

On the Cover:
Kent Bingham,
Digital Illustration
and Design, is a
self-taught graph-
ic artist/designer
who freelances
print and Web
design projects.

Main photo
reference courtesy
Cathye Cox,
Hooper, Utah.
Car crash photos
courtesy Western
History/Genealogy
Department,
Denver Public
Library.

Lt. Col. Glenn A. Palmer

Tracy Stauder

Elizabeth Starrett

Pam Bowers

Benjamin Facer

Nicole Kentta

Janna Jensen

(801) 586-0095
(801) 777-5633
crosstalk.staff@hill.af.mil
www.stsc.hill.af.mil/
crosstalk/crostalk.html
www.crsip.hill.af.mil

Subscriptions: Send correspondence concerning
subscriptions and changes of address to the follow-
ing address.You may e-mail or use the form on p. 18.

Ogden ALC/TISE
7278 Fourth St.
Hill AFB, Utah 84056-5205

Article Submissions:We welcome articles of interest to the
defense software community. Articles must be approved by
the CROSSTALK editorial board prior to publication. Please fol-
low the Author Guidelines, available at www.stsc.hill.af.mil/
CrossTalk/xtlkguid.pdf. CROSSTALK does not pay for submis-
sions. Articles published in CROSSTALK remain the property of
the authors and may be submitted to other publications.
Reprints and Permissions: Requests for reprints must be
requested from the author or the copyright holder. Please
coordinate your request with CROSSTALK.
Trademarks and Endorsements: This DoD journal is an
authorized publication for members of the Department of
Defense. Contents of CROSSTALK are not necessarily the
official views of, or endorsed by, the government, the
Department of Defense, or the Software Technology
Support Center. All product names referenced in this issue
are trademarks of their companies.
Coming Events: We often list conferences, seminars, sym-
posiums, etc. that are of interest to our readers. There is
no fee for this service, but we must receive the informa-
tion at least 90 days before registration. Send an announce-
ment to the CROSSTALK Editorial Department.
STSC Online Services: www.stsc.hill.af.mil
Call (801) 777-7026, e-mail: randy.schreifels@hill.af.mil
Back Issues Available: The STSC sometimes has extra
copies of back issues of CROSSTALK available free of charge.
The Software Technology Support Center was established
at Ogden Air Logistics Center (AFMC) by Headquarters
U.S. Air Force to help Air Force software organizations
identify, evaluate, and adopt technologies to improve the
quality of their software products, efficiency in producing
them, and their ability to accurately predict the cost and
schedule of their delivery.

SSPPOONNSSOORR

PPUUBBLLIISSHHEERR

AASSSSOOCCIIAATTEE PPUUBBLLIISSHHEERR

MMAANNAAGGIINNGG EEDDIITTOORR

AASSSSOOCCIIAATTEE EEDDIITTOORR

AARRTTIICCLLEE
CCOOOORRDDIINNAATTOORR

CCRREEAATTIIVVEE SSEERRVVIICCEESS
CCOOOORRDDIINNAATTOORR

PPHHOONNEE

FFAAXX

EE--MMAAIILL

CCRROOSSSSTTAALLKK OONNLLIINNEE

CCRRSSIIPP OONNLLIINNEE

CrossTalkDepartments

3 From the Publisher

16 Scenes from STC 2001

20 Web Sites

24 Coming Events

30 Call for Articles

31 BackTalk

4

9

13

19

21

25

27

2 CROSSTALK The Journal of Defense Software Engineering July 2001

Software Configuration Management: A Discipline with
Added Value
The road to CMM Level 5 leads this team to see how software configuration management
establishes and maintains workflow continuity throughout the product life cycle.
by Tresa Butler, Faith Turner, Elaine Sullivan and Verla Standley

How Much Code Inspection Is Enough?
This article details a simple code model that demonstrates how to reduce development costs
by predicting testing labor hours based on an optimum code inspection preparation rate.
by Robert T. McCann

Software Estimating Model Calibration
Like a surgeon's scalpel, estimating models are precision tools affected by the environment,
project data and especially by estimator training and experience.
by Dr. Randall Jensen

A Smart Way to Begin a Civilian Engineering Career in
the U.S. Air Force
The Air Force aims to hire the best with a special program for scientists and engineers that
includes full-time employment, fully-paid graduate study plus salary, and more.
by Tracy Stauder

Process Capability Data for the Asking
The Defense Contract Management Agency is adopting the Capability Maturity Model®
for Software to provide a common language in assessing a contractor's process maturity.
by Lt. Col. Robert Lang

Getting Software Engineering into Our Guts
These authors have developed a course of study that helps overcome students' aversion to
software engineering best practice at both universities and in industry.
by Lawrence Bernstein and David Klappholz

The Problem with Testing
Testing is an inadequate defect detection process that requires quality be designed into software
to adequately remove defects.
by Norman Hines

BBeesstt PPrraaccttiicceess

OOppeenn FFoorruumm

TTeessttiinngg && CCoonnffiigguurraattiioonn MMaannaaggeemmeenntt

SSooffttwwaarree EEnnggiinneeeerriinngg TTeecchhnnoollooggyy

July 2001 www.stsc.hill.af.mil 3

From the Publisher

The Unsung Heroes of Testing and CM

Lack of configuration management (CM) processes can really hurt! I remember one
experience from the days when my normal development cycle was iterations of hack-

ing and then seeing if that function worked. I was developing software that interacted
with a CM database, when the software suddenly stopped working. I went to my previ-
ous version to try to discover which change had caused the software to stop working,
but my previous version wasn’t working either. After two hours of searching and find-

ing no clue why suddenly nothing worked, I checked the CM database. I discovered that all of
the previous data had been dumped and replaced with different data. When I asked the project
lead about the change, I was told that she had changed all the database contents. When I
explained that not knowing this information had caused me to spend two hours searching for
the cause of a non-existent software problem, the simple response was, “Better you than me.”

The glory, fun, and excitement in software engineering are the design, development, and
building of something tangible (software). Software engineers who design are the all-stars,
heroes, and white-collar hotshots of the industry. However, behind all that glitz and glory, some-
one has to keep track of all the details (CM) and verify that product quality is sufficient for the
client (testing).

Although these tasks require the same knowledge and experience as a designer, software engi-
neers that work CM and testing are sometimes looked upon as less glamorous engineers. In real-
ity, they act as the glue that holds best practices in place. Many problems that occur in software
development can be traced back to poor CM and testing procedures. So they are necessary to get
the software developed but akin to evil because the devil is in the details.

While developing code in a Level 5 organization, I found that CM processes and peer
reviews caught more errors before testing than any other processes. Then I knew I could count
on our test engineer to catch remaining errors. This month’s article Software Configuration
Management: A Discipline with Added Value shares the CM process used at Hill Air Force Base’s
Software Engineering Division. Hopefully, CrossTalk readers will see that CM can do more
than just provide a library for old code and documentation. Next Robert McCann discusses the
tradeoffs in time and value for code inspection vs. testing in How Much Code Inspection Is
Enough? In The Problem with Testing, Norman Hines reminds us that while testing is important,
we need to rely on previous stages of the software development life cycle to ensure a quality end
product.

The United States Air Force’s (USAF’s) Capability Maturity Model® support has resulted in
many USAF organizations being at least Level 3. I have been very happy with my career since
joining the USAF due to the atmosphere fostered by an organization focused on process
improvement. CrossTalk’s Publisher Tracy Stauder shares some additional advantages of
working for the USAF in A Smart Way to Begin a Civilian Engineering Career in the U.S. Air
Force.

In this month’s other supporting articles, Dr. Randall Jensen offers ideas on improving the
capabilities and dependability of estimation tools in Software Estimating Model Calibration. Lt.
Col. Robert Lang shares software maturity information from the Defense Contract Management
Agency in Process Capability Data for the Asking. Finally, Lawrence Bernstein and David
Klappholz bring software development reality into the classroom with Getting Software
Engineering into Our Guts.

My experience has proved that working with good CM and testing processes is much better
than working in a CMM Level 1 environment. When working in a Level 5 organization, I had
better work hours, a better collaborative environment, and better confidence in my work because
of the better end product. The people performing the CM and testing functions are a critical
part of the team committed to an end goal of outstanding quality that encompasses the spirit of
a Level 5 organization.

Elizabeth Starrett
Associate Publisher

Software Configuration Management: A Discipline with Added Value
Tresa Butler, Verla Standley, Elaine Sullivan
Ogden Air Logistics Center, Technology and Industrial Support

Testing & Configuration Management

The word “Kaizen” is a Japanese term
used to define the discipline of con-

tinuous improvement. For example when
an automotive assembly line is considered
to be perfect, it is pushed past its limits
until a malfunction occurs; the anomaly is
found and corrected, and then the limits
are tested again. When applied in the
workplace, Kaizen means continuing
improvement involving everyone – man-
agers and workers alike.

Software configuration management1

(SCM) is the one discipline where devel-
opment, sustainment, support, and soft-
ware Kaizen are accomplished to achieve
quality products. SCM defines, imple-
ments, and manages product life cycles by
planning, identifying, controlling, audit-
ing, and improving the elements by which
they are created.

During the early years of our Software
Engineering Division (TIS) at Hill Air
Force Base, Utah, SCM was not a term
commonly used. Most engineers were
aware of SCM, but would prefer to ignore
it. SCM meant processes and procedures.
The engineers were there to write software
and did not want to be bothered with
process and paperwork. Every individual
or team had their own way of doing
things, resulting in little work uniformity.
They did, however, want to have quality
software with as little rework as possible.

This desire to provide quality software
forced us to look at how we did business
and to search for ways to improve.
Management chose to use the Software
Engineering Institute’s Capability
Maturity Model® (CMM®), and after an
initial review began building toward
process improvement. This decision really

introduced SCM as a key process for bet-
ter software to everyone within the divi-
sion. In order to become a CMM Level 2
organization we needed to have consistent
policies for managing our software proj-
ects. The standards set by the CMM for
this level were requirements management,
software project planning, software project
tracking and oversight, software subcon-
tract management, software quality assur-
ance, and SCM.

During our CMM implementation,
software quality assurance became tied to
SCM and evolved as a major player with-
in the structure of the organization. This
was not an easy road for the SCM team.
Many people within the division did not
want the change and did not want the
extra demands that SCM would put on
them. It meant being accountable for
every line of code as well as documenting
every change.

Until this point, each engineer was
accountable for his or her own configura-
tion management. Now it was necessary to
have a separate group of individuals with
the sole purpose of providing quality
assurance as well as managing the elements
of each project injected into the processes.

It meant following a process that was
rigid enough to keep everyone on the same
track, but flexibile enough to allow each
team to develop its products based on cus-
tomer demands. Over time, SCM has
become the discipline that assures quality
software. In short, SCM has become the
glue to an organization that produces qual-
ity products.

Developing the Glue
During the developmental stages of our
weapon-system software activities, SCM
plays a major role in planning and manag-

ing the schedules and milestones used dur-
ing the project life cycles, as well as identi-
fying product configuration items (CIs).
Within TIS, SCM defines and records the
origin and details involved in the incep-
tion of the product by establishing base-
lines. When SCM disciplines are used dur-
ing this initial developmental stage of the
product life cycle, it is comparable to the
parable of the man who built his house
upon the rock. A solid SCM discipline
provides a firm foundation upon which
software development and sustainment are
achieved.

It is during the sustainment stage of
weapon-system software activities that the
SCM discipline provides consistency and
strength. It is no longer adequate to simply
create a product using a set of established
ground rules and guidelines; now a struc-
tured enforcement of processes is a must.
SCM provides continuity to the workflow
by establishing the processes and proce-
dures for controlling and auditing CI’s
throughout the product life cycle to ensure
quality, integrity, and accountability levels
are met and maintained.

SCM plays an integral part in schedul-
ing, attending, and recording pertinent
information during the definition portion
of the project. SCM enhances the sustain-
ment stage of the product by carefully
tracking each software activity, thus blend-
ing in integrity and quality through
repeatable auditing and data control.
Establishing traceable metrics to track
costs, identify weaknesses, and determine
recovery capabilities ensures SCM as a
value-added entity to the product life cycle
of our organization. It assures that every
requirement, problem, action item, etc., is
tracked to closure, and that metrics data
for each of these activities are updated.

From the beginning of our software engineering organization to our current Capability Maturity Model®

(CMM®)Level 5 quality practices, the implementation of the software configuration management (SCM) discipline
combined with management and engineering practices has been critical to our weapon-system software sustainment
activities. The focus of this article is to discuss how SCM adds value to our organization by establishing and main-
taining continuity of the engineering workflow and provides information to help establish a strong SCM function
in maturing software organizations.

4 CROSSTALK The Journal of Defense Software Engineering July 2001

® The Capability Maturity Model and CMM are
registered in the U.S. Patent and Trademark Office.

Faith Turner
Scientech, Inc.

SCM maintains a configuration status
accounting (CSA) record of requirements
compliance, cost control, source lines of
code, and more. This data is used in infor-
mation exchanges such as program manage-
ment reviews to make well thought-out,
informed decisions. SCM’s data manage-
ment of workflow, as well as maintenance
of product life cycles, provides sustainment
for past, present, and future projects.

The Life Cycle Workflow
Within our organization, the SCM func-
tion defines, implements, and manages
product life cycles by planning, identify-
ing, controlling, and auditing the current
workflow. Having a well-defined process
has enabled us to adapt new hardware and
software workloads into our organization-
al workflow.

One thing that has proven to be very
beneficial to our organization is the ability
to tailor our formal configuration manage-
ment (CM) process to the needs of each
individual project. This way each individ-
ual team does not have to adhere to strict
procedures; instead, each team is allowed
flexibility within their own programs.
SCM has been very helpful to each team
in setting up procedures that comply with
the process, but also fit individual needs.
Following is an outline of that workflow
process:
Planning: Management utilizes SCM to
establish and maintain CM and project
plans that define project activities and
deliverable work products. This includes
processes and procedures for the life span
of the project. SCM is used to attend and
record project directives, schedules, data
requirements, peer reviews, and configura-
tion control boards (CCB). These boards
define milestones, deliverable work prod-
ucts, and cost and schedule.

Within our organization, the CCB is
held prior to initiation of any work to
define requirements, schedules, and deliv-
erables, which are incorporated into a
project directive and project requirements
document. These signed documents repre-
sent the agreement between our organiza-
tion and our customer defining project
milestones and deliverables. CM config-
ures these documents for referral through-
out the life of the project, and these docu-
ments are reviewed periodically for addi-
tions/deletions.

Identifying: Upon completion of the
upper level planning, the CSA database is
populated by SCM to begin the task of
identifying each configuration item and to
begin gathering metrics for the life-cycle
updates. By obtaining metrics for pro-
posed work products, SCM provides man-
agement and engineering with the neces-
sary data to make judicious decisions
regarding weapon-system software sustain-
ment activities. This is the heart of the
continuous process improvement of our
Level 5 organization.

The SCM team works with the pro-
gram managers to identify the project’s
CIs. SCM populates the tracking databas-
es by creating work products and their
related data management objects and
ensures that all requirements approved
during the planning state are incorporated
into the update. This requires creation,
maintenance, and closure of work prod-
ucts for schedules, engineering change
proposals, system design change requests,
subsystem design change requests, soft-
ware change requests, source lines of code,
etc. The database then provides pertinent
information for accumulating proposed
weapon-systems upgrades.

Our organization uses our CSA system
to record many types of metrics as well as
actual man-hours and lines of code dedi-
cated to each change request produced.
These actual metrics are later used when
accessing assets and manpower for new
workloads. Figure 1 is a sample project

report that includes the project identifier,
project name, engineer assigned to the
project, man-hours, lines of code, and
other information that may be required
during project development. There are
several other reports that can be pulled to
show the status of projects, percent com-
plete, and other valuable metrics.
Controlling: SCM enforces control of CIs
by establishing processes and procedures
to maintain accountability of configured
software enhancements throughout the
life cycle of the upgrade. Incremental con-
figuration at each stage/milestone ensures
incorporation of approved source code
and maintains traceability of known
anomalies. Within our organization, the
CM functions to update the CSA database
at intervals during the product life-cycle,
providing a current snapshot of the pro-
gram at any given time. This means that
when addressing both current and
archived projects, the historical data
regarding incremental releases describes
during which phase anomalies were iden-
tified, along with in which release the
anomalies were corrected.

Figure 2 (see page 6) is an example of
a Software Change Request (SCR) form as
it is recorded within our database. Within
this process several metrics are recorded
for future use. Dates are tracked as each
milestone is passed such as the completion
of a final peer review and the approval of
the CCB, as well as the man-hours spent
reviewing SCRs, time spent in peer

July 2001 www.stsc.hill.af.mil 5

Software Configuration Management: A Discipline with Added Value

Figure 1: Sample Project Report

reviews, number of action items, their pri-
ority, source lines of code, and memory
changes.

Anomalies are found during various
testing phases. As they are detected the
engineer responsible for finding the error
enters them into the database. The database
assigns the anomaly a tracking number after
which the anomaly becomes a configured
item. SCM tracks the error until it is fixed
or determined not to be an error. Figure 3
is an example of a report used to show the
status of anomalies.
Auditing: SCM produces audits at incre-
mental steps throughout the software-
building process to ensure quality, integrity,
and adherence to established processes and
procedures. Additionally, SCM incorpo-
rates quality assurance throughout the life
cycle of the product by being a separate
entity and maintaining continuity and
accountability of the engineering work-
flow. Our CM processes include audits
and quality checks ensuring that specifica-
tions are being updated incrementally as
software lines of code are being developed.

An example of these audits within our
organization occurs after a change request
has been reviewed, comments recorded,
and the author has accomplished a re-edit
to include peer review comments. Our
peer review process requires that an audit
of the document be performed to ensure

that the author incorporated all the
approved changes. If the audit is not
passed, the change request repeats this step
of the process.

One of our lessons learned occurred
when a customer provided us with docu-
mentation that required an upgrade prior
to releasing new software. The customer
requirements were vague and undefined

and did not include all CI and identifiers
needed. Additional hardware modification
requirements were not identified until
after we began upgrading the software.
Identifying, correcting, and implementing
the anomaly at such a late date impacted
the software release cycle. To prevent this
anomaly from reoccurring, a corrective
action to tailor SCM processes resulted in
a preliminary review of all documentation.
This has eliminated 90 percent of the
problems we had previously encountered.
This resulted in the CCB receiving a bet-
ter product to review and more accurate
estimates of program cost/schedule.

Tools and Metrics
Tools are one of the key capabilities with-
in our software sustainment environment.
Tools provide the identification and con-
trol of the software and its related compo-
nents as they change during the software’s
life cycle. There are numerous off-the-shelf
SCM tools available in today’s market,
some of which we use in our organization.
But we have developed many organic tools
to comply or adapt specifically to our
processes and corporate culture. There are
traditional CM tools that provide check-
in/check-out control of code as well as the
ability to compile or build. Within our
organization we have tools that provide
process management such as the ability to
track anomalies and provide problem

Testing & Configuration Management

6 CROSSTALK The Journal of Defense Software Engineering July 2001

Figure 3: Anomoly Status Report

Figure 2: Software Change Request (SCR) Form

reports. We also have commercial off-the-
shelf tools that have been tailored to fit
into our process and provide us with the
necessary quality checks and balances.

One of the key areas within SCM is
status accounting. To have true CM, tools
are required to track the status of all CIs
as well as problems or anomalies. We have
developed tools within our organization
that provide the ability to track several
complex systems as well as to collect data
and generate numerous reports. These
tools also provide versatility in adapting
to a variety of different workloads. One of
the advantages of an organic tool is the
ability to adapt or to change the tool as
new requirements come in or as processes
are updated.

An example of a new requirement
added to our database recently is the Tape
History dialog box shown in Figure 4.
This history helps us to track the baseline
used to develop the current update of the
Operational Flight Program (OFP). It
tracks all version releases of the software
identified by the OFP Identification
Number and the dates they were com-
piled. As a result this has helped us to
track baselines for individual subsystems

and enables us to pull reports for those
who need this information.

Throughout the different stages of
process improvement, from being a
CMM Level 1 to a CMM Level 5 organ-
ization, we have learned many valuable
lessons. One of the most valuable being
the importance of creating your processes
and then buying or developing a tool that
compliments that process. If you buy a
tool without knowing where you are
going and what your overall goals are, you
end up having to adapt your process to fit
the tool. That may not be the best for
your organization.

One of the benefits of a good status
accounting tool is the metrics and reports
that can be obtained. This has been very
beneficial to our organization and to our
customers. We are able to track estimated
costs, man-hours, source lines of code,
anomalies, memory requirements,
rework, and much more. This gives us the
ability to compare estimated data to actual
data. It is this historical information that
gives us a solid track record and helps us
greatly in bidding on future workload, as
well as supplying our customers with infor-
mation in creating project requirements.

Training
Training for each member of the SCM
team is a must. SCM is an evolving field.
Not only is it necessary to keep up with
new ideas and tools, but to keep up with
the industry on how SCM is being inter-
preted by the world or even in other parts
of our own division. In order to provide
customers with current processes and pro-
cedures, we must be aware of changes and
improvements made within the industry.
This enables assigning appropriate
authorities and responsibilities to all
SCM activities within our organizations.

Management, engineers, and configu-
ration managers must understand the
processes within their respective organiza-
tions. It is necessary to be knowledgeable
enough to tailor SCM practices to the
needs of each customer/workload.
Configuration managers are involved in
all stages of development; they must
become an integral part of the process.
Here, they are depended on for their
expertise in decision making to facilitate
process improvement and provide a qual-
ity assurance role. Detailed knowledge,
formal training, and on-the-job experi-
ence result in the ability to recognize
problems – to stop work, address issues,
correct problems, and continue moving
ahead. When problems are encountered,
knowledgeable configuration managers
are invaluable in resolving issues. Some
training examples that benefit our organ-
ization follow:
• First is mentorship between trained

pesonnel and new/untrained personnel.
• Second is CM training courses. These

courses give a broad overview of SCM
and usually benefit anyone interested in
becoming knowledgeable of basic SCM
fundamentals.

• Third, and most importantly, is on-the-
job training, which provides the most
insight to SCM processes and proce-
dures.

Properly trained SCM personnel
result in procedures that produce repeat-
able quality products. Members of the
SCM team are not technical or engineer-
ing people. The team is comprised of
individuals who are competent in the
skills needed to provide insight and back-
ground to SCM policies and procedures.
Within our organization, this has provid-
ed an avenue for individuals to pursue the

July 2001 www.stsc.hill.af.mil 7

Software Configuration Management: A Discipline with Added Value

Figure 4: Operational Flight Program Tape History

set criteria for developing configuration
management skills, which results in
opportunities for advancement. Proper
training creates knowledgeable configura-
tion managers who can teach others the
value of the SCM discipline. Trained con-
figuration managers perform their duties
with confidence and professionalism.
These software professionals make the
SCM discipline a vital function in matur-
ing a software organization.

Conclusion
Maintaining a SCM discipline is critical
to our CMM Level 5 software sustain-
ment activities. Proper implementation of
SCM enables us to plan, identify, control,
and audit product life cycles. SCM along
with management and engineering guide
our organization to continuously improve
our ability to meet expectations of high
quality, low cost, and on time deliveries.

Continuous improvement, or Kaizen, can
be achieved when practitioners are pro-
vided with proper tools, adequate train-
ing, and empowered with a quality
process.u

Note
1. Configuration management definition

is as defined by the Configuration
Management Training Foundation
(CMTF), Magalia, Calif.

Testing & Configuration Management

8 CROSSTALK The Journal of Defense Software Engineering July 2001

TTrreessaa BBuuttlleerr is a software configuration manager at the Ogden Air
Logistic Center, Software Engineering Division at Hill Air Force
Base, Utah. She has worked for the Department of Defense for 13
years with the past nine years in data management and software
configuration management. She participated in the software con-
figuration team that was assessed by the Software Engineering
Institute as a Capability Maturity Model Level 5. She is currently
the Software Configuration Management lead for F-16
Operational Flight Programming workload. Butler attended
Weber State University and plans to continue her education in the
fall.

6137 Wardleigh Road
Hill AFB, UT 84056-5843
Phone: (801) 777-6809
DSN: 777-6809
E-mail: tresa.butler@hill.af.mil

FFaaiitthh TTuurrnneerr is a software configuration manager contracted
through the F-16 (SPO) at Ogden Air Logistics Center in Utah,
to provide configuration management support for software devel-
opment at Hill Air Force Base (HAFB). She played an integral role
on the software configuration management team during a Software
Engineering Institute assessment that resulted in the first
Capability Maturity Model Level 5 rating at a government organ-
ization. Turner has 16 years experience in the configuration status
accounting and configuration management field. She has been a
member of the F-16 software configuration management team for
six and one-half years. Turner attended Texas Women’s University
and is continuing her education at Park College, HAFB.

Scientech, Inc.
6137 Wardleigh Road
Hill AFB, UT 84056-5843
Phone: (801) 775-3104
DSN: 775-3104
E-mail: faith.turner@hill.af.mil

VVeerrllaa SSttaannddlleeyy is a software configuration manager for the
Automatic Test Equipment (ATE) in the Software Engineering
Division at Hill Air Force Base. She has worked for the govern-
ment for 22 years and has been a configuration manager for 10
years. Standley was a member of the software configuration team
that was assessed by the Software Engineering Institute as a
Capability Maturity Model Level 5. For the past three and one-half
years she has been the Software Configuration Management lead
over the ATE workload. Verla attended Weber State College and
has taken several configuration management classes.

7278 4
th

Street
Hill AFB, UT 84056-5205
Phone: (801) 777-0960
DSN: 777-0960
E-mail: verla.standley@hill.af.mil

EEllaaiinnee SSuulllliivvaann is a software configuration manager in the Ogden
Air Logistics Center, Software Engineering Division at Hill Air
Force Base, Utah. She has been involved with configuration of F-
16 software since 1988 and is currently the Software Configuration
Management lead over the Avionics Intermediate Shop Workload.
Sullivan developed and implemented the configuration process for
her area and was instrumental in writing the configuration process-
es for the division and branch. She was an integral part of the soft-
ware configuration team during a Software Engineering Institute
assessment that resulted in the first Capability Maturity Model
Level 5 rating at a government organization. She has an associate’s
degree from Ricks College, Rexburg, Idaho.

6137 Wardleigh Road
Hill AFB, UT 84056-5843
Phone: (801) 775-2878
DSN: 775-2878
E-mail: elaine.sullivan@hill.af.mil

“If I had to sum up in one word what makes a good manager, I’d say decisiveness. You can use the
fanciest computers to gather numbers, but in the end you have to set a timetable and act.”

– Lee Iacocca

About the Authors

July 2001 www.stsc.hill.af.mil 9

How Much Code Inspection Is Enough?
Robert T. McCann

Lockheed Martin Management and Data Systems

Given code inspection effectiveness (defects found during inspection/defects found during inspection plus those found
during test) as a function of preparation rate (amount of code examined per labor hour), it is then possible to con-
struct a simple cost model that predicts testing labor hours as a function of code inspection preparation rate. This
paper develops that model and computes the optimum code inspection preparation rate to minimize total cost
(inspection + test). Existing program data (with significant caveats) have been used together with certain rough
approximations to show that Fagan-style code inspections obey a simple predictive cost model.

The purpose of this paper is not to
present actual performance data but

to demonstrate how such data can be ana-
lyzed in the context of a cost model
extending over multiple development
processes: code inspection, code inspec-
tion rework, test, test rework, and regres-
sion testing.

The purpose of the model is to
demonstrate how to reduce development
costs by managing the amount of time
spent preparing for software inspections.
All program data have been modified to
protect the proprietary nature of that data.
The conclusions and basic nature of the
model are unaffected by these modifica-
tions.

This model can be used to optimize
performance of future programs using a
similar Fagan-style [1, 2] code inspection
process with significant cost and schedule
savings as well as quality improvement –

in effect, better, faster, and cheaper. Such
performance improvements should result
in improvements in profitability, competi-
tiveness, and customer confidence in both
contract performance and product quality.

Further, the model is easily modified
to other work products and cost drivers,
e.g., design complexity. Given that code
inspection may not be particularly effec-
tive in finding design and requirements
defects, it may make sense to extend the
model to include more development
processes, such as requirements develop-
ment and requirements inspection, design
development and design inspection, defect
repair and associated inspection, etc.

Inspection, Test, and
Accounting Processes
To perform this kind of analysis, it is nec-
essary for a project to have defined, con-
sistently executed processes for code

inspection, code inspection rework, test-
ing, and testing rework that collect and
retain sufficient data. It is especially
important in deriving this model that the
inspection process was nearly statistically
stable with respect to inspection prepara-
tion rate (lines of code reviewed per labor
hour). Otherwise, the statistical fits would
have little predictive value. The cost data
are also assumed available and traceable to
these processes.

Inspection Effectiveness
It is not possible to know the true, exact
percentage of code defects found by code
inspections until all defects have been dis-
covered; furthermore that is not likely ever
fully to happen. However, if it is assumed
that a significant fraction of major code
defects found in testing could have been
found in code inspection, then there is
value in studying the code inspection
effectiveness.

This is the ratio of major code inspec-
tion defects1 divided by the sum of major
code inspection defects plus the major
code defects found by testing. The code
inspection effectiveness ratio has the desir-
able property of ranging from zero to one
even though the relationship between
major inspection defects and test defects is
many-to-many rather than one-to-one.
The model has the further benefit of
quantifying how inspection preparation
regulates testing costs.

When code inspection effectiveness is
averaged by computer software configura-
tion item (CSCI2), it is possible to develop
a correlation between code inspection
preparation rate and code inspection effec-
tiveness. The correlation is well fit by a
straight line with a y-intercept of 1.0 (see
Figure 1). The F-test [3] shows a confi-
dence level in excess of 99 percent with the
linear fit accounting for more than 90 per-

Figure 1 : Least Squares Fit of Inspection Effectiveness

cent of the variation in the data. The F-
test is a statistical test to verify that the
function used to fit the data did not do so
by accident.

Please note, however, that the fit func-
tion does not apply for very small prepara-
tion rates; at zero preparation rate, the
preparation would never end. It is also not
wise to extrapolate the fit function too far
beyond the data on the right; generating a
negative effectiveness is a clear indication
of going too far.

The following variations to the data
were performed and had only minor
effects on the results (the slope changed by
up to 10 percent, and the goodness-of-fit
parameters changed slightly):
• Restriction of inspection defects to

major defects [4] rather than all defects
found.

• Removing any one of the data points.
• Use of three separate selection criteria

on the test defects:
• Total test defects.
• Code-only test defects, including gen-

erated code.
• Code-only test defects, excluding gen-

erated code.
In all of these cases, the effectiveness is

well fit by a straight line that achieves 100
percent at zero preparation rate and
declines by a constant amount for every
100 lines of code per labor hour of inspec-
tion preparation review (see Figure 1 on
page 9).

Cost Model
The cost model should include all major
costs that are affected by the inspection
preparation rate. At the top level, this cost
model includes the costs associated with
just two development processes:
1. Code inspections with inspection

rework.
2. Testing with test rework and regression

testing.
A more detailed analysis, including

other code development processes or
including the effect of code complexity on
cost could not be supported due to
absence of necessary data in the program
databases. Code complexity, both algo-
rithmic complexity and interface complex-
ity, would be expected to affect inspection
effectiveness as well as inspection rework
labor hours and test rework labor hours.
These were excluded from this model due

to the absence of appropriate supporting
data.

In this model, total cost is the sum of
the following items:
• Code inspection preparation labor.
• Code inspection meeting labor.
• Code inspection rework labor.
• The labor for running the full test suite

once.
• Testing rework labor.
• Regression testing labor.

In deriving the cost function, the fol-

lowing statements are assumed to be

approximately true:
• The inspection preparation labor is pro-

portional to the amount of code being
reviewed.

• The inspection meeting labor and the
inspection rework labor are propor-
tional to the number of major defects
found in the inspections.

• The test rework labor and the regres-
sion test labor are proportional to the
number of major defects found during
testing.

• A significant number of the major code
defects found by testing could have
been found earlier in code inspections.

Using these assumptions, the total
excess cost due to discovered defects can
be expressed as follows:

Te = C + S*Wri*I + S*D/R + S*I*

(-m)*(Tr*Et - Wri)*R

See the Cost Function Derivation sidebar
for a more detailed derivation of this cost

function and for variable and terms defini-
tions.

Cost Optimization
The optimum code inspection preparation
rate is obtained by finding the point at
which the cost function has a minimum.
A minimum is found by setting the first
derivative of the total cost with respect to
code inspection preparation rate equal to
zero, solving for code inspection prepara-
tion rate, and verifying that the point is a
minimum and not a maximum or an
inflection point:

I*S*(-m)*(Tr*Et - Wri) – D*S/R2 = 0

The result is the following formula for
the optimum preparation rate:

R* = SQRT{D/[I*(-m)*(Tr*Et - Wri)]}

For demonstration purposes, the follow-
ing values are used:
D = 4
Et = 1.0 approximately (a very high

quality requirement: man rated or
species rated)

I = 0.040 defects/SLOC

m = -0.00075 (SLOC/labor hour)-1

S = 1,000,000 SLOC
Tr = 20 labor hours/defect

Wri = 4 labor hours/defect

Substituting this demonstration data

yields the following optimum code inspec-

tion preparation rate:

R* = 91.29 SLOC/labor hour

10 CROSSTALK The Journal of Defense Software Engineering July 2001

Figure 2: Murphy’s Tongue - Excess Labor as a Function of Inspection Preparation Rate

Testing & Configuration Management

July 2001 www.stsc.hill.af.mil 11

How Much Code Inspection Is Enough?

The relative cost in excess of the cost at the
optimum rate is given by evaluating the
difference in the total cost at a given rate
minus the cost at the optimum rate:

TM = S*D*(1/R – 1/ R*) + S*I*

(-m)*(Tr*Et - Wri)*(R - R*)

Since this curve is shaped like a parabola
that opens upward (see Figure 2), there
must be a unique preparation rate R* that
minimizes the total cost. Figure 2 is
named in memory of Murphy’s Law
because any variation from the optimum,
no matter how well intentioned, will
increase development costs.

The Cost of Variation
It is not enough to know the optimum
preparation rate. No human process is
without variation, so it is necessary to
know the cost of variation. Whether a
code inspection is run slightly too fast or
slightly too slow, the cost is higher than
the minimum cost. This idea is summa-
rized in the following definition: “World
class quality is on target with minimum
variance.” [5]

The cost of variation is approximately
parabolic with respect to deviations from
the optimum preparation rate. Therefore
the Taguchi cost-of-variance formula for
this model is the averaged second deriva-
tive term in a Taylor expansion of the cost
function [6],

Tv = (D*S/ R*3)*<(R - R*)2>

where the angle brackets indicate com-
puting the average over the whole dataset.
Substituting example data yields the fol-
lowing:

Tv = 5.26*<(R - R*)2> labor hours
This is an approximation to the exact cost
behavior for this model, but it shows the
salient point that variation itself has a cost
that may be worth minimizing.

Conclusions
If a program collects the right data from
the inspection, test, and cost-accounting
processes, performance and cost analysis
can result in the ability to predict pro-
gram cost and quality performance in
terms of one inspection process control,
inspection preparation rate. With the
right data, a second driver could be added
to the model, e.g., code complexity. This
driver would be expected to affect inspec-

Cost Function Derivation

Code inspection labor consists of preparation labor, inspection meeting labor, and
inspection defect rework labor. Preparation labor is just size divided by prepara-

tion rate: S/R. The inspection meeting labor is linearly related to the preparation labor
because the meeting time will be driven by the number of candidate defects to be dis-
cussed and recorded. The sum of preparation labor and meeting labor is C + D*S/R,
where C and D are the linear regression coefficients. Inspection rework is driven by
the number of defects found, and that is the discoverable defect insertion rate “I”
times the amount of code inspected “S” times the inspection effectiveness “(1 + m*R)”
times the labor to fix an average defect “Wri.”

Testing labor includes the cost of testing perfect code “To*S” (running through
the whole test suite once), rework driven labor, and regression testing. Both regression
testing and test rework will be driven by the number of defects detected during test-
ing: the number escaping the inspections “I*S*(-m)*R” times the test effectiveness
“Et” times the labor for fixing and regression testing an average defect “Tr.”
Symbolically this can be expressed as follows:

Tc = To*S + C + D*S/R + Wri*I*S*(1 + m*R) + Tr*Et*I*S*(-m)*R
or

Te = Tc - To*S = C + S*Wri*I + S*D/R + S*I*(-m)*(Tr*Et - Wri)*R

where:

C = Y-intercept of empirical fit of total inspection labor (preparation plus meeting).

D = Slope of empirical fit of total inspection labor vs. preparation rate.

Et = Test effectiveness (defects found in test/defects found in test plus those found after test completion

excluding all defects that cannot be found by testing, e.g., requirements defects).

I = Discoverable code defect rate = code inspection defect rate + test defect rate.

m = Slope of code inspection effectiveness regression line.

R = Code inspection preparation rate (SLOC/labor hour).

S = Total SLOC inspected.

SLOC = Non-comment, non-blank, physical lines of code. Any consistently used size measure will work,

e.g., executable statements, function points, etc.

To = Labor for testing one line of perfect code (regression testing not needed).

Tc = Total cost (labor hours).

Te = Total excess cost due to discovered defects.

Tr = Labor per defect to do test rework and regression testing.

Wri = Labor hours to rework a code inspection defect.

C+D*S/R = Labor for inspection preparation plus the inspection metting.

I*S = Defects present at code inspection.

(1+m*R) = Code inspection effectiveness.

I*S*(-m)*R = Defects missed by the code inspection that escape into test.

I*S(1+m*R) = Defects found by the code inspection.

S/R = Inspection preparation labor.

T0*S = Total labor for testing perfect code (registration testing not needed).

Tr*Et*I*S*(-m)*R = Labor to do test rework.

Wri*I*S*(1+m*R) = Labor for reworking defects found during the inspection.

tion effectiveness as well as inspection
rework labor hours and test rework labor
hours.

Realistically, one ought to be able to
achieve 90 percent code inspection effec-
tiveness by preparing at a cost optimizing
rate of about 100 SLOC/labor hour with-
out any other change in the code inspec-
tion process. To achieve further improve-
ment, say 99 percent effectiveness with-
out increasing code inspection cost, it
would be necessary to improve the code
inspection process. There are several ways
to do this:
• Use checklists that are improved each

time they are used.
• Train each developer to develop and to

use an individualized checklist.
• Use Watts Humphrey’s Team Software

Process/Personal Software Process that
does both of the above and more [7].

In the example using the optimal
91.29 SLOC/labor hour preparation rate
rather than a quick and dirty 300
SLOC/labor hour, there is a savings of
nearly 70,000 labor hours/MSLOC ($
millions/MSLOC at any realistic labor
rate). If the code inspection process could
be modified to 99 percent efficiency
without increasing code inspection costs,
then the savings would potentially exceed
107,000 labor hours/MSLOC. Such
potential improvement makes clear the
value in performing code inspections at a
deliberate pace and reliably recording cer-
tain key information to enable optimiza-
tion of program performance. With this
kind of analysis and with reliably record-
ed data, simultaneously working better,
faster, and cheaper really is possible!

In conclusion, to get the best value
from an inspection, it is more cost effec-
tive to prepare for that inspection as if
preparing for a final exam in college
rather than reading the material as if read-
ing a light novel for entertainment.
However, preparation thoroughness con-
sistent with a Ph.D. thesis defense may
not be appropriate unless there is a clear
business case for exceptional quality, e.g.,
man-rated or better.u

Acknowledgments
The author would like to thank John
Gibson of Lockheed Martin Mission
Systems and Pat Dorazio, Earl Pape, and

Bernie Pindell of Lockheed Martin
Management& Data Systems, Gaithersburg,
Md., for reading this report and making
numerous helpful suggestions. Thanks are
also due to Dr. Abol Ardalan of The
University of Maryland University College
for teaching me the value of cost models and
how they are built, and to Dr. Gary
Kaskowitz of The University of Maryland
University College for teaching me basic
business statistics.

References
1. Fagan, Michael G., Design and Code

Inspections to Reduce Errors in Program
Development, IBM Systems Journal, vol.
15, no. 3, 1976.

2. Fagan, Michael G, Advances in Software
Inspections, IEEE Transactions on
Software Engineering, vol. SE-12, no. 7,
July 1986.

3. Montgomery, Douglas C. and Runger,
George C., Applied Statistics and
Probability for Engineers, John Wiley &
Sons, Inc., NY, 1994, pp. 315-317, 493-
495, and 510-513. Also see the
Microsoft Excel-97, SR-2 online help for
the LINEST function, example 4, using
the F and R2 Statistics.

4. See note 1.
5. Wheeler, Donald J. and Chambers,

David S., Understanding Statistical Process
Control, 2nd Ed., SPC Press, Knoxville,
TN, 1992, pp. 141-147.

6. Ibid., pp. 143-147.
7. Humphrey, Watts S.; Lovelace, Mark;

and Hoppes, Ryan, Introduction to the
Team Software Process, Addison-Wesley
Publishing Co., 1999, ISBN:
020147719X.

Notes
1. The Lockheed Martin Management &

Data Systems definition of a major
defect is a defect that will cause a mal-
function or deviation from require-
ments or specifications, seriously vio-
lates policies or standards, indicates
missing function, or makes the system
unusable. The defect must be fixed
since it may cause some degree of proj-
ect failure, economic loss, poor cus-
tomer satisfaction, or contractual or
legal breach.

2. A computer software configuration item
is a large set of related functionality pro-
duced by one team of developers.

12 CROSSTALK The Journal of Defense Software Engineering July 2001

Testing & Configuration Management

“It’s hard enough to find an
error in your code when

you’re looking for it; it’s even
harder when you’ve assumed

your code is error-free.”
–Steve McConnell

“The most important single
aspect of software development
is to be clear about what you

are trying to build.”
–Bjarne Stroustroup

About the Author
BBoobb MMccCCaannnn is a staff sys-
tems engineer at Lockheed
Martin Management &
Data Systems in
Gaithersburg, Md. He has
nearly 20 years of experience

in computational physics and high perform-
ance computing, including nine years at
Princeton Plasma Physics Laboratory
working in the U.S. DOE-controlled
fusion program, as well as about 10 years
experience in design and development of
relational databases of various kinds.
McCann is currently a member of the
M&DS Metrics Process Steering
Committee and works on improving
software development processes, meth-
ods, and metrics. He has a bachelor’s
degree in physics with a concentration in
mathematics from Shippensburg
University; master’s degrees in physics
and computer science from University of
Maryland and Southwest Texas State
University, respectively; and is working
on a master’s degree in computer sys-
tems management/software develop-
ment management at the Univeristy of
Maryland University College.

Lockheed Martin Management
and Data Systems
700 North Frederick Avenue
Gaithersburg, MD 20879
Phone: (301) 240-4273
Fax: (301) 240-7190
E-mail: bob.mccann@lmco.com

Acommon phrase used in many soft-
ware presentations during the past

few years is, “We need properly calibrated
and validated models.” This is an assump-
tion that a perfect estimating model will
eliminate the risk in scheduling and man-
aging software projects. Unfortunately, the
calibrated, validated model is only the tip
of the estimating iceberg.

There are four error classes that exist
in any software estimate: estimating tech-
nology (model), environment, project
data, and the estimator. The estimating
technology is centered on the estimating
model or tool. No model is perfect; how-
ever, several widely used models are viable
estimating tools.

The second error class involves the
environment where the software is to be
developed. The environment includes the
development system such as tools and
practices, operating system, physical facil-
ities, organization structure, and manage-
ment. This information, which is general-
ly sketchy when the project acquisition
estimates are made, is detailed and firm at
the time of contract award.

Project data, the third error class, is a
large error source in all estimates. Size is a
fundamental estimating tool parameter
and is usually specified in source lines of
code. Effective size, which defines the
project magnitude, is so difficult to estab-
lish for almost all estimates that alternate
estimate forms such as function points
and objects have become popular size pre-
dictors. No size predicting method is triv-
ial, and none of the methods have proven
accuracy advantages.

The last of the four error classes is the
estimator. The estimator collects the esti-
mate data, establishes the estimating
model input parameters, performs the cost
and schedule analysis, and produces the

final estimate. A realistic estimate requires
that the estimator be proficient with the
estimating tool. Proficiency equates to
training and experience. Training requires
more than access to a User’s Guide, and
experience is not instantaneous.

The estimator and the project data are
the largest error contributors. Technology
is actually the least significant source of
error. Any of the major models or tools in
the hands of an experienced estimator can
produce realistic software development
estimates. The estimating tool is quite
analogous to a scalpel in the hands of a
surgeon.

Calibrated, Validated Tools
Those responsible for producing estimates
typically make four simple assumptions.
First, the estimator is not an accuracy
issue. Second, the project data used to
develop or calibrate the model is of high
quality. Third, the environment is con-
stant and not an issue (“Despite this cost
variation, COCOMO does not include a
factor for management quality, but instead
provides estimates which assume the proj-
ect will be well managed.” [1]). Finally, the
estimating technology (model) is assumed
to be the major error source.

The phrase “properly calibrated and
validated models” does not appear to be
the elixir that eliminates the errors and
risk in scheduling and managing software
projects. Calibrated, validated models are
still necessary for realistic software esti-
mates, just as sharp scalpels are necessary
in good surgery.

The estimating model must fit the
data from which it is defined. This data
must represent the estimating model
application area. Developing a model
from commercial data processing projects
and applying the resulting model to space-

craft control should not be expected to
produce acceptable cost and schedule pre-
dictions.

The major models are capable of esti-
mating a wide range of software projects.
These tools, in general, have been calibrat-
ed (and validated) with considerable proj-
ect data over a long period of time.
Internal environment adjustment factors
account for variations between products
and environments. For example, the num-
ber of environment adjustments in Sage
and SEER-SEM is near 30. It is important
to note these factors have also been vali-
dated. External model calibration changes
the meanings of these factors and negates
the model validation, as we will see later.

One argument against using tradition-
al estimating tools is that traditional mod-
els were all developed in 1970s and 1980s.
Fortunately, the software development
industry has not changed significantly
since then. True, we have much improved
software development approaches and envi-
ronments, but have these environments
improved development productivity?

Defense industry software productivi-
ty, measured from the start of develop-
ment through final qualification test, has
grown almost linearly from 1960 through
the present. A simplified (smoothed) pro-
ductivity growth curve in Figure 1 shows
this growth. The result, smoothed or not,

July 2001 www.stsc.hill.af.mil 13

Software Estimating Model Calibration
Dr. Randall Jensen

Software Engineering, Inc.

The last decade has brought increasing pressure on software model developers to include a calibration capability in
their models that will reduce errors and improve software development estimates. An invalid underlying assumption
is that software estimate errors are primarily due to weaknesses in the estimating technology (models). Data errors
and the impact of estimator capability are never considered to be significant error sources. The intent of this article
is to raise awareness of software estimate errors sources, and to objectively consider the real impacts of model cali-
bration.

lines per
person -
month

Figure 1: Average Software Development
Productivity Growth from 1960 to 1990

Best Practices

shows a growth of software development
productivity less than one source line per
person-month per year during the entire
30-year period. For that period of time,
each new technology has assured us the
productivity problems of the past have
been solved.

The traditional models, in the hands
of experienced estimators still produce
accurate and high-quality cost and sched-
ule projections.

The Calibration Issues
The major calibration issue is what should be
calibrated – the estimating model, the devel-
opment organization, or the estimator. The
industry trend leans toward the technology
solution: the estimating model. The problem
with the technology solution is calibration
changes the model. This change is easily
demonstrated with one of the simpler mod-
els, the Constructive Cost Model (COCO-
MO).

COCOMO vs. REVIC

The COCOMO software-estimating
model was first published in 1981 [2]. The
development effort E, defined by the
embedded software version of the model,
is given by Equation 1,

where the impact of the product and the
development environment is specified by
the product of 16 effort adjustment factors

and the effective development size . A vari-
ation of the COCOMO model, known as
REVIC [3] was introduced a few years
later. REVIC was developed from a collec-
tion of U.S. Air Force project data and
defined development effort by the rela-
tionship shown in Equation 2,

that differs from COCOMO (Equation 1)
only in the proportionality constant. The
REVIC equation is equivalent to

where the calibration factor k1 =1.18. Note

the REVIC definitions of the 16 environ-
ment adjustment factors (EAFs) are iden-
tical to the COCOMO definitions.
REVIC was validated as a new estimating
model using USAF project data. It is

apparent that REVIC is a calibrated
COCOMO model, and the calibration
required that REVIC be revalidated before
use to provide confidence in REVIC’s cost
and schedule estimates. The philosophical
question, “Can any estimating model be
changed and used without revalidation?”
is a major concern. Many software-esti-
mating tools contain calibration constants.
Can these constants be changed from their
default value without requiring model
revalidation?

One serious model impact introduced
by calibration is the redefinition of the
model itself. We can illustrate the effect by
factoring the analyst capability rating
(ACAP) out of the Effort Adjustment
Factor (EAF) product to obtain the equiv-
alent effort relationship shown in
Equation 3,

For example, consider a software develop-
er who uses COCOMO to produce realis-
tic software estimates. The default calibra-
tion constant for COCOMO is 1.0. A
manager notices the ACAP assumes the
development organization to be average
(ACAP = 1.0), which is unacceptable from
a business standpoint.

The organization, according to the
manager, should be considered to be in the
90th percentile category (ACAP = 0.71).
Since the effort projections were realistic
before the change to the ACAP, the cali-
bration factor must be increased to 1.41 to
rebalance the equation. The resulting
effort equation is given by,

Changing the proportionality con-
stant from 2.8 to 3.95 is not the only
change to the estimating model. The ana-
lyst capability definition was changed to
allow average analysts to be rated in the
upper 10 percentile as well. Is the model
defined by the new effort equation equiv-
alent to COCOMO? The models cannot
be considered equivalent because the EAF
definitions and the model definitions are
different. Should the new equation define
a new model that requires validation? Yes.

Calibration Database
The calibration (or validation) project
database is also a major calibration issue.
The database must be of sufficient size to
effectively validate the new or modified
estimating model. Inadequate data leads to
inadequate validation. Yet, the calibration
constant used in many models allows the
validation database to be as small as a sin-
gle project.

The data in the project database must
also represent a common data definition;
that is, defined with the same data rule set.
For example, the task size definition must
be consistent across all the development
tasks in the database. It would be irrational
to define part of the projects in terms of
total size, part as modified size, and part as
effective size.

The development environment for
each task must be defined in the project
database since no two tasks are developed
under identical conditions. Some tasks
may be developed in the Ada program-
ming language, some may have severe tim-
ing constraints, and some may have a
volatile requirements set. This information
is necessary to adjust the environment fac-
tors in the selected model before a valid
estimate can be produced or before the
model can be validated (calibrated).

The U.S. Air Force Space and Missile
Center, with assistance from the Space
Systems Cost Analysis Group, developed a
software project database that contains
more than 2,800 contributed and unveri-
fied data records. The software project
database is the largest and most widely
used source of software project data. Some
of the individual records provide fairly
complete descriptions of each develop-
ment task. This database has been the pri-
mary source of data for model calibration.
Unfortunately, much of the data is incom-
plete, the definitions used by the individ-
ual data points are inconsistent, and the
information necessary to extract effective
size is not included. Thus, only a small
portion of the software project database
data is useful.

Estimator Impact
The most important variation in software
estimates is the training, skill, and experi-
ence of the estimator. The impact of the
estimator on an estimate is almost always

14 CROSSTALK The Journal of Defense Software Engineering July 2001

Best Practices

(2)

(1)

(3)

ignored. Many estimators are not trained
in estimating or in using their tools, which
are assumed to be user-friendly (most are);
the estimator need only to set values for
the model parameters. The estimates are
accepted without sanity checks to ascer-
tain the estimate realism. It is easy to set
model parameters, but sometimes quite
difficult to set those parameters correctly.
A slightly positive bias on all 16 COCO-
MO parameters can significantly change
the resulting cost and schedule estimate.

Experience as an estimator or a soft-
ware developer also has a great impact on
the parameter values inserted into the esti-
mate. Is it possible to understand develop-
ment system volatility without some
knowledge of the software development
process? What is the impact of reuse or
COTS on the effective size of the develop-
ment? These questions demand experience
and skill.

Decalogue Project
The Decalogue Project is the current stage
of an ongoing software model calibration
project that was started and first published

in the early 1990s [4]. The project results
have been published from 1995 through
1999 as Air Force Institute of Technology
master’s theses, and in other publications
such as CrossTalk [5].

The project applies statistical methods
to determine the accuracy of several soft-
ware models. The current project results
are not encouraging; however, the study

results should be expected because of the
underlying assumptions. The four simple
estimate assumptions regarding estima-
tors, data, environment, and estimating
technology are all implicit in the
Decalogue Project. The first indication
that the Decalogue Project had problems
was that none of the estimating models cal-
ibrated in the study had reasonable accu-
racy.

Before condemning the estimating
model performance, the assumptions and
experimental methods of the Decalogue
Project must be understood. The most
critical parameter in an estimate is the task
size. The models use an effective size that
is a weighted combination of new source
code, original (existing) code, and modifi-
cations to the original code. The size data
precision is very important to eliminate
size inaccuracy from the estimate error.

The size data extracted from the soft-
ware project database for the Decalogue
Project was the total size data, not the
effective size data that is used by the mod-
els. As an example of the estimate error
introduced by using total size data, con-
sider a system upgrade of 1,000 source
lines in an existing 100,000-line software
system. The development effort is more
closely related to the 1,000-line upgrade
than to the 100,000 existing lines.
Development productivity is a simple test
of the size data; that is, the ratio of size to
development effort. More than half of the
tested data points in the software project
database yielded a productivity of more

than 1,000 lines per person month. This
productivity is an order of magnitude
greater than that achieved in a typical proj-
ect today.

The development environment was
poorly specified or missing from the soft-
ware project database. To compensate for
the poor environment data, each model
was set to a nominal environment descrip-
tion for the estimates. The nominal envi-
ronment was essentially the model default.

Each software model was assigned to a
graduate student for the analysis. Student
quality is not an issue. However, the stu-
dents had little, if any, specific model
training or estimating experience.

The poor results achieved by the
Decalogue Project demonstrate that poor
calibration (validation) data, coupled with
misused models and inexperienced estima-
tors, lead to invalid estimates.

Conclusion
There are some fallacies related to the cal-
ibration of software estimating models.
The first fallacy is that calibration data is
generally accurate, consistent, and unbi-
ased. Good validation data is carefully ver-
ified to ascertain its completeness, confor-
mance to the database definitions, and
accuracy. Size data in the calibration data-
base must be complete enough to allow
effective size to be extracted from the new,
original, and modified size components.

July 2001 www.stsc.hill.af.mil 15

Software Estimating Model Calibration

Continued on page 18

DOES YOUR SOFTWARE PROJECT RANK AS ONE
OF THE GOVERNMENT'S TOP FIVE?

The Department of Defense and CrossTalk are currently accepting nominations
for the top five software projects in the government.

Outstanding performance of software teams will be recognized and best practices promoted.

Nominations will be acepted through July 20, 2001 at:
www.stsc.hill.af.mil/CrossTalk

Finalists will be selected based on adherence to quality and to the contracted cost, schedule, and requirements.

To be eligible, projects must have been performed under a government contract (internal government contracts also eligible) and been
active during the period of January 2000 through June 2001. To qualify as active, a project must have provided at least one deliverable to
the customer during this time. Example deliverables include, but are not limited to Preliminary Design Reviews, Code Design Reviews,

block updates, documentation, etc.

Effective size, as used in the models, is nec-
essary to predict cost and schedule.
Organizational experience with the soft-
ware also impacts effective size. Since
organizations are not equal and unchang-
ing, environment data is also necessary to
perform estimates. Good validation data is
not readily available.

The second fallacy is that estimates are
independent of estimator training and
experience. That is not likely. One cannot
assume estimates produced by real people
are ever above the significant biases intro-
duced by lack of training, skill, or experi-
ence.

The third fallacy is that properly cali-
brated and validated tools eliminate major
estimate errors; wrong again. Estimating
tools are simply estimating tools. Proper
validation reduces errors inherent in the
tool itself. The model, or tool, is like a
good scalpel. The quality of the estimate
lies primarily in the quality of the user.

On the other hand, what disadvan-
tages does calibration provide?
• Calibration invalidates the model. Model

calibration requires revalidation before
the model can be used with confidence.

• Calibration can destroy the meaning of
the model’s environment parameters.
Unless that is the calibration goal, care
must be taken to ensure the parameter
definitions are intact.

• Calibration cloaks weakness in the esti-
mator. Errors introduced by improperly
using a model can be compensated for
through the calibration process.

• Calibration makes it impossible for esti-
mators using different versions (calibra-
tions) of a model to compare results. This
problem can get very severe when corre-
lating estimates from the acquisition
team and the contractor.

The bottom line is another phrase used
in many software presentations during the
past few years: “We need properly calibrat-
ed and validated models.” Yes, we certainly
need validated tools, but we also need
trained, skilled, and experienced estima-
tors.u

References
1. Boehm, B. W., Software Engineering

Economics, Prentice-Hall, Inc., 1981,
pg. 487.

2. Boehm, B. B., Software Engineering

Economics, Prentice-Hall, Inc., 1981.
3. Kile, R.L., REVIC Software Cost Estimating

Model Users Manual, Ver 9.0, February 9,
1991.

4. Ourada, G. L. and Ferens, D. V.,
Software Cost Estimating Models: A
Calibration, Evaluation, and Compar-
ison, Cost Estimating and Analysis:
Balancing Technology and Declining
Budgets, New York, Springer Verlag,
1992, pp. 83-101.

5. D. V. Ferens and Christensen, D. S., Does
Calibration Improve Predictive Accuracy?
CrossTalk, April 2000, pp. 14-17.

isis

Get Your CROSSTALK

Free Subscription

Fill out and send us this form.

OO-ALC/TISE

7278 Fourth Street

Hill AFB, UT 84056

Fax: (801) 777-8069 DSN: 777-8069

Phone: (801) 775-5555 DSN: 775-5555

Or request online at www.stsc.hill.af.mil

NAME:______________________________

RANK/GRADE:______________________

POSITION/TITLE:_____________________

ORGANIZATION:______________________

ADDRESS:___________________________

BASE/CITY:_________________________

STATE:______ ZIP:____________

PHONE: ______________________

FAX:__________________________

E-MAIL: _____________@______________

CHECK BOX(ES) TO REQUEST BACK ISSUES:

JAN 2000____LESSONS LEARNED

FEB 2000____RISK MANAGEMENT

APR 2000____COST ESTIMATION

MAY 2000____THE F-22

JUN 2000____PSP & TSP

NOV 2000____SOFTWARE ACQUISITION

DEC 2000____PROJECTMANAGEMENT

JAN 2001____MODELING AND SIMULATION

APR 2001____WEB-BASED APPS

MAY 2001____SOFTWARE ODYSSEY

18 CROSSTALK The Journal of Defense Software Engineering July 2001

Best Practices

Continued from page 15

About the Author
RRaannddaallll WW.. JJeennsseenn,
Ph.D., is president of
Software Engineering,
Inc., and specializes in
software project resource
management. Dr. Jensen

developed the model that underlies the
Sage and the GAI SEER-SEM software
cost and schedule estimating systems. He
received the International Society of
Parametric Analysts Freiman Award for
Outstanding Contributions to
Parametric Estimating in 1984. Dr.
Jensen has published several textbooks,
including Software Engineering, and
numerous software and hardware analysis
papers. He has bachelor’s, master’s and
doctorate’s degrees in electrical engineer-
ing from Utah State University.

Software Engineering, Inc.
660 North Highland Blvd.
Brigham City, UT 84302
Phone: (435) 734-2585
Fax: (435) 734-2586
E-mail: seisage@aol.com
www.seisage.com

“ As soon as we started
programming, we found to

our surprise that it wasn’t as
easy to get programs right as
we had thought. Debugging
had to be discovered. I can
remember the exact instant
when I realized that a large
part of my life from then on

was going to be spent in
finding mistakes in my

own programs.”
–Maurice Wilkes

In today’s information technology age,
good engineers are at a premium.

Companies nationwide are facing the chal-
lenge of attracting and retaining qualified
engineering professionals. The U.S. govern-
ment’s challenge is even greater as they must
compete with industry. When recruiting
college graduates, one carrot or recruiting
advantage that the Air Force has over indus-
try is its PALACE Acquire program for sci-
entists and engineers.

I recently had the opportunity to
become trained as a PAQ recruiter and
thought CrossTalk would be a great vehi-
cle to get the word out to others in the Air
Force who may also be facing challenges in
recruiting entry-level engineers. Hence, this
article is intended to help others in the Air
Force understand the PAQ program better
and the variety of benefits that it offers the
employee as well as the hiring organization.
In addition, many undergraduate engineer-
ing students through their college course-
work are exposed to CrossTalk.
Hopefully, this article will also reach those
who have not yet made a career employ-
ment decision.

PAQ Program for Scientists and
Engineers
Science and engineering professionals pro-
vide a broad foundation of expertise
required to develop and support the Air
Force’s technological needs. To sustain the
national defense effort on the leading edge
of explosive technological advancement, the
Scientist and Engineer Professional
Development Program provides an exten-
sive two- or three-year training program.

PAQ program participants with a bach-
elor of science (BS) degree are placed in a
three-year training program. During the
first and third years, the participant works
full-time obtaining practical on-the-job
experience. During the second year he or

she pursues full-time graduate study.
Participants with a completed master of sci-
ence (MS) degree or a BS degree supple-
mented by one year of professional engi-
neering or science experience, enter a two-
year work experience training track.

A broad range of science and engineer-
ing disciplines support the PAQ program.
These include the following:

• Aerospace Engineering
• Computer Science
• Electrical Engineering
• Electronics Engineering
• Mechanical Engineering
• Operations Research

Individuals with a completed BS degree
enter the trainee program at the GS-07 level.
A grade point average of 3.05 and a GRE
score of 1000 are required to ensure accept-
ance into graduate school. Individuals with a
completed MS degree, or a BS degree with
one year’s experience, enter at a GS-09.
Successful completion of either the two- or
three-year track results in a promotion to
the GS-12 journeyman level. Career pro-
motions are based on satisfactory comple-
tion of specific training criteria as outlined
in a formal training plan. For additional
information on government employment
grade structures and salaries, see the Office
of Personnel Management web site at
www.opm.gov.

What Sets PAQ Apart?
Three-year PAQ participants have their
graduate salary, tuition, and books paid for
by the Air Force. They also earn their salary
at the same time they are a full-time student.
What a great deal! The participants’ jobs are
to go to school. They must take job-related
courses, fulfill MS degree requirements, and
be in school for one academic year. If unable
to finish a degree program in one year, they
are encouraged to finish on their own time.

By attending graduate school, the par-

ticipant incurs an obligation for continued
employment as they will be required to sign
an agreement to continue in federal service
for three times the length of the total aca-
demic training period.

Participants also have access to a full-
range of recreational and support facilities
open to Air Force employees such as social
clubs, hobby shop, fitness centers/gyms, golf
course, credit union, library, and family sup-
port center to name a few.

A Smart Way to Begin a Civilian Engineering Career
in the U.S. Air Force

Tracy Stauder
Software Technology Support Center

The U.S. Air Force has an entry-level professional development program for civilian scientists and engineers called
PALACE Acquire (PAQ). The program was established to heighten the Air Force's ability to maintain the leading
edge in today's technology-intensive environment by hiring dynamic, creative, and innovative scientists and engi-
neers. This article describes the PAQ program for science and engineer professionals, the qualification requirements
for the program, and the benefits to Air Force organizations that participate in the program.

July 2001 www.stsc.hill.af.mil 19

Software Engineering Technology

PAQ Package: A Quick Look
Qualification Requirements Summary
Participants in the Air Force’s PALACE
Acquire program require the following:
• U.S. citizenship.
• Geographic mobility.
• Overall undergraduate GPA = 3.05

or greater.
• GRE verbal and quantitative score

=1000 or greater.
• Degree from Accreditation Board for

Engineering and Technology, Inc.
(ABET) approved institutions.

Employee Benefits
PAQ participants are full-time perma-
nent civil service employees receiving
the same benefits and entitlements as
most permanent full-time federal
employees. These include the following:
• 10 paid holidays.
• 13 days vacation (0-3 years of serv-

ice); 20 days (3-15 years); 26 days
(15+years).

• Sick leave, up to 13 days annually.
• Performance based bonuses and

time-off awards.
• Health and Life Insurance options.
• Federal retirement, Social Security,

and Medicare.
• Thrift Savings Plan (civil service

401(k) plan).

20 CROSSTALK The Journal of Defense Software Engineering July 2001

Organization Benefits
The organization that trains a PAQ employ-
ee benefits as well. In particular, the employ-
ee’s time and training for the two- or three-
year internship is paid for by the Air Force’s
central salary account. In other words, there
is no cost to the local organization that is
responsible for training and developing the
participant. Another big benefit is that the
participants are highly motivated, innova-
tive, and dynamic scientists and engineers.

What Participants Say
Patrick Warren, who earned his master’s
degree from Ohio State University through
the program in March, and who is also an
engineer in the Aeronautical System Center
Engineering Directorate, says that the bene-
fits of the PAQ program were just too good
to pass up.

Anthony Spohn, who is on course to
attend Ohio State in the fall to pursue a
graduate degree in Aerospace Engineering,
has not seen anything like this program
before. He says, “Other than the govern-
ment, I’ve never seen a program like this

anywhere. Boeing, Lockheed, yeah, they’ll
reimburse you after you go to class, but they
aren’t going to pay your salary while you’re
gone. They aren’t going to pay for your edu-
cation and books while you are going to
class. I don’t have to spend any money out
of pocket, and I get a salary. You don’t get
this anywhere else that I’ve seen.”

The opportunities for education and
training were especially important to
Spohn. “It was the ultimate driver in my job
seeking.”

Conclusion
The U.S. Air Force employs more than
15,000 civilian scientists and engineers
working in laboratories, test centers, system
development offices, and depots. Many
engineers directly support pilots, crewmem-
bers, aircraft, spacecraft, and weapons sys-
tems. As a civilian engineer in the Air Force,
I have found the opportunities in my work-
place to be just as challenging and rewarding
as those I had when working for a defense
contractor. I am proud to be associated with
the PAQ program and hope that other Air

Force managers will see the value in this
program as well as engineering students
soon to make a career decision.u

Additional Information
For more information or for an application
to the PAQ program, please contact the
PAQ administrator at Headquarters Air
Force Personnel Center, Civilian Career
Management Directorate at Randolph Air
Force Base, Texas.

HQ AFPC/DPKCW
Attn: PAQ Administrator
555 E Street West, Suite 1
Randolph AFB, TX 78150-4530
Commercial: 210-565-2252
Toll Free: 1-800-847-0108, Ext. 3025
E-mail: secp@afpc.randolph.af.mil
Web Site:
www.afpc.randolph.af.mil/cp/secp/palacq.htm

Reference
1. Air Force Instruction-AFI 36-602

Personnel Civilian Intern Programs,
July 25, 1994.

Software Engineering Technology

About the Author

TTrraaccyy SSttaauuddeerr is a tech-
nical program manager
for the Air Force’s
Software Technology
Support Center (STSC)
at Hill AFB. She sup-

ports the STSC in its efforts of publishing
CrossTalk, hosting the annual Software
Technology Conference, and offering
hands-on consulting. She has a master’s
and a bachelor’s degree in electrical engi-
neering, from Southern Illinois University.
She has worked for the Software
Engineering Division at Hill AFB in Utah
for the past eight years. She has also
worked as an avionics engineer at
McDonnell Douglas in St. Louis for eight
years.

Software Technology Support Center
00-ALC/TISE
7278 4th Street
Hill AFB, UT 84056-5205
Phone: (801) 775-5746
E-mail: tracy.stauder@hill.af.mil

Software Technology Support
Center
www.stsc.hill.af.mil
The STSC is the command focus for
proactive application of software technolo-
gy in weapon, command and control,
intelligence and mission-critical systems. It
helps organizations identify, evaluate, and
adopt technologies that improve software
product quality, production efficiency, and
predictability.

Test and Measurement World
www.tmworld.com
This is the on-line version of Test &
Measurement World and Test &
Measurement Europe, which cover the
electronics testing industry, providing
how-to information for engineers who test,
measure, and inspect electronic devices,
components, and systems.

Software Engineering Institute
www.sei.cmu.edu
The SEI is a federally funded research and-
development center sponsored by the U.S.
Department of Defense to provide leader-

ship in advancing the state of the practice
of software engineering to improve soft-
ware quality. The SEI staff has extensive
technical and managerial experience from
government, industry, and academia.

Institute of Electrical and
Electronics Engineers
www.ieee.org
The IEEE promotes the engineering
process of creating, developing, integrat-
ing, sharing, and applying knowledge
about electrical and information technolo-
gies and sciences. IEEE provides technical
publications, conferences, career develop-
ment assistance, financial services and
more.

American Society for Quality
www.asq.org
The ASQ is dedicated to the ongoing,
development, advancement, and promo-
tion of quality concepts, principles, and
techniques. ASQ has more than 120,000
individual and 1,100 organizational
members.

W e b S i t e s

July 2001 www.stsc.hill.af.mil 21

Process Capability Data for the Asking
Lt. Col. Robert Lang

Defense Contract Management Agency

To gauge a contractor's process maturity (on individual programs), the Defense Contract Management Agency has
applied the Software Engineering Institute's Capability Maturity Model®. While being incrementally deployed this
effort is already paying benefits to program offices, contractors, and the Department of Defense. The goal remains con-
tinuous process improvement to ensure the war fighter, the end user, receives the highest quality systems.

Wouldn't it make sense to have a way
for government program offices to

determine the maturity of a contractor's
software development process without
incurring the cost and time to conduct a
total software capability evaluation?
Wouldn't it be efficient to have a way to
eliminate redundant reviews of contractor
software development processes by differ-
ent government offices?

Well, now there is a way to obtain this
data. Just simply ask. While not fully oper-
ational until next year, the capability to
provide such data is currently in place at
almost half of the field locations within
the Defense Contract Management
Agency (DCMA).

As the on-site government representa-
tives at contractor facilities, DCMA pro-
vides assistance to all branches of the mili-
tary. Its scope of effort is defined within
the Federal Acquisition Regulation (FAR).
A complete description of DCMA capa-
bilities was previously described in
CrossTalk [1]. They include the evalua-
tion and surveillance of contractor man-
agement systems such as the processes
used in software development [2]. For this,
the agency has adopted use of the Software
Engineering Institute's (SEI) Capability
Maturity Model® for Software (SW-
CMM).

The SW-CMM is the language we
needed to speak, and speak fluently, to
communicate with the broad range of cus-
tomers across the Department of Defense
(DoD). It is the language spoken by gov-
ernment program offices when conducting
software capability evaluations for source
selections or lesser reviews. It is the lan-
guage selected by the DoD to reduce risk
on acquisitions [3]. It is the language
employed by contractors when conducting
a CMM-based appraisal for internal
process improvement (CBA IPI).

CMM-Based Insight
Our initiative to speak this common lan-
guage, what we call CMM-based insight,
is simple in concept. Taking advantage of
DCMA's in-plant presence, we will prima-
rily organize daily observations into find-
ings based on the CMM. Observations
undergo an internal peer review for con-
formity to the CMM, then data is freely
shared with the applicable contractor and
passed to program offices. Findings will be
used to concentrate DCMA effort based
on risk. Details concerning the process,
responsibilities, and outcomes are cap-
tured in the Method Description
Document (MDD), which is available on
line at www.dcma.mil/onebook/4.0/4.3/ini
tiatives.htm.

The goals (see Table 1) directly benefit
program offices, contractors, and the
DoD. Regardless of DCMA location, pro-
gram offices will have consistent data con-
cerning a contractor's software process
maturity for programs within DCMA cog-
nizance. Since data is freely shared with
the contractor, concern or disagreement
on high-risk areas can be resolved at the
working level, or elevated as necessary to
the DCMA/Contractor/Program Office
Management Council [4]. The data can be
used in future process reviews to reduce or
eliminate redundant areas. The results
from this continuous review could also be
used as a vehicle to ensure that contractors
have maintained a process capability level

per DoD policy [5] or in support of inde-
pendent expert program reviews of soft-
ware intensive systems [6].

Evaluation Relationships
CMM-based insight is not a software
capability evaluation or a CBA IPI (see
Table 2). While data could be used to sub-
stantiate another evaluation, DCMA will
never rate a particular company through
CMM-based insight. The initiative is
focused on identifying areas of concern on
individual programs (i.e., higher risk
process areas) and allocating the appropri-
ate level of resources commensurate with
that risk.

Incremental Phases
As previously discussed, the initiative is
simple in concept. But like the process of
teaching an adult to speak (and think) in a
new language, making this transition has

Table 1: CMM-Based Insight Goals

- -

G

Table 2: Comparison of Evaluation

® The Capability Maturity Model and CMM are
registered in the U.S. Patent and Trademark Office.

22 CROSSTALK The Journal of Defense Software Engineering July 2001

Software Engineering Technology

involved a culture change in DCMA soft-
ware surveillance activities. As such, incre-
mental phases (see Table 3) were designed
to assist the transition.

Phase I validated the approach at the
home locations of our agency Software
Engineering Institute (SEI) affiliates.
Phase II verified that approach for suit-
ability and effectiveness in a typical field
environment. Phase III will verify the cap-
ture and transmission of data before the
initiative is implemented agency wide.

Data Organization Callenges
The primary purpose of Phase II was to
verify the approach. Due to the shear
number of inputs – necessary for the cor-
relation of observations to the applicable
key practices, internal peer reviews, identi-
fication, and subsequent action on high
risk areas – the need for an adequate sup-
port tool was recognized early. (This situa-
tion will be resolved in Phase III when
data collection is incorporated into the
common tool supporting the entire
DCMA Risk Assessment Management
Program.) Despite this burdensome data
collection, currently 45 percent of our
field locations have volunteered as pilot
locations and converted operations. Why?
It is because of the benefits realized. These
are perhaps best illustrated with actual
examples.
Example 1 - Improvement Not Rating:
A program office concerned with a history
of poor software quality wanted the con-
tractor to operate at CMM Level 3. The
contracting company's upper manage-

ment believed the company was well with-
in these parameters and retained an out-
side consultant to verify this position.
Initial results indicated the contractor was
operating at CMM Level 3. The DCMA
field office disagreed, however, based upon
observations and findings per the CMM.

Working with the program office, the
findings were questioned and the issue ele-
vated to upper management. The program
office held that if the review revealed a sig-
nificantly different result than that
observed in day-to-day operations, the
government would sponsor an independ-
ent software capability evaluation. If the
government evaluation revealed the con-
tractor was more interested in paper rat-
ings than software quality improvement,
the government would consider develop-
ing a second source for the procurement.

What was the end result? The final
evaluation revealed operations at CMM
Level 1. The contractor was well on the
way to Level 2, but far from the desired
Level 3 target profile. Was this a typical
contractor/government confrontation?
Quite the opposite, it fostered a spirit of
process improvement. For the first time,
there was an accurate and understood
baseline. The contractor developed a
roadmap for process maturity and during
the course of two years, achieved the
desired Level 3 profile. DCMA, the gov-
ernment on-site representative, participat-
ed in the mini reviews and was a team
member on the final contractor-conduct-
ed CBA IPI.
Example 2 - Risk Based Operations: If a
correlation between capability (maturity

level) and actual performance (cost, sched-
ule, and technical) [7] is accepted, it
would seem reasonable to assume that
there is less government surveillance of
higher maturity operations than those
with lower maturity. In the absence of
data, however, people often focus on those
areas where they are comfortable.
Consequently, a low-risk area might get as
much attention as a high-risk area.

This is not so with the CMM-based
insight methodology because it is based on
data and focuses expended effort in pro-
portion to risk. This is the case at one of
our pilot locations where the contractor
has achieved CMM Level 5. The CMM-
based insight data will be used to ensure
that DCMA effort and resources are allo-
cated to the areas of highest risk.
Example 3 - The Rest of the Story: Is a
CMM rating truly representative of all
programs at a given facility? As the name
states, the model measures a capability. It
would seem logical to assume that if a
capability has been demonstrated on one
program, that it has been applied to all.
With mandated levels, though, there are
other pressures that come into play. At one
pilot location the contractor had conduct-
ed a CBA IPI that resulted in a finding of
CMM Level 3. The contractor had select-
ed programs across the business base and
then hung a banner over the building
entrance saying "CMM Level 3 Certified."
What was wrong with that?

First, the rating Level 3 certified is
confusing and misleading. Certified by
whom? Secondly, the review did not
include the largest program, one which
had been experiencing problems at the
international level. While the CBA IPI
shows a company's capability to operate at
a given level, it is not necessarily true for
all programs. It should be, and seems to be
in most cases, especially when the focus is
on process improvement. However in this
particular case, it was not. With the
DCMA data, the banner was removed and
the applicable program office understood
that operations on their program were not
at CMM Level 3, and why.
Example 4 - Eliminate/Reduce
Duplicative Reviews: Concerned about
software quality, a joint program office
planned a review of the contractor's soft-
ware development processes. The DCMA
pilot location, a front-runner for this ini-
tiative, already had the data in the com-

A

Table 3: CMM Based Insight Implementation

July 2001 www.stsc.hill.af.mil 23

Process Capability Data For The Asking

mon language of the CMM. It clearly
identified strengths and weaknesses. The
review was cancelled and the DCMA data
was used in follow-on actions with the
contractor. This is only one example, but
the dollar savings across the department
quickly add up. The cost to conduct a
software capability evaluation has been
estimated at $50,000 for both the govern-
ment and contractor [8].

Experience and Training
A complete process is defined as having 1)
procedures and methods for defining the
relationship of tasks, 2) tools and equip-
ment, and 3) people with skills, training,
and motivation [9]. The first two elements
have already been addressed. Concerning
people, the agency has more than 400 per-
sonnel supporting software quality assur-
ance. To assure this workforce is properly
prepared to deliver consistently first-rate
assessments, we have instituted a multi-
phase development program:
• Basic Training: The agency's formal

training is called the DCMA Software
Professional Development Program.
Individuals proceed through two train-
ing levels. Level one requires complet-
ing 72 hours of computer-based train-
ing, 40 hours of classroom instruction,
and a formal mentoring program
focused on practical application of
course material. Level 2 requires an
additional 97 hours of computer-based
training, 120 hours of classroom
instruction, and further mentoring. The
SEI's CMM is integrated into the com-
puter-based training, classroom instruc-
tion, and mentoring. Currently 78 per-
cent of agency software personnel have
obtained Level 2 status. To maintain
this level, individuals must complete a
minimum of 12 hours of software-relat-
ed training each year.

• Application Training: As each field loca-
tion begins operating under the CMM-
based insight initiative, all personnel
undergo an additional 20 hours of spe-
cific application training conducted on
site by the DCMA Software Center.
Applicable contractors and government
program offices have been welcomed
into this training. It is specifically
focused on the initiative's implementa-
tion and daily operation. The material
was developed by the DCMA Software

Center and is currently being reviewed
by the SEI.

• On Call Assistance: DCMA personnel
have direct access to the six-person
DCMA Software Center. In addition,
one-eighth of the total field workforce has
completed the SEI's Software Capability
Evaluation training. Additional assistance
is available to any of our evaluators from
highly qualified agency personnel who
are SEI-certified lead assessors.

• Implementation Measurement: Training
provides a foundation for conducting
business per the CMM, but it does not
directly correlate to experience, which
can only come with time. Progress in
implementing this initiative has been
promising. For instance, more and more
of our personnel have been requested as
team members by companies when con-
ducting CBA IPIs. However, to gauge
implementation progress for this initia-
tive across the entire agency and to
make necessary adjustments, the agency
is employing a top-level metric based on
key process area coverage. Progress will
be reviewed by the agency director, his
senior leadership team, and DCMA
field commanders.

CMM-Based Insight and CMMI
The baseline for our efforts is the SW-
CMM. We fully expect, and are making
preparations, to switch over to the
Capability Maturity Model IntegratedSM

(CMMISM) at a later date. The agency is

part of the SEI-led CMMI Steering Group
responsible for developing the SW-
CMM/CMMI turnover within the DoD
[10]. For CMM-based insight, the transi-
tion should incur little breakage moving
to the integrated model. The biggest chal-
lenge in using either model is the disci-
pline and knowledge of application – both
of which we are gaining with our current
effort and are fully transferable. Field sites
coming aboard in each phase are shown in
Table 4.

DCMA Creditability
A past issue of CrossTalk raised the
point, "A Level 3 development effort cou-
pled with a Level 1 acquiring effort often
equates to a Level 1 delivery capability; yet
the Level 3 developer is often blamed, and
the Software (SW) CMM is cited as inad-
equate[11]." I saw this firsthand, with dis-
asterous results, as a junior officer. So how
does DCMA measure up?

To answer that question, we took the
sister capability maturity model, the
Software Acquisition CMM, and tailored
it for DCMA use. We pilot tested and
made adjustments as applicable. We then
went agency wide, conducting reviews
from November 1999 until April 2000.
Eight equally qualified teams were used to
maintain consistency. What were the
results? There were a few organizations
operating at the defined level but predom-
inately the field offices within the agency
operate at the performed level (Level 1).

Table 4: Pilot Locations

24 CROSSTALK The Journal of Defense Software Engineering July 2001

More importantly, we established a
solid baseline and each location has a
detailed roadmap for improvement per the
model structure. Field locations have been
working improvements and the first round
of follow-on appraisals began in the spring
of 2001. The original evaluation team
members constitute the personnel pool to
support independent evaluation of
improvements similar to the industry
approach with a CBA IPI.

Conclusion
DCMA was always required and continues
to conduct evaluations of contractor's soft-
ware development processes per the FAR.
The agency is now deploying a standard
methodology via continuous process eval-
uations that is organized in the CMM, the
common DoD language, and is based on
the day-to-day observations of the in-plant
DCMA personnel. Findings are peer-
reviewed, and all data is freely shared with
the applicable contractor and is available
to government program offices.

While full agency implementation will
not occur until spring 2002, the approach
has been developed with SEI affiliates and
is currently in pilot testing at 45 percent of
DCMA field locations. Program offices,
the contractors, and the DoD are already
realizing benefits. So, how much does the
agency believe in using this approach to
gauge contractor operations? Enough so
that we are walking the walk and measur-
ing our operations to the same frame-
work.u

References
1. Holt, Kevin E., Software Acquisition

Support in the Defense Contract
Management Command, Cross-
Talk, March 1997.

2. Federal Acquisition Regulation, Part
42, Section 302(a)(41).

3. USD(AT&L)Memorandum, Software
Evaluations for ACAT I Programs,
Oct. 26, 1999.

4. Malishenko, Timothy, Management
Councils Emerge as Valuable Asset in
the Program Manager's Tool Kit,
Program Manager Magazine, March/
April 1999.

5. USD(AT&L)Memorandum, Software
Evaluations for ACAT I Programs,
Oct. 26, 1999.

6. USD (AT&L) Memorandum, In-
dependent Expert Program Reviews of
Software Intensive System Acquisition,
Dec. 21, 2000.

7. Lawlis, Dr. Patricia K.; Flowe, Capt.
Robert M.; Thordahl, Capt. James B.;
A Correlation Study of the CMM and
Software Development Performance,
CrossTalk, September 1995.

8. SCE Reuse: Ending Redundant
Reviews, Acquisition Reform Today, Vol
3, No.1, January/February 1998.

9. Software Engineering Institute, The
Capability Maturity Model: Guidelines
for Improving the Software Process,
Addison-Wesley Publishing Company,
1994, pg. 9.

10. Deputy Under Secretary of Defense
(S&T) letter dated Dec. 11, 2000, Use
of CMMI Evaluations by the
Department of Defense.

11. Jarzombek, Lt. Col. Joe, Integrating
Acquisition with Software and
Systems Engineering, CrossTalk,
August 1999.

Software Engineering Technology

About the Author

LLtt.. CCooll.. RRoobbeerrtt LLaanngg
currently serves as the
director of the Defense
Contract Management
Agency Software Cen-
ter. He has 20 years of

active duty service in the U.S. Air
Force in various acquisition specialties.
His previous assignment was program
manager for the Iceland Air Defense
System. He has a bachelor's degree in
engineering technology from Norwich
University, a master's degree in engi-
neering management from Western
New England College, and is a gradu-
ate of the Defense Systems
Management College, Advanced Pro-
gram Management Course.

DCMAC-G
495 Summer Street
Boston, MA 02210-2184
Phone: (617) 753-3739
E-mail: rlang@dcmde.dcma.mil

Coming Events
July 7-13

2nd Int'l Symposium on
Image and Signal

Processing and Analysis ISPA'01
ispa.zesoi.fer.hr

July 22-26
JAWS S3 Symposium

www.jawsswg.hill.af.mil

August 1-5
0HCI International 2001:
International Conference

on Human-Computer Interaction.
1st International Conference on

Universal Access in Human-Computer
Interaction

hcii2001.engr.wisc.edu

Aug 27-30
Software Test Automation Conference

www.sqe.com/testautomation

August 27-31
Fifth IEEE International Symposium on

Requirements Engineering
www.re01.org

September 10-14
Joint 8th European Software

Engineering Conference and 9th ACM
SIGSOFT International Symposium on
the Foundations of Software Engineering

www.esec.ocg.at

February 4-6, 2002
International Conference on COTS-
Based Software Systems (ICCBSS)

At the Heart of the Revolution
http://www.iccbss.org

April 28 - May 3, 2002
STC 2002

“Forging the Future of Defense
Through Technology”
www.stc-online.org

Software projects often fail because too
many software folks think that soft-

ware engineering process is just bureaucra-
cy. Often software people lack software
engineering education, or when they had
it, they fought it. To compound the prob-
lem, they do not accept software best prac-
tices. Our challenge is to overcome the
natural biases of software professionals.

We tried lecturing on case histories of
failed software projects, but these lectures
and associated readings only convince
many students of others’ stupidity. They
do not internalize the lessons. Others
intellectually accept the existence of the
problems, but just reading about them
does not convert many at the gut level
where one sits up, takes notice, and does
things differently.

At the gut level, successful software
project managers instinctively anticipate
problems and take steps to avoid them.
The challenge is to educate software peo-
ple so that they do not have to hone their
instincts through the “school of hard
knocks.”

Our approach is to force students to
live through specific case histories, each
one chosen to get across a small number of
important issues. This method works.
Students internalize the software engineer-
ing lessons and follow best practices in
their next projects to avoid the traps they
experienced.

Here is how the approach works. First,
select a set of software process issues.
These are the ones we chose for our first
live-through case history:
• The need to have close customer/user

relations.
• The need for up-to-date documenta-

tion throughout the life of the project.
• The need to identify risks and to devel-

op contingency plans.
• The need to account for human foibles.

Second, choose a case history based on

a project facing these challenges. Do not
give students the entire case history up
front; rather, give them the same problem
as the actual developers who executed the
case history faced. Give the students no
more information about the problem than
the original developers had at the start.
You may simplify information to ease
understanding.

Background
Computer science is the study of the tech-
nology (state-of-the-art) involved in the
development of computer software. As it is
usually taught, computer science deals
with programming in the small, i.e., one-
person or few-person software projects.
Software engineering, on the other hand,
is the study of the method or process
(state-of-the-practice) whereby production
software is developed – programming in the
large. State-of-the-practice includes both
engineering practices and project manage-
ment or group dynamic processes.

Typical computer science programs
offer a software engineering or senior proj-
ect course as a capstone. Due to the very
different natures of technology vs.
method/process, and because computer
science students are typically technology-
oriented and process-averse, the typical
software engineering course reaches far
fewer future software developers than suits
the best interests of either the students or
the software industry. Thus we developed
a novel instructional method, the Live-
Thru Case History method for addressing
this problem. We have developed a first
live-through case history and have used it
successfully in the first few weeks of a two-
semester undergraduate software-engi-
neering course.

The result was that students were
shocked into an awareness of the issues
and how to deal with them in only six
weeks of twice-weekly class meetings. One

class meeting each week was devoted to
individual unstructured project meetings,
and the other to lectures on software engi-
neering topics, including other case histo-
ries.

Conducting the Case History
There would be just one live-through case
history in our senior project course, so we
had to choose one that would achieve the
greatest effect in the limited time available.
We chose the case history of a brief devel-
opment project that one of the authors
worked on in 1985 as a public service
project. The project was automating an
elementary school library’s manual system
for generating overdue-book notices.

The class of 40 students was divided
randomly into four equal-size develop-
ment teams. Students were given the same
details possessed by the original software
developers in the case history. The instruc-
tor role-played the customer, the school
librarian, and was available to respond to
students’ questions, both in class and by e-
mail. Students were told that the customer
would evaluate their work exactly as it
would be evaluated in the real world.

Results
As is frequently the case in real software
development projects, the overdue book
notice project had a hidden requirement.
That requirement was so obvious to the
customer that she failed to mention it;
overdue notices must be sorted first by
teacher name, then for each teacher by
class, and finally, within each class by stu-
dent’s family name. The system analyst
rejected the real software system when she
first saw it. The original developers failed
to elicit the hidden make-or-break require-
ment, and thus failed to satisfy it. Each of
the student teams fell into this same trap
thus learning the lesson of the need to find
any hidden requirements.

July 2001 www.stsc.hill.af.mil 25

Getting Software Engineering into Our Guts
Lawrence Bernstein and David Klappholz

Stevens Institute of Technology

Many if not most, computer science students are enamored of technology (state of the art), but averse to the disci-
pline of software process (state of the practice). Staying up late hacking code and eating pizza is great fun for them,
while following the discipline of software engineering best practice is decidedly not. We have developed a methodol-
ogy, Live-Thru Case Histories, for overcoming this aversion, and have found it to be very productive in a pilot study.
We are developing the methodology further for use both at universities and in industry.

Students also learned of the need for
high-quality documentation and contin-
gency planning due to the real-world phe-
nomenon of attrition through illness,
death, relocation, etc. At the project mid-
point, students were rotated. A student
from each team judged by the instructor
to be the team’s strongest developer and
another chosen randomly were removed
from the team and reassigned to a different
team.

To evaluate each team’s success in
adapting to the simulated attrition, stu-
dents were asked to describe what they
would have done differently after the case
study project was complete. About 75
percent of the students mentioned the
importance of up-to-date documentation.
Nearly 20 percent had developed insight
into appropriate staff utilization, includ-
ing the use of “understudies” and prepar-
ing for incorporating new team members.
They demonstrated the learned value of
these processes.

An evaluation of how well the students
internalized the need for solid require-
ments engineering was performed at the
end of the live-through case history.
Students completed a written exam based
on another case history that included a
more difficult requirements engineering
problem than that of the overdue book
notice project. About 75 percent of the
students demonstrated they had mastered
the notion of hidden requirements, and
about 33 percent showed they had
achieved reasonable competence in

requirements engineering; about 10 per-
cent showed extremely keen insight into
the problem.

The innovative process of live-through
case histories is more effective than the tra-
ditionally taught software engineering
course. In it, students were given lectures,
homework, and exams based on a well-
respected software engineering text. Then
they were asked to develop a project.
However when they approached the proj-
ect, they could not readily apply the
learned techniques. Once they understood
the need for the processes, they relearned
them as they tried to apply them.u

Directions
The authors request that those teaching
software engineering use the Live-Thru
Case Histories in their courses and report
on the results. These materials are available
at www.njcse.org/Projects/Live_Thru_Case_
Histories/Materials_For_Live_Thru_Case_Hist
ories.htm, along with a complete paper
describing the live through approach in
detail.

Please participate in gathering data to
support or refute the claims in this paper.
It is our intent to use the experience of
instructors in several venues to make anec-
dotal conclusions more meaningful and
perhaps statistically significant. We invite
those who agree with us to join a consor-
tium for the purpose of creating addition-
al case histories and helping to refine the
process.

26 CROSSTALK The Journal of Defense Software Engineering July 2001

Software Engineering Technology

About the Authors

DDaavviidd KKllaapppphhoollzz has
27 years of experience
teaching computer sci-
ence and performing
and supervising tech-
nology research spon-

sored by such organizations as
National Science Foundation,
Department of Energy, IBM
Research, and The New Jersey
Commission on Science and
Technology. He has been on the com-
puter science faculties of Columbia
University and Polytechnic University,
and is currently on the computer sci-
ence faculty at Stevens Institute of
Technology, in Hoboken, N.J., and
associate director of the New Jersey
Center for Software Engineering.

Department of Computer Science
Stevens Institute of Technology
Castle Point Station
Hoboken, NJ 07030
Phone: (908) 464-0805
E-mail: d.klappholz@worldnet.att.net

LLaawwrreennccee BBeerrnnsstteeiinn is a
former vice president of
AT&T where he man-
aged small-, medium-,
and large-scale software
projects, both commer-

cial and military, for 35 years. He is a
Fellow of both the Institute of
Electrical and Electronics Engineers
and the Association for Computing
Machinery. He is currently senior
industry professor of Software
Engineering at Stevens Institute of
Technology, in Hoboken, N.J., and
director of the New Jersey Center for
Software Engineering.

Department of Computer Science
Stevens Institute of Technology
Castle Point Station
Hoboken, NJ 07030
Phone: (973)258-9213
E-mail: lbernstein@worldnet.att.net

Things being investigated (piloted), knowledge became complete.

Their knowledge being complete, their process was updated.

Their process being updated, their practices were cultivated.

Their practices being cultivated, their projects were regulated.

Their projects being regulated, their organizations were rightly governed.

Their organizations being rightly governed, the whole corporation was

made tranquil and prosperous.

Adapted slightly by and with apologies from Tim Powell

The Great Learning Process (Confucius)

“Before software can be reusable
it first has to be usable.”

– Ralph Johnson

July 2001 www.stsc.hill.af.mil 27

Unlike other engineering disciplines,
software development produces

products of undetermined quality. Testing
is then used to find defects to be correct-
ed. Instead of testing to produce a quality
product, software engineers should design
in quality [1]. The purpose of testing
should not be to identify defects inserted
in earlier phases, but to demonstrate, vali-
date, and certify the absence of defects.

Beginning with the Industrial
Revolution, many technical fields evolved
into engineering fields, but sometimes not
until after considerable damage and loss of
life. In each case, the less scientific, less
systematic, and less mathematically rigor-
ous approaches resulted in designs of inef-
ficient safety, reliability, efficiency, or cost.
Furthermore, while other engineering
practices characteristically attempt to con-
sciously prevent mistakes, software engi-
neering seems only to correct defects after
testing has uncovered them [2].

Many software professionals have
espoused the opinion that there are
“always defects in software [3].” Yet in the
context of electrical, mechanical, or civil
engineering the world has come to expect
defect-free circuit boards, appliances, vehi-
cles, machines, buildings, bridges, etc.

Follow the Basics
All models of the software development
life cycle center upon four phases: require-
ments analysis, design, implementation,
and testing. The waterfall model requires
each phase to act on the entire project.
Other models use the same phases, but for
intermediate releases or individual soft-
ware components.

Software components should not be
designed until their requirements have
been identified and analyzed. Software
components should not be implemented
until they have been designed. Even if a
software component contains experimen-
tal features for a prototype, or contains

only some of the final system’s features as
an increment, that prototype or incremen-
tal software component should be
designed before it is implemented.

Software components cannot be tested
until after they have been implemented.
Defects in software cannot be removed
until they have been identified. Defects are
often injected during requirements analy-
sis or design, but testing cannot detect
them until after implementation. Testing
is therefore inefficient for the detection of
requirements and design defects, and thus
inefficient for their removal.

Testing in the Life Cycle
Burnstein, et al. have developed a Testing
Maturity Model (TMM) [4] similar to the
Capability Maturity Model® [5]. The
TMM states that to view testing as the
fourth phase of software development is at
best Level 2. However, it is physically
impossible to test a software component
until it has been implemented.

The solution to this difference of
viewpoint can be found in TMM Level 3,
which states that one should analyze test
requirements at the same time as analyzing
software requirements, design tests at the
same time as designing software, and write
tests at the same time as implementing
code. Thus, test development parallels
software development. Nevertheless, the
tests themselves can only identify defects
after the fact.

Furthermore, testing can only prove
the existence of defects, not their absence.
If testing finds few or no defects, it is
either because there are no defects, or
because the testing is not adequate. If test-
ing finds too many defects, it may be the
product’s fault, or the testing procedures
themselves.

Branch coverage testing cannot exer-
cise all paths under all states with all pos-
sible data. Regression testing can only
exercise portions of the software, essential-

ly sampling usage in the search for defects.
The clean-room methodology uses

statistical quality certification and testing
based on anticipated usage. Usage proba-
bility distributions are developed to deter-
mine the systems most likely used most
often [6]. However, clean-room testing is
predicated upon mathematical proof of
each software product; testing is supposed
to confirm quality, not locate defects. This
scenario-based method of simulation and
statistically driven testing has been report-
ed as 30 times better than classical cover-
age testing [7].

Page-Jones dismisses mathematical
proofs of correctness because they must be
based on assumptions [8], yet both testing
and correctness verification are done
against the software’s requirements. Both
are therefore based on the same assump-
tions; incorrect assumptions result in
incorrect conclusions. This indictment of
proofs of correctness must also condemn
testing for the same reason.

The Problem with Testing
Norman Hines

JE Sverdrup Naval Systems Group
Testing is inefficient for the detection and removal of requirements and design defects. As a result, lessons learned in
testing can only help prevent defects in the development of subsequent software and subsequent process improvement.
Instead of testing out defects to achieve quality measures, quality should be designed into software. Thus test devel-
opment should parallel the development of the software it tests.

Open Forum

Table 1: TMM Levels

28 CROSSTALK The Journal of Defense Software Engineering July 2001

Open Forum

The clean-room methodology’s rigor-
ous correctness verification approaches
zero defects prior to any execution [9],
and therefore prior to any testing.
Correctness verification by mathematical
proof seems better than testing to answer
the question, “Does the software product
meet requirements?”

Properly done test requirements analy-
sis, design, and implementation that par-
allels the same phases of software develop-
ment may help in early defect detection.
However, done improperly (as when
developers test their own software), this
practice may result in tests that only test
the parts that work, and in software that
passes its tests but nevertheless contains
defects. Increasingly frustrated users insist
that there are serious defects in the soft-
ware, while increasingly adversarial devel-
opers insist that the tests reveal no defects.

Test requirements analysis done sepa-
rately from software requirements analysis
can make successful testing impossible. A
multi-million dollar project was only
given high-level requirements, from which
the software developers derived their own
set of (often-undocumented) lower-level
requirements, to which they designed and
implemented the software. After the soft-
ware had been implemented, a test man-
ager derived his own set of lower-level
requirements, one of which had not even
been considered by the developers. The
design and test requirements were mutual-
ly exclusive in this area, so it was impossi-
ble for the software to pass testing. This
failure scrapped the entire project and
destroyed several careers [10].

Defect Removal and
Prevention
Test-result-driven defect removal is detec-
tive work; the maintenance programmer
must identify and track down the cause
within the software. Defect removal is also
similar to archeology, since all previous
versions of the software, and documenta-
tion of all previous phases of the develop-
ment may have to be researched, if avail-
able. Using testing to validate that soft-
ware is not defective [9], rather than to
identify and remove defects, moves their
removal from detection to comparative
analysis [7].

TMM Level 3 integrates testing into

the software lifecycle. This includes testing
each procedure or module as soon as pos-
sible after each is written. Integration test-
ing is also done as soon as possible after
the components are integrated. Neverthe-
less, the concept of defect prevention is
not addressed until TMM Level 4, and
then only as a philosophy for the entire
testing process.

Testing cannot prevent the occurrence
of defects; it can only aid in the prevention
of their recurrence in future components.
This is why neither CMM nor TMM dis-
cusses actual defect prevention, or more
accurately, subsequent defect prevention
until Level 5. Waiting until one has
reached Level 5 before trying to prevent
defects can be very costly, both in terms of
correcting defects not prevented and in
lost business and goodwill from providing
defective software.

Waiting until implementation to test a
component for defects caused in much
earlier phases seems too much of a delay;
yet, an emphasis in testing for defect pre-
vention is exactly that. An ounce of pre-
vention may be worth a pound of cure,
but one cannot use a cure as if it were a
preventative.

There are several methods currently
available to accomplish defect prevention
at earlier levels of maturity such as
Cleanroom Software Engineering [9],
Zero Defect Software [11], and other
provably correct software methods [2, 12].

Software Quality and Process
Improvement
Gene Krinz, Mission Operations’ director
for the NASA space shuttle, is quoted as
saying about the quality of the flight soft-
ware, “You can’t test quality into the soft-
ware [11].” Clean-room methods teach
that one can neither test in nor debug in
quality [9].

If quality was not present in the
requirements analysis, design, or imple-
mentation, testing cannot put it there.
One of TMM’s Level 3 maturity goals is
software quality evaluation. While many
quality attributes may be measured by
testing, and many quality goals may be
linked to testing’s ultimate objectives,
most aspects of software quality come
from the quality of its design.

Procedure coupling and cohesion

[13], measures of object-oriented design
quality such as encapsulation, con-
nascence, encumbrance, class cohesion,
type conformance, closed behavior [8],
and other quantitative measures of soft-
ware quality, are established in the design
phase. They should be measured soon
after each component is designed; do not
wait until after implementation to meas-
ure them with testing.

Some authors have suggested that ana-
lyzing, designing, and implementing tests
in parallel with the products to be tested
will somehow improve the processes used
to develop those products. [3] However,
since the software product testers should
be different from those who developed it,
there needs to be some way for the testers
to communicate their process improve-
ment lessons learned to the developers.
Testers and developers should communi-
cate effectively; every developer should
also act as a tester (but only for compo-
nents developed by others).

Designing in Quality
One of the maturity subgoals of subse-
quent defect prevention is establishing a
causal analysis mechanism to identify the
root causes of defects. Already there is evi-
dence that most defects are created in the
requirements analysis and design phases
[11]. Some have put the percentage of
defects caused in these two phases at 70
percent [3].

Clear communication and careful
documentation are required to prevent
injecting defects during the requirements
analysis phase. Requirements are charac-
teristically inconsistent, incomplete,
ambiguous, nonspecific, duplicate, and
inconstant. Interface descriptions, proto-
types, use cases, models, contracts, pre-
and post-conditions, etc. are all useful
tools.

To prevent injecting defects during
the design phase, software components
must never be designed until a large part
of their requirements have been identified
and analyzed. The design should be thor-
ough, using such things as entities and
relationships, data and control flow, state
transitions, algorithms, etc. Peer reviews,
correctness proofs and verifications, etc.
are good ways to demonstrate that a
design satisfies its requirements.

July 2001 www.stsc.hill.af.mil 29

Preventing the injection of defects dur-
ing the implementation phase requires that
software components never be implement-
ed until they have been designed. It is far
too easy to implement a software compo-
nent while the design is still evolving, some-
times just in the developer’s mind. Poor
documentation and a lack of structure in
the code usually accompany an increased
number of defects per 100 lines of code [3].
As I mentioned earlier, this applies even to
prototype and incremental software com-
ponents; those experimental or partial fea-
tures should be designed before implemen-
tation.

The clean-room method has an excel-
lent track record of near defect-free software
development, as documented by the
Software Technology Support Center, Hill
AFB, Utah, regardless of Daich’s statements
to the contrary [3]. Clean-room is compat-
ible with CMM Levels 2 through 5 [9], and
can be implemented in phases at all these
levels [6].

Conclusion
It is my dream that software engineering will
become as much of an engineering disci-
pline as the others; users will have just as
much confidence that their software is as
defect free as their cars, highway bridges,
and aircraft.

Testing should be used to demonstrate
the absence of defects, not to identify defects
inserted in earlier phases. It should be used
to certify that the software components
implement their designs, and that these
designs satisfy their requirements.
Analyzing testing requirements should be
done in parallel with analyzing the software
components’ requirements. Tests should be
designed in parallel with designing the com-
ponents. Test implementation should occur
in parallel with implementing the compo-
nents, and developing integration tests
should be done in parallel with integration.

The source of software defects is a lack
of discipline in proper requirements analy-
sis, design, and implementation processes.
Testing must physically occur after imple-
mentation, so reliance on it to detect
defects delays their correction. Until soft-
ware defects are attacked at their source,
software will continue to be developed as if
it were an art form rather than a craft, engi-
neering discipline, or a science.u

References
1. Humphrey, W. S., Making Software

Manageable, CrossTalk, December
1996, pp. 3-6.

2. Baber, R. L., The Spine of Software:
Designing Provably Correct Software:
Theory and Practice, John Wiley &
Sons Ltd., Chichester, United
Kingdom, 1987.

3. Daich, G. T., Emphasizing Software
Test Process Improvement,
Crosstalk, June 1996, pp. 20-26,
and Daich, Gregory T., Letters to the
Editor, CrossTalk, September
1996, pp. 2-3, 30.

4. Burnstein, I.; Suwannasart, T.; and
Carlson, C.R., Developing a Testing
Maturity Model: Part I, CrossTalk,
August 1996, pp. 21-24; Part II,
CrossTalk, September 1996, pp.
19-26.

5. Paulk, M. C.; Curtis, B.; Chrissis, M.
B.; and Weber, C. V., Capability
Maturity ModelSM for Software, Version
1.1, Software Engineering Institute,
Carnegie Mellon University,
Pittsburgh, Pennsylvania, February
1993.

6. Hausler, P. A.; Linger, R. C.; and
Trammel, Adopting Cleanroom
Software Engineering with a Phased
Approach, IBM Systems Journal, vol-
ume 33, number 1, 1994, p. 95.

7. Bernstein, L.; Burke Jr., E. H.; and
Bauer, W. F., Simulation- and
Modeling-Driven Software Devel-
opment, CrossTalk, July 1996, pp.
25-27.

8. Page-Jones, M., What Every
Programmer Should Know About
Object-Oriented Design, Dorset House
Publishing, New York, New York,
1995.

9. Linger, R.C., Cleanroom Software
Engineering: Management Overview,
Cleanroom Pamphlet, Software
Technology Support Center, Hill Air
Force Base, Utah, April 1995.

10. Unpublished CMM Tutorial, inform-
ation withheld to protect the people
involved.

11. Schulmeyer, G. G., Zero Defect
Software, McGraw-Hill, Inc., New
York, New York, 1990.

12. Martin, J., System Design from Provably
Correct Constructs, Prentice-Hall, Inc.,

Englewood Cliffs, New Jersey, 1985.
13. Page-Jones, M., The Practical Guide to

Structured Systems Design, second edi-
tion, Prentice-Hall, Englewood Cliffs,
New Jersey, 1988.

The Problem With Testing

About the Author
NNoorrmmaann HHiinneess is a soft-
ware developer for JE
Sverdrup, working at the
Naval Air Warfare
Center, China Lake,
Calif. He is currently

working on projects that integrate
weapon simulation systems with actual
range data in real time and post mission.
He has more than 20 years experience in
software development, as well as a bach-
elor's degree in mathematics and busi-
ness administration from University of
Wisconsin–Platteville, a master’s degree
in business administration from
University of Michigan, and a master’s
degree in computer science from
California State University, Chico.

JE Sverdrup Naval Systems Group
900 N. Heritage Dr.
Ridgecrest, CA 93555
Phone: (760) 939-9460
E-mail: nwsverdrup@navair.navy.mil

“Let us change our
traditional attitude to
the construction of

programs. Instead of
imagining that our

main task is to instruct
a computer what to do,

let us concentrate
rather on explaining to
human beings what we

want a computer

to do.”
– Donald Knuth

30 CROSSTALK The Journal of Defense Software Engineering July 2001

Paper Airplane Contest Wows STC 2001 Conference Attendees

SSAALLTT LLAAKKEE CCIITTYY – The audience sur-
rounding the foyer at the Salt Lake
Convention Center erupted into a giant
“ahhhhh,” when the paper airplane sailing
effortlessly from the platform launch land-
ed 73 and one-half feet down the
makeshift runway below them. Although
he didn’t know it yet, Steve Smith had just
won first place at the first ever
CrossTalk Paper Airplane Contest held
May 1 as part of the 13th Annual Software
Technology Conference (STC).

For his winning flight, Smith, engi-
neer project manager at the Joint Force
Program Office, took home a Handspring
Visor Prism handheld computer. In sec-
ond place, with 70 and three-fourths feet,
was John Stark, chief engineer, Predictive

Technologies Division, Science
Applications International Corp., who
received a $100 gift certificate to Barnes &
Noble. Third place went to Maj. Stewart
Laing, deputy chief of Testing Division,
Global Transportation Network Program
Management Office, with a flight of 65
and two-thirds feet. Laing won a $50 gift
certificate to the Olive Garden.

In its first year, the paper airplane con-
test drew 105 entrants who constructed
their airplanes from a choice of two paper
weights pre-printed and supplied by the
Software Technology Support Center
(STSC) at Hill Air Force Base and the
contest sponsor SHIM Enterprise, Inc.
The STSC held the airplane contest as a
gathering event to solicit authors for its

monthly journal CrossTalk, The
Journal of Defense Software Engineering.
Contest participants were cheered on by
about 350 spectators eating pizza, kabobs,
and desserts while listening to running
contest commentary by co-announcers
Dave Cook and Les Dupaix, engineering
consultants at the STSC.

Nearly 3,000 people attended the
STC conference, “2001 Software
Odyssey: Controlling Cost, Schedule and
Quality,” offering 199 software-related
presentations along with 167 trade show
exhibits. The conference is co-sponsored
by the Departments of the Air Force,
Army, Navy, Defense Information
Systems Agency and Utah State University
Extension.u

Imade an interesting observation at the
Software Technology Conference last

month. Members of the digerati congregate
to determine who among them is the Alpha
Geek – the person with the most techno-
logical prowess.

Bring together software engineers for a
technical discussion at a conference and
watch the circumlocution fly. After respect-
ful introductions, potential Alpha Geeks
expatiate opinions like Cliff Clavin articu-
lating the mating habits of the Yellow-
Bellied-Sap-Sucker to the gang at Cheers.

You have to be shrewd, primed, and
agile to run with the big geeks. Hesitate
with a banal response, mention an archaic
technology, or offer a feeble theorem and
your status will drop faster than a California
power line.

One gaffe and you are demoted to a
nebbish Beta Geek. To stay in the clique,
Beta Geeks offer blandishments for Alpha
Geek ideas like Gilligan in a conversation
with the other Castaways on how to get off
the island, e.g., “that’s a good idea Professor
… Skipper has a good idea … I like Mary
Ann’s idea.”

Once these cliques start there are three
ways to disband them. The first is free food.
Food trumps technological prowess on a
geek’s hierarchy of needs. So all dialogue
ceases while participants amass large
amounts of caffeine and sugar – the break-
fast of Alpha Geeks. This, however, is a pro-
visional break. Once geeks restock, there is

a short period of indolence, then the logor-
rhea resumes.

The second solution can only be
employed once during the conference. This
occurs when exhibits are opened. All dis-
cussion is curtailed and a free-for-all occurs
for the coolest vendor giveaways. Only rock
concerts, holiday shopping, and download-
ing music before the Napster court deci-
sion, rival the furry of this frenzy.

Since most conference attendees have
no control over food or exhibits, their only
option to break up a clique is to mention
configuration management, documenta-
tion, or testing. Drop one of those topics
into the discussion and potential Alpha
Geeks will chortle and make a graceful exit.
Beta Geeks experience temporary paralysis
as they search for a complimentary com-
ment. However, do this too many times and
you will reach Cipher Geek status – the
geek no one wants to talk to.

Lets face facts here, no matter how
valuable configuration management, docu-
mentation, and testing are to a project, no
one likes to talk about them. Like taking
out the trash, washing dishes, and cleaning
bathrooms – no one wants to do it, but it
has to be done. Anyone thinking otherwise
has malodorous software.

Take configuration management. It’s
obvious to me that designing software is
more invigorating than making sure ver-
sions are in order. Yet anyone knows that
hotshot designers could not design their
way out of a paper bag without a good con-
figuration management system. To design
otherwise is analogous to spinning plates on
the Ed Sullivan show. At first it looks cool,
then the plates start to wobble, and it gets
real ugly as plates shatter on the floor. So
configuration management can be cool as
long as someone else is doing it.

How about documentation? Now there
is a paradox. Why can’t creative, knowl-
edgeable, bright designers clarify their
designs in their native language? Maybe
they got into the software business so they

wouldn’t have to deal with English.
Testing may be an engineer’s biggest

blight. Although a very noble and necessary
part of the profession no other assignment
impairs growth, withers ambitions, or
impedes one’s progress and prosperity more
than testing. Once you have ventured into
testing you become branded as a second-
class engineer. I’m not saying its right or
fair, but it happens. Colleagues ostracize
you as a miscreant as you wonder the halls
in a company issued testing smock – you
know how hard it is to clean software stains.

It would be easy to wallow in pity but
my observation is that most test engineers
are not helping their cause. Their pusillani-
mous approach to the mockery reinforces
the image. I have one message for test engi-
neers – wake up!

It’s the 21st century and you need to
realize you have all the cards. You have the
final say. You can expose hotshot designer’s
inaccuracies. You have the power! Designers
should truckle at your feet in hopes of
obtaining favor upon their designs.

I know this is hard to conceptualize
after decades of scoffing. Therefore I’m
offering you an exemplar. Her name is
Anne Robinson, the host of the insufferable
game show “The Weakest Link.” Take note
of her portentous attitude as she fires verbal
laser jabs at her subjects.

Discard the days of meekly handing in
problem reports and cowering to prima
designers. It is time to hold court with those
pompous colleagues. Line them up. Have
them defend their designs in excruciating
detail. Expose their flaws. Make them
sweat.

You can start your own test cliques.
Swap stories of grilling designers, compare
kickbacks, and discuss the latest smock
styles. You know you have arrived when a
design engineer joins the group to talk shop
and you taunt, “You are the weakest geek.
Goodbye.”u

— Gary Petersen, Shim Enterprise, Inc.

July 2001 www.stsc.hill.af.mil 31

BACKTALK

The WThe Weakeakeest Geekst Geek

CrossTalk / TISE
5851 F Ave.
Bldg. 849, Rm B04
Hill AFB, UT 84056-5713

PRSRT STD
U.S. POSTAGE PAID

Albuquerque, NM
Permit 737

Sponsored by the
Computer Resources
Support Improvement

Program (CRSIP)Do you suffer from a fear of falling – off
schedule, short of product performance?
Do you need another set of eyes and ears to

avoid common budget and schedule pitfalls? The
Software Technology Support Centercan give you a
hand with an acquisition program review and analysis
that will tell you exactly what caused your problems.

Acquiring software successfully requires defining the
right requirements, correct management and solicita-
tion concepts, and appropriate contract management.

Our expert analysis includes lessons learned
and provides possible legal support through thor -

ough on-site interviews and document reviews with
you and your suppliers.

We have many years of experience in acquisition
models, project management, and perimeter areas.
We have worked on both sides of the fence – as a buyer
and a seller. We understand both the developers and
the acquirers. Whether your project is big or small,
call us first. We can help.

S O F T W A R E
ACQUISITION

t h e r i g h t
P A R T N E R
m a k e s a l l t h e
d i f f e r e n c e

OO-ALC/TISE 7278 4th Street Hill AFB, UT 84056 801 775 5555 FAX 801 777 8069 www.stsc.hill.af.mil

	Cover
	Index
	From the Publisher
	Software Configuration Management
	How Much Code Inspection is Enough?
	Software Estimating Model Calibration
	Top 5 Software Projects
	Scenes From STC 2001
	A Smart Way to Begin a Civilian Engineering Career
	Web Sites
	Process Capability Data for the Asking
	Coming Events
	Getting Software Engineering into Our Guts
	The Problem with Testing
	Call for Articles
	BackTalk
	Back Cover

