


Reengineering: An Affordable Approach for Embedded Software Upgrade
The Air Force Research Laboratory Information Directorate and Lockheed Martin have
developed a legacy software reengineering capability that parses and converts JOVIAL
source files into language-neutral graph-based representations of their operation.
by Kenneth Littlejohn, Michael V. DelPrincipe, Jonathan D. Preston, and Dr. Ben A. Calloni

The IULS Approach to Software Wrapper Technology for Upgrading
Legacy Systems
This article introduces three suggested types of software wrappers and describes their use as
a key technology for modernizing legacy systems, discusses a process for selecting which
upgrade path to use, and explains a new tool-set that automatically generates wrappers.
by Dr. David Corman

A COTS-Based Replacement Strategy for Aging Avionics Computers
This article describes a commercial off-the-shelf-based replacement strategy that can reuse
existing software code while providing a flexible framework for incremental upgrades and
managed change.
by Jahn A. Luke, Douglas G. Haldeman, and William J. Cannon

Automated Transformation of Legacy Systems
It is now possible to transform system applications code and databases at automation levels that exceed 99 
percent to migrate legacy systems to a modern computing environment while preserving their processes. 
by Philip Newcomb and Randy A. Doblar

Balancing Discipline and Flexibility With the Spiral Model and MBASE
The authors in this article show how the spiral model and its recent extension – Model-Based Architecting
and Software Engineering – can be used to tailor a project’s balance of discipline and flexibility via risk 
considerations.
by Dr. Barry Boehm and Dr. Daniel Port

2 CROSSTALK The Journal of Defense Software Engineering December 2001

CrossTalk

Kent Bingham,
Digital Illustration
and Design, is a

self-taught graphic
artist/designer
who freelances
print and Web

design projects.

3 From the Publisher

8 Coming Events

17 Web Sites

29 2001 Article Index

31 BackTalk

4

9

14

18

23
Best Best Practices Practices 

DepartmentsDepartments Article Submissions: We welcome articles of interest to the
defense software community. Articles must be approved by
the CROSSTALK editorial board prior to publication. Please
follow the Author Guidelines, available at www.stsc.hill.af.mil/
crosstalk/xtlkguid.pdf.  CROSSTALK does not pay for submis-
sions.  Articles published in CROSSTALK remain the property
of the authors and may be submitted to other publications.
Reprints and Permissions: Requests for reprints must be
requested from the author or the copyright holder. Please
coordinate your request with CROSSTALK.
Trademarks and Endorsements: This DoD journal is an
authorized publication for members of the Department of
Defense. Contents of CROSSTALK are not necessarily the
official views of, or endorsed by, the government, the
Department of Defense, or the Software Technology
Support Center.  All product names referenced in this issue
are trademarks of their companies. 
Coming Events: We often list conferences, seminars, sym-
posiums, etc. that are of interest to our readers. There is no
fee for this service, but we must receive the information at
least 90 days before registration. Send an announcement to
the CROSSTALK Editorial Department.
STSC Online Services: www.stsc.hill.af.mil
Call (801) 777-7026, e-mail: randy.schreifels@hill.af.mil
Back Issues Available:The STSC sometimes has extra copies
of back issues of CROSSTALK available free of charge. 
The Software Technology Support Centerwas established
at Ogden Air Logistics Center (AFMC) by Headquarters
U.S. Air Force to help Air Force software organizations
identify, evaluate, and adopt technologies to improve the
quality of their software products, efficiency in producing
them, and their ability to accurately predict the cost and
schedule of their delivery.

SPONSOR

PUBLISHER

ASSOCIATE PUBLISHER

MANAGING EDITOR

ARTICLE
COORDINATOR

CREATIVE SERVICES
COORDINATOR

PHONE

FAX

E-MAIL

CROSSTALK ONLINE

CRSIP ONLINE

Lt. Col. Glenn A. Palmer

Tracy Stauder

Elizabeth Starrett

Pam Bowers

Nicole Kentta

Janna Kay Jensen

(801) 586-0095
(801) 777-5633
crosstalk.staff@hill.af.mil
www.stsc.hill.af.mil/
crosstalk/crostalk.html

www.crsip.hill.af.mil

Subscriptions: Send correspondence concerning sub-
scriptions and changes of address to the following
address. You may e-mail or use the form on p. 22.

Ogden ALC/TISE
7278 Fourth St.
Hill AFB, UT 84056-5205

Software Software LegacyLegacy SystemsSystems

ON THE COVER



December 2001 www.stsc.hill.af.mil 3

Stronger Than Ever

On behalf of the CrossTalk staff, welcome to our final issue of 2001. As
CrossTalk concludes another publication year with its fourteenth volume, we

remain committed to our mission of providing the defense software community with
informative articles on software engineering best practices, proven methods, and lessons
learned. We head into 2002 aiming to provide managers, practitioners, and users with
the information they need to buy and build quality software – on time and within
budget.

As we reflect back on this past year, it is the Sept. 11 attack on our nation that seems to cloud
the year’s events. We wish to express our sincere sympathy to those families and friends of the
many victims. May our American pride remain strong and your loved ones never forgotten.

At CrossTalk, 2001 was an exceptional year. As our annual index shows on pages 29-30,
we published articles on a wide variety of software engineering topics that included Avionics
Modernization, Distributed Development, Open and Common Systems, Testing and
Configuration Management, and more. All of our 2001 issues are accessible from our Web site
at <www.stsc.hill.af.mil>.

In this last issue of the year, we bring you information on upgrading and maintaining legacy
system software. This topic is very important to the many organizations that regularly address
how to migrate irreplaceable legacy software to modern platform-independent computing envi-
ronments. Our issue begins with Reengineering: An Affordable Approach for Embedded Software
Upgrade by Kenneth Littlejohn, Michael V. DelPrincipe, Jonathan D. Preston, and Dr. Ben A.
Calloni. In this article, the Air Force Research Lab Information Directorate (AFRL/ID) and
Lockheed Martin Aeronautics share what they have learned from the Embedded Information
System Reengineering project that resulted in an automation-assisted JOVIAL-to-C reengineer-
ing capability. 

Next, The IULS Approach to Software Wrapper Technology for Upgrading Legacy Systems is
brought to us by Dr. David Corman, The Boeing Company, where the Incremental Upgrade of
the Legacy Systems program has found that software wrappers play a major technological role for
modernizing legacy systems. A COTS-Based Replacement Strategy for Aging Avionics Computers
describes another AFRL/ID-sponsored effort that demonstrates a TRW-developed generic com-
mercial off-the-shelf (COTS)-based software technology. Here Douglas G. Haldeman, William
J. Cannon, and Jahn A. Luke explain how this scalable technology allows for the execution of
legacy binary code on the latest generation of COTS microprocessors. 

Our feature section concludes with Automated Transformation of Legacy Systems. This article
by Philip Newcomb and Randy A. Doblar is a look at how artificial intelligence technology tools
can be used for reengineering legacy computer languages into modern environments. Rounding
out this issue, our supporting article this month is Balancing Discipline and Flexibility With the
Spiral Model and MBASE by Dr. Barry Boehm and Dr. Daniel Port. See how this model and its
recent extension can be used to tailor a project’s balance of discipline and flexibility through risk
considerations.

Finally, as we wrap up the year, we wish to provide a special thanks to all of our 2001 authors
for contributing such informative articles. We also thank our many readers for their feedback and
continued interest in our journal. We are excited about our upcoming January 2002 issue in
which we will announce the Top 5 Government Software Projects. We had almost 100 entries,
and what a tough choice it was to narrow this list down to five. Also, coming up in 2002, we will
be featuring themes such as Capability Maturity Model®-IntegratedSM, Requirements Risk,
Software Estimation, and Information Assurance to name a few. 

As CrossTalk remains stronger than ever, may our nation also remain strong and prosper.
Best wishes to you for a happy and healthy New Year.

From the Publisher

Tracy L. Stauder
Publisher



4 CROSSTALK The Journal of Defense Software Engineering December 2001

Maintaining the viability of embed-
ded information systems is a key

technical and economic problem facing
operators of aging aircraft. Within the
Department of Defense (DoD), many
currently fielded embedded information
systems face readiness challenges imposed
by evolving missions and extended service
life spans. For example, emerging require-
ments for global situational awareness and
rapid strike capabilities necessitate
increased information processing and
information exchange between command
and control (C2) and weapon system plat-
forms. However, the ability to overcome
these challenges is constrained by such
factors as shrinking budgets, limited com-
putational capacity reserves, and the effect
of diminished manufacturing sources
(DMS). 

Wholesale redevelopment is often cost
prohibitive, particularly since large por-
tions of embedded applications continue
to fulfill mission requirements. In fact,
most present-day upgrade programs
involve incremental changes to an estab-
lished design baseline, the majority of
which is reused as is. Even when major
functional overhauls are performed,
budget and schedule realities usually dic-
tate a phased approach. These realities
underscore the need for an efficient means
to carry forward, modernize, and exploit
usable functionality within legacy soft-
ware. 

Solutions must maximize the recap-
ture of prior design investments, provide
efficient pathways for continued technol-
ogy refresh, and accommodate changing
technologies and economies of scale over
decades-long service life spans. Purposeful
migration toward insertion of commercial
components mandates changes to existing

business practices. The challenge, then, is
to offer developers affordable methods of
leveraging existing embedded information
system applications to provide a founda-
tion on which to base future systems. The
Embedded Information System Reengi-
neering (EISR) solution assumes that the
end user is actively migrating to commer-
cial hardware and operating systems.

The Air Force Research Laboratory
Information Directorate (AFRL/ID) and
Lockheed Martin Aeronautics Company
have matured an integrated set of tech-
nologies that facilitate affordably main-
taining and upgrading legacy systems and
software. The EISR project has developed
an automation-assisted JOVIAL-to-C
reengineering capability that permits
simultaneous modernization of both the
structure and source language of legacy
embedded applications. 

The EISR environment has several key
features: support for detailed analysis of
legacy software, visualization of critical
execution sequences and complex data
dependencies, rapid source conversion,
and a high-percentage source construct
conversion rate. Using this capability,
developers can rapidly characterize the
overall legacy software architecture, per-
form incremental or wholesale source lan-
guage conversion, and upgrade selected
components and structures. Engineers
can apply the proven labor-saving visuali-
zation and analysis features provided in
modern commercial Computer Aided
Software Engineering (CASE) tools to
legacy JOVIAL applications. Following
conversion, legacy applications can then
be imported into other mainstream com-
mercial graphical CASE environments
that allow visual reconstruction and auto-
matic source code generation. 

To summarize, today’s system develop-
ers face many general and high-level
obstacles impeding evolution and mod-
ernization of these systems: 
• Greatly extended platform service life

spans. 
• Rapidly changing mission scenarios,

system roles, and threats.
• Increased information-processing require-

ments. 
• Desire for cross-platform commonali-

ty of capability and architecture.
• Shrinking budgets.
• DMS affecting both application and

software engineering environment
hardware and software elements. 
In addition to these obstacles and

challenges, there are additional detailed
design-level issues that must be dealt with
in order to derive maximum benefit from
large-scale reuse of legacy software. 

In this paper, we assume upgrade sce-
narios where developers will migrate from
military specific programming languages
and development environments toward
mainstream commercial replacements.
Successful migration requires dealing with
specific aspects of legacy applications and
their development, which are outlined
below.

Outdated Methods
Legacy systems commonly contain hierar-
chical, functionally decomposed, time-
slice scheduled software architectures tar-
geted to uniprocessor platforms. These
designs are often highly coupled through
global data pools as opposed to modern
data-encapsulated object-oriented analy-
sis/object-oriented design (OOA/OOD)
forms. Such coupling hinders selective
isolation and capture of proven function-
ality.

Reengineering: An Affordable Approach 
for Embedded Software Upgrade

Kenneth Littlejohn Michael V. DelPrincipe, Jonathan D. Preston, and Dr. Ben A. Calloni
Air Force Research Laboratory Lockheed Martin Aeronautics Company

Software Legacy Systems

Within the Department of Defense, embedded information systems found in aging aircraft are facing readiness, sup-
portability, and upgrade challenges due to diminished manufacturing sources (DMS), which impacts both embed-
ded processing hardware and software development tools. In many cases, however, the embedded software function-
ality within these systems is still highly viable. Under the Embedded Information System Reengineering project, the
Air Force Research Laboratory Information Directorate and Lockheed Martin Aeronautics Company have matured
a legacy software reengineering capability that eliminates software tooling DMS, permitting affordable application
support and upgrade. A successful flight demonstration aboard a U.S. Air Force F-117 stealth fighter aircraft was
recently conducted to verify correct performance of reengineered weapon system software components generated using
high degrees of automation assistance. 



December 2001 www.stsc.hill.af.mil 5

Lack of Modern Integrated
Analysis Capability
Legacy development environments often
consist of a patchwork of standalone textu-
al/command line-based tools. Although
there is support for symbol and dependency
tracing, this capability is not comprehensive
or integrated and is generally cumbersome,
involving the use of several separate tools. As
a result, it is difficult to determine the scope
of a design change. This can result in
increased risk and reduced confidence,
thereby eroding the motivation for refresh-
ing the structure of an existing embedded
application.

Platform Coupling
Frequently there is no clear separation of
operating system and pure application func-
tionality. Legacy code often contains inter-
spersed code sequences that perform
input/output (I/O) device control, data for-
matting, and interrupt handling. 

Hardware performance (temporal
knowledge) is often encoded into legacy
algorithms in the form of time constants.
This was done to achieve and maintain per-
formance and computational accuracy as the
system matured. Thus changes or updates to
the processing hardware have unintended
detrimental effects on unchanged software.
Successful migration and reuse of applica-
tions containing such characteristics depends
on up-front investigation, identification,
and understanding of low-level platform
coupling to fully understand top-level design
constraints and performance impact aspects. 

Structural Degradation
Many currently fielded embedded systems
are extensions of custom designs that have
evolved during an extended upgrade and
maintenance lifetime. Engineering decisions
made in the development of these early sys-
tems were often specific to the task at hand,
resulting in system architectures that were
not designed for direct reuse. As the product
is maintained and upgraded over time, the
original architectural design often degrades
due to multiple sets of small modifications.
Local optimizations are made without
adherence to the overall architectural policies
that drove the initial design. 

As a result, many legacy designs are cost-
ly to update because of non-uniformity and
brittleness. The structural degradation com-
bined with hidden platform coupling often
creates a significant perceived risk in reusing
an application, eliminating the considera-
tion of this as an option. The application is
perceived to be spaghetti code that is over-
whelmingly complex and unsuitable for
reuse.

Resource Constraints
The limited memory, I/O, and processing
capacities of legacy militarized electronics
units often drove developers to make design
decisions favoring efficiency over quality of
design. Often mechanisms peculiar to the
inherent programming language were used
to provide more efficient but not necessarily
extensible designs. As a result of design
tradeoffs due to the resource constraints and
the extended maintenance/upgrade cycle,
the applications often evolve characteristics
such as a large number of complex threads of
control that cross processing segment
boundaries and result in complex segment
coupling. 

Implicit data dependencies shared across
processing segments result in data-driven
segment coupling and degradation of indi-
vidual segment cohesion. This combination
of tightly coupled segments of code designed
using specific programming language con-
structs can result in a complex system that is
difficult to dissect into reusable and migra-
tional segments. Often such an undertaking
requires extensive manual analysis and
redesign, thereby increasing update costs. 

COTS Exploitation
In contrast to past decades, the defense
industry is no longer the driving force
behind the development and production of
computing electronics and software engi-
neering environments. Although the selec-
tion of purely commercial off-the-shelf
(COTS)-based architectural approaches has
yet to overcome many of the inherent prob-
lems facing airborne embedded systems, the
industry must now rely on the commercial
marketplace for large-scale procurement of
select processing architecture elements. 

The incorporation of commercially
available processing elements promises to
provide increased throughput, memory
reserves, and I/O bandwidth. However, this
advance in technology brings with it poten-
tially greater DMS concerns, as commercial
components typically have a two-year refresh
cycle, forcing application developers to plan
for much shorter hardware lifetimes. In
addition, legacy design and development
tools are often not available for commercial
systems, further stressing the development
organization.

Available Knowledge and
Experience Base
The knowledge and experience level of a
development team is critical to the ability to
maintain and upgrade existing embedded
systems. The original design criteria for an
older system may be missing or inadequate-
ly documented. Taking into account that the

current development team may have no con-
tact with the original designers, capturing
the in-depth knowledge encapsulated in the
design becomes critical. 

Without this information, developers are
often unable to overcome the impacts of
structural degradation and evaluate the
impact of resource constraints and hard-
ware/software coupling. Migrating entire or
selected portions of legacy applications to
new platforms or architectures may require
so much time to understand the impacts that
this approach becomes no longer cost-effec-
tive.

Despite these problems, the reuse of
legacy software functionality in both fielded
and future systems is programmatically
attractive. Therefore, we must develop a
strategy to overcome the barriers of limited
budget, increased integration and produc-
tion costs, shortened cycle time, COTS
insertion, and DMS. The failure to do so
may adversely affect the DoD’s ability to
provide and sustain quality products within
available funding profiles and scheduled
need dates. 

Following is a brief description of the
EISR project, its accomplishments, and
results from the F-117 flight demonstration.

Technical Approach
The EISR program focused on maturation
and integration of two capabilities: structur-
al visualization and construct transforma-
tion. Combined, these capabilities provide
maximum utility for users interested in
wholesale or incremental upgrade. The visu-
alization system provides graphic depictions
of data dependency, control flow, and pro-
gram component interaction.
Transformation capability focuses on com-
plete and accurate construct coverage, with
certain caveats. For example, it was known
in advance that certain JOVIAL constructs
had no equivalents in C, and that 100 per-
cent construct coverage was not achievable.
However, conversion of even 95 percent of
JOVIAL constructs was deemed highly suc-
cessful as this minimizes the amount of man-
ual reengineering work required to obtain an
operational converted application.

The EISR program was aware of several
past reengineering environment develop-
ment efforts that attempted to provide auto-
mated restructuring and design aids. One of
the problems encountered with earlier
efforts was accommodating a variety of tar-
get design styles. Different embedded infor-
mation systems often employ different
architectural styles as maintainability
requirements vary from application to
application. Programming a design envi-
ronment with expert knowledge of each

Reengineering: An Affordable Approach for Embedded Software Upgrade



Software Legacy Systems

6 CROSSTALK The Journal of Defense Software Engineering December 2001

desired target design style is a highly chal-
lenging problem. After careful considera-
tion, it was decided to defer investment in
automated restructuring and design aids as
the combination of visualization and trans-
formation promised the greatest initial
return on investment.

Project Results
The EISR technical product is a desktop
software-reengineering environment. This
system operates on the JOVIAL source files
making up an application, parsing and con-
verting them into language-neutral graph-
based representations of their operation (see
Figure 1). The use of this internal represen-
tation yields several benefits. First, since it is
language-neutral, this form provides com-
mon basic semantics to facilitate integration
of back-end code generators for a variety of
specific target source languages. Second, the
form abstracts away language syntax

specifics and other peculiarities. Procedural
and data elements can then be represented
in a common fundamental graph-based
form that captures inherent interdependen-
cies (see Figure 2). 

Figure 2 provides a realistic example of
complex data and component dependencies
found in typical legacy software artifacts.
High legacy software maintenance costs are
due in part to the inability of developers to
rapidly trace the effects of desired software
changes. The EISR graphical analysis suite
remedies this by replacing past manual and
text-based dependency tracing methods
with modern visual tools and search
engines. The developers can thus manipu-
late this graphical representation of the pro-
gram structure directly, and apply filters
and navigational tools to assist in rapid
interpretation and restructuring.

This combination of EISR features gives
developers the ability to visualize and trace
couplings and structural features of the
legacy code. As a result, software engineers
now have a capability for understanding
and visualizing legacy software artifacts that
is on a par with modern graphical CASE
tools. A feature of the EISR tool-set is
extensibility. The environment is designed
around an intermediate representation form
that provides a common framework for
integrating new front end parsers and back
end target source code generators.

Base Experiments Results
A set of base experiments was conducted
under EISR to evaluate the semantic per-
formance and conversion speed of the EISR
tool-set using actual DoD application soft-

ware. The following list summarizes the
base experiment results:
• EISR matured capability results in a

source code conversion rate of 10K
source line of code (SLOC)/minute
(PC/NT based). 

• Comparative manual conversion rates
varied from 20 SLOC/hour to 67
SLOC/hour depending upon experi-
ence level of developers and legacy
application complexity.

• An initial experiment involving a 4,000
SLOC application required less than 24
hours of clean-up touch labor.

• Within the EISR tool-set on initially
selected test programs, 100 percent
JOVIAL construct coverage was
achieved. The following caveats applied: 
• Constant tables became full-fledged

structure variables in C.
• Highly convoluted variable overlays

were flagged for manual reengineer-
ing since this would be the best
overall solution in light of improve-
ments in computing resource avail-
ability.

• Compiler directives were excluded
from this statistic since they are not
part of the military standard.

• Initial JOVIAL functional structure was
retained in the resulting C code with no
loss of design partitions or structural
understanding.

• Detailed before and after code inspec-
tions validated that the process of state-
ment-to-statement transformation was
lossless. 

Extended Experimentation
The results of the EISR project provided
the opportunity for further experimenta-
tion and evaluation using the converted
artifacts from the original experiments.
Engineers were curious to study the ease
with which converted JOVIAL artifacts
could be migrated to modern commercial
object-oriented CASE environments. 

In these experiments, a legacy applica-
tion with a functional structure was con-
verted to C using both manual and auto-
mated processes. The resulting code was
imported into an object-oriented, Unified
Modeling Language (UML)-based com-
mercial CASE tool. The code then under-
went a mild restructuring to migrate the
original functionally decomposed design to
a medium-grained object-oriented struc-
ture. The CASE tool was then used to auto-
generate C++ source code from the reengi-
neered representation. The results are sum-
marized below:
• Test Case 1: Transforming Functional

Decomposition to object-oriented

Figure 2: EISR Graphical Analysis View (model illustration only)

Figure 1: Transformation Process



December 2001 www.stsc.hill.af.mil 7

Reengineering: An Affordable Approach for Embedded Software Upgrade

design (OOD). Consisted of manual
JOVIAL-to-C code conversion and
manual transformation from functional
decomposition into C++ OOD. 

• Test Case 2: Transforming from
Functional Decomposition to OOD.
Consisted of automated JOVIAL to C
code conversion using the EISR tech-
nology and manual transformation into
C++ OOD. 
The result of each test case was a legacy

JOVIAL-based application transformed
into an object-oriented C++ base applica-
tion (defined using UML notation) target-
ed for a PC-based processing platform. In
comparing Test Case 1 and Test Case 2, we
found that the use of the EISR tool-set to
capture and transform the JOVIAL to C
reduced the level of effort for the overall
process (JOVIAL to UML/C++) by approx-
imately 75 percent. 

This experimental set was of particular
significance because it examined likely and
desired future migration goals. We believe
that developers will want to move legacy
artifacts into modern graphical CASE envi-
ronments in order to take advantage of
automation-assisted testing features,
improved software understanding, com-
mercial standard notation benefits, and cost
savings due to economies of scale. EISR
technology is thus a key enabler for full
COTS exploitation, as it forms a bridge to
modern commercial practices and tool-sets.

Flight Demonstrations in
Summer 2001
A first ever flight demonstration of reengi-
neered avionics application code took place
on July 12, 2001 over Edwards AFB aboard
a USAF F-117 Nighthawk stealth fighter.
This significant flight demonstration suc-
cessfully verified correct performance of
reengineered components generated by
using high degrees of automation assis-
tance. In this demonstration, a small com-
ponent of the aircraft navigation applica-
tion was converted from JOVIAL to C++
using the EISR suite and installed in a
Power PC-based mission computer proto-
type. 

This application component ran accu-
rately and continuously through a 1.5-hour
flight, providing critical data processing in
support of the aircraft system navigation
solution. This functionality is part of the F-
117 precision navigation suite that the pilot
relies on extensively throughout the entire
mission. Subsequent tests involving deliv-
ery of practice and precision munitions
were accomplished during the latter part of
July 2001.

This demonstration provided a key con-

fidence point, proving operational viability
of reengineered application code. This work
illustrated an affordable upgrade strategy
for the F-117 mission computer using
reengineering and computer emulation
technology developed at AFRL/IF. EISR
thus allows the DoD to affordably recap-
ture previous investments in proven legacy
software artifacts and create a migration
pathway for exploitation of COTS
economies of scale. 

EISR Significance
• EISR technology is estimated to signif-

icantly reduce design time-span. The
technology is mature. Resulting appli-
cations have been operationally proven
in several flight demonstrations per-
forming realistic missions.

• EISR capability is currently available off
the shelf.

• The completeness and robustness of the
EISR tool-set resulted in a low risk of
losing design content (key algorithms,
behavior) during the reengineering
process.

• EISR technology reduced the effort
associated with the coding phase by an
order of magnitude when compared to
manual transformation. This, in turn,
resulted in a 20 percent cost reduction
when considering the overall software
development process (i.e., design, code,
test, etc.).

• EISR technology has enabled a para-
digm shift and new programmatic
process for legacy information system
upgrade (see Figure 3).

• Robust, automation-assisted reengi-
neering capabilities enable affordable
structural refresh.

• EISR technologies provide a low-risk

bridge for migration to modern com-
mercial CASE tools – which in turn
enables even greater cost savings poten-
tials.

Summary
The EISR program has been successful in
putting legacy DoD application software
on a convergent path with mainstream soft-
ware engineering tools and practices. The
resulting EISR tool-set has been proven to
reliably and wholly capture and transform
legacy application content. Legacy software
transformation is performed quickly and
affordably, drastically improving design
cycle times when compared to manual
methods. In addition, the resulting artifact
forms allow application of a variety of
COTS tool-sets for continued development
and maintenance. The following list sum-
marizes EISR benefits: 
• Modern CASE visualization and analy-

sis capability for legacy designs.
• Minimal introduction of human errors

during the process of manual transfor-
mation.

• Order of magnitude improvement in
SLOC conversion per labor hour
expended rate. 

• Bridge to mainstream commercial
products and practices.

• Maintainability and supportability
improvements.

• Affordability increases by leveraging
economies of scale.

• Higher availability of skilled develop-
ers.
The EISR technology has successfully

completed engineering proof-of-concept
evaluations. AFRL/IFTA, on behalf of the
Computer Resources Support Improvement
Program Office (CRSIP), has acquired

Figure 3: Bridging the Gap

Elimination of Barriers:
-Diminished Manufacturing Resources
-Experience Base
-Affordability
-Schedule/Time Span



ownership of the EISR technology, includ-
ing the source code. In October 2001, the
EISR technology was transitioned to the
CRSIP Program Office that will provide
long-term support and maintenance and
will facilitate distribution of the technolo-
gy. Source code for the EISR tool-set is cur-

rently owned by the Air Force. The CRSIP
Program Office is located at Ogden Air
Logistics Center, Hill Air Force Base, UT.
Parties interested in licensing use of the
tool can contact Gerald L. White at (801)
775-6713, or via e-mail at <gerald.white
@hill.af.mil>.u

8 CROSSTALK The Journal of Defense Software Engineering December 2001

Software Legacy Systems

About the Authors
Kenneth Littlejohn is a
project engineer in the
Embedded Informa-
tion Systems Engineer-
ing Branch, Informa-
tion Directorate, Air

Force Research Laboratory.  He has more
than 19 years research experience related
to affordable design, development, and
support of real-time embedded software
for Air Force weapon systems.  Littlejohn
currently serves as the project engineer
for the Embedded Information System
Reengineering project.  He earned a
bachelor’s degree in electrical engineer-
ing in 1987, and a master’s degree in
computer science in 1994, both from the
University of Dayton.

AFRL/IFTA
2241 Avionics Circle
WPAFB, OH 45433-7334
Phone: (937) 255-6548 ext. 3587 
Fax: (937) 656-4277
E-mail: kenneth.littlejohn@wpafb.af.mil

Michael V. DelPrincipe
has more than 15 years
experience in the
design, development,
and test of embedded
real-time avionics fire

control, weapons management, and dis-
play software applications for airborne
weapon systems.  He is currently
responsible for the technical and pro-
grammatic management of multiple Air
Force Research Laboratory-sponsored
research projects related to legacy
embedded information system modern-
ization.  DelPrincipe  earned a bachelor’s
of science degree in computer science
with honors from the State University of
New York, Brockport campus.

Lockheed Martin Aeronautics Company
P.O. Box 746
Fort Worth, TX 76101 MZ 6295
Phone: (817) 777-3667
Fax: (817) 777-3121
E-mail: michael.v.delprincipe@lmco.com

Jonathan D. Preston is
a technology program
manager within the
Advanced Development
Programs branch of
Lockheed Martin

Aeronautics Company.  Throughout his
career, he has managed several govern-
ment-funded technology programs that
have transferred technologies to major
weapon system programs.  Preston
earned a bachelor’s degree in electrical
engineering from the Pennsylvania State
University and an master’s degree in
computer science engineering from the
University of Texas at Arlington.

Lockheed Martin Aeronautics Company 
P.O. Box 746
Fort Worth, TX 76101 MZ 2411
Phone: (817) 763-2740 
Fax: (817) 763-2967 
E-mail: jonathan.d.preston@lmco.com

Ben A. Calloni, Ph.D.,
is a research program
manager for multiple
software research and
development efforts at
Lockheed Martin Aero-

nautics Company, Fort Worth, Texas.
He is leading the investigation into
commercial off-the-shelf solutions for
legacy avionics software.  Dr. Calloni
earned a bachelor’s of science degree in
industrial engineering from Purdue
University, and master’s and doctorate
degrees in computer science from Texas
Tech University.  He is a licensed pro-
fessional software engineer in Texas.   

Lockheed Martin Aeronautics Company 
P.O. Box 746
Fort Worth, TX 76101 MZ 2859
Phone: (817) 777-4345 
Fax: (817) 763-2967 
E-mail: ben.a.calloni@lmco.com

COMING EVENTS

January 27-31, 2002
2002 Western MultiConference

San Antonio, TX
www.scs.org

February 4-6, 2002
International Conference on COTS-
Based Software Systems (ICCBSS)

Orlando, FL
www.iccbss.org

February 11-15, 2002
Application of Software Measurement

(ASM 2002) 

Anaheim, CA
www.sqe.com/asm

February 25-27, 2002
15th Conference on Software Engineering

Education and Training (CSEE & T)
Covington, KY

www.site.uottawa.ca/cseet2002

April 28–May 2, 2002
Software Technology Conference 2002

“Forging the Future of Defense 
Through Technology”

Salt Lake City, UT
www.stc-online.org

May 13-17, 2002
Software Testing Analysis and Review

(STAREAST 2002)

Orlando, FL
www.sqe.com/stareast

June 4-7, 2002
8th IEEE International Symposium
Software Metrics (Metrics 2002)

Ottawa, Ontario, Canada
www.software-metrics.org



December 2001 www.stsc.hill.af.mil 9

Avionics upgrades are frequent and
occur for many reasons, including

warfighting enhancements, countering
changing threats, hardware obsolescence,
and computer resource under-capacity. A
typical production avionics upgrade cycle
for military aircraft frequently involves
embedded software changes. New ver-
sions of mission processor software, the
most volatile class of avionics software, are
typically released annually and take two
years to field from initial definition. 

Hardware obsolescence occurs collec-
tively over a longer term as vendors
change their business (military/commer-
cial mix) and technology. Software tools
and technology also evolve over a longer
period but may be driven by short-term
events such as the introduction and impo-
sition of Ada. The change cycles are not
synchronized so the optimal hardware,
software and tool technology, and respec-
tive program funding to support an
avionics upgrade at a given point in time
are often not available.

The problem of cost-effectively
upgrading legacy systems can be mitigat-
ed through reengineering with the latest
generation hardware and architectural
concepts, including object-oriented (OO)
software design, which inherently con-
tains and isolates change. However, legacy
avionics software represents a large invest-
ment in development tools, executable
code, and ground and flight qualification.
Should the upgrade require complete
reengineering of this legacy software,
much of this investment is lost; many air-
craft programs simply cannot afford the
up-front costs associated with reengineer-
ing and complete re-qualification. 

One solution to this dilemma is
implementing reengineering incremental-
ly by inserting the latest technology in
smaller, affordable steps, thereby reducing
risk and deferring or reducing cost.
Software wrapper technologies hold par-
ticular promise in meeting this challenge.

A wrapper is a software adapter or
shell that isolates a software component
from other components and its processing

environment (its context). The wrapped
component becomes a software object. Its
operational capability (functions and
data) is encapsulated, and it can be inte-
grated through its standard interface with
other software objects to form an opera-
tional flight program (OFP) on a single or
distributed processor host. The wrapper
manages the timeliness of all shared and
external data, and provides any necessary
transformations.

For upgrades, the goal is to develop
the new or reengineered applications
using the latest software engineering tech-
niques such as OO design and languages
(Ada and C++) with minimal concessions
to the internal structure of the legacy sys-
tem. It is developed as if all other applica-
tions were resident in the new environ-
ment. Because the new software is written
within the paradigms of OO design and
languages, the wrapper can eventually be
removed once all of the application func-
tions have migrated to the new system. At
this time, the legacy system can also be
removed. 

The Incremental Upgrade of Legacy
Systems (IULS) program is a research and
development effort, whose main objective

is to develop, demonstrate, and transition
software wrapper technology that will
enable cost effective, incremental
improvements to fielded weapon system
avionics. The products of IULS are: 1)
methodology for analyzing software
upgrade approach, 2) wrapper technology,
3) tool-set for constructing wrappers for
software upgrades, and 4) demonstrations
of IULS wrapper technology applied to
three significantly challenging problems:
F-15E, C-17, and CV-22 avionics. 

IULS is funded by the Air Force
Research Laboratory, Embedded
Information Systems Engineering Branch
(AFRL)/(IFTA). Participants in the proj-
ect include The Boeing Company,
Honeywell Technology Center, General
Dynamics Information Systems, and
TRW-Dayton.

Software Wrapper Technologies
Figure 1 illustrates three hypothetical cases
of implementing software changes using
wrappers.

Re-Host 
In the re-host case, the legacy processor is
obsolete and/or its resources are insuffi-

The IULS Approach to Software Wrapper Technology
for Upgrading Legacy Systems

Dr. David Corman
The Boeing Company

This article describes using software wrappers in Incremental Upgrade of Legacy Systems as a key technology for mod-
ernizing legacy systems. It introduces three types of wrappers, describes a process for selecting which upgrade path to
utilize, and discusses a tool-set developed by The Boeing Company for the Air Force that automatically generates wrap-
pers. Lastly, it discusses real-world avionics upgrade examples where the tool-set has been applied and its effectiveness. 

Legacy
Processor

 Sync

In Out

Put        Get

...110011000111010
1010101010101010
0101110100100110
100010101001010...

Legacy Executable
...11001100011101
0101010101010101
0010111010010011
01000101010010...

Upgrade
Processor

Hybrid

Legacy Source

...1100110001110101
010101010101010010
111010010011010001
1100111001010010...

Rehosted Executable Upgrade
Processor

Sync

In Out

Re-hosted
Executable

Put      Get

...110011000111010
1010101010101010
0101110100100110
100010101001010...

[Translate]

Compile

Re-host

ISA Emulator Sync

In Out

Legacy
Executable

Put        Get

ISA Emulator

...110011000111010
1010101010101010
0101110100100110
100010101001010...

Legacy Executable
...11001100011101
0101010101010101
0010111010010011
01000101010010...

Upgrade
ProcessorDecode

Emulate

?

Fetch

Branch

I/O

?

Emulate

Figure 1: Wrapper Cases



10 CROSSTALK The Journal of Defense Software Engineering December 2001

cient to support additional upgrades. The
legacy software is re-hosted to a new
processor by translating its source code
(e.g., Ada 83 to C++) and/or recompiling
it for the new target (e.g., Ada 83 to Ada
95). Reengineering the OFP on the new
processor could not be justified so wrap-
per components are added to make it look
like an object in the OFP. New software
features can be added incrementally to the
wrapped component, or preferably,
designed as new objects in the OFP.

Hybrid 
In the hybrid case, the legacy processor
and its OFP are retained for various rea-
sons (high reengineering or logistics costs,
etc.), but its resources are insufficient to
support additional upgrades. Also, there is
an opportunity to satisfy upgrade require-
ments with reuse library components that
are developed with more modern lan-
guages (such as Ada 95 or C++) and tools. 

New features can be added incremen-
tally to the upgrade OFP as objects on a
new processor. The objects will be bridged
to the legacy OFP and processor with

wrapper components. As components in
the legacy OFP require changes, they can
be reengineered and moved to the new
processor. At some point in the migration,
the remaining legacy components are re-
hosted, the legacy processor is upgraded
or discarded, and the wrapper compo-
nents in the new OFP, associated with the
legacy OFP interfaces, can be removed. 

Emulate 
Obsolete or underpowered hardware is
also addressed in the emulate case. The
legacy software is judged to be very costly
to reengineer and/or re-qualify. The
object code is executed on the new proces-
sor by an emulation of the legacy proces-
sor’s instruction set architecture. 

Changes can still be made to the lega-
cy executable using the legacy compiler
and software engineering environment.
The emulator and other wrapper compo-
nents make the legacy executable compo-
nent (binary) look like an object. Other
feature upgrades could be added as new
objects on the new processor. 

Wrapping Process
As with any other software development
activity, wrapper creation follows a
process, shown in the IDEF0 diagram in
Figure 2, and is automated with tools. In
an IDEF0 diagram, consumed inputs
(e.g., data files) go in the left side of an
activity box; generated outputs (e.g., com-
pleted design objects) emerge from the
right side; constraints (e.g., requirements,
schedules) go in the top; and mechanisms
(e.g., tool support) go in the bottom. The
following subsections describe tool mech-
anisms that support the wrapper design

process and the data that flows between
them.

Wrapper Implementation
Considerations 
Wrappers are generally applied at the
application domain level. They act as
clients and servers to the encapsulated
component. Figure 3 illustrates a general
wrapper structure for an OFP on a single
processor. The legacy application inter-
faces with other applications and other
layers only through the wrapper. The
wrapper architecture is tailored to the spe-
cific legacy OFP environment. 

The method selected to implement the
upgrade of a legacy system is to an extent
an economic decision. The emulation
option will tend to favor a context of a sta-
ble application, infrequent OFP modifica-
tion, and obsolete hardware. These cases
will generally be lower in performance,
being older systems. Therefore, the con-
text analysis would focus on issues of
throughput, OFP stability, parts obsoles-
cence, OFP utility, etc.

Selecting a hybrid or re-host approach
would generally be appropriate for a more
dynamic and/or higher performance sys-
tem. Typical context would be OFPs that
are subject to periodic update and version
release. In addition, the higher the
throughput needed, the more likely the
upgrade path will not include emulation.
The reason for this analysis factor is that
while software emulation provides a growth
path for the legacy upgrade, there is a
penalty paid for using processing resource
overhead. A hardware emulator approach
will, with time, become a technology
dead-end (as would be the case for the
legacy system) and require more near term
upgrade effort.

Any selected legacy upgrade technique
will, of course, be subject to obsolescence
and eventual upgrading. Therefore, the
methods described for the upgrade process
and wrapper generation emphasize as flexi-
ble an approach as possible. Also, the
methods need to be portable between
hardware platforms since these compo-
nents will change rapidly (on the order of
months vs. years). Therefore, the initial sys-
tem context analysis would focus on OFP
issues such as throughput, stability, etc.

Using the IULS Tool-Set in
Upgrading
As part of the IULS program, Boeing and
its IULS teammates developed a set of
guidelines, processes, and tools to help the
avionics engineer determine and imple-
ment a best wrapper upgrade strategy. The

Figure 2: Nominal Legacy Operational Flight Program Wrapper Process

Software Legacy Systems

Backplane or Shared Memory Driver

Legacy Wrapper

Legacy
Application

Database/Utilities

Application
Layer

Executive/Run-Time

Figure 3: Wrapper Software Structure



The IULS Approach to Software Wrapper Technology for Upgrading Legacy Systems

December 2001 www.stsc.hill.af.mil 11

IULS tool-set that was developed in this
effort has played a major role in automat-
ing the upgrade approach in the re-
host/hybrid domains. The tool-set is used
to iteratively develop high-level and
detailed models of the OFP model, the
host model, and the upgrade model.
Figure 4 displays some of the basic ele-
ments of the IULS graphical tool-set.

Briefly, the tool provides a graphical
capability to model the legacy and upgrad-
ed system, including data interfaces and
constraints. It includes a re-use compo-
nent library that can be used to meet
requirements common to avionics applica-
tions. It provides code and documentation
generation capability to construct and
document the software wrapper used to
bridge the legacy and upgraded system.
Also, the tool provides system-modeling
capabilities that can be applied to validate
system performance against scheduling
constraints common to hard real-time
avionics systems.

Customer Inputs to the Process 
The select preferred wrapper approaches
activity consists of selecting from among
the three basic wrapper approaches. The
host plans, legacy OFP, and host interface
(I/F) are information supplied by the cus-
tomer. The information specifies the OFP
re-hosting problem in a manner that is
sufficient to trigger the next activities. The
host plans identify the need to re-host the
OFP onto a new target platform and are
used to select one of the three wrapper
approaches, or possibly narrow the selec-
tion down to two of the three approaches
that will be considered during the wrapper
design process. 

Characterizing the Problem
The IULS tool-set is used to characterize
and model the legacy system OFP. The
resulting OFP model is a description of
the legacy code, it’s source language, the
available documentation and compilers,
and the description of the I/O required by
the OFP, including timing. The model
describes each interface modality that the
OFP has with other OFPs and with the
legacy host hardware. The tool-set is also
used to develop the host model, which pro-
vides a description of the target host com-
puter environment (not the legacy host).
It includes a description of the machine
code, compilers available, event capabili-
ties, I/O capabilities, and kernel operating
system (OS) interfaces. 

The upgrade model is a description of
the plans to upgrade the target host com-
puter in the future. The plans for future

upgrades influence the choice of wrapper
approaches.

The characterization step provides
high-level information that can be used to
perform coarse trade-off analyses that con-
tribute toward a final selection of wrapper
approach as well as some of the basic deci-
sions about the wrapper design. Some of
this high-level model will identify wrapper
components able to be tailored from a
reuse library.

Wrapper Design
As shown in Figure 4, the wrapper is
designed using the OFP model, host
model, and upgrade model, as well as the
reusable wrapper components. The IULS
tool-set includes a set of reusable wrapper
components that are placed on the shelf
and can be either quite general in nature
(e.g., format converters from one process
to another) or domain specific (data
access methods for an aircraft). The

reusable wrapper components are linked
to requirements and test cases that are also
reused. The process of wrapper design
includes specifying the following within
the tool-set: 
• Invocation interface: This is the inter-

face for entering into and returning
from the OFP code. It includes the
description of error handling inter-
faces. 

• Semaphores and interrupt handlers:
This is the interface that defines syn-
chronous process behavior, both hard-
ware supported and software only.

• Data accessors: This interface defines
accessors for data objects that the OFP
shares with other software modules.

• Emulator configuration: This
describes the emulator that may be
interfaced to the wrapper, depending
on the wrapper approach used.

• Object adapter: This is software that
makes the wrapped OFP look like one

Legacy Signature

Legacy Controller

Wrapper Architectures

Modeling Environment

...1100110001110101010101
010101010010111010010011
010001010100100110101010
111110001001010010101110
100010100101010110101010
0101010101001010101010...

Legacy Software

Upgraded Software
With Wrapped Legacy

Data Transforms

Sync/Control

In/Out/Put/Get

ISA Emulator

Wrapper Library Shelf

Proposed New
System

Wrapper
Framework

Sync

 In Out

t

...110011000111
01010101010101
0101001011...

Put Get
ISA

New
S/W

Infrastructure-CPU-I/ONew Host Processor

Design
Database

Graphical
Design
Editor

Auto-code
Generator

Document
Generator

Test
Generator

Architecture
& Design
Analyzer

Wrapper Toolset

Figure 4: Graphical Tool-Set

Upgraded Software Architecture
New Host

F-15 OFP

OO C++ Ada95

Rehosted

 F-15 OWS

 Ada83

Inertial
Navigation
System G’s

C++

Auto-coded C++ & Ada95

Stores Load

Fuel Load
Avionics

Inputs

Get

Data

Transform

Data

Transfer

Data

Transform

Data

OWS

Processing:

10 Hz

10 Hz Warn

20 Hz

IULS Wrapper

Get Display

Data

Data Transfer

Data

F-15E

 Avionics

Head-Down

OWS

 Display

Heads Up
Display G’s

 Display

OWS

Inputs

OWS

Outputs

Figure 5: OFP Wrapper for F-15 Demonstration



or more objects to an underlying
object request broker (ORB). It
defines the OO interface classes and
methods comprised in the wrapper.

• Legacy port design: If the wrapper
approach calls for re-hosting the lega-
cy OFP, then a description of the
tools, process, and wrapper interface
objects needed to support that
approach are specified. 

Evaluation of the Wrapped OFP
After a candidate wrapper is designed and
a baseline determined, it is evaluated. The
evaluation is performed using component
models selected from a library. The compo-
nent models are the representations of the
target hardware system. These are used in
running simulations of the target system to
determine performability. System model-
ing and evaluation tools such as Cosmos
and Foresight can be used in concert with
the IULS tool-set to simulate and evaluate
the wrapper design. 

Wrapper Code Generation
Once the wrapper design has successfully
passed evaluation tests, the IULS tool-set
provides the capability to automatically
generate the wrapper using a code genera-
tor. It identifies the versions of the compo-
nents, how those components were tai-
lored, and how those components are to
link together with the OFP. The wrapper is
then linked with the OFP to create the
wrapped OFP. 

OFP Integration, Test, and
Documentation
The wrapped components and host com-
ponents are compiled, linked, and integrat-
ed into the target processor system. System
and software testing is performed to a level
appropriate to the avionics application. By
using the same specification for wrapper
design, evaluation, and implementation,
traceability is greatly simplified and facili-
tated. Model objects can be cross-refer-
enced to requirements, implementation
components, evaluation models, tests, and
test results. The IULS tool-set includes a
document generator that compiles software
documentation from the design database
using customizable templates. 

Demonstrations
The IULS program included major
demonstrations of two of the wrapper
approaches: modified re-host and emula-
tion. The demonstrations provided an
opportunity to test and tune the tool-set in
a real-world avionics upgrade environ-
ment. The following subsections describe
the results of the application of the IULS
tool-set.

F-15 Demonstration
For the F-15 demonstration, the IULS
problem was to port a legacy F-15 Ada 83
OFP component, the overload warning
system (OWS), into a F-15 OFP written in
C++ running on a new commercial off-
the-shelf (COTS) PowerPC processor. A

wrapper was designed and auto-generated
using the IULS tool-set. This was the first
application of the IULS tool-set and pro-
vided us a framework for testing and tun-
ing of the tool. 

Figure 5 (see page 11) shows elements
of the wrapper design. In particular it
shows how the wrapper supports transfer
of data from the OO C++ domain into
process interface messages understood by
the legacy Ada software. The wrapper also
performs necessary data transforms and
includes a bridge from the Ada 83 software
to the C++ and display processes. 

The F-15 IULS activity culminated in
a successful live flight demonstration con-
ducted on Dec. 1, 1999. The demonstra-
tion flight plan called for execution of six
test points. These corresponded to combi-
nations of three different weapon loads
with two different fuel configurations. The
pilot, weapon systems officer, and flight
test engineer reported successful test
results. 

The relative sizes of the components (in
source lines of code) for the final demon-
stration and flight test OFP are shown in
Table 1.

We collected metrics on the wrapped
system to measure wrapper overhead. It
was indicated that wrapped system added
an average of 0.36 msec and 0.16 msec to
the OWS application execution timelines
for the 20 Hz and 10 Hz tasks, respective-
ly, for operation on a PowerPC 603E. The
computations were all performed within
the time-frame requirements for the OFP. 

The F-15 demonstration thoroughly
validated the IULS re-host process and
tool-set. Operationally, the demonstration
received enthusiastic endorsement from
the flight crew who referred to it as a home
run in the post flight debrief. The in-flight
performance was 100 percent in agreement
with the a priori estimates matching all six
test points, exactly. The WrapidH tool
proved to be extremely valuable in devel-
oping the wrapper design, and the auto-
mated code generator worked as expected
in both the Ada and C++ domains. 

As predicted, considerable domain
expertise was required to develop the wrap-
per. However, IULS engineers who initial-
ly had no familiarity with the heritage code
performed the bulk of this work. These
engineers were able to readily understand
the legacy Ada and Common Operational
Flight Program (COFP) C++ to the extent
required to support wrapper design and
system de-bug. Wrapper testing confirmed
the prediction that wrapped code integrity
would be intact – no problems were detect-
ed in which wrapped code operation was
an issue. Wrapper overhead was not sub-

Software Legacy Systems

12 CROSSTALK The Journal of Defense Software Engineering December 2001

Radio (UHF1)

Radio (VHF2)

CCU NO. 1

Aircrew Laptop
(ALC) Database Download

TRW's
VIEWstation
Debug Toolset

MCD

MCD
MCK

MCD
1

MCD
2

MCK/MCD Emulator

Not Present

VME Chassis

CCU Legacy
OFP

TRW RePlace
Emulator

CCU NO. 2

Figure 6: C-17 Demonstration for Emulation Wrapping

Component Software Lines of Codes
(Not Comment/Blank)

Total Source Lines

Total OFP (C++ and Ada) 119,363 3 534,054 4
OWS Application (Ada Including PIMs) 7,195 5 23,738 8
Ada Wrapper 482 2 880 0
C++ Wrapper 408 8 811 1

Table 1: Wrapper Component Sizes



December 2001 www.stsc.hill.af.mil 13

The IULS Approach to Software Wrapper Technology for Upgrading Legacy Systems

stantial and confirmed system modeling
conducted during phase one of the IULS
program, which had predicted system
throughput was more than adequate for
the demonstration requirements.

C-17 Emulation Demonstration
The IULS emulator approach was demon-
strated by wrapping a legacy C-17 radio
control function (RCF) executable
(JOVIAL source, MIL-STD-1750A
object) with a 1750A ISA emulator run-
ning on a PowerPC processor that repre-
sented an upgraded communications con-
trol unit. The emulator interface and
processor context wrappers were generated
with TRW’s RePLACE tool-set. Figure 6
shows the demonstration concept. 

A COTS replacement box (CRB) was
constructed, including COTS processor
(PowerPC). The emulation engine and
RCF OFP were loaded onto the CRB. The
CRB operated in concert with the 2nd
communications control unit (CCU). This
provided a timing challenge since hand-
shaking, normally performed by two
1750A processors across the 1553 inter-
face, was now being performed by the
CRB and one CCU. The system was
demonstrated in the C-17 avionics labora-
tory with production test cases and avion-
ics system hardware. The demonstration
showed an approximately 90 percent
growth capacity for the CRB

The emulation tool-set is being transi-
tioned to the C-17 as part of the on-going
communications open systems architecture
engineering and manufacturing develop-
ment program. In this application, emula-
tion is being extended as part of a larger
open system upgrade. In particular, a new
C++ native language executive is being
developed that will then make calls to
selected (emulated) legacy components. In
effect, the emulated legacy software func-
tions as a library of callable functions. This
is in contrast to the standard emulation
wrapper in which what is simply desired is
to execute the legacy software on a more
modern processor. 

The lesson in transiting the emulation
wrapper is that quite frequently programs
will apply tools in a different manner than
were originally planned, and the tool-set
needs to provide inherent flexibility.

CV-22 Demonstration
We are applying the re-host wrapper
approach with a twist during an on-going
demonstration with the CV-22 program.
Figure 7 shows the basic elements of the
demonstration. The challenges are twofold:
First, migrate Ada JASS-JVX Avionics

System Software mission software from
proprietary processor and system architec-
ture to a COTS PowerPC processor and
VME architecture residing under the
Boeing Bold Stroke software infrastruc-
ture. Second wrap a new application
(Quiet Knight – Ada 95) to be executed on
a second COTS processor using the tool-
set and object request broker (ORB) for
distribution. 

The CV-22 demonstration is a work in
progress. At the time this article was writ-
ten, the demonstration is planned for
December 2001. The wrapper tool-set is
being used to develop the ORB interface
definition language to construct the wrap-
per. Initial results have been very promis-
ing. The mission OFP has largely (99 per-
cent) been ported to the COTS processor,
and the IULS tool-set has been used to gen-
erate the wrapper software for the ORB.

Summary
This article has described several impor-
tant applications of software wrappers to
legacy software modernization. Under the
AFRL-sponsored IULS program, Boeing
developed a tool-set that can be made
available to qualified requestors from
AFRL/IFTA to support avionics upgrade
opportunities. Wrappers are not a panacea
for every modernization need. However,
experience to date indicates that they can
be an important element within the
upgrade process.u

Legacy Processor
Sync

In Out

Put Get

...11001100011101
0101010101010101
0010111010010011
0100010101001010
...

Legacy OFP
(Ada 83)

...11001100011101
0101010101010101
0010111010010011
01000101010010...

Upgrade
Processor

PowerPC
Adv. AYK-14 (MIPS)

Tech Demo Outputs
• Proof of concept for CV-22

Open System Architecture
candidate

• Demonstrated growth
potential for CAAP
function

• Upgrade to CV-22 with
Candidate CAAP S/W using
IULS Toolset to auto
generate wrapper

• Wrapping legacy S/W
enables incremental
upgrades and incremental
re-qualification

IULS AutoWrapper

Legacy System Issues
• Limited / No expandability
   in current CPU to meet
   SOCOM
needs• Proprietary processor

and   system
bus

Quiet
Knight

Modules
Migrate to

Ada 95

COTS  Proc

JASS
OFP (Ada)

COTS  Proc

Bold Stroke
Infrastructure

COTS Replacement Box (CRB)

COTS Operating System

QK
ModulesWra-

pper
RT

-
OB

AARTS API

Wra-
pper

Figure 7: IULS CV-22 Wrapper Demonstration

About the Author 
David Corman, Ph.D.,
is a technical fellow of
The Boeing Corpora-
tion. Dr. Corman is cur-
rently working on a vari-
ety of projects that focus

on upgrading of legacy systems.  He was
the lead engineer on the Incremental
Upgrade of Legacy Systems (IULS) pro-
gram that resulted in the development of
a wrapper tool-set that has been demon-
strated in real-time applications includ-
ing the F-15, C-17, and CV-22.  Dr.
Corman has more than 20 years experi-
ence in software development, including
real time, mission planning, C4I sys-
tems, and avionics domains, and holds
bachelor’s and master’s degrees in systems
science and mathematics, and applied
mathematics from Washington
University in St. Louis.  He earned a doc-
torate in electrical engineering from the
University of Maryland, College Park. 

The Boeing Company
P.O. Box 516
St. Louis, MO 63166
Phone: (314) 234-3725
E-mail:  david.e.corman@boeing.com



14 CROSSTALK The Journal of Defense Software Engineering December 2001

A COTS-Based Replacement Strategy for 
Aging Avionics Computers

Jahn A. Luke Douglas G. Haldeman and William J. Cannon
Air Force Research Laboratory/Information Directorate TRW Avionics System Division/Avionics Engineering Centers

This article describes a commercial off-the-shelf (COTS)-based form, fit, function, and interface replacement strat-
egy for legacy avionics computers and embedded information systems that can reuse existing software code as is while
providing a flexible framework for incremental upgrades and managed change. It is based on a real-time embedded
software technology that executes legacy binary code on the latest generation COTS microprocessors. This scaleable
technology, developed by TRW and sponsored in part by the Air Force Research Laboratory, demonstrates perform-
ance improvements of five to 20 times that of the legacy avionics computer that it replaces. It also promises a four-
fold decrease in cost and schedule over rewriting the code, and provides a known, good starting point for incremen-
tal upgrades of the embedded flight software. Code revalidation cost and risk are minimized since the structure of
the embedded code is not changed, allowing the replacement computer to be retested at the black-box level using
existing qualification tests.

Military aircraft are active years longer
than originally anticipated. The

avionics computers on these aging aircraft
are expensive to maintain due to parts
obsolescence, and require additional pro-
cessing and memory to handle changing
requirements. As a result, old computer
hardware needs to be replaced with newer,
more capable microprocessor technology.
However, incompatibility issues require
that embedded software be rewritten. It is
estimated that billions of upgrade-dollars
could be saved if new computers could
execute the old embedded code along with
any new code to be added.

TRW has developed a generic com-
mercial off-the-shelf (COTS)-based soft-
ware technology called Reconfigurable
Processor for Legacy Avionics Code
Execution (RePLACE) that capitalizes on
technology advances to eliminate costs
associated with rewriting legacy software
to execute on new hardware. This software
allows a user to 1) replace obsolete com-
puters with commercial processor-based
hardware, 2) continue to use existing

operational flight plan (OFP) without
modification, and 3) incrementally
upgrade hardware and software to support
new and modified capabilities. RePLACE
COTS software allows Department of
Defense (DoD) dollars to be spent on
solving supportability and performance
problems and adding new needed capabil-
ities, rather than recapturing current capa-
bilities in new hardware. 

Figure 1 depicts using the COTS soft-
ware to migrate from a current legacy
avionics line-replaceable unit (LRU) to a
new COTS-based replacement box
(CRB). Typically, today’s legacy avionics
and embedded information systems are
based on custom hardware and proprietary
back-planes with an obsolete 16-bit
instruction set. Little or no “modern”
higher order language (HOL) support is
available to support software for this
equipment. In addition, these legacy sys-
tems are often limited in terms of through-
put and memory. 

A COTS-based, open-systems replace-
ment strategy provides a low cost of entry
strategy for COTS microprocessor tech-

nology insertion. Both the legacy instruc-
tion set architecture (ISA) as well as the
new native ISA can be executed. Native
code execution is supported by advanced
HOLs such as Ada95 and C++. In addi-
tion, legacy code can execute much faster
in the new hardware and utilize more
memory than is available for needed
upgrades. 

A software perspective of RePLACE is
illustrated in Figure 2. Sitting on top of
the COTS microprocessor and Portable
Operating System Interface (POSIX)-
compliant real-time operation system
(RTOS) are two virtual machines: the
legacy virtual machine and the native vir-
tual machine. Within the legacy virtual
machine space are four key software com-
ponents: the legacy instruction set engine,
the legacy OFP code binary image, the
input/output (I/O) mapping software,
and the virtual component environment
(VCE). 

The legacy instruction set engine con-
tains unique cache-optimized code devel-
oped by TRW to execute the legacy binary
OFP code. The I/O mapping software
maps the new COTS interface devices to
the legacy interface devices. The VCE
allows for the efficient transition between
the native and legacy virtual environments
allowing the transfer of data and concur-
rent execution of both legacy and new
native code. 

The key features may be summarized
as follows:
• Relies on using state-of-the-art COTS

microprocessors and open system stan-
dards that improve both the legacy sys-
tem’s produciblity and supportability.

• Runs legacy code from five to 20 times
faster than the original legacy system
by using a unique cache-optimized
approach. This provides extra comput-

Power Supply

CPU
Memory
Memory

Analog Inputs
Analog Outputs

Discrete I/O
1553 Interface

Special Interface(s)

Power Supply

COTS SBC
COTS Analog I/O

Space

COTS Discrete I/O
COTS 1553 Interface
Special Interface(s)

RePLACE

Space

Open
Systems

VME64
Backplane

Custom,
Proprietary

Backplane

Current Legacy Avionics New Replacement

New Native
Code

(for new functions)

Low cost COTS, Open Systems

Runsboth legacy ISA & new 32/64 bit ISA

Faster  & more memory!

Compatible with Ada95 & C++

Custom hardware & backplane

Obsolete 16 bit instruction set

Little or no modern HOL support

Max’d out throughput & memory

Legacy Code New Code

Legacy Binary Code
“as is”

Figure 1: Current Legacy Avionics to a New COTS-Based by Utilizing COTS Software



December 2001 www.stsc.hill.af.mil 15

ing power for new functions. In addi-
tion, the performance of the legacy vir-
tual machine is linearly scaleable with
the performance of the COTS micro-
processor technology that is being
used. That is, as the internal clock
speed of the microprocessor chip goes
up, the legacy instruction/execution
speed increases linearly. 

• Makes the instruction set engine
adaptable to diverse instruction set
architectures, including, for example,
MIL-STD-1750A, Z-8002, and
AN/AYK-14A. This makes possible the
replacement of multiple diverse legacy
avionics LRUs with a common set of
avionics hardware modules on a given
platform or across different platforms. 

• Provides I/O mapping software that
exactly matches the new I/O COTS
devices to the legacy I/O devices, pro-
viding a drop-in environment for the
unmodified legacy OFP with little or
no knowledge required of the original
code. 

• Executes both legacy and new native
software concurrently in separate virtu-
al spaces. This promotes incremental
addition of new capabilities and grad-
ual transition to new code.

• Provides instruction execution speed
matching that can be initiated in criti-
cal sections of the OFP to provide lega-
cy OFP timing adjustments for timing
sensitive code. 

• Allows practical real-time non-intru-
sive (RTNI) monitoring of legacy soft-
ware built into the replacement avion-
ics, dramatically enhancing the observ-
ability and testability of the embedded
legacy software. 
In order to illustrate the concurrent

execution of legacy and native code in a
RePLACE dual instruction set computer
(DISC) environment, Figure 3 depicts the
legacy code remaining in control while
new software enhancements are intro-
duced. On the far left are two time-lines
showing the various rate groups processing
tasks running in the legacy machine and in
the CRB. 

In the case of the CRB, the original
rate groups are executed in a much shorter
time frame within any given minor cycle.
This leaves additional processor through-
put at the end of each minor cycle to add
new software running in the native ISA.
Through the VCE context switch mecha-
nism, referred to as a thunk, new native
code can be introduced to replace existing
legacy code or added to the existing legacy
code. 

Alternately, event flags can be set to
augment the legacy code thread as illus-

trated. Note that legacy instruction execu-
tion speed matching can also be intro-
duced for timing-sensitive code. In addi-
tion, the technology includes the capabili-
ty to disable legacy code outputs without
legacy OFP cognizance, providing a con-
venient mechanism to switch off functions
in the legacy code without being intimate-
ly familiar with the legacy code structure.
In all cases, the original legacy binary OFP
code remains intact with no changes. 

Another key component of the COTS
software strategy is the availability of a
source level, symbolic user console for sys-
tem developers. A tool has been developed
to facilitate the use of RePLACE in mod-
ern microprocessor technologies and is
referred to as the virtual integration envi-
ronment workstation, or VIEWstation. It
is tightly integrated with the COTS native
code integrated development environment
and commercial tools that are selected to
support new native code development. 

VIEWstation is loosely integrated with
the legacy code tools. It provides a source
level, symbolic configurator tool to assist
the software developers in mixing and
matching legacy and native code; it also
provides in-target debugging and RTNI
monitoring of the legacy code.
VIEWstation incorporates COTS graphi-
cal data analysis tools and an interactive
symbol browser/editor. Examples of
VIEWstation use include downloading
and disassembling software binaries, dis-
playing real-time debug and monitoring
data, performing and displaying timing

characteristics, creating and deleting
events, and developing add-in code that is
executed in response to specific user-spec-
ified events in the legacy code. 

Results
Demonstrations of RePLACE executing
legacy binary OFPs have been conducted
in conjunction with AFRL for the follow-
ing DoD aircraft subsystems: 
• F-16 Heads-Up Display.
• F-16 Advanced Central Interface Unit

(stores management processor).
• F-16 General Avionics Computer (fire

control computer).
• AC-130H Gunship Mission Computer

(SKC-3007A).
• C-17 Communication Control Unit.

A COTS-Based Replacement Strategy for Aging Avionics Computers

COTS Microprocessor

Real Time Operating System

New
Native
Code

Object

New
Native
Code

Object

New COTS I/O Interfaces

Legacy Instruction Set

Virtual Component Environment

Legacy Virtual Machine

I/O
Drivers

Native  Virtual
 Machine

Legacy Binary OFP
Code

I/O
Map-
ping

S/W

Figure 2: A Software Perspective of RePlace

Legacy Code
Thread

New
Native
Code
Object

New
Native
Code
Objec

ts

Native Code
Thread

Real-Time Operating System

Legacy Function x

Virtual
 Component
Environment

Context Switch

Thunk

Add-in

Replace

or

O
Event
Flag

Ti
m

e

Legacy Rate Group Processing

RePLACE Rate Group Processing

- Legacy Code Execution

- Legacy Code Idle/Bkgnd

- RePLACE Native Code Execution

1 
M

in
or

 F
ra

m
e

New
Native
Code

Object

Figure 3: New Software Enhancements Introduced to Legacy Code



Software Legacy Systems

16 CROSSTALK The Journal of Defense Software Engineering December 2001

• MH-60K Mission Computer (AP-
102A).

• F-117 Mission Computer (AP-102A).
In all of these systems, legacy code per-

formance improved from five to 20 times
that of its legacy hardware environment.
The cost and time to target a particular
subsystem were a fraction of other
approaches, including rewriting the OFP
and custom chip replacements (hardware
based emulation). The MIL-STD-1750A
DISC has completed validation using the
official acceptance test procedures and ver-
ification software originally developed and
supported by the Systems Engineering
Avionics Facility. 

Comparisons of various alternatives to
software adaptation are shown in Figure 4.
The non-recurring costs for OFP develop-
ment are, as would be expected, much
higher for the case of an OFP rewrite. To
a lesser extent, but still significant are the
costs associated with an OFP rehost. This
is because a rehost activity must still

address new machine dependencies and
the immaturity of the associated software
tools that are targeted for the new hard-
ware. In addition, under the OFP rehost
strategy, incremental software upgrades are
difficult to implement. As the bottom
curve illustrates, the cost for OFP devel-
opment with a RePLACE approach is
extremely small because the existing bina-
ry OFP code is used as is – unmodified.
The costs included in the figure are repre-
sentative of the time to tailor the I/O map-
ping software to support the new hardware
and to incorporate legacy software tools
into VIEWstation. 

Code revalidation costs are significant
for all three approaches. However, these
costs are minimized with RePLACE since
the structure of the embedded code is not
changed, allowing the replacement com-
puter to be retested at the black-box level
using the existing functional qualification
tests. TRW has developed a set of analyti-
cal tools to support this type of tradeoff
for different user scenarios.

Upgrade Strategies
Potential upgrade strategies using the
COTS software cover a wide spectrum of
upgrade possibilities. These include the
introduction of a new ruggedized COTS
replacement box for an existing legacy
avionics LRU. It also includes the intro-
duction of a new microprocessor replace-
ment module for insertion into an existing
avionics LRU. Finally, included is a tool to
mitigate the inherent risks associated with
introducing both new hardware and soft-
ware into a platform at the same time. 

Figure 5 illustrates determining the
baseline of new COTS-based hardware
with the legacy OFP as a first step in the
process of adding new functionality into
an existing platform. Tailoring the

RePLACE DISC Legacy Instruction Set
Architecture (ISA) is required to match
the unique features and characteristics of
the legacy machine; tailoring the
VIEWstation is required to integrate with
the legacy software tool-set. 

The validation steps include validating
the execution of the ISA within the new
microprocessor, validating the I/O charac-
teristics using the new microprocessor, and
integrating and running acceptance tests
of the legacy OFP with the new hardware. 

Conclusion
RePLACE technology offers the DoD cus-
tomer significant supportability, pro-
ducibility, and performance improvements
through the introduction of COTS-based
state-of-the-art hardware; it maintains
backward compatibility with existing
OFPs while providing the means to afford-
ably migrate to state-of-the-art hardware
and software technology. The result is sig-
nificant cost savings, substantial risk
reduction, and incremental upgrade
opportunities for future enhancements. It
also requires no custom hardware – it is an
embedded software technology that lever-
ages off the latest in commercial processor
technology. 

The engine can be supplied with a
turnkey lab-quality or ruggedized box, or
with a set of open system COTS board-
level products. Also, PC-based configura-
tion, control, and monitoring software is
available to provide setup, maintenance,
and user interaction with the engine.
Although conceived for on-board avionics
computer replacement strategies, it is
equally effective to other embedded com-
puter applications such as command and
control systems, automated test equip-
ment, weapon system trainers, and inte-
grated support environments.u

0

10

20

30

40

50

60

70

80

New H/W OFP
Development

Validation

Rewrite OFP

Recompile OFP

RePLACE

NRE for
Representative
100K LOC OFP

Figure 4: Comparison of Alternative
Software Adaptions

Validate
ISA w/ new

COTS
Hardware

Develop I/O
Software

Validate
DISC I/O
w/ new

Hardware

Integrate
Legacy OFP

w/ new
Hardware

Acceptance
Test Legacy
OFP w/ new

Hardware

Validate
ISA w/ new

HardwareNew COTS Hardware

Legacy ISA Test Programs

User Console

New Hardware
Legacy System
Performance
Test Program

Existing
I/O Test
Jig

ISA DEMO I/O DEMO Legacy OFP
DEMO

Legacy OFP

Existing
OFP Test
Environment

Flight Test

FQT
Acceptance Test
Program

VIEWstationTM  RTNI Tool

DISC Legacy ISA

Figure 5: Adding New Functionality into an Existing Platform



December 2001 www.stsc.hill.af.mil 17

A COTS-Based Replacement Strategy for Aging Avionics Computers

About the Authors
Douglas G. Haldeman
is currently the project
manager for TRW’s
Group II Mission
Computer Replacement
Program – a mission

computer upgrade for the Navy’s E-2C
aircraft that uses RePLACE technology.
Haldeman has a bachelor’s of science
degree in electrical engineering from
Rose-Hulman Institute of Technology
and a master’s of science in electrical
engineering from Purdue University.
He has more than 25 years experience
with TRW and has been working for
the last 18 years in advanced avionics
development and legacy avionics
upgrades. 

1900 Founders Drive Suite 202
Dayton, OH 45420
Phone: (937) 259-4970
Fax: (937) 259-4900
E-mail: doug.haldeman@trw.com

William J. Cannon is
the manager of Legacy
Processor Technologies
for the TRW Dayton
Avionics Engineering
Center. He has over 26

years of experience in advanced embed-
ded computer technology. Cannon’s
responsibilities include the assessment
of legacy embedded computer systems
upgrade opportunities and the techni-
cal oversight and direction of the devel-
opment and application of the
Reconfigurable Processor for Legacy
Applications Code Execution (RePLACE)
technology that is the subject of this
paper. Cannon was the principle inven-
tor of this technology.

1900 Founders Drive Suite 202
Dayton, OH 45420
Phone: (937) 259-4965
Fax: (937) 259-4900
E-mail: bill.cannon@trw.com

Jahn A. Luke is a senior
program manager at the
Embedded Information
Systems Engineering
Branch, Information
Directorate, Air Force

Research Laboratory (AFRL) where he is
research and development task manager
for the Computer Resources Support
Improvement Program. He has more
than 25 years of hardware and software
experience at AFRL in the development
of technologies for real-time simulation
systems and embedded computer soft-
ware. He is currently managing projects
addressing aging avionics and legacy
embedded information systems within
the Department of Defense. 

AFRL/IFTA
2241 Avionics Cir., Bldg. 620 Rm. S3-Y57
Wright Patterson AFB, OH 45433
Phone: (937) 785-6548 ext.3585
E-mail: jahn.luke@wpafb.af.mil

WEB SITES

Computer.org
http://computer.org
This site is the Institute of Electrical and Electronics Engineers
(IEEE) Computer Society’s technical and career resources Web site.
The site features a search engine for the organization’s 12 applica-
tions-oriented publications that foster active communication
between practitioners and the research community, and its nine
Transactions, research-oriented publications that document the
state of the art in computer science. A search of "software legacy
systems" turned up thousands of hits. The IEEE Computer Society
is the world's leading organization of computer professionals with
more than 100,000 members. The Computer Society is the largest
of the 36 societies of IEEE. Its vision is to be the leading provider
of technical information and services to the world’s computing pro-
fessionals. The society promotes an active exchange of information,
ideas, and technological innovation among its members.

FCW.com
www.wargaming.net/Programming/69/Reengineering_index.htm
This is the Web site for Federal Computer Week magazine. Federal
Computer Week is produced with emphasis on desktop,
client/server, and enterprise-wide computing. A site search for
Federal Computer Week turned up 226 results for legacy systems
and legacy software articles.

GCN.com
www.gnc.com
This is the site for Government Computer News that reaches almost
90,000 government IT managers, delivering timely and insightful
news coverage of the people and events that shape government tech-
nology. 

Reengineering
www.wargaming.net/Programming/69/Reengineering_index.htm
This Web site features a list of reengineering books along with links
for additional information on the publication. Topics include
workflow reengineering, analyzing outsourcing, building enterprise
information architectures, systems information reengineering,
reengineering software, and more.

The RENAISSANCE Web
www.comp.lancs.ac.uk/projects/RenaissanceWeb/index.html
This site is intended as a resource for the entire software reengineer-
ing community. It also covers topics such as software maintenance,
software evolution, reverse engineering, and software understanding.
The site contains original content, taken from the ESPRIT
RENAISSANCE software reengineering project, as well as a compre-
hensive list of other software reengineering resources on the Internet.
The RENAISSANCE project is an ESPRIT funded research project
into software reengineering and software evolution. One project
result is a set of RENAISSANCE consultancy reports that covers
architectural modeling, evolution risks economics, reverse engineer-
ing of system families, and the recycling of reusable code components.



18 CROSSTALK The Journal of Defense Software Engineering December 2001

Automated Transformation of Legacy Systems
Philip Newcomb and Randy A. Doblar

The Software Revolution, Inc.

The transformation of system applications code and database at automation levels exceeding 99 percent is now a
viable approach to legacy information system modernization. The benefit of the approach is migrating the legacy sys-
tem to a modern computing environment while preserving the repository of business knowledge and processes imbed-
ded in the legacy system.

During the last 50 years, information
processing systems have become the

intellectual repositories for most business
and government organizations. Today these
organizations face the complex and costly
problem of how best to restructure the
installed base of outdated information pro-
cessing resources while maintaining their
legacy intellectual property. This legacy
intellectual property continues to provide
value as organizations are forced to innovate
to survive in the fast-paced age of e-busi-
ness, e-communication, e-organizations,
and in the case of the military, e-warfare. 

The need to modernize legacy systems
is primarily driven by three factors: expan-
sion of the system’s functionality;
improved maintainability of the system
using modern tools and techniques; and
reduction of operational costs and
improved reliability by replacing obsolete
hardware suites with high-speed, open-
architecture systems. Alternative solutions
for modernization of the system include
developing a new system, system replace-
ment with a commercial off-the-shelf
(COTS) solution, or manual rewriting of
the legacy applications software and data-
bases to operate within a modern comput-
ing environment. 

Developing a totally new system or
replacing legacy systems by manually
rewriting the system’s software with the
support of semi-automated tools is

extremely costly and time consuming.
Replacing the system using COTS tech-
nologies, while less costly and timelier,
usually requires extensive and expensive
customization to provide functionality not
provided by the COTS product. In addi-
tion, the Gartner Group has shown that
the success rate for information system
modernization projects using these tradi-
tional solutions has thus far been approxi-
mately 7 percent; it is a success rate that
has not bred confidence within the infor-
mation technology (IT) community. 

Manual approaches have been prone to
failure due to inconsistency, cost overruns,
and schedule delays. COTS solutions have
fallen short of expectations because of
their inability to provide the customer
with the functionality needed to meet its
specific organizational goals. And semi-
automated tool-based solutions, while rel-
atively promising, have not provided a suf-
ficient level of automation to overcome
the drawbacks associated with manual
intervention required to address untrans-
formed code. 

Looking more closely at the automated
transformation approach, it becomes evi-
dent that using available tools capable of
transforming 60 percent or less of a sys-
tem’s legacy code automatically results in
extensive amounts of untransformed code
that must be addressed manually. Using a
one million-line information system as an

example, 400,000 lines of code would
remain to be addressed manually. 

The Gartner Group, an industry-rec-
ognized source of business and technology
intelligence, states that on average a well-
trained programmer can transform 160
lines of code per day.  Continuing to use a
one million-line information system and a
transformation tool capable of only 60
percent automation as our example, the
resultant 400,000 lines of untransformed
code would require 2,500 man-days of
manual intervention. If however, a trans-
formation tool was available that provided
a 99 percent level of automation, that
same one million-line system would only
have 10,000 lines of untransformed code
to be addressed in 62.5 man-days of man-
ual intervention – a significant qualitative
and quantitative improvement. Increasing
the automation level therefore, as it relates
to the quality and degree of transforma-
tion completeness is highly desirable and
is a significant factor in selecting the opti-
mal automated transformation solution. 

Through the application of a suite of
artificial intelligence (AI) technology
tools, it is now possible to achieve levels of
automation often exceeding 99 percent to
assess, transform, re-factor or re-engineer,
and if desired, web-enable a wide variety
of legacy computer programming lan-
guages, along with system databases, into
modern, platform-independent object-ori-
ented software environments (Figure 1). 

Much of the work to develop such a
highly automated legacy system modern-
ization technology originated from the Air
Force-funded Knowledge-Based Software
Assistant (KBSA) transformation research
program in the late 1980s and early 1990s.
The focus of that program was research to
develop highly automated processes for
program specification and synthesis.
Program transformation technologies were
adapted to achieve a highly extensible and
adaptable tool suite and technology base
to support the recreation of legacy system
code in a new target language with mini-
mal manual intervention. One of the
author’s work in support of KBSA at

Figure 1: Legacy System Transformation Solution Space



Boeing’s Research and Technology
Laboratory laid the foundation for the
currently available automated technology.
The automation levels currently being
achieved for the vast majority of transfor-
mation tasks have exceeded 99 percent. 

Employing this highly automated
approach, legacy systems can be modern-
ized in a fraction of the time and cost
needed by the competing alternatives dis-
cussed, thus dramatically reducing the
time associated with return on investment.
The application of the AI technology also
reduces the technical and schedule risks
associated with the modernization process,
while simultaneously reducing the flow
time of the project. The process provides a
fully documented, functional system that
is in a state to be maintained and upgrad-
ed using modern tools and software work-
benches.

Examples of performance metrics for
projects recently addressed using this tech-
nology include a 40-to-1 reduction in
functional testing time for a JOVIAL
transformation task of 250,000 lines that
enjoyed an automation level of 99.98 per-
cent and a functional test of 560,000 lines
of COBOL transformed at 99.99 percent
that only identified 400 bugs during func-
tional testing, many of which were resi-
dent in the original COBOL system.
These same automated tools have also
recently been applied to the transforma-
tion of C, FORTRAN, and BAL
Assembler systems with levels of automa-
tion that have been demonstrated to
exceed 99.99 percent for large systems. 

The newly generated software also has
the benefit of consistent quality and uni-
formity because an automated tool created
it. Systems comprised of large quantities of
code, if addressed manually, will require
many programmers. Programmers,
though writing code in the same lan-
guages, have different styles and skills.
Those differences can create major diffi-
culties during the system integration and
testing phase of a transformation project.
A highly automated approach requires
negligible manual intervention, offers a
solution that facilitates the uniformity of
the code and thus, compresses the integra-
tion and testing schedule for the project. 

Technology Description 
By employing AI-based automated pro-
gram transformation technologies, the
legacy application and database modern-
ization process can be addressed in four
disciplined steps:
• Assessment: Captures the legacy sys-

tem’s As Is state by extracting properties

of the existing system’s design, and
simultaneously generating detailed
documentation of the system. 

• Transformation: Provides transformed
software that is compiler-ready and
testable at the unit level, and fully doc-
umented.

• Refactoring: Reengineers the new sys-
tem to improve system architecture
and performance. The refactoring
process provides a disciplined
approach to design improvement that
minimizes the chances of introducing
new flaws.

• Web-enablement: Facilitates migration
of the new system to the Web environ-
ment by transforming the legacy appli-
cation to Java that runs on a Java
Virtual Machine.

Figure 2 illustrates the process for auto-
mated legacy system modernization
through the assessment, transformation,
and refactoring processes. A discussion of
these three building blocks along with
associated Web-enablement of a modern-
ized system follows.

Assessment
The code is parsed to build an in-memory
knowledge-based abstract syntax tree
(KBAST) model of the entire system. An
inventory is developed, using an iterative
process, against the KBAST model to
determine if any components of the appli-
cation system are missing, detect multiple
versions of code, and identify linkage
problems. Deviations of the dialects from
standard are typically not well document-
ed; this makes it necessary to develop a
series of modifications to the parser before
the technology addresses all constructs of
the applications code.

After development of the KBAST
model, a preliminary transformation of
the source code into the target To Be
model is performed. The purpose of this
effort is to assess and compare the As Is
and To Be system models to determine
what modifications are to be made to the
transformation process to achieve a highly
automated transformation into the target
language. 

A dry run of the transformation

December 2001 www.stsc.hill.af.mil 19

Automated Transformation of Legacy Systems

Figure 2: Automated Modernization of Legacy System into C++



Software Legacy Systems

20 CROSSTALK The Journal of Defense Software Engineering December 2001

process is performed by creating an inter-
mediate object-oriented (IOO) model to
develop the transformation metrics,
including identification of the percentage
of redundant and re-usable code, current
and predicted code properties, and poten-
tial code and data size reductions possible
in the refactoring process. The code is then
transformed into the IOO formalism that
allows for detailed identification and
assessment of the properties of the target
system. Of key significance for reuse and
maintenance is 1) extraction, parameteri-
zation, and merging of derived methods
associated with derived classes; and 2)
measurement of the amount of decoupling
and degree of cohesion and coherence of
the resultant system.

The final step of the assessment
process involves domain analysis of a sys-
tem, which is a process that systematically
creates a common framework for describ-
ing program elements and situations with-
in the code. This descriptive framework
facilitates recognition of unique and com-
mon roles and relationships among one or
more systems. The framework has two
tightly related dimensions of analysis that
address both the classifications of identi-
fiers (data and structures) as well as the
situations that involve their usage.

The construction of the first dimen-
sion of analysis entails describing the indi-
vidual names that occur within a system as
elements of common terms within a
domain dictionary. 

The second dimension describes the
more complex relationships among ele-
ments in the form of interpretations. The
interpretations are denotations for complex
situations in the code. The AI-based tech-

nology automatically constructs interpreta-
tions by rewriting code directly from the
structures represented by the code’s abstract
syntax in the KBAST. Interpretations
resemble the sentential and syntactic form
of the code except that domain dictionary
terms have been substituted for the identi-
fier names in the program code. A single
interpretation will therefore match many
syntactically similar but terminologically
different specific situations. These situa-
tions may occur in the code and serve to
identify commonality among complex rela-
tionships that occur within a single system
or span multiple systems.  

Interpretations are stored within anno-
tation libraries and used within the tech-
nology for documenting decisions about
the situations in the code. Interpretations
are automatically generated for individual
program statements, data structure defini-
tions, basic code blocks, functions, or
entire programs. These interpretations
range in specificity from generic to
domain-specific interpretations. The
degree of specificity or generality in the
interpretation depends upon the relative
generality or specificity of the type denota-
tion substitutions. The size of the inter-
pretation depends upon the user-directed
or system-directed choice of context of
interest.

Domain analysis assists in identifying
issues and opportunities in the transfor-
mation and refactoring process. It only
requires manual intervention when it is
necessary to establish a taxonomic system
to support classification tasks. An example
would be the identification or comparison
of sets of code-level statement functions
and data structures that are of specific

interest such as the data-related usages in
an entire application.

Transformation 
The modernization process begins with
the automatic identification of candidate
classes and objects for output into an IOO
model. This is a relatively complete trans-
formation of the input source code into an
IOO model that is consistent with the
structure of object-oriented (OO) C++.
This transformation into the IOO form
locates redundant, duplicate, and similar
data and processes, and abstracts those
detected items into classes and methods.
The classes, relationships, attributes, and
operations of the derived IOO model con-
form to Universal Modeling Language
(UML) standards.  

The overall process for transforming
from a procedural to an OO application
starts with input of legacy application pro-
grams and produces as output a complete-
ly integrated and modernized system. The
output system consists of object classes and
their instances that are complete with
regard to data typing, methods, and IOO
processes (executable mission-oriented
C++ functions, which refer to class mem-
ber element and member functions or
methods). These constructs possess a
derived architecture and control structure
consistent with the OO programming par-
adigm. The IOO application contains calls
to derived methods associated with desired
classes. Figure 3 provides a more specific
depiction of the IOO model generation
process. 

The design documentation extracted
from the IOO model is a hybrid between
conventional OO modeling languages and
event-driven programming models. The
mapping from procedural code into OO
code is functionally faithful to the original
procedural system. However, this IOO
model follows the semantic and syntactic
rules of the OO languages C++ and Java.  

It should be emphasized that variations
in the transformation process do not come
for free. The effort of adapting the trans-
formation technology base to customer-
specific objectives typically requires tailor-
ing the transformation pathways to cus-
tomer-specific objectives. This is the prin-
ciple effort performed by a transformation
service provider in a highly automated sys-
tem modernization process.

Support for the system transformation
processes comprises a wide range of tasks.
Some of the components include physical
transformation of the application software,
user interface, databases, and platform
adaptation. Table 1 illustrates the overall

Data Records
X,Y,Z

Data Fields:
Q,U,S

Procedural Systems

Procedures
Functions
K, J, L, M, N

Program Unit
Scope
Set/Use
Slicing
Analysis

Control Flow
Graphs of

Procedures &
Programs

Alias
Analysis

Of
Records

Data Flow
Graphs Of
Procedures

Program Slices:
for

Basic Blocks

Methods
M-q, M-r, M-s

Attached to
Classes

Procedures
rewritten

in terms of
C++ method calls

and reusable
templates

State Transition
Tables document

process control flow
and method invocations

sequence

Program A

Program B

Program C

Data Structures
X, Y ,Z

Data Items
q, r, s

Classes: X,Y,Z

Attr: Q, R, S
Instances: A, B, C

State Transition

Tables of SMM

State Machine

Models of CFGS

State Transition Tables
(Business Rules)

State Machine

C1
C2
C3

 T   T    F
 F   T    F
 T   T    F

M-q
M-r
M-s

1    1
2    1   2
3    2   1

Method Data FlowObject Class Hierarchy

W

ZX Y X
Y

Z

M-q

Figure 3: Architecture of the Avionics Simulation Station



December 2001 www.stsc.hill.af.mil 21

Automated Transformation of Legacy Systems

set of activities in modernizing an infor-
mation system. The principal roles and
responsibilities of the transformation tech-
nology provider, major system integrator,
and customer are indicated in the column
headings. 

The principal project phases are identi-
fied in the table cells in Table 1. Column
one task components include application
transformation, user interface transforma-
tion, database transformation, and plat-
form adaptation, and can be addressed
with a very high level of automation. The
second column involves functional testing
of all major components to assure func-
tional integrity of the resultant system in
the new target environment. The final col-
umn encompasses deployment and
retraining of the user base. 

In a typical engagement, the user inter-
face is automatically transformed into a
functionally equivalent user interface in the
target environment. The database is con-
verted using information derived from the
system database descriptions that drive
database conversion programs. Platform
and operating system calls are transformed
into equivalent target environment services. 

Generally, we have found it possible to
automate virtually all of the application,
database, user-interface, and platform
adaptation tasks. Automation has not been
introduced where manual processes are
already adequate such as the specification
of index fields in a relational database
using the interface provided by the data-
base vendor, testing the system user-inter-
face, or identification and reporting of sys-
tem bugs and enhancements. 

Throughout the development of an
automated process the largest unknowns
have been resolving configuration discrep-
ancies that surfaced because the original
source code was either incomplete or
could not be demonstrated to build the
original system, and determining the func-
tionality of undocumented legacy system
calls. The most significant areas of effort
have been in the replacement of legacy
platform functionality that did not exist in
the target environment, and enhancing
the dialect-specific language constructs.

Refactoring 
Refactoring is the process of changing a
software system to improve the software’s
structure and performance without alter-
ing its functional behavior. Refactoring is
used to eliminate, replace, or rewrite code
to improve its efficiency and understand-
ability or to transform applications to use
a suitable set of modern infrastructure
support functions. Refactoring extracts

and parameterizes methods; merges and
consolidates similar methods; reduces the
set of methods associated with a class to
the minimal set of well-understood opera-
tions; improves the coupling, cohesion
and comprehensibility of the overall appli-
cation; and reduces overall code duplica-
tion and code redundancy. 

Legacy applications often have many
dependencies on the legacy software infra-
structure. Consequently, it is often not
directly portable to another software envi-
ronment. Modernization of applications
often requires isolating the application-
specific code from the code associated
with various environment-specific utili-
ty/support functions known as infrastruc-
ture code. 

Often the legacy infrastructure func-
tionality does not exist in the new envi-
ronment, or exists in a different form.
Thus, this layer of support services must
be discontinued, redeveloped, or suitably
replaced. The definition or introduction of
an appropriate interface to the facili-
ties/services layer into the newly derived
application requires the development of
new code or an application program inter-
face (API) layer to comparable support
services in the target platform. This is also
required to test both the interface and the
service layers accessed through the facili-
ties/services layer interface. 

Adaptation of the application to inter-
face with a target environment not previ-
ously encountered is the most manually
intensive effort in a transformation proj-
ect. In our experience, this adaptation has
been the single largest source of schedule
risk, though it is not in general, a signifi-
cant technical risk. Generally lessons
learned from these kinds of adaptation
tasks are transferable between projects.
Separation of these infrastructure layers
from the application layers via a suitable
interface layer expedites resolution of
errors that arise from variations in alterna-
tive target operational environments. 

Web-Enablement
Web-enablement entails the transforma-
tion of an application into a networked,

distributed application that makes use of
the following: 
• Browser user-interfaces (BUI).
• Web-based languages.
• Run-time environments such as Java

and the Java Virtual Machine (JVM).
• Web-based data transmission and

manipulation protocols such as the
Extended Markup Language for the
interchange of data. 
Hybrid Web applications exhibit

some, but not necessarily all of these fea-
tures. A Web-application may be written
in C++ and have a BUI front-end that sup-
ports interface with users, or a back-end
database with connectivity via Microsoft’s
Object Data Base Connectivity (ODBC).
Java applications typically employ Java
Data Base Connectivity to connect to var-
ious vendor database products with similar
functionality as ODBC.

The Common Object Request Broker
Architecture (CORBA) has a common
interface definition language (IDL) that
supports both Java and C++. CORBA is
commonly used to provide distributed
component services for a smaller number
of users with high-performance require-
ments. CORBA’s IDL facilitates the cre-
ation of networked distributed applica-
tions by simplifying the definition of
interfaces that allow components to call
one another that reside anywhere in the
network, and may be implemented in any
language that supports IDL. A component
architecture such as J2EE provides stan-
dardized, extensible server-side and client-
side components to provide multi-tier dis-
tributed services. Java more typically uses
remote method invocation than CORBA
IDL for transferring data between distrib-
uted components. 

Support for both CORBA and
Enterprise Java Beans for distributed com-
ponent management services can coexist
in large applications. For instance,
CORBA with C++ can be used for highly
optimized transaction-oriented database
applications, while Java Enterprise Java
Beans and Java Applets are often used
for highly interactive distributed appli-
cations.

Transformation
Technology Provider

Major Systems Integrator Integrator and Customer

Platform Adaptation Platform Adaptation
Function Test

Platform Adaptation
Deployment

User Interface
Transformation

User Interface
Transformation Reqt’s
Function Test

User Interface
Transformation Reqt’s
Deployment

Data Base Transformation Data Transformation
Function Test

Data Transformation
Deployment

Application Transformation Application Functional Test Application Deployment

Table 1: Legacy System Modernization Services and Responsibilities



Software Legacy Systems

22 CROSSTALK The Journal of Defense Software Engineering December 2001

Given the multiple business processes
performed by the applications within large
confederated legacy systems and the trade-
offs between several possible alternative
distributed component Web-based archi-
tectures, the definition of the most appro-
priate transformation approach is a com-
plex decision to be evaluated. The decision
requires an in-depth analysis of the cus-
tomer’s applications, analysis of the impli-
cations of alternative solutions, and possi-
bly some amount of iteration to define an
appropriate transformation pathway. This
decision process is driven by the current
system architecture; the target architecture
objectives; the technical infrastructure,
including overall tool-set capabilities; and
personnel resources available to support
this transformation process.

Conclusion
While transforming legacy source code to
C++ at an automation level of 99.99 per-
cent is achievable using the approach
described here, experience has also shown
that it is unwise to take too many steps
along the modernization pathway at one
time. Hence, one should regard the initial
transformation into C++ as an easily
achievable goal that provides the staging
point for subsequent phases, including
system refactoring, confederated system

consolidation, and Web-enablement. 
It should be emphasized that while

high levels of automation are achievable
for transformation tasks, a modernization
project also involves development and
adaptation tasks that are manually inten-
sive such as infrastructure API layer devel-
opment for unfamiliar legacy or target
platforms. In addition, there are a number
of tasks that by their very nature require
human guidance or description such as
certain forms of domain analysis and
refactoring tasks that require specific
domain expertise. We have however, been
successful at minimizing the effort associ-
ated with these tasks by providing high
levels of machine support for them as well. 

Nevertheless, as today’s organizations
address the critical structural, cultural, and
financial issues surrounding the migration
of their often irreplaceable legacy software
applications and databases to modern plat-
form-independent computing environ-
ments, it is essential that they understand
that a new automated low-risk approach is
available. Exceedingly advanced tool-sets
and processes for rapidly reengineering lega-
cy system software into modern computing
environments provides organizations with a
valuable new alternative that is faster, lower
cost, lower risk, and higher quality than
other methods currently available.u

About the Authors
Philip Newcomb is an
internationally recog-
nized expert in the
application of artificial
intelligence (AI) and
formal methods of soft-

ware engineering, and has published
numerous papers in his field.  He has
done groundbreaking research in
applying AI, software engineering, and
automatic programming.  He formu-
lated the conceptual product frame-
work and developed the software trans-
formation technology and products
offered by The Software Revolution,
Inc. He has graduate work and degrees
from Carnegie Mellon University, the
University of Washington, Ball State
University and Indiana University.  

The Software Revolution, Inc.
3330 Monte Villa Pkwy.
Bothell, WA  98021
Phone: (425) 354-6464
Fax: (425) 354-6465
E-mail: newcomb@softwarerevolution.com

Randy A. Doblar, vice
president, Sales and
Marketing, for The
Software Revolution,
Inc., has more than 28
years experience in

program management and business
development in the defense and com-
mercial marketplace.  He has pub-
lished papers in the scientific disci-
plines of acoustics, geophysics, and
oceanography, and has been instru-
mental in leading The Software
Revolution, Inc.’s effort to establish
the eVolution 2000TM technology as
a new industry standard for legacy sys-
tem modernization.

The Software Revolution, Inc.
3330 Monte Villa Pkwy.
Bothell, WA  98021
Phone: (425) 354-6480
Fax: (425) 354-6465 
E-mail: rdoblar@softwarerevolution.com

Get Your Free Subscription

Fill out and send us this form.

OO-ALC/TISE 
7278 Fourth Street
Hill AFB, UT 84056

Fax: (801) 777-8069  DSN: 777-8069

Phone: (801) 775-5555  DSN: 775-5555

Or request online at www.stsc.hill.af.mil

NAME:_____________________________

RANK/GRADE:_____________________

POSITION/TITLE:___________________

ORGANIZATION:_____________________

ADDRESS:__________________________

_________________________

BASE/CITY:________________________

STATE:_________ ZIP:________________

PHONE:(_____)_____________________

FAX:(_____)________________________

E-MAIL:________________@___________

CHECK BOX(ES) TO REQUEST BACK ISSUES:

JAN2000 c LESSONS LEARNED

FEB2000 c RISK MANAGEMENT

MAY2000 c THE F-22

JUN2000 c PSP & TSP

MAY2001 c SOFTWARE ODYSSEY

JU L2001 c TESTING & CM

AUG2001 c SW AROUND THE WORLD

SEP2001 c AVIONICS MODERNIZATION

OCT2001 c OPEN & COMMON SYSTEMS

NOV2001 c DISTRIBUTED SW DEV.



December 2001 www.stsc.hill.af.mil 23

In his keynote address at the 1996
International Conference on Software

Engineering, Tom De Marco summarized
the work of the great military analyst Karl
Von Clausewitz on the interplay of armor
and mobility in military conflict. De
Marco said Clausewitz proposed that at
times, armor would dominate mobility, as
with heavily armed medieval knights dom-
inating lightly armed peasantry. But if
over-optimized, one strategy will lose to
advances in the other, as the ponderous
French knights found in their inability to
dominate the lightly armed and mobile
English longbowmen in their watershed
loss to the English at Crecy in 1346. 

De Marco then drew a parallel
between armor-intensive software strategies
such as the software Capability Maturity
Model® (CMM®) and the mobility-inten-
sive lightweight processes that were emerg-
ing at the time. He was inferring that the
software CMM was too ponderous to cope
with the need for rapid development and
rapid change characteristic of such sectors
as electronic commerce and Web-based
systems. In the ensuing discussion, soft-
ware CMM advocates cited the high mor-
tality rates of lightweight process organiza-
tions, and their frequent inability to cope
with success when they need to scale up
their process and architectures to deal with
more complex services and heavier work-
loads.

Underlying this point/counterpoint is
a key software-engineering question: How
much discipline is enough, and how much
flexibility is enough?

In Understanding the Spiral Model as a
Tool for Evolutionary Acquisition [1], we
showed that the risk exposure considera-
tions used as spiral model decision criteria
could be used to address how-much-is-
enough questions. There, we showed how a

how-much-testing-is-enough question could
be addressed by balancing the risks of
doing too little testing (alienating your
users) and the risks of doing too much
testing (unavailable combat capability,
missed market windows).

In this article, we show how the spiral
model and its recent extension, Model-
Based (system) Architecting and Software
Engineering (MBASE), can be used to tai-
lor a project’s balance of discipline and
flexibility via risk considerations. We also
describe and rationalize the major MBASE
extensions to the spiral model (model
clash avoidance, stakeholder win-win),
and elaborate on the use of these exten-
sions and risk considerations in the
anchor-point milestones used in MBASE
and the spiral model. 

In subsequent articles, we will present
an attractive special case of MBASE, the
Schedule as an Independent Variable
(SAIV) process model, and present an
integration of the MBASE project
approach with the University of
Maryland’s Experience Factory approach,
which facilitates an organization’s transi-
tion to the Capability Maturity Model®-
IntegratedSM (CMMISM).

MBASE and Model Clash
Avoidance
Particularly for an invisible product such
as software, projects make use of various
process, product, property, and success
models to guide its progress. Process models
can include the waterfall model (sequen-
tial determination of the system’s require-
ments, design, and code); evolutionary
development (development of an initial
core capability, with full definition of
future increments deferred); incremental
development; spiral development; rapid
application development; adaptive devel-
opment; and many others.

Product models can include various
ways of specifying operational concepts,

requirements, architectures, designs, and
code, along with their interrelationships;
for example, the object-oriented design
models specified within the Rational
Unified Process, e.g., class and sequence
diagrams, use-cases, etc. 

Property models can include models of
desired or acceptable cost, schedule, per-
formance, reliability, security, portability,
evolvability, reusability, etc., and their
tradeoffs, e.g., Constructive Cost Model II
(COCOMO II). 

Success Models can include correctness
(satisfying the specified requirements),
organization and project goals, stakehold-
er win-win, business-case, Goal-Question-
Metric (GQM), or others such as IKI-
WISI (I’ll know it when I see it: a frequent
response when users are asked to specify
user-interface requirements).

Software architects and product devel-
opers are generally familiar with the con-
cept that trying to integrate two or more
arbitrarily selected products or product
models can lead to serious conflicts and
disasters. Some examples are mixing func-
tional and object-oriented components, or
the architectural style clashes you can
encounter when integrating commercial
off-the-shelf (COTS) products (see [2] for
a well-described case study involving fac-
tors of four and five overruns in schedule
and effort). Software process people are
similarly familiar with the serious effects of
trying to coordinate organizations with
clashing process models such as top-
down/bottom-up or CMM Level 1/Level
5.

However, relatively few people are
aware of the extent to which projects can
run into trouble because they choose
incompatible combinations of software
process, product, property, and success
models. Such clashes are not only frequent
and severe, but they are also hard to diag-
nose because they derive from different
sources and involve mismatched assump-
tions lying deep below the project’s written

Balancing Discipline and Flexibility 
With the Spiral Model and MBASE

Dr. Barry Boehm and Dr. Daniel Port
University of Southern California, Center for Software Engineering

This article details how the spiral model and its recent extension, Model-Based Architecting and Software
Engineering (MBASE) can be used to tailor a project’s balance of discipline and flexibility via risk considerations.
It also describes and rationalizes the major MBASE extensions to the spiral model – model clash avoidance, stake-
holder win-win – and elaborates on the use of these extensions and risk considerations in the anchor-point mile-
stones used in MBASE and the spiral model.

Best Practices

®Capability Maturity Model and CMM are registered 
in the U.S. Patent and Trademark Office.

SMCapability Maturity Model-Integrated and CMMI are
service marks of Carnegie Mellon University.



24 CROSSTALK The Journal of Defense Software Engineering December 2001

Best Practices

plans and specifications.
A good Department of Defense (DoD)

example was a deeply troubled project
encountered during the National Research
Council Ada and Beyond study [3]. This
project inherited a commitment to a
waterfall process model via its organiza-
tion’s commitment to DoD-STD-2167. It
also inherited a commitment to COTS-
based product model through the need to
comply with a secretary of defense man-
date. 

The waterfall model assumes that the
requirements determine the capabilities,
and the project had contracted for a two-
second response time requirement. How-
ever, the contractor found that none of the
available COTS capabilities could process
the system workload with a two-second
response time, and was proceeding to
develop an expensive custom software sys-
tem to meet the two-second requirement.
The customer wanted the COTS-directive
product model to take precedence, and to
have the available COTS capabilities
determine the performance requirements.

Besides this difficult model clash, the

project had also inherited an Ada-based
product model via the DoD Ada mandate.
This clashed with the COTS model, since
some attractive COTS solutions did not
have adequate Ada bindings. Further,
none of the approaches were compatible
with the project’s success model of pro-
ducing an initial operational capability in
36 months; or with an additional proper-
ty model, which was being adopted by the
organization. This model was Cost As
Independent Variable, which would have
been difficult to satisfy when the project
already had at least four existing inde-
pendent variables.

This example covers only a small sub-
set of the model clashes a project can
encounter. Further discussions, examples,
and case studies can be found in [4] and
[5]. We have been able to use MBASE to
help other large government and commer-
cial projects to diagnose and avoid serious
model clashes, and have worked with
smaller companies to develop lightweight
versions of MBASE to balance discipline
and flexibility on rapid-development proj-
ects. After describing MBASE in the next

four sections, we will summarize how its
use could have avoided the DoD project
model clash dilemmas noted, followed by
a summary of MBASE usage to date. 

MBASE Model Integration
Framework and Process
Framework
Figure 1 summarizes the overall model
integration framework used in the
MBASE approach to ensure that a pro-
ject’s success, product, process, and prop-
erty models are consistent and well inte-
grated. At the top of Figure 1 are success
models, illustrated with several examples,
whose priorities and consistency should be
considered first as they tend to drive the
selection and use of other models (includ-
ing other success models). 

Thus, if the overriding top-priority
success model is to “demonstrate a com-
petitive agent-based electronic commerce
system on the floor of the COMDEX
trade show in nine months,” this con-
strains the ambition level of other success
models. It would be a major schedule risk
to insist on provably correct code or a fully
documented system. The nine-month
schedule constraint is most critical because
the system will lose most of its value if it is
not available to compete for early market
share at COMDEX. 

The risk schedule overrun also deter-
mines many aspects of the product model
(architecture designed to easily shed lower-
priority features if necessary to meet
schedule), the process model (SAIV), and
various property models (portable and
reliable enough to achieve a successful
demonstration). The achievability of the
success model needs to be evaluated with
respect to the other models. Figure 1
shows that the choices of process and
product models need to be evaluated by
having the success model provide evalua-
tion criteria for the product milestone arti-
facts, and provide preconditions and post-
conditions (entry and exit criteria) for the
process milestones. 

In the nine-month COMDEX demon-
stration example, a cost-schedule estima-
tion model would relate various product
characteristics (sizing of components,
reuse, product complexity), process char-
acteristics (staff capabilities and experi-
ence, tool support, process maturity), and
property characteristics (required reliabili-
ty, cost constraints) to determine whether
the product capabilities achievable in nine
months would be sufficiently competitive
for the success models. Thus, as shown at
the bottom of Figure 1, a cost and sched-
ule property model would be used for the

Process models

Life cycle anchor
points

Risk management
Key practices

Success models

Business case
IKIWISI

Stakeholder win-win

Property models
Cost

Schedule
Performance

Reliability

Product models

Planning and control

Milestone content
Evaluation and

analysis

Process
entry/exit
criteria

Product
evaluation

criteria

Domain model
Requirements
Architecture

Code
Documentation

Figure 1: Model-Based Architecting and Software Engineering Model Integration Framework

Figure 2: Model-Based Architecting and Software Engineering Process Framework



December 2001 www.stsc.hill.af.mil 25

Balancing Discipline and Flexibility With the Spiral Model and MBASE

evaluation and analysis of the consistency
of the system’s product, process, and suc-
cess models.

In other cases, the success model
would make a process model or a product
model the primary driver for model inte-
gration. An IKIWISI success model might
initially establish a prototyping and evolu-
tionary development process model leav-
ing most of the product features and prop-
erty levels to be determined by the evolu-
tionary development process. A success
model focused on developing a product
line of similar products would initially
focus on product models (domain models,
product line architectures), with process
models and property models subsequently
explored to perform a business-case analy-
sis of the most appropriate breadth of the
product line and the timing for introduc-
ing individual products.

Figure 2 provides an overall process
framework for the MBASE approach. The
primary drivers for any system’s (or prod-
uct line’s) characteristics are its key stake-
holders. These generally include the sys-
tem (taken below to mean system or prod-
uct-line) users, customers, developers, and
maintainers. Key stakeholders can also
include strategic partners, marketers, oper-
ators of closely coupled systems, and the
general public for such issues as safety,
security, privacy, or fairness. 

The critical interests of these stake-
holders determine the priorities, desired
levels, and acceptable levels of various sys-
tem success criteria. These are reflected in
the success models for the system such as
stakeholder win-win, business case, organ-
ization and project goals, operational
effectiveness models, or IKIWISI. These
in turn determine which portions of an
applications domain and its environment
are relevant to consider in specifying the
system and its development and evolution
process. The particular objective is to
determine a system boundary, within
which the system is to be developed and
evolved; outside of which is the system
environment (and context). 

For example, in our COMDEX elec-
tronic commerce application, the driving
success model is the nine-month schedule.
The system boundary would be deter-
mined by the most cost-effective set of
capabilities that could be developed in
nine months. Thus, a credit card verifica-
tion capability might be considered out-
side the initial system boundary, although
it would be needed later. 

This latter point illustrates how
boundaries might (and will likely) change
over time, particularly in the face of evolv-
ing success models (e.g., the nature of a

competitive e-commerce system). For exam-
ple, if a compatible COTS credit card ver-
ification capability became available and
easy to integrate, it could be added within
the system boundary. Thus the domain
scope for the demo system would be very
much determined by the available COTS
products that could be tailored, integrat-
ed, and built upon. 

Determining the appropriate combi-
nation of COTS products and extensions
could take several win-win spiral cycles of
experimental prototyping and risk resolu-
tion, in concert with cost-schedule model-
ing to determine how much capability
would be feasible to develop in nine
months. The appropriate process model
would be SAIV, which adds further prod-
uct model constraints, such as the need to
prioritize features and to design the system
architecture for ease of adding or dropping
marginal-priority features in order to min-
imize the risk of not meeting the nine-
month schedule.

A Different Balance of
Discipline and Flexibility:
Safe Air Traffic Control
With a different set of stakeholders and
success models, the same MBASE process
framework in Figure 2 will produce a dif-
ferent balance of discipline and flexibility.
In an air traffic control system, for exam-
ple, the key stakeholders will include the
airplane passengers and various regulatory
bodies whose success models involve a
very high level of system safety. 

In this case, the success models will
reject high-risk product models, including
unreliable COTS products. The process
models will include considerably more dis-

cipline to eliminate safety risks at the
requirements, architecture, design, and
code levels. The key property model will
focus on safety rather than schedule,
although schedule considerations might
still affect the timing of various increments
of system capability. Thus, the different
risk patterns imposed by the stakeholders
and their success models will produce dif-
ferent sequences of product capabilities
and processes with different balances of
discipline and flexibility.

MBASE and Stakeholder 
Win-Win
A common element in the e-commerce
and air traffic control examples is the need
to reconcile the key stakeholders’ success
models. Thus, a stakeholder win-win
negotiation process becomes a key step in
each spiral cycle of the MBASE approach,
as shown in Figure 3. 

In the COMDEX application, for
example, the initial spiral cycle would
focus on evaluating COTS products and
scoping the overall system to be buildable
in nine months. In a subsequent spiral
cycle, the next-level stakeholders would
include representative users of the e-com-
merce system, and the reconciliation of
their win conditions would include proto-
typing of the user interface to eliminate
the risk of showing up at COMDEX with
an unfriendly user interface. The MBASE
tool support includes a groupware system
called Easy WinWin, which enables dis-
tributed stakeholders to enter their win
conditions and to negotiate mutually satis-
factory (win-win) agreements with other
stakeholders [6].

The win-win spiral model in Figure 3

Figure 3: The Win-Win Spiral Model



26 CROSSTALK The Journal of Defense Software Engineering December 2001

provides another view of how risk consid-
erations are used to reconcile stakeholder
success conditions in terms of product,
process, and property models. A comple-
mentary view was shown in Figure 2 (see
page 24), which also identifies the win-
win spiral model’s role in guiding the early
feedback cycles involved in defining and
reconciling the system’s domain, product,
process, and property models.

MBASE and Life-Cycle
Anchor Points
MBASE also adopts and extends the six
Spiral Model Essentials presented in our
May 2001 CrossTalk article [1] and
summarized in Table 1. The stakeholder
commitment to proceed in Essential 2 is
implemented via the win-win spiral model
as shown in Figure 3 (see page 25).
MBASE adopts Essential 5 by using its
life-cycle anchor points as critical review
and management decision points. It
adopts Essentials 3 and 4 on risk manage-
ment via continuous risk identification,
risk assessment, and risk exposure reduc-
tion, and Essentials 1 and 6 via a concur-
rent engineering approach to both system
and software issues.

The life-cycle anchor points are
described further in the side bar located on
page 27.  As shown in Figure 2, one of
them is the Life Cycle Architecture mile-
stone. It includes a product definition, a
process definition, and a feasibility ration-

ale ensuring the compatibility of the sys-
tem’s product, process, property, and suc-
cess models. From this base, the project
can continue to construct the system by
refining the product models into an exe-
cuting product up through a third mile-
stone, the Initial Operating Capability. 

The specific content of the first two
anchor point milestones is summarized in
the sidebar. It includes increasingly
detailed, risk-driven definitions of the sys-
tem’s operational concept, prototypes,
requirements, architectures, life-cycle
plan, and feasibility rationale. For the fea-
sibility rationale, property models are
invoked to help verify that the project’s
success models, product models, process
models, and property levels or models are
acceptably consistent. 

The first milestone is the Life Cycle
Objectives (LCO) milestone, at which
management verifies the basis for a busi-
ness commitment to proceed at least
through an architectural stage. This
involves verifying that there is at least one
system architecture and choice of
COTS/reuse components that is shown to
be feasible to implement within budget
and schedule constraints to satisfy key
stakeholder win conditions and to gener-
ate a viable investment business case. 

The second milestone is the Life Cycle
Architecture (LCA) milestone, at which
management verifies the basis for a sound
commitment to product development and
evolution. This is a particular system
architecture with specific COTS and reuse
commitments that is shown to be feasible
with respect to budget, schedule, require-
ments, operations concept and business
case; identification and commitment of all
key life-cycle stakeholders; and elimina-
tion of all critical risk items. The
AT&T/Lucent Architecture Review Board
technique [7] is an excellent management
review approach involving the LCO and
LCA milestones. It is similar to the highly
successful recent DoD best practice of
software Independent Expert Program
Reviews [8].

The third anchor point is the system’s
Initial Operational Capability (IOC),
defined further in [9]. The LCO, LCA,
and IOC have become the key milestones
in the Rational Unified Process [10, 11,
12]. There are many possible minor mile-
stones (adjusted to the particular project as
needed) that may lie between LCO and
IOC and several important post-deploy-
ment milestones beyond IOC. Table 2
summarizes the pass/fail criteria for the
LCO, LCA, and IOC anchor points.

The focus of the LCO review is to
ensure that at least one architecture choice
is viable from a business perspective. The
focus of the LCA review is to commit to a
single detailed definition of the review
artifacts. The project must have either
eliminated all significant risks or put in
place an acceptable risk-management plan.
The focus of the IOC review, also called
the Transition Readiness Review, is to
ensure that the initial users, operators, and
maintainers (generally equivalent to beta-
testers) are fully prepared to successfully
operate the delivered system. If the
pass/fail criteria for any review are not sat-
isfied, the package should be reworked.

We determined these anchor point
milestones as common commitment
points across commercial, aerospace, and
government organizations when searching
with our University of Southern
California (USC) Center for Software
Engineering Affiliates for a set of common
milestones for referencing COCOMO II
cost and schedule estimates. They work
well as common commitment points
across a variety of process model variants
because they reflect similar commitment
points during one’s lifetime.

The LCO milestone is the equivalent
of getting engaged, and the LCA mile-
stone is the equivalent of getting married.
As in life, if you marry your architecture in
haste, you and your stakeholders will
repent at leisure (if, in Internet time, any
leisure time is available). The third anchor
point milestone, the IOC, constitutes an
even larger commitment: It is the equiva-
lent of having your first child with all the
associated commitments of care and feed-
ing of a legacy system.

To return to our DoD 2167/
COTS/Ada/deadline/CAIV model clash
example on page 24, at the latest it would
have failed its LCO milestone review by
being unable to demonstrate that a
COTS-based architecture could satisfy the
two-second response time requirement.
Even earlier, though, this model clash
would have been picked up by the
MBASE process framework in Figure 2, in
feeding back to the stakeholders the need

Best Practices

Table 2: LCO, LCA, and IOC Pass/Fail Criteria

Table 1: Essentials of the Spiral Model



December 2001 www.stsc.hill.af.mil 27

to revise their success models to permit a
clash-free solution. This would involve
additional win-win spiral cycles to deter-
mine a mutually satisfactory (win-win)
combination of features, budgets, sched-
ules, increments, and COTS choices. 

MBASE Usage Experience
For the past five years, USC has used and
refined MBASE extensively within its two-
semester graduate software-engineering
course. The students work on a Web-based
electronic services project for a real USC
client (frequently a digital library applica-
tion for the university information servic-
es division) from initial system definition
through transition, utilizing a specialized
form of MBASE. This specialization
includes particular tools and models such
as Easy WinWin, Rational Rose,
MSProject, and elements of the Rational
Unified Process. More than 100 real-client
projects have used MBASE, and over 90
percent have delivered highly satisfactory
products on very short fixed schedules.
The annual lessons learned have been
organized into an extensive set of usage
guidelines and an Electronic Process
Guide [13], all accessible at <http://sun-
set.usc.edu/research/MBASE>. In the
spring of 1999, MBASE was used in both
the undergraduate and graduate software
engineering courses at Columbia
University. Although these are single
semester courses, MBASE was successfully
adapted to help student teams complete a
full project life cycle for real clients. 

Within industry, Xerox has adopted
many elements of MBASE to form its
time-to-market process, including the use
of the LCO and LCA anchor points as
synchronization points for the hardware
and software portions of their printer
product definitions. 

As mentioned previously, Rational has
adopted the LCO, LCA, and IOC anchor
points within their Rational Unified
Process while MBASE adopted Rational’s
Inception-Elaboration-Construction-
Transition phase definitions. 

C-Bridge has mapped their define,
design, develop, deploy rapid development
methodology for e-commerce systems to
the MBASE spiral model. 

The Internet startup company Media
Connex adopted MBASE and used Easy
WinWin to establish win-win relation-
ships among their key stakeholders. Each
of these companies converged on different
balances of discipline and flexibility to sat-
isfy their stakeholders’ success models. 

Additionally, there are numerous com-
panies and organizations directly making

Balancing Discipline and Flexibility With the Spiral Model and MBASE

The Spiral Model Essential 
Life-Cycle Anchor Points



Best Practices

28 CROSSTALK The Journal of Defense Software Engineering December 2001

use of MBASE elements within their proj-
ect development efforts. For example, the
U.S. Army Tank and Automotive
Command has used Easy WinWin and
other MBASE elements to reconcile its
software technology organizations’ process
and product strategies.

Conclusions and Future
Directions 
The ability to balance discipline and flexi-
bility is critical to developing highly
dependable software-intensive systems in a
rapidly changing environment. The
MBASE integration framework, process
framework, and associated guidelines pro-
vide a set of risk-driven techniques that
elaborate on the spiral model and the
Rational Unified Process enabling an
organization to achieve an appropriate bal-
ance of discipline and flexibility for each
of its projects.

However, this requires a large number
of guidelines to keep all of a complex soft-
ware system’s process, product, property,
and success models well integrated across
all of the phases and activities in the soft-
ware-system life cycle. In some ways, we
have been able to reduce this complexity.
One way is by providing tools and tem-
plates for MBASE artifacts via the
MBASE Electronic Process Guide [13].

Another way is to develop special
domain-specific models such as for the
digital library domain that enables student
teams to learn the development principles
and successfully develop moderate-sized
Web-based applications in 24 weeks [14]. 

Third is to develop specialized models
for particular situations, such as the SAIV
process model we will discuss in an
upcoming CrossTalk article.

A future challenge is to extend the
project-oriented MBASE approach to
address organization-level software and
system process issues. In January
CrossTalk, we will present an integra-
tion of MBASE with the University of
Maryland’s Experience Factory approach
[15], and show how it can help organiza-
tions transition to the CMMI.

Acknowledgements 
We would like to acknowledge the support
of the Defense Advanced Research
Projects Agency and the National Science
Foundation in establishing and refining
MBASE, the DoD Software Intensive
Systems Directorate in supporting its
application to DoD projects and organiza-
tions, and the affiliates of the USC Center
for Software Engineering for their contri-
butions to MBASE.u

References
1. Boehm, B., and W. Hansen, eds. “The

Spiral Model as a Tool for Evolutionary
Acquisition.” CrossTalk May
2001, pp. 4-9.

2. Garlan, D., R. Allen, and J.
Ockerbloom, eds. “Architectural
Mismatch: Why Reuse Is So Hard.”
IEEE Software November 1995, pp.
17-26.

3. Boehm, B., et al. “Ada and Beyond:
Software Policies for the DoD.”
National Academy Press, 1997. 

4. Boehm, B., and D. Port, eds.
“Escaping the Software Tar Pit: Model
Clashes and How to Avoid Them.”
ACM Software Engineering Notes
January 1999, pp. 36-48.

5. Boehm B., D. Port, and M. AlSaid,
eds. “Avoiding the Software Model
Clash Spider Web.” IEEE Software
November 2000, pp. 120-122. 

6. Boehm, B., P. Gruenbacher, and R.
Briggs, eds. “Developing Groupware
for Requirements Negotiation: Lessons
Learned.” IEEE Software May/June
2001, pp. 46-55.

7. Marenzano, J., “System Architecture
Validation Review Findings,” in D.
Garlan (ed.). ICSE-17 Architecture
Workshop Proceedings. CMU,

Pittsburgh, PA, 1995.
8. Report of the Defense Science Board

Task Force on Defense Software.
Defense Science Board. OUSD
(A&T), November 2000.

9. Boehm, B. “Anchoring the Software
Process.” IEEE Software July 1996, pp.
73-82.

10.Royce, W.E. Software Project
Management: A Unified Framework.
Addison-Wesley, 1998.

11.Jacobson, I., G. Booch, and J.
Rumbaugh, eds. The Unified Software
Development Process. Addison-
Wesley, 1999.

12.Kruchten, P. The Rational Unified
Process (2nd ed.). Addison-Wesley,
2000.

13.MBASE Guidelines and MBASE
Electronic Process Guide. USC-CSE.
<http://sunset.usc.edu/research/MBASE>.

14.Boehm, B., A. Egyed, J. Kwan, D.
Port, A. Shah, and R. Madachy, eds.
“Using the WinWin Spiral Model: A
Case Study.” Computer July 1998, M.
33-44

15.Basili, V., G. Caldeira, and H.
Rombach, eds. “The Experience
Factory,” in J. Marciniak (ed.).
Encyclopedia of Software Engineering.
Wiley, 1994.

About the Authors
Barry Boehm, Ph.D., is
the TRW professor of
software engineering
and director of the
Center for Software
Engineering at the

University of Southern California. He
was previously in technical and man-
agement positions at General
Dynamics, Rand Corp., TRW, the
Defense Advanced Research Process
Agency, and the Office of the Secretary
of Defense as the director of Defense
Research and Engineering Software
and Computer Technology Office. Dr.
Boehm originated the spiral model, the
Constructive Cost Model (COCO-
MO), and the stakeholder win-win
approach to software management and
requirements negotiation.

University of Southern California
Center for Software Engineering
Los Angeles, CA 90089-0781
Phone: (213) 740-8163
Fax: (213) 740-4927
E-mail: boehm@sunset.usc.edu

Daniel Port, Ph.D., is a
research assistant pro-
fessor of Computer
Science and an associ-
ate of the Center for
Software Engineering

at the University of Southern
California. He received a doctorate
degree from the Massachusetts
Institute of Technology, and a bache-
lor’s degree from the University of
California, Los Angeles.  His previous
positions were assistant professor of
Computer Science at Columbia
University, director of Technology at
the USC Annenburg Center EC2
Technology Incubator, co-founder of
Tech Tactics, Inc., and a project lead
and technology trainer for NeXT
Computers, Inc.

University of Southern California
Center for Software Engineering
Los Angeles, CA 90089-0781
Phone: (213) 740-7275
Fax: (213) 740-4927
E-mail: dport@sunset.usc.edu



December 2001 www.stsc.hill.af.mil 29

ARTICLE INDEX

VOLUME 14

MONTHLY COLUMNS:

ARTICLES:



30 CROSSTALK The Journal of Defense Software Engineering December 2001



December 2001 www.stsc.hill.af.mil 31

What constitutes an engineer? What
makes one tick? I’m sure there are a

myriad of answers but to me there are four
basic ingredients to the recipe. Take three
parts scientist, add two parts tinker, fold in
two parts artist, and sprinkle with four
parts guru.

Engineers have the scientific drive to
search, explore, and discover how things
work. A philomath by nature, engineers
continue to learn inside and outside their
field. Check out their cubicles overflowing
with books, manuals, magazines, and jour-
nals. 

Unlike their scientific colleagues, who
loose themselves in a boundless search for
knowledge, engineers are pulled back to
reality by a chronic urge to tinker. While
most kids are playing with their toys on
Christmas day, engineers tear their toys
apart to see the motor, controller, or
mechanics. Once satisfied, they use the
parts to create new toys that resemble those
found by Woody and Buzz in Sid’s room –
who, by the way, is destined to be an engi-
neer. This is the trait that leads an engi-
neer’s parents, spouse, or manager to sus-
pect that some part of the engineer’s brain
is not fully developed. 

Like artists, engineers create but their
creativity takes a different form. Artists
start with a blank canvas and end up with
something that is observed and valued by
its appeal. Engineers use existing materials
to form a bricolage that is used and valued
by its utility. The Internet is a prime exam-
ple, i.e., lashing together the complexities
of assorted computers, long-standing
phone lines, modern fiber optics, ubiqui-
tous cable, and strings of code to create a
new form of communication. NASA engi-
neers were at the zenith of their mission
making an air filter out of spare parts for
Apollo 13. 

The leitmotif of an engineer is the self-
confidence of always being right. No mat-
ter what the circumstance, engineers feel
they know the answer. An engineer consid-
ers himself the guru of gadgets, expert of
electronics, maharishi of mathematics, pro-
fessor of programming, and sage of sys-
tems. At a company party, I had a graphol-
ogist analyze the handwriting of my team.
One character trait that appeared in every
engineer was the need to be right. The
graphologist asked for the group leader. I
stepped forward. She said, “I’m so sorry.” 

While an engineer’s self confidence
facilitates the drive to explore, tinker, and

create, it becomes an Achilles heel for
implementation. Implementation requires
support and funding that comes from
management or venture capitalists. Few
engineers are blessed with the talent to
influence, persuade, and convince a man-
ager or venture capitalist. 

Engineers present somniferous ideas
thinking they have the only answer,
unaware that a manager is bombarded with
ideas daily and struggles to sort out the lot.
Engineering managers relate with Charles
de Gaulle, who said after a few years as
France’s president, “It is impossible to gov-
ern a country that produces 457 different
kinds of cheese.” Well President de Gaulle,
try governing a software development team
that has 457 different requirements, 45.7
methodologies, 4.57 languages, and
457,000 process improvement ideas. 

How can you get a dilatory manager to
cogitate your ideas and become more cred-
ulous to your point of view? How can you
bridge the fissure between engineering
insight and management vision? 

When the clock strikes midnight, get
off the chat line, turn on the tube, and turn
to a cable channel. There he is – the prince
of pitch, the sultan of sales, the prime min-
ister of peddling, the royal highness of
hawking – Ron Popeil. Mr. Ronco is him-
self, the most successful infomercial pitch-
man in history.

What, you don’t know Ron? Give me a
break. I’m sure if we cleaned out your clos-
ets, cabinets, or garage we would find a
Veg-O-Matic, Mr. Microphone, Pocket
Fisherman, food dehydrator, or a can of
GLH Formula #9 spray-on hair with his
name on it. 

If not one of Ron’s products, surely we
would find a Chia Pet, Thighmaster, or a
set of Ginsu Knives. Perhaps we would dis-
cover a Flowbee – the ingenious hair cut-
ting system that hooks to a vacuum. Is
there a Hairdini hidden in your armoire
that will twist your hair into a quick bun in
seconds?

You can learn from these ridiculous yet
amusing infomercials. I know – you are a
professional and would never be so bump-
tious. Well listen Mr. Professional: Ron’s
pulled in more than $1 billion in retail;
what was your latest bonus? Reason and
logic have not convinced your pervicacious
boss, so maybe you need a little spice in the
recipe. Don’t let the potboiler products
repulse you, look at how they are offered.

First, accentuate the need. Does anyone

really need a Ratoto? Not until you see that
baby skin a potato in seconds. While you
may see the obvious need for your brilliant
ideas, many mangers do not. It’s your
responsibility to help your manager appre-
ciate the need for your brainchild.

Second, your idea has to be demonstra-
ble. My appeal to the Veg-O-Matic was
weak at best until I actually witnessed it
slicing, dicing, and churning out julienne
fries in just minutes! Although your con-
cepts may be more complex than the
Inside-the-Shell Egg Scrambler, you need
to demonstrate how your idea will work.
It’s your responsibility to help your manag-
er visualize the use of your idée fixe. 

Third is repetition. How many times
have you seen the Ginsu Knife demonstra-
tion? How about Ron’s new product the
Showtime Rotisserie? The more you are
exposed to upbeat demos your subcon-
scious is inculcated into submission. Don’t
let your ideas ride on one presentation.
Indoctrinate your manager with quotidian
concepts of your proposal. If your sugges-
tion has a theme song your manager
should be humming it.

Finally, curtail the risk. I forked out
$19.95 for Eagle Eye Sunglasses that illu-
minate fish in 20 feet of water, not because
I knew they would work, but because I
knew if they did not work, I was only out
20 bucks. It’s like riding a bike with train-
ing wheels, swimming with water wings, or
working with a net. If the worst thing that
can happen is palatable, then why not take
a gamble? When engineers present their
panaceas, managers see slipped deadlines,
blown budgets, and lost careers. Package
your concept with a set of training wheels.
If your manger feels he or she can get on
your conceptual bike without serious
injury, he or she will be riding in no time.

I can already see you wheedling away.
“Boss, you get Object-Oriented (OO)
design and the Unified Process (UP) for
just $19.95K. But wait! Fund the project
this month and we’ll throw a free
eXtensible Markup Language (XML)
workshop and starter kit. You get OO, UP,
and XML all for just $19.95K. But wait!
Fund the project this week and we’ll throw
in a cup of Java. You get OO, UP, XML,
and Java all for $19.95K, or four monthly
payments of $5K each.” 

Maybe you should start the presenta-
tion with the Clapper. 

– Gary Petersen, Shim Enterprise, Inc. 

BackTalk

The Ronco Pocket Engineer 



CrossTalk / TISE
7278 4th Street
Bldg. 100
Hill AFB, UT 84056-5205

PRSRT STD
U.S. POSTAGE PAID

Albuquerque, NM
Permit 737

Sponsored by the
Computer Resources
Support Improvement

Program (CRSIP)Each stage of your software product life cycle needs
to be managed appropriately to meet schedules, main-
tain costs, and produce quality.  Your project manage-

ment team must be prepared and disciplined.  A team without
a good plan suffers failures.  

If you are struggling to bring your people together to meet
customer needs and get a product to the marketplace, where
do you turn?  Where do you start?

Begin by calling us.  The Software Technology Support
Center can teach you how to effectively manage all phases of
your project, from the beginning to the end: identify the weak

links, determine the real problems, and  tailor solutions
to your organizational needs.  

We provide training in the methodologies that will make
your team self-sufficient.

We have the experience to support all your project manage-
ment needs.  We can help you to identify your problems and
develop the remedies.  We can teach you to be a disciplined
and consistently successful project manager.  Call us first –
whether your organization is big or small, just beginning a
project or embattled in difficulties.  We can steer you in the
right direction.

P R O J E C T
MANAGEMENT

d e p e n d o n
THE STRENGTHS
o f y o u r
T E A M

OO-ALC/TISE • 7278 4th Street • Hill AFB, UT 84056 • 801 775 5555 • FAX 801 777 8069 • www.stsc.hill.af.mil

RETURN SERVICE
REQUESTED


	Cover
	Index
	From the Publisher
	Reengineering: An Affordable Approach for Embedded Software Upgrade
	Coming Events
	The IULS Approach to Software Wrapper Technology for Upgrading Legacy Systems
	A COTS-Based Replacement Strategy for Aging Avionics Computers
	Web Sites
	Automated Transformation of Legacy Systems
	Balancing Discipline and Flexibility With the Spiral Model and MBASE
	CrossTalk 2001 Article Index
	BackTalk
	Back Cover

