

4

10

17

22

27

Distributed Development: Insights, Challenges, and Solutions
This article provides an overview of key issues and challenges managers and project engineers
face when using distributed development efforts to overcome a shrinking engineering workforce.
by Paul E. McMahon

Toward Adaptive and Reflective Middleware for Network-Centric
Combat Systems
This article describes how adaptive and reflective middleware systems are being developed to
bridge the gap between military application programs and the underlying operating systems and
communication software, thus providing reusable services critical to network-centric combat systems.
by Dr. Douglas C. Schmidt, Dr. Richard E. Schantz, Michael W. Masters, Dr. Joseph K. Cross,
David C. Sharp, and Lou P. DiPalma

Factors to Consider When Selecting CORBA Implementations
Need help choosing and fine tuning a Common Object Request Broker Architecture (CORBA)
Object Request Broker? This article looks at 10 software architecture variability dimensions that
cause different behaviors in CORBA.
by Dr. Thomas J. Croak

Predicting Staff Sizes to Maintain Networks
A three-month study by MITRE assessing the state of the practice in staffing levels for maintaining a
computer-networking infrastructure (CNI) showed that typical CNIs have a 1:42 ratio of support staff to users.
by Dr. Lon D. Gowen

Dispelling the Process Myth: Having a Process Does Not Mean Sacrificing
Agility or Creativity
This article suggests a new approach to bridge the gap between the Capability Maturity Model® and
Extreme Programming that achieves process discipline without sacrificing the speed of development.
by Hillel Glazer

Distributed Distributed SoftwareSoftware DevelopmentDevelopment

SoftwareSoftware EngineeringEngineering TechnologyTechnology

Open Open ForumForum

Kent Bingham,
Digital Illustration
and Design, is a

self-taught graph-
ic artist/designer
who freelances
print and Web

design projects.

ON THE COVER

3 From the Publisher

21 Coming Events

26 Call for Articles

30 Web Sites

31 BackTalk

DepartmentsDepartments

2 CROSSTALK The Journal of Defense Software Engineering November 2001

CrossTalk Article Submissions : We welcome articles of interest to the
defense software community. Articles must be approved by
the CROSSTALK editorial board prior to publication. Please
follow the Author Guidelines, available at www.stsc.hill.af.mil/
crosstalk/xtlkguid.pdf. CROSSTALK does not pay for submis-
sions. Articles published in CROSSTALK remain the property
of the authors and may be submitted to other publications.
Reprints and Permissions: Requests for reprints must be
requested from the author or the copyright holder. Please
coordinate your request with CROSSTALK.
Trademarks and Endorsements: This DoD journal is an
authorized publication for members of the Department
of Defense. Contents of CROSSTALK are not necessarily
the official views of, or endorsed by, the government, the
Department of Defense, or the Software Technology
Support Center. All product names referenced in this
issue are trademarks of their companies.
Coming Events: We often list conferences, seminars, sym-
posiums, etc. that are of interest to our readers. There is
no fee for this service, but we must receive the informa-
tion at least 90 days before registration. Send an
announcement to the CROSSTALK Editorial Department.
STSC Online Services: www.stsc.hill.af.mil
Call: (801) 777-7026, E-mail: randy.schreifels@hill.af.mil
Back Issues Available: The STSC sometimes has extra
copies of back issues of CROSSTALK available free of charge.
The Software Technology Support Center was estab-
lished at Ogden Air Logistics Center (AFMC) by
Headquarters U.S. Air Force to help Air Force software
organizations identify, evaluate, and adopt technologies to
improve the quality of their software products, efficiency
in producing them, and their ability to accurately predict
the cost and schedule of their delivery.

SPONSOR

PUBLISHER

ASSOCIATE PUBLISHER

MANAGING EDITOR

ASSOCIATE EDITOR

ARTICLE
COORDINATOR

CREATIVE SERVICES
COORDINATOR

PHONE

FAX

E-MAIL

CROSSTALK ONLINE

CRSIP ONLINE

Lt. Col. Glenn A. Palmer

Tracy Stauder

Elizabeth Starrett

Pam Bowers

Benjamin Facer

Nicole Kentta

Janna Kay Jensen

(801) 586-0095
(801) 777-5633
crosstalk.staff@hill.af.mil
www.stsc.hill.af.mil/
crosstalk/crostalk.html

www.crsip.hill.af.mil

Subscriptions: Send correspondence concerning sub-
scriptions and changes of address to the following
address. You may e-mail or use the form on p. 9.

Ogden ALC/TISE
7278 Fourth St.
Hill AFB, UT 84056-5205

From the Publisher

Which Distributed Development Concept
Did You Have in Mind?

November 2001 www.stsc.hill.af.mil 3

Elizabeth Starrett
Associate Publisher

Are we developing software at distributed sites, or are we developing distributed soft-
ware? These are obviously very different concepts. Until I saw the articles that are in

this month’s issue, I didn’t realize there was so much about distributed software that I
didn’t know.

Distributed Development of Software: When we received Paul McMahon’s arti-
cle, Distributed Development: Insights, Challenges, and Solutions, it occurred to me that I
wish I had known this information long ago. McMahon’s ideas about seamless vision,

virtual communication, and testing the virtual organization would have really been helpful to one
of my past projects. My company worked with another company, trying to provide the end prod-
uct to the customer; it was difficult at best. This was not a joint collaboration from two compa-
nies working as a team. The customer selected my company to develop most of the software, then
informed us that we would let company B develop a portion of the software and use their prod-
uct with ours.

There was no attempt to integrate product teams, create a shared vision, or communicate vir-
tually. Company B simply sent numerous versions of their software, and each time I sent them
back a list of errors I found while testing it. When the software was returned, some errors were
corrected, some were not, and new errors were inserted. Finally, I just sent them a copy of the test
I was running so they could verify that the software passed the test before sending it to me again.

However, I did not realize that company B did not use the same computer set-up as I did.
My test listed keystrokes – not computer functionality. So they sent the software back with errors
in it again because they could not run my test. The other company did not know what I was try-
ing to accomplish with the test, and instead of calling and asking for clarifications, they just sent
back another bug-filled software package with an unusable user’s manual. Management finally just
requested that I fix the software myself and rewrite company B’s user’s manual. That finally
brought closure, but time and effort would have been saved using McMahon’s insights.

Development of Distributed Software: In Toward Adaptive and Reflective Middleware for
Network-Centric Combat Systems, Dr. Douglas Schmidt and several of his colleagues propose a
vision for how coupling military sponsored research, industrial standards development, and com-
mercial products can dramatically advance capabilities in the development of complex military
embedded systems. They cite the Boeing Bold Stroke project as just one example of a real-world
military system leveraging this technology toward the establishment of an open systems-based
software product line. We will learn more about Bold Stroke in December with an article that
describes their Air Force Research Laboratory-sponsored work in affordably upgrading legacy
applications to COTS-based computing platforms.

Distributed Development of Distributed Software: What if you want to purchase distrib-
uted software middleware? Dr. Thomas Croak comes to the rescue with Factors to Consider When
Selecting CORBA Implementations. If you are planning to buy a CORBA distributed object-com-
puting system this article will help. Dr. Croak’s analogy to buying a car is also applicable to any
software purchases you may plan to make.

Dr. Lon Gowen’s supporting article, Predicting Staff Sizes to Maintain Networks, provides help-
ful information to readers responsible for managing technical resources. Predicting staffing sizes
is a problem for many organizations, and this article should help with the struggle.

Hillel Glazer rounds out this issue with Dispelling the Process Myth: Having a Process Doesn’t
Mean Sacrificing Agility or Creativity. Having worked on several small projects, I agree that tai-
lored processes can indeed make agile processes more productive with the time saved by reducing
rework.

The theme topics addressed in this month’s CrossTalk are not my areas of expertise.
However, the articles are very informative, and I now know more than I did a few months ago.
Maybe if these subjects come up in the future, I will now know enough to start asking the right
questions to help with new endeavors. I learned a lot from reading this month’s CrossTalk.
Of course, I never miss an issue. (As the associate publisher, I’m paid not to miss an issue.) I hope
you never miss an issue either.

4 CROSSTALK The Journal of Defense Software Engineering November 2001

Distributed Software Development

Other authors using the terms virtual
collaboration, virtual development,

and distributed development have addressed
the subject of this article. Regardless of the
name used, this subject is about the issues
involved when multiple organizations
and/or multiple physical locations join
forces on an advanced technology soft-
ware-intensive effort.

It is important to note that I am not
referring to traditional subcontract rela-
tionships. Rather, this article focuses on
the use of virtual teams operating more as
a single integrated team employing some
degree (to be discussed) of common
processes, support services, and technical
strategies driven through a streamlined
management chain.

While just a few short years ago such a
project would have seemed inconceivable,
modern technologies like e-mail, the
World Wide Web, NetMeeting, telecon-
ferencing and videoconferencing are today
providing new possibilities for distributed
teams to work in a more integrated and
productive manner.

Why Care About Distributed
Development?
To understand the critical importance of
succeeding in a virtual collaborative envi-
ronment, one only needs to examine the
changes taking place inside today's work-
force. According to a recent study con-
ducted by the U.S. Bureau of Labor
Statistics, approximately 25 percent of all
workers age 16 or over have been with
their current employer 12 months or less.
This same study indicates that the average
worker is now expected to change jobs
every five years [2].

These statistics paint a picture of an
increasingly mobile work force. The 20-
year employee holding a wealth of corpo-

rate knowledge inside his head may well be
a corporate asset of the past. At the same
time, corporations are experiencing an
increasing demand for software-intensive
solutions produced from a combination of
existing products and new developments.
This, in turn, is driving a greater demand
for personnel with increasingly specialized
software skills; that is, skills geared toward
specific software products. Compounding
this demand for key people is the seeming-
ly never-ending shortening of cycle times
to enter and succeed in new markets.

Within this demanding environment,
even the largest mega-corporations are
finding they can no longer maintain inside
their own corporate walls all the critical
skills necessary to compete in many new
markets. As a result, more and more com-
panies today are reaching out in a cooper-
ating manner to organizations previously
viewed only as competitors. While the
rationale for embracing virtual operations
is evident, many corporations today are
struggling with implementation-related
challenges.

Distributed Development
Challenge
Research conducted by Booz-Allen [3] has
identified four characteristics common to
many of today’s collaborative failures:
• Cultural incompatibility.
• Leadership struggles.
• Lack of trust.
• Inbred notions of competition.

Recently, a three-year collaborative
development study was documented in
Virtual Project Management: Software
Solutions for Today and the Future [1]. The
results indicate that beneath these symp-
toms lie a number of key relationships that
include both technical and non-technical
factors. On the positive side, this study
also indicates that, once these key relation-
ships are understood, practical and afford-
able actions can be taken to aid organiza-
tions in achieving successful virtual opera-
tions. The referenced study is based on
experiences derived from real distributed
projects that occurred between 1994 and
2000.

The Eight-Step Plan
In this article we employ an eight-step
plan (see Figure 1) as a framework to assist
our investigation of distributed project
challenges. This framework can be used as
an aid in setting up a new distributed proj-
ect, or in instituting improvements to an
ongoing one.

While the eight steps identified may
appear traditional and relevant to any
project, our focus in this article is on spe-
cific issues related to distributed opera-
tions. It should be noted that the use of
the term steps is not intended to imply that
virtual project success can be achieved
through a cookbook approach. Nor do we
mean to imply that these steps are easily
achieved. Many of the challenges faced on

Distributed Development:
Insights, Challenges, and Solutions

Paul E. McMahon
PEM Systems

Today, many organizations are facing difficulties competing for new work due to a critical shortage of engineering
skills. Employing the power of distributed development can increase an organization's opportunities to win new
work by opening up a broader skill and product knowledge base, coupled with a deeper pool of personnel to poten-
tially employ. By distributed development, we mean development efforts that span multiple organizations and/or
multiple physical locations. This article provides an overview of key issues and challenges managers and project engi-
neers are facing today on distributed development efforts. Insights into root causes of difficulties and recommended
solutions are provided. Within this article the terms distributed and virtual are used synonymously. Information pre-
sented in this article has been excerpted and condensed with permission from the newly published Virtual Project
Management: Software Solutions for Today and the Future [1].

“Within this demanding
environment,

even the largest
mega-corporations are

finding they can no
longer maintain inside
their own corporate

walls all the critical skills
necessary to compete in

many new markets.”

November 2001 www.stsc.hill.af.mil 5

Distributed Development: Insights, Challenges, and Solutions

virtual projects are closely coupled to com-
munication. Evidence of this fact can be
seen throughout the eight steps starting
with Step 1.

Step 1: Selecting Team
Leaders
It should not be a surprise to anyone who
has worked on a collaborative endeavor
that one of the most important decisions
to project success is the choice of team
leaders. While strong conflict manage-
ment skills, and a willingness to consider
alternative approaches are desirable traits
for leaders on any project, these leadership
characteristics are particularly critical to
distributed project success.

Unlike most traditional collocated
projects, virtual projects face the added
challenge of teammates with differing
backgrounds, experiences, and technical
expectations. This situation can give rise to
frequent and often intense conflict. While
most project conflicts faced are not insolv-
able, all too often timely and effective res-
olution falls short due to a breakdown in
communication.

Conflict and Communication
Conflict is not unique to distributed proj-
ects, but it is not uncommon for tradi-
tional, collocated approaches to conflict
resolution to fail in a distributed environ-
ment. To understand why, we must look
closer at communication in the organiza-
tion.

In the early 1980’s, Alan Cox conduct-
ed a survey in which he found that more
than 66 percent of middle managers
believed that more than half of the com-
munication in their organizations occurred
informally [4]. Experience on distributed
projects indicates this is not only true, but
some of the most critical communication
with respect to conflict resolution occurs in
this manner. Unfortunately distance, dif-
fering experiences, and internal team com-
petition often hinder informal communi-
cation on distributed efforts.

It should be noted that the term infor-
mal in this article means unplanned and
undocumented.

A Partial Solution to Virtual
Project Conflict
While distributed development provides
the potential power of rapidly accessible
personnel with key skills and key product
knowledge, it often does so at a cost of
interpersonal team bonds built over time
through shared experiences. Although
there does not exist a simple cure-all for
the loss of shared experiences and tradi-

tional informal communication on dis-
tributed projects, a number of partial solu-
tions do exist.

For example, experience indicates that
collocating a small team of senior systems
designers during the critical creative
design stage of a distributed project can be
effective. Studies have shown that when
team members must interact frequently
and for short durations, collocation offers
the best opportunity for success [5]. This
does not mean that full-time collocation is
required for the life of the program. Cases
where repeating cycles of intense collocat-
ed work followed by periods apart have
worked well, especially during the early
critical creative design stage.

It is also important to note that early
collocation is multi-purpose. This activity
supports the shared development of a pro-
ject’s common technical vision, but equal-
ly important it also starts the process of
building interpersonal bonds among key
teammates across project organizations/
sites. Other recommendations in support
of a shared leadership vision are discussed
in Step 7.

Step 2: Architecture, Work
Split, and Tasking
While collocation of key personnel early
can go a long way to getting a distributed
effort off on the right foot, a significant
number of managers remain skeptical
about the viability of distributed develop-
ment. When surveyed on this subject,
many managers have expressed fear in not
knowing if a remote team member is
“doing the right thing [6].”

When one considers how much a new

engineer traditionally has learned about
task expectations through informal means,
this fear is understandable. Managers who
have known only collocated operations
often take informal communication for
granted, but they intuitively know how
much they rely upon it every day.

Even in organizations where task
assignments are formally written, there is
usually a significant reliance on informal
communication to clarify and guide the
new engineer. With respect to designing or
coding a solution, this informal guidance
often takes the form of an experienced
engineer relaying examples of solutions
patterns that he/she knows will fit that
particular organization’s accepted techni-
cal architecture. Although the process
described is commonplace, the relation-
ship being described among architecture,
work split, and tasking has not always
been well understood.

Definitions
When the term architecture is used, it
means the “components” of a system and
the rules defining how the components are
connected, along with any constraints.
When used, the term work split means the
allocation of responsibilities across physi-
cally separated sites or organizations.
Work split can also be thought of as site-
level tasking.

Architecture as a Management
Tool
Traditionally, many think of architecture
as a technical issue, and work split as a sep-
arate and distinct management issue. But
in practice, work split decisions can frac-
ture a sound architecture. Furthermore, a

Test concept
of operation

Architecture
Work Split

Selection of
Team Leaders

Tasking

Step 2

Build Planning

Step 3

Step 4

Virtual Communication Rules

Execute

Conflict detection and action

Step 8

Step 7

Detailed
planning

Step 6

Lower Level Virtual
Project Organization

Step 5Step 1

Figure 1: Eight-Step Plan

Distributed Software Development

sound technical architecture can actually
provide one of the best task communica-
tion and coordination techniques.

For example, think about how a senior
technical mentor guides a new engineer.
The most effective mentors guide by lis-
tening first and then providing feedback
that ensures the approaches chosen fit
within the range of an organization’s
acceptable solutions. This is another way
of saying that effective mentors guide
through the vision of a technical architec-
ture.

When used appropriately, a sound
technical architecture can go a long way to
addressing a manager’s concerns about
whether a remote team member is in fact
“doing the right thing.” Often it is
through informal architecture-centric dis-
cussions that teammates gain the real
insight needed to accurately meet task
expectations within a specific organiza-
tion. But for architecture to be effective as
a task communication aid, the work split
definition across physically remote sites
must follow the architecture definition,
not the reverse.

Architecture First
Too often we see work split decisions
made without due consideration to the
technical architecture. When work split
decisions are forced prior to architecture
definition, we often find distributed proj-
ects suffering from fuzzy task responsibili-
ties and technical leadership struggles.
Without a well defined architecture,
remote groups often find themselves head-
ing down inconsistent paths leading to
project conflict and control struggles.

For example, the choice of computer
hardware platform has been a topic of
intense inter-site battles on many distrib-
uted efforts. By documenting agreed to
platform constraints early, unnecessary
project conflict during a critical project
stage can often be avoided.

There are many sources available that
can provide more in depth information on
the key role of architecture to project suc-
cess [1, 7, 8, and 9].

Do Not Delay the Work Split
There is another side to this coin that
must also be adequately considered.
Delaying the definition of work split too
long can have equally devastating effects
on a distributed project. The right answer
to the problem of fuzzy task responsibili-
ties is not always simply delaying the work
split definition until the architecture is
defined. When work split decisions are
delayed too long, internal teams’ mistrust
quickly builds. Be aware that the conse-

quences of defining a work split that leaves
tasking grey in certain areas has proven to
be a poor solution to this challenging area.
While your architecture needs to be in
place when you define your work split, you
should also know that architecture is an
evolutionary product. Never wait for the
architecture to be 100 percent complete,
or you’ll never get your work split defined.

Step 3: Planning the Builds
and Site-Specific Infrastructure
While a sound architecture can aid work
split definition and task management, it
does not convey when product functional-
ity is available. This is the purpose of a
build plan.

Today, many companies are moving
toward incremental build approaches es-
pecially on distributed projects because a
build approach reduces integration risk.
You can think of a build as a set of hard-
ware and software that meets a subset of
the functionality of the final deliverable
product. Planning and coordinating the
builds across distributed sites may be the sin-
gle greatest challenge faced on virtual projects.

One of the keys to effective build coor-
dination on distributed projects is found in
the technical infrastructure (hardware
computer platforms and software tools).
The criticality of the technical infrastruc-
ture to effective build planning can best be
conveyed through two competing techni-
cal infrastructure visions often found on
distributed efforts. These two visions are
referred to as the maximize use of company-
owned assets vision and the seamless vision.

Maximize Use of Company-
Owned Assets
Maximized use of company-owned assets
means the use of existing company-owned
organizational assets (computer hardware
and software tools) to the maximum
extent possible to meet project needs.
Those who demand that the project’s
direct infrastructure costs be kept to a

minimum drive this vision. While driving
hard toward this vision does reduce the
up-front project expenditures, it can also
increase the project’s integration risk and
the overall project cost since not all exist-
ing hardware and software will be the
same.

Seamless Vision
On the other hand, those driving the
seamless vision believe that an engineer
should be able to log in and do 100 per-
cent of his engineering work using identi-
cal tools and processes from any worksta-
tion at any remote project location. While
the advantages of the seamless vision are
evident, the cost of common hardware,
common software tools, and software
licenses can quickly become prohibitive
for a single project. It is also important to
keep in mind that the choice you make
with respect to infrastructure (hardware,
software tools) cannot be made independ-
ent from your project’s process decision
unless you keep your process definition
high. But keep in mind that if the process
definition is too high, it is more likely to
lead to miscommunication. In the follow-
ing section we discuss a common distrib-
uted project process pitfall.

Do Not Drive Process
Commonality Too Deep
One of the most common pitfalls wit-
nessed on distributed projects is referred to
as the “let’s use the most mature process
available” pitfall. This pitfall usually starts
with the project leadership’s decision to
mandate that all project sites use a com-
mon process. While at the appropriate
level a common process makes sense, the
pitfall is tied to what often happens next.
Rather than define the common process at
the appropriate level and allow individual
sites the appropriate freedom to leverage
site-specific procedures, oftentimes a man-
date is sent across the distributed sites to
drive procedure commonality (different
from process commonality) as well. The
common set of procedures chosen is usu-
ally supplied by the highest software matu-
rity-rated organization on the project.

It is natural to look to your teammate
with the highest process maturity for soft-
ware guidance. However, procedures rep-
resent only a small part of the complete
process maturity picture. They are often
too site-specific to make sense for applica-
tion across multiple organizations (each
with their own culture and history) in
conducting development activities.

When attempts are made to drive
commonality too deep into a virtual

“Studies have shown
that when team
members must

interact frequently and
for short durations that
collocation offers the
best opportunity for

success.”

6 CROSSTALK The Journal of Defense Software Engineering November 2001

November 2001 www.stsc.hill.af.mil 7

organization the lack of an enabling
organization, supporting infrastructure,
and supporting culture at each of the
remote sites is almost certain to lead this
initiative to failure.

Solution to the Common Process
Initiative
A process freedom line is defined to be the
point in the process where a site/organiza-
tion is free to make process-related deci-
sions. For example, a project level proce-
dure may call for a design document to be
produced with specific design artifacts,
but may not require a specific document
format. I recommend that virtual projects
define process freedom lines at the point
where products and people must come
together across divergent sites/organiza-
tions. It is not recommended that the proj-
ect attempt to dictate how specific
sites/organizations accomplish their tasks
internally.

The freedom line definition essentially
tells each site where they are free to lever-
age site-specific procedures (that can
include site-specific support organizations
and company-owned assets) in imple-
menting solutions. This strategy has
proven effective at balancing the manage-
ment of the project’s integration risk,
while at the same time leveraging the
strengths of individual sites/organizations.

Step 4: Virtual
Communication Rules
Architecture definition and planning are
critical on all projects, collocated or virtu-
al. Virtual communication, on the other
hand, presents distributed projects with
new challenges not previously faced in tra-
ditional collocated environments.

Today, virtual communication is in its
infancy. We are just now starting to com-
prehend the implications of first genera-
tion lessons on using the World Wide
Web, teleconferencing and videoconfer-
encing, NetMeeting, and e-mail. We rec-
ommend that virtual project communica-
tion lessons drive written virtual project
rules (guidelines) to aid engineers in the
effective application of new tools.

For example, in the early stages of a
large virtual project it is not uncommon
for engineering personnel to receive 50-60
e-mails per day! Think about it. If you
take just four minutes to process each e-
mail, at this rate you could spend half of
your day just handling e-mail correspon-
dence. E-mail flooding is the result of per-
sonnel being given a new tool and insuffi-
cient training in its use. E-mail, voice
mail, teleconferencing, videoconferencing

and NetMeeting all require training in
more than just the mechanics of their use.

I recommend that each project create
its own guidelines as it moves forward.
And don’t ignore rules and lessons that
may seem obvious. I challenge those who

have been involved in distributed efforts
with the following questions:
• Does your distributed project have

rules for the use of e-mail and telecon-
ferencing?

• Have your people been trained and are
they following the guidance provided?
It has been our experience that while

few disagree with the concept of guide-
lines, most distributed projects in opera-
tion today are not doing the best job of
deploying effectively virtual communica-
tion technologies, and the unfortunate
part is that it could be costing you plenty
in human resources. Furthermore, this rec-
ommendation is simply not that expensive
to deploy!

For more examples of first-generation
virtual communication lessons, see [1].

Step 5: Lower Level Virtual
Project Organization
The recommendation for the lower level
structure of a distributed project organiza-
tion may not be a popular one. At the top
end of the organization where a breath of
issues must be addressed, the Integrated
Product Team (IPT) structure tends to
function well, and I recommend it. This is
the level where heads-up activities exist. By
heads-up activities I mean work that must
look across the multiple sites and organi-
zations of the project. But I have also
observed – and many clients concur – that
a strict IPT structure is weak when it
comes to producing products that include
detailed design, code, and test cases.

Where the real engineering, or what
we refer to as heads-down work, occurs, I
have found that on distributed efforts a
hybrid of IPTs and functional groups is
often more effective. When I use the term
heads-down work I mean the engineering
work associated with building and testing
actual executable code.

An example of why we recommend

this structure can be seen in the need for
an infrastructure implementation group
that provides common services that multi-
ple product development teams may need
across remote sites. Too often, when virtu-
al projects try to drive a strict IPT struc-
ture deep into the organization, responsi-
bility for critical common services is lost.
This is because when a strict IPT structure
is employed at lower levels of the organi-
zation, you often find that each of those
lower level IPTs focus almost exclusively
on their own specific product. As a result,
each solves their own specific problem in
their own specific way.

On the other hand, when organiza-
tions recognize the need for an infrastruc-
ture implementation group that is not
focused on any single specific product,
commonality across multiple sub-products
can be more effectively achieved.

Step 6: Detailed Planning
Detailed planning is important on any
project, but on a virtual project its critical
relationship to work split is often misun-
derstood.

Often on virtual projects work split
decisions get delayed. This can occur for a
multitude of reasons – most are not tech-
nical. But, all too often, great pressure
continues to be brought on the engineer-
ing team to complete the detailed project
plan despite the uncertainties of where
work will actually get done. What is too
often misunderstood in these situations is
the extent to which detailed planning
directly depends on work location.

While some project planning can be
done independent of location, think about
the real issues an engineering manager
faces when it comes to developing a really
detailed plan that is actually executable.
Here are just a few of the critical questions
to be asked:
• Is the development hardware avail-

able?
• Have the software tools and licenses

been procured and installed?
• Have we identified the engineering

personnel that will do this job?
• Have the identified personnel been

trained on the chosen platform, lan-
guage, tools?
To develop a detailed plan that is exe-

cutable, managers must make assump-
tions with regard to each of these issues.
These are the real issues that truly impact
project performance.

Now think about how the answers to
these questions are affected when work is
moved to a different location. Based on
my experience, if you are doing detailed

Distributed Development: Insights, Challenges, and Solutions

“On virtual projects
the building of

trust requires a
more proactive

management stance.”

planning, and the work location is still
fuzzy, you can start planning right now
on doing your detailed plan all over
again!

Step 7: Test the Operation
Concept of the Virtual
Organization
It is unreasonable to expect new virtual
project organizations to instantly operate
as effectively as strongly cultured time-
tested collocated operations. Effective
organizations – collocated or virtual – do
not just happen.

We recommend that newly estab-
lished virtual project organizations set
aside the time for project leaders to walk
through key organizational scenarios that
are most likely to cause leadership fric-
tion. When leaders take the time to dis-
cuss openly their visions of the virtual
organization, potential problem areas can
often be uncovered and resolved quickly.

Often, at the start of a new project,
leaders are uncertain where the most like-
ly trouble spots might be in the operation
of the distributed organization. For
example, experience has shown that
when multiple organizations are
involved, task management of remote
personnel is a critical area. It is recom-
mended that you walk through your task
management model and your risk man-
agement model, and be sure to do it in a
face-to-face setting with all your project
leaders present. For more information on
recommended organizational scenarios,
see the referenced book [1].

Step 8: Execute
As discussed in Step 1, increased conflict
is to be expected in a distributed devel-
opment environment due to the lack of
shared experiences and interpersonal
bonds. Recognizing this fact, a key to
effective process deployment on virtual
projects is ensuring that leaders are aware
of the warning signs of unhealthy team
conflict. An example of an unhealthy

conflict warning sign is what we refer to
as the repeating issue warning sign. This
is the case where:
• A valid issue is raised by a virtual

team member.
• The issue is worked through by the

team.
• A consensus is reached and the issue

is put to bed.
• One week, or one month later, the

same issue returns.
Does this sound familiar? Have you

ever sat in a meeting and thought you
were sitting through a rerun of an old
movie? If you detect the repeating issue
warning sign on your distributed project
be sure to deal with it rapidly before it
does permanent harm to your team. See
reference for more examples of unhealthy
team conflict warning signs, and recom-
mended actions [1].

Deploy A Virtual Culture
In this article I have emphasized chal-
lenges being faced today on many dis-
tributed projects. I have stressed the
impact of the loss of traditional informal
communication in distributed environ-
ments, and have provided related recom-
mendations. I also recommend the
deployment of what is referred to as a vir-
tual culture.

A virtual culture [1] is a simple,
yet powerful concept that brings an
information-age perspective to the
notion of culture. Think of a virtual cul-
ture as a physical framework that sup-
ports effective communication across dis-
tributed project sites.

The virtual culture – unlike tradi-
tional collocated engineering cultures – is
product oriented. It is not intended to
replace past traditional collocated cul-
tures. In fact, I don’t think you should try
to replace strong local cultures. Rather,
my recommendations are based on lever-
aging the strengths of your teammates
within their proven environments.

The virtual culture complements the
existing site-specific cultures providing

the critical information needed to coor-
dinate and communicate key tasking
information across distributed sites. This
approach reduces the risk of rework
when remotely developed products are
integrated together. A sample structure of
a virtual culture is provided in Figure 2.
Virtual cultures can be implemented
through a Web site or through a shared
directory system.

It is worth noting that a key differ-
ence between a virtual culture and a tra-
ditional culture is found in its formality.
Experience indicates that an effective vir-
tual culture cannot be informal. In other
words, it must be written down. We rec-
ognize that in today’s world this empha-
sis on the written word may not be pop-
ular.

However, recommendations with re-
spect to a more formal virtual culture
should not be interpreted as a step back-
wards to the days of voluminous docu-
mentation. The virtual culture is not
intended to include historical milestone-
type documentation, but rather it focus-
es on those critical pieces of information
that must be coordinated and communi-
cated across distributed sites. Experience
indicates that when you go virtual and
utilize remote operations that more
things do need to be written down in
support of effective remote communica-
tion.

Conclusion
The potential gains of virtual operations
are great. Nevertheless, implementation
issues cut deep inside present-day engi-
neering organizations. Inside traditional
engineering environments, common cul-
tures, common site infrastructures, and
common experiences provide key ingre-
dients supporting team trust.

In collocated environments, trust
appears to just happen through little
more than the passage of time. In reality,
in these traditional environments there
have always been numerous informal fac-
tors hard at work building trust on a
daily basis. In the past these informal
activities may not have received the
attention they deserve. This is because in
strongly cultured collocated environ-
ments the benefits of informality came to
us essentially for free. In the virtual world
this is no longer the case.

On virtual projects, the building of
trust requires a more proactive manage-
ment stance. It requires leaders who are
willing to listen to alternative approaches
put forth by team members who may

Distributed Software Development

8 CROSSTALK The Journal of Defense Software Engineering November 2001

Virtual Culture

Organization
Operation

Concept
Build Plan Architecture

Definition

“Freedom Line”
Process

Definition

Virtual
Communication

Rules

Site-Specific
Infrastructure
Information

Figure 2: Sample Virtual Culture

November 2001 www.stsc.hill.af.mil 9

have very different backgrounds and
experiences from their own. But listening
is only the first step.

When alternative ideas are accepted
they must also be effectively communi-
cated to the full team. And on virtual
projects, we now know we cannot rely on
traditional collocated informal mecha-
nisms to achieve this communication.
Therefore, in the virtual world, the writ-
ten word takes on new and increased
importance.

Think about the information that is
today conveyed through unplanned
meetings in hallways, at lunch, casually
in cubicles and over the tops of cubicles.
While experience has shown that e-mail,
teleconferencing, videoconferencing and
NetMeeting are all powerful distributed
development communication tools, they
cannot replace what collocated organiza-
tions have taken years to mature.
Consider deploying the virtual culture
concept on your distributed project to
aid communication to all your team
members. It is not that expensive to
implement, but the potential cost of not
implementing one is.u

References
1. McMahon, Paul E. Virtual Project

Management: Software Solutions for
Today and the Future. Boca Raton: St.
Lucie Press, An Imprint of CRC Press
LLC, 2001.

2. Gannett News Service, “Job Hopping
by Young Workers Increasingly
Common,” 29 Aug. 1999.

3. Norton, Bob, and Cathy Smith, eds.
Understanding the Virtual Organiza-
tion. Hauppauge, NY: Barron’s
Educational Series, 1997. 68.

4. Cox, Alan. The Cox Report on the
American Corporation. New York:
Delacorte Press, 1982. 112-114.

5. Gindele, Mark E., and Richard
Rumpf, eds. “Effects of Collocating
Integrated Product Teams,” Program
Manager, July-Aug. 1998: 38.

6. Haywood, Martha. Managing Virtual
Teams. Boston: Artech House, 1998.

7. Software Engineering Institute,
<www.sei.cmu.edu/architecture/
definitions.html>.

8. Shaw, Mary, and David Garlan, eds.
Software Architecture: Perspectives on
an Emerging Discipline. Englewood
Cliffs, NJ: Prentice Hall, 1996.

9. Bass, Len, and Paul Clements, eds.
Software Architecture in Practice.
Reading, MA: Addison-Wesley, 1998.

Additional Reading
1. Karolak, Dale Walter. Global Software

Development. Los Alamitos, CA:
IEEE Computer Society, 1998: 35-46.

2. Mayer, Margery. The Virtual Edge.
Newtown Square, PA: Project Man-
agement Institute Headquarters, 1998.

3. Lipnack, Jessica, and Jeffrey Stamps,
eds. Virtual Teams: Reaching Across
Space, Time and Organizations with
Technology. New York: John Wiley &
Sons, Inc., 1997.

4. Reifer, Don. Practical Software Reuse.
New York: John Wiley & Sons, 1997.

5. Royce, Walker. Software Project
Management. Reading, MA: Addison-
Wesley, 1998.

6. Highsmith, James A. Adaptive Soft-
ware Development: A Collaborative
Approach To Managing Complex
Systems, New York: Dorsett House
Publishing, 1999.

7. Deeprose, Donna. The Team Coach.
New York: American Management
Assoc., 1995.

Distributed Development: Insights, Challenges, and Solutions

Get Your Free Subscription

Fill out and send us this form.

OO-ALC/TISE
7278 Fourth Street
Hill AFB, UT 84056

Fax: (801) 777-8069 DSN: 777-8069
Phone: (801) 775-5555 DSN: 775-5555

Or request online at www.stsc.hill.af.mil

NAME:_____________________________

RANK/GRADE:_____________________

POSITION/TITLE:___________________

ORGANIZATION:_____________________

ADDRESS:__________________________

BASE/CITY:________________________

STATE:_________ ZIP:________________

PHONE:(_____)_____________________

FAX:(_____)________________________

E-MAIL:________________@___________

CHECK BOX(ES) TO REQUEST BACK ISSUES:

JAN2000 c LESSONS LEARNED

FEB2000 c RISK MANAGEMENT

MAY2000 c THE F-22

JUN2000 c PSP & TSP

JAN2001 c MODELINGAND SIMULATION

FEB2001 c SOFTWARE MEASUREMENT

APR2001 c WEB-BASED APPS

MAY2001 c SOFTWARE ODYSSEY

JUL2001 c TESTING AND CM

AUG2001 c SW AROUND THE WORLD

SEPT2001c AVIONICS MODERNIZATION

OCT2001 c OPEN AND COMMON SW

About the Author
Paul E. McMahon is an
independent contractor
providing technical and
management leadership
services to large and
small engineering organ-
izations. McMahon be-

gan his career in the early 1970’s as a
flight simulation programmer. Before ini-
tiating independent work at PEM
Systems in 1997, he held senior technical
and management positions at Hughes
and Lockheed Martin. Today McMahon
employs his 27 years of experience in
helping organizations deploy high quality
software processes integrated with systems
engineering and project management. He
has taught software engineering as an
adjunct at Binghamton University, N.Y.,
and published more than a dozen articles
and a book on virtual project manage-
ment.

118 Matthews Street
Binghamton, NY 13905
Phone: (607) 798-7740
E-mail: pemcmahon@acm.org

JAN2000

FEB2000

MAY2000

JUN2000

JAN2001

FEB2001

APR2001

MAY2001

JU L2001

AUG2001

SEPT2001

OCT2001

10 CROSSTALK The Journal of Defense Software Engineering November 2001

New and planned Department of
Defense (DoD) combat systems are

inherently network-centric, distributed
real-time and embedded (DRE) systems of
systems. Combat systems have historically
been developed via multiple technology
bases, where each system brings its own
networks, computers, displays, software,
and people to maintain and operate it.
Unfortunately, not only are these stove-
pipe architectures proprietary, but by
tightly coupling many functional and
quality of service (QoS) aspects they
impede these DRE system features:
• Assurability is needed to guarantee effi-

cient, predictable, scalable, and
dependable QoS from sensors to
shooters.

• Adaptability is needed to (re)configure
combat systems dynamically to sup-
port varying workloads or missions
over their life cycles.

• Affordability is needed to reduce initial
nonrecurring combat system acquisi-
tion costs and recurring upgrade and
evolution costs.
In recognition of the importance of

enhancing affordability, recent DoD pro-
grams such as the Aegis destroyer program
[1], the New Attack Submarine program
[2], the Weapons Systems Open
Architecture program [3], and the
Unmanned Combat Air Vehicle (UCAV)
program [4] have adopted strong open sys-
tems approaches to system design and
commercial-off-the-shelf (COTS) refresh
strategies. Ultimately, open systems
approaches are more likely to be robust
with respect to change over the long life
cycles typical of military systems. For
example, the affordability of certain types

of DoD systems such as logistics and mis-
sion planning have been improved by
using COTS technologies.

However, many of today’s procure-
ment efforts aimed at integrating COTS
into mission-critical DRE combat systems
have largely failed to support life-cycle
affordability, assurability, and adaptability
effectively since they focus mainly on ini-
tial nonrecurring acquisition costs and do
not reduce recurring software life-cycle
costs, such as COTS refresh and subset-
ting combat systems for foreign military
sales [5]. Likewise, many COTS products
lack support for controlling key QoS
properties such as predictable latency, jit-
ter, and throughput; scalability; depend-
ability; and security. The inability to con-
trol these QoS properties with sufficient
confidence compromises combat system
adaptability and assurability, e.g., a pertur-
bation in the behavior of a COTS product
that would be acceptable in commercial
applications could lead to loss of life and
property in military applications.

Historically, conventional COTS soft-
ware has been unsuitable for use in mis-
sion-critical DRE combat systems due to
either of the following:
• It is flexible and standard, but inca-

pable of guaranteeing stringent QoS
demands, which restricts assurability.

• It is partially QoS-enabled, but inflex-
ible and non-standard, which restricts
adaptability and affordability.
As a result, the rapid progress in

COTS software for mainstream business
information technology (IT) has not yet
become as broadly applicable for mission-
critical DRE combat systems. Until this
problem is resolved effectively, DRE sys-

tem integrators and warfighters will not be
able to take advantage of future advances
in COTS software in a dependable, time-
ly, and cost effective manner. Developing
the new generation of assurable, adapt-
able, and affordable COTS software tech-
nologies is therefore essential for U.S.
national security.

Although the near-term use of COTS
software in DRE systems will be limited in
scope and domain, the prospects for the
longer term are much brighter. Given the
proper advanced research and develop-
ment (R&D) context and an effective
process for transitioning R&D results, the
COTS market can adapt, adopt, and
implement the types of robust hardware
and software capabilities needed for mili-
tary applications. This process takes a
good deal of time to get right and be
accepted by user communities, and a good
deal of patience to stay the course. When
successful, however, this process results in
standards that codify the best-of-breed
practices and technologies and the patterns
and frameworks that reify the knowledge of
how to apply these practices and technolo-
gies.

Key Technical Challenges and
Solutions
Today’s economic and organizational con-
straints – along with increasingly complex
requirements and competitive pressures –
make it infeasible to build complex dis-
tributed real-time system software entirely
from scratch. It has long been accepted
that the use of commercial operating sys-
tems and communication support soft-
ware is cost-effective for all but the most

Toward Adaptive and Reflective Middleware
for Network-Centric Combat Systems

Software is increasingly important to the development of effective network-centric Department of Defense
combat systems. Next-generation combat systems such as total ship computing environments, coordinated
unmanned air vehicle systems, and national missile defense will use many geographically dispersed sensors,
provide on-demand situational awareness and actuation capabilities for human operators, and respond
flexibly to unanticipated run-time conditions. These combat systems will also increasingly run unobtru-
sively and autonomously, shielding operators from unnecessary details while communicating and respond-
ing to mission-critical information at an accelerated operational tempo. In such environments, it is hard
to predict system configurations or workloads. This article describes how adaptive and reflective middle-
ware systems (ARMS) are being developed to bridge the gap between military application programs and
the underlying operating systems and communication software in order to provide reusable services whose
qualities are critical to network-centric combat systems. ARMS software can adapt in response to dynam-
ically changing conditions for the purpose of utilizing the available computer and communication resources
to the highest degree possible in support of mission needs.

Michael W. Masters
Naval Surface
Warfare Center

Dr. Douglas C. Schmidt
University of California,

Irvine

Dr. Richard E. Schantz
BBN Technologies

Lou P. DiPalma
Raytheon

Dr. Joseph K. Cross
Lockheed Martin

David C. Sharp
The Boeing
Company

resource-constrained DRE systems. In-
creasingly, this same logic is being applied
to middleware, which is reusable serv-
ice/protocol component and framework
software that services end-to-end and aggre-
gate combat systems’ needs [6]. Middle-
ware bridges the gap between these areas:
• Application-level requirements and

mission doctrine.
• The lower-level, underlying, localized

viewpoints of the operating systems
and communications support mecha-
nisms.
From the application perspective,

when middleware and the services it con-
stitutes are combined with traditional net-
work and operating system components, it
forms the new infrastructure for develop-
ing modern network-centric combat sys-
tems. In both commercial and military
systems, middleware performs functions
that are essential to meeting application-
level requirements. In military systems,
moreover, the qualities of the services pro-
vided by the middleware are critical to the
qualities of service that are presented to
the end users – the warfighters.

Thus, there is a pressing need to devel-
op, validate, and ultimately standardize a
new generation of adaptive and reflective
middleware systems (ARMS) technologies
that will be readily available and able to
support stringent combat system func-
tionality and QoS requirements. Some of
the most challenging computing and com-
munication requirements for new and
planned DoD combat systems can be
characterized as follows:
• Multiple QoS properties must be satis-

fied in real-time.
• Different levels of service are appropri-

ate under different configurations,
environmental conditions, and costs.

• The levels of service in one dimension
must be coordinated with and/or trad-
ed off against the levels of service in
other dimensions to meet mission
needs, e.g., the security and depend-
ability of message transmission must
be traded off against latency and pre-
dictability.

• The need for autonomous and time-
critical application behavior necessi-
tates a flexible distributed system sub-
strate that can adapt robustly to
dynamic changes in mission require-
ments and environmental conditions.
Adaptive middleware [3] is software

whose functional and QoS-related proper-
ties can be modified in either of these ways:
• Statically, e.g., to reduce footprint,

leverage capabilities that exist in spe-
cific platforms, enable functional sub-

setting, and minimize hardware and
software infrastructure dependencies.

• Dynamically, e.g., to optimize system
responses to changing environments
or requirements, such as changing
component interconnections, power-
levels, CPU/network bandwidth,
latency/jitter, and dependability
needs.
In DRE combat systems, adaptive

middleware must make these modifica-
tions dependably, i.e., while meeting strin-
gent end-to-end QoS requirements.

Reflective middleware [7] goes a step
further in providing the means for exam-
ining the capabilities it offers while the
system is running, thereby enabling auto-
mated adjustment for optimizing those
capabilities. Thus, reflective middleware
supports more advanced adaptive behav-
ior, i.e., the necessary adaptations can be
performed autonomously based on condi-
tions within the system, in the system’s
environment, or in combat system doc-
trine defined by operators and administra-
tors.

Middleware Structure
and Functionality
Networking protocol stacks can be decom-
posed into multiple layers such as the
physical, data-link, network, transport,
session, presentation, and application lay-
ers. Similarly, middleware can be decom-
posed into multiple layers such as those
shown in Figure 1.

We describe each of these middleware
layers and outline some of the COTS tech-
nologies in each layer that are suitable (or
are becoming suitable) to meet the strin-
gent QoS demands of DRE combat sys-
tems.

Host Infrastructure Middleware
Host infrastructure middleware encapsu-
lates and enhances native operating system
communication and concurrency mecha-
nisms to create portable and reusable net-
work programming components such as
reactors, acceptor-connectors, monitor
objects, active objects, and component
configurations [8]. These components
abstract away the accidental incompatibil-
ities of individual operating systems and
help eliminate many tedious, error-prone,
and non-portable aspects of developing
and maintaining networked applications
via low-level operating system program-
ming application program interfaces
(APIs), such as Sockets or POSIX
Pthreads. Examples of COTS host infra-
structure middleware that are relevant for
DRE combat systems include the follow-
ing:
• The Adaptive Communication Envi-

ronment (ACE) [9] is a portable and
efficient toolkit that encapsulates native
operating system network program-
ming capabilities such as inter-process
communication, static and dynamic
configuration of application compo-
nents, and synchronization. ACE has
been used in a wide range of DoD DRE
systems, including missile control,
avionics mission computing, software
defined radios, and radar systems.

• Real-Time Java Virtual Machines imple-
ment the Real-Time Specification for
Java (RTSJ) [10]. The RTSJ is a set of
extensions to Java that provide a largely
platform-independent way of executing
code by encapsulating the differences
between real-time operating systems
and CPU architectures. The key fea-
tures of RTSJ deal with memory man-

Toward Adaptive and Reflective Middleware for Network-Centric Combat Systems

November 2001 www.stsc.hill.af.mil 11

Figure 1: Middleware Layers and Their Surrounding Context

agement and concurrency. Although
RTSJ implementations are still in
their infancy, they have generated
tremendous interest in the DoD
R&D and integrator communities
due to their potential for reducing
software development and evolution
costs significantly.

Distribution Middleware
Distribution middleware defines a higher-
level distributed programming model
whose reusable application program inter-
faces and mechanisms automate and
extend the native operating system net-
work programming capabilities encapsu-
lated by host infrastructure middleware.
Distribution middleware enables develop-
ers to program distributed applications
much like stand-alone applications, i.e.,
by invoking operations on target objects
or distributed components.

At the heart of distribution middle-
ware are QoS-enabled object request bro-
kers, such as the Object Management
Group’s (OMG) Common Object
Request Broker Architecture (CORBA)
[4, 11]. CORBA is distribution middle-
ware that allows objects to interoperate
across networks without hard-coding
dependencies on their location, program-
ming language, operating system plat-
form, communication protocols and
interconnects, and hardware characteris-
tics. In 1998 the OMG adopted the Real-
Time CORBA specification [12], which
extends CORBA with features that allow
DRE applications to reserve and manage
CPU, memory, and networking resources.
Real-Time CORBA implementations
have been used in dozens of DoD combat
systems, including avionics mission com-
puting [4], submarine combat control sys-
tems [13], signal intelligence and
Command, Control, Communications,
Computers, Intelligence, Surveillance,
and Reconnaissance systems, software
defined radios, and radar systems.

Common Middleware Services
Common middleware services augment
distribution middleware by defining high-
er-level, domain-independent, reusable
services that have proven necessary in
most distributed application contexts to
deal with multi-computer environments
effectively. In addition, these services pro-
vide components that allow application
developers to concentrate on program-
ming application logic, without the need
to write the plumbing code needed to
develop distributed applications using
lower level middleware features directly.

For example, whereas distribution

middleware focuses largely on managing
end-system resources in support of an
object-oriented distributed programming
model, common middleware services
focus on allocating, scheduling, and coor-
dinating various end-to-end resources
throughout a distributed system using a
component programming and scripting
model. Developers can reuse these servic-
es to manage global resources and per-
form recurring distribution tasks that
would otherwise be re-implemented by
each application or integrator.

Examples of common middleware
services include the OMG’s
CORBAServices [14] and the CORBA
Component Model (CCM) [15], which
provide domain-independent interfaces

and distribution capabilities that can be
used by many distributed applications.
The OMG CORBAServices and CCM
specifications define a wide variety of
these services, including event notifica-
tion, naming, security, and fault toler-
ance. Not all of these standard services are
sufficiently refined today to be usable off
the shelf for DRE combat systems.
However, the form and content of these
common middleware services will contin-
ue to mature and evolve to meet the
expanding requirements of DRE.

Domain-Specific Middleware
Services
Domain-specific middleware services are
tailored to the requirements of particular
combat system domains, such as avionics
mission computing, radar processing,
weapons targeting, or command and deci-
sion systems. Unlike the previous three
middleware layers – which provide broad-
ly reusable horizontal mechanisms and
services – domain-specific middleware

services are targeted at vertical market seg-
ments. From a COTS perspective,
domain-specific services are the least
mature of the middleware layers today.
This immaturity is due in part to the his-
torical lack of distribution middleware
and common middleware service stan-
dards, which are needed to provide a sta-
ble base upon which to create domain-
specific middleware services. Since they
embody knowledge of a domain, however,
domain-specific middleware services have
the most potential to increase the quality
and decrease the cycle time and effort that
DoD integrators require to develop par-
ticular classes of DRE combat systems.

A mature example of domain-specific
middleware services appears in the Boeing
Bold Stroke architecture [4]. Bold Stroke
uses COTS hardware and middleware to
produce a non-proprietary, standards-
based component architecture for military
avionics mission computing capabilities,
such as navigation, data link manage-
ment, and weapons control. A driving
objective of Bold Stroke was to support
reusable product-line applications, lead-
ing to a highly configurable application
component model and supporting mid-
dleware services. The domain-specific
middleware services in Bold Stroke are
layered upon common middleware servic-
es (the CORBA Event Service), distribu-
tion middleware (Real-Time CORBA and
the tactical air operations object request
broker [16]), and infrastructure middle-
ware advanced computing environment,
and have been demonstrated to be highly
portable for different COTS operating
systems (e.g., VxWorks), interconnects
(e.g., VME), and processors (e.g.,
PowerPC).

Recent Progress
Significant progress has occurred during
the last five years in DRE middleware
research, development, and deployment
within the DoD, stemming in large part
from the following trends:

Maturation of Standards
During the past decade, middleware stan-
dards have been established and have
matured considerably with respect to
DRE requirements. For example, the
OMG has recently adopted the following
DRE-related specifications:
• Minimum CORBA removes non-

essential features from the full OMG
CORBA specification to reduce foot-
print so that CORBA can be used in
memory-constrained embedded sys-
tems.

12 CROSSTALK The Journal of Defense Software Engineering November 2001

“Today’s economic
and organizational
constraints – along
with increasingly

complex requirements
and competitive

pressures – make it
infeasible to build

complex distributed
real-time system

software entirely from
scratch.”

Distributed Software Development

• Real-Time CORBA includes features
that allow applications to reserve and
manage network, CPU, and memory
resources predictably end to end.

• CORBA Messaging exports additional
QoS policies such as timeouts, request
priorities, and queuing disciplines to
applications.

• Fault-Tolerant CORBA uses entity
redundancy of objects to support
replication, fault detection, and fail-
ure recovery.
Robust and interoperable implemen-

tations of these CORBA capabilities and
services are now available from multiple
vendors. Moreover, emerging standards
such as Dynamic Scheduling Real-Time
CORBA, Real-Time CORBA publish-
subscribe services, the Real-Time
Specification for Java, and the Distributed
Real-Time Specification for Java are
extending the scope of open standards for
a wider range of DoD applications.

Dissemination of Patterns,
Frameworks
A substantial amount of R&D effort dur-
ing the past decade has also focused on
the following means of promoting the
development and reuse of high quality
middleware technology:
• Patterns codify design expertise that

provides time-proven solutions to
commonly occurring software prob-
lems that arise in particular contexts
[17]. Patterns can simplify the design,
construction, and performance tun-
ing of DRE applications by codifying
the accumulated expertise of develop-
ers, architects, and systems engineers
who have already confronted similar
problems successfully.

• Frameworks are concrete realizations
of related patterns [18] that provide
an integrated set of components that
collaborate to provide a reusable
architecture for a family of related
applications. Middleware frameworks
include strategized selection and opti-
mization patterns so that multiple,
independently developed capabilities
can be integrated and configured
automatically to meet the functional
and QoS requirements of particular
DRE applications.
Historically, the knowledge required

to develop predictable, scalable, efficient,
and dependable mission-critical DoD
DRE combat systems has existed largely
in programming folklore, the heads of
experienced researchers and developers, or
buried deep within millions of lines of
complex source code. Moreover, docu-

menting complex systems with today’s
popular software modeling methods and
tools, such as the Unified Modeling
Language (UML), only capture how a sys-
tem is designed, but do not necessarily
articulate why a system is designed in a
particular way, which complicates subse-
quent software evolution and optimiza-
tion.

Middleware patterns and frameworks
help address these problems by systemati-
cally capturing combat system design
expertise in a readily accessible and
reusable format, thereby raising the level
at which systems engineers and applica-
tion developers approach the decision
making and implementation of their sys-
tems. Two efforts to provide suitable guid-

ance for the development of military sys-
tems are the New Attack Submarine
(NAS) [2] and the Aegis Shipbuilding
Program. NAS developed a guidance doc-
ument detailing allowable standards for
the NAS C3I system, and the Aegis pro-
gram developed a guidance document for
Baseline 7 phase I [19]. These documents
were instrumental in guiding the design
of these systems.

Much of the pioneering R&D on
middleware patterns, frameworks, and
standards for DRE combat systems has
been conducted as part of the Defense
Advanced Research Projects Agency’s
(DARPA) Information Technology Office
Quorum Program [20], which played a
leading role in the following:
• Demonstrating the viability of host

infrastructure middleware and distri-
bution middleware for DoD combat
systems by providing the foundation
for managing key QoS attributes such
as real time behavior, dependability,
and system survivability from a net-
work-centric middleware perspective.

• Transitioning a number of new mid-

dleware perspectives and capabilities
into DoD acquisition programs [4,
21] and commercially supported
products.

• Establishing the technical viability of
collections of systems that can
dynamically adapt [3] their collective
behavior to varying operating condi-
tions, in service of delivering the
appropriate application level response
under these different conditions.
The Quorum program focused heavi-

ly on CORBA open systems middleware
and yielded many results that transitioned
into standardized service definitions and
implementations for the Real-Time [4]
and Fault-Tolerant [22] CORBA specifi-
cation and production. Quorum is an
example of how a focused government
R&D effort can leverage its results by
exporting them into, and combining
them with, other on-going public and pri-
vate activities by using a common open
middleware substrate. Prior to the viabili-
ty of standards-based COTS middleware
platforms, these same R&D results would
have been buried within custom or pro-
prietary systems, serving only as an exis-
tence proof, rather than as the basis for
realigning the DoD R&D and integrator
communities.

Successful DoD technology transition
most often results from a partnership
between technology developers and tech-
nology users. One of the most successful
examples of such partnerships is the joint
DARPA/Aegis High Performance Distrib-
uted Computing program (HiPer-D).
Through the use of prototyping and sys-
tem-scale experiments, this program has
demonstrated the effectiveness of a num-
ber of DARPA and standards-based
COTS technologies for building DRE
combat systems that are efficient, scalable,
fault tolerant, and flexible in their design
and operation.

Looking Ahead
Due to advances in COTS technologies
outlined earlier, host infrastructure mid-
dleware and distribution middleware have
now been demonstrated and deployed in a
number of mission-critical DRE combat
systems. Since off-the-shelf middleware
technology has not yet matured to cover
the realm of large-scale dynamically
changing systems, however, COTS DRE
middleware has been applied to relatively
small-scale and statically configured
embedded systems. To satisfy the highly
application- and mission-specific QoS
requirements in network-centric system-
to- system environments, DRE middleware

Toward Adaptive and Reflective Middleware for Network-Centric Combat Systems

November 2001 www.stsc.hill.af.mil 13

“Given the proper
advanced R&D context
and an effective process
for transitioning R&D

results, the COTS market
can adapt, adopt, and

implement the types of ...
capabilities needed for
military applications ...”

must therefore be enhanced to support
common and domain-specific middle-
ware services that can manage the follow-
ing resources effectively:
• Communication bandwidth, e.g., net-

work level status information and
management services, scalability to
102 subnets and 103 nodes, and
dynamic connections with controlled
and reserved bandwidth to enhance
real-time predictability.

• Distributed real-time scheduling and
allocation of DRE system artifacts
(such as CPUs, networks, UAVs, mis-
siles, torpedoes, radar, illuminators,
etc), e.g., fast and predictable behavior
of widely dispersed components that
use the managed communication capa-
bilities and bandwidth reservations.

• Distributed system dependability, e.g.,
policy-based selection of replication
options to control footprint and reac-
tive behavior to failures.

• Distributed system security, e.g.,
dynamically variable object access con-
trol policies and effective, combined
real-time dependability, and security
interactions.
Ironically, there is little or no scientific

underpinning for QoS-enabled resource
management, despite the demand for it in
most distributed systems [23]. Today’s sys-
tem designers develop concrete plans for
creating global, end-to-end functionality.
These plans contain high-level abstractions
and doctrine associated with resource man-
agement algorithms, relationships between
these, and operations upon these. There are
few techniques and tools, however that
enable users, i.e., commanders, administra-
tors, and operators, and developers, i.e.,
systems engineers and application design-
ers, and/or applications to express such
plans systematically, reason about and

refine them, and have these plans enforced
automatically to manage resources at mul-
tiple levels in network-centric combat sys-
tems.

To address this problem, the R&D
community needs to discover and set the
technical approach that can significantly
improve the effective utilization of net-
works and end-systems that DRE combat
systems depend upon by creating middle-
ware and distributed resource management
technologies and tools that can automati-
cally allocate, schedule, control, and opti-
mize customizable – yet standards-compli-
ant and verifiably correct – software-inten-
sive systems. To promote a common tech-
nology base, the interfaces and (where
appropriate) the protocols used by the
middleware should be based on established
or emerging industry or DoD standards
that are relevant for DRE combat systems.
However, the protocol and service imple-
mentations should be customizable – stati-
cally and dynamically – for specific DoD
DRE combat system requirements.

To achieve these goals, middleware
technologies and tools need to be based
upon some type of layered architecture
along with QoS adaptive middleware serv-
ices such as the one shown in Figure 2 and
based on empirical investigations of this
type of capability [3].

The Quality Objects (QuO) [24] proj-
ect is an example of such a layered archi-
tecture designed to manage and package
adaptive QoS capabilities as common mid-
dleware services. The QuO architecture
decouples DRE middleware and applica-
tions along the following two dimensions:
• Functional paths are flows of informa-

tion between client and remote server
applications. In distributed systems,
middleware ensures that this informa-
tion is exchanged efficiently, pre-

dictably, dependably, and securely
between remote peers, and in a manner
that scales well to large configurations.
The information itself is largely appli-
cation-specific and determined by the
functionality being provided (hence
the term functional path).

• QoS attribute paths are responsible for
determining how well the functional
interactions behave end to end with
respect to key DRE system QoS prop-
erties such as the following:

In next-generation combat systems, the
middleware – rather than operating sys-
tems or networks in isolation – will be
responsible for separating DRE system
QoS attribute properties from the func-
tional application properties. Middleware
will also coordinate the QoS of various
DRE system and application resources end
to end. The architecture in Figure 2
enables these properties and resources to
change independently, e.g., over different
distributed system configurations for the
same application.

The architecture in Figure 2 is based
on the expectation that QoS attribute
paths will be developed, configured, moni-
tored, managed, and controlled by a differ-
ent set of specialists (such as systems engi-
neers, administrators, operators, and per-
haps someday automated agents) and tools
than those customarily responsible for pro-
gramming functional paths in DRE sys-
tems. The middleware is therefore respon-
sible for collecting, organizing, and dissem-
inating QoS-related meta-information that
is needed to do the following:
• Monitor and manage how well the

functional interactions occur at multi-
ple levels of DRE systems.

• Enable the adaptive and reflective deci-
sion-making needed to support QoS
attribute properties robustly in the face
of rapidly changing mission require-
ments and environmental conditions.
Researching and developing these mid-

dleware capabilities is crucial to ensure that
the aggregate behavior of future network-
centric combat systems is dependable,
despite local failures, transient overloads,
and dynamic functional or QoS reconfigu-
rations.

To simultaneously enhance assurability,

Distributed Software Development

14 CROSSTALK The Journal of Defense Software Engineering November 2001

Figure 2: Decoupling Functional and QoS Attribute Paths in QuO

1. How and when resources are com-
mitted to client/server interactions
at multiple levels of distributed sys-
tems.

2. The proper application and system
behavior if available resources are
less than the expected resources.

3. The failure detection and recovery
strategies necessary to meet end-to-
end dependability requirements
under anomalous conditions.

November 2001 www.stsc.hill.af.mil 15

adaptability, and affordability, the middle-
ware techniques and tools developed in
future R&D programs increasingly need to
be application-independent, yet customiz-
able within the interfaces specified by a
range of open standards such as these:
• The OMG Real-Time CORBA specifi-

cations and The Open Group’s QoS
Task Force.

• The Java Expert Group Real-Time
Specification for Java (RTSJ) and the
emerging Distributed RTSJ.

• The IEEE Real-Time Portable Oper-
ating System (POSIX) specification.

Conclusions
As a result of much previous R&D and
transition experience, network-centric sys-
tems today are constructed as a series of lay-
ers of intertwined technical capabilities and
innovations. The main emphasis at the
lower layers is in providing the core com-
puting and communication resources and
services that drive network-centric comput-
ing: the individual computers, the net-
works, and the operating systems that con-
trol the individual host and the message
level communication.

At the upper layers, various types of
middleware are starting to bridge the previ-
ously formidable gap between the lower-
level resources and services and the abstrac-
tions that are needed to program, organize,
and control systems composed of coordi-
nated, rather than isolated, components.
Key capabilities in the upper layers include
common and domain-specific middleware
services that provide the following:
• Enforcing real-time behavior across

computational nodes.
• Managing redundancy across elements

to support dependable computing.
• Controlling end-to-end adaptive behav-

ior in responding to changes in operat-
ing conditions while continuing to
meet application needs.
These new middleware services make

the coordinated use of multiple computing
elements feasible and affordable by control-
ling the hardware, network, and end-sys-
tem mechanisms that affect mission, sys-
tem, and application QoS delivery and
tradeoffs that are needed to deliver the right
QoS at the right time under the prevailing
conditions.

Adaptive and reflective middleware sys-
tems (ARMS) is a key emerging paradigm
that will help to simplify the development,
optimization, validation, and integration of
DRE middleware in DoD combat systems.
In particular, ARMS will allow researchers
and system integrators to develop and
evolve complex combat systems assurably,
adaptively, and affordably through the fol-

lowing:
• Devising optimizers, meta-program-

ming techniques, and multi-level dis-
tributed dynamic resource manage-
ment protocols and services for ARMS
that will enable DoD DRE systems to
configure standard COTS interfaces
without the penalties incurred by
today’s conventional COTS software
product implementations. Many net-
work-centric DoD combat systems
require these DRE middleware capabil-
ities.

• Standardizing COTS at the middleware
level, rather than just at lower hard-
ware/networks/operating system levels.
The primary economic benefits of mid-
dleware stem from extending standard-
ization up several levels of abstraction
so that DRE middleware technology is
readily available for COTS acquisition
and customization.
As COTS implementations of middle-

ware standards mature in their functional
quality and QoS, they are helping to lower
the total ownership costs of combat sys-
tems. For example, Real-Time and Fault-
Tolerant CORBA implementations are cre-
ating a common base of COTS technology
that enables complex DRE middleware
capabilities to be reconfigured and reused,
rather than reinvented repeatedly or
reworked from proprietary stovepipe archi-
tectures that are inflexible and expensive to
maintain, evolve, and optimize. Additional
information on middleware for DRE systems
is available at <www.ece.uci.edu/~schmidt/
TAO.html>.u

References
1. Holzer, R. “U.S. Navy Looking for More

Adaptable Aegis Radar,” Defense News
18 Sept. 2000.

2. New Attack Submarine Open System
Implementation, Specification and Guid-
ance, Aug. 1994.

3. Loyall J. L., et al. “Comparing and
Contrasting Adaptive Middleware
Support in Wide-Area and Embedded
Distributed Object Applications.” Pro-
ceedings of the 21st IEEE International
Conference on Distributed Computing
Systems. Phoenix, AR. 16-19 Apr. 2001.

4. Sharp, David C. “Reducing Avionics
Software Cost Through Component
Based Product Line Development,”
Software Technology Conference. Salt
Lake City, Apr. 1998.

5. Clapp, J., and A. Taub, eds. A
Management Guide to Software
Maintenance in COTS-Based Systems
MP 98B0000069. Bedford, MA: The
MITRE Corporation, Nov. 1998.

6. Schantz, R., and D. Schmidt.

“Middleware for Distributed Systems:
Evolving the Common Structure for
Network-Centric Applications.” Ency-
clopedia of Software Engineering. Wiley
& Sons, 2001.

7. Blair, G. S., F. Costa, G. Coulson, and
H. Duran, et al. “The Design of a
Resource-Aware Reflective Middleware
Architecture.” Proceedings of the 2nd
International Conference on Meta-Level
Architectures and Reflection. St.-Malo,
France: Springer-Verlag, LNCS, Vol.
1616, 1999.

8. Schmidt D., M. Stal, H. Rohnert, and F.
Buschmann F., eds. Pattern-Oriented
Software Architecture: Patterns for
Concurrent and Networked Objects.
Wiley and Sons, 2000.

9. Schmidt D., and S. Huston, eds. C++
Network Programming: Resolving
Complexity with ACE and Patterns.
Reading, MA: Addison-Wesley, 2002.

10. Bollella, G., and J. Gosling. “The Real-
Time Specification for Java.” Computer
June 2000.

11. Object Management Group, The
Common Object Request Broker:
Architecture and Specification Rev. 2.4.
OMG Technical Document formal/00-
11-07, Oct. 2000.

12. Schmidt, D., and F. Kuhns, eds. “An
Overview of the Real-Time CORBA
Specification.” IEEE Computer Maga-
zine June 2000.

13. DiPalma, L., “The Infusion of CORBA
into the U.S. Navy’s Submarine Fleet,”
Software Technology Conference. Salt
Lake City, May 1999.

14. Object Management Group. CORBA-
Services: Common Object Service
Specification. OMG Technical Docu-
ment Formal/98-12-31.

15. Object Management Group, CORBA
Component Model Joint Revised
Submission. OMG Document orbos/
99-07-01.

16. Schmidt D., Levine D., and Mungee S.,
eds. “The Design and Performance of the
TAO Real-Time Object Request Broker,”
Computer Communications Special
Issue on Building Quality of Service into
Distributed Systems 21.4 (1998).

17. Gamma E., R. Helm, R. Johnson, J.
Vlissides, eds. Design Patterns: Elements
of Reusable Object-Oriented Software.
Addison-Wesley, 1995.

18. Johnson R., “Frameworks = Patterns +
Components.” Communications of the
ACM 40.10, Oct. 1997.

19. Guidance Document for Aegis Baseline 7
Phase 1 and II Specification Development:
Information Architecture and Baseline
Applicability, Ver. 1.0, 20 Mar. 1998.

20. The Quorum Program, Defense Ad-

Toward Adaptive and Reflective Middleware for Network-Centric Combat Systems

vanced Research Projects Agency, <www.
darpa.mi l / i to/research/quorum
/index.html> 1999.

21. Guidance Document for Aegis Open
Architecture Baseline Specification
Development, Ver. 2.0 (Draft), 5 July
2001.

22. Object Management Group. Fault

Tolerance CORBA Using Entity
Redundancy RFP. OMG Document
orbos/98-04-01 edition, 1998.

23. Narain S., R. Vaidyanathan, S. Moyer,
W. Stephens, K. Parameswaran, and
A. Shareef, eds. “Middleware For
Building Adaptive Systems via
Configuration,” Workshop. ACM

Optimization of Middleware and
Distributed Systems (OM 2001),
Snowbird, UT. June 2001.

24. Zinky, J.A., D.E. Bakken, and R.E.
Schantz, eds. “Architectural Support
for Quality of Service for CORBA
Objects.” Theory and Practice of
Object Systems 3.1, Apr. 1997.

Distributed Software Development

Douglas C. Schmidt,
Ph.D., is an associate
professor in the Electri-
cal and Computer Engi-
neering Department at
the University of Cal-
ifornia, Irvine. He cur-

rently serves as deputy director of the
Defense Advanced Research Projects
Agency’s Information Technology Office,
where he leads the national effort on dis-
tributed object computing middleware
research and development. His research
focuses on design patterns, implementa-
tion, and experimental analysis of object-
oriented frameworks that facilitate the
development of high-performance, real-
time distributed object computing sys-
tems on parallel processing platforms
running over high-speed networks and
embedded system interconnects.

Electrical and Computer
Engineering Department
University of California, Irvine
Irvine, CA 92697-2625
Phone: (949) 824-1901
Fax: (949) 824-2321
E-mail: schmidt@uci.edu

Joseph K. Cross, Ph.D., is
a senior staff system engi-
neer at Lockheed Martin
Tactical Systems, Eagan,
Minn. He is currently
serving as principal inves-
tigator of the Meta-

Interfaces for Embedded Real-Time
Systems project in Defense Advanced
Research Projects Agency, Information
Technology Office. His other activities
focus on middleware for Navy standard
products and mechanisms for automatic
configuration of complex communication
systems.

Lockheed Martin Tactical Systems
P.O. Box 64525 MS U2N27
St. Paul, MN 55164-0525
Phone: (651) 456-7316
Fax: (651) 456-2078
E-mail: joseph.k.cross@lmco.com

Richard E. Schantz, Ph. D., is
a principal scientist at
BBN Technologies in
Cambridge, Mass. His
research has been instru-
mental in defining and
evolving the concepts

underlying middleware since its emergence
in the early days of the Internet. He was
directly responsible for developing the first
operational distributed object computing
capability and transitioning it to produc-
tion use. More recently, he has led research
efforts toward developing and demonstrat-
ing the effectiveness of middleware support
for adaptively managed Quality Of Service
control, as principal investigator on a num-
ber of key Defense Advanced Research
Projects Agency, Information Technology
Office projects.

BBN Technologies
10 Moulton Street
Cambridge, MA 02138
Phone: (617) 873-3550
Fax: (617) 873-4328
E-mail: schantz@bbn.com

David C. Sharp is a Tech-
nical Fellow at Boeing
Phantom Works in St.
Louis, Mo. As lead archi-
tect and core architec-
ture team leader for
Boeing’s Bold Stroke
product line avionics soft-

ware initiative, Sharp spearheaded the
development, documentation, and presen-
tation of the Bold Stroke Software
Architecture. This reusable product-line
software architecture is used as the basis
for avionics program work on a range of
Boeing production and experimental air-
craft programs, and as the foundation for
several U.S. government-sponsored
research and development programs.
Sharp serves as principal investigator for a
number of Defense Advanced Research
Projects Agency, Information Technology
Office and Air Force Research Laboratory
programs.

The Boeing Company
P.O. Box 516
St. Louis, MO 63166
Phone: (314) 233-5628
Fax: (314) 233-8323
E-mail: david.sharp@boeing.com

Michael W. Masters
serves as chief scientist for
the U.S. Navy’s High
Performance Distribut-
ed Computing program
(HiPer-D), a joint effort
between the Aegis ship-

building program and several Defense
Advanced Research Projects Agency,
Information Technology Office programs.
HiPer-D is defining a new distributed real-
time computing architecture for ship-
board use. Masters is co-inventor of a tech-
nology called dynamic resource manage-
ment, an enterprise-wide system control
capability that allows large-scale real-time
systems to dynamically reconfigure them-
selves to adapt to varying environments,
changing mission demands and current
resource availability.

NSWC Dahlgren Division
17320 Dahlgren Road,
Dahlgren, VA 22448-5100
Phone: (540) 653-1611
Fax: (540) 653-6415
E-mail: mastersmw@nswc.navy.mil

Lou P. DiPalma is the
manager of the Sub-Sur-
face Warfighter Inform-
ation Center Systems
Engineering Department
of the Portsmouth, R.I.
headquarters of the Nav-
al & Maritime Integrated

Systems Operation of the Raytheon
Electronic Systems Company. DiPalma
has been involved in the design and devel-
opment of Submarine Combat Control
Systems including the New Attack
Submarine CC, the Combat Control
System Mk 2 and AN/BSG-1 Weapon
Launching System Programs. He has been
actively involved with the infusion of new
technology into the aforementioned sys-
tems, including Common Object Request
Broker Architecture (CORBA) and Real-
Time CORBA.

Raytheon Electrical Systems
Naval and Maritime Integrated Systems
1847 West Main Road
Portsmouth, RI 02871
Phone: (401) 842-5592
Fax: (401) 842-5232
E-mail: louis_p_dipalma@raytheon.com

About the Authors

16 CROSSTALK The Journal of Defense Software Engineering November 2001

November 2001 www.stsc.hill.af.mil 17

All distributed software architectures
require a mechanism to exchange

data between the nodes of the architec-
ture. A generic term for this class of soft-
ware is middleware. Common Object
Request Broker Architecture (CORBA) is
an open standard for object-oriented
middleware developed by the Object
Management Group, a consortium of
nearly 800 companies. A CORBA-com-
pliant Object Request Broker (ORB) can
facilitate data communication between
dissimilar hardware, dissimilar operating
systems, and modules written in different
languages. CORBA is a Joint Technical
Architecture (JTA) endorsed standard,
and is a part of the Defense Information
Infrastructure (DII) Common Operating
Environment (COE).

Command and control (C2) systems
must be able to provide decision support
information in response to the battle as it
is taking place and therefore must be
very efficient. The ability of a system to
meet performance requirements depends
heavily on the underlying architecture
selected for the software system.
Middleware is a critical performance
component. Most C2 systems being built
to JTA and DII COE standards have
CORBA as their middleware. There are
many choices of CORBA ORB imple-
mentations, and they can each affect per-
formance differently. The basic question
then is how does the architect or design-
er select the best implementation of a
CORBA ORB given the performance
needs of the system?

This article summarizes middleware
research resulting in the identification of
10 dimensions of variability in software
architecture that can affect a CORBA
ORB’s behavior for a given system [1].
The results of this research can aid in
determining what factors of a specific
architecture affect performance when
using CORBA. These factors include
aspects of the selected hardware architec-
ture that would favor one CORBA
implementation over another, and details

about how CORBA works that affect the
performance of the architecture. The
understanding of these factors can help
quantify the needs of the architecture,
and in turn help evaluate candidate
implementations of CORBA.

A secondary benefit of this research is
that knowledge of these factors can be
used to tune existing systems or systems
under construction that have already
selected a CORBA product. Most
CORBA products have parameters that
can be tuned by the system designer to
complement the system’s architecture and
improve performance.

It Is Like Buying a Car
The analogy to this situation is purchas-
ing an automobile. Some people select a
vehicle based on features or options
without much consideration of how the
vehicle will be used. Many CORBA
ORBs are purchased the same way. This
is possibly because both cars and
CORBA ORBs have extensive marketing
literature focused on features and
options.

A better approach is to perform a
needs analysis to determine which vehi-
cle factors are most important, and then
compare vehicle choices directly using
common units of measure for those fac-
tors. The first step of a needs analysis
would be to determine what the primary
purpose of the vehicle will be. What is
secondary? How many people should it
hold? What else will be carried in the
vehicle? Should it be able to tow a camp-
ing trailer or a boat trailer? The next step
is to select factors for comparison such as
acceleration, gas mileage, towing capaci-
ty, and range. There are a series of stan-
dard units of measure that can be used to
help make this comparison. Acceleration
can be compared using the time to go
from 0 to 60 mph. Fuel efficiency can be
compared using the estimate of mpg.
Towing capacity can be expressed in
terms of both dead weight and tongue
weight. Range is simply the fuel tank size

times the mpg estimate.
How can all of these factors be opti-

mized? Basically, it cannot be done. The
only possible result would be a vehicle that
was not good at anything. The best solu-
tion is to determine which factor is the
most important to the need and optimize
that factor. Fortunately for car buyers,
there is a whole series of generally under-
stood units of measure for comparison.
The factors to consider when selecting
CORBA are not nearly as well under-
stood, and there are few if any generally
accepted units of measure for comparison.

Command and Control
System Needs Analysis
The first step toward selecting a CORBA
implementation should be performing a
rudimentary needs analysis to understand
the constraints on the design of the sys-
tem. While a family vehicle must satisfy
many different needs, often loosely
defined, there is a much better situation
for C2 systems. A C2 system is often
designed to support a single mission or a
closely related group of missions. The
requirements for such a system are gener-
ally clearly stated in terms that are quan-
tifiable and testable. This statement of
need is often referred to in computer sci-
ence terminology as the service policy for
the system.

To better understand the service poli-
cy for a C2 system, it may be useful to
compare it with the service policy for a
business system. This is done for the sim-
ple reason that most CORBA implemen-
tations are actually designed for the busi-
ness environment. A rudimentary under-
standing of this environment is important
to selecting a CORBA implementation for
C2 systems.

A typical service policy at a bank
might say: “Ninety-five percent of the
transactions must be processed within 10
seconds.” Notice that there is no stated
requirement for the other 5 percent, and
that the time constraint is fairly loose and
could be easily met by several architecture

Factors to Consider When Selecting
CORBA Implementations

Dr. Thomas J. Croak
Computer Sciences Corporation

Performance and flexibility are old rivals in computer architecture. Common Object Request Broker Architecture
(CORBA) certainly provides flexibility, but at what cost to performance? This article summarizes middleware
research resulting in the identification of “10 dimensions of variability” in software architecture that can cause each
implementation of CORBA to behave differently in a given system. The resulting factors can be used to choose a
CORBA Object Request Broker implementation, and then tune it to the specific architecture.

configurations. A bank’s service policy
would most likely be derived from statisti-
cal analysis of marketing data. It would
show customer arrival rate and how long
customers are willing to stand in line, or
how long they are willing to stand in front
of an ATM while waiting for the transac-
tion to be authorized. Cost per transaction
seems to permeate many of the calcula-
tions. The bank is looking to reduce the
cost per transaction without losing cus-
tomers.

The bank’s service policy might seem
very foreign to someone used to working
with C2 systems. A service policy for a C2
system might be stated: “All transactions
must be processed within 80 milliseconds
(msec) while using no more than 50 per-
cent of available processing capacity.” This
statement is different from the bank’s serv-
ice policy in three important ways. All
transactions are covered, not just most of
them. The time constraint is far shorter.
And perhaps most importantly, a built-in
reserve capacity has been stated.

The cost reasonableness for these sys-
tems is not based on a per transaction
basis, but rather the cost of regrets if the
mission fails due to an inefficient compu-
tational suite. The advantage the C2 sys-
tem designer has over the business system
designer is that the focus can be on opti-
mizing the system to process a single
transaction. That transaction does not
even have to be a typical one. It may be the
one that is most time-critical or has the
highest use of compute power. This is an
advantage because the designer can break
down that transaction into its component
parts and find the processing bottlenecks
without having to consider arrival rate sta-
tistics. These component parts include the

processing steps within the CORBA trans-
action.

Components of the CORBA
ORB Transaction
The basic building block in CORBA is the
CORBA object. A CORBA object models
a real-world object and consists of the data
and the methods that it may invoke. The
object’s public interface is through the
CORBA Interface Definition Language
(IDL). The purpose of the IDL is to hide
the underlying object’s implementation
details. Any client of the object can use
this interface to invoke the methods of the
object without knowing any of the details
of the implementation, the platform it is
on, or the location of the object [2]. There
are IDL implementations for Ada, C++,
JAVA, Smalltalk, and several other lan-
guages.

The heart of CORBA is the ORB.
The ORB acts as the middleware compo-
nent that implements the conceptual bus
between the client and the servant. The
ORB ensures delivery of the client’s
request, while hiding the location and
implementation details from the client.
Additionally, in its broker role, if there are
multiple server components that can per-
form the method, the ORB performs a
load balancing function between them [3].
ORBs are optimized and tested thorough-
ly resulting in the virtual elimination of
many tedious, error-prone aspects of creat-
ing and managing distributed applica-
tions, while increasing the portability and
reusability of the service components [4].

While the ORB is far more complicat-
ed than the simple illustration in Figure 1,
it contains the principal components
involved in the transaction. For more

detail and a look at the entire CORBA ref-
erence model, check out the Object
Management Group’s Web site at
<www.omg.org>. The general flow of an
ORB transaction consists of the following
steps. The client object invokes a method
call on the servant as if it were performing
the call directly to another object. The
IDL Stub is the public representation of
that method and intercepts the call. The
ORB core performs the data conversion
functions, the brokering function, and the
communications function. The IDL skele-
ton represents the client to the servant
method call.

The CORBA IDL uses the concepts of
stubs and skeletons as the glue between
the client and servants respectively, and
the ORB. Stubs provide either a strongly
typed static invocation interface or a more
weakly typed dynamic invocation inter-
face, that is used to marshal the client data
into the ORB’s common packet-level rep-
resentation of the data. The skeleton does
the reverse by taking the packet-level rep-
resentation and demarshals it back into
typed data that is meaningful to the ser-
vant.

This stub/skeleton approach hides the
complexity of the low-level communica-
tion between the client and the server and
facilitates the interaction between modules
that may have been coded in different lan-
guages and between dissimilar hardware
representations of the data. An IDL com-
piler for the language of the component
automates the transformation between the
CORBA IDL definitions and the target
programming language. By performing
this automated step, the IDL compiler
also greatly reduces the potential for
inconsistencies between the client stubs
and the server skeletons. Additionally, the
compiler eliminates common sources of
network programming errors and provides
opportunities for automated compiler
optimizations [5] and [6].

The CORBA ORB Core provides the
brokering role as well as all the communi-
cation facilities for sharing resources
among processes. The core translates the
logical address for the method call pre-
sented to it by the client into a physical
address and performs all the steps required
to ship the data to the corresponding
ORB core on the server. That portion of
the core performs the other half of the
communications protocol and delivers the
information to the skeleton. Some ORB
cores are optimized to know that if the
called servant is on the same computer,
many of the communications steps can be
skipped.

Distributed Software Development

18 CROSSTALK The Journal of Defense Software Engineering November 2001

Figure 1: Generalized Flow of a CORBA Transaction

November 2001 www.stsc.hill.af.mil 19

Dimensions of Variability
The length of time to perform an ORB
transaction varies greatly with the imple-
mentation of the ORB, how it is tuned,
and the architecture it runs on. In order to
compare ORB implementations, the archi-
tect or designer must first look at the archi-
tecture of the C2 system. How distributed
is it? How many components are there?
How fast are the Local Area Networks and
Wide Area Networks? What are the dis-
tances traveled? How fast are the servers?
How many processors are there? Where are
the expected bottlenecks in the architec-
ture?

These are all aspects of the architecture
that can affect the performance of an ORB.
Various ORBs will also respond differently
to various architecture situations. To make
an intelligent selection of an ORB, the
architect or designer must understand all
the factors that will affect the performance
of the ORB, and which factors can be
tuned to reduce their effect. In addition,
the long-term effect of the tuning choices
must be considered with regard to the sys-
tem’s maintainability, flexibility, and scala-
bility.

During this research, more than 15
dimensions of variability were identified.
Only 10 of these are discussed here. The
others such as which language, operating
system, and compiler, have less affect and
can easily be held constant for the purpos-
es of this evaluation. The remaining 10 will
be discussed either independently or in
combination. They are discussed roughly
in the order that can cause the most impact
on the transaction performance. Each is
followed by some advice on how that fac-
tor can affect the choice of an ORB imple-
mentation.

Grain, Bandwidth, and
Distance Combined
The first three dimensions of variability are
addressed together to show the interplay,
then addressed separately to show how
they each affect the architecture’s perform-
ance.

Communication delays are calculated
as a function of bandwidth, distance, and
data packet size. The reason is that while
the distance determines when the first bit
arrives at the destination, the bandwidth
determines when the nth (last) bit arrives.
The architect must choose a grain size that
maximizes the combination of the distance
and bandwidth. On the surface, it would
seem a simple problem that as the band-
width increases, so should the grain size. It
is much more complicated than that.

For example, you want to ship a 1
Mbit file across the United States and
receive a reply. At 64 Kbps, about 50 per-
cent faster than a typical home modem, it
takes nearly 16 seconds to get the data
sent. The 30-msec latency delay for the
distance does not add much. Today’s stan-
dard ATM rate is 622 Mbps (OC-12)1,
with 5 Gbps (OC-96) already in use. At
622 Mbps it takes only 1.6 msec to deliv-
er the message, so the 30 msec latency
delay to wait for the reply ends up taking
95 percent of the time. As bandwidth
increases, the time-to-reply for this exam-
ple asymptotically approaches 30 msec
[7].

There are other problems that the
designer must face in this decision, such as
buffer size, efficiency of the computation
operation at each end, as well as the time

required to checkpoint the data to perma-
nent storage. From this description, it is
easy to see why the time to perform the
transaction is a function of the object’s
grain size, the distance traveled, and the
bandwidth of the circuit.

Object Grain
Grain refers to the size and layout of the
data object being sent to the servant. The
size, type of data, and layout of the data
can each have an effect on transaction effi-
ciency. Most of the computation time
expended during the ORB transaction is
applied to the marshalling and de-mar-
shalling of the data. If the data type is a
complex record consisting of a mixture of
data types, the impact is higher. Large
grained data objects also impact the data
transport time, especially if the bandwidth
is low [6].

So what? If your grain size is
large/complex, look for an ORB with effi-
cient marshalling and de-marshalling for
the language you intend to use.

Communications Bandwidth
Bandwidth is described in terms of the
clocking mechanism of the path and ulti-
mately relates to the bit density of the data
to be passed. Bandwidth can vary by several
orders of magnitude with a corresponding
affect on transaction performance. For a
given distance traveled and a given data
packet size, the time it takes to deliver that
packet is a function of the bandwidth of the
communications path.

So what? Take advantage of high
bandwidth by finding a CORBA imple-
mentation that efficiently handles large
data objects.

Distance Traveled
With the advent of giga-bit networks, we
have transitioned from being bandwidth
capacity constrained to being latency con-
strained [8]. This fact requires a change in
thinking about how much data should be
shipped at once. With low-speed net-
works, the bandwidth drove the decisions
on object size. Now the distance traveled
can cause the biggest difference in per-
formance. The speed of electrons through
a packet-switched network is about two-
thirds the speed of light. Use 1msec for
every 200 miles as a rule of thumb. If you
are doing a method call on a server on the
other side of the country, you have 30
msec of latency for the round trip before
you add in any of the other performance
factors.

So what? For short distances, optimize
for an ORB that efficiently handles high
volumes of transactions.

Dynamic vs. Static Invocation
Deciding how to invoke the method call
also affects the efficiency of the transac-
tion. As stated earlier, static invocation is
strongly typed and dynamic invocation is
weakly typed. Any Ada programmer
knows that strong typing is a good thing
and weak typing is not, so this should be
an easy choice. However, this line of rea-
soning ignores one of CORBA’s real
strengths: the ability to hide the implemen-
tation details of the distributed environ-
ment from the programmer. Some of those
implementation details include in what

“Philosophically, it can
easily be seen that any
length of chain has a

weakest link. Likewise,
there is always a

bottleneck in any process.
One of the key roles of

the software system
architect is to understand,

be able to detect, and
manipulate the location of

the bottleneck.”

Factors to Consider When Selecting CORBA Implementations

1The OC designation stands for Optical Channel, a
unit of measure for fiber networks with a single
Optical Channel, OC-1, delivering approximately
54 million bits per second.

programming language the invoked
method is coded, and what operating sys-
tem is running on that server.

Dynamic invocation allows you to
make calls for service at runtime without
prior knowledge of language or data for-
mat requirements of the called service
[9]. Static invocation makes little or no
changes to the data object prior to ship-
ping it, and requires little or no change
prior to presentation to the servant.
Obviously, this technique will improve
transaction performance, but at the cost
of flexibility. Static invocation can be
used if the language, compiler, and oper-
ating system (and hardware) are known
to be the same on both client and server.

So what? If using static invocation,
optimize for a CORBA ORB that effi-
ciently handles your data types.

Number of Processors —
Number of Threads
As the cost of a processor continues to
come down and as the architecture of the
servers and the operating system allows,
the number of processors in a typical C2
system continues to increase. Often 20
or more, and even up to 256 processors
can be found in today’s servers. Parallel
processing of the ORB transactions
greatly reduces the queuing affect at each
stage of the processing; therefore, the
time required for the transaction is also a
function of the number of processors.
The number of processors can sometimes
exceed the number of threads.

So what? Look for a CORBA ORB
that works well with a context-switching
operating system.

Modern operating systems permit
multiple threads of control within the
same session. Like the number of proces-
sors, the number of threads can change
the queuing affects at each stage of the
transaction; therefore, the time to per-
form the transaction is also a function of
the number of threads [10]. The number
of threads often exceeds the number of
processors.

So what? Look for a multi-thread
capable ORB that can efficiently manage
a thread pool (including protection
against priority inversion).

Backplane Speed
The discussion on backplane speed is
subtly different than bandwidth.
Multiprocessor-capable servers use a
high-speed (to extremely high-speed, i.e.
6 GHz) bus, generally referred to as a
backplane, to facilitate communication
between the processors. Like bandwidth,

the speed of the backplane affects the
time to transfer data between processors.
When CORBA is used to communicate
between processors within the same serv-
er, the time delays between processing
stages are a function of the speed of the
backplane. A server with a high back-
plane speed can communicate with
much larger packets while not requiring
an IP-type protocol (such as CORBA’s
Internet Inter-ORB Protocol), and
therefore is far more efficient than a
communications link with the same rate.
In these cases, the efficiency of the ORB
Core becomes the limiting factor.

So what? Look for a CORBA with an
efficient broker, and one that is designed
to adapt the protocol to the mode of
communication.

Number of Servers —
Normal Hashing or Perfect
Hashing?
The more typical CORBA transaction is
between two machines, a client and a
server. Today’s C2 systems often have
several servers optimized for different
operations: a communications server, a
mission server, a database server, and a
presentation server. The architecture may
also include a combination of thin
clients and thick clients. These architec-
tures are referred to as N-tiered architec-
tures.

In N-tier architectures, it is quite
often found that the transaction process
is further distributed, such that the ORB
transaction can occur over three or more
machines, for example: client, presenta-
tion server, and data server. The time
delays occurring during the transaction
are then a function of the number of
servers the transaction is spread across. A
higher number of servers complicates
matters for the broker. Logical address
resolution can become more difficult.

The broker uses a process known as
normal hashing to dynamically calculate
the route to the server. In a statically
configured architecture, the designer can
choose to short-cut this process by using
a technique referred to as perfect hashing
[4]. This process uses pre-calculated
lookup tables to determine the route. Be
cautioned though, this technique elimi-
nates one of the principal advantages of
CORBA: the flexibility to dynamically
choose which of several servers will per-
form the method invocation as a way of
doing load balancing. If the reduced flex-
ibility is acceptable, be aware that the use
of perfect hashing also increases the

maintainability cost by requiring recal-
culation of the hashing tables every time
the architecture is changed.

So what? If you have a fixed number
of servers with fixed addressing, look for
an ORB that allows perfect hashing.

Questions for the CORBA
ORB Salesman
Armed with this new information about
the factors to consider when selecting a
CORBA ORB, you are ready to confront
the ORB salespeople. Here are some sam-
ple questions you could ask:
• When I tested your competitor’s prod-

uct using a 7216 Byte packet size, we
recorded an average one-way transac-
tion time of 9.3241msec. Can you
beat that?

• Do I have to use normal hashing or
can I use perfect hashing?

• My entire system will be coded in Ada
95. What speed improvement can I
expect using static invocation instead
of dynamic invocation?
Here are some responses that would

indicate you have a sales representative
who knows the product and understands
the implications of the alternatives:
• Was this a simple data structure or a

complex one? What speed processor
were you using? How many proces-
sors? How far apart were they? What
was the speed of the backplane?

• Yes we support perfect hashing, but do
you realize that you may get a minimal
performance gain at the cost of less
flexibility and more maintenance?

• The improvement will only be signifi-
cant if you are using large-grained
complex record types, and you run the
risk of future software failure given an
operating system upgrade on portions
of the architecture.

Conclusions
Performance and flexibility are old rivals
in computer architecture. Usually, design
decisions made to achieve flexibility are
detrimental to performance and vice versa.
All of the decisions facing the architect
therefore come down to how to best bal-
ance the needs of both goals.

Philosophically, it can easily be seen
that any length of chain has a weakest link.
Likewise, there is always a bottleneck in
any process. One of the key roles of the
software system architect is to understand,
be able to detect, and manipulate the loca-
tion of the bottleneck. Manipulating the
location of the bottleneck is relatively
straightforward: adding or taking away

Distributed Software Development

20 CROSSTALK The Journal of Defense Software Engineering November 2001

processors here or bandwidth there. In the
case of CORBA for C2 systems, the archi-
tect must do the following:
• Understand the architectural and per-

formance needs of the system.
• Understand the dimensions of variabili-

ty within that envelope to select the crit-
ical factors for comparison purposes.

• Apply the above to the selection of a
CORBA ORB implementation that
can be effectively optimized for that
architecture.
What quickly became evident during

this research was that in the age of
gigaflop computers, the time it takes to
send a message across a LAN, approxi-
mately 1 msec, is considered an eternity.
Since these communications are con-
trolled by, facilitated by, and in most
cases are conducted on behalf of the mid-
dleware, its performance becomes para-
mount.u

References
1. Croak, T.J. “Application of Capacity

Planning Techniques as Architectural
Design Decision Aids for 3-Tier and
N-Tier Software Architectures.” DCS
Dissertation. Colorado Technical
University, 2000.

2. Seetharaman, K. “The CORBA
Connection.” Communications of the
ACM 41.10 1998.

3. Schmidt, D.C. “Evaluating Architec-
ture for Multithreaded Object Request
Brokers.” Communications of the
ACM 41, (Oct. 1998): 54-60.

4. Schmidt, D.C. “Principles and
Patterns of High-Performance and
Real-Time Distributed Object
Computing.” ACM Symposium on
Principles of Distributed Computing,
1997.

5. Gokhale, A. and D.C. Schmidt,
“Measuring the Performance of
Communication Middleware on
High-Speed Networks.” ACM SIG-
COMM Computer Communication
Review 26.4 (1996): 306-317.

6. Gokhale, A.S., and D.C. Schmidt.
“Measuring and Optimizing CORBA
Latency and Scalability Over High-
Speed Networks.” IEEE Transactions
on Computers 47.4 1998: 391-413.

7. Tanenbaum, A.S. Distributed Operat-
ing Systems. Englewood Cliffs, N.J:
Prentice Hall xvii, 614, 1995.

8. Kleinrock, L., “The Latency/Band
width Tradeoff in Gigabit Networks.”
IEEE Communications 30.4, 4 Apr.
1992: 36-40.

9. Gokhale, A., and D.C. Schmidt. “The
Performance of the CORBA Dynamic
Invocation Interface and the Dynamic

Skeleton Interface Over High-Speed
ATM Networks.” IEEE GLOBE-
COM ’96. London, 1996.

10. Schmidt, D.C., et al. “A High-
Performance Endsystem Architecture
for Real-Time CORBA.” IEEE
Communications 14.2, (1997): 72-
77.

January 27-31, 2002
2002 Western MultiConference

San Antonio, TX
www.scs.org

February 4-6, 2002
International Conference on COTS-
Based Software Systems (ICCBSS)

Orlando, FL
www.iccbss.org

February 11-15, 2002
Application of Software Measurement

(ASM 2002)

Anaheim, CA
www.sqe.com/asm

February 25-27, 2002
15th Conference on Software Engineering
Education and Training (CSEE & T)

Covington, KY
www.site.uottawa.ca.cseet2002

March 19-21, 2002
Federal Office Systems Exposition 2002

Washington D.C.
www.fose.com

April 28 — May 2, 2002
Software Technology Conference 2002

“Forging the Future of Defense
Through Technology”

Salt Lake City, UT
www.stc-online.org

May 13-17, 2002
Software Testing Analysis and Review

(STAREAST 2002)

Orlando, FL
www.sqe.com/stareast

June 4-7, 2002
8th IEEE International Symposium

Software Metrics (Metrics 2002)
Ottawa, Ontario, Canada

www.software-metrics.org

Factors to Consider When Selecting COBRA Implementations

About the Author
Thomas J. Croak is cur-
rently chief scientist of
the Joint Missile and
Air Defense unit of
Computer Sciences
Corporation. Dr. Croak
is a principal investiga-

tor analyzing compliance of Battle
Management Command, Control and
Communications Systems with Depart-
ment of Defense standards for architec-
ture, services infrastructure, and design
philosophy. Dr. Croak is retired from the
Air Force, and among his positions he
was the senior software engineer of the
Air Force and managed the Air Force
Software Technology for Adaptable and
Reliable Systems (STARS) program for
DARPA. Croak earned his doctorate in
computer science from Colorado
Technical University.

Computer Sciences Corporation
1250 Academy Park Loop, Suite 240
Colorado Springs, CO 80910
Phone: (719) 572-2588
E-mail: tcroak@csc.com

COMING EVENTS

November 2001 www.stsc.hill.af.mil 21

Having the appropriate manpower to
maintain a given computer-net-

working infrastructure (CNI) is an
important factor to consider since only
26 percent of a local access network’s
total cost of ownership (TCO1) is hard-
ware, while the remaining 74 percent is
labor [1]. Of the 74 percent for labor,
typically 43 percent is for end-user oper-
ations, 17 percent for technical support,
and 14 percent for administration [1].
Other common reasons for having an
accurate, up-to-date figure deal with
budgeting, reliability, and quality. If an
organization’s CNI staffing levels are too
high, then it wastes resources. If the
staffing levels are too low, then response
times, reliability, and end-product quali-
ty suffers; overtime is too high; and
workers leave for a better working envi-
ronment (since at present, the demand is
considerably greater than the supply).

Every organization within the
Department of Defense (DoD) has to

estimate staffing levels (manpower) for
maintaining their CNI. This activity
takes place on a regular basis for most

organizations whether part of the DoD
or the private sector. While not a fasci-
nating or appealing topic of research for
many people, manpower-sizing predic-
tions are a critical part of planning.
Therefore, at the request of its DoD
sponsors, MITRE conducted a three-

month study to try to determine the cur-
rent state of the practice in CNI staffing
levels. The focus was primarily on the
private sector. However, the study also
looked at some DoD-based data.

This article is a sanitized version of
the study’s full report [2]. Due to the full
report’s sensitive nature and critical views
in certain areas, this article maintains the
anonymity of informational sources.
Such an approach was necessary to
obtain honest data.

For purposes of this study, MITRE
determined the state of the practice by
collecting information from the follow-
ing sources: recent technical papers (most
within 24 months), organizations cur-
rently supporting CNIs, technical
experts currently working in the field,
and current modeling tools.

Current CNI Staffing
Practices
This section lists the data that MITRE
collected from the four sources men-
tioned previously. After discussing the
data from these four areas, a section
removes the outliers to show how well
the data tightens up. There are some peo-
ple who will have problems with drop-
ping the outliers for statistical reasons;
however, the whole purpose of dropping
the outliers is not to present any kind of
statistical proof. Instead, it is merely to
show the effect such changes have on the
averages and standard deviations of the
remaining data. Such comparisons are
very useful to certain organizations.

Table 1 is a list of the data MITRE
collected. The next few sections reference
this data in more detail; however, there
are a few things worth mentioning. First,
as the table shows, the deviations are too

22 CROSSTALK The Journal of Defense Software Engineering November 2001

Predicting Staff Sizes to Maintain Networks
Dr. Lon D. Gowen

The MITRE Corporation

MITRE completed a three-month study to assess the state of the practice in staffing levels for maintaining a com-
puter-networking infrastructure (CNI). The state of the practice was determined by looking at technical papers on
the subject, conducting organizational and technical-expert surveys, and looking at software models that attempt to
predict staffing levels. There were very few quantitative heuristics available in the literature; however, the data did
show that typical CNIs have a 1:42 ratio of support staff to users. That is, one full-time equivalent of CNI staffing
per 42 users for a typical CNI. This number can vary, up or down, by 17 percent or more depending on the details
of the CNI. The Department of Defense, as well as the private sector, can use the results of this study to predict ini-
tial CNI support levels, to support their current level of staffing, or to justify an increase or decrease in staffing.
Additionally, this paper breaks down CNI support into four major areas: systems administration, hardware main-
tenance, help desk, and configuration management, and provides ratios for predicting each of them within a typi-
cal CNI.

Software Engineering Technology

Number of Users Per FTE of CNI SupportType of Data Source of Data

Systems
Administration

Help Desk Hardware
Maintenance

Configuration
Management

1. Lucent INS [3] 155.2 113.8 284.5 853.5
2. Gartner #1 [4] 106.7 77.6 106.7
3. Gartner #2 [5-6] 247.8 60.0
4. PC Week [7] 86.0

Technical
Papers

5. IDC [8] 99.0

6. DoD 103.3 110.7 106.9 442.9
7. Private A 80.0 80.0 80.0

Org. Surveys

8. Private B 71.0 71.0
9. DoD Sector 426.8 81.3 213.4 284.5Technical

Expert
Surveys 10. Private Sector 227.6 136.6 162.6 227.6

11. Run A 92.1 376.0 305.9 388.0COTS
Modeling

Tools 12. Run B 80.8 199.4 193.1 292.8
159.1 129.1 169.3 414.9
112.9 90.2 86.6 228.4

Mean (Average)
Standard Deviation
Percent Standard Deviation 71.0 69.9 51.1 55.1

Table 1: CNI Staffing Data Collected

“Therefore, even if the
data accurately portrays

the state of the prac-
tice, it may not portray
the optimum, since the

state of the practice
may not be optimal.”

November 2001 www.stsc.hill.af.mil 23

loose. Dropping a few outliers within the
four areas of CNI support can tighten
them. The numbers, however, still show
useful similarities. For example, the aver-
ages between systems administration,
help desk, and hardware maintenance are
relatively close to each other but consid-
erably smaller than configuration man-
agement. Second, the statistical means
for all four areas seem reasonable and in
general agreement. Third, the standard
deviations (as a percent of the mean) are
very high. When combining data from
the four areas (see Table 2), the percent-
age drops drastically. While MITRE did
not investigate this drop, there are two
potential reasons: an inadequate under-
standing of one or more of the four areas
by some or all of the sources, and a dif-
ferent operational definition of these
terms.

Each ratio in Table 1 represents how
many users one full-time equivalent
(FTE) of CNI staffing can support for a
given area. For example, Lucent’s paper
[3] recommends one help-desk FTE per
113.8 users. The shorthand for such a
ratio, in this article, is 1:113.8.

Technical Papers
Of the 29 papers reviewed, only six
papers [3-8] contained sufficient infor-
mation to be useful for predicting CNI
support levels. MITRE collected the six
papers into five groups (see Table 1) com-
bining the two Gartner papers. Worth
noting on the Gartner papers is that their
data on systems administration differs
between these papers by a significant
amount: 1:106.7 versus 1:247.8. The
papers did not explain the reasons for
this difference.

As Table 1 shows, the help-desk area
receives the most research. Almost every
source of data has recommendations for
help-desk staffing, and the mathematical
mean of their recommendations is 1:87.3
(one help-desk staff for every 87.3 users)
with a standard deviation of 20.5 users.
Therefore, depending on the CNI’s envi-
ronment, the typical number of help-
desk staff can range from 1:66.8 up
through 1:107.8.

With three data points, systems
administration is the next most heavily
discussed area among the sources. The
mathematical mean of the ratios is
1:169.9 with a standard deviation of 71.7
users. One advantage of the technical
paper data is that companies often con-
sider it more accurate than other sources
of data. Therefore, when other sources of

data start to show similarities to the tech-
nical papers, they tend to confirm each
other’s validity.

However, relative to other areas, the
technical papers ignore both hardware
maintenance (HM) and configuration
management (CM). Only two papers
contained hardware maintenance recom-
mendations, and only one paper con-
tained configuration management rec-
ommendations.

Organizational Survey
The organizational surveys represent data
from existing organizations – some from
the private sector and one from the
Department of Defense (DoD). Unfort-
unately, in soliciting participation, none
of the private-sector organizations were
willing to participate openly. So MITRE
submitted the survey anonymously to a
different set of private-sector organiza-
tions in order to gain some unofficial
information. MITRE obtained a few
responses, but only two of them had
enough clients and servers to be useful
for this study. In general, the private-sec-
tor data has limited application since
MITRE obtained data from small CNIs
and obtained only two somewhat useful

responses. As for the DoD, MITRE ran
into the same problem with the excep-
tion of one very large DoD organization,
which was willing to share its informa-
tion. Since this study focuses on private-
sector data, one data point here was suf-
ficient.

Table 1 also summarizes the data
MITRE collected from its organizational
surveys. The mean systems administra-
tion (SA) ratio (1:84.8) and the standard
deviation (16.7 users) are much larger
(i.e., more FTEs) than are those of the
technical papers. The data seems to show
a large disconnect between the technical
papers and actual practice for SA.
MITRE did not investigate potential
causes of this difference, but one possi-
bility is that the research centers are over-
ly optimistic. Another possibility is that
this data does not accurately reflect what
organizations (in general) are actually
doing (i.e., since the sample space is so
small, it is not accurately showing the
state of the practice). The numbers for
help desk (HD) need no comment, since
they are in general agreement. As for HM
and CM, the ratios, again, are larger than
those of the technical papers. Again,
MITRE did not investigate the reasons
for this difference but the same possibili-
ties exist.

From Table 1, one can see how close-
ly the ratios for SA, HD, and HM are to
each other for each of the organizations.
The private sector explains that they view
the three areas as having overlapping tal-
ent because data points are such small
CNIs. For the DoD data set, the organi-
zation has such specialized systems that
they require a large number of SAs, thus
pushing the SA ratio close to the other
two ratios. Without some compelling
need (such as the previous examples), an
organization would not have as many SA
staff as HD staff.

Technical-Expert Surveys
The technical-expert surveys represented
best guesses at how experts might staff a
sample CNI. For this survey, MITRE
used a CNI containing approximately

Predicting Staff Sizes to Maintain Networks

“If an organization’s
CNI staffing levels are

too high, then it wastes
resources. If the staffing
levels are too low, then

response times,
reliability, and

end-product quality
suffers; overtime is too
high; and workers leave

for a better working
environment.”

COTS
Model
Run A

Lucent
Paper

Gartner
Paper

#1

Gartner
Paper

#2

DoD
Org.

Survey

DoD
Expert
Survey

Private
Sector
Expert
Survey

COTS
Model
Run B

Mean Std.
Dev.

Users
per
FTE

51.6 50.2 31.6 48.2 33.0 43.8 44.9 38.5 42.1 7.3

Table 2: Summary of Composite Ratios

100 servers, 1,000 clients, and 1,100
users. One expert from the private sector
and one from the DoD answered the sur-
vey. Per the agreement on the survey,
both respondents remain anonymous.

Table 1 (see page 22) summaries the
data from the two expert-opinion
responses. The largest deviation between
the two sets of answers is in the SA area,
where the DoD expert’s estimate is
almost twice the private-sector experts
estimate. There are also some drastic dif-
ferences between the intra-organizational
ratios. For example, the DoD response
shows a clear spread between all four
areas of CNI support with SA at the top
of the graph and HD at the bottom.
While the private-sector response is not
as drastic, there is still a larger spread
than found in the organizational survey.

Modeling
The modeling results represent data col-
lected by taking the same scenario as the
technical-expert surveys and running it
through one of the well-known COTS
modeling tools. Again, tool and vendor
are anonymous.

Table 1 contains the data from two
separate runs of the model: Run A views
the CNI from a better light than run B
(more details on this below). SA is very
close between the runs. However, the
other areas have a much larger deviation
as the table shows. These differences are
due to how the two sets of inputs charac-
terized the scenario’s CNI with respect to
best practices and complexity, which are
essential input parameters to the COTS
model in question. Run A characterized

the scenario’s CNI as more advanced with
respect to best practices than run B. Run
A also characterized the scenario’s CNI as
less complex than run B. The two runs
provide some insight into how these
parameters affect the modeling tool and
thus affect the staffing levels, which the
model predicts.

Note that the tool’s values for HD are
significantly different from all other
sources of values for HD. With a HD
ratio of 1:376, the author believes the
tool is modeling more of a customer-serv-

ice center rather than a true help desk.
The same holds true for HM. Since the
vendor has no official tool validation, this
issue may be a software error. Although
this research strived to eliminate any dif-
ferences between definitions, there may
be a disconnect between the tool’s termi-
nology and those used in this article.
That is, what the tool considers part of
the HD support, this article may consid-
er to be in some other category. These
mapping issues are always a source of
potential differences. However, these dif-

ferences go away when combining the
data as Table 3 shows.

The Outliers
As the previous section mentioned, there
appears to be some obvious outliers in the
data. This section removes some of those
outliers merely to show the effects on the
data – both numerically and visually –
since some organizations find such infor-
mation useful.

Table 3 removes three outliers from
the data set. The table drops the data
from the Lucent paper due to its very
small ratios for HM (1:284.5) and CM
(1:853.5). The ratio of one CM person
per 853 users is significantly different
from all other data points for this area.
Next, the table drops the DoD experts
data, since it had a very small SA ratio
(1:426.8) relative to all other data points.
Lastly, the table drops the values from
run A of the COTS modeling tool since
it had very low ratios for HD, HM, and
CM relative to the other sources.

Composite View of the Data
To remove potential differences between
how the sources used terms (such as SA,
HD, HM, and CM) and to provide an
easy metric for predicting staffing sizes
for CNI support, this section combines
the data producing an overall FTE-to-
user ratio. The author picked users (ver-
sus something like servers or clients),
because most research in the field uses
this same unit of measure (i.e., FTEs per
number of users). In some cases, such as
systems administration, logic dictates
that a different unit of measure (e.g.,
FTEs per number of servers) is best; how-
ever, since the common unit of measure is
users, the composite figures use it. In
addition, all previous values use this unit
of measure as well.

Table 2 contains the composite fig-
ures, but only for those sources of data
that contained heuristics in more than
one of the four areas. For example, the
IDC paper as well as the PC Week paper
referenced only help-desk staffing, so
using these figures in a composite chart
are not appropriate or useful. This table
also ignores the two private-sector orga-
nizational surveys due to their small CNI
size. The remaining eight sources of data
provide CNI staffing ratios with a mean
of 1:42.1, and whose standard deviation
is just 7.3 – significantly better than the
deviations from the non-composite
ratios.

Software Engineering Technology

24 CROSSTALK The Journal of Defense Software Engineering November 2001

Number of Users Per FTE of CNI SupportType of
Data

Source of Data

Systems
Administration

Help Desk Hardware
Maintenance

Configuration
Management

1. Gartner #1 [4] 106.7 77.6 106.7
2. Gartner #2 [5-6] 247.8 60.0
3. PC Week [7] 86.0

Technical
Papers

4. IDC [8] 99.0

6. DoD 103.3 110.7 106.9 442.9
7. Private A 80.0 80.0 80.0

Org.
Surveys

8. Private B 71.0 71.0
Technical

Expert
Surveys

10. Private Sector 227.6 136.6 162.6 227.6

COTS
Modeling

Tools

12. Run B 80.8 199.4 193.1 292.8

131.0 106.2 120.0 321.1
74.2 44.3 48.0 110.4

Mean (Average)
Standard Deviation
Percent Standard Deviation 56.6 41.7 40.0 34.4

Table 3: The Data Without Outliers

“ ... the help-desk area
receives the most
research ... and the

mathematical mean of
their recommenda-

tions is 1:87.3 ... with a
standard deviation of

20.5 users.”

November 2001 www.stsc.hill.af.mil 25

Issues
Before concluding, the reader should be
aware of the issues MITRE encountered
that affected the research. Some of these
issues listed in the accompanying sidebar
are specific to this particular study, but
most of them are generic issues associated
with labor studies involving CNI sup-
port. Despite these issues, however, the
author believes that the resulting data, as
a whole, gives a realistic and accurate pic-
ture of CNI staffing levels – both generi-
cally and specifically – since there is gen-
eral agreement among the four areas of
source data. That is, the technical papers
(while having some outliers) are in agree-
ment with the organizational data, the
technical experts, and the modeling data
from the COTS tool. Since writing this
article, another DoD organization (of
about 500 technical employees) has com-
mented that its CNI staffing is approxi-
mately 1:42, which further supports the
conclusions above. Another supporting
factor is that after removing the obvious
outliers, the deviations tighten up signif-
icantly. Nevertheless, some caution is
appropriate since there is always a chance
that the data just happen to agree.

Lastly, the data may not reflect opti-
mal staffing levels: There is no oracle to
tell us the optimum. Therefore, even if
the data accurately portrays the state of
the practice, it may not portray the opti-
mum, since the state of the practice may
not be optimal.

Conclusions
The method for determining support lev-
els for CNIs is still an art, not a science as
many would like. The lack of public
information is partly due to the propri-
etary nature of company information.
Despite the problems with collecting
CNI staffing information, the data set as
a whole appears accurate and useful, since
there is general agreement among the
four sources of data. That is, the techni-
cal papers, despite having some outliers,
are in agreement with the organizational
data, the experts’ opinions, and the mod-
eling data from the COTS tool. Another
supporting factor is that after removing
the obvious outliers, the deviations tight-
en up significantly, and the composite
data is very tight for the newness of the
industry.

Nevertheless, some caution is appro-
priate since there is always a chance that
the data just happen to agree.
Additionally, the data may not reflect

optimal staffing levels, and there is no
oracle to tell us the optimum. Therefore,
even if the data accurately portrays the
state of the practice, it may not portray
the optimum, since the state of the prac-
tice may not be optimal.

All charts in this report focus on user-
based ratios for determining support lev-
els (FTEs). However, there are other
ratios: for example, those based on the
number of servers and clients. When
using these ratios, therefore, one must

ensure an accurate census before trying to
estimate staffing levels. If one uses the
user-based ratios, then that person or
group must ensure an accurate account-
ing of users in the targeted organization
beforehand.

Lastly, while these research findings
focus on the private sector, they have
application to any CNI. The most appli-
cable ratio is the average overall FTE
ratio of 1:42; that is, one FTE of CNI
support for every 42 users with a standard

Research Issues to Consider
Following are some of the issues MITRE encountered that affected the research.

Some of these issues are specific to this particular study, but most are generic
issues associated with labor studies involving computer-networking infrastructure
(CNI) support.

Time Constraints
MITRE limited this study to a three-month effort: January 2000 through March
2000. Within this timeline, there were further tradeoffs dealing with how much
time to spend in each area of interest vs. the thoroughness of the analysis. For
example, how much time to spend on technical papers vs. organizational surveys
vs. expert-opinion surveys vs. modeling.

Technical Articles
While staffing levels are important organizational concerns, there are surprisingly
very few technical papers on the subject. Of the technical papers that do exist, only
a small number (six according to this study) discuss algorithms for determining
FTEs with regard to CNI staffing. Of the six papers that do discuss algorithms,
most focus only on a subset of the four major areas of CNI staffing.

Organizational Surveys
Another surprising outcome from this study was that very few companies were
willing to share their CNI data.

Modeling Tools
A few companies claim to have modeling tools for calculating CNI staffing levels.
The costs for the presumably better COTS modeling tools are quite high; there-
fore, MITRE used only one of the leading COTS tools in its study. Unfortunately,
as the author found out during the research, the company who developed this
COTS tool did not independently validate it, therefore, providing no confidence
that it computed reasonable or accurate results. Also, some of the model’s inputs,
which should be essential factors in determining FTEs, are for “informational use
only” according to the tool’s manufacturer2.

Mapping Data
Some of the data from the technical articles and the COTS tool required normal-
ization to ensure that the data were in agreement (i.e., that the research counted
apples as apples and oranges as oranges). Everyone seems to have slightly different
definitions for the four primary areas of CNI support, which makes studying this
area extremely difficult. Early on, MITRE learned that trying to make the areas of
study too fine would prevent certain people from wanting to participate and
would take too much time; therefore, MITRE kept the granularity at a high level
(i.e., simple).

Predicting Staff Sizes to Maintain Networks

deviation of seven users. For example,
one environment might have a ratio of
around 1:35 (i.e., more support staff),
while another environment would be
1:49 (fewer support staff). The deviation
is about plus-or-minus 17.3 percent of
the mean ratio. The HD ratios should
also have close applicability to other
domains, since the HD area received a lot
of attention in the literature and seems to
have strong agreement within both the
literature and the surveys.

Of the remaining three CNI support
areas – HM, SA, and CM – both the HM
and SA ratios should provide rough esti-
mates to other domains, while other
domains may have trouble using the CM
ratio. The state of the practice is very
unclear with respect to CM, which is
why applying the recommended CM
ratio may be difficult and inaccurate for
other domains. The state of the practice
for HM and SA is more thorough but
still not as solid as HD. Therefore, when
applying HM and SA, other domains
may need to allow for a wider variance
than they would for HD.

The author hopes this article will be
helpful to many DoD and non-DoD
organizations trying to wrestle with this
difficult and costly problem. Hopefully
other organizations, because of the diffi-
culties MITRE encountered, will share
information more freely in the future.
Lastly, the author encourages colleagues
in the DoD and private sector to pass
along any CNI staffing data whenever
and wherever possible. While MITRE
collected all of the technical articles they
could find, the author would appreciate
hearing about any significant references
that our searches may have missed, i.e.,

anything not listed in the references sec-
tion.u

References
1. Weinberg, Neal. “TCO Tall Tales.”

Network World 7 June 1999.
2. Gowen, Lon. “Computer-Networking

Infrastructure Manpower Study.” The
MITRE Corporation, Document MP-
00B0000018. Apr. 2000 (not in the
public domain).

3. “Network Operations Center Staffing
Plan.” Lucent International Network
Services, Feb. 1999.

4. Silver, M. “The Staffing Connection
to PC/LAN TCO.” Gartner Group. 1
May 1998.

5. Cappuccio, D. “The Metrics of LAN
Staffing – A Top-Down View.”
Gartner Group. Nov. 1996.

6. Apfel, A., K. McGee, J. Pultz, A.
Schoeller, M. Zboray, and Ardito C.
Smith, eds. “Selection Criteria for
Tomorrow’s Enterprise Networking
Professionals.” Gartner Group. 8 July
1998.

7. Plotnick, Neil. “Getting Your People
Power in Perspective.” PC Week, 12
Apr. 1999.

8. Kavanagh, Kelly, Tom Oleson, and
Chris Hoffman, eds. “A Model for
Determining Help-Desk Staffing.”
IDC Government. July 1998.

Notes
1. TCO is a term for which there is no

“accepted industry standard”; howev-
er, the term usually includes just what
its name says – all costs associated
with owning a piece of hardware,
including the support and mainte-
nance.

2. An excellent area for research, there-
fore, would be 1) to compare as many
of these models against each other as
possible and 2) to determine their
accuracy (i.e., attempt some sort of
validation). Currently, there are no
analyses in the literature (that the
author could find) for any of these
models.

26 CROSSTALK The Journal of Defense Software Engineering November 2001

About the Author
Lon D. Gowen, Ph.D.,
is a lead staff engineer for
The MITRE Corpora-
tion. He currently works
on a MITRE contract at
the U.S. Strategic Com-
mand, Offutt AFB, Neb.

Gowen has doctorate and master’s
degrees from Arizona State University
with areas of interest in software engi-
neering, software languages, and embed-
ded systems. He has a bachelor’s degree
with a double major in computer science
and applied mathematics from the
University of Nebraska. Gowen was a
Distinguished Visitor for the Institute of
Electrical and Electronics Engineers
Computer Society for three years. He
also teaches the systems and software
safety classes for the NASA Safety
Training Center.

The MITRE Corporation
1004 Lincoln Road, PMB 327
Bellevue, NE 68005
Phone: (402) 294-2689
Fax: (402) 294-1264
E-mail: gowenld@mitre.org

Software Engineering Technology

November 2001 www.stsc.hill.af.mil 27

In the quest for better, faster, and cheaper,
many companies are wrestling with a

methodology problem convinced that
their choice is between agile development
vs. stable processes. People on both sides
of the mat are sure that the two are per-
petual adversaries. This article puts an
example from each side in the match:
Representing agile development will be
Extreme Programming (XP); and repre-
senting stable processes will be the
Capability Maturity Model® (CMM®). It
follows a train of thought that seeks to dis-
pel the adversarial myth by looking at its
possible origins then building a bridge
into reality.

The Myth
The misconception among many com-
mercial software developers is that process
discipline in software development (such
as the CMM) is incompatible with fast-
moving development processes such as XP.
A similar misconception among many
process-oriented people – CMM or other-
wise – is that developing software quickly
is tantamount to chaos. If these two views
persist, they will keep excellent develop-
ment teams from realizing the benefits of
structured process improvement, and like-
wise keep larger organizations from look-
ing at alternative development methods.
They will be forever locked in a perpetual
wrestling match.

Let’s face it, whenever someone says
CMM, most people think of big, lumber-
ing, cumbersome, bureaucratic paperwork
and with good reason. When people think
of the places that have typically applied
CMM to their organization, or when they
look at the place that developed the guide

– the Department of Defense (DoD) and
their contractors – this could be an apt
description, often followed by a sense of
dread and loathing.

A quick look at XP may help frame
the discussion. From Don Wells’ [1] com-
prehensive Web site on the subject, we can
learn that XP has well-defined rules and
practices that can be summarized into four
main areas: planning, designing, coding,
and testing. In the June 2001 issue of
CrossTalk, Leishman [2] discussed
the differences between the traditional and
the XP development life cycles, while
Duncan [3] did an excellent job of
expanding on the requirements aspect of
software planning. Figure 1, courtesy of
Wells, depicts a typical XP project. In
Figure 1, readers seeing unfamiliar terms
such as spike and system metaphor, or the
unorthodox placement of acceptance test or
test scenarios are encouraged to investigate
the referenced materials for more informa-
tion.

XP is an exercise in iteration. The four
XP rules areas are not a sequence for the
entire project in one shot through. They
contain activities that occur with each iter-
ation. Code is developed by pairs of pro-
grammers, tested, and integrated in very
small increments. Not only are the
requirements gleaned from the user stories
(much like use cases), but the customer is

intimately involved with what and when
code is implemented based on the progress
of the development and the planning
results. Furthermore, XP has rules that
govern what small increment really means.
Planning also includes what many would
call project estimating, tracking, and con-
trols, as well as changes to how future XP
cycles will apply the experience gained
from the previous iterations.

Designing and coding are distinct
activities in XP. However, they occur along
with testing in very tight yet simple for-
mation. XP does not have a coding stan-
dard, except to specify that there must be
one. There are several other philosophical
and practical aspects to XP based on the
XP creator’s experience such as when code
is to be reused, the details of designs, the
timing of functionality, the characteristics
of the development team, and how to
ensure a closed-loop traceability between
testing and design.

To be sure, given the compact time
frames and immediacy of customer access,
one can guess that XP is not intended for
large and/or extremely complex projects
spread across several locations with no sin-
gle customer voice. Some say 20 develop-
ers would be a big team.

The Reality
The truth is that the CMM – and process

Dispelling the Process Myth: Having a Process
Does Not Mean Sacrificing Agility or Creativity

Hillel Glazer
Entinex, Inc.©

Many process-oriented software developers (some of whom use the CMM) think of Extreme Programming (XP) as
a “seat-of-the-pants” development method. Many high-speed cutting-edge developers (whether they use XP methods
or not) see CMM as a cumbersome unnecessary impediment to developing software quickly. This is the result of a
myth: Software development speed must be sacrificed when following a process-disciplined approach (such as
CMM). This myth is defeated when we look at two realities: The CMM is tailorable, and XP is disciplined. An
alternate look at the realities helps open up a new possible approach so that these methods can work together. This
article puts forth ideas to bridge the gap between the two sides using the suggested approach, and concludes that
process discipline can be achieved without sacrifice to the speed of development.

Open Forum

Figure 1: Extreme Programming Project

© All Contents Copyright 2001 Entinex, Inc.
All rights reserved.

®Capability Maturity Model and CMM is reg-
istered in the U.S. Patent and Trademark Office.

discipline in general – do not have to send
a chill down the developer’s spine. One of
the most overlooked aspects built right
into the CMM is the fact that it is meant
to be tailored to the organization. Another
significant but often-overlooked facet is
the definition of maturity as it applies to
software development. The definitive text
on the CMM, Paulk, et al [4], refers to
immature organizations as those whose
“processes are generally improvised.” And
that among immature organizations “even
if a software process has been specified, it
is not rigorously followed or enforced.”

One thing we can see about XP, even
from this brief explanation, is that it is not
improvised. As any XP developer will tell
you, it will not work unless the XP
methodology is followed. In fact, looking
at what makes a process mature is simply
that it is (again, thanks to Paulk) “explicit-
ly defined, managed, measured, con-
trolled, and effective.”

Why then is there such an impasse
between the goals of agile, creative, and
nimble development and the goals of
process improvement? Could it all be
related back to the same basic sticking
points found in most situations? Could it
be a simple matter of defining terms and
expectations? What if the problem were as
simple as that of confusing the how of
development with the what of develop-
ment? The prescriptive vs. the descriptive.

The Recipe vs. the Menu
A few words may be appropriate here to
further explain the previous paragraph.
Many standards, frameworks, and
methodologies developed by government
and industry are very rigorously defined.
Like a recipe, they prescribe what to do
and how to do it: measure three cups flour,
beat in two eggs, grease a 9-inch x 11-inch
x 1.5-inch pan, etc. They are full of verbs
and adverbs.

On the other hand, a menu describes
items that are listed: appetizer: salad or
paté … ; soup: cream of mushroom or
tomato … ; entrée: baked salmon or roast-
ed chicken … ; dessert: chocolate brown-
ies or vanilla ice cream … Menus are
mostly nouns and adjectives.

From a menu you can tell a lot about
an establishment. You can tell what their
strengths are; you can tell what ingredients
they like to use; in most cases you can tell
whether you might find something to fit
your appetite. Among better establish-
ments, you are likely to find similar char-
acteristics from menu to menu.

The CMM is more like a menu. It
does not tell you how to develop software,

or how to manage your software develop-
ment. It simply lists those items found on
the menu where good software products
are served.

Given the history of most standards,
in an industry with more than enough
recipes, a menu is a challenging mental
switch for some people to make. As a
result, many think they are being told to
cook, when all they are being told is to
dine.

The Suggestion
How does this apply to XP vs. CMM? Let
us say that the friction shows up due to a
misinterpretation of terms. For example

CMM’ers looking at XP see an undisci-
plined software management and
improvement methodology, and XP devel-
opers see CMM as a too rigid develop-
ment methodology. Well, there is the pos-
sible source of the answer!

What if we chose to distinguish XP as
a software development methodology and
CMM as a software management method-
ology? What if XP and CMM were not in
any way working at cross purposes. What
would we find if we looked closely at the
difference between development and man-
agement? Could the two be viewed as
complementary – even mutually support-
ive of one another? Would that get us
closer to solving the problem? I think so.

To help understand the difference
between development and management
methodologies, we will look to the hard-
ware world for an example. Hardware can
be designed and manufactured in any one
of several ways. We will call these the
development methodologies. The design
can be made on paper or by using com-
puter-aided design (CAD) systems. The
manufacturing can also be by hand or can
employ any number of automation sys-
tems at various steps in the production
process. Other aspects of hardware pro-
duction are the tools and tool control,

inspection, inventory control, materials
ordering, environmental controls, organi-
zational needs, and so on. These latter
aspects can be called management
methodologies.

The development and management
methodologies, therefore, are distinct dis-
ciplines. While the two are not completely
decoupled, one does not dictate the other.
Obviously the management methodolo-
gies must complement and support the
development methodologies. They must
work together to achieve business goals. A
desired state is that they are each opti-
mized to work in the same business and
operations strategy models. However, fun-
damentally, whether you draw design
blueprints by hand or by CAD is not dic-
tated by how you control the flow of mate-
rial through the plant.

The Bridge
In the software world, the CMM does not
care what development methodology you
use. It does not say that the Waterfall [5]
model is better than the Spiral [6] model.
Beyond that, it does not even say which
life cycle or development models to
choose. If XP is viewed as a development
methodology, what is to keep a software
management methodology such as the
CMM from being there at the same time?
Taken a step further, if the CMM is
viewed as a management methodology for
software process improvement, we can
completely erase any forced divorce
between CMM and XP.

In fact, as a development methodolo-
gy, XP goes a very long way toward having
a development team behave as quite a
mature software process. Contrary to the
perception among many organizations, as
a development process, XP can be
described as follows:
• Disciplined.
• Not an automatic solution to getting

projects done better, faster, cheaper.
• Dependent upon constant communi-

cation within the development team
and with the customer.

• Packaged to include many of the hard-
taught lessons learned from many
years of practical development experi-
ence.
As a result, the XP development

methodology Rules and Practices almost
explicitly mirror all but the Subcontract
Management, and Quality Assurance
CMM Level 2 Key Process Areas (KPAs).

Of these last two, if subcontracting
exists on XP projects it would have to be
addressed, but if not, then it can be tai-
lored out. The last remaining item is soft-

Open Forum

28 CROSSTALK The Journal of Defense Software Engineering November 2001

“If XP is viewed
as a development

methodology,
what is to keep a

software management
methodology such as the
CMM from being there

at the same time?”

November 2001 www.stsc.hill.af.mil 29

ware quality assurance (QA). I am sure
many readers familiar with XP think I am
insane – seeing that with all the testing
and iterations in XP, QA was not included
among those KPAs satisfied by XP. This is
due to another of the misunderstandings
in engineering (not just software) that I
will briefly address. QA is not quality con-
trol (QC).

On the Side
To put it simply, QC is testing. QC is def-
initely a major player in the XP methodol-
ogy. QC is a step in any of the develop-
ment methodologies. In XP, QC shows up
all over the place in the coding and testing
areas. In fact, QC is built into the plan-
ning and designing phases of XP before
coding begins. The resulting code (when
programming in the XP method) comes
from having coded the unit tests first after
understanding the component require-
ments. There is also a lot of QC (we hope)
in every development shop. But what QC
is not, is QA.

What is different between QA and
QC? In a nutshell, QA is process oriented
and QC is product oriented. Testing, there-
fore is product oriented and thus is in the
QC domain. Testing for quality is not
assuring quality, it is controlling it.

QA makes sure you are doing the right
things, the right way. QC makes sure the
results of what you’ve done are what you
expected. Some people would prefer we
redefine these as product QA and process
QA. An approach that I could endorse,
but that is not at issue here.

Nonetheless, while there is a lot of
obvious QC in XP – testing – QA is not
that far out of the XP Rules and Practices
either. There is a lot of wisdom built into
the XP Rules and Practices that when fol-
lowed, are the fixing’s for predictably high
quality output. In fact, some could argue
that preplanning the unit tests and then
coding the software is a unique approach
to QA. The key ingredients that would
add the right QA flavor to XP are man-
agement visibility, independent review and
audit, and assurance of the application of
standards and the development process.

In other words, most XP projects that
truly follow the XP Rules and Practices
could easily and quickly be assessed at
CMM Level 2 if they could demonstrate
having a process for the following:
• Ensuring that the XP Rules and

Practices are taught to new developers
on the project.

• Ensuring that the XP Rules and
Practices are followed by everyone.

• Escalating to decision makers when the

XP Rules and Practices are not fol-
lowed and not resolved within the
project.

• Measuring the effectiveness of the XP
Rules and Practices.

• Providing visibility to management via
appropriate metrics from prior project
QA experience.

• Knowing when the XP Rules and
Practices need to be adjusted.

• Having an independent person doing
the above.

The Resolution
If there is one thing developers have likely
understood by now, it is that there is no

silver bullet – either in development or
management methodologies. A road to
better, faster, and cheaper is not the road to
better, faster, and cheaper. This article in
no way suggests that XP is appropriate for
all projects, or for any organization, or is
without developmental disciplinary short-
comings. I am suggesting that there is a
workable solution to organizations pursu-
ing the use of dynamic, highly agile devel-
opment methodologies (such as XP) with-
in the context of process discipline (such
as CMM).

With the understanding that XP is a
software development methodology and
that CMM is a software management
methodology, and with people who can
tell the difference, these two methodolo-
gies cannot only co-exist, but they can
generate a mutually supportive environ-
ment, profitable company, and reliable
product.

In this example, by documenting a
project’s approach to XP, or even closely
following one of the many existing docu-
mented approaches, then by introducing
the QA KPA, projects are already very
close to CMM Level 2. With a little more
work at the organizational level, CMM
Level 3 is not far off. In an article on the

Institute of Electrical and Electronics
Engineers’ computer.org web site Paulk
[7] considers “… XP to be another exam-
ple of a good software process (or philoso-
phy), at least within the proper context,
that would satisfy many Software CMM
Level 2 and 3 goals.” He also adds, “if an
XP team decided to add quantitative man-
agement (perhaps even statistical tech-
niques) to provide more efficient real-time
feedback, it could probably achieve Level
4 process capability.”

Another Wells’ [1] diagram in Figure 2
provides an idea of the detailed develop-
ment release process. The macro-cycle
depicted here offers insight into opportu-
nities for several CMM KPAs such as proj-
ect planning, project tracking and over-
sight, organization process definition,
intergroup coordination, and others.

Ron Jeffries [8] wrote a quick article
outlining the activities performed on a
project that used XP and how they related
to the CMM’s upper four levels. While a
very cursory sample, it does convey that
there is some interest in seeing the two
methodologies work together.

While the list of projects experiment-
ing with or transitioning to XP is as
dynamic as the methodology itself, DoD
projects are likely to be few among them.
As mentioned, XP is intended for small
teams of programmers. If DoD projects
can be broken down into smaller projects
and integration of these components can
be tightly managed, then perhaps even
these projects can try XP.

At publication, this author personally
only knew of one organization giving seri-
ous thought to developing software using
XP within the CMM process framework.
However, although specifics of the effort
were proprietary, the prognosis of success-
fully pinning the myth to the mat is very
positive.

The Conclusion
There are many corporate and technical
leaders looking to find effective paths

Dispelling the Process Myth: Having a Process Doesn’t Mean Sacrificing Agility or Creativity

Figure 2: Release Iteration in XP

“ If an XP team decided
to add quantitative

management
(perhaps even statistical
techniques) to provide
more efficient real-time

feedback, it could
probably achieve Level
4 process capability.”

30 CROSSTALK The Journal of Defense Software Engineering November 2001

toward better, faster, and cheaper. There
has long been the perception that while
CMM managed organizations may
achieve the better, the jury is still out on
cheaper, and faster is clearly not readily evi-
dent. Especially when going from Level 1
to Level 2.

Projects thinking of using XP in
organizations already assessed against the
CMM are encouraged to shed the myth
that they could lose their CMM rating.
Organizations that use XP on their proj-
ects wanting to fulfill the intent of the
CMM’s KPAs are encouraged to shed the
myth that they will be bogged down with
the burden of dead trees. I posit that a
symbiotic relationship exists to be found
between the speed of agile development
methodologies such as XP, and the direc-
tion of process improvement management
methodologies such as CMM.

The first step is to understand why
your processes do or do not fulfill the
intent of CMM. Then plot the path of
how to make your processes what you
need them to be. The intent of the CMM
is what you need to demonstrate. If you
are effectively using a development
methodology like XP, you are already
nearly there. All you need to do is prove
it.

One path to better, faster, and cheap-
er can be found outside the development
myth in the peaceful coexistence of agile
programming and structured processes
and process improvement.u

References
1. Wells, J. Donovan. “Extreme Program-

ming: A Gentle Introduction.” <www.
ExtremeProgramming.org>.

2. Leishman, Theron. “Extreme Method-
ologies for an Extreme World.”
CrossTalk, June 2001: 15-18.

3. Duncan, Richard. “The Quality of
Requirements in Extreme Program-
ming.” CrossTalk, June 2001: 19-
22, 31.

4. Paulk, Mark C., Charles V. Weber, Bill
Curtis, and Mary Beth Chrissis, eds.
The Capability Maturity Model:
Guidelines for Improving the Software
Process. Software Engineering Insti-
tute. Addison-Wesley Longman, 1994.

5. Royce, W. W. “Managing the Develop-
ment of Large Software Systems.”
Proceedings of IEEE WESCON. Aug.
1970.

6. Boehm, Barry. “A Spiral Model of
Software Development and Enhance-
ment.” ACM SIGSOFT Software
Engineering Notes. Aug. 1986.

7. Paulk, Mark. “XP from a CMM
Perspective.” IEEE Computer Society.
Dynabook, 2001. <www.computer.
org/seweb/Dynabook/PaulkCom.htm>.

8. Jeffries, Ron. “Extreme Programming
and the Capability Maturity Model.” 1
Jan. 2000. <www.xprogramming.com
/xpm ag/xp_and_cmm.htm>.

Open Forum

About the Author
Hillel Glazer is the prin-
cipal consultant of
Entinex, Inc. He brings a
broad spectrum of expe-
rience in process engi-
neering and manage-
ment. He is a student of
the evolution of process-

centered design, development and pro-
duction and has followed the progress of
Total Quality Management, Integrated
Product and Process Development, ISO
9000, and the Capability Maturity
Model from their emergence and intro-
duction at the Department of Defense to
their subsequent migration to the private
sector. The focus of his career is on the
issues of product integrity and technolo-
gy management. He specializes in the
management-driven engineering princi-
ples of quality, operations, risk, require-
ments, productibility, configuration, and
project management. In merging these
disciplines with business and operations
strategies he emphasizes the importance
of thoroughly planned and integrated
process management. He has successfully
adapted and evolved these disciplines
across the Internet, software, and manu-
facturing industries.

Entinex, Inc.
1516 Castle Cliff Place
Silver Spring, MD 20904
Phone: (301) 384-4203
Fax: (240) 465-0062
E-mail: hillel@entinex.com

Object Management Group
www.omg.org
The Object Management Group (OMG) is an open member-
ship, not-for-profit consortium that produces and maintains
computer industry specifications for interoperable enterprise
applications. Its membership roster, about 800 strong, includes
virtually every large company in the computer industry, and
hundreds of smaller ones. OMG's best-known specifications
include CORBA, OMG IDL, IIOP, the OMA, and Domain
Facilities in industries such as healthcare, manufacturing,
telecommunications, and many others, UML, the MOF, and
CWM. All of OMG's specifications may be downloaded with-
out charge.

Distributed Objects & Components
www.cetus-links.org/oo_distributed_objects.html
This site of general information on distributed objects and com-
ponents is part of the Cetus Links network. Cetus Links offers
quick access and a comprehensive overview of tens of thousands
of interesting pages about object-orientation and component-
orientation that exist on the Internet. The Cetus Links can be
regarded as an index to Internet addresses (http, ftp, and mail-
to) about object-orientation and component-orientation.

Distributed Object Computing with CORBA
Middleware
www.cs.wustl.edu/~schmidt/corba.html
This site features mini-tutorials, including an overview of
CORBA, research, on-line specification, related papers, tools,
the ACE ORB (TAO), and CUJ and C++ report columns. It
also describes the contents of the series of C++ Network
Programming books written by Douglas C. Schmidt and Steve
Huston.

IEEE Computer Society
http://computer.org
With more than 100,000 members, the Institute of Electrical
and Electronics Engineers (IEEE) Computer Society claims to
be the world’s leading organization of computer professionals.
Founded in 1946, it is the largest of the 36 societies of the
IEEE. The society is dedicated to advancing the theory, prac-
tice, and application of computer and information processing
technology. The site features listings of conferences, journals,
technical committees, standards working groups, and more, to
promote an active exchange of information, ideas and techno-
logical innovation among its members.

WEB SITES

November 2001 www.stsc.hill.af.mil 31

There’s No Shame In Saying, ‘I Don’t Know!’

BackTalk

PA few months ago, I was asked to write this month’s
BackTalk. I readily agreed. (I LOVE to see my name in print

– and the only way I’ve found to see it often is to write an arti-
cle myself.) However, I had no real clue what to write about.
Luckily, as the deadline for the article approached, Associate
Publisher Elizabeth Starrett sent me an advance copy of the arti-
cles in this month’s CrossTalk.

After reading the great line up of articles she had assembled
for the month, (hey – she brings chocolate to our reviewers’
meetings, so I am always nice to her), this BackTalk practically
wrote itself.

First, go back and read the publishers’ note. Go ahead.
Next, understand that Beth referred to the fact that she would
have been greatly helped in a previous job if she had had the
knowledge contained in this issue of CrossTalk back then.
What she was saying is that
she didn’t know that there was
additional knowledge out
there that she could use. In
other words, she didn’t know
that she didn’t know enough.
The way I used to envision it,
you either know something, or
you don’t know something.
However, I now see that you
can either know or not know
something, and you can also
know or not know whether
you know or not. (Read the
sentence again – it will eventu-
ally make sense.)

So, there are two dimensions of knowledge: The first
dimension is what I know; the second dimension is my aware-
ness of my knowledge. Figure 1 shows the four possible combi-
nations of knowledge and self-awareness. Given a specific topic,
your knowledge fits into one of the quadrants above.

Now the problems in communications become clear. I (of
course) am in the “I know that I know” group. I am reasonably
well educated. (Have I ever mentioned that I went to Texas
A&M?) This is the best quadrant in which to belong – aware-
ness that you are knowledgeable about a subject.

If you are not lucky enough to be among the “I know that
I know,” group, then I suppose the next best option is to be in
the “I know that I don’t know” quadrant. You lack knowledge –
but are aware of your ignorance. You are teachable. You can
admit to yourself and others that you don’t know everything,
and you are willing to learn.

Unfortunately, not all of us are so self-aware. Some of us
belong to the “I don’t know that I know” quadrant. You have
knowledge, but are unable to either apply or use the knowledge
you have. You’ve wasted your education.

And, coming in last and least, is the “I don’t know that I
don’t know” quadrant. Here is where communication becomes
a problem. A person who fits into this group is ignorant about
a topic, but isn’t even aware that they are ignorant. Of course,
being unaware that they are clueless, they wander around in
blissful ignorance. Unfortunately, they seldom wander around
in blissful ignorance in silence. They become self-proclaimed
experts, ready to share their opinions to anybody ready to listen,

thus making life miserable for those around them. Because they
are totally unaware they are clueless about a topic, they are sure
that they are experts, and frequently refuse to listen or learn
from others.

Now, here’s the scary part. If I think that I am an “I know
that I know” person, and I’m wrong, well, that makes me a “I
don’t know that I don’t know.”

What’s the cure for being an “I don’t know that I don’t
know?” Unfortunately, often there isn’t one. Self-proclaimed
experts are hard to cure. Sometimes, they are even hard to rec-
ognize. I have listened to people who have never written a line
of code lecture me about which programming language to use.
I have listened to people that never managed a project explain
how to create a schedule and how to gather requirements.
Academic theory is one thing, but until you’ve managed a proj-

ect, designed a large system,
or written a real-time pro-
gram, you just “don’t know!”

Just having a college
degree does not make you an
expert in software develop-
ment. You have to do it to
truly understand it. Doctors,
after graduating from medical
school, cannot practice medi-
cine. They have to complete a
residency to show that they
have practical knowledge
along with theoretical knowl-
edge. Why do we think we are
different? Doctors who are

true experts are still said to practice medicine. They continue to
learn as they perform their craft. Again, why should we be any
different?

To become real practitioners, we have to practice for a while
to become qualified. The first step on the road to becoming an
expert is saying, “I know that I don’t know” about some topic.
There is no shame in saying, “I know that I don’t know.” We all
have gaps in our knowledge. We cannot be experts in every-
thing. We need to recognize the gaps in our knowledge, and
learn from those who “know that they know.” Find the real
experts, and learn from them. And if you think you are one,
maybe it’s time to look one more time.

I never thought I would be quoting poetry in a BackTalk,
but the following verse definitely applies:

O wad some power the giftie gie us –
To see oursels as ithers see us!”
(“O would some power the gift to give us –
To see ourselves as others see us!”)

– From Ode to a Louse
Robbie Burns

I am not sure why Robbie Burns wrote an ode dedicated to
a louse – but I am sure you can come up with louses on your
own that this ode applies to.

– David A. Cook
Software Technology Support Center

david.cook@hill.af.mil

My Self-Awareness
KNOW DON’T KNOW

KNOW I know
that I know

I don’t know
that I know

My
Knowledge

DON’T
KNOW

I know that
I don’t know

I don’t know
that I don’t know

Figure 1: Knowledge Dimensions

CrossTalk / TISE
7278 4th Street
Bldg. 100
Hill AFB, UT 84056-5205

PRSRT STD
U.S. POSTAGE PAID

Albuquerque, NM
Permit 737

Sponsored by the
Computer Resources
Support Improvement

Program (CRSIP)

	Cover
	Index
	From the Publisher
	Distributed Development: Insights, Challenges, and Solutions
	Toward Adaptive and Reflective Middleware for Network Centric Combat Systems
	Factors to Consider when Selecting CORBA Implementations
	Coming Events
	Predicting Staff Sizes to Maintain Networks
	Call for Articles
	Dispelling the Process Myth
	Web Sites
	BackTalk
	Back Cover

