of companies affected. The collaboration sys-
tem could respond with a list of firms that the user's profile
indicated would be of interest such as major banking institu-
tions and large, high technology firms. Additionally, the infor-
mation could be provided in a preferred format such as Word
Perfect or Microsoft Word.

Challenges

Existing digital library tools can filter information from news
broadcasts and other information sources to alert users as soon
as a keyword match occurs. As mentioned earlier though, these
tools present the same retrieval challenges – search tools provide
hundreds of matches to sort to find a meaningful match. This
capability builds on the powerful search and retrieval features
described with capability No. 4. In addition, unless a user
requests specific information, it is highly unlikely that the tools
will be able to find related useful items.

Vendors have already developed knowledge discovery for
marketing purposes. These tools automatically use attributes
such as a consumer's demographics and use of product X to
determine whether he or she might be interested in a product Y,
and subsequently send him or her product Y information.
Again cross-organizational communications connectivity is
required here so that products can be automatically disseminat-
ed to users.

Because applications vary, it is important to provide the
product in required format. Many desktop publishing tools gen-
erate files in other tools’ formats, but this is not universally true.
Directory service vendors are considering adding user profiles in
the directory service products, so that product files will be gen-
erated automatically in the format required by a user's applica-
tion.

Capability No. 6: Provide and maintain sufficient security.

Security systems need to be proactive: denying unauthorized
access, detecting and disabling intrusions before damage or
compromise occurs, and protecting systems from malicious code

and viruses. An advanced security system such as biometric
recognition could be used here to reduce the potential for unau-
thorized access, or a system monitor that identified suspicious
system behavior based on a user profile. Here a user logging
onto the system at midnight on a Friday would raise a red flag if
the user's typical work schedule for the past year has been week-
days from 7 a.m. to 5 p.m.

Challenges

Since commercial tools that provide information security servic-
es (e.g., virus checkers, firewalls, and intrusion detection sys-
tems) are immature, there are protection gaps:· An ability to eavesdrop on individual conversations via unau-

thorized, remote access of desktop system microphones.· The ability for imposters to send deceptive messages and data
or to participate in a collaboration session without discovery.· A difficulty handling excessive denial-of-service actions,
causing the system to crash.· The inability to detect and protect from intrusions that
exploit operating system weaknesses.· A difficulty detecting malicious code and new viruses that
enter through message attachments and other means.· A difficulty detecting spoofing.

The introduction of Public Key Infrastructure for public
and private certificates to access organizational applications, sys-
tems, devices, and data is a starting point for resolving some of
these problems. But collaboration tools will need to be modified
to take advantage of them. Industry is also improving biometric
recognition and encryption mechanisms, but firewall services
are inadequate, seriously lagging behind the ingenuity of hack-
ers to create new damaging viruses and malicious code.

Capability No. 7: Employ technology and community

standards.

The need for industry standards and commercial standards-
based products is seen as the single most important factor for
enabling application and data interoperability. But where indus-
try standards are lacking, organizations need to define their own
standards. The ideal collaboration environment provides services
using standards-based products.

Challenges

Due to their immaturity, it will be several years before vendors
understand what features collaboration tools require, including
defining common physical standards, more sophisticated dis-
plays and user interface, security, metadirectories, and service
quality. In the meantime, it is important to concentrate on
monitoring vendor consortia developments in the standards
arena and to procure commercial products that feature wide-
spread marketplace acceptance and show potential as open stan-
dards. For a more detailed discussion on challenges for open
standards, refer to [8].

Conclusion
Both non-technical issues and electronic collaboration tools

must be considered since increasing the information flow dra-
matically increases the potential for error. For example, the IC

14 CR O S S TA L K The Journal of Defense Software Engineering April 2001

Web-Based Applications

has typically operated in a need-to-know environment whereas
the Internet provides openness and public access. What is the
delicate balance between these opposing operating modes?

Collaborators are also responsible for assessing the expertise
of information from others before basing conclusions on new
information sources. This trust poses a challenge for virtual
teams whose members are remote and unknown: how to devel-
op trust among unknown staff to support developing joint
products? Furthermore, the IC has traditionally rewarded indi-
viduals for independent product development. What reward
structure would motivate individual staff to cooperate with
team members across the intelligence community? Hall con-
ducted a study on collaboration in the community that uncov-
ered barriers to collaboration and discussed such concerns [9].

Yet as these technical and non-technical issues are addressed
to achieve the ideal collaboration environment, users will forget
what it was like to collaborate simply by phone, video telecon-
ference centers, and physical meeting rooms. ◆

References

1. Schrage, Michael, No More Teams! Mastering the Dynamics
of Creative Collaboration, DoubleDay, 1995.

2. Schrage, Michael, Shared Minds - The New Technologies of
Collaboration, Random-House, Inc. New York, 1990.

3. Advancing Directory Standards, White Paper, The Directory
Interoperability Forum, www.directoryforum.org

4. See collaboration.mitre.org
5. Rasmus, Daniel, Knowledge Management Report, Giga

Information Group, Norwell, Mass., December 1998.
6. Advancing Directory Standards, White Paper, The Directory

Interoperability Forum, www.directoryforum.org
7. See www.lhsl.com
8. Dargan, P. A., Best Practices for Open System Challenges,

CROSSTALK, November 1997.
9. Hall, Tamra, CIA's Baseline Study for Intelligence

Community Collaboration: Final Report - December 1999,
Information Sharing Solutions Office of Advanced Analytic
Tools, Central Intelligence Agency, 1999,
collaboration.mitre.org/prail/IC Collaboration Baseline
Study Final Report/toc.htm

About the Author
PP.. AA.. DDaarrggaann is a principal member of
Technical Staff at Litton-TASC with more than
21 years of experience in all aspects of software
system engineering, including university soft-
ware engineering instruction. She specializes in
developing open architectures and migration

strategies based on open system standards. She is an interna-
tional guest speaker and invited author on open systems.
Dargan has a bachelor's degree in mathematics from Virginia
Polytechnic and State University and a master's degree in com-
puter science from George Mason University.

PP.. AA.. DDaarrggaann
LLiittttoonn--TTAASSCC IInncc..
44880011 SSttoonneeccrroofftt BBllvvdd..
CChhaannttiillllyy,, VVAA 2200115511
FFaaxx:: ((770033)) 444499--33440000
EE--mmaaiill:: ppddaarrggaann@@eerroollss..ccoomm;; ppaaddaarrggaann@@ttaasscc..ccoomm

@

April 2001 www.stsc.hill.af.mil 15

The Ideal Collaborative Environment

Did this article pique your interest?
Would you like to learn more about collaboration environments
and implementing the electronic tools to create the ideal model?
Then attend the Thirteenth Annual Software Technology
Conference 2001 on April 29-May 4 in Salt Lake City. P.A.
Dargan will speak on this topic in Track 6 on May 2. ◆

The origin of computer markup languages such as Extensible
Markup Language (XML) is in the publishing processes

that we have employed for centuries. Prior to the invention of
computers, markup was simply the editorial comments that a
copy editor made on a report or article often in the margins of a
paper. The markup added information to the paper’s content by
specifying format or other meaning. In modern computer sci-
ence, any information or markup added to a document that
specifies the meaning of its content is known as metadata. In
turn, any language used to markup a document is known as a
metalanguage.

The first computer metalanguage, Standard Generalized
Markup Language (SGML), was standardized in 1986, a long
time ago in computer-years. SGML provided a standard means
to separate content and format in documents of all kinds. Such
separation is very useful in applications where information is
presented on a variety of media for which no single format is
adequate. Early adopters of SGML include the IRS, Patent
Trademark Office, SEC EDGAR Database, and Army SGML
Registry and Library (ASRL) for its technical manuals.

Next came a series of standards for the HyperText Markup
Language (HTML) about a decade ago. Most readers will recog-
nize HTML as the language of the Internet’s very popular World
Wide Web. The HTML is a simple metalanguage with a rigid
syntax designed for the presentation of a common class of office
or technical report, with headings, paragraphs, lists, illustrations,
etc. In addition HTML has limited support for multimedia.
The success of these metalanguages set the stage for the develop-
ment of the next generation, XML, which is an evolution of
SGML without the limitations of HTML.

Extensible Markup Language
The World Wide Web Consortium (W3C) released its proposal
for XML in 1996, and approved the standard in 1998. From
the start, XML has received an extraordinary amount of atten-
tion from public and private industry. Much of this attention
did not stem from XML’s immediate contributions but from its
potential for future contributions.

XML is a standard markup metalanguage for describing,
archiving, and communicating digital information. XML is a
method for putting structured data in a text file. Therefore, it is
readable by both man and machine.

An XML document looks like HTML, but isn’t HTML.
Both XML and HTML use tags and attributes. Tags are words
bracketed by the delimiters, “<” and “>”. Tags may contain
attributes of the form “name=value.” The rigid syntax of
HTML specifies what each tag and attribute means and often
how the text between them will look in a browser display. XML

uses tags to delimit pieces of data, and leaves the interpretation
of the data to the application that reads it. As a result, XML-
formatted documents can be readily displayed or used by a vari-
ety of applications, not just a limited number of Web browsers.

To assist in an application’s interpretation of XML, the
Defense Information Systems Agency (DISA) provides name-
space registry services for XML metadata for BMC4I domains
such as Ground Operations, Aerospace Operations, and
Geospatial Imagery etc.

The registry diides.ncr.disa.mil/xmlreg/index.cfm enables
the consistent interpretation and use of XML, both vertically
within a system and horizontally across systems. (The name-
space registry is another member of the family of XML tech-
nologies.)

Like HTML, XML can use procedural languages to imple-
ment applications that further define interfaces, manage data, and
permit greater interoperability. Java and JavaScript are two com-
mon network-friendly procedural languages used with XML.

Unlike HTML, XML does not contain format information.
If XML information is presented, then a style language such as
the Extensible Style Language (XSL) defines the presentation
format. (The XSL is another member of the family of XML
technologies.) This separation of content and format means that
an XML-based BMC4I system will not break with each applica-
tion or new presentation media.
The tags in an XML document delimit and define data. The
XML is flexible in that tags can be created to communicate any
digital data including text and multimedia. The XML is a meta-
language because its tags may contain metadata, or extra infor-
mation about message data, with no predefined syntax.

Table 1 is an example of an XML data island. You can
observe many qualities of the language in this example. Data
elements consist of a start tag (bracketed by “<” and “>”), some
data or other data elements, and an end tag (bracketed by “</”
and “>”). For every start tag there is an identically named end
tag. Other data elements may be nested in as many levels as
desired within a data element. Nested data elements must be
completely nested within its parent’s tags. Metadata may be
specified in the start tag. Metadata attributes are completely
enclosed in double-quote marks. These qualities are why XML
is known as a well-formed language.

Here is an example that illustrates the benefit of metadata.
The following United States Message Text Format (USMTF)
line simply presents a remark: RMKS/179 248//. The following
XML line says the same thing — and more: <location_tar-
get>179 268</location_target>. The XML line makes it clear to
an extraction routine or human reader what the data between
the tags means. The number is not a Canadian zip code or

The Potential of Extensible Markup Language

The Department of Defense should leverage commercial best practices as it upgrades and extends its Battle
Management, Command, Control, Communications, and Computers/Intelligence (BMC4I) architecture.
The family of technologies associated with the Extensible Markup Language (XML) is the modern founda-
tion of some of these best practices. This article describes XML and its potential application to BMC4I.

David A. Hayes
Space and Missile Defense Technology Center

16 CR O S S TA L K The Journal of Defense Software Engineering April 2001

some other interpretation of the USMTF line. The XML line
clearly describes the number as a target coordinate. Thus, meta-
data gives meaning to XML data.

There is a price for this extra information. The XML meta-
data in the form of data tags creates a transmission overhead.
The metadata imposes an added burden on network capacity
and processing to parse the message. Data compression, local
computation and manipulation of data, intelligent communica-
tion of knowledge as opposed to raw data, and granular updates
are mechanisms that mitigate the network load penalty.

An uncompressed XML message is significantly larger than
an MTF version of the same message. This is not a problem.
The XML can be compressed for more efficient network trans-
mission. Such was the case in the United States-led multination-
al global command, control, communications, and intelligence
1999 Joint Warfighter Interoperability Demonstration. In that
demonstration XML was compressed via a smart compression
utility (XMill by AT&T). Dr. Robert Miller of MITRE reports
that XML-based Air Tasking Orders (ATO) were actually small-
er than the original ATOs in compressed MTF format as indi-
cated in Table 2. Compressed XML and MTF files were found
equivalent in size in the 2000 JWID. Therefore, we can con-
clude that larger XML messages do not stress network capacity
more than current formats.

XML does not ensure data compatibility with a given appli-
cation. Therefore, interoperability standards are required just
like previous data exchange methods. Developers of any Defense

Information Infrastructure Common Operating Environment
such as BMC4I systems must express XML with a standard lexi-
con and grammar. The previously described XML namespace
registry can provide the necessary standardization of XML tags.
It is a vital component in the implementation of any metalan-
guage.

XML, like any text, can be easily encrypted for secure com-
munications. Significant security concerns can be addressed by
using the Secure Internet Protocol Router Network , or com-
mercial secure sockets layer technology.

Commercial concerns are rapidly developing the necessary
tools and applications to realize the potential of XML in elec-
tronic commerce. The capabilities of these commercial tools and
applications will drive down the cost of XML development
allowing more affordable military-specific implementations.

Many XML applications are inexpensive, powerful, and rap-
idly evolving. The XML development is driven by the dynamics
of the commercial marketplace. As such, XML-based products
enjoy an efficiency of effort normally associated with a competi-
tive commercial market. The development of XML-based
BMC4I systems can leverage these commercial efficiencies.
XML is license free, platform independent, and well supported.

XML Potential for BMC4I
Future XML-based BMC4I systems will likely focus on two
areas: The first deals with acquiring information from disparate
(often legacy) sources used by military systems. The second
focuses on distributing dynamic content to users. The Internet
community has adopted two words to describe these tasks:
aggregation and syndication. The XML’s information-exchange
prowess applies to both of these tasks.

Aggregation is the process of collecting, organizing, and inte-
grating data from disparate sources. One potential application
for XML BMC4I aggregation is in the creation of a Global
Family of Interoperable Integrated Air Pictures (GFIIAP) used
for Air and Missile Defense. In the case of GFIIAP, legacy data-
bases of satellite orbits can be aggregated with in-theater sensor
data to form a more complete and accurate picture. Unexpected
deviations of the data stream from any source can be processed
based on embedded metadata in XML tags. The metadata can
also help clarify issues of time latency, track correlation, and
fusion.

An XML aggregation application could be developed to
organize references to metadata rather than the actual data itself.
The application would collect and build a repository of metada-
ta links, which are in turn archived in XML format. Intelligent
agents working with this repository would expedite searches,
access, and distribute data as needed. Another set of artificial
intelligence agents would gather input from a variety of sources,
including databases, XML, Tactical Digital Information Link
(TADIL), and Message Text Format (MTF) documents.

Syndication is the process of disseminating data. On a
BMC4I network, syndication is often seen in the form of infor-
mation that participants get from third party information
providers. For example, a tactical operations center (TOC)
might request information from a weather forecast database to
pass on (perhaps aggregated with other information and appro-

April 2001 www.stsc.hill.af.mil 17

The Potential of Extensible Markup Language

Table 2. ATO Compression

Table 1. Example of an XML Data Island

priately tagged) to a weapon system. This information is syndi-
cated from this weather database. In this scenario, the weather
database is the syndicator or third party, the TOC is the sub-
scriber, and the weapon system is the user.

A BMC4I syndication tool set could be developed to define,
extract, and publish syndicated information from large fre-
quently updated databases. The tool set would make informa-
tion available to subscribers through XML used to describe the
structure and content of syndicated information. Information
would be distributed by using two complementary components.
The first component lets syndicators define the information
that the subscriber wishes to receive, i.e. all satellite tracks over a
theater of operations in the next hour. The second component
reads this definition and performs the actual information extrac-
tion and distribution to the subscriber TOC. The TOC could
aggregate the information locally and provide it to users.

In addition, XML can be used as a tactical language “Rosetta
Stone.” XML can translate or encapsulate common military
communication languages in use today such as TADIL A/B/J,
MTF, and other languages.

Conclusion
The Joint Technical Architecture (JTA) mandates the XML 1.0.
W3C Recommendation, 10 February 1998 (Reference: REC-
xml-19980210, www.w3.org/TR/1998/REC-xml-19980210)
for domain- and application-specific markup languages defined
through tagged data applications. The JTA states, “This allows
new capabilities to be defined and delivered dynamically.”

XML conveys complex information while retaining enough
flexibility to accommodate future modifications to the message
content in ways that are unforeseen today. Therefore, it is ideal
for supporting rapid prototyping, evolutionary, and spiral devel-
opment of evolving BMC4I systems.

The most important benefit of XML as it applies to BMC4I
is that it advances and develops good information management
practices that are responsive to modern computer technology
and standards. XML is not always the best solution, but it is
always worth considering.◆

Notes
1. A “two-line” satellite element set actually has three lines. Line

zero is a twenty-four-character name consistent with the
name in the North American Air Defense Satellite Catalog
celestrak.com/NORAD/documentation/tle-fmt.html

2. Mil-Std 6016A is the TADILJ/Link 16 Message Standard

Additional On-Line Readings
1. diides.ncr.disa.mil/xmlreg/index.cfm
2. diides.ncr.disa.mil/shade/index.cfm
3. www.computer.org/proceedings/meta/1999/papers/21

/rdaniels.html

Acknowledgements
The author would like to thank Leo Kimminau, and Dr. Robert
Miller for their contributions and assistance.

About the Author
David A. Hayes is cheif of the Computer
Technologies Division of the Advanced
Technology Directorate of the Space and
Missile Defense Technology Center in
Huntsville, Ala., where he manages small busi-
ness and innovative research developments. He

is a subject matter expert for BMDO Global Defense BMC4I
and the Army’s Space Control BMC4I programs. He holds a
bachelor’s degree in electronics engineering from the University
of Tennessee, in Knoxville, and a master’s degree in manage-
ment from the Florida Institute of Technology.

David A. Hayes
U.S.Army Space and Missile Defense Command
Commander U.S.Army Space and Missile Defense Command
Attn: CSSD-TC-TD-AS, David Hayes
P.O. Box 1500
Huntsville,AL 35807-3801
Phone: 256-955-3340
Fax: 256-955-1432
E-mail: David.Hayes@smdc.army.mil
http://users.liveonthenet.com/~dhayes/

18 CR O S S TA L K The Journal of Defense Software Engineering April 2001

Web-Based Applications

W e b S i t e s
Common Vulnerabilities and Exposures
www.cve.mitre.org
The Common Vulnerabilities and Exposures (CVE) site is a list
of standardized names for vulnerabilities and other information
security exposures. CVE is a dictionary, not a database, which
makes it easier to share data across separate vulnerability data-
bases and security tools. CVE content is a collaboration of the
CVE editorial board including representatives from security-
related organizations, academic institutions, government, and
other security experts.

Organization for the Advancement of

Structured Information Standards
www.oasis-open.org
OASIS, the Organization for the Advancement of Structured
Information Standards, is a non-profit, international consortium
that creates interoperable industry specifications based on public
standards such as Extensible Markup Language (XML) and the
Standard Generalized Markup Language (SGML), and others
related to structured information processing. OASIS members
include organizations and individuals who provide, use, and
specialize in implementing the technologies that make these
standards work in practice.

TechNewsWorld
www.technewsworld.com
TechNewsWorld.com is a real-time news service, updated 24-
hours a day, in multiple languages. It provides a central resource
for technology news links from around the world. In addition
to headlines, TechNewsWorld.com also analyzes each news arti-
cle providing small excerpts and a hyperlink to the original news
article, as well as links to related stories from many other
sources.

Projects that fail to meet expectations often began with an ineffective plan. Estimating task duration in projects is one of
the chief culprits. Safety time included in task estimates is nearly always squandered, rendering its value nearly useless.
Parkinson's Law, the "student syndrome," and multi-tasking all conspire with natural dependencies between activities to
effectively assassinate schedules. A new solution to the planning problem is Critical Chain Project Management
(CCPM). CCPM can provide about 90 percent confidence of finishing projects at or before planned times, which are
inevitably shorter than traditional critical path schedules as planned originally. Buffer management provides warning of
danger to the delivery schedule early enough to apply less extreme corrective measures. Schedule, cost, and performance
are all enhanced.

Does Your Internal Management
Meet Expectations?

Eli Schragenheim, H.William Dettmer,
ELYAKM Management Systems Goal Systems International

More than 20 years ago in a programming class, the profes-
sor for system analysis told us that a delay equal to 100

percent of the planned time is certainly within the normal range
for any software project.

Is it much different today? At that time we already knew the
professor’s statement was true, but the question is “Why?” It is
easy to accept the idea that young programmers might be over-
confident about their ability to write the code in almost no
time. It’s also easy to understand why a young programmer
might think that debugging time might approach zero.
However, the reality of software development during the past 20
years should have taught the industry some lessons. There is no
shortage of statistics on the ratio between the time it takes to
write the code and the time required to realize a working proto-
type. A lot is known about software development – after all, the
disappointments of the past should have made some kind of
impression on developers. So why are we continually disap-
pointed? By disappointment we are referring to internal manage-
ment expectations, not our promises to the clients.

Whenever there is a gap between initial expectations and the
real world, it should prompt us to review both the way we set
our expectations, and the way we try to meet them. When we
constantly fail to meet our expectations, we cannot simply justi-
fy it by lack of experience or by the significant amount of
uncertainty involved. We do have the experience, and we are
capable of approximately estimating the impact of the uncer-
tainty. Generally speaking, uncertainty should reflect itself in
both delays and early completions. Though we may sometimes
be disappointed, we should also have experiences where projects
finish earlier than expected. But, is this a common occurrence?

Setting Expectations

Let us first review the process of setting expectations. Suppose
you are the CEO of a small software company. You want to add
a new module to an existing application that will verify the sen-
sitivity of some processes to certain random variables. This
module will rely on your current database, which contains his-
toric data. All you are asking is for the module to apply the
appropriate statistical formulas and generate a report. Nothing
very complex. The technology is understood and the needs are
clear. You present your request to your chief programmer and
ask how many people he needs, and for how long. The chief

programmer, after consulting with his people, returns with an
overall estimate of six man-months, and three months actual
project duration before a prototype is ready for beta-testing with
clients.

Would you be surprised if the prototype is not ready until
nine months, instead of three? Would you be surprised if it was
finished in exactly three months? Could it take a mere two
months?

What does the chief programmer mean by three months of
total project time? Certainly, the time required to deliver such a
module cannot be predicted precisely. It is a random variable
that depends on the level of complexity, which often can only
be determined after actual programming begins. It also depends
on the skills of the specific people involved, what other jobs
those people are required to do simultaneously, and how much
pressure they are under to finish on time. These are just a few of
the parameters that impact actual duration.

Does an estimated three-month completion time mean that
three months is the “expected value” – in other words it will
take three months on average? Is it an optimistic view, meaning
“if we are lucky it will be done in three months?” Or is it a pes-
simistic view, meaning “it should not take longer than three
months?”

To understand the answer, consider the question again.
What would you – the reader currently in the shoes of the CEO
of that small software company – mean when you asked for an
estimate: an average, optimistic, or pessimistic one? Which of
these three would give you the information needed for the deci-
sions you must make: a) Will you proceed to develop that fea-
ture? b) When will you promise a first working module to your
clients? c) How much of your resources must you dedicate to
developing that module?

In most cases, you would probably ask for a pessimistic esti-
mation. A reasonable worst-case scenario tells you the potential
full impact of that decision on your operations. This is even
more the case when you must promise your client a delivery
date. You would like to be able to meet your commitment to
the client, so you would probably prefer your chief programmer
to commit to a date. Now, if your chief programmer under-
stands that this estimate is a commitment, he or she certainly
would not want the project to take more than three months.
The chief programmer’s estimate will probably be based on the

April 2001 www.stsc.hill.af.mil 19

Best Practces

Best Practices

pessimistic view where some “safety” time has been added to the
average (expected) time.

If this is the case, then why do the chances of finishing the
project in a mere two months become so remote? If the chief
programmer’s estimates typically add substantial safety time to
average durations, we should frequently see many projects finish
early. Yet this is almost never the case in the reality of the soft-
ware world. More commonly, it might take six months or more
to deliver the module. And if that is true, what confidence
should we have in the chief programmer’s “pessimistic” esti-
mates in the future?

A Hidden Cause

This phenomenon can be explained by recognizing a vicious
cycle. Any adjustment to the estimate (making it even more
pessimistic than before) does not improve the chances of meet-
ing the estimated/expected time. This is because the estimate
itself, which includes a large degree of safety time embedded in
it, serves to prolong the project. The effect at work here is
known as Parkinson’s Law: Work will expand to consume the
time allotted for it.

Applied to projects, Parkinson’s Law suggests that the dura-
tion of any project stretches – at least – to the full duration of
the time planned for it. In other words, once the project is
planned for three months, human behavior will not let it finish
early. By not allowing the project to finish earlier than estimat-
ed, the chances of finishing late actually increase. Here is how
this happens.

There are three major human motivations behind Parkin-
son’s Law. The first is called the “student syndrome.” The term
originates from the academic world where students typically
wait until just before an assignment is due before beginning it.
As long as we think we have enough time to finish our part in a
project, we do not feel any real pressure to get started.
Consequently, almost all the efforts are concentrated near the
end of the time allowed for the activity, and only very little is
done at the beginning. In essence, the built-in safety time is
squandered. By the time work is actually begun, a timely task
completion depends on mere luck with no safety time to
accommodate the unexpected.

The second motivation is embedded in organizational poli-
tics. If you estimate the necessary “pessimistic” time to be three
months, you certainly are not going to admit it actually took
only two months. Even if the estimate was imposed on you, it is
not likely that you would admit to finishing early, as you could
expect even tighter times to be imposed on you in the future.
Here again, safety time is frittered away. So there are two
human behavioral issues at work. One says, “I don’t have to
start right now – there’s plenty of time.” The other says, “Even
if I finish early, I’m not going to tell anyone about it.”

Lastly the third motivation is even stronger than the preced-
ing two: The code can always be improved. We can add features
that were not requested by the client, but are nice to have all
the same. We can improve the screen layout or use 3D graphics
– even though 2D would do fine. (It looks so much more
sophisticated in three dimensions.) We can also write the code
in a more clever or elegant way.

Giving programmers this latitude to define what any func-
tion or module should actually do serves to consume the safety
time prior to the delivery date. We do not think we are drag-
ging the task. Actually, we feel completely the opposite: There
are so many more things to do in the specified time! After all, no
one really expects early completion. But any additional code –
bells and whistles – tends to complicate the truly necessary part
of the code and may cause huge quality problems. Even one
more day devoted to additions that are not truly required can
result in weeks of searching for and fixing bugs thus causing
even more bugs. The critical balance between the perceived time
to write the code and the amount of time needed for effective
debugging is shattered. Put another way, “The road to hell is
paved with good intentions.”

Even if the safety time added to the average estimate were
relatively small, the impact of Parkinson’s Law is such that most
of the time the best we could ever hope for is to meet the origi-
nal schedule. Jobs would almost never finish early. Unfortun-
ately, it is usually never even this good. Over many tasks, the
nature of the distribution of time for developing a module
makes the full impact of Parkinson’s Law quite deadly.

What does this distribution look like? It is not a nice, sym-
metrical normal distribution. Think about your own experi-
ences. Sometimes working on a one-month job – a true average
estimate, not the estimate given to the boss for public consump-
tion – may take three months. This may not happen frequently,
but sometimes it does occur. On the other hand the one-month
job will never be finished in three days, or probably in a week
either. But it might take two weeks instead of a month. What
we find is that such a distribution of time is not symmetrical.
This occurs more so in software development because of the
tendency to add the niceties that complicate the code. The
resulting distribution of task completion times is more likely to
be skewed, as indicated in Figure 1.

This figure shows a typical probability distribution over
many projects of the number of days it takes to do similar tasks
– or even similar whole projects. The area under the curve
equals a probability of 100 percent. The median (a 50 percent
chance of being less or equal to that number) is 10 days. The
possible outcome may be any number from three on, but above
30 the probability is too small to be of practical value. Yet in
some infrequent cases – but not absolutely rare – such a job

20 CR O S S TA L K The Journal of Defense Software Engineering April 2001

Figure 1. Predicted Project Task Duration

Does Your Internal Management Meet Expectations?

might take 30 days, though most likely it would require 9-10
days.

Notice something very critical in this chart. If you would
like to add enough safety time to your median estimate, you
need to double your estimate of the expected time to be ade-
quately protected.11 And even doing so, you will not be perfectly
protected. In such a case, estimating 20 days seems about right,
though it might actually take longer than that. But it might be
more reliable all the same, were Parkinson’s Law not involved.

So, updating expectations does not prevent new disappoint-
ments. The expectations set the deadline, and the people on the
job see that deadline and try to meet it – not beat or exceed it,
just meet it. However, enough unexpected incidents and prob-
lems occur to delay completion even more. Toward the end of
the project, pressure often builds to sacrifice some of the origi-
nal features that were planned.

Dependencies Impact Outcomes

The example cited above dealt with a simple, straightfor-
ward, single module. In most software projects, such a module
is just one part of the overall project. Between the various mod-
ules in the project, and between the tasks within each module,
there are certain dependencies. Dependencies make a significant
difference in the outcome, because their sensitivity to delays has
a greater impact than not merely finishing early.

Figure 2 shows a typical project activity network in which
three different modules, each done by a different programmer
(or a team) are integrated into one larger module, resulting in a
requirement to test and modify the original code. Integration
cannot start until all the three inputs are done – in other words,
after the last one finishes.

If all modules behave according to a skewed distribution

(Figure 1), there is a fair chance that the overall effort will finish
much later than the linear sum of the longest path (critical
path). In other words the average of the sum is more than the
sum of the averages. Being late in just one of the inputs is fully
transferred to the last task, regardless of how early the other two
are completed. (Variation accumulates at the end of the
process.)

Combine the addition of safety time to every task, wasting
that safety, adding unnecessary bells and whistles, compound
the effect of all these with dependencies, and the result is a late
project. Updating the original expected delivery date does not
help. In fact, it creates the aforementioned vicious cycle.
Expectations fail to be met on a regular basis - a huge problem.

Expressing the Problem as a Conflict

The Theory of Constraints suggests that a fully recognized
problem that has not been overcome is the result of an unre-
solved conflict. A problem seems unresolvable because what
appears to be the solution on one hand seems to intensify the
problem from a different aspect.

Let us consider the vicious cycle described above. On one
hand, safety time must be added to the various tasks to fairly
estimate how long the whole project might take. On the other
hand, we should not add safety to tasks because that safety is
eventually wasted and we inevitably find ourselves facing worse
delays.

By expressing the conflict clearly, we can surface some
underlying assumptions that might be challenged. Figure 3
illustrates our conflict. The objective (A) is to manage our soft-
ware company well. In order to manage our company well, we
must plan software projects realistically (B). We must also com-
plete our software projects as early as possible (C). In order to
plan software projects realistically, we must plan for adequate
safety time in each task (D). In order to complete our software
projects as early as possible, we must not incorporate safety time
for each task (D’). On one hand we must add safety time to
each task; on the other hand we must not. But we cannot do
both.

The typical management solution is to compromise between
the two seemingly contradictory actions. In our software case,
senior management typically does this by arguing with the esti-
mator until agreement is achieved, reluctantly. For instance, you
could argue with your chief programmer that instead of three
months you want it to be ready in only two months, with only
four total man-months invested. The chief programmer might
resist, and you might eventually agree to 10 weeks.

But a compromise approach still leaves the problem in
place: You still cannot realistically estimate when the project will
be completed while time is wasted, delaying project completion

Figure 2. Software Project Activity Network (Three Modules)

April 2001 www.stsc.hill.af.mil 21

Figure 3. The Project Planning Conflict

without giving any real added value.
The importance of structuring the conflict as it appears in

Figure 3 is that it allows us to articulate underlying (and proba-
bly unstated) assumptions. If any of these assumptions are
invalid – or if they can be made invalid – then one or both of
the conflicting prerequisites (D or D’) can be replaced with
some other alternative that satisfies the requirements of B and
C, yet does not pose a conflict. Three key assumptions are
shown in Figure 3.

One of these assumptions says that the completion time of
each task is affected by much uncertainty. Can we challenge
that assumption? Up to a point, we can. There are certainly
ways to reduce uncertainty. For instance, knowing who is going
to do the job and being familiar with his or her capabilities can
help reduce the range of expected time for delivering the mod-
ule. But can we reduce the amount of uncertainty low enough
to dissolve the conflict? In many cases this is not possible. So
this is probably a valid assumption.

What about the other two assumptions? Let us start with
the one at the bottom (between C and D’): “Management can’t
prevent the waste of safety time.” If we could create a situation
where we can continually monitor the use of the safety time, we
might be able to discourage people from wasting it. Can we do
this?

First, we must clearly differentiate between the average esti-
mation and any additional safety time. This would allow us to
monitor the use of the safety time, which would reduce people’s
inclination to waste it. It would certainly allow management to
ask whether the consumption of the safety time is caused by
including features that were not required by the clients.
However, this does not fully invalidate the assumption. It isn’t
practical to track every task and inquire why it used its safety
time. Note that the median 50 percent estimation for every task
means that half the time the task would use the safety time,
even without any conscious intent to waste it. Ineffectiveness in
tracing excessive use of safety time might still encourage people
to behave according to Parkinson’s Law.

The final assumption is even more important to invalidate.
Even in the software world, most projects involve several differ-
ent resources and task dependencies. The ultimate objective is
that the overall project should not be delayed. On-time comple-
tion of individual tasks may be irrelevant. It might take longer
to finish a particular task, but if we can still complete the whole
project on time, why should the delay of an individual task
matter? Moreover, there is no point including safety time for
every task if that time is nearly always squandered anyway.
Accumulating safety time for the project as a whole (at key
points and at the end) is statistically superior; knowing that
individual task safety time has been eliminated neutralizes peo-
ple’s tendency to waste time in return for no real value.

The main idea is to add safety time, but not to every indi-
vidual task. We should use discrete safety time at critical loca-
tions within the project. Each task should be planned to con-
sume the median estimate of the time required. When needed,
the common safety time would be available to use. Making such
safety time common to many tasks would make it much more
difficult to waste.

The Nature of the Solution

To break the vicious cycle depicted in this conflict (Figure 3),
we need to get rid of at least one invalid assumption. Invalid-
ating multiple assumptions would be better. The last two
assumptions cited above, very common today in managing soft-
ware development, can be invalidated with the application of a
new approach based on several new policies:

•Replace critical path concept with the notion of a “critical
chain” as the constraint to earlier completion of any project.

The critical chain22 is defined as the longest chain of opera-
tions linked by either finish-start connection or by resource
availability. Resource availability is typically compromised by
contention: We cannot complete some tasks concurrently,
because they must be done by the same resource unit. The criti-
cal chain concept replaces the critical path concept, which usu-
ally ignores resource dependencies. The total length of the criti-
cal chain dictates the length of the project as a whole.

•Strip safety time from individual tasks. What should
remain is the median. By doing so, we make it clear to every
programmer that we expect them to concentrate only on the
necessary features, avoid the student syndrome, and strive to
complete their work early.

• Establish a project buffer This concept requires aggregat-
ing individual task safety time, while scheduling individual tasks
based on average estimated completion time without safety
time. The buffer is a specified length of time – usually consider-
ably less than the sum of the individual task safety times – that
is placed at the very end of the project, immediately after the
last functional task. The actual completion time of the project is
assumed to be at the end of the project buffer. This buffer com-
pensates for the safety time eliminated from the individual tasks
along the critical chain by re-inserting part of that safety time as
a buffer for the whole chain. If we avoid the effects of
Parkinson’s Law and take advantage of the fact that some tasks
would normally finish early, we can potentially realize a substan-
tial time saving. Some of this aggregated safety time can be used
to buffer other tasks; some of it can actually be eliminated,
resulting in early delivery of the entire project. For planning
purposes, the buffer looks like a task, with predicted start and
finish time, but it has no resource assigned to it.

•Establish feeding buffers. The project buffer is the primary
protection mechanism. It directly protects the project’s due date
from any delay along the critical chain. Delays in tasks that are
not on the critical chain can delay the project completion only if
they delay a critical chain task. To preclude this from happen-
ing, time buffers are inserted wherever a task not on the critical
chain merges with a critical chain task. These are called “feeding
buffers.” They represent safety time to neutralize delays that
otherwise might pass all the way through to the completion of
the last task in the project.

•Manage the buffers. Once the critical chain schedule is
constructed, with appropriate buffers inserted at key points, the
project manager must then monitor the actual state of the
buffers as the project is executed. At any point in time we can
look at the current buffer consumption, meaning the accumu-
lated delay along the chain that ends with the project buffer.

Best Practices

22 CR O S S TA L K The Journal of Defense Software Engineering April 2001

“Buffer penetration” constitutes the total time consumed, for all
tasks to date, over and above expected average task time.

For example, let us assume that the project is a single
sequence of 20 discrete tasks, each of approximately the same
duration. Let us also assume that we have planned a 40-day
project buffer. By the completion of the fifth task (roughly one-
quarter of the way through the project), we have had one task
finish on time; one finish two days early; and three tasks finish
three, five and seven days late, respectively. Because one task fin-
ished two days early, the 40-day buffer is penetrated by 13 days
(3+5+7-2). One quarter of the way through the project, we’ve
used 32.5 percent of the project buffer. This is a disturbing
indication because the protection (buffer) is being consumed at
a faster pace than the progress of the project. At the moment,
this might not be enough to warrant any actions to expedite,
but it is enough of an indication to keep us watching the next
few activities very closely. If any of those activities turn out to
overrun their expected times (i.e., if more of the project buffer
is consumed), we would probably consider options to accelerate
progress.

The comforting aspect of this for the project manager is
that the amount of the buffer consumed gives a clue to how
much is left to protect the remaining tasks. It provides warning
of a possible late delivery very early in the schedule, while there
is still time to make small corrections versus crashing the proj-
ect. The project buffer status, relative to where we are on the
critical chain, gives the project manager invaluable information
about the status of the project as a whole.

Other actions are required to apply this approach in multi-
project environments, but that is beyond the scope of this
article.

An Example

Figure 4 shows a basic structure for a simplified software proj-
ect. The tasks outlined here are: system analysis, software
design, program module 1, program module 2, program mod-
ule 3, test design, user documentation (first draft), system inte-
gration, system testing, final user documentation, and finishing
(packaging and shipping).

Task durations include individual safety time for every task
providing a 90-percent probability of finishing on time or early.
The estimated time to complete the whole project is 106 days.

There is one problem in this plan. Only two programmers
are assigned to the project. We have three modules to program
that could theoretically be done in parallel, but because of the
lack of one programmer, two of the modules will need to be
completed consecutively. Also, system integration and system
testing cannot begin until all the modules are completed and
both programmers are available to support these activities.

The first step to achieving a realistic schedule is to resolve
the resource contention. We can also identify the critical chain –
the chain of tasks that dictate the length of the project. Figure 5
shows the original schedule replanned with the critical chain in
mind. The figure highlights those tasks (heavy arrow).
According to the adjusted plan, the project should be completed
on day 118.

We have simulated this example to evaluate the impact of
Parkinson’s Law. For our computerized simulation, we have
assumed that Parkinson’s Law applies only 75 percent of the
time. In other words when a task seems to have enough time, in
75 percent of the cases the performer will fill the excess time so
that delivery to the next step in the process would happen
exactly at the scheduled time. The other 25 percent of the time,
when the task should take less than the planned duration, it
actually does take less time. In Figure 5 we have simulated the
case characterized 1,000 times. The project finished on time or
early in only 34 percent of the runs (340 times out of 1,000).
Remember that every task estimate was inflated so that in 90
percent of the cases it would finish on time or earlier, yet the
project as a whole finished on schedule just one-third of the
time. So adding all that individual task safety time did not do
much good.

Following the concepts described earlier, the next step is to
strip the safety time from each task and establish a project
buffer and feeding buffers. That arrangement looks like Figure 6
(See page 24). The blocks with the beveled ends indicate the
buffers.

Notice that all the tasks are now planned to take only about
half of the time they were assigned previously. But we are not
fooling ourselves – not all of them will meet those schedules.
Actually, we expect that about half of the tasks will actually take
longer than planned, so we place a buffer of 30 days at the very
end of the project. While the last task appears to finish on day
59, we actually expect it to finish at/or before day 89. Notice
also the feeding buffers at the right side of rows A, B, and C.

Does Your Internal Management Meet Expectations?

April 2001 www.stsc.hill.af.mil 23

Figure 4. Three Module Software Development Project

Figure 5. Critical Chain Activity Network

They protect critical chain tasks from delays induced by non-
critical chain tasks.

Finishing a project in 89 days rather than 118 days seems
very favorable. But we know that our original project plan was
not too realistic. Do we really stand a chance of completing in
only 89 days?

Even though we assume that half of the tasks would need
more than the expected time to complete, the shorter planned
time for all tasks helps to drastically reduce the impact of
Parkinson’s Law. After running the simulation in this configura-
tion (with project and feeding buffers in place) 1,000 times, the
project finished on time in 92 percent of the runs; 8 percent of
the time it took more than 89 days. Buffers cannot offer 100-
percent protection. But which would you rather have: 34 per-
cent probability or 92 percent?

Figure 7 shows one discrete run out of the 1,000. The criti-
cal chain tasks are indicated by the heavy black arrow in Figure
5. The actual run is reflected in the hollow arrows above the
“plan” bars. The dark stripes in each buffer symbol show how
much of the buffer was consumed. Only one of the three feed-
ing buffers was fully consumed. The consumption of the project
buffer resulted from delays in the critical chain tasks, especially
the next-to-last one. All in all, the project finished in 77 days in
this run, well within our expectations.

Conclusion

Due to the vicious cycle inherent in software projects, updating
our expectations only worsens a bad situation.Two central ideas
to solve the vicious cycle emerge from verbalizing the problem
as a conflict between two required actions: Add safety time to

every task on one hand, but refrain from adding safety time to
every task on the other.

The solution is developed from challenging two basic
assumptions. First we cannot prevent wasting safety time; sec-
ond we must strive to ensure that every individual task is fin-
ished at the planned time.

Accumulating the buffers where safety is truly needed
enables us to set and achieve realistic expectations. Monitoring
these buffers is crucial to successful project execution. Though
not all tasks can be expected to go exactly as planned, effective
buffer management assures a much higher probability that the
overall project will be delivered on time.◆

Notes
1. There are three common values that represent the “center” of

a statistical distribution: mean, median and most likely. For
project task estimation, we consider the median an easier
measure to estimate intuitively. We also believe it to be more
relevant for decision making. The mean value is affected by
extreme values that should not, in our opinion, be part of
routine decision making. Note that while the three values
are different for skewed distributions, for the human intu-
itively doing the estimating, the differences can be ignored
for practical purposes.

2. For more information about Critical Chain Project
Management see Project Scheduling According to Dr. Goldratt
by Timothy K. Perkins in January 2001 CROSSTALK. Also,
visit the Goldratt Institute Web site at www.goldratt.com,
the Goal Systems International Web site at
www.goalsys;com, Goldratt’s site at www.eligoldratt.com,
and the Web site maintained “as a hobby” by David
Shucavage at www.rogo.com/cac/index.htm

24 CR O S S TA L K The Journal of Defense Software Engineering April 2001

Figure 6. Project Buffers and Feeding Buffers

Figure 7. Critical Chain Activity Network (Simulation Run #77)

Best Practices

Did this article pique your interest?

Want to learn more about Critical Chain Scheduling,
Theory of Constraints Thinking Processes, or the Theory of
Constraints (TOC) in general? Then attend the Thirteenth
Annual Software Technology Conference 2001 to be held April
29 – May 4 in Salt Lake City.

Dr. Eliyahu M. Goldratt, father of the Theory of
Constraints, and author of several books on the Theory of
Constraints will be the plenary speaker on May 3.

H. William Dettmer and Eli Schragenheim will address the
Theory of Constraints Thinking Processes and Critical Chain
Scheduling in the Software Technology Support Center
Sponsored Track (Track 3) on May 3 following Dr. Goldratt’s
speech. In their presentation titled “Software Development
Without the High Blood Pressure and Premature Grey Hair,”
Dettmer and Schragenhieim will describe how the principles of
TOC can be applied to software development and project
management.◆

April 2001 www.stsc.hill.af.mil 25

Letter to the Editor
Dear Editor:

I just received the December 2000 issue of CROSSTALK.
How could you leave out the Project Management Institute’s
(PMI®) Web site www.pmi.org ? You have shortchanged your
readers on this one. PMI is one of the leading project manage-
ment advocates in the United States. Since its founding in
1969, PMI has grown to be the organization of choice for proj-
ect management professionalism. With nearly 70,000 members
worldwide, PMI is the leading nonprofit professional associa-
tion for project management. PMI establishes project manage-
ment standards, provides seminars and educational programs,
and professional certification that more and more organizations
desire for their project leaders.

DDaavviidd CCootttteennggiimm PPMMPP,,CCSSTTEE,,CCGGFFMM,,MMBBAA
BBuussiinneessss MMaannaaggeerr,, PPrroojjeecctt IInntteeggrraattiioonn
DDeeffeennssee JJooiinntt AAccccoouunnttiinngg SSyysstteemm
DDeeffeennssee FFiinnaannccee aanndd AAccccoouunnttiinngg SSeerrvviiccee

April 29-May 4

Software Technology Conference
(STC 2001)
www.stc-online.org

May 1-3
2001 IEEE Radar Conference

www.atlaessgrss.org/radarcon2001

May 12-19
23rd International Conference on Software Engineering, and

International Workshop on Program Comprehension
www.csr.uvic.ca/icse2001

May 8-14
Software Testing Analysis and Review

www.sqe.com/stareast

May 22
7th Annual Montgomery Area IT Partnership Day

web1.ssg.gunter.af.mil/partnership

June 5-7
AFCEA's 55th International Convention and Exposition

www.technet2001.org

June 11-13
E-Business Quality Applications Conference

qaiusa.com/conferences/june2001/index.html

June 18-22
ACM/IEEE Design Automation Conference

www.dac.com

June 25-27
2001 American Control Conference

www.ece.cmu.edu/~acc2001

Coming EventsAbout the Author

EEllii SScchhrraaggeennhheeiimm has been associated with
the Theory of Constraints for 16 years. He is
active both as consultant and educator, and as
software developer of simulations used for
management education. He works closely with
Dr. Eli Goldratt, the father of the Theory of
Constraints, especially on issues of software

development. Schragenheim has a master’s degree from Tel Aviv
University, Israel, and a bachelor’s degree in mathematics from
Hebrew University, Israel. He is the author of “Management
Dilemmas: The Theory of Constraints Approach to Problem
Identification and Solutions,” co-author with H. William
Dettmer of “Manufacturing at Warp Speed: Optimizing Supply
Chain Financial Performance,” and co-author with Dr. Eli
Golidratt and Carol Ptak of “Necessary But Not Sufficient.”
Schragenheim can be reached at:

EE--mmaaiill:: eellyyaakkiimm@@nneettvviissiioonn..nneett..iill

HH.. WWiilllliiaamm DDeettttmmeerr has more than 20
years of leadership and management experience
in operations and logistics environments. He
was an adjunct faculty member at the
University of Southern California and has
taught extensively at the graduate level on the
Theory of Constraints, total quality manage-

ment, project management, systems analysis, management con-
trol systems, and organizational behavior and development.
Dettmer has a bachelor’s degree from Rutgers University and a
master’s degree from the University of Southern California. He
is the author of “Goldratt’s Theory of Constraints: A Systems
Approach to Continuous Improvement,” and “Breaking the
Constraints to World-Class Performance,” Dettmer can be
reached at:

GGooaall SSyysstteemmss IInntteerrnnaattiioonnaall
EE--mmaaiill:: ggssii@@ggooaallssyyss..ccoomm
VVooiiccee:: ((336600)) 556655--88330000

26 CR O S S TA L K The Journal of Defense Software Engineering April 2001

Karl von Clausewitz defined war as “… an act of violence
intended to compel our opponent to fulfill our will … In

order to attain this object fully, the enemy must be disarmed,
and disarmament becomes therefore the immediate object of
hostilities … [1].” At the end of the second millennium, this
definition no longer describes the full spectrum of modern war-
fare. In the near future, – with software alone – we will have
the potential to make war without the use of violence and fulfill
the second half of von Clauswitz’s definition. Today’s software-
intensive systems make this possible.

Cyber describes systems that use mechanical or electronic sys-
tems to replace human control. In this paper the term includes
systems that incorporate software as a key control element. Cyber
warfare can be executed without violence, and therefore the
dependence on software intensive systems – cyber systems – can
make nations vulnerable to warfare without violence.

Full-Circle Protection Required
Cyber warfare is the conduct of military operations according to
information-related principles [2]. However, this does not
define the full degree of capabilities now possible in cyber war-
fare. Limiting the scope of cyber warfare to information-related
principles does not describe what happens when an enemy dis-
rupts the electrical power grid of a nation by hacking the con-
trolling software (Figure 1). Information is not only at risk – so
is the fundamental control of civilization. As technology pro-
gresses, this fundamental control will continue to devolve into
networks and software-controlled electronics [3].

This transition has already occurred in aviation. Previously,
100 percent of an aircraft’s performance and capabilities were
defined by hardware – the physical makeup of the aircraft.
Today in the most advanced aircraft, 75 percent or more of the
aircraft’s performance and capability is absolutely dependent on
the software [4]. Without software, aircraft would not be con-
trollable or reach the desired performance capabilities1. In some
cases, through software, aircraft performance is gaining limited

independence from physical configuration2. Software depend-
ence and hardware independence are growing: modern aircraft
fly-by-wire, their engines are controlled-by-wire, their weapons
are fired- and dropped-by-wire. Systems that in the past were
entirely hardware with mechanical control are being replaced by
software with software control. Software defines the strength of
modern systems, and through networking provides a basis for
the integration of many disparate items. These networked soft-
ware systems are under attack today, and the attacks are increas-
ing (Figure 2).

Unfortunately current Department of Defense (DoD) doc-
trines and instructions do not adequately cover the scope of
cyber warfare [5]. Several handle information warfare as a dis-
crete part of a military system. These include Joint Publication
3-13 Joint Doctrine for Information Operations (JP3-13), Joint
Publication 3-13.1 Joint Doctrine for Command and Control
Warfare (JP3-13.1), and instructions such as DoD 5000.2-R
Mandatory Procedures for Major Defense Acquisition Programs,
and Major Automated Information System Acquisition Programs.
Current doctrine does not address software as the major element
of a military fighting system.

Yet as the above discussion shows, many software and soft-

Cyber Warfare: A New Doctrine and Taxonomy

Software is a key component in nearly every critical system used by the Department of Defense.
Attacking the software in a system – cyber warfare – is a revolutionary method of pursuing war.
This paper discusses the limitations of current doctrine and suggests new cyber warfare taxonomy.

Lt. Col. Lionel D. Alford Jr.
U.S. Air Force

Figure 1. Infiltration of a Utility Figure 3. Infiltration of an Aircraft

April 2001 www.stsc.hill.af.mil 27

Open Forum

Figure 2. Number of CERT Incidents Handled (3)

ware-controlled systems cannot be separated from the system
being developed. The F-22 weapon system is an example of a
software-controlled aircraft system that contains and communi-
cates with integrated information systems (Figure 3, page 27).
The F-22 is not a closed system; external information systems
update and integrate F-22 combat operations during flight.
Through these external connections, both the information sys-
tems and the basic software systems of the F-22 can be
attacked. Current information warfare doctrine in the Joint
Pubs is mainly concerned with security of external C4I systems
integrated on the F-22, but software-intensive systems make
internal systems of the F-22 vulnerable to cyber warfare attack.
Our doctrine must account for these vulnerabilities and provide
methods of offense and defense. Definitions for building future
weapon systems cyber forces doctrine and recommended meth-
ods to incorporate them follow.

Cyber Warfare Definitions
Joint Pub 3-13, Joint Pub 3-13.1, and DoD 5000.2-R focus

on information systems but not software controlled systems; these
documents’ definitions are not sufficient to describe the full range
of cyber warfare. The Computer Emergency Response Team®

coordination center does provide a strong set of common terms
to define cyber system security for the DoD [6], but these terms
do not discuss military doctrine or national security.

Furthermore, these terms focus on current methods of
defense against infiltration and attack; they do not focus on
future cyber force capabilities. We need a new taxonomy that
includes the full range of cyber operations and aids the develop-
ment of a national cyber warfare doctrine. (See accompanying
sidebar).

Military Cyber Warfare Targets
Any military system controlled by software is vulnerable to
cyber attack. The first step in any attack is cyber infiltration; all
systems that incorporate software are vulnerable to cyber infil-
tration4. Actions following cyber infiltration can affect organiza-
tions via the transfer, destruction, and altering of records –
cyber raid. Software within systems can be manipulated or sys-
tems controlled by that software can be damaged or controlled
– cyber manipulation. The software itself can be copied, dam-
aged, or rewritten – cyber assault.

Military Command, Control, Communications,
Computers, and Intelligence (C4I) systems are particularly vul-
nerable, and are the primary focus of DoD cyber-related doc-
trine. JP 3-13 and JP 3-13.1 both provide doctrine for informa-
tion related warfare. C4I systems are a very complex mix – from
radios to radars, mainframes to PCs. Military C4I uses inter-
faces through the Internet, base and organizational Local Area
Networks (LAN), modems, civilian and military communica-
tion systems, navigation systems, and radios in all frequency
ranges. Military C4I systems are extremely vulnerable because
they interconnect.

Cyber infiltration can enter at many points and potentially
affect a myriad of systems. These systems and their interactions
are so complex that any modern military organization is unlike-
ly to trace the full potential of any single cyber infiltration. The

possibility exists for cyber attacks of every type, and the results
can be catastrophic. For instance, nuclear weapon control sys-
tems are incorporated into military C4I. As demonstrated by
recent incursions in DoD networks, databases, and Web sites
[7], almost any dedicated foe can engage in cyber attacks against
military computer systems [3]. Since military computers are the
cores of national C4I, successful intentional and unintentional
cyber warfare attack against such targets pose a national security
peril.

Weapon systems are cyber attack targets, but current DoD
doctrine adequately covers cyber attacks on military hardware
systems such as aircraft, vehicles, etc. that require software to
operate [8, 9, 10]. As noted previously, the F-22 is a cyber-con-
trolled aircraft (Figure 3). Infiltrating and degrading the air-
craft’s systems directly or via its C4I connections can be as dev-
astating as shooting it out of the sky. Cyber infiltration of the
C4I system providing data to modern aircraft allows an avenue
for cyber raid, manipulation, and assault.

Because many systems like the Global Positioning System

A New TA New Taxonomy of Cybaxonomy of Cyber Ter Termserms

CCyybbeerr wwaarrffaarree (CyW) - Any act intended to compel an oppo-
nent to fulfill our national will, executed against the software
controlling processes within an opponent’s system. CyW
includes the following modes of cyber attack: cyber infiltration,
cyber manipulation, cyber assault, and cyber raid.
CCyybbeerr iinnffiillttrraattiioonn (CyI) - Penetration of the defenses of a soft-
ware-controlled system such that the system can be manipulat-
ed, assaulted, or raided.
CCyybbeerr mmaanniippuullaattiioonn (CyM) - Following infiltration, the control
of a system via its software that leaves the system intact, then
uses the capabilities of the system to do damage. For example,
using an electric utility’s software to turn off power.
CCyybbeerr aassssaauulltt (CyA) - Following infiltration, the destruction of
software and data in the system, or attack on a system that dam-
ages the system capabilities. Includes viruses, overload of sys-
tems through e-mail (e-mail overflow), etc.
CCyybbeerr rraaiidd (CyR) - Following infiltration, the manipulation or
acquisition of data within the system that leaves the system intact
and results in transfer, destruction, or alteration of data. For exam-
ple, stealing e-mail or taking password lists from a mail server.
CCyybbeerr aattttaacckk - See CyI, CyM, CyA, or CyR.
CCyybbeerr ccrriimmee (CyC) - Cyber attacks without the intent to affect
national security or to further operations against national security.
IInntteennttiioonnaall ccyybbeerr wwaarrffaarree aattttaacckk (IA) - Any attack through
cyber-means to intentionally affect national security (cyber war-
fare) or to further operations against national security. Includes
cyber attacks by unintentional actors prompted by intentional
actors. (Also see Unintentional Cyber warfare attack (UA).)
IInntteennttiioonnaall ccyybbeerr aaccttoorrss (I-actors) - Individuals intentionally
prosecuting cyber warfare (cyber operators, cyber troops, cyber
warriors, cyber forces).
UUnniinntteennttiioonnaall ccyybbeerr wwaarrffaarree aattttaacckk (UA) - Any attack through
cyber-means without the intent to affect national security
(cyber crime).◆

28 CR O S S TA L K The Journal of Defense Software Engineering April 2001

Open Forum

and future intelligence systems automatically update aircraft
information and intelligence, they can allow undetected aircraft
infiltration. Intelligence, navigation, and communication sys-
tems are integrated with each other and to a host of other air-
craft systems – the flight control system (through the autopilot),
propulsion system (through the autothrottles), radar system,
master warning system, and environmental control system.
Using the correct control inputs or reprogramming an infiltrator
could produce any level of systems damage, from driving the
aircraft off-course to overwriting the flight control software.

Identifying Cyber Warfare Vulnerabilities
The first rule in identifying cyber warfare (CyW) vulnerabilities
is that any software-controlled system that can accept input can
theoretically be infiltrated and attacked. This means all systems
that accept input are vulnerable. Fundamentally, there are two
ways to infiltrate cyber systems: physical and signal inputs.

•PPhhyyssiiccaall iinnffiillttrraattiioonn is made through the system hardware.
For example, the on/off switch, keyboard, mouse, cockpit con-
trols, flight controls, and removable media provide physical
inputs into a system. The first line of defense for a software-
based system is to secure the physical inputs and outputs of the
system. If these are not secure, the system is not secure. Any
system can be compromised if a cyber attacker can enter the
facility/aircraft/vehicle and directly infiltrate the system. The
cyber infiltration can be maintained afterwards by installing
repeaters and remote input devices on the hardware.

For example, electronic bugs on phone lines are a common
method of surreptitious surveillance; modem and LAN lines are
equally vulnerable. An easy method of physical infiltration is to
use a spare LAN connection on a hub or router. Using common
network parts, a connection can be made directly, or through a
Radio Frequency (RF) transmitter (wireless connection) from
the LAN to an infiltrator’s computer. These infiltration meth-
ods are only discovered by careful system audits or visual
inspection [11].

••SSiiggnnaall iinnffiillttrraattiioonn comes through existing indirect/direct
connections to a system. These connections are typically LANs,
Infrared (IR) devices, RF connections (radios), and modems
(phone lines). Any system with an external connection can theo-
retically be infiltrated; only the number of direct and indirect
connections into the system limits the number of potential entry
points. For instance, a system with an Internet server is vulnerable
to cyber infiltration from any computer connected to the
Internet. An isolated network with a modem is vulnerable to any
computer that can call into it. These input paths are used to infil-
trate the system and then assault, manipulate, or raid it.

Physical infiltration may be protected by physical security:
walls, fences, restricted areas, identification, guards, etc. Signal
infiltration has similar defenses, but these are incorporated with-
in the software/hardware itself (for instance, passwords, coded
signals, firewalls, terminal identification, isolation, and system
monitors).

The second rule of identifying CyW vulnerabilities is to
expect every software-controlled system to be the objective of an
attempted cyber infiltration. Even isolated systems can experience
cyber assault through a computer virus brought in on a contami-

nated floppy disk. Because cyber attacks are largely unpredictable,
all systems must have some degree of protection, and the level of
protection must be commensurate with the likelihood and conse-
quences of expected attack. Every vulnerable system needs proac-
tive and effective virus-protection in place.

All infiltration’s should be assumed to be cyber attacks, until
proven otherwise. Unintentional actors (U-actors) will be influ-
enced by intentional actors (I-actors). The anonymity of the
Internet makes it possible for a cyber operative to pass informa-
tion on password-cracking, system phone numbers, infiltration
techniques, and programs to U-actors. Many U-actors are
young, immature, and unsophisticated. However, I-actors, oper-
ating through U-actors on the Internet may make some attacks
that appear unintentional. The recent cyber infiltration of infor-
mation systems by California teens trained by the Israeli hacker
“Analyzer” is an example of this mentoring relationship [12].

I-actors can easily influence the direction of attacks by pro-
viding system access numbers and system passwords. Trojan
horse programs written and passed to U-actors achieve an
entirely different result than the U-actor intended. The out-
come, from the perspective of the I-actor, is the same as if the
attack had been made directly. Because passwords and infiltra-
tion data are shared by U-actors across the net, the I-actor’s mis-
sion package is likely farmed out to more than one U-actor, or
data may be passed through multiple U-actors. This ensures
many attacks on the same target and further muddies the trail
back to the source. This also means organizations that detect
attacks and neutralize them should be prepared to receive the
same attack over and over again. In addition, organizations that
detect attacks must share data on the attacks immediately with
other organizations [13].

Measuring Cyber Defense Effectiveness
The effectiveness of cyber forces cannot be measured by a lack
of detected cyber infiltration against targets. This is because
undetected cyber infiltration is certainly taking place [14], and
most cyber infiltration’s and attacks go undetected [13]. The
only reasonable measure of effectiveness is detecting cyber infil-
tration when it happens. This is why a multi-layered approach
to cyber system defenses is necessary. If the policy of the United
States regarding CyW is wholly one of defense, the absolutely
perfect measure of defense effectiveness is that every cyber infil-
tration is identified and the U- or I-actor neutralized.

The success of cyber operations against and in support of
the U.S. government must be classified. As mentioned previous-
ly, when a cyber attack occurs, with due regard for active cyber
operations, the detecting agency should immediately inform all
possible targets [13]. But, when an agent of the government is
the victim of successful cyber infiltration or attack, that agency
should not release the degree or effects of any cyber operation
against it. Acknowledging the results would be similar to
acknowledging the classification of publicly published materials.
It would tell the enemy they are successful and provide infor-
mation so the next attack might be even more effective. The
best approach is for the agency to make no comment at all and
provide immediate recovery and cleanup as part of its cyber
operations. This keeps the I- and U-actors guessing and allows

April 2001 www.stsc.hill.af.mil 29

Cyber Warfare:A New Doctrine and Taxonomy

Open Forum

30 CR O S S TA L K The Journal of Defense Software Engineering April 2001

the effective use of the offensive and defensive methods above.
This is not to say the agency should not report the attack to
proper authorities and provide suggested methods of protection.

In light of today’s cyber warfare, the first proactive step is
to develop a strong doctrine that includes all the dimensions of
current and future cyber warfare threats. Taxonomy and cata-
loged security methods go a long way to build a framework for
this doctrine. The challenge is to put the required effort and
funding forward to ensure a strong level of security for all soft-
ware-controlled systems.

Conclusion
Cyber operations have the potential to overcome any system
controlled by software. The military systems we are developing
today depend on software and software-controlled components
to operate. Cyber warfare defenses must be incorporated into all
of these military systems. The future of warfare makes it imper-
ative that cyber warfare concerns become the interest of every
software and hardware developer – not only of military systems
but civilian systems as well.

Cyber warfare may be the greatest threat that nations have
ever faced. Never before has it been possible for one person to
potentially affect an entire nation’s security. And, never before
could one person cause such widespread harm as is possible in
cyber warfare. Like radioactive fallout, the affects of cyber war-
fare can devastate economies and civilizations long after the
shooting war is over. This genie can’t be put back into the bot-
tle; societies will not want to give up the manifold prosperity
brought about by cyber systems. But, a nation must ensure that
it maintains the upper hand in cyber warfare. If our nation can-
not, then even with the most powerful military and defense
economy in the world, we face an insurmountable threat to our
future prosperity and security5.◆

References
1. von Clausewitz, Karl, On War, Book I, translated by

Michael Howard and Peter Paret, Princeton University
Press, 1976.

2. Arquilla, John and David, Ronfeldt, Emergent Modes of
Conflict, Cyberwar is Coming, The RAND Corporation,
1992.

3. Vatis, Michael A., Cybercrime, Transnational Crime,
and Intellectual Property Theft, Statement for the record
before the Congressional Joint Economic Committee,
1998, www.ilspi.com/vatis.htm

4. U.S. Air Force, Bold Stroke, Executive Software Course,
1992.

5. Stein, George J., Information Warfare, Airpower Journal,
Vol. IX, No. 1 Spring 1995.

6. Carnegie Mellon, Software Engineering Institute, CERT®

Coordination Center, Glossary of Terms, 1997,
www.cert.org/research/JHThesis/appendix_html/
Glossary.html

7. Lemos, Robert, DoD Confirms Hacker Boast, ZDNN,
1998, www.zdnet.com/zdnn/content/zdnn/0421/
309056.html

8. Joint Publication 3-13, Joint Doctrine for Information
Operations, 9 Oct. 1998.

9. Joint Publication 3-13.1, Joint Doctrine for Command
and Control Warfare, 7 Feb. 1996.

10.DoD 5000.2-R, Mandatory Procedures for Major
Defense Acquisition Programs and Major
Automated Information System Acquisition
Programs, 27 Feb 1998.

11.Marshall, Victor H., Intrusion Detection in Computers,
Summary of the Trusted Information Systems (TIS) Report
on Intrusion Detection Systems, 1991.

12.Cole, Richard, FBI Hunts Master Hacker, ABC
News: High Technology, The Associated Press, 1998.

13.Howard, John D., An Analysis Of Security Incidents On
The Internet 1989 - 1995, Carnegie Mellon University,
1997. http://www.cert.org/research/JHThesis/Start.html

14.Lee, Stella, Most Computer Hackers Go Unnoticed,
South China Morning Post, 1998.
www.infowar.com/HACKER/hack_030198s_b.html-ssi

Notes
1. The F-16 is unstable below Mach one, and uncontrollable

without its software based flight control system. The Boeing
777 and the Airbus 330 have software flight control systems
without any manual backup; the performance of these air
craft is dependent on their digital flight control systems.

2. The F-22 in high angle of attack flight uses software
controlled vectored thrust and flight controls to maneuver
the aircraft.

3. As seen in allegations that a Cincinnati Enquirer reporter
stole voice mail messages from Chiquita Brands International
[7], CyR is becoming a common method to take information
from cyber systems.

4. The hacker is a U-actor commonly characterized as affecting
cyber infiltration without further damage to a computer sys
tem.

5. The views expressed in this paper represent the personal
views of the author and are not necessarily the views of the
Department of Defense or of the Department of the Air
Force.

About the Author
LLtt.. CCooll.. LLiioonneell DD.. AAllffoorrdd JJrr is an aeronautical test poli-
cy manager for the Headquarters Air Force Materiel
Command, Wright-Patterson Air Force Base, Dayton,
Ohio. He is an Air Force experimental test pilot with
more than 3,600 hours flying more than 40 different
types of aircraft. He is a member of the Society of
Experimental Test Pilots. Lt. Col. Alford has served in

worldwide military operations as a member of three different operational
combat squadrons. He is a graduate of the Air Ground Operations
School, the Combat Aircrew Training School, the All Weather Aerial
Delivery Training School, Defense Systems Management College, and
the USAF Test Pilot School. He was an instructor for three Air Force air-
craft and a senior Air Force evaluator. He has a master’s degree in
mechanical engineering from Boston University and a bachelor’s degree
in chemistry from Pacific Lutheran University. Lt. Col. Alford is a com-
puter experimenter and programmer, and is currently working on certifi-
cation as a Microsoft system engineer.

LLiioonneell DD.. AAllffoorrdd JJrr..
HHQQ AAFFMMCC//DDOOPP
44337755 CChhiiddllaaww RRooaadd,, RRoooomm SS114433
WWrriigghhtt--PPaatttteerrssoonn AAFFBB,, OOHH 4455443333--55000066
PPhhoonnee:: 993377--225577--88449966
LLiioonneell..aallffoorrdd@@wwppaaffbb..aaff..mmiill

Dickens, introduction to A Tale of Two
Cities could easily have been describ-

ing a tale of two software developers where
wisdom, foolishness, hope, and despair
reside in the same industry, organization,
and projects. There are two factions in the
software development community. They
differ in thought, style, and process and
are often at odds, yet dependent upon one
another.

In one corner are disciplined design-
ers, in the other are free-form program-
mers. Don’t let the names mislead you.
The designers program, and the program-
mers design. They share a passion for
developing software but their methods
and attitudes are as different as a skier is to
a snow boarder on the alpine slopes.

In my college days there was only one
way to glissade down a slope of white pow-
der and that was with two planks – one on
each foot. It was fresh, challenging, exhila-
rating, and the only thing that changed
from year to year was the color of your
parka and lift ticket prices.

As I grew older a new wave swept
across the peaks and onto the slopes: baggy
clothes, multi-colored hair, and the two
planks were fused into one fat board. It
was called shredding, and it was every-
thing skiing was not. Skiing had become a
safe, tidy, aristocratic sport full of rules
and regulations. Shredding was free, open,
and rebellious. A skier’s herky-jerky turns
down steep slopes were the antithesis of
the boarder’s fluidity; the two worlds did
not mix.

Likewise, in my college days there was
only one way to develop software and that
was creative free-form. No rules, you
choose the tools, damn the fools approach.
We were pioneers, and it was exhilarating.
Little did we know that the hardware lim-
itations we complained about actually

saved us from mass chaos.
Now a new wave sweeps across the

cubicles and onto the software scene.
Dress is suit and tie, hair combed, and dis-
cipline is the name of the game. Its roots
are in the industrial quality movement,
and it is everything free form is not. Free
form has become unsafe, untidy, and igno-
rant as hardware limitations disappeared
and complexity skyrocketed. Disciplined
designers are prepared, methodical, and
stuffy. The two worlds do not mix.

Back on the slopes another subtle but
startling trend has arrived. Snowboarders
bored by the ease of riding are strapping
on skis. Skiers like Johnny Mosely are tak-
ing more air and stomping more radical
jumps than borders. I donned a fat plank
when my son picked up the sport and
found a new exhilaration. The line drawn
in blood between skiers and boarders is
fading, giving way to increasing mutual
respect. There is a new prestige associated
with “multi-glissers” who can exploit a
slope in any gear, under all conditions, at
any time.

Perhaps our fellow bit benders could
learn something from the alpine armistice.
Software zealots and rebels who share the
same passion are blind to the complimen-
tary talents each hold. We are no longer
trying to get hello on the terminal screen.
Today’s massive and complex software
projects require both discipline and cre-
ativity. We should respect and cultivate a
new breed of software developer who
apply creativity and discipline to any proj-
ect, on any platform, at the right time.

Will that happen before I prevail over
“Grizzly,” the 2001 Olympic downhill run
at Snowbasin, Utah? Let the games
begin.u

– Gary Petersen, Shim Enterprise Inc.

BACKTALK

April 2001 www.stsc.hill.af.mil 31

Get Your CROSSTALK

Free Subscription
Fill out and send us this form.

OO-ALC/TISE

7278 Fourth Street

Hill AFB, UT 84056
Fax: 801-777-8069 DSN: 777-8069

Voice: 801-775-5555 DSN: 775-5555

Or request online at www.stsc.hill.af.mil

NAME:______________________________

RANK/GRADE:______________________

POSITION/TITLE:_____________________

ORGANIZATION:______________________

ADDRESS:___________________________

BASE/CITY:_________________________

STATE:______ ZIP:____________

VOICE: ______________________

FAX:__________________________

E-MAIL: _____________@______________

CHECK BOX(ES) TO REQUEST BACK ISSUES:

JUL 2000____ CMMI

AUG 2000____ PROCESS IMPROVEMENT

SEP 2000____ COTS

OCT 2000____ NETWORK SECURITY

NOV 2000____ SOFTWARE ACQUISITION

DEC 2000____ PROJECT MANAGEMENT

JAN 2001____ MODELING/SIMULATION

FEB 2001____ MEASUREMENT

MAR 2001____ PROCESS IMPROVEMENT

A Tale of Two Developers

It was the best of times, it was the worst of times, it was the age of wisdom, it
was the age of foolishness, it was the epoch of belief, it was the epoch of

incredulity, it was the season of light, it was the season of darkness, it was the
spring of hope, it was the winter of despair, we had everything before us, we had
nothing before us, we were all going direct to Heaven, we were all going direct

the other way.
–Charles Dickens

32 CR O S S TA L K The Journal of Defense Software Engineering April 2001

The Vulnerabilities of Developing on the Net
– Web site Applications –

Continued from page 10...

CrossTalk / TISE
5851 F Avenue
Building 849, Room B04
Hill AFB, UT 84056-5713

PRSRT STD
U.S. POSTAGE PAID

Kansas City, MO
Permit 34

Sponsored by the
Computer Resources
Support Improvement

Program (CRSIP)

	Index
	From the Publisher
	CrossTalk's Top Five Software Projects
	The Vulnerabilities of Developing on the Net
	The Ideal Collaborative Environment
	Authors' Meeting
	The Potential of Extensible Markup Language
	Web Sites
	Does Your Internal Management Meet Expectations?
	Coming Events
	Letter to the Editor
	STC 2001
	Cyber Warfare: A New Doctrine and Taxonomy
	BackTalk
	Back Cover
	Cover

