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ABSTRACT

Studies of populations such as drug users encounter difficulties because
the members of the populations are rare, hidden, or hard to reach.
Conventionally designed large-scale surveys detect relatively few
members of the populations so that estimates of population
characteristics have high uncertainty. Ethnographic studies, on the
other hand, reach suitable numbers of individuals only through the use
of link-tracing, chain referral, or snowball sampling procedures that
often leave the investigators unable to make inferences from their
sample to the hidden population as a whole. In adaptive sampling,
the procedure for selecting people or other units to be in the sample
depends on variables of interest observed during the survey, so the
design adapts to the population as encountered. For example, when
self-reported drug use is found among members of the sample,
sampling effort may be increased in nearby areas. Types of adaptive
sampling designs include ordinary sequential sampling, adaptive
allocation in stratified sampling, adaptive cluster sampling, and
optimal model-based designs. Graph sampling refers to situations with
nodes (for example, people) connected by edges (such as social links
or geographic proximity). An initial sample of nodes or edges is
selected and edges are subsequently followed to bring other nodes into
the sample. Graph sampling designs include network sampling,
snowball sampling, link-tracing, chain referral, and adaptive cluster
sampling. A graph sampling design is adaptive if the decision to
include linked nodes depends on variables of interest observed on
nodes already in the sample. Adjustment methods for nonsampling
errors such as imperfect detection of drug users in the sample apply to
adaptive as well as conventional designs.

INTRODUCTION

Surveys to estimate human behavioral characteristics such as drug use
encounter a number of inherently difficult sampling and estimation
problems. Among the factors making sampling and estimation
difficult for such populations are the rarity and geographic unevenness
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of some of the populations of interest, the elusiveness or hiddenness
of individuals in the population, and the variability of behaviors
within and between subpopulations. In addition, the sensitive nature
of the behaviors of interest gives rise to nonsampling errors including
nonresponse and underreporting of stigmatized behaviors. Each of
these issues arises in design and implementation of a large survey on
drug use such as the National Household Survey on Drug Abuse as well
as in ethnographic studies focusing on specific drug-using populations
(cf., Lambert 1990; Turner et al. 1992c; Weppner 1977). Similar
sampling and estimation problems arise in surveys of persons infected
with rare diseases, populations defined by sexual orientation or
behavior, sex workers and others involved in underground economic
activities, homeless people, and other underrepresented groups. Some
of the statistical problems arising with human populations have arisen
also in environmental and biological surveys so that methods first
developed for one area have subsequently been applied to another
(Freedman 1991; Kalton and Anderson 1986; Thompson 1992;
Wolter 1986, 1991).

Conventionally designed large-scale surveys detect relatively few
members of rare or hidden populations so that estimates of
population characteristics have high uncertainty. For example, the
original impetus for the national Health and Social Life Survey
(Laumann et al. 1994), a national probability sample survey of sexual
behavior, was in large part provided by concern regarding the acquired
immunodeficiency syndrome (AIDS) epidemic. Funding constraints
limited the sample size to 3,432 people, and the number of people in
the sample who reported having tested positive for the human
immunodeficiency virus (HIV) was only 6.

Ethnographic studies and other studies focusing on the behaviors of
people in rare and hidden populations find suitable numbers of
individuals for their samples only through the use of link-tracing,
chain referral, or snowball sampling procedures that usually leave the
investigators unable to make inferences from their sample to the
hidden population as a whole. For example, to investigate sex-for-
crack exchanges in Philadelphia and Newark (French 1993), the
sample of 100 crack cocaine users was obtained by the investigators
going to known drug-dealing areas and talking with persons they
believed were users or dealers, who then referred the investigators to
other users. To analyze how some opiate addicts had overcome their
addiction on their own, Biernacki (1986) used referral chains. Finding
starting points for the chains was difficult, however, for the people of
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interest had little contact with treatment centers or social service
agencies.

One approach to increasing the sample representation of members of
a rare or hidden population while still obtaining unbiased estimates of
population characteristics is through the use of adaptive sampling
procedures. In adaptive sampling, the selection of people or other
units to include in the sample adapts to observations made during the
survey. In particular, whenever "interesting"” values are observed,
sampling intensity may be adaptively increased for neighboring or
linked units. Examples of interesting values that could be specified
include reported drug use, involvement in underground economic
activities, high-risk sexual behaviors, or a positive HIV test result. In
a spatial context, additional units may be added to the sample from
the geographic vicinity of any unit in which an interesting value is
observed. Linkages such as social contact or kinship could be used in
place of spatial proximity. The condition for adaptively adding units
can be based either on the variable of interest, such as self-reported
drug use, or on an auxiliary variable such as tobacco use. For some
populations, adaptive designs can produce gains in efficiency, relative
to conventional designs, for estimating the population mean or total.
In addition, adaptive sampling designs can substantially increase the
yield of interesting units in the sample.

Graph sampling refers to situations with nodes connected by edges. In
studies of hidden populations, the nodes may represent individual
people and the edges represent social links or geographic proximity
between people. An initial sample of nodes or edges is selected and
edges are subsequently followed to bring other nodes into the sample.
Graph sampling designs include network sampling, snowball sampling,
link-tracing, chain referral, and adaptive cluster sampling. A graph
sampling design is adaptive if the decision to include linked nodes
depends on variables of interest observed in nodes already in the
sample.

In this chapter, the use of adaptive sampling and graph sampling
methods for studies of behavioral characteristics in rare and hidden
populations is examined. Methods of adjusting for the nonsampling
errors that arise in such studies are discussed for both adaptive and
conventional designs.
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ADAPTIVE SAMPLING STRATEGIES

For populations that are rare, unevenly distributed, hidden, or hard to
reach, conventional sampling designs such as simple random sampling
lead to estimates with high variances and potential biases. With
sufficient previous knowledge of the population, precision can be
increased through such devices as stratification, systematic designs,
and use of auxiliary information in the design and estimation stages
(Cochran 1977; Thompson 1992).

Often, however, the uneven patterns in the populations cannot be
predicted before the survey. For example, patterns of drug use may
change over time, epidemics progress through cycles, neighborhoods
may change their compositions, and economic changes occur;
similarly, natural populations of animals or fish may change
unpredictably in spatial pattern. For such populations, adaptive
sampling strategies can be useful.

Adaptive sampling designs are those in which the procedure for
selecting units to include in the sample may depend on values of the
variable of interest observed during the survey. For spatially clustered
populations, additional observations may be added in the neighboring
vicinity when- ever high abundance is encountered. Whenever an
infected person appears in a survey sample of a rare, contagious
disease, close contacts of that person might be added to the sample.

In a drug use study, sampling intensity could be adaptively increased in
the neighborhood of respondents with self-reported use.

Types of Adaptive Designs

Adaptive sampling designs include sequential stopping designs,
adaptive allocation designs, optimal model-based strategies, and
adaptive cluster sampling.

With sequential stopping designs, sampling continues until a given
criterion, based for example on observed incidence or sample
variance, is attained. The procedure may be based on sequentially
observing the variable of interest and evaluating the criterion as each
unit is selected, or it may be based on batches of units. Much of the
statistical literature in sequential analysis (Chernoff 1972; Siegmund
1985; Wald 1947; Woodroofe 1982) concerns sequential stopping
problems, in which the size of a random sample is determined
sequentially from the observed values.
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With adaptive allocation designs, an initial stratified sample is
selected. Based on the observed values for the initially selected units,
an additional stratified sample is selected with allocation of sample
sizes to strata based on the initial observations. For example, after an
initial stratified sample is obtained in a drug use epidemiological
survey, the remaining sample sizes could be allocated to give larger
sample sizes in strata showing high reported drug use in the initial
sample. For adaptive allocation designs, the strata may be defined
either spatially or through sociological variables. With adaptive
allocation, the usual stratified estimate is not unbiased for the
population total. Unbiased adaptive allocation strategies are described
in Kremers (1987), Thompson and associates (1992), and Thompson
and Seber (1996). Other adaptive allocation strategies are described in
Solomon and Zacks (1970), Francis (1984), Gasaway and colleagues
(1986), and Jolly and Hampton (1990).

Optimal model-based sampling strategies are often adaptive ones.
Much of survey sampling practice is design based. That is, no
assumptions are made about the population itself, and properties such
as unbiasedness of estimates are calculated over all possible samples
that might have been selected. In the model-based approach to
sampling, a probabilistic model is assumed for the population. For
example, the values of the variable of interest may be assumed to
have a multivariate lognormal distribution, with units that are close to
each other either geographically or socially having positive
correlation. For many assumed population models, the theoretically
optimal sampling strategy can be shown to be an adaptive one
(Thompson 1988; Thompson and Seber 1996; Zacks 1969).
However, the theoretically optimal strategies are not necessarily the
most practical because they may require an unattainable amount of
previous information about the population and tend to be
computationally and implementationally complex (Solomon and
Zacks 1970). Simpler designs that are model based and have some
features of optimality have been applied to environmental sampling
problems by Englund and Herari (in press) and by Geiger (1994).

In adaptive cluster sampling, an initial sample is selected based on a
conventional sampling design such as simple random sampling,
systematic sampling, cluster sampling, or stratified sampling.
Whenever the variable of interest of a unit in the sample satisfies a
specified condition, units in the neighborhood of that unit are added
to the sample. If in turn any of the added units satisfies the

condition, still more units are added, and so on. For example,
neighboring units may be added whenever the variable of interest has a
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high or interesting value, such as reported drug use, incidence of a
disease, sexual behaviors of interest to the study, high economic
activity, high observed occurrence of homelessness, high abundance of
an animal species, or high concentration of a pollutant. A variety of
adaptive cluster sampling designs are described in Thompson (1990,
1991a, 1991b, 1992, 1993, 1994a, in press), Seber and Thompson
(1993), Thompson and Seber (1996), and Munholland and Borkowski
(1993). The use of adaptive cluster sampling to estimate the
prevalence of insect infestation in forest trees is described by Roesch
(1993). Adaptive cluster sampling of winter waterfowl populations is
described by Smith and colleagues (1995). Adaptive cluster sampling
for rare household characteristics is described by Danaher and King
(1994).

The neighborhoods of adaptive cluster sampling may be defined
spatially, as with the geographically neighboring sample sites of
environmental and ecological surveys and with urban blocks and larger
geographic regions in human surveys, but they also may be defined by
social or institutional connections. For example, in a survey of a rare
disease, the neighborhood of a person in the sample could be defined
to include that person’s siblings or close social contacts. Determining
key social links of persons in the sample can present many
methodological challenges. Wiebel (1990) reports good success in
obtaining the identities of sexual partners of active intravenous drug
users once the trust between outreach workers and subjects solidified.
Additional effective methodologies for obtaining sensitive
information on hidden populations are described in Adler (1990) and
Goldstein and associates (1990). However, as pointed out below in
the section on graph sampling, estimation in adaptive cluster
sampling is based on the empirical or observable links, not on hidden
or underlying links, so that unbiased estimation of a population total
is possible even though some of the underlying links between sample
respondents may remain hidden.

Typically, a survey is used to obtain estimates of more than one
characteristic of interest. Generalizations of adaptive cluster
sampling results to the multivariate case produce unbiased estimators
of the population mean and total for each variable as well as unbiased
estimators of variances and covariances (details are found in
Thompson 1993). The results hold whether the condition for
additional sampling depends on just one of the variables or on a
function of all of them. The result giving conditions under which
adaptive sampling produces more precise estimates than conventional
sampling is also generalized to the multivariate case (Thompson
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1993). Further, adaptive addition of units can be based on an easier-
to-measure auxiliary variable or one that is less sensitive, such as
tobacco use, rather than the variable of interest, such as illegal drug
use.

One problem with conventional survey designs when applied to
populations with rare characteristics of interest, such as heroin use or
HIV infection, is that typically few cases with the characteristic show
up in the sample. Adaptive designs, in addition to potentially
increasing the precision of survey estimates, have the potential to
increase the yield of the sample in terms of the characteristic of
interest. For example, the number of self-reported drug users or
people who have tested positive for HIV in the sample may be
increased by adaptively either increasing the allocation to strata in
which such people are encountered or following social links from such
people as in adaptive cluster sampling. The objective is to obtain data
on more individuals of the rare population in order to more
effectively carry out analytic studies such as evaluations of drug use
outcomes, outcomes of treatment programs, and identification of risk
factors. Indeed, without adaptively following leads and links from
initially encountered individuals, it may not be possible to penetrate a
hidden population sufficiently for study (Adler 1990; Frank and
Snijders 1994). Importantly, unbiased estimates of population totals
and other parameters are still possible with such surveys even though
the sample contains members of the target population in higher
proportion than the population as a whole.

Unbiased Estimation With Adaptive Designs

Estimators that are unbiased with conventional sampling designs may
be no longer unbiased with adaptive designs. For example, adaptive
cluster sampling typically produces a sample with a higher than
representative yield of the variable of interest—more birds or whales
sighted, more persons reporting drug use, or more persons infected
with the disease— than would occur with a random sample. With such
a sample, the conventional expanded sample mean would tend to
overestimate the total in the population. Fortunately, unbiased
estimators are available for use with adaptive designs. The simplest of
these estimators are design unbiased, meaning that the unbiasedness is
based on the way the sample is selected and does not depend on any
assumptions about the population itself.

Suppose the initial sample consists of a simple random sample of n
units. For a unit in the initial sample whose y-value is observed to
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satisfy the specified condition, the units in its neighborhood are added
to the sample. For any of those added units satisfying the condition,
the neighboring units are added, and so on. For any of the added units
not satisfying the condition, on the other hand, no neighboring units
are added. Thus, in the final sample associated with each initial unit
that satisfied the condition, there is a network of units satisfying the
condition and a number of added edge units that do not satisfy the
condition. Unbiased estimation in adaptive cluster sampling must deal
with the fact that selection or inclusion probabilities cannot be
determined from the sample data for every unit in the sample. Even
s0, simple unbiased estimates can be computed.

The simplest of the unbiased estimates is obtained by averaging the y-
values within networks (but excluding edge units). Let w; be the
average of the y-values for the network associated with the i-th unit
of the initial sample. Any unit not satisfying the condition is
considered a network of size one. An unbiased estimate of the
population mean is given by

An unbiased estimator that is only slightly more complicated to
compute but that in practice tends to be more efficient than that
shown above is obtained by computing for each network intersected
by the initial sample the probability a of that network being
intersected. Edge units are again ignored. Suppose that  networks
have been intersected by the initial sample and let y* denote the
total of the y-values in the - th network. The unbiased estimator is
where is the number of units in the population.

An unbiased estimate of the population total is obtained by
multiplying the estimate of the mean by . Unbiased estimates are
also available for adaptive cluster sampling with other initial designs
such as cluster, systematic, and stratified sampling. Unbiased
estimates of variances are also readily computed. The efficiency of
the above estimators can be improved using the Rao-Blackwell
method, so that edge units receive some weight in the estimates, but
the improved estimates are more complicated to compute. Full
details on estimation with adaptive cluster sampling are given in
Thompson (1992) and Thompson and Seber (1996).

Efficiency of Adaptive Sampling

For some populations, particularly those that are rare and clustered,
adaptive sampling strategies have been found to produce remarkable
increases in precision or efficiency compared to conventional
sampling designs of equivalent sample size. In addition, adaptive
designs can significantly increase the yield of interesting observations
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in the sample. Efficiency comparisons for specific populations are
given in Thompson (1990, 1991a, 1991b, 1992, 1994a), Roesch
(1993), Thompson and associates (1992), Francis (1984), and Smith
and colleagues (1995). Factors influencing the relative efficiency of
adaptive cluster sampling to simple random sampling are described in
Thompson (1994a) and summarized below. The efficiency of an
adaptive cluster sampling design compared to a conventional design
for household surveys of rare characteristics was estimated using a
trial survey by Danaher and King (1994).

The relative efficiency of adaptive cluster sampling to simple random
sampling depends on characteristics of the population, the design, and
the cost of sampling. Any of the following characteristics tend to
increase the efficiency of adaptive cluster sampling relative to
conventional random sampling: (1) the within-network variance is a
high proportion of the total population variance (i.e., the population
is clustered or aggregated with high variability within aggregations);
(2) the population is rare; (3) the expected final sample size with
adaptive cluster sampling is not much larger than the initial sample
size; (4) the cost of observing units in clusters or networks is less than
the cost of observing the same number selected at random; (5) the
cost of observing units not satisfying the condition is less than the
cost of observing units satisfying the condition; (6) the condition for
extra sampling may be based on an auxiliary variable that is easy to
measure; and (7) an efficient estimator or Rao-Blackwell improved
estimator is used with the adaptive cluster sampling.

Because the final sample size depends on what is observed during the
survey, practical measures are needed to ensure that the final sample
size does not exceed the time or funding resources available for the
survey. ldeally, a good choice of the criterion for extra sampling (as
described above) limits the adaptively added units to a relatively small
proportion of the total. Further, if the population has been stratified,
then the criterion in any stratum can be changed adaptively based on
the time spent or observations made in previous strata, without
affecting the unbiasedness of the estimates. Because of the design
unbiased of the procedure within any stratum, the average value of the
estimate over all possible samples equals the population mean for that
stratum even though a previous stratum may have influenced the
choice of the adaptive condition to be used. Thus, if time is running
short halfway through the survey, the criterion can be made more
stringent or adaptive sampling dispensed with completely for the
remaining strata. If the stratification has not been done at the design
stage, a pragmatic approach is to use poststratification at the
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estimation stage to approximate the same result. Thus, if adaptive
sampling is discontinued part way through the survey, estimates can
be poststratified with adaptive cluster sampling estimators used for
that portion of the population in which the sampling was adaptive
and the conventional estimator used in that portion in which the
sampling was conventional. Other methods for limiting sample size
include adding the extra units only for the top few values of the initial
sample (Thompson, in press) and stopping sampling as soon as a
specified total sample size has been reached (Brown 1994).

GRAPH-SAMPLING METHODS

Sampling methods such as network sampling, snowball sampling, chain
referral sampling, adaptive cluster sampling, and other link-tracing
designs in which investigators use links between people to find other
people to include in the sample are examples of survey sampling in
graphs. A directed graph consists of a set of nodes such as people or
other units, and a set of edges linking some nodes to others. For two
people (nodes), the links (edges) could be provided by physical
proximity such as living on the same block, by hereditary relationship
such as siblinghood, or by a social relationship. The edges can be
directional so that two nodes i and j can be linked from i to j, from j
to i, in both directions, or in neither direction. For example,
individual i might provide investigators with the name of individual |,
while user j either did not know or would not reveal individual j.

Associated with the i-th node is a variable of interest, y;. For
example, with nodes representing individual people, the variable of
interest could be an indicator of cocaine use or dollar amount spent on
heroin. The basic problem in graph sampling is to select a sample of
nodes or edges by some means and then estimate some population
guantity, such as the total of the y-values, of the nodes or edges. The
population quantities of interest could be number of cocaine users in
the population, dollar amount spent on heroin, or average number of
partners with whom needles are shared.

A graph sampling design is adaptive if decisions on whether to follow
links depend on the observed y-values in the sample. For example, if
an individual in the sample is asked to name sexual partners only if
the individual reports intravenous drug use, the survey is adaptive,
whereas it is not adaptive if every person sampled is asked to name
sexual partners. The inherent links in the population, such as the
sexual partners each individual would name if asked (regardless of
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intravenous drug use status), correspond to the neighborhood
connections of adaptive cluster sampling in the spatial setting. The
links that are followed, connecting groups of intravenous drug users,
determine the networks of units that satisfy the condition in adaptive
cluster sampling. By the previously cited results on multivariate
adaptive cluster sampling, in which the adaptive condition could be
based on an auxiliary variable rather than the variable of interest, it
might be sensible to base the links on information that is less sensitive
than drug use or sexual partners. For example, instead of being asked
to name other cocaine users, individuals could be asked to name the
people with whom they spend the most time.

Network sampling was introduced by Birnbaum and Sirken (1965) to
estimate the number of people with a rare disease when a random
sample of medical centers was selected. A person with the disease
who had been treated at more than one center would have a higher
probability of being included in the sample than a person who had
been treated at only one center, so the configuration of such linkages
needed to be taken into account to allow for unbiased estimation of
prevalence. Subsequent uses of network sampling included surveys in
which each person in the sample would be asked to report not only on
themselves but also on persons, such as siblings, linked to them. A
variety of linking rules and sampling designs have been investigated
(Czaja et al. 1986; Faulkenberry and Garoui 1991; Kalton and
Anderson 1986; Levy 1977; Nathan 1976; Sirken 1970, 1972a,
1972b; Sirken and Levy 1974; Sudman et al. 1988; Thompson 1992).

The term "snowball sampling™ has been applied to a variety of graph
sampling procedures (cf., Thompson 1992). In one type (Kalton and
Anderson 1986), members of a rare population in an initial sample
are asked to identify other members of the population, those so
identified are asked to identify others, and so on, for the purpose of
obtaining a nonprobability sample or constructing a frame from which
to sample. In another type (Goodman 1961), individuals in the
sample are asked to identify a fixed number of other individuals, who
in turn are asked to identify other individuals, for a fixed number of
stages, for the purpose of estimating the number of mutual
relationships or social circles in the population. Uses of snowball
sampling for surveying drug users and other hidden populations are
reviewed by van Meter (1990), who notes the difficulty of putting
estimation on a sound statistical basis with such surveys without either
assuming a specific stochastic process giving the original sample or
the prohibitive requirement of knowing the linkage structure for the
entire population. However, recent approaches to estimation with
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snowball and other graph samples (Frank 1977, 1979; Frank and
Snijders 1994; Snijders 1992; Snijders et al. 1995; Spreen 1992;
Spreen and Zwaagstra 1994) appear to be very promising. In
addition, the estimation methods of network sampling and adaptive
cluster sampling apply to a number of graph sampling situations.

In network sampling, the links generally are symmetric, or at least
the links between units in the sample and those outside the sample are
known. Further, the addition of linked units to the sample does not
depend on observed values of the variable of interest. Thus, with
network sampling it is possible to calculate the selection or inclusion
probability of any person in the sample from the sample data. With
that information, unbiased estimates of the population total or mean
can be obtained, including the Horvitz-Thompson estimator and the
multiplicity estimator (Birnbaum and Sirken 1965).

With the snowball sampling procedures described by Frank (1977,
1979), Frank and Snijders (1994), and Snijders (1992), and with
adaptive cluster sampling, estimation is complicated by the fact that
the selection or inclusion probabilities cannot generally be calculated
from the sample data for every unit in the sample. This results from
the asymmetry of some of the directional links, so that for some
units (people) in the sample the investigators do not know how many
other units would potentially have directed investigators to that unit.
In graph sampling terminology, the in-degree of that unit is unknown
(Frank 1977). An even more fundamental estimation difficulty for
many snowball samples as obtained in practice is the lack of a well-
defined probability sampling procedure for obtaining the initial
sample.

The snowball sampling procedure described by Frank and Snijders
(1994) for estimating the number of people in a hidden population
illustrates both the possibilities and the difficulties. The design was
used to estimate the number of cocaine users in a town in The
Netherlands. The estimates obtained were in fact consistent with
current police and social agency estimates. The initial sample of
cocaine users was obtained not from a designed probability sample but
from police and social service encounters. In the first wave, users in
the initial sample were questioned for the names of other cocaine
users, and the names edited to eliminate duplicates. In general, the
survey procedure involves additional names from a second wave
provided by the first wave people and so on, but in this particular
study only the first wave was carried out. Estimates were then
obtained based on a variety of assumptions. Because the initial
sample was not obtained from a deliberate probability sampling
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procedure, estimation was based on the assumption that it arose as a
Bernoulli procedure; that is, it is assumed that each individual in the
hidden population had the same unknown probability of being included
in the initial sample and inclusion was independent between
individuals. For the model-based estimators, the additional
assumption was made that directional links between individuals were
independent and identically distributed Bernoulli random variables, so
that for example whether individual A knows individual B is
independent of whether individual B knows individual A. A design-
based (subject to the Bernoulli assumption) estimator was also used,
based on expanding the number of individuals added in the first wave
by dividing that number by the proportion of individuals in the initial
sample who were linked to any other individuals in the initial sample.
One potential difficulty with such an estimator is the possibility that
the proportion of initial sample units so linked would be zero, in
which case that estimator could not be calculated.

The design unbiased estimates of adaptive cluster sampling could be
used with a graph sampling or snowball procedure such as the one
described above provided that the probability basis of the initial
sample could be determined and that the addition of linked units was
completed through all waves. The ideal would be to have a probability
survey sample at the first stage and then follow through using the
links provided by self-reported users in the survey sample. With such
a survey, nonusers would be sampled along with users. For example,
the variable of interest could be cocaine use, with y; = 1 if the i-th
individual is a user and y; = 0 otherwise. The total of the y-values is
then the total number of users in the population. The estimate would
also need to be adjusted for inaccurate reporting as described in the
next section. For estimation purposes, a network would consist of a
connected set of people, so that for any two people in the network it
is possible to get from one to the other through the directed links.
Any unit connected to the initial sample only by an asymmetric
link—individual j who was reported by person i, but who when
questioned similarly does not reveal individual i—would be treated as
edge units in the estimation.

Interestingly, since estimation deals only with empirical or observable
links and not with any underlying or true links, the unbiasedness of
the adaptive cluster sampling estimates of the population total or
mean is not affected by misreporting of links. For example, suppose
in a survey of intravenous drug users links from each respondent
consist of the names of sexual partners given by the respondent to
investigators. Suppose that individual i has actual sexual partners j
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and k but reveals only k and not j to the investigators. The
investigators then add individual k to the sample. If individual k in
turn gives the name of i to investigators, then i and k are in the same
network. Individual j remains outside the sample unless independently
selected as part of the initial sample or of another network. Even if j
gives the name of i to investigators, the two will not be in the same
network because of the asymmetric link. Thus, for the design and
estimation, the links from an individual are defined to be the names
that person would give if included in the sample and asked, not
necessarily the actual estimators. Although misreporting of the links
would not bias the estimate of the population total, it would bias
estimates of interest to epidemiologists regarding the actual pattern of
sexual contacts in the population.

The use of link-tracing, chain referral, snowball, networking, or other
graph-related sampling methods pervades the field of behavioral and
ethnographic studies. Examples include studies of cocaine use and
associated sexual behaviors (French 1993; Inciardi 1993), marijuana
and cocaine dealing (Adler 1985), marijuana use (True and True
1977), heroin use (Agar 1977; Soloway and Walters 1977), street drug
culture (Preble and Miller 1977), opiate addiction in women
(Rosenbaum and Murphy 1990), recovery from addiction (Biernacki
1986), prostitution and drug use (McNamara 1994), pickpockets
(Inciardi 1977), sexual behavior of selected ethnic or age-defined
groups (Sterk-Elifson 1994; Thompson 1994b), and sexually
transmitted diseases (Bailey and Aunger 1995). Further, even
behavioral surveys producing a standard probability sample of
individuals often seek estimates of network or graph-related
characteristics of the population, such as the sexual networks relevant
to sexually transmitted infections (Laumann et al. 1994).

Because of the prevalence of graph-related methods, adaptive and
otherwise, for obtaining samples from rare and hidden populations,
improvements in design and estimation methodologies for such studies
are highly desirable. Some investigators who use snowball and other
link-tracing designs to obtain a suitably large sample for study do not
try to make inference from the sample to the population from which
it comes but instead include in their study description a disclaimer that
statistical inference is impossible or questionable. The disclaimer
misses the point, however, because characteristics of the sample are
commonly summarized as means or percentages, and the
interpretation of the meaning of such means and percentages requires
consideration of how the sample was obtained. Quite possibly, a more
meaningful sample mean or percentage could be obtained using a
weighted average with the weights reflecting the distinct networks in
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the sample. When a random initial sample is not possible to obtain,
Snijders (1992) suggests drawing respondents as much as possible from
independent sources to satisfy the assumptions of estimation methods
as closely as possible.

NONSAMPLING ERRORS IN CONVENTIONAL AND ADAPTIVE
SAMPLING

Because of the sensitivity of issues related to behavioral
characteristics such as drug use, such surveys potentially involve
prominent nonsampling errors related to incomplete candor in self-
reporting, imperfect detectability of persons in high-risk groups, and
other special factors in addition to the usual nonsampling errors
associated with frame development, nonresponse, measurement, and
data recording (Biemer et al. 1991; Lessler and Kalsbeek 1992).
Sources of nonsampling variability in surveys of drug use and other
sensitive behaviors include untruthful or incorrect self-reporting
(Gfroerer et al. 1992; Rouse et al. 1985), inconsistent answers to
survey questions (Cox et al. 1992), misinterpretations of questions by
respondents (Forsyth et al. 1992), and item and unit nonresponse
(Rubin 1987; Witt et al. 1992; Caspar 1992, Graham et al. 1994).
Underreporting, self-selection bias, and other sources of honsampling
errors in sexual behavior surveys are reviewed in Clement (1990) and
Berk and colleagues (1995). The role of nonsampling errors in
general in surveys of sensitive topics is discussed in Turner and
associates (1992a). Obtaining the best possible estimates from
surveys involves, in addition to using a good sampling design,
developing methods for reducing nonsampling errors and using
methods to assess and adjust for nonsampling errors that do occur.
Adjusting for nonsampling errors can be illustrated by modeling
incomplete self-reporting in a drug use survey as a problem in
detectability. Assume a sample of households and people within
households is selected according to the survey design, but not all drug
users in the sample are detected by the self-reporting. Suppose for
illustration that independent studies comparing self-reported use to
bioassay results indicate that only half of users report use, so that the
rate of detection is 50 percent. Then a simple form of adjusted
estimate, whether of prevalence of use or of another variable such as
amount spent on drugs during a 2-week period, is obtained by taking
the naive estimate from the survey and dividing by one-half, so that
the adjusted estimate is twice the initial estimate. The effects of such
adjustments on survey estimates are analyzed in Thompson and Seber
(1994). When the detection rates differ for different subpopulations
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or for different kinds of individuals, separate adjustments can be made
for each observation based on the individual detectability rate that
applies (Thompson and Seber 1994). Imperfect detectability in
surveys has been estimated with such techniques as double sampling,
distance sampling, and capture-recapture methods, as well as studies
comparing self-reported and bioassay results.

With any conventional sampling design, nonsampling errors affect
only the values recorded for units in the sample, while with an
adaptive sampling design nonsampling errors may additionally affect
what sample is selected. Potentially, the problem looks much more
complicated for the adaptive design, but a conditioning argument
given every possible sequence shows that adjustment and analysis
methods are as straightforward for adaptive as for conventional
designs (Thompson and Seber 1994).

The adjustment methods for imperfect detectability are required to
produce realistic estimates of population characteristics, while the
analysis is required to evaluate the effect of each source of sampling
and nonsampling error and to determine the most effective means of
improving estimates and reducing overall mean square error. In
surveys of self-reported drug use, estimates of prevalence can be
adjusted to account for the estimated proportion of users reporting no
use, but the variance of the resulting estimates includes the following
three important terms. The first is sampling variance due to the
difference of one sample of households from another under the
design. The second is a detectability error due to drug users reporting
that they do not use. The third term is associated with the
uncertainty in estimating the proportion of users who report no use;
such estimates typically come from comparative and criterion studies.
To reduce the uncertainty associated with the first component
involves improving sampling design, increasing sample sizes, and using
more efficient estimation methods. Reduction of the second term
requires interview methods that increase the accuracy of self-
reporting among users. Such methods include guestion wording and
interview mode of administration, such as face-to-face, computer, or
telephone (Gfroerer and Hughes 1992; Schober et al. 1992; Turner et
al. 1992a, 1992b). Reduction of the third term is achieved with
larger, more specific, and more effective comparative and criterion
studies, such as comparisons between self-reporting and the results of
bioassays such as hair or urine tests.
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