

LLtt.. CCooll.. GGlleennnn AA.. PPaallmmeerr

TTrraaccyy SSttaauuddeerr

EElliizzaabbeetthh SSttaarrrreetttt

PPaamm BBoowweerrss

BBeennjjaammiinn FFaacceerr

NNiiccoollee KKeennttttaa

JJaannnnaa JJeennsseenn

801-586-0095
801-777-5633
crosstalk.staff@hill.af.mil
www.stsc.hill.af.mil/
Crosstalk/crostalk.html
www.crsip.hill.af.mil

SSuubbssccrriippttiioonnss: Send correspondence concerning
subscriptions and changes of address to the follow-
ing address.You may e-mail or use the form on p. 24.

Ogden ALC/TISE
7278 Fourth St.
Hill AFB, Utah 84056-5205

AArrttiiccllee SSuubbmmiissssiioonnss:We welcome articles of interest to the
defense software community. Articles must be approved by
the CROSSTALK editorial board prior to publication. Please fol-
low the Author Guidelines, available at www.stsc.hill.af.mil/
CrossTalk/xtlkguid.pdf. CROSSTALK does not pay for submis-
sions. Articles published in CROSSTALK remain the property of
the authors and may be submitted to other publications.
RReepprriinnttss aanndd PPeerrmmiissssiioonnss:: Requests for reprints must be
requested from the author or the copyright holder. Please
coordinate your request with CROSSTALK.
TTrraaddeemmaarrkkss aanndd EEnnddoorrsseemmeennttss:: This DoD journal is an
authorized publication for members of the Department of
Defense. Contents of CROSSTALK are not necessarily the
official views of, or endorsed by, the government, the
Department of Defense, or the Software Technology
Support Center. All product names referenced in this issue
are trademarks of their companies.
CCoommiinngg EEvveennttss:: We often list conferences, seminars, sym-
posiums, etc. that are of interest to our readers. There is
no fee for this service, but we must receive the informa-
tion at least 90 days before registration. Send an announce-
ment to the CROSSTALK Editorial Department.
SSTTSSCC OOnnlliinnee SSeerrvviicceess:: at www.stsc.hill.af.mil
Call 801-777-7026, e-mail: randy.schreifels@hill.af.mil
BBaacckk IIssssuueess AAvvaaiillaabbllee:: The STSC sometimes has extra
copies of back issues of CROSSTALK available free of charge.
TThhee SSooffttwwaarree TTeecchhnnoollooggyy SSuuppppoorrtt CCeenntteerr was established
at Ogden Air Logistics Center (AFMC) by Headquarters
U.S. Air Force to help Air Force software organizations
identify, evaluate, and adopt technologies to improve the
quality of their software products, efficiency in producing
them, and their ability to accurately predict the cost and
schedule of their delivery.

SSPPOONNSSOORR

PPUUBBLLIISSHHEERR

AASSSSOOCCIIAATTEE PPUUBBLLIISSHHEERR

MMAANNAAGGIINNGG EEDDIITTOORR

AASSSSOOCCIIAATTEE EEDDIITTOORR

AARRTTIICCLLEE
CCOOOORRDDIINNAATTOORR

CCRREEAATTIIVVEE SSEERRVVIICCEESS
CCOOOORRDDIINNAATTOORR

VVOOIICCEE

FFAAXX

EE--MMAAIILL

CCRROOSSSSTTAALLKK OONNLLIINNEE

CCRRSSIIPP OONNLLIINNEE

CrossTalkDepartments

3 From the Publisher

24 Top Five Software Projects

30 Coming Events

31 Letter to the Editor

31 BackTalk

4

10

15

19

22

25

2 CR O S S TA L K The Journal of Defense Software Engineering June 2001

Extending UML to Enable the Definition and Design of
Real-Time Embedded Systems
Many software engineers are using Object Orientation as the design paradigm for new
sytem development, but there is still room for improvement.
by Alan Moore

Teaching Intelligent Agents: Software Design Methodology
End users interact directly with an intelligent software agent to develop problem solving
intelligent agents under a new archetype emerging from U.S. government sponsored
research.
by LTC Michael Bowman, Dr. Antonio M. Lopez Jr., MAJ James Donlon, and
Dr. Gheorghe Tecuci

Extreme Methodologies for an Extreme World
The need for instant information is leading to extreme software development methods
that accept change during all phases, and anticipate that system users may not know
exactly what they want in a final product.
by Theron Leishman

The Quality of Requirements in Extreme Programming
It is possible for a disciplined group utilizing extreme programming to perform
sufficient requirements engineering. Here's how.
by Richard Duncan

The Software Engineer: Skills for Change
A career path in change management will be a critical need and opportunity for the 21st
century software engineer.
by Dr. Stephen E. Cross and Dr. Caroline P. Graettinger

Lessons Learned From Using COTS Software on Space Systems
An in-depth study of actual COTS-based system development and sustainment provides
recommendations for mitigating inherent acquisition and development risks.
by Richard J. Adams and Suellen Eslinger

SSooffttwwaarree DDeevveellooppmmeenntt MMeetthhooddoollooggiieess

SSooffttwwaarree EEnnggiinneeeerriinngg TTeecchhnnoollooggyy

On the Cover:
Kent Bingham,
Digital Illustration
and Design, is a
self-taught graph-
ic artist/designer
who freelances
print and Web
design projects.

It is said that people fear change. However, we embrace change all the time when the
results are known. We change what we eat (three meals a day of Wheaties doesn’t

sound very good). We change what we wear (the same pair of socks all month isn’t a
pleasant image). It isn’t change that people fear as much as the unknown results of
change. Have you ever watched a tape-delayed game on TV when your team won? I

have. At halftime, when my team was down by 25, I wasn’t nervous or afraid at all. Why? I knew
the outcome.

This issue of CrossTalk focuses on the changing landscape of software development and
some of the new methodologies being pioneered in the software industry. Having been success-
fully implemented in the commercial software industry, Object Orientation and the Universal
Markup Language (UML) present some potential benefits to the real-time and embedded sys-
tems industry. From ARTiSAN Software Tools, Alan Moore suggests that some extensions to the
UML are needed to address the lack of modeling techniques for real-time and embedded sys-
tems.

LTC Michael Bowman, Dr. Antonio Lopez Jr., and MAJ James Donlon from the U.S. Army
War College and Dr. Gheorghe Tecuci from George Mason University present a new paradigm
for software development. In their article you will discover Disciple, an artificial intelligence
approach to the development of knowledge-based systems. Disciple is intended to replace the
indirect transfer of knowledge and expertise from the end-user to the development team, and
then into the software product with direct user development of the system with the assistance of
an intelligent software agent. This is quite a revolutionary approach that may cause you to
rethink traditional defense software development methodologies.

In a world where acquisition wants things better, faster, and cheaper, and software engineer-
ing requires process, discipline, and rigor, extreme methods may be the solution. From the
Software Technology Support Center, Theron Leishman discusses Extreme Programming (XP)
and suggests some caveats when implementing this innovative development methodology.

At a time when software process is being touted from every rooftop, Richard Duncan, a mas-
ter’s student at Mississippi State University further suggests that XP be designed for medium- to
small-sized organizations. XP, designed with requirements drift as a fundamental occurrence,
nominates coding as the key activity throughout the development process. While sounding a bit
extreme, Duncan’s article provides some thought provoking ideas.

From the Software Engineering Institute, Drs. Stephen Cross and Caroline Graettinger sug-
gest that, given the rapid pace of change in software engineering, software-intensive organiza-
tions must develop a core competency for proactive change management. They also suggest that
a career path in change management will be a critical need and opportunity for the 21st century
software engineer.

Six valuable lessons learned about the acquisition of commercial, off-the-shelf-based systems
(CBS) are at the heart of an article from Richard Adams and Suellen Eslinger of The Aerospace
Corporation. Adams and Eslinger, having performed an in-depth study of actual CBS, identify
some shortcomings of, and potential changes to, the acquisition and development of COTS-
based systems.

Change really is a part of the software development landscape. We hope that these articles
will help you gain a greater understanding of this changing landscape so that when someone sug-
gests a new approach, your first reaction is not one of fear. As always, your comments and ques-
tions are welcome.

Kevin Richins
Software Technology Support Center

June 2001 www.stsc.hill.af.mil 3

From the Publisher

Times, They Are A Changin’ for Software Development

Object Orientation (OO) has been
successfully applied to the develop-

ment of commercial software, but has the
potential to be even more readily
embraced by engineers in the real-time
domain, where familiarity with the com-
ponentized nature of hardware leads natu-
rally into the concept of objects.

The search is on for appropriate real-
time OO modeling techniques, and not
surprisingly the Unified Modeling
Language (UML) is the notation most
often proposed as the base for the tech-
niques. The rise in UML’s popularity has
been rapid since its inception some 4 years
ago. The fact that it is promoted by some
of the biggest ‘names’ in the OO arena and
supported by an increasing number of tool
vendors goes some way to explain why.

Although it is a well-defined and flex-
ible modeling language its origins in the
world of commercial computing show up
in the lack of certain modeling techniques
for real-time systems and embedded sys-
tems. For most (if not all) real-time sys-
tems, the issues of timeliness and ability to

schedule are paramount. By definition,
real-time systems designers are concerned
with time and ensuring that certain system
activities can be carried out within defined
time scales. This in turn requires consider-
ation of the system’s concurrency: The
number and the characteristics of the con-
current tasks and the degree of task inter-
action between them can significantly
affect system performance. Embedded sys-
tems designers are also concerned with the
physical architecture of the embedded sys-
tem and the hardware/software interface.
None of these concerns are well met by
UML at present.

Recognizing this, the Object
Management Group1 has spawned a new
initiative, the Real-time Analysis and
Design Group (RTAD), specifically to rec-
ommend UML extensions in this area.

The System Development

Process

The design of real-time embedded systems
involves a multi-disciplined team of hard-
ware, systems, and software engineers.

System engineers design at a high level and
influence both hardware and software
composition of the system. They are con-
cerned with the overall architecture and
usually make trade-offs between imple-
menting functionality in hardware, soft-
ware, or both. Hardware engineers are
concerned with the design of circuitry that
will fulfill the system requirements as
determined by the systems engineers.
Software engineers usually have the largest
design and implementation task, as the
majority of the functionality of an embed-
ded system lies typically within the soft-
ware.

This (simplified) system development
process illustrated in Figure 1, shows three
critical areas of developing real-
time/embedded systems: system defini-
tion, software design and hardware/soft-
ware integration. Those areas are circled
with some of the key activities outlined in
the associated call-outs.
System Definition

The process of defining a system is often
called system engineering. It involves the
following:
• Identify the structure of the system, both

in terms of hardware and software. For
many real-time systems (e.g. mass pro-
duced embedded systems) major archi-
tectural decisions are often made early
in the development life cycle. Almost all
real-time developments will experience
change in the system architecture dur-
ing the development process. The
nature and implications of the architec-
ture, and any changes to it, need to be
communicated among, and understood
by, system, hardware and software engi-
neers.

• Clarify communication between the sys-
tem and the environment. Clarifying
both the boundary of the system and

Extending UML to Enable the Definition and Design of

Real-Time Embedded Systems
Alan Moore

ARTiSAN Software Tools

Software Development Methodologies

The complexity and size of the average real-time system is increasing rapidly. The development of detailed system
designs is vital if the system is to be well understood and to function correctly. In a bid to extract maximum reuse of
system software components, and to overcome previous bad software development experiences, many senior system
and software engineers are looking to Object Orientation (OO) as the design paradigm for new system development.
This article discusses the suitability of Universal Markup Language, the popular OO modeling language, for defin-
ing and designing real-time and embedded systems.

Figure 1: The System Development Process

4 CR O S S TA L K The Journal of Defense Software Engineering June 2001

the types of messages exchanged is
important both from the point of view
of scoping the system and agreeing
interfaces.

• Capture system usage and therein tim-
ing and other types of system perform-
ance (often called quality of service)
associated with that use. System usage
requirements often include specific tim-
ing information relevant to product per-
formance. These timing constraints are
captured and decomposed during the
system definition stage in order to facil-
itate a system design that is fit for pur-
pose, and to support system test. Real-
time systems, by definition, are con-
strained by some aspect of time. The
right answer received late is often
wrong. The requirements driving the
development of these systems often state
specific timing considerations. It is crit-
ical to capture this timing information
in the early system definition stage.

Software Design

As well as the standard need to model
objects and their interaction, real-time sys-
tem models also need to address concur-
rency. There is an inherent concurrency in
most real-time, embedded systems as they
control multiple input/output devices
through a variety of interfaces simultane-
ously. Designing a solution for this type of
problem often involves a multi-tasking,
and possibly multi-processor architecture.
The task and object design need to be
integrated, so the ability to model both
together is essential.
Hardware and Software Interfaces

Real-time embedded systems contain both
hardware and software elements as part of
the solution. Many of the worst and most
time-consuming problems with develop-
ing real-time systems manifest themselves
during system integration, often through
poor interface specifications. Therefore,
understanding the interfaces and interde-
pendencies between the hardware and
software is a necessary step in building a
correct system. Here are examples of the
types of data required:
• Software/hardware interface informa-

tion, e.g. port addresses, memory maps.
• Hardware characteristics such as speeds,

capacities, etc.

An Example

Throughout the remainder of this article

an example of a real-time system will be
used to present the basics of the UML, as
well as to illustrate the extensions required
to usefully define and design a solution to
a typical problem.

Figure 2 shows a simulation of a toxic
waste processing plant. The plant handles
containers of toxic waste, which are fed
into a processing plant along a conveyor
belt. Once detected and identified by an
attached bar code, a container is scanned
for faults before routing. If a container is
badly damaged then it is routed off the
belt by the first robot arm for special han-
dling: If not, then it reaches the second
robot arm where it is sent off for caging
and normal processing. This simulation
also provides diagnostic switches to supply
containers and inject faults.

The Advantages and

Deficiencies of UML

Here the three areas described in the system
development process are revisited, high-
lighting how UML helps model these areas,
and also where it is deficient. In those cases,
additions or changes to UML are suggested
that address those deficiencies.
System Definition

System Context (or Scope)

One simple and often overlooked consid-
eration when mapping out the parts of the
solution is the external interface boundary.
This concept is useful in determining what
is within the context of the solution and
what is outside this context. UML has no
good notation for supporting this; engi-
neers often use an object collaboration
diagram, but this involves faking system-
level devices as objects, which can cause

confusion when real objects are intro-
duced.

A System Scope Diagram, an exten-
sion to UML, can be used early in the
problem analysis to help isolate the
boundary of the analysis activity. It pro-
vides a graphical checklist of all of the
external and interface boundaries in the
solution. It is an easy way to make sure
that the complete problem is being
addressed. It shows external actors, hard-
ware interface devices, and the system
itself, as well as the messages (often called
signals) that pass between them. One of its
most important roles is to define a vocab-
ulary for describing how the system inter-
acts with the environment when it’s being
used. It is very similar to the context dia-
gram used in traditional strutured tech-
niques. (Sadly the UML Deployment
Diagram does not allow actors or message
flows and so it is hard to use for this pur-
pose.)

The System Scope Diagram in Figure
3 (see page 6) shows how all the major
components of the system (hardware and
software) communicate. The plant control
system itself is started and stopped by the
front panel subsystem, and controls the
plant subsystem. Each of the messages (or
signals) has a rich description as exempli-
fied by frame; frames occur only while a
container passes through the scanner,
hence they are episodic, and occur in
bursts of four with a minimal interval of
75ms.
System Architecture

Having scoped the system, a major task is
to identify the high-level architecture of
the system, adding major architectural ele-
ments such as subsystems, buses and disks,

Extending UML to Enable the Definition and Design of Real-Time Embedded Systems

Figure 2: Toxic Waste Processing Plant Simulation

June 2001 www.stsc.hill.af.mil 5

decomposing subsystems into boards and
connecting them up appropriately. The
UML has the Deployment Diagram for
this, but it is woefully lacking in notation
for buses, boards, etc., and so cannot be
used to present an easily comprehensible
picture to the engineering team develop-
ing an embedded system.

The System Architecture Diagram
presented in Figure 4, another extension of
the UML, is a form of Deployment
Diagram, but with greatly enhanced sym-
bolism2, and an underlying type model
allowing board, bus, disk etc., types to be
defined once and subsequently reused.

The plant control system is a rack-
mounted PC with three boards: the mother-
board, a network card, and an I/O board.
The network card is there to facilitate com-
munication with the factory bus. The I/O
Board will be off-the-shelf but will need
enough ports to handle the various devices
attached to it, including the Front Panel
devices (not shown).
Use Cases

Use case modeling is the primary UML
technique for specifying functional
requirements, and one of the most widely
accepted and used. A Use Case Diagram
illustrates the ways that elements external
to the system (actors) interact with the sys-

tem under development. Actors may be
people, for example end users, operators,
maintenance engineers, etc., or they may
be other systems or items of equipment.
All actors are represented diagrammatical-
ly by the stick person symbol. Lines con-
nect the actors to one or more use cases
(the ellipses). A use case represents a sys-
tem service provided to one or more of the
actors linked to it. Associated with each
use case is a textual description of the
activity involved in the delivery of that
service.

Figure 5 shows a Use Case Diagram,
identifying the major functional require-
ments of the system. The major use case,
process container, makes use of two lesser
use cases, scan container and detect con-
tainer, hence the <<include>> relation-
ship. There are two exceptional cases high-
lighted by the <<extends>> relationship,
handle defective container and emergency
stop and restart which describe deviations
from the standard behaviour of process
container.
Use case descriptions provide a specifica-
tion of functional requirements in a form
that is understandable to, and therefore
can be validated with, the system sponsor.
However the main drawbacks of using
natural language for specification (ambi-
guity, misconception, duplication, etc.)
may be present, although not necessarily
visible. UML provides a modeling tech-
nique that helps in overcoming these
drawbacks: the Sequence Diagram.
Sequence Diagrams

The Sequence Diagram presents a usage
scenario in a useful and intuitive way, as an
ordered sequence of message exchanges (or
interactions) between system elements.
Although UML provides the capability for
interaction modeling with Sequence
Diagrams, it does not make it easy to dis-
tinguish between the different types of ele-
ments involved. The implicit assumption
in UML is that this diagram exists to illus-
trate message passing between the actors
and software objects. This is jumping the
gun during system definition. It is certain-
ly the case that, during the design stage,
we will need to model object interaction.

Software Development Methodologies

Figure 4: The System Architecture

Figure 3: The System Scope Diagram

6 CR O S S TA L K The Journal of Defense Software Engineering June 2001

But at the requirements stage we ideally
want to express the details of use case
activity by clearly indicating the interac-
tion between the actors, hardware devices,
and the entire software system; these are
likely to be far more familiar to the project
sponsor.

The Scanning a Container diagram in
Figure 6 is an extension to UML. As can
been seen in the diagram the plant control
system is informed of belt movements
(asynchronously, indicated by the half-
arrow). In this scenario it determines that
a container is approaching the scanner,
whereupon it starts the scanner, receives
four frames of scan data from it, and then
stops the scanner again. The system waits
for the scanner to both start and stop
before proceeding (indicated by the cross
on the arrow shaft). The frame takes 50ms
to capture and 25ms to transmit from the
scanner. This gives a total scan time of
375ms. Note that all of the elements
shown here are derived from the earlier
System Scope Diagram, Figure 3.

Altough the UML allows annotations
to be added to any diagram, it is more use-
ful if timing notes, in particular, are
mapped directly onto the appropriate
model elements (as tagged values), making
timing information more than just notes
on the Sequence Diagram. There are two
main categories of timing information
that can be modeled, latency and dura-
tion. The amount of time it takes for two
entities to collaborate (i.e., communicate)
can be described as the message latency.
The amount of time required for an entity
to perform its task once it has received a
signal is described as the duration.
Through a combination of latency and
duration specifications, we identify gener-
al timing constraints over a sequence of
steps in a usage scenario (as an end-to-end
time). These constraints map back onto
specific, use cases and the original require-
ments.
Software Design

Class Diagrams

The UML Class Diagram is perhaps the
best-known aspect of UML. Class
Diagrams form the basis for the object
architecture of the system. They document
the static nature or architecture of the
objects in the system. The Class Diagram
is concerned with static structure and
designing good partitioning (encapsula-

tion) and abstraction. It works well as is
for real-time systems design.
Collaboration Diagrams

Where the Class Diagram defines a static
relationship structure between the classes,
the Collaboration Diagram defines a com-
munication structure between the objects
of those classes. Collaboration Diagrams
can be used to detail specific scenarios
(referred to as realization in UML) or as a
means of synthesizing the overall collabo-
ration of objects.

The UML Collaboration Diagram in
Figure 7 (see page 8) shows the collaborat-
ing objects and the sequence of operation
calls (via the sequence numbers) to scan a
container. The object theBelt tracks all
containers so is well placed to inform
theScanner when one approaches.
theScanner communicates through
theScannerDriver to control the Scanner
device and to receive frame data. Once all
frames are processed the status of
currentContainer is updated with the
result. The messages between the drivers

and interface devices provide continuity
back to the earlier Sequence Diagram (see
Figure 6).

By analyzing several Sequence
Diagrams together as a whole and repre-
senting the overall connectivity of the
objects involved in those scenarios, it is
possible via a Collaboration Diagram to
visualize the communication architecture
of the proposed design. The Collaboration
Diagram also gives some insight into the
dynamic relationships between the
objects. This allows us to create a more
complete view of the overall communica-
tion architecture as opposed to any one
specific scenario.
Concurrency Diagrams

What the Collaboration Diagram cannot
describe is whether the executing objects
are concurrent or not, or how they use a
real-time operating system (RTOS) to
communicate. Concurrency has been a
concern in the real-time domain for many
years and there are a variety of recognized
strategies for identifying tasks and opti-

Extending UML to Enable the Definition and Design of Real-Time Embedded Systems

Figure 5: Use Case Diagram

Figure 6: Scanning a Container

June 2001 www.stsc.hill.af.mil 7

mizing task design. In such a complex area
of design, modeling can play a vital role in
verifying the feasibility and correctness of
a concurrency design. There is no current
UML notation clearly representing tasks,
or any of the RTOS mechanisms that can
be used to protect shared resources or
facilitate inter-task communication.

A diagram that shows the tasks, shared
resources, mutexes, queues, event flags,
mailboxes, etc., together with the way in
which these various components interact,
is required. The diagram will need to illus-
trate message passing in a clear and unam-
biguous manner so that it is clear exactly
where and how the RTOS is being used. It
is possible to produce a UML diagram
that can represent the information shown
in using standard notation Figure 8, but
the UML does not have the richness of
symbolism that makes this particular dia-
gram so clear. This is not an unimportant
point. Clarity is an aid to understanding;
models that can be easily misinterpreted
can, in some cases, be worse than no mod-
els at all.

We can now see how cScanner actually
handles frames by looking at its internals.
The identifiers of approaching containers
(provided by the call to containerApproaching)
get queued for processing by the task to
scan containers. The arrival of new frame
data (indicated via the call to newFrame)
signals an event flag upon which a task
(handle frame) is waiting. As frames are
received (via some new calls to
theScannerDriver), they are stored and
their identities (frame ids) are passed to
another task (process image) that process-
es the image for faults.

Hardware and Software Interfaces

Deployment Diagram Limitations

A thorough understanding and representa-
tion of the software/hardware interfaces
and the allocation of software to hardware
is important to construct an application
that not only meets functional require-
ments but also can be deployed into the
proper environment.

The UML provides a Deployment
Diagram for capturing this kind of repre-
sentation. It allows engineers to place
objects (software) on a set of connected
nodes (hardware). However, its descrip-
tion of the processing architecture is very
simple, and it allows no account of the
placement of tasks at all. It offers a very
limited set of symbols that make it diffi-

cult to adequately represent the range and
characteristics of the physical entities
inherent in many real-time systems. Nor
are Development Diagrams able to easily
model interface information such as the
memory map and interrupt request vec-
tors.

In order to support this type of
description, a much more detailed view of
the board and processor architecture is
needed with specific model elements to
describe them. This type of information
neatly fills the gap between traditional
UML and the detailed hardware schema
available from Electronic Data Access
(EDA) tools. Hardware related informa-
tion like this enables software engineers to
undertake detailed device driver develop-
ment, without the need to refer to hard-
ware schematics generated by the hard-
ware team. Figure 9 shows an Architecture
Diagram as an extension to the UML
Deployment Diagram. This diagram
allows both hardware and software engi-
neers to access the same information, sig-
nificantly improving communication, and
thus reducing the number of errors in
integration testing.

Figure 9 shows the connections at the
board level. Each of the board’s I/O
devices is further described to the detail
required by the software, as is shown in the
overlay. We can see the memory map as
well as any IRQs or I/O port addresses.

Software Development Methodologies

Figure 7: The UML Collaboration Diagram

Figure 8: The Internals of cScanner

8 CR O S S TA L K The Journal of Defense Software Engineering June 2001

About the Author
AAllaann MMoooorree has 15 years
experience in the develop-
ment of real-time and
object-oriented method-
ologies, and their applica-
tions in a variety of prob-

lem domains. He has been actively
involved in product development, train-
ing, and consulting related to Object
Oriented Analysis and Design and struc-
tured development tools. Moore has co-
authored a book on graphical user inter-
face design and published several papers,
and has lectured on a wide variety of
analysis and design issues. Moore is
responsible for the specification, plan-
ning and management of the ARTiSAN
product strategy. He is the author of
ARTiSAN Real-time Perspective, a prag-
matic approach to the development of
real-time systems and is an active partici-
pant in the Real-time Analysis and
Design Group of the Object
Management Group .

Diagrams showing the extensions
discussed in this article were prepared
using Real-time Studio from ARTiSAN
Software Tools (www.artisansw.com), a
UML-based modeling tool used by real-
time and embedded systems developers.

Vice President of Strategy
ARTiSAN Software Tools
Stamford House, Regent St.,
Cheltenham, Glos., UK GL501HN
Voice: +44-1242-229-300
Fax: +44-1242-229-301
E-mail: alanm@artisansw.com
www.artisansw.com

Progress in the OMG

Recognizing the need for real-time exten-
sions to UML, two Object Management
Group (OMG) task forces, the Analysis
and Design Task Force and the Real-time
Task Force jointly spawned a specific
group to look at extending UML to sup-
port real-time systems.
The Real-time Analysis

and Design Group

The goal of the Real-Time Analysis and
Design (RTAD) initiative is to issue a
comprehensive set of Requests for
Proposals (RFPs) leading to OMG stan-
dards that will support the use of object-
oriented approaches in the analysis,
design, and development of real-time
computing systems.
There have been three RFP’s proposed by
the RTAD:
• UML™ Profile for Scheduling,

Performance, and Time;
• UML™ Profile for Quality of Service

(QoS) other than timeliness;
• UML™ Profile for large-scale, distrib-

uted systems.
The first of these has been formally issued
by the OMG; its schedule shows the fol-
lowing:
• Initial submissions received in

September 2000.
• Revised submissions due in July 2001.
• Approval by the Architecture Board of

the OMG by October 2001.
• Specification adoption by January 2002.
The Submission Team

There looks likely to be only one team
offering a submission for the initial RFP.
The team consists of modeling tool ven-
dors ARTiSAN Software Tools, I-Logix,
ObjecTime (with Rational) and Telelogic,
and schedulability of tool vendors Tri-
Pacific Software and TimeSys.

Conclusion

Given the popularity and notational
robustness of the current version of UML,
real-time developers can reasonably begin

exploiting OO technology in their efforts.
However, it is important to realize that
certain characteristics of real-time systems
may be difficult, if not impossible, to cap-
ture in most modeling tools limited to
standard UML notation and semantics.
Real-time development demands exten-
sions to UML provided only by specialized
tools. This article proposes some feasible
extensions to UML shown in Table 1. ◆

Notes
1. The Object management Group

(OMG), www.omg.org, is a consortium
of companies and other interested par-
ties responsible for the specification and
standardization of the Unified
Modeling Language. OMG ratified the
inital version of UML, UML 1.1, in
1996 and has more recently specified
and ratified the current version, UML
1.3 (June 1999).

2. UML provides three formal extension
mechanisms, namely constraints, stereo-
types, and tagged values. The latter two
mechanisms can be used to provide
additional symbolic elements such as
busses, boards, and disks as extensions
to the standard notational elements
called classifiers.

June 2001 www.stsc.hill.af.mil 9

Extending UML to Enable the Definition and Design of Real-Time Embedded Systems

Table 1: UML Collaboration Diagram

Figure 9: An Architecture Diagram Showing Board-Level Connections

Software design methodologies are
intended to help develop computer

programs more systematically. They are
sets of procedures that people follow from
the beginning to the completion of the
software development process. Since the
1970s, the numbers of software design
methodologies have increased significant-
ly. Khoo [1] gives an overview of some of
the major ones, and Sorenson [2] narrows
the focus to a comparison of those
methodologies used by Department of
Defense software developers. In both pre-
sentations, the authors recognize that the
selection of an appropriate methodology
depends on a number of factors, including
the type of problem being addressed and
the qualifications and training of the peo-
ple using the methodology.

It is universally recognized that soft-
ware design is a creative process that can-
not be reduced to a routine procedure;
however, it is not devoid of structure. For
the typical data processing or information
derivation problem, the framework for
software design and development is given
in Figure 1.

The user specifies the requirements
(usually poorly) and the software develop-

ment team, after gathering data and clari-
fying some ambiguities, selects and uses a
design methodology to develop the desired
software product. The software develop-
ment team may have many members,
including systems analysts, senior and jun-
ior programmers, quality assurance per-
sonnel, and technical writers. The process
is error prone.

As Humphrey [3] puts it: “The
process is so complex because many differ-
ent people are involved and they are all
learning. At the outset, no one really
understands either the requirements, the
design, or the implementation. This is par-
ticularly true when the implementation
finally progresses to the point where the
users can first try the product (p. 313).”

There is a class of difficult problems
and a group of highly qualified and
trained people who routinely solve such
problems, but these people are not soft-
ware designers or developers. We catego-
rize the problems as knowledge-based
problems and the people as subject-matter
experts (SMEs). The military has SMEs in
many critical areas, and they possess price-
less knowledge in how to solve problems
of great importance. The skills, insights,

and creativity of such individuals make
them true craftsmen.

For several decades artificial intelli-
gence (AI) researchers have addressed the
problem of developing knowledge-based
software agents that incorporate the
expertise of the SMEs and exhibit a simi-
lar problem-solving behavior. Generally,
the agent includes two main components:
a knowledge base and an inference engine.
The knowledge base contains the data
structures representing the entities from
the expert’s application domain such as
objects, relations between objects, classes
of objects, laws, actions, processes, and
procedures. The inference engine consists
of the programs that manipulate the data
structures in the knowledge base in order
to solve problems in a way that is similar
to how the expert solves them.

Typically, developing an intelligent
software agent that assisted or replicated
the SME required the SME to work close-
ly with a knowledge engineer who would
actually build the agent [4]. In this case,
the framework for the software develop-
ment is analogous to that presented in
Figure 1 with the software design effort of
the knowledge engineer being based more
on gathering and representing knowledge
than on data and information. Here we
view information as interpreted data, but
knowledge is information in action or
information transformed into capability
for effective action [5].

The process of acquiring knowledge
from an SME and representing it in the
knowledge base of the agent has been
found to be difficult and labor intensive,
and is what has come to be known as the
knowledge acquisition bottleneck. The
process is slow and difficult because
knowledge engineers and domain experts
do not initially speak the same language.
During the process of indirect knowledge

Teaching Intelligent Agents: Software Design Methodology
LTC Michael Bowman, Dr. Antonio M. Lopez Jr., MAJ James Donlon Dr. Gheorghe Tecuci
U.S. Army War College George Mason University

Current software design and development methodologies have evolved slowly since the early days of computing and
today almost universally include user-developer interaction for requirement determination, testing, and acceptance
activities. A new paradigm for software development is emerging from U.S. government sponsored research in arti-
ficial intelligence for rapid knowledge-based systems development. This new paradigm, being pursued by the George
Mason University Learning Agents Laboratory, calls for end users to interact directly with an intelligent software
agent to develop their own problem solving intelligent agents. This approach is called Disciple, and it has been exper-
imentally shown to rapidly produce high performance software agents for solving complex military problems.

Figure 1: A Typical Framework for Software Development

10 CR O S S TA L K The Journal of Defense Software Engineering June 2001

transfer from the SME through the
knowledge engineer into the agent’s
knowledge base, the SME and knowledge
engineer must achieve a common under-
standing of the domain and how problems
are solved in the domain. They must also
produce a mutually understood represen-
tation of the domain and problem solving.
There is in a sense, a cross leveling of lan-
guage and expertise.

A Different Paradigm

A contradiction exists in the classical
knowledge-based agent development
process where the presence of the knowl-
edge engineer is both part of the solution
and part of the problem. An additional
difficulty with this paradigm is that the
development of each new knowledge base
or agent starts from scratch, with no
knowledge reuse in spite of the fact that
knowledge acquisition is such a difficult
process. The Learning Agents Laboratory
(LALAB) at George Mason University
(GMU) is developing a new approach to
agent development that addresses these
problems and significantly alters the
framework in Figure 2.

The goal is to enable an SME that
does not have prior knowledge engineer-
ing experience to develop a knowledge-
based agent by himself or herself, with
limited or no support from a knowledge
engineer. This approach, called Disciple
[6], is based on developing a very capable
learning agent that has two main charac-
teristics: 1) it uses a type of knowledge
representation and organization that facil-
itates knowledge reuse and learning, and
2) can be directly taught by an SME how
to solve domain-specific problems in a
manner that resembles the way the SME
would teach a human apprentice – by giv-
ing the agent examples and explanations as
well as by supervising and correcting its
behavior.

Over the years, the LALAB has devel-
oped a series of increasingly more capable
learning agents from the Disciple family.
The general architecture of a Disciple
agent is shown in the upper right side of
Figure 2. The problem-solving engine is
based on the general problem reduction
paradigm of problem solving and is there-
fore applicable to a wide range of
domains. In this paradigm, a problem to
be solved is successively reduced to simpler

problems until the problems are simple
enough to be solved immediately. Their
solutions are then successively combined
to produce the solution to the initial prob-
lem.

The learning and knowledge acquisi-
tion engine integrates several learning
strategies synergistically, such as learning
from examples, learning from explana-
tions, and learning by analogy, in order to
acquire the knowledge from the SME.
The knowledge base is structured into two
distinct components: an object ontology
and a set of reduction and composition
rules. The object ontology is a hierarchical
representation of the objects and types of
objects from a particular domain, such as
military or medicine. That is, it represents
the different kinds of objects, the proper-
ties of each object, and the relationships
existing between objects. The object
ontology provides a representation vocab-
ulary that is used in the description of the
reduction and composition rules. Each
reduction rule is an if-then structure that
expresses the conditions under which a
problem P1 can be reduced to the simpler
problems P11, … , P1n. Similarly, a com-
position rule is an if-then structure that
expresses the conditions under which the
solutions S11, … , S1n of the problems
P11, … , P1n can be combined into a solu-
tion S1 of P1.

Dividing the knowledge base into an
object ontology and a set of rules is very
important, because it clearly separates the
most general part of it (the object ontol-
ogy), from its most specific part (the
rules). Indeed, an object ontology is char-
acteristic to an entire domain. In the mili-
tary domain, for instance, the object

ontology will include descriptions of mili-
tary units and of military equipment.
These descriptions are most likely needed
in almost any specific military application.
Because building the object ontology is a
very complex task, it makes sense to reuse
these descriptions when developing a
knowledge base for another military appli-
cation, rather than starting from scratch.

In the case of Disciple, the ontology
reuse is further facilitated by the fact that
the objects and the features are represent-
ed as frames, based on the knowledge
model of the Open Knowledge Base
Connectivity (OKBC) protocol. OKBC
has been developed as a standard for
accessing knowledge bases stored in differ-
ent frame representation systems [7].
Therefore, importing an ontology from an
OKBC compliant knowledge server, such
as Ontolingua [8] or Loom [9], does not
raise translation problems.

The rules from the knowledge base are
much more application-specific than the
object ontology. Consider, for instance,
two agents in the military domain, one
that critiques courses of action with
respect to the principles of war, and anoth-
er that plans the repair of damaged bridges
or roads. While both agents need to reason
with military units and military equip-
ment, their reasoning rules are very differ-
ent, being specific not only to their partic-
ular application (critiquing versus plan-
ning), but also to the SMEs whose expert-
ise they encode. Therefore, the rules are
generally not reusable from one applica-
tion to another, and have to be defined for
each new application.

Several decades of knowledge engi-
neering attests that the traditional process

Teaching Intelligent Agents: Software Design Methodology

Figure 2: A New Framework for Software Development

June 2001 www.stsc.hill.af.mil 11

by which a knowledge engineer interacts
with a subject matter expert to manually
encode his or her knowledge into rules is
long, difficult and error-prone. The
Disciple approach to rule development
does not involve a knowledge engineer.
Initially the SME teaches the Disciple
agent how to solve problems by showing it
each problem reduction step necessary to
solve a specific problem, and helping the
agent to understand it. From each such
problem reduction step, the Disciple agent
learns a general problem reduction rule
that will allow it to perform similar prob-
lem reductions in the future.

As Disciple learns from the SME, their
interaction evolves from a teacher-student
interaction to an interaction where the
SME and the agent collaborate in solving
new problems. During this joint problem
solving process, Disciple continues to
learn new rules from the contributions of
the expert, and to refine previously learned
rules based on its own problem solving
attempts.

Under this agent-building paradigm,
knowledge engineers support the SME’s
creation of a specialized Disciple agent in
these ways:
• By customizing the graphical user inter-

face.
• By helping the SMEs to learn how to

teach the Disciple agent.
• By facilitating the re-use of ontological

knowledge found in established knowl-
edge repositories such as the CYC
knowledge base [10].

The ultimate software development
framework for the SME-driven Disciple
learning agent paradigm is given in Figure
2. This paradigm eliminates much of the
error generated by the many different peo-
ple involved in the typical framework for
software development (Figure 1). Who
knows the specific problem domain better
than the SME – the requirements, the
data, and the problem solving techniques?

Part of Disciple’s output when it has
solved a problem is an explanation of how
it derived that solution. Thus other people
who are not as familiar with the specific
problem domain as the SME can use the
trained version of Disciple to solve prob-
lems, understand the problem solving rea-
soning used, and learn themselves.

Because the problem solving approach
of a Disciple agent is based on the general

problem reduction paradigm, this agent-
building methodology is applicable to a
wide rage of domains. For instance, we
have applied it to develop agents for the
following:
• Planning the repair of damaged bridges

and roads.
• Critiquing military courses of action.
• Identifying and testing strategic center

of gravity candidates in military con-
flicts.

• Designing configurations of computer
systems.

• Generating test questions for assessing a
student’s higher order thinking skills in
history and in statistics, etc.

We consider that the main factors that
contribute to the success of the Disciple
approach are: 1) the synergistic collabora-
tion between the SME and the Disciple
agent in developing the knowledge base,
2) the multi-strategy learning methods of
Disciple that are based on a learnable
knowledge representation, and 3) exten-
sive knowledge reuse. Nevertheless, this
technology is still in its research phase, and
significant work remains to be done before
it will be available for mainstream DoD
use.

Is software developed using an intelli-
gent learning agent such as Disciple a new
software design methodology? We claim
that it is.

Recorded Successes

The Defense Advanced Research Project
Agency (DARPA) has sponsored a
sequence of two programs for the develop-
ment of software systems that will solve
knowledge-based problems. The first is the
High Performance Knowledge Bases pro-
gram (HPKB), which ran from fiscal year
1997 to 1999. The second, Rapid
Knowledge Formation program (RKF) is
currently funded for fiscal years 2000 to
2003. The goal of the HPKB program was
to produce the technology needed to
enable system developers to rapidly con-
struct large knowledge bases that provide
comprehensive coverage of military specif-
ic domains of interest, are reusable by mul-
tiple applications that use diverse problem
solving strategies, and are maintainable in
rapidly changing environments. The
HPKB program used challenge problems
to evaluate the competing software tech-
nologies.

In the first set of challenge problems,
one of the problems dubbed the
workaround problem consisted of assessing
how rapidly and in what way a military
unit might reconstitute or bypass damage
to an infrastructure such as a bridge. The
Disciple learning agent shell was cus-
tomized to solve this problem. The SMEs
supported by knowledge engineers identi-
fied many of the concepts that needed to
be represented in Disciple’s ontology (e.g.
military units, engineering equipment,
types of damage, and geographical features
of interest). Some of these concepts were
imported from existing ontology reposito-
ries. The SMEs and the knowledge engi-
neer using Disciple’s specialized browsing
and editing tools defined others.
Knowledge engineers also explained to the
SMEs problem reduction modeling. This
is an iterative process of stating a problem
to be solved, asking a relevant question
about solving the problem, and answering
the question either conclusively, in which
case that portion of the problem is solved,
or by creating sub-problems that need fur-
ther consideration.

We compare the problem-question-
answer process to the Army’s task-condi-
tion-standard testing methodology. Army
SMEs had little difficulty in assimilating
the idea. Further detail regarding the
training inputs and reasoning outputs of
Disciple for the workaround problem can
be found in [11]. Cohen et al. [12] pres-
ents measured results for the first year of
HPKB, including the workaround prob-
lem where the trained version of Disciple
(Disciple-WA) was judged to perform at
an expert level. It was also noted that
Disciple-WA’s knowledge actually doubled
during the 17 days of experimental period,
thus demonstrating the agent’s ability to
learn rapidly.

The second part of the HPKB pro-
gram was based on even more complex
challenge problems. The course of action
(COA) critiquing problem called for rapid
development of knowledge bases contain-
ing comprehensive battlefield knowledge.
These include terrain characteristics, force
structures, troop movements, and tactical
strategies to assess COA viability, correct-
ness, and strengths and weaknesses with
respect to the principles of war and the
tenants of Army operations. To address the
challenge problem, the Disciple learning

Software Development Methodologies

12 CR O S S TA L K The Journal of Defense Software Engineering June 2001

agent shell was customized for the domain
by knowledge engineers who imported an
initial ontology built by Teknowledge and
Cycorp, and by SMEs who further devel-
oped the ontology using Disciple’s built in
tools. The SMEs then taught Disciple how
to evaluate a COA, and thus Disciple-
COA was developed.

Tecuci et al. [13] presents the results of
Disciple-COA evaluation vis-à-vis its com-
petitors. In total scores on the metrics of
recall and precision, Disciple-COA out-
performed the competition. Furthermore,
during the eight days of experimental peri-
od, Disciple-COA’s knowledge increased
by 46 percent, from the equivalent of
6,229 simple axioms to 9,092 simple
axioms. This represents a higher daily rate
of knowledge acquisition than in the first
experiment.

To further test the ability of Disciple-
COA to amass knowledge, it was used in a
knowledge acquisition experiment at the
U. S. Army Battle Command Battle
Laboratory (BCBL) in Fort Leavenworth,
Kansas. Four SMEs with no prior knowl-
edge of engineering experience received
approximately 16 hours of training on
Artificial Intelligence and the use of
Disciple-COA. Then using the knowledge
base containing the previously developed
ontology (but with no rules and no signif-
icant assistance from knowledge engi-
neers), each SME taught Disciple to cri-
tique COAs. This was done with respect to
a modeling of the principles of offensive
and security that was discussed with them
before the experiment.

In about three hours Disciple-COA
learned 26 rules. Upon his evaluation,
LTC John N. Duquette, chief of the
Experimentation Division of BCBL, wrote
[14], “The potential use of this tool by
domain experts is only limited by their
imagination – not their AI programming
skills.”

The Next Step

DARPA’s follow-on RKF program empha-
sizes the development of knowledge bases
by the domain expert. Its central objective
is to enable distributed teams of SMEs to
enter and modify knowledge directly and
easily without the need for prior software
development or knowledge engineering
experience. The Knowledge Engineering
Group (KEG) in the Center for Strategic

Leadership at the United States Army War
College (USAWC) recommended that the
GMU LALAB be given the vexing Center
of Gravity Determination problem as the
RKF challenge problem for the next step
in Disciple’s evolution. The KEGs recom-
mendation went to Murray Burke, the
RKF program manager at DARPA, and
was approved.

Joint Publication 3.0 Doctrine for
Joint Operations [15] states, “Identific-
ation of enemy centers of gravity require
detailed knowledge and understanding of
how opponents organize, fight, make deci-
sions, and their physical and psychological
strengths and weaknesses. (pp. III-21).” In
1995 KEG researchers and SMEs in vari-
ous departments at USAWC, along with
interested USAWC students and
International Fellows taking the elective
course “Case Studies in Center of Gravity
(COG) Determination,” worked to cap-
ture the current thinking on determining
strategic and operational centers of gravity.
That thinking was published in a mono-
graph with an accompanying process flow
diagram [16]. Attempts by KEG
researchers to build an intelligent system
that could assist in center of gravity deter-
mination and analysis were constrained by
the technology and theory of the day.

In the fall of 2000, KEG researchers
began ontology development for Disciple-
COG [17] and GMU LALAB researchers
worked on new tools for Disciple that
would aid SMEs in scenario building and
domain modeling. In the winter 2001
term, USAWC students in the COG
course used these tools to begin the
process of building their own agent for the
scenario that they have been given to ana-
lyze. In the spring 2001 term, another
USAWC COG class will use the tools to
analyze additional scenarios. Through a
process of iterative refinement and with
more examples being given to Disciple-
COG with each new USAWC COG class,
it is expected that the intelligent learning
agent will become increasingly adept at
determining and analyzing centers of grav-
ity for opposing forces.

Conclusion

Software design and development
methodologies have evolved slowly since
the early days of computing. Today’s
methodologies call for extensive user-

developer interaction for requirement
determination, testing, and acceptance
activities. New research and experimental
results presented in this paper indicate that
this may be about to change.

Supported by DARPA, the U.S. Air
Force Office of Scientific Research, and
the U.S. Army, the George Mason
University Learning Agents Laboratory
has taken a novel approach to the creation
and use of intelligent agents to solve com-
plex military problems. The goal of this
research is to develop methods and tools
that allow users with minimal computer
skills to easily build, teach, and maintain
high performance intelligent software
agents. In this approach, the user teaches
the agent to solve various problems in a
way that resembles how they would teach
an apprentice or student – providing
examples and explanations, supervising
and correcting behavior.

Created this way, the intelligent agent
represents a new paradigm for software
development. In this paradigm, the ineffi-
cient, often ineffective indirect transfer of
knowledge and expertise from the end-
user through the development team, to the
resulting software product, is replaced by
direct user development of the system,
assisted by intelligent agent technology.
This paradigm has already been experi-
mentally shown to be effective in tackling
selected military problem-solving at the
tactical and operational level, and is now
being evaluated at the strategic level.◆

References
1.Khoo, Benjamin, An Integrated Software

Design Framework for the Design of
Information Systems, Masters Thesis,
Andrews University, Michigan, 1996.
u s e rpag e s . umbc . edu /~khoo / su r
vey2.html

2. Sorenson, Reed, A Comparison of
Software Development Methodologies,
CrossTalk, January 1995, pp. 12-18.

3. Humphrey, Wyatt, A Discipline for
Software Engineering, Addison Wesley,
Reading, MA, 1995.

4. Russell, Stuart and Norvig, Peter,
Artificial Intelligence: A Modern
Approach, Prentice Hall Upper Saddle
River, NJ, 1995.

5. Smith, Reid and Farquhar, Adam, The Road
Ahead for Knowledge Management: An AI
Perspective, AI Magazine, December 2000,
pp. 17-40.

June 2001 www.stsc.hill.af.mil 13

Teaching Intelligent Agents: Software Design Methodology

6. Tecuci, Gheorghe, Building Intelligent Agents,
Academic Press, San Diego, CA, 1998.

7. Chaudri, Vinay; Farquhar, Adam; Fikes
Richark; Park, Peter; and Rice, James,
OKBC: A Programmatic Foundation for
Knowledge Base Interoperability, Proceedings
of the Fifteenth National Conference on
Artificial Intelligence, 600-607, AAAI Press,
Menlo Park, CA, 1998.

8. Farquhar, Adam; Fikes, Richard; and Rice, James,
The Ontolingua Server: A Tool for Collaborative
Ontology Construction, Proceedings of the
Knowledge Acquisition for Knowledge-Based
Systems Workshop, Banff, Alberta, Canada, 1996.

9. MacGregor, Robert, Retrospective on
LOOM, 1999, www.isi.edu/isd/LOOM/
papers/macgregor/LoomRetrospective.html

10.Lenat, Douglas, CYC: A Large-scale
Investment in Knowledge Infrastructure,
Communications of the ACM, November
1995, pp. 33-38.

11. Tecuci, Gheorghe; Boicu, Mihai; Wright,
Kathryn; Won Lee, Seok; Marcu, Dorin;
and Bowman, Michael, A Tutoring Based
Approach to the Development of Intelligent
Agents, Intelligent Systems and Interfaces,
Kluwer Academic Publishers, Boston, Mass.,
2000.

12. Cohen, Paul; Schrag, Robert; Jones, Eric;
Pease, Adam; Lin, Albert; Starr, Barbara;
Gunning, David; and Burke, Murray, The
DARPA High-Performance Knowledge
Bases Project, AI Magazine, December
1998, pp. 25-49.

13. Tecuci, Gheorghe; Boicu, Mihai; Bowman,
Michael; Marcu, Dorin; preface by Burke,
Murray, An Innovative Application from the
DARPA Knowledge Bases Programs: Rapid
Development of a Course of Action
Critiquer, AI Magazine, June 2001.

14.Bowman, Michael; Tecuci, Gheorghe; and
Boicu, Mihai, Intelligent Agents, Tools for
the Command Post and Commander, to
appear in Acquisition, Logistics, and
Technology, 2001.

15.Joint Publication 3.0, Doctrine for Joint
Operations, Joint Chiefs of Staff,
Washington, DC, 1995.

16. Giles, Phillip and Galvin, Thomas, Center
of Gravity: Determination, Analysis,
and Application, Center for Strategic
Leadership, United States Army War
College, Carlisle Barracks, Pa., 1996.

17.Bowman, Michael; Lopez, Antonio; and
Tecuci, Gheorghe, Ontology Development
for Military Applications, Proceedings of the
Thirty-Ninth Annual ACM Southeast
Conference, March 2001.

Acknowledgements

Research at the GMU Learning Agents
Laboratory is sponsored by the DARPA,
Air Force Research Laboratory, Air Force
Material Command, USAF, under agree-
ment number F30602-00-2-0546, by the
Air Force Office of Scientific Research
(AFOSR) under grant no. F49620-00-1-
0072, and by the U.S. Army. The views
and conclusions contained herein are
those of the authors and should not be
interpreted as necessarily representing the

official policies or endorsements, either
expressed or implied, of DARPA, AFOSR,
the Air Force Research Laboratory, the
U.S. Army or the U.S. government. Mihai
Boicu, Dorin Marcu, Bogdan Stanescu,
Catalin Balan, Elena Popovici, Cristina
Cascaval, and other members of the
LALAB contributed to successive versions
of Disciple. The CrossTalk Editorial
Board provided insightful comments and
suggestions that helped us improve this
paper.

Software Development Methodologies

About the Authors
LLTTCC MMiicchhaaeell BBoowwmmaann is a student at the U.S.
Army War College and a Ph.D. candidate at
George Mason University. He was the Army
product manager for Communications and
Intelligence Support Systems, and has had a vari-
ety of acquisition, automation, and tactical assign-
ments at the Defense Intelligence Agency, the U.S.
Military Academy, and in several Army field
artillery battalions. He received a bachelor’s degree
from Ouachita Baptist University and a master’s
degree from the Naval Postgraduate School.

Knowledge Engineering Group
Center for Strategic Leadership
United States Army War College
Carlisle Barracks, PA 17013
Voice: 717-245-3252
Fax: 717-245-4600
E-mail: michael.bowman@carlisle.army.mil

AAnnttoonniioo MM.. LLooppeezz JJrr.., Ph.D., holds the chair of
Artificial Intelligence in the Knowledge
Engineering Group of the Center for Strategic
Leadership at the U. S. Army War College. He
also holds the Conrad N. Hilton Endowed Chair
in Computer Science at Xavier University of
Louisiana. He is a colonel (retired) in the U. S.
Army Reserve having held assigned positions with
the 377th Theater Support Command as assistant
chief of staff G6, G3, and chief of staff.

Knowledge Engineering Group
Center for Strategic Leadership
United States Army War College
Carlisle Barracks, PA 17013
Voice: 717-245-3251
Fax: 717-245-4600
E-mail: lopezt@csl.carlisle.army.mil

MMAAJJ JJaammeess DDoonnlloonn is the director of the
Knowledge Engineering Group at the U. S. Army
War College. He conducts applications engineer-
ing, education, and applied artificial intelligence
research as an Army systems engineer. His Army
background is as an infantry officer. He received a
bachelor’s degree from the University of Delaware
and a master’s degree from Northwestern
University.

Knowledge Engineering Group
Center for Strategic Leadership
United States Army War College
Carlisle Barracks, PA 17013
Voice: 717-245-3265
Fax: 717-245-4600
E-mail: donlonj@csl.carlisle.army.mil

GGhheeoorrgghhee TTeeccuuccii, Ph.D., is professor of comput-
er science, director of the Learning Agents
Laboratory at George Mason University, and
member of the Romanian Academy. He received
his doctorate and master’s degrees in computer sci-
ence from the Polytechnic University of
Bucharest, and a doctorate in computer science
from the University of Paris-South. Tecuci has
published more than 100 scientific papers and five
books, most of them in the artificial intelligence
areas of intelligent agents, machine learning, and
knowledge acquisition.

Learning Agents Laboratory
Department of Computer Science
George Mason University
4400 University Drive
Fairfax,VA 22030
Voice: 703-993-1722
Fax: 703-993-1710
E-mail: tecuci@gmu.edu

“Computation offers a new means of describing and investigating

scientific and mathematical systems. Simulation by computer may be

the only way to predict how certain complicated systems evolve.”

Stephen Wolfram

14 CR O S S TA L K The Journal of Defense Software Engineering June 2001

While enjoying a day on the slopes at
one of the local Utah ski resorts, I

had the chance to ski on the course that
has been developed for the downhill ski
races in the upcoming 2002 Winter
Olympic Games. As I spent the day in my
feeble attempt to navigate the course, I
could only image the adrenaline rush
experienced by those who will be compet-
ing in a sport in which skiers race at speeds
in excess of 70 miles per hour.

Another winter sport not as well
known is speed skiing. Called the fastest
non-motorized sport on earth, skiers
plunge down a steep ramp of ice pro-
pelling themselves from 0 to 154 mph in
about 10 seconds. Is this insanity? Why
would anyone in his or her right mind par-
ticipate in this sport?

Growing numbers of people are enjoy-
ing high risk, extreme activities. Everything
in our world today seems to be following
this extreme theme. Daily we are bom-
barded with the demand for things to be
bigger, better, and faster! What was once
viewed as adequate is now considered sub-
standard and lack-luster.

Business and government organiza-
tions are not immune from this phenome-
non. Developments in recent years have
resulted in an environment where infor-
mation is needed now! Decisions must be
made quickly! Fortunes can be made, gov-
ernments can fall, and wars can be won or
lost based on the availability of informa-
tion to make sound decisions.

This rapid pace has had substantial
impact on computer resources. The boom
in web technologies is an example of this
demand for information. For companies
to remain competitive, the amount of
information available on the web has sky-
rocketed. Information technology organi-

zations have had to scramble to respond to
this demand. New techniques are evolving
in an attempt to keep pace with growing
demand. Into this environment has
sprung extreme software development meth-
ods.

Is an extreme programmer a wild and
crazy thrill seeker, pounding out code with
no concern for his own safety or the secu-
rity and stability of the organization?
What about the project lead that leaps
from tall buildings in a single bound with
no thought of standards, best practices, or
the future maintainability of the applica-
tion? These are the visions that come to
mind when thinking of extreme develop-
ment methods. However, before validating
or dispelling this stereotype, a review of
traditional development methods comes
first.

Traditional Development

Methods

Traditional software development
methodologies were developed to stan-
dardize the procedures used to develop
and maintain software. These methodolo-
gies follow the general phases outlined in
Figure 1. These methodologies are usually
based on one of the following three basic
models:
TThhee WWaatteerrffaallll MMooddeell:: The Waterfall
model for software development is a step-
by-step process. The requirements for one
phase are completed prior to the next

phase beginning. This is a onetime
through approach. The phases build upon
each other toward the completion of the
development effort. Figure 2 illustrates the
sequential nature of a typical waterfall
methodology.
TThhee IInnccrreemmeennttaall MMooddeell:: Using the incre-
mental approach, user needs are deter-
mined and system requirements are
defined. Then the rest of the development
is performed in a sequence of builds. The
first build incorporates part of the planned

Extreme Methodologies for an Extreme World
Theron Leishman

Software Technology Support Center

The world we live in today demands greater availability of decision-making information. The use of cell phones,
hand held computers, online banking, and internet stock trading are only a few examples of this demand for
timely information. Information Technology organizations are feverishly scrambling in an attempt to gain ground
on the ever increasing demand for their services. This article takes a glimpse into the software development
methodologies that are being applied in an attempt to catch up in the rapidly changing world in which we live. A
brief insight into traditional development methods will be followed by an analysis of the principles underlying the
new, less traditional methods. These newer, extreme methodologies share many common characteristics, which will
be identified and discussed. An analysis will also be made of the ability of extreme methodologies to meet the rigor
demanded by the Software Capability Maturity Model.

Figure 2: Waterfall Model

June 2001 www.stsc.hill.af.mil 15

Figure 1: Traditional Software Development Phases

capabilities. The next build adds addition-
al capability. This incremental process
continues until the system is complete. An
example of the incremental model is pre-
sented in Figure 3.
TThhee EEvvoolluuttiioonnaarryy MMooddeell:: An evolution-
ary, or spiral, model also uses a system of
builds as in the incremental model. The
variation comes in the acknowledgement
up front that the user needs and require-
ments are not fully understood at the
inception of the project. Using this strate-
gy, the user needs and system requirements
are partially defined at the inception of the
project. They are then refined in each suc-
ceeding build. A pictorial representation
of the evolutionary model is in Figure 4.

Extreme Development

Methodologies
Extreme methodologies take a different
approach from traditional software devel-
opment methodologies. These methodolo-

gies accept the notion that, change hap-
pens during all phases of the development
process. Further, it is anticipated that the
system users may not know exactly what
they want the final product of the devel-
opment effort to be.

A number of non-traditional method-
ologies have evolved in recent years.
Methodologies such as Extreme Program-
ming (XP), Adaptive Software Develop-
ment (ASD), SCRUM, and Crystal Light
are a few of the methodologies attempting
to achieve notoriety in these extreme
times.

Extreme methodologies tend to be tai-
lored after the evolutionary or spiral devel-
opment model. They use phases like
inception, elaboration, construction, and
transition or speculation, collaboration,
and learning to streamline the develop-
ment approach of traditional methodolo-
gies. These methods attempt to satisfy cus-
tomer requirements by speeding develop-
ment and delivering useful products in

rapid iterations. Full functionality is
achieved over time, while partial function-
ality is achieved quickly. Figure 5 presents
a comparison of the phases of traditional
life-cycle methodologies to those of typical
extreme methodologies.

Each of the extreme methods have
developed it’s own approach to conquer-
ing the brave new world of speedy devel-
opment. Underlying each of these meth-
ods is a foundation of basic characteristics
common to each. A summary of these
similarities follows.

AAnn IItteerraattiivvee AApppprrooaacchh:: These meth-
ods are designed for use in uncertain con-
ditions. They accept the fact that change is
inevitable, therefore the system evolves
through various iterations. Requirements
are identified and incorporated into each
iteration of the system. The application is
presented to the customer in releases pro-
viding increased value to the customer
with each iteration until the desired sys-
tem evolves.

RRiisskk DDrriivveenn:: With each development
iteration, risk is evaluated and acts as a
driving factor in the evolution of the sys-
tem. If additional requested functionality
causes system risk, or increases the com-
plexity of the application to the point of
impacting developmental cost or schedule,
the risk is identified and dealt with as it
arises.

Studies of software development proj-
ects have shown that projects are often
over budget, behind schedule, and do not
provide the desired functionality. All too
often these projects are never used in a
production environment. The risk of this
type of waste is greatly reduced by extreme
methodologies. As iterations of the prod-

Software Development Methodologies

Figure 3: Incremental Model

Figure 4: Evolutionary/Spiral Model Figure 5: Traditional Life-Cycle vs. Extreme Methodologies

16 CR O S S TA L K The Journal of Defense Software Engineering June 2001

Extreme Methodologies for an Extreme World

uct are completed, design errors and omis-
sions are identified and corrected. Large
investments in applications that provide
little or no value can be eliminated.
Systems evolve that either meet user
requirements, or the development is ter-
minated prior to large investments being
made in applications that do not warrant
the investment.

RReessuullttss OOrriieenntteedd:: Extreme method-
ologies are intended to achieve results that
are often not possible using other
approaches. These methodologies portray
a movers and shakers attitude by focusing
on results. These methods build in
processes intended to clear the tracks for
the express development train to move at
extreme speeds. Extreme methods get
results in these ways:
• Removing impediments to progress.
• Assuring prompt and timely decision

making.
• Isolating the project and team members

from irrelevant issues.
• Utilizing all resources and expertise

required to achieve success.
• Rewarding individuals and teams

involved with successful projects as the
success occurs.

• Focusing the attention of team members
on the extreme project and nothing else.

Use Sound Development

Processes

In an article published in Software Testing
& Quality Engineering, Jim Highsmith
stated that the Old World was one of opti-
mization where efficiency, predictability,
and control dominated. The New World is
one of adaptation in which change,
improvisation, and innovation rule. This
dichotomy – optimization versus adapta-
tion – provides a distinct way of viewing
the future of software project manage-
ment.

A study of extreme methodologies
soon leads to the determination that these
methods do not promote out-of-control,
free-for-all programming. These method-
ologies recognize value in the lessons
learned from the history of software devel-
opment. Although they emphasize the
need to rethink the traditional methods
and eliminate processes that are not value
added, they recognize the need for sound
development processes. For example, the

extreme methodologies studied encourage
the following:
• Testing at the unit and functional levels.
• Project planning.
• Developing and adhering to sound

development standards.
• Using pair programming.
• Developing and following coding stan-

dards.
• Releasing software in frequent intervals.
• Establishing configuration management

process.
• Providing onsite dedicated customer

project support.

Emphasize Collaboration

Extreme methodologies all share the idea
of collaboration. The idea of empowered,
high-performance teams is key to the suc-
cess of projects using extreme methodolo-
gies. Team members must have comple-
mentary skills and be dedicated to the
common purpose, performance goals, and
approach to which they hold themselves
mutually accountable. These empowered
teams include all required technical disci-
plines and user involvement to allow deci-
sions to be made as problems arise.

Having the right people dedicated to a
project will ensure that stakeholder and
developer alike have agreement on issues
from primary requirements through final
implementation. Issues of scope, cost,
schedule, priorities, risk, and trade-off ’s
between these are well understood by all
parties. Surprises are eliminated and suc-
cessful projects are the result.

A recent study on the cost and benefit
of pair programming revealed that a pair
of programmers working on a project took
15 percent more time to complete the pro-
gramming effort than a single programmer
working alone. This cost was easily offset
by the resulting 15 percent reduction in
coding defects. History has shown that the
cost to correct defects is exponentially
greater than the cost of original coding [1].

A team of programmers developing
simulator software for the Israeli Air Force
also realized results similar to those identi-
fied in the above study. By using pair pro-
gramming, and being located in the same
facility as their customer, the team has
been able to greatly reduce the time
between software releases. The team is see-
ing great benefits by using XP principles in

their development efforts [2].
It has been said that the number one

killer of software development projects is
time. Collaboration allows extreme proj-
ects to remove barriers and eliminate
delays that kill projects.

How Extreme is Extreme?

Upon consideration of the so-called
extreme methodologies, the question aris-
es, “What is so extreme?” The characteris-
tics of the extreme methods that appear to
make these approaches appealing and suc-
cessful are not glitzy new tools or earth
shaking new discoveries. They are things
that contribute to the success of any proj-
ect following any sound methodology.

Ward Cunningham, one of the fathers
of XP has indicated that, “Extreme
Programming is a lot of simple little
things. It’s lots of things that have been
done before, some of which have even
been discredited. We have reconstructed a
collection of practices that support each
other in a way that is startling [3].”

The Capability Maturity Model
The Software Engineering Institute devel-
oped the Capability Maturity Model®
(CMM®) for software, which organiza-
tions can use as a base to measure their
software development and maintenance
processes. It provides a standard for soft-
ware process improvement to assist organ-
izations desiring to make conscious
improvement in their software develop-
ment efforts. The CMM lays out a path to
lead an organization from an ad hoc,
immature development organization to a
mature, disciplined organization. The
CMM contains five levels of maturity. It
covers practices for planning, engineering,
and managing software development and
maintenance [4].

The Key Process Areas (KPAs) of
CMM Level 2 and Level 3 cover many
areas of sound software development
methodologies. Below is a summary of
these levels along with a list of the KPAs
for each level.

LLeevveell IIII – The focus of CMM Level 2
is on software project management.
Software project management processes
are to be documented and followed.

June 2001 www.stsc.hill.af.mil 17

Capability Maturity Model and CMM are regis-
tered in the U.S. Patent and Trademark office.

18 CR O S S TA L K The Journal of Defense Software Engineering June 2001

Organizational policies guide projects in
establishing management processes.
Successful practices developed can be
repeated. These are the key process areas of
Level 2:
• Requirements Management.
• Software Project Planning.
• Software Project Tracking and Oversight.
• Software Subcontract Management.
• Software Quality Assurance.
• Software Configuration Management.

LLeevveell IIIIII – The focus of CMM Level 3
is the software engineering process. At
Level 3 emphasis moves toward the organ-
ization. The organization has processes in
place that empower the individuals doing
software development. Processes are
defined, documented, and understood by
individuals within the organization. These
are the key process areas of Level 3:
• Organization Process Focus.
• Organization Process Definition.
• Training Program.
• Integrated Software Management.
• Software Product Engineering.
• Intergroup Coordination.
• Peer Reviews.

CMM and Extreme

Methodologies

The CMM is intentionally not prescrip-
tive in nature. An organization choosing
to follow the framework of the CMM
should develop policies and procedures
that make sense for its environment. The
CMM should be used as a model of the
best practice in software development and
maintenance.

An established software development
methodology is an essential element of a
mature software development organiza-
tion. In addition, standardized develop-
ment methodologies span many of the
KPAs identified within the CMM.
However, the CMM does not advocate
one development methodology over
another. The model does recommend that
a sound methodology be followed.

An extreme development methodolo-
gy can provide the elements necessary for
a development organization to be success-
ful in their development efforts. As noted
earlier in this article, extreme methodolo-
gies advocate sound practices that are
defined in the CMM. Principles of plan-
ning, requirements management, quality

assurance, and project tracking and over-
sight are all essential elements of a sound
extreme methodology. These are all KPAs
within the CMM. They are practices
essential to the ongoing success of a devel-
opment and maintenance organization.

Conclusion

The demands of the world we live in
require more information to be available
faster than any time in history. To remain
competitive, an organization must be able
to respond to this demand. Extreme soft-
ware development methodologies have
demonstrated their ability to help infor-
mation technology organizations respond
to this growing demand for their services.

These methods are not simple solu-
tions to an age-old problem. Just as the
participants of extreme sports have tools
and equipment to allow them to reduce
the risk of participation in their chosen
sport, so also should an extreme method-
ology reduce risk to the organization. A
mature development organization will
have sound policies and procedures in
place to guide the selection and tailoring
of appropriate methodologies.

It is important to remember that not
all projects are extreme projects. However,
when a project is determined to be
extreme, a sound extreme methodology
will allow the project to accomplish it’s
objective while not exposing the organiza-
tion to undue risk.◆

References

1. Byer, Dr. Sam and Highsmith, Jim, RADical
Software Development, American Prog ram-
mer Magazine, June 1994.

2. Cockburn, Alistair and Williams, Laurie, The
Costs and Benefits of Pair Programming,
Humans and Technology Technical Report
2000.01, January 2000.

3. Waters, John K., Extreme Method Simplifies
Development Puzzle, Application
Development Trends, July 2000.

4. Software Engineering Institute, The
Capability Maturity Model Guidelines for
Improving the Software Process, Boston,
Addison Wesley, 1994.

Additional Reading

1. Beck, Kent, Extreme Programming
Explained: Embrace Change, Boston,
Addison Wesley, 2000.

2. Experience With XP, c2.com/cgi/wiki?
ExperienceWithXP

3. Highsmith, Jim, Retiring Lifecycle
Dinosaurs, Software Testing & Quality
Engineering, July/August 2000.

4. Koerner, Brendan I., Extreme, U.S.
News, June 30, 1997.

5. Rational Software Corporation,
Rational Unified Process: Best Practices
for Software Development Teams,
White Paper TP-026A Rev 11/98.

About the Author
TThheerroonn RR.. LLeeiisshhmmaann is a
consultant currently under
contract in the Software
Technology Support Center
at Hill AFB, Utah, which
provides consulting services

to Air Force and other Department of
Defense (DoD) and government agencies.
He began his career as an Electronic Data
Processing auditor assessing software devel-
opment, software project management,
computer security and compliance to gov-
ernment standards and regulations.
Leishman has a wide range of experience in
various aspects of software design, develop-
ment, project management, and process
improvement. He has successfully managed
projects of various size and complexity for
the DoD, aerospace, manufacturing, health
care, gas and oil, higher education, and var-
ious other industries. Leishman is currently
employed by TRW.

Software Technology Support Center
7278 4th Street
Bldg. 100 G19
Hill AFB, Utah 84056
Voice:801-775-5738
Fax:801-777-8069
E-mail:Theron.Leishman@hill.af.mil

Software Development Methodologies

“Computers are to computing as

instruments are to music. Software is

the score whose interpretations

amplifies our reach and lifts our

spirits. Leonardo da Vinci called

music the shaping of the invisible,

and his phrase is even more apt as a

description of software”

Alan C. Kay

Extreme Programming (XP) is a hot,
new software process methodology for

medium to small sized organizations. It is
designed with requirements drift as a fun-
damental occurrence to be embraced,
rather than dealing with it as a necessary
evil. XP nominates coding as the key activ-
ity throughout the development process,
yet the methodology is based on econom-
ics [1].

Barry Boehm presented that the cost
of change grows exponentially as the proj-
ect progresses through its lifecycle [2],
Stuart Faulk reiterates this by stating that
the relative repair cost is 200 times greater
in the maintenance phase than if it is
caught in the requirements phase [3]. XP
challenges that this is no longer the case.
While it is more expensive to modify code
than to modify a prose description, with
modern languages and development tech-
niques it is not an exponential increase.

Instead, Beck asserts that the cost for
change levels out. Rather than spend extra
effort in the requirements analysis phase to
nail down all requirements (some of which
will become obsolete through require-
ments drift anyway), accept that changes
due to incomplete requirements will be
dealt with later. XP assumes that lost
resources in rework will be less than the
lost resources in analyzing or developing
to incomplete requirements 1.

The primary vehicle for requirements
elicitation in XP is adding a member of
the customer’s organization to the team.
This customer representative works full
time with the team, writing stories – simi-
lar to Universal Markup Language (UML)
Use Cases – developing system acceptance
tests, and prioritizing requirements [4].
The specification is not a single monolith-
ic document; instead, it is a collection of
user stories, the acceptance tests written by
the customer, and the unit tests written for
each module. Since the customer is pres-

ent throughout the development, that cus-
tomer can be considered part of the speci-
fication since he or she is available to
answer questions and clear up ambiguity.

The XP life cycle is evolutionary in
nature, but the increments are made as
small as possible. This allows the customer
(and management) to see concrete
progress throughout the development
cycle and to respond to requirements
changes faster. There is less work involved
in each release, therefore the time-con-
suming stages of stabilization before
releases take less time. With a longer itera-
tion time it may take a year to incorporate
a new idea: with XP this can happen in less
than a week [1].

A fundamental of XP is testing. The
customer specifies system tests; the devel-
opers write unit tests. This test code serves
as part of the requirements definition – a
coded test case is an unambiguous medi-
um in which to record a requirement. XP
calls for the test cases to be written first,
and then the simplest amount of code to
be written to specify the test case. This
means that the test cases will exercise all
relevant functionality of the system, and
irrelevant functionality should not make it
into the system [1].

This paper describes and evaluates the
requirements engineering processes associ-
ated with the XP paradigm.

The XP Requirements

Engineering Process
Harwell et al. break requirements into two
types – product parameters and program
parameters. A product parameter applies
to the product under development, while
a program parameter deals with the mana-
gerial efforts that enable development to
take place [5]. The customer who becomes
a member of the XP team defines both
product and program parameters. The
product parameters are defined through

stories and acceptance tests, while the pro-
gram parameters are dealt with in release
and iteration planning.

The product parameters are chiefly
communicated through stories. These sto-
ries are similar to Use Cases defined in
UML, but are much simpler in scope [4].
Developing a comprehensive written spec-
ification is a very costly process, so XP uses
a less formal approach. The requirements
need not be written to answer every possi-
ble question, since the customer will
always be there to answer questions as they
come up. This technique would quickly
spiral out of control for a large develop-
ment effort, but for small- to medium-
sized teams (teams of fewer than 20 people
are most often reported) it can offer a sub-
stantial cost savings. It should be noted,
however, that an inexperienced customer
representative would jeopardize this prop-
erty.

The programmers then take each story
and estimate how long they think it will
take to implement it. Scope is controlled
at this point – if a programmer thinks that
the story, in isolation, will take more than
two weeks to implement, the customer is
asked to split the story. If the programmers
do not understand the story they can
always interact directly with the customer.
Once the stories are estimated, the cus-
tomer selects which stories will be imple-
mented for the upcoming release, thereby
driving development from business inter-
ests. At each release, the customer can
evaluate if the next release will bring busi-
ness value to the organization [1].

Each story to be implemented is bro-
ken up into tasks. A pair of programmers
will work to solve one task at a time. The
first step in solving a task (after under-
standing, of course) is to write a test case
for it. The test cases will define exactly
what needs to be coded for this task. Once
the test cases pass, the coding is complete
[1]. Thus the unit tests may be considered

The Quality of Requirements in Extreme Programming
Richard Duncan

Mississippi State University

Extreme Programming (XP) is a software process methodology that nominates writing code as the key activity
throughout the development process. While at first glance this sounds chaotic, a disciplined group utilizing XP
performs sufficient requirements engineering. This paper describes and evaluates the quality of requirements gener-
ated by an ideal group using XP and discusses how the XP process can assist or hinder proper requirements engi-
neering.

June 2001 www.stsc.hill.af.mil 19

a form of requirements as well. Every test
(across the entire system) must pass before
new code may be integrated, so these unit-
test requirements are persistent. This is not
to say that simple unit testing counts as an
executable specification – but XP’s test-
driven software development does record
the specific requirements of each task into
test cases.

The final specification medium for
product requirements is the customer
acceptance tests. The customer selects sce-
narios to test when a user story has been
correctly implemented. These are black-
box system tests, and it is the customer’s
responsibility to ensure that the scenarios
are complete and that they sufficiently
exercise the system [6]. These acceptance
tests serve as an unambiguous determiner
as to when the code meets the customer’s
expectations.

How XP Rates

The XP requirements engineering process
can be analyzed by considering the 24
quality attributes for software require-
ments specification (SRS) proposed by
[7]. Davis et al. propose that a quality SRS
is one that exhibits the 24 attributes listed
in Table 1. Rather than applying these
metrics to a given document, they are used
here to measure the requirements that the-
oretically come out of the XP process. Of
course, a quality SRS is mostly dependent
on the discipline used by the people asso-
ciated with the project, but specific fea-
tures of XP can influence the quality of a
SRS.

A specification created with XP would
appear to score very well across most of
these attributes, but fare poorly on others.
Those qualities with a “+” symbol indicate
that the subsequent paragraphs argue the
XP process can lead to an improvement in
the area: a “-” that XP detracts from the
quality. The “+/-” annotation indicates
that XP partially helps and partially harms
a specification in achieving the quality.
Many of the qualities are not addressed by
XP and are hence annotated with a “?,” for
these qualities a group’s organization, dis-
cipline, and specific project needs will
decide. It should be noted that to reli-
giously follow XP requires a great deal of
discipline: This discipline should be
expected to carry over into the other qual-
ities. Following is a look at some of the quality

attributes.
Unambiguous, Correct, and Under-

standable: Since the customer is pres-
ent, ambiguity and problems understand-
ing the requirements are generally mini-
mal and easily solvable [1] . Requirements
are correct if and only if each represents an
actual requirement of the system to be
built. Since the customer writes the stories
from business interests, the requirements
should all be correct. With so much
responsibility and freedom, clearly the
selection of an appropriate customer rep-
resentative is crucial to the success of the
project. Even if the customer does not
know exactly what he or she desires at the
start of the project, the evolutionary
nature of XP development leads to a sys-
tem more in line with the customer’s
needs.
Modifiable: The XP lifecycle allows
changes to the requirements specification
at nearly any point in system develop-
ment. The specification exists as a collec-
tion of user stories, so the customer can
switch out one future story for another
with little impact on existing work. Since
the planning, tests, and integration are all
performed incrementally, XP should
receive highest marks in modifiability. Of
course, work may be lost in this
changeover, but with XP the programmers
should be able to estimate how much a
change will cost.
Unambiguous, Verifiable: Since the
customer writes acceptance tests (with the
assistance of programmers), it could be
argued that the functional specification is
recorded in an unambiguous format.
Furthermore, the first activity performed
by a programming pair to solve a task is to

write test cases for it. These test cases
become a permanent part of the specifica-
tion/test suite. Customers (with the help
of the XP coach) will also make sure that
the specification is verifiable, since they
know that they will have to write test cases for it.
Annotated by Relative Importance:

The customer defines which user stories
they wish implemented in each release.
Hence, each requirement is annotated by
relative importance at this time – the cus-
tomer should ask for the highest-priority
stories to be implemented first and pro-
grammers are never left guessing priorities.
Achievable: Since each release provides
some business value, a portion of the sys-
tem found to be unachievable should not
leave the customer with a very expensive
yet unusable piece of technology. If the
high-risk piece is important, it will be
implemented first, in which case the
unachievable component should be found
quickly and the project aborted relatively
inexpensively. If it is less important, then
the system may be delivered in useful form
without it.
Design Independent: Design inde-
pendence is a classic goal for requirements,
but today’s object-oriented development
methods recognize that design independ-
ent requirements are often impractical.
Portions of the requirements (such as the
user stories) can be very design independ-
ent, but the unit tests that are archived as
part of the requirements and used to cross-
check new modules may depend heavily
on the actual system.
Electronically Stored: XP calls for the
stories to be written on index cards, so this
portion of the requirements is not elec-
tronically stored. While the stories could

Software Development Methodologies

Table 1: The 24 Quality Attributes [7]

20 CR O S S TA L K The Journal of Defense Software Engineering June 2001

The Quality of Requirements in Extreme Programming

be placed in a word processor, Jeffries et al.
assert that handwritten index cards pro-
duce less feelings of permanence and allow
the customer to more freely change the
system [4]. The customer is also available
as a requirements resource, obviously not
electronically stored. However, the
requirements are written on individual
cards so modifications can often be local-
ized to a single card if rewriting is neces-
sary. Furthermore, the customer codifies
the system requirements with acceptance
tests, so it could be argued that the most
important part of the specification is
stored.
Complete, Concise: XP stresses program-
ming as the most important development
activity, hence little effort is spent on cre-
ating documents, therefore the specifica-
tion is very concise. The cost may be a lack
of completeness, however. Since little up
front analysis takes place, there may very
well be holes in the system. Yet the cus-
tomer drives what functionality is imple-
mented and in what order, so true func-
tionality should not be left out.
Furthermore, since the XP process accom-
modates change, it should be possible to
compensate for these holes later in the
development lifecycle.

Security Assurances

Since the XP development methodology
does not progress from a verified require-
ments document, how might a system
developed with XP rate on a security eval-
uation? The Common Criteria has seven
evaluation assurance levels (EAL1-EAL7).
For EAL5 and above the Common
Evaluation Methodology calls for the sys-
tem to be semi-formally designed and test-
ed [8]. This leaves two questions to be
addressed. First, can a project use formal
methods with XP? Second, without formal
methods, how trusted can a system devel-
oped under XP be?

The XP process screams informality in
many respects. The name alone conjures
images of snowboarders with laptops, and
even the books about XP are written in a
conversational tone. Nevertheless, what
would happen if the customer writes sto-
ries and they are annotated with a formal
specification? Clearly, this would entail a
large cost in training personnel, writing
the specifications, and verifying the speci-
fications. This also reduces the agility of

the XP product – since more money is
spent on specification, the cost of change
will increase. But if each story were rewrit-
ten in a formal notation it would be possi-
ble to formally verify the specification and
design.

Formal methods aside, the way an XP
project progresses does offer many assur-
ances of trust. First, all code is written
directly from the user stories (the specifi-
cation). All functionality is tested in the
unit tests and all integrated code is
required to pass all tests all the time.
While testing does not guarantee the
absence of errors, many security holes
come from poorly tested software. Hence,
the test-oriented nature of XP may be a
great step forward.

A strong security feature of XP is pair
programming. The observer in a pair con-
stantly evaluates the code being written by
his or her partner. This programmer can
help reduce the probability of coding
errors that might later be exploited (e.g.,
buffer overruns). XP also adds counterbal-
ances to reduce the impact of a single
malicious coder (either in a truly malevo-
lent sense or inadvertently opening holes
as Easter Eggs2 side effects) through the
pairing process. Rather than just inserting
code into the system, one programmer
would have to convince the other of a
rationale for why the code was being
inserted. Due to collective code owner-
ship, it is entirely possible that the next
pair in the course of re-factoring would
catch malicious code. Pair programming
and collective code ownership add further
assurance that the code is written exactly
to the specification.

Conclusions

XP performs requirements engineering
throughout the life cycle in small informal
stages. The customer joins the develop-
ment team full time to write user stories,
develop system acceptance tests, set prior-
ities, and answer questions about the
requirements. The stories are simpler in
scope to use cases because the customer
need not answer every conceivable ques-
tion. The informal stories are then trans-
lated into unit and system acceptance
tests, which have some properties of an
executable specification.

Of the 24 quality attributes of a soft-
ware specification, the XP process leads to

higher points in nine attributes and lowers
the score in two. The most noteworthy
gains are in ambiguity and understand-
ability, since the customer is always pres-
ent to answer questions and clear up prob-
lems. Furthermore, since the customer is
also responsible for developing test scenar-
ios he or she will create more verifiable
requirements. The discipline enforced by
the XP process should also carry over into
other areas of requirements engineering.◆

Notes

1. XP has been used on several projects.
Beck mentions a campaign manage-
ment database, a large-scale payroll sys-
tem, a cost analysis system, and a ship-
ping and tariff calculation system in [9].
Yet there is little objective data available
for analysis at this time. More data
should be made available through the
upcoming XP Universe Conference,
Raleigh, NC, July 2001, www.
xpuni verse.com

2. An unsolicited, undocumented piece of
code a programmer inserts into soft-
ware, generally for his or her own
amusement.

References

1.Beck, Kent, Extreme Programming
Explained: Embrace Change, Boston,
Addison Wesley, 2000.

2.Boehm, Dr. Barry, Software Engineering
Economics, Prentice Hall, 1981.

3.Faulk, Stuart, Software Requirements: A
Tutorial, Software Engineering, IEEE
1996, pp. 82-103.

4.Jeffries, Ron; Anderson, Ann; and
Hendrickson, Chet, Extreme
Programming Installed, Boston, Addison
Wesley, 2001.

5.Harwell, Richard; Aslaksen, Erik;
Hooks, Ivy; Mengot, Roy; and Ptack,
Ken, What is a Requirement?
Proceedings, Third Annual
International Symposium National
Council Systems Engineering, 1993,
pp. 17-24.

6.Wells, J. Donovan, Extreme Program-
ming: A Gentle Introduction,
www.ExtremeProgramming.org 2.75

Continued on page 31

June 2001 www.stsc.hill.af.mil 21

The Software Engineer: Skills for Change
Dr. Stephen E. Cross and Dr. Caroline P. Graettinger

Software Engineering Institute (SEI)1

Software Engineering Technology

During the past 15 years, the Defense
Science Board (DSB, www.acq.osd.mil/

dsb) has made more than 130 recommendations
intended to improve the ability of software engi-
neering organizations to produce high quality
software on time and at cost, yet these organiza-
tions continue to find it difficult to make these
changes. If improvement were simply a
matter of purchasing a new software tool,
change would not be so difficult. But to
realize the improvements called out in the
DSB reports and others like them requires
changes in the day-to-day practices of soft-
ware engineers and their managers.
Achieving these kinds of changes requires
more skills than the ability to purchase a
new tool – skills for change management
become important.

Unfortunately, too few of the soft-
ware-intensive organizations are proactive
about managing change. A recent article
by Boehm and Basili shows that poor soft-
ware engineering practices are still a major
contributor to software defects [1]. While
some organizations adopt new and better
software engineering practices and tech-
nologies because they recognize their
strategic value, most organizations are
more reactive than proactive.

Reactive organizations are at the
mercy of change led by others, and gener-
ally attempt radical improvements in their
software engineering disciplines only after
customer pressures or disaster. By then,
this catch-up game is costly and is often
implemented by pick-up teams of individ-
uals who may be well intentioned, but lack
the change management skills to be suc-
cessful. The most common result is money
spent with little change to show for it.

Change: What Past Studies Say

Let us look in more detail at some of the
past recommendations for change in the
software engineering community. The

DSB conducted task forces on defense
software in 1987, 1994, and 2000 [2, 3,
4]. Each report advocated management
and technical practices aimed at helping
organizations improve the quality of their
software as well as their productivity, cycle
time, and cost effectiveness. For example,
each report offered recommendations in
the areas of acquisition policy, contracting,
work force, and technology to encourage
the Department of Defense (DoD) and its
industry base to adopt spiral development
and evolutionary acquisition techniques,
and to exploit evolving commercial tech-
nology. Each report observed with concern
the shortage of software engineers in the
government and defense industry base and
the need for better training and profes-
sional development.

However, each report proposed slight-
ly different approaches to realize the rec-
ommendations, depending on the tech-
nology, organizational trends, and oppor-
tunities prevalent at that time. For exam-
ple, the 1987 report stressed the role of
high-order languages, most notably Ada
and computer-aided software engineering
tools in support of Ada implementations2.

The 1994 report encouraged use of
commercial products and processes and a
greater focus on the design phase, most
notably on software architecture and prod-
uct line practice. Both were considered
fundamental to a successful strategy for
migrating software engineering from a
line-by-line endeavor to one in which sys-
tems were assembled from commercial
components.

The 2000 report provided six recom-
mendations:
1.Stress past performance and process

maturity.
2.Restructure contract incentives.
3.Collect, disseminate, and employ best

practices.
4.Initiate independent expert reviews.

5.Improve the software skills of acquisi-
tion and program management.

6.Strengthen and stabilize the technology
base.

In essence, the 2000 DSB study sum-
marized the important recommendations
from past studies. These recommendations
say that change is required just to gain the
advantages of what is known to be effec-
tive software engineering practices.

However, there are other sources of
change as well. DoD software require-
ments are expanding, including demand
for increased functionality and flexibility
of software within any one system.
Human resources shortages are continu-
ing, as observed in studies during the past
15 years, with severe shortages in the gov-
ernment and the defense industry base3;
productivity improvements are essential.
Lastly, security issues are now a major con-
cern. These trends all suggest additional
changes that organizations and their soft-
ware engineers will need to deal with in
their day-to-day practices.

Skills for Change

What are the implications for the 21st cen-
tury software engineer? While most soft-
ware engineers are concerned with doing
their job and getting a product out, others
need to take on the role of software tech-
nology change-agents. Such engineers
need to develop the following skills:
• Identifying and evaluating new software

engineering methods and tools.
• Understanding how individuals react to

and commit to new innovations/tech-
nology.

• Understanding how organizational cul-
ture influences the adoption of new
innovations/technology.

• Utilizing effective mechanisms for insti-
tutionalizing and sustaining an adop-
tion.

The rapid pace of change in software engineering means that software-intensive organizations must develop a core
competency for proactive change management. While most software engineers are concerned with doing their jobs
and getting a product out, others need to take on the role of technology change-agents for their organizations. We
suggest that a career path in change management will be a critical need and opportunity for the 21st century soft-
ware engineer.

22 CR O S S TA L K The Journal of Defense Software Engineering June 2001

To apply this knowledge successfully
requires engineering competency coupled
with competencies in management and
psychology. Unsuccessful attempts at
change can often be traced to failure in
one or more of these competencies. It is
important then for organizations to devel-
op these skills.

One approach we have seen recently is
the creation of a career path in software
engineering change management.
Engineers who elect this path are provided
with training, mentors, and a certification
process designed to develop their change
management skills. There is a promotion
path with a top position at the executive
level. Change management is treated as a
key success factor in these organizations,
with a career path as part of the infrastruc-
ture to support that competency.

As two practitioners in the field of
change management have stated [5], “No
technology will remain in first place forev-
er. The trick is to pick technologies likely
to remain useful long enough for the firm
to recover its investment as well as to place
itself in a position to leverage the next big
technological advancement. This is a diffi-
cult task.”

Even with skills for change manage-
ment, technologies can still come along
that are so revolutionary, it is not possible
or practical to leverage the existing tech-
nologies [6]. Who will be more able to rec-
ognize and respond to this change: those
with skills for change or those without?
Obviously, those with change manage-
ment skills will be the winners.

Change: A Medical Analogy

Let us conclude with a quick look at the
field of medicine as an analogy to demon-
strate the challenges of adopting new prac-
tices and why knowledgeable, experienced
change-agents are so vital. While this, like
most analogies, is an oversimplification,
and there is always a danger of carrying it
too far, we nevertheless offer it as a way of
relating to some of the skills needed in
change management.

The medical field offers some useful
analogies to software engineering. While
we think of DoD weapon systems as being
highly complex, we think it safe to say that
the system that physicians work on (the
human body) is even more complex. In
both fields however, the practices and tools

of the practitioners are changing rapidly. A
software engineering change-agent (the
equivalent of the physician in our medical
analogy) should be aware of the changes in
the field and have the competencies to
evaluate and select the appropriate changes
for their organizations (where the organi-
zation is equivalent to the patient in our
medical analogy).

We can carry this analogy further by
relating the various medical specialists and
diagnosticians to the various change-agent
roles and skills. For example, sometimes a
patient is willing to make whatever
changes are necessary to achieve improve-
ment and possibly a complete cure. They
follow their doctor’s advice and even take
it upon themselves to learn more about
their condition and treatment options.
Such patients are willing adopters of the
change.

On the other hand, when the changes
require a complete lifestyle overhaul, this
can be a much bigger challenge to the
patient. When that happens, the patient
may require other support in the form of
psychologists, therapists, etc. that will
address the various dimensions of the
treatment.

Likewise, the software engineering
change-agent must be prepared to address
the multiple dimensions of the change –
business, technical, cultural, and political.
Whether these skills are embodied in one
or more change-agent roles will be deter-
mined as more organizations explore the
realm of software engineering change
management. It is probably safe to say that
organizations will have a spectrum of
adopters who respond and commit differ-
ently to changes in their day-to-day soft-
ware engineering practices. Hence, we
believe there is a need for skilled practi-
tioners with the know-how to address
these issues.

Conclusion

Change in the field of software engineer-
ing provides organizations and software
engineers with both opportunities and
challenges. The opportunities are in the
adoption of new practices and supporting
technologies that will improve the quality
of their products while at the same time
enabling more predictability in their
development costs and schedules.

The challenges are in recognizing that

no technology or practice will remain in
place forever, and the organization must
be prepared to continually improve their
software engineering discipline and tech-
nologies.

We propose that organizations with
core competencies in change management
have these advantages:
• Better able to continually identify, eval-

uate, and implement real improve-
ments.

• Less likely to waste resources and time
on inappropriate choices and poor imple-
mentation. Organizations need the skills
to identify, select, and institutionalize
new practices and technologies that will
provide an acceptable return on invest-
ment and put them in a position to
leverage the next big advancement. We
believe these are the skills that the soft-
ware engineering change-agent needs
now and in years to come.◆

Acknowledgements

The authors would like to thank Dr. John
Goodenough and William Pollak, both of
the Software Engineering Institute, for
their valuable contributions to this article.

References

1.Boehm, B. and Basili, V., Software Defect
Reduction Top 10 List, Computer, January
2001, pp. 135-137.

2.Report of the Defense Science Board
Task Force on Military Software, 1987,
DTIC #ADA 188560.

3.Report of the Defense Science Board on
Acquiring Defense Software Commercially,
1994, DTIC #ADA 286411.

4.Report on the Defense Science Board Task
force on Defense Software, November 2000,
www.osd.acq.mil/dsb

5.Carter, L. R. and Dufaud, Lt. Col. Scott, 21st

Century Engineer, Crosstalk, December
1999, pp. 14-20.

6.C.M. Christensen, The Innovator’s Dilemma,
1997, Harvard Business School Press, Boston,
Mass.

Notes

1.The Software Engineering Institute is a
federally funded research and develop-
ment center sponsored by the U.S.
Department of Defense.

2.A 1997 National Research Council report,
Ada and Beyond: Software Policies for the

June 2001 www.stsc.hill.af.mil 23

The Software Engineer: Skills for Change

The new Department of Defense
(DoD) 5000 series of acquisition reg-

ulations1 requires the exploitation of com-
mercial off-the-shelf (COTS) products in
DoD acquisitions. The incorporation of
COTS software into software-intensive
systems brings promises of reduced cost
and schedule, and improved reliability and
maintainability by using proven software.
However, the reality is often very different!
The use of COTS software, which can
provide significant benefits, also poses
major new risks in the acquisition, devel-
opment, and sustainment of software-
intensive systems that must be acknowl-
edged and managed.

In support of the U.S. Air Force Space
and Missile Systems Center’s (SMC’s)
Directorate of Systems Acquisition, the
authors performed an in-depth study of
actual COTS-based system (CBS)2 devel-
opment and sustainment experiences on
SMC and National Reconnaissance Office
(NRO) programs. This study was motivat-
ed by numerous reports of COTS soft-
ware-related problems. The purposes of
this study were: (1) to synthesize and share
lessons learned from actual CBS develop-
ment and sustainment experiences, and
(2) to provide recommendations for miti-
gating the risks inherent in CBS develop-
ment and sustainment.

COTS Software Study Process

The study process comprised three steps:
gathering information, synthesizing les-
sons learned, and developing acquisition
recommendations. The techniques select-
ed for the first step were focused inter-
views and documentation reviews. A
COTS software experience questionnaire
was developed to provide a framework for
the interviews. This questionnaire was sent
to the interviewees in advance of the inter-
view to enable them to prepare for the

type of information being requested. The
interview itself was then allowed to pro-
ceed as a free exchange of information,
with the questionnaire being used to
return conversation to the topic, if neces-
sary. The questionnaire was also consulted
toward the end of the interview to identi-
fy areas that had not been addressed. In
addition, interviewees were asked to pro-
vide any written documentation previous-
ly prepared by their program on COTS
software experiences or lessons learned.

The COTS software experience ques-
tionnaire requested information on both
good and bad experiences with COTS
software. For each experience, information
was requested on the nature of the experi-
ence, where in the life cycle it occurred,
the COTS software involved, the func-
tions provided by the COTS software, and
their criticality to the system. For good
experiences, the interviewees were asked to
identify any actions taken that contributed
to the good experience. Regarding bad
experiences, the interviewees were asked to
do the following:
• Identify any actions taken to solve the

problem or mitigate further risk.
• Provide information as to what they

would have done differently to find the
problem earlier and to solve the prob-
lem or mitigate the risk, given the bene-
fit of perfect hindsight.

The authors interviewed more than 50
representatives from 18 SMC and NRO
program organizations, including person-
nel from the government, development
contractors, and The Aerospace
Corporation. In addition, domain experts
from The Aerospace Corporation were
interviewed concerning their experiences
with COTS software in their domains.
The domains chosen were considered to
be critical to space systems, such as com-
puter security and telemetry processing.

Following the interviews, the authors
reviewed the documentation on COTS
software experiences and lessons learned
that were obtained from the interviewees.
Note that the information gathered was
from experiences on the ground segments
of space systems, due to the still rare use of
COTS software in onboard software for
satellites and launch vehicles.

During the second step of the study,
the authors first identified and document-
ed more than 150 distinct findings from
their interview notes and document
reviews. The authors then performed an
iterative series of analysis and syntheses to
derive lessons learned from the findings.
Six significant lessons learned were identi-
fied that encompassed the collection of
findings. The final step of the study was to
develop specific acquisition recommenda-
tions to help mitigate the risks in CBS
development and sustainment. The les-
sons learned and recommendations are
described below.

Lesson Learned 1

Critical aspects of CBS development and sus-
tainment are out of the control of the cus-
tomer, developer, and user.

This lesson concerns the realities of
the commercial marketplace. COTS soft-
ware vendors are driven by today’s fast-
paced market, characterized by highly
volatile business strategies and market
positions. Vendors may go out of business,
merge with, or be acquired by other com-
panies. Vendors may also drop or de-
emphasize products or hardware plat-
forms, usually without warning.

Of particular note is the fact that the
more numerous commercial customers,
not the defense community, drive the mar-
ket for COTS software. In some instances,
the market is diverging from defense
needs. One example of this is the empha-

Lessons Learned From Using COTS Software on Space Systems
Richard J. Adams and Suellen Eslinger

The Aerospace Corporation

The incorporation of commercial off-the-shelf (COTS) software into software-intensive systems brings promises of
reduced cost and schedule and higher reliability and maintainability by using "proven" software. However, the
reality of using COTS software can be very different! This article presents the results of a survey of U.S. Air Force
Space and Missile Systems Center and National Reconnaissance Office programs on their experiences with incor-
porating COTS software into their systems. Six major lessons learned derived from the survey are described, along
with recommendations for improving the acquisition of COTS-based systems.

June 2001 www.stsc.hill.af.mil 25

sis by some vendors on Windows NT plat-
forms for commercial users (and the corre-
sponding dropping or de-emphasis of the
high performance UNIX workstations
extensively used in ground systems for
defense space applications). Another
example is the targeting of COTS satellite
control software to the operational para-
digm of commercial communications
satellite customers where there is minimal
human intervention rather than the per-
son-in-the-loop paradigm of defense satel-
lite operations.

The quality and content of COTS
software upgrades are unpredictable.
Vendors are market-driven in their
upgrades, focusing upon additional fea-
tures to attract new customers and fixes to
problems encountered by their principal
customer base. Vendors may not be willing
to fix problems experienced by only a few
customers, even if the customer is willing
to pay the vendor to fix the product. This
can be especially applicable to defense
space applications, which may use differ-
ent features or place different stresses upon
the COTS software than commercial users
of the same software.

Because of time-to-market pressure,
vendors perform limited testing on COTS
software upgrades, especially regression
testing of supposedly unchanged features.
In addition to introducing bugs in previ-
ously working capabilities, upgrades may
decrease performance, increase computer
resource utilization, and introduce incom-
patibilities with other COTS software
products. Also, upgrades may eliminate
backward compatibility with previous ver-
sions, possibly necessitating design and
data structure rework. Numerous inter-
viewees stressed the need for developers
and sustainers to fully test each upgrade
before incorporating it into the system.

The schedule of upgrades, both fre-
quency and release dates, is time-to-mar-
ket driven. However, the pressure to bring
new features to market quickly may cause
vendors to drop or slip other promised fea-
tures, fixes, or upgrades for particular plat-
forms. Sometimes needed upgrades are
delayed because of dependencies between
COTS software products (e.g., vendors
waiting for the next operating system
upgrade before issuing their next major
upgrade).

The costs of COTS software products

and associated services are also market
driven. Fees and fee structures of licenses
and services may change without warning
potentially resulting in a large cost impact
if changes occur after developer commit-
ment to a particular COTS software prod-
uct. One particularly damaging example
of this is when a vendor eliminates site
licenses and requires a separate copy of the
COTS software to be purchased for each
operator seat in the ground system.
Vendors may also change the type and
quality of the customer support they pro-
vide. In particular, new vendors trying to
gain a market position may initially be
very responsive but may lose their respon-
siveness after establishing a larger cus-
tomer base.

No program organization interviewed
had experienced all of the problems cited
above, nor did any organization have
problems with all of their selected COTS
software. However, every program organi-
zation interviewed had some problems
with one or more COTS software prod-
ucts. Encountering these realities of the
commercial marketplace should be consid-
ered the norm, not the exception, in the
development and sustainment of CBS.
Contingencies (e.g., alternative product
choices, and cost and schedule margin) to
handle these occurrences need to be built
into development and sustainment plans
from the beginning of the life cycle.

Lesson Learned 2

Full application of system and software engi-
neering is required throughout the CBS life
cycle.

This lesson reflects the fact that using
COTS software does not eliminate por-
tions of the system life cycle or the neces-
sity for performing system and software
engineering. Using COTS software
reduces the scope of software design and
implementation activities for that part of
the software whose functionality is provid-
ed by the COTS software. Software
requirements analysis, architectural
design, integration and testing, and quali-
fication testing must still be performed
along with certain detailed design and
implementation tasks. Moreover, system
requirements analysis, design, integration
and testing, and qualification testing must
still be performed for all system function-
ality, independent of how the functionali-

ty is implemented.
Every new COTS software release

requires a full application of the system
and software engineering life cycle to
properly incorporate the new release into
the CBS. For example, incorporating each
new release can require the following:
• Regression testing and prototyping to

determine its behavioral characteristics
as compared to the previous release and
its compatibility with other COTS soft
ware in the CBS.

• Testing of new features and bug fixes.
• Modifications to glue code and user

interfaces.
• Modifications to the COTS software

data base/file structure and content.
• Full software and system integration

testing and requirements verification.
• Training for both the software develop-

ers and the operators.
Thorough requirements analysis is

especially important with CBS develop-
ment since it is necessary to understand
which requirements can be traded against
existing COTS software capabilities versus
which requirements are essential to the
mission and not in the trade space. This is
true for all requirements levels from the
highest level system requirements through
the software level requirements.

To understand existing COTS soft-
ware capabilities, hands-on prototyping of
the COTS software is necessary since it is
not generally possible to determine the
true COTS software capabilities from the
vendor’s marketing demonstrations and
literature. Furthermore, due to the possi-
bility of incompatibilities or adverse inter-
actions (e.g., performance degradation)
between COTS software products, this
prototyping must be performed in a sys-
tem context where unexpected impacts of
integrating multiple COTS software prod-
ucts can be discovered.

Numerous interviewees emphasized
the importance of designing CBS architec-
tures to support the evolution or replace-
ment of COTS software. Since true plug
and play among COTS software products
does not yet exist in the commercial mar-
ketplace, architectural features that help
minimize the impact of upgrading to new
releases of COTS software or replacing
one COTS software product with another
of similar functionality are essential. The
CBS architecture must also have a suffi-

26 CR O S S TA L K The Journal of Defense Software Engineering June 2001

Software Engineering Technology

cient computer resource margin and
growth path to accommodate increases in
resource utilization by COTS software
upgrades.

Security, safety, and supportability
must be designed into the CBS at the sys-
tem level. COTS software capabilities in
these areas are aimed at commercial appli-
cations having different, and frequently
less stringent, security, safety, and support-
ability requirements than defense applica-
tions. Furthermore, each COTS software
product is designed independently, as a
stand-alone package, not as part of an
integrated system. The CBS design needs
to provide for integrated security, safety,
and supportability features across COTS
software products and newly developed or
reused code. This is especially important
for security since each COTS software
product has its own vulnerabilities. Many
of these vulnerabilities are well known in
the industry, and new vulnerabilities are
continually being identified. Without
integrated security features being designed
into the CBS, the system’s vulnerabilities
can be determined simply by knowing
which COTS software products are in use.

Both initial evaluation of COTS soft-
ware for product selection, and subsequent
periodic re-evaluations of new COTS soft-
ware releases for product evolution are
necessary throughout the development
and sustainment life cycle. The system-
engineering viewpoint must be applied
simultaneously to the selection of the
computer hardware and COTS software.
Selection of a computer hardware plat-
form without concurrent consideration of
the availability of COTS software for that
platform can result in more newly devel-
oped software being required than expect-
ed, and thus can increase the system devel-
opment and life-cycle costs.

The initial evaluations and periodic re-
evaluations of COTS software must be
based upon multi-dimensional evaluation
criteria, not just upon the functionality
provided by the COTS software.
Examples of such evaluation criteria
include the reliability of the COTS soft-
ware, its ability to interface with other
parts of the CBS and with legacy systems,
the COTS software’s implied operations
concept, the vendor’s characteristics, and
the cost.

Finally, it is always necessary to have
backup strategies and contingency plans
for each COTS software product in case
unforeseen problems arise that require its
replacement.

Lesson Learned 3

CBS development and sustainment require a
close, continuous, and active partnership
among the customer, developer, and user.

This lesson concerns the need for the
customer, developer, and user to be pre-
pared to trade cost, schedule, perform-
ance, and operations and maintenance
concepts to achieve the maximum benefits
from using COTS software. The customer
and user must understand their require-
ments sufficiently well to know which
requirements can be relaxed to achieve a
COTS-based solution and which are
essential to the mission and cannot be
traded. To facilitate the trades of require-
ments versus COTS software capabilities,
the customer and user must be willing to
prioritize their requirements initially and
re-prioritize them as necessary throughout
the life cycle. Merging of an intimate
understanding of the requirements (as
held by the customer and user) and an
intimate knowledge of the COTS software
capabilities (as held by the developer) is
necessary to ensure the adequacy of these
trade decisions.

Each COTS software product has its
own world view that, when incorporated
into the CBS, may force a particular oper-
ations concept upon the user. Frequently
the COTS software operational paradigm
is at odds with the user’s existing opera-
tional procedures. As such, accommodat-
ing a COTS-based solution may require
the user to be able and willing to reengi-
neer existing operational procedures.
Similar reengineering may be needed for
existing on-site maintenance procedures.
Ensuring the eventual acceptability of the
CBS in the user’s operational environment
requires close cooperation between the
user and developer.

At any time during the CBS life cycle,
decisions may need to be made due to
issues such as new COTS software limita-
tions or incompatibilities being discov-
ered, COTS software upgrades diverging
from needs, or COTS software needing to
be replaced due to withdrawal of vendor

support. A close, continuous, and active
partnership among the customer, develop-
er, and user (e.g., via the application of
integrated product and process develop-
ment) will help to ensure the adequacy of
the major COTS software-related deci-
sions and the acceptability of the delivered
CBS. Without such a partnership, the cus-
tomer and user will not gain a full under-
standing of the evolving CBS capabilities
and may experience unpleasant surprises
when finally exposed to the capabilities of
the delivered CBS in the operational envi-
ronment.

Lesson Learned 4

Every CBS requires continuous evolution
throughout development and sustainment.

This lesson reflects the fact that main-
taining currency with COTS software
upgrades is essential during both develop-
ment and sustainment. Because vendors
support only a limited number of past
releases, delaying implementation of
upgrades can result in unsupported ver-
sions of COTS software products in the
CBS. When this happens, the vendor will
not provide fixes to bugs and will not pro-
vide consultation services.

Delaying the implementation of
upgrades can exacerbate system impacts.
Upgrading from one major release to the
next consecutive release does require time
and effort. However, the upgrade can be
considerably more expensive when
attempting to skip major releases, which
generally occur every 12 to 18 months.
Delaying upgrades longer than that time
interval can result in significant paradigm
changes in the COTS software.

Sometimes upgrading to a later major
release requires upgrading through each of
the intermediate major releases. This is
especially true if the vendor has changed
the structure of the COTS software’s data-
bases or files. When this occurs, vendors
frequently provide automated tools to
assist their customers in conversion from
one release to the next consecutive release.
Such tools are not provided to assist in
skipping major releases.

Many factors, both internal and exter-
nal to the CBS, can drive the need to
maintain currency with upgrades to the
CBS’ COTS software. Organizations or
systems external to the CBS can require

June 2001 www.stsc.hill.af.mil 27

Lessons Learned From Using COTS Software on Space Systems

COTS software upgrades. Examples of
this include upgrades to government off-
the-shelf software incorporated into the
CBS, to legacy systems to which the CBS
must interface, or to the Defense
Information Infrastructure Common
Operating Environment (if used by the
CBS).

Another factor influencing the need to
maintain currency with COTS software
upgrades is the limited life span of com-
puter hardware platforms (e.g., worksta-
tions and servers). Most programs plan on
hardware upgrades every four to five years
during sustainment. Maintaining currency
with COTS software releases is essential
for upgrading to new hardware since it is
not usually possible or desirable to execute
old versions of the operating system and
other COTS software on new hardware
platforms.

Furthermore, COTS software may
need to be replaced or added at any time
due to factors such as: elimination of ven-
dor support, divergence from system
needs, identification of unacceptable limi-
tations or vulnerabilities, increased costs
for licenses or support services, and new or
modified user needs requiring changes in
functionality or performance.
Incorporating new COTS software usually
requires the latest version of the operating
system and other related COTS software
to be in place.

One of the most damaging decisions
frequently made in CBS development is to
freeze the versions of the COTS software
products throughout the development
period. Due to the length of the develop-
ment period for large software-intensive
defense systems, this decision can result in
the delivery of a system that is obsolete
because its COTS software products are
no longer supported. A major upgrade
effort with associated cost and schedule
impacts is then necessary before or shortly
after the system becomes operational.
Since maintaining currency with COTS
software upgrades is necessary throughout
development as well as sustainment,
upgrading COTS software needs to be
built into both development and sustain-
ment plans from the beginning of the life
cycle.

Numerous interviewees emphasized
the folly of modifying COTS software,
which can constrain the CBS evolution

path and increase life-cycle costs.
Modifying COTS software should always
be a solution of last resort in CBS design.
Incorporating a modified COTS software
product into the CBS requires the devel-
oper and government to engage in a long-
term relationship with the vendor to
ensure that the unique modifications will
be made to future releases. Attaining such
a relationship is not always possible.

Lesson Learned 5

Current processes must be adapted for CBS
acquisition, development, and sustainment.

This lesson concerns the need to mod-
ify existing processes to be suitable for the
acquisition, development and sustainment
of CBS. The developer’s software and sys-
tem engineering processes must be adapt-
ed to handle the integration of COTS
software into the system. New processes
must be added and existing processes
updated to handle such activities as per-
forming requirements trades against
COTS software capabilities, evaluating
COTS software against robust evaluation
criteria, accounting for COTS software in
safety, security and supportability analysis
and design, and incorporating COTS soft-
ware upgrades during development.

CBS development works best when
iterative life-cycle models (e.g., spiral or
evolutionary) and extensive prototyping of
the COTS software in the system context
are used together, and when the under-
standing gained from COTS software pro-
totyping is integrated with the software
architecture and design models.
Furthermore, the time and effort distribu-
tion for development tasks need to be real-
located. Additional time and effort need to
be spent on evaluation, prototyping, and
analysis (the front end), and on integra-
tion and testing (the back end), and less
needs to be spent on software implemen-
tation (the middle).

Numerous interviewees stressed the
need for enhanced configuration manage-
ment processes to handle the complexities
of COTS software during both develop-
ment and sustainment. The configuration
management system must be able to man-
age multiple releases and patches to each
release for each COTS software product. It
must also be able to manage different con-
figurations of COTS software at each
development, sustainment, and operations

facility (including mobile units), and even
different configurations of COTS software
on each computer hardware platform
within each facility. For COTS software
incorporated into firmware, configuration
management cannot be performed at the
board level but must be performed for the
contents of the chips on the board.

Customer and user processes also need
to be created or adapted to be suitable for
the acquisition and sustainment of CBS.
Examples include prioritizing user require-
ments, providing flexible and efficient
responses to unexpected impacts due to
problems encountered with COTS soft-
ware, and handling the schedule variabili-
ty of COTS software upgrades. Other
examples include developing contracts
compatible with the acquisition of CBS,
and ensuring program milestones are com-
patible with the reallocation of time need-
ed for CBS development schedules.

Interviewees also stressed the need for
standardization of certain government
processes as they relate to COTS software.
Areas needing standardization include
safety certification and security accredita-
tion so that all parties understand the safe-
ty or security requirements that must be
fulfilled when the system contains COTS
software. In addition, standardized gov-
ernment processes for COTS software
licenses need to be implemented to ensure
that COTS software license currency is
maintained, and that the COTS software
licenses agreed to by the government are
suitable for defense needs. The license for
a COTS software product to be used by
operational forces in the field, for exam-
ple, should prohibit any expiring keys in
the COTS software and should not con-
tain any export restrictions.

Lesson Learned 6

Actual cost and schedule savings with CBS
development and sustainment are overstated.

This lesson concerns the universal ten-
dency to overestimate the cost and sched-
ule savings due to COTS software usage
(i.e., to underestimate the required cost
and schedule for CBS development and
sustainment). There are two principal
components to this underestimation. First
is completely overlooking or significantly
underestimating tasks that must be per-
formed in CBS development and sustain-
ment, or costs of COTS software license

28 CR O S S TA L K The Journal of Defense Software Engineering June 2001

Software Engineering Technology

fees and other services. Second is not
allowing enough cost and schedule margin
to handle unexpected impacts that can
occur due to problems with COTS soft-
ware at any time during the life cycle.

Here are examples of frequently over-
looked tasks: hands-on prototyping of
COTS software (especially in a system
context); acquisition of in-depth knowl-
edge of COTS software (e.g., training
mentors and tool-smiths and purchasing
vendor support); installation and configu-
ration of the COTS software in the devel-
opment and operational facilities; and
preparing integrated system training and
documentation in addition to the vendor-
supplied training and documentation.

Also, tasks to incorporate COTS soft-
ware upgrades are almost always over-
looked. Examples of such tasks include
performing COTS software and system
regression tests for each COTS software
upgrade; implementing and testing soft-
ware changes needed to support the
upgrades (e.g., additions or changes to
glue code, databases, or configuration
files); and training developers and opera-
tors for each COTS software upgrade. The
time and effort for these overlooked tasks
generally cannot be obtained from soft-
ware cost models, but must be estimated
bottom-up and included in the total cost
and schedule estimates.

One area where time and effort are sig-
nificantly underestimated is software engi-
neering. Software development time and
effort are generally obtained by estimating
the number of source lines of code and
applying a software cost model. When the
decision is made to use COTS software to
obtain certain system functionality, the
total number of lines of code is reduced by
the number of lines of code that would
have been needed to provide that func-
tionality. Using this technique with a soft-
ware cost model causes the elimination of
all software development activities for that
functionality from the cost and schedule
estimates.

However, use of COTS software to
provide functionality reduces only the
amount of software design and implemen-
tation effort, not all software development
activities. Software requirements analysis,
architectural design, integration and test-
ing, and qualification testing must still be
performed, along with certain detailed

design and implementation tasks. Even if
the number of lines of glue code for inte-
grating the COTS software is added to the
total software size estimate, the resulting
cost and schedule estimates are not suffi-
cient to cover all of the necessary software
development activities.

While some of the newer software cost
models do have features available for esti-
mating costs associated with COTS soft-
ware, these models are not yet in wide-
spread use, and the accuracy of the result-
ing estimates has not yet been calibrated in
the defense software environment.

Other areas where time and effort are
significantly underestimated are system
engineering and system integration and
testing. The system models and tools cur-
rently in use for cost and schedule estima-
tion do not adequately address incorporat-
ing COTS software. The effort for system
engineering and system integration and
testing is commonly estimated as a per-
centage of the total development cost.
When COTS software is used to provide
some system functionality, the reduction
in the software development effort causes a
corresponding reduction in the system
engineering and system integration and
test effort. This reduction is not warranted
since the same system engineering and sys-
tem integration and testing for that func-
tionality must still be performed, inde-
pendent of whether COTS software or
developed code provides the functionality.

Costs of COTS software license fees
are also frequently overlooked or underes-
timated. The number of different COTS
software products required to implement
the CBS and the number of individual
licenses required to be purchased are diffi-
cult to estimate, especially early in the life
cycle before the design is known.
Additionally, vendors usually charge for
services not included in their standard
licenses. Examples of such services are on-
site vendor assistance during development
or operations, and escrowing source code
to protect against the possibility of the
vendor going out of business.

CBS cost and schedule estimates
almost never contain enough margin to
handle the COTS software problems
encountered in CBS development and sus-
tainment. As described above, unexpected
impacts can occur with COTS software at
any time during the life cycle. The lack of

appropriate margin results in cost and
schedule overruns when COTS software-
related problems occur. When cost as an
independent variable (CAIV) is applied,
the cost of handling unexpected COTS
software problems can mean that system
capabilities must be deleted to balance the
cost. Cost and schedule estimates for CBS
development and sustainment should
always contain a planned margin (i.e.,
management reserve) for handling the
unexpected COTS software problems that
are certain to arise.

Acquisition Recommendations

The government needs to be an intelligent
CBS buyer. Accomplishing this requires
appropriate planning and contracting for
CBS acquisition to handle the issues
described in the lessons above. In particu-
lar, it should be noted that defense CBSs
are almost never commercial items in
themselves, but are large, complex, soft-
ware-intensive systems, some of whose
components contain COTS software.
What is desired is a balanced solution
among COTS, reuse, and newly devel-
oped software to meet the CBS cost,
schedule, and performance objectives.
Therefore, commercial item procurements
(i.e., FAR 12 acquisitions) are almost
never appropriate vehicles for acquiring
defense CBSs.

To support defense programs in
acquiring CBSs, it is recommended that
several cross-program horizontal engineer-
ing initiatives be established. First, guid-
ance for CBS life cycle cost and schedule
estimation needs to be developed to
address the problems described in Lesson
Learned 6. Second, a repository for actual
development and sustainment experiences
with COTS software products (as opposed
to vendor marketing information) needs
to be developed and made accessible to
CBS acquirers, developers, and sustainers.
Lastly, specific CBS acquisition guidance
that can be tailored to individual programs
is needed, such as recommended contract
structures, language for incorporation into
contracts, and guidance for applying evo-
lutionary acquisition.

Conclusion

The potential benefits of using COTS
software in defense systems are extensive.
Today’s complex defense systems require

June 2001 www.stsc.hill.af.mil 29

Lessons Learned From Using COTS Software on Space Systems

the leverage provided by COTS software,
that is, enhanced system capabilities with
reduced cost and schedule. The use of
COTS software enables the government
and developers to focus on providing the
defense-unique needs.

This study demonstrated, however,
that only careful acquisition, development
and sustainment preparation and execu-
tion achieve the potential CBS benefits.
CBS success depends upon preparing for a

complex development and sustainment
effort; preparing for inherent cost, sched-
ule, and performance risks beyond govern-
ment or developer control; and preparing
to make adjustments to current acquisi-
tion, development and sustainment
processes. While this study was conducted
on defense space systems, the authors
believe that the lessons learned are not
limited to that domain, but are widely
applicable to the use of COTS software in

any large, software-intensive system.◆

NOTES

1. See, for example, DoD Directive
5000.1, Oct 23, 2000, paragraph 4.2.3.

2. For this paper, a COTS-based system
(CBS) is defined to be a system that
contains commercial-off-the-shelf soft-
ware products as elements of the system.

About the Authors
RRiicchhaarrdd JJ.. AAddaammss is a senior engineering specialist at
The Aerospace Corporation with more than 30 years
experience in software engineering, software project
management and software acquisition. Previously he
worked for TRW, where he developed software and
managed software development projects for DoD

software-intensive systems. He has a bachelor's degree in mathe-
matics from California State University at Long Beach.

The Aerospace Corporation
Mail Station M1/112
P.O. Box 92957
Los Angeles, CA 90009-2957
Phone: 310-336-2907
Fax: 310-336-4070
E-mail: Richard.J.Adams@aero.org

SSuueelllleenn EEsslliinnggeerr is a distinguished engineer at The
Aerospace Corporation with more than 30 years expe-
rience in software engineering and software acquisi-
tion. Previously she worked at Computer Sciences
Corporation and General Research Corporation

where she developed software and managed software development
projects for DoD and NASA software-intensive systems. She has a
bachelor's degree from Goucher College and a master's degree from
the University of Arizona, both in mathematics.

The Aerospace Corporation
Mail Station M1/112
P.O. Box 92957
Los Angeles, CA 90009-2957
Phone: 310-336-2906
Fax: 310-336-4070
E-mail: Suellen.Eslinger@aero.org

June 11-13
E-Business Quality Applications Conference

qaiusa.com/conferences/june2001/index.html

June 18-22
ACM/IEEE Design Automation Conference

www.dac.com

June 25-27
2001 American Control Conference

acc2001.che.ufl.edu

July 1-5
Eleventh Annual International Symposium

of the International Council on Systems Engineering
incose.org/symp2001

July 19-21
2nd Int'l Symposium on Image and Signal

Processing and Analysis ISPA'01
ispa.zesoi.fer.h

August 5-10
HCI International 2001: 9th International Conference

on Human-Computer Interaction.
(UAHCI 2001)

hcii2001.engr.wisc.edu

August 27-31
Fifth IEEE International Symposium on

Requirements Engineering
www.re01.org

August 27-30
Software Test Automation Conference

http://www.sqe.com/testautomation

September 10-14
Joint 8th European Software Engineering Conference (ESEC) and
9th ACM SIGSOFT International Symposium on the Foundations

of Software Engineering
(FSE-9)

www.esec.ocg.at

October 29-November 2
Software Testing Analysis and Review
http://www.sqe.com/starwest

February 4-6, 2002
International Conference on COTS-Based Software Systems

(ICCBSS)
At the Heart of the Revolution

http://www.iccbss.org

Coming Events

30 CR O S S TA L K The Journal of Defense Software Engineering June 2001

Software Engineering Technology

Continued from page 21

7.Davis, Alan; Overmyer, Scott; Jordan,
Kathleen; Caruso, Joseph; Dandashi, Fatma;
Dinh, Anhtuan; Kincaid, Gary; Ledeboer,
Glen; Reynolds, Patricia; Sitaram, Pradhip;
Ta, Anh; and Theofanos, Mary, Identifying and
Measuring Quality in Software Requirements
Specification, Proceedings of the First International
Software Metrics Symposium, 1993, pp. 141-152.

8.Common Criteria, International Standard (IS)
15408, csrc.nist.gov/cc/ccv20/ccv2list.htm,
September 2000.

9.Beck, Kent, Embracing Change with Extreme
Programming, Computer, October 1999, pp.
70-79.

About the Author
RRiicchhaarrdd DDuunnccaann is pursuing
a master’s degree in comput-
er science at Mississippi State
University (MSU) with
emphasis in software engi-
neering. He has held sum-

mer internships at Microsoft, AT&T Labs
Research, and NIST. His current research
interests involve applying software-engineer-
ing process to the development of a public
domain speech recognition system at the
Institute for Signal and Information
Processing at MSU.

Mississippi State University
P.O. Box 9571
Mississippi State, MS 39762
Voice: 662-325-8335
Fax: 662-325-2292
E-mail: Richard.Duncan@ieee.org

BACKTALK

Have We Lost Our Focus?
Having recovered from a wonderful

case of laryngitis, I just got back
from a great Software Engineering Process
Group conference in New Orleans. A
great time was had by all. Between the
SEPG conference and reviewing papers
for this issue of CrossTalk, I am totally up-
to-date on the latest and greatest in
methodologies.

Back in 1969 I started my life as a pro-
g r a m m e r / d e v e l o p e r / c o m p u t e r
scientist/software engineer. (As you get
promotions, you don’t just get pay raises.
You get neater and spiffier job titles, too!).
I first learned to program a Wang pro-
grammable calculator in junior high – a
gift to the school from a local company
that needed a tax break. At that time the
calculator was the size of a desk and filing
cabinet with (a whopping) 256 bytes of
memory, a paper tape reader, and a single
punch card input. Not a deck of cards,
mind you, but a single card: punched by
hand, 80 columns, 12 rows.

There were only 61 possible instruc-
tions in the Wang instruction set, so each
column in the punched card could encode
two six-bit operations. Therefore, each
card could contain 160 instructions. To
gain admission to the “Computer Science
Club,” you had to be able to program the
quadratic equation on a single card.
(Remember ax 2 + bx + c = 0, given a, b,
and c, solve for x?) Once you accom-
plished this Herculean task, why, you were
considered a programmer!

I remember how smart I felt after
accomplishing this task. I was a hacker, a
member of the brotherhood/sisterhood! I
could code! We didn’t use a methodology
– design was for wimps! I remember trying
to explain to my girlfriend about what I
had accomplished. (This might explain
why I didn’t date much during school).

Fortunately, I matured in my profes-
sion. I joined the Air Force and had to
learn how to design. As my first design
methodology, I flowcharted my code. Of
course – as a true hacker – I knew that if I
finished the code first, the flowcharting
was much easier. I was lucky – I had a wise
and tolerant boss who showed me that
flowcharting was a requirements and
design tool. That when the problem got

too big for me to understand, I had to use
some tool to help me understand and par-
tition the problem.

I eventually became both a computer
scientist and later, a software engineer.
Over the years, I went from flowcharting
to Top Down Structured Design (TDSP);
Hierarchical Input, Process, Output
(HIPO); Structured Analysis and
Structured Design (SASD); Transform
Analysis (TA); Object-Oriented Modeling
and Design (OOMD); Unified Modeling
Language (UML); and Unified System
Development Process (USDP). I tried to
become a Certified Data Processor
(CDP). I earned degrees from institutions
that are Computer Science Accreditation
Board-compliant (CSAB). I studied the
Software Engineering Body of Knowledge
(SWEBOK). I learned lots of acronyms
and new methodologies – new method-
ologies? You know, when I first saw activi-
ty diagrams and sequence diagrams in
UML and USDP, I felt right at home. I
had come full circle. I was flowcharting
again!

It’s never been about the methodology.
Methodologies are simply techniques and
tools to help you partition and understand
the problem. Here’s a kernel of truth – you
can’t design a system (let alone code it)
unless you understand what the system is
supposed to do. The methodologies are
there to assist me. They are NOT ends in
themselves – they are simply a means to
the end. You have to focus on the larger
picture – getting the system “out the door”
on time. It’s not enough to be an expert in
the latest and greatest methodology, unless
you can also use it to help produce a sys-
tem on time and under budget. The
methodology has to make you more pro-
ductive. If a methodology helps, use it! If
it doesn’t, get a better methodology! Focus
on the ends, not the means.

And – if all else fails – try drawing a
flowchart. It might make you feel SMART
again!

David A. Cook
Principal Engineering Consultant
Shim Enterprises, Inc.
david.cook@hill.af.mil

Editor:

Just a note to let you know the
address for the SPI EGroups web site you
reference on page 19 of March’s
CrossTalkneeds to be updated. Yahoo
recently took over eGroups so the address
is now http://groups.yahoo.com/
group/spi

I am the creator, owner, and modera-
tor of this group, and just out of curiosi-
ty, was wondering how you came about
including it in this issue. I’m very pleased
to see it there!

Thanks,
Maj. Andrew D. Boyd
Chief, Software Quality Assurance
Section
USAF

June 2001 www.stsc.hill.af.mil 31

L e t t e r t o t h e E d i t o r

CrossTalk / TISE
5851 F Ave.
Bldg. 849, Rm B04
Hill AFB, UT 84056-5713

PRSRT STD
U.S. POSTAGE PAID

Kansas City, MO
Permit 34

Sponsored by the
Computer Resources
Support Improvement

Program (CRSIP)

CONFIGURATION MANAGEMENT:
SPANNING THE SOFTWARE DEVELOPMENT LIFE CYCLE

It is FREE to U.S. government employees, and will be set in the spectacular mountains of northern Utah.

Expert consultants from the Air Force s Software Technology Support Center, David Cook Ph.D. and
Theron Leishman, will conduct Configuration Management: Spanning the Software Development
Life Cycle workshop in Utah on July 17-19, 2001.

Here is some of the knowledge you will gain:
Understand basic concepts and principles of software configuration management.

Become familiar with the various software configuration management roles and responsibilities.
Identify the role of software configuration management in each phase of the development life cycle.

Understand the relationship between software configuration management and the CMMfi /CMMI.
Understand how to establish a change-management process.

Plan to come early and enjoy what Utah has to offer: golfing, fly-fishing, hiking, biking, canoeing, rock
climbing, river running, historic locations, and more. For travel ideas visit www.utah.com.

SPACE IS LIMITED. Act quickly. To reserve your place at the workshop, contact Debra Ascuena at
801-775-5778 or debra.ascuena@hill.af.mil. For additional information visit our web site at

www.stsc.hill.af.mil

	Cover
	Index
	From the Publisher
	Extending UML to Enable the Definition and Design
	Teaching Intelligent Agents
	Extreme Methodologies for an Extreme World
	The Quality of Requirements in Extreme Programming
	The Software Engineer: Skills for Change
	Top Five Software Projects
	Lessons Learned From Using COTS Software on Space Systems
	Coming Events
	BackTalk
	Letter to the Editor
	Back Cover

