XYLENE 1

## 1. PUBLIC HEALTH STATEMENT

This Statement was prepared to give you information about xylene and to emphasize the human health effects that may result from exposure to it. The Environmental Protection Agency (EPA) has identified 1,408 hazardous waste sites as the most serious in the nation. These sites comprise the "National Priorities List" (NPL): those sites which are targeted for long-term federal cleanup activities. Xylene has been found in at least 658 of the sites on the NPL. However, the number of NPL sites evaluated for xylene is not known. As EPA evaluates more sites, the number of sites at which xylene is found may increase. This information is important because exposure to xylene may cause harmful health effects and because these sites are potential or actual sources of human exposure to xylene.

When a substance is released from a large area, such as an industrial plant, or from a container, such as a drum or bottle, it enters the environment. This release does not always lead to exposure. You can be exposed to a substance only when you come in contact with it. You may be exposed by breathing, eating, or drinking substances containing the substance or by skin contact with it.

If you are exposed to a substance such as xylene, many factors will determine whether harmful health effects will occur and what the type and severity of those health effects will be. These factors include the dose (how much), the duration (how long), the route or pathway by which you are exposed (breathing, eating, drinking, or skin contact), the other chemicals to which you are exposed, and your individual characteristics such as age, gender, nutritional status, family traits, life-style, and state of health.

### 1.1 WHAT IS XYLENE?

In this report, the terms xylene, xylenes, and total xylenes will be used interchangeably. There are three forms of xylene in which the methyl groups vary on the benzene ring: meta-xylene, *ortho*-xylene, and *para*-xylene (*m*-, *o*-, and *p*-xylene). These different forms are

referred to as isomers. Drawings of the three different isomers are shown in Table 3-1. The term total xylenes refers to all three isomers of xylene (*m*-, *o*-, and *p*-xylene). Mixed xylene is a mixture of the three isomers and usually also contains 6-15% ethylbenzene. Xylene is also known as xylol or dimethylbenzene. Xylene is primarily a synthetic chemical. Chemical industries produce xylene from petroleum. Xylene also occurs naturally in petroleum and coal tar and is formed during forest fires. It is a colorless, flammable liquid with a sweet odor.

Xylene is one of the top 30 chemicals produced in the United States in terms of volume. It is used as a solvent (a liquid that can dissolve other substances) in the printing, rubber, and leather industries. Along with other solvents, xylene is also used as a cleaning agent, a thinner for paint, and in varnishes. It is found in small amounts in airplane fuel and gasoline. Xylene is used as a material in the chemical, plastics, and synthetic fiber industries and as an ingredient in the coating of fabrics and papers. Isomers of xylene are used in the manufacture of certain polymers (chemical compounds), such as plastics.

Xylene evaporates and burns easily. Xylene does not mix well with water; however, it does mix with alcohol and many other chemicals. Most people begin to smell xylene in air at 0.08-3.7 parts of xylene per million parts of air (ppm) and begin to taste it in water at 0.53-1.8 ppm. Additional information regarding chemical and physical properties and use of xylene can be found in Chapters 3 and 4.

#### 1.2 WHAT HAPPENS TO XYLENE WHEN IT ENTERS THE ENVIRONMENT?

Xylene is a liquid, and it can leak into soil, surface water (creeks, streams, rivers), or groundwater, where it may remain for months or more before it breaks down into other chemicals. However, because it evaporates easily, most xylene (if not trapped deep underground) goes into the air, where it stays for several days. In the air, the xylene is broken down by sunlight into other less harmful chemicals.

Xylene can enter the environment when it is made, packaged, shipped, or used. Most xylene that is accidentally released evaporates into the air, although some is released into rivers or lakes. Xylene can also enter soil, water, or air in large amounts after an accidental spill or as a result of an environmental leak during storage or burial at a waste site.

Xylene very quickly evaporates into the air from surface soil and water. Xylene stays in the air for several days until it is broken down by sunlight into other less harmful chemicals.

Most xylene in surface water evaporates into the air in less than a day. The rest of it is slowly broken down into other chemicals by small living organisms in the water. Only very small amounts are taken up by plants, fish, and birds. We do not know exactly how long xylene stays in water, but we do know that it stays longer in underground water than in lakes and rivers, probably because it can evaporate from the latter.

Xylene evaporates from soil surfaces. Xylene below the soil surface stays there for several days and may travel down through the soil and enter underground water (groundwater). Small living organisms in soil and groundwater may transform it into other less harmful compounds, although this happens slowly. It is not clear how long xylene remains trapped deep underground in soil or groundwater, but it may be months or years. Xylene stays longer in wet soil than in dry soil. If a large amount of xylene enters soil from an accidental spill, a hazardous waste site, or a landfill, it may travel through the soil and contaminate drinking water wells. Only a small amount of xylene is absorbed by animals that live in water contaminated with xyiene. More information on what happens to xylene in the environment can be found in Chapters 4 and 5.

## 1.3 HOW MIGHT I BE EXPOSED TO XYLENE?

You may be exposed to xylene because of its distribution in the environment. Xylene is primarily released from industrial sources, in automobile exhaust, and during its use as a solvent. Hazardous waste disposal sites and spills of xylene into the environment are also

possible sources of exposure. You are most likely to be exposed to xylene by breathing it in contaminated air. Levels of xylene measured in the air of industrial areas and cities of the United States range from 1 to 88 parts of xylene per billion parts of air (a part per billion [ppb] is one thousandth of a part per million [ppm]; one ppm equals 1,000 ppb). Xylene is sometimes released into water and soil as a result of the use, storage, and transport of petroleum products. Surface water generally contains less than 1 ppb, although the level may be higher in industrial areas. You can also be exposed to xylene by drinking or eating xylene-contaminated water or food. Levels of xylene in public drinking water supplies have been reported to range from 0 to 750 ppb. Little information exists about the amount of xylene in food. Xylene levels ranging from 50 to 120 ppb have been found in some fish samples. Xylene has been found in chicken eggs and in the polystyrene packaging in which they are sold.

You may also come in contact with xylene from a variety of consumer products, including cigarette smoke, gasoline, paint, varnish, shellac, and rust preventives. Breathing vapors from these types of products can expose you to xylene. Indoor levels of xylene can be higher than outdoor levels, especially in buildings with poor ventilation. Skin contact with products containing xylene, such as solvents, lacquers, paint thinners and removers, and pesticides may also expose you to xylene.

Besides painters and paint industry workers, others who may be exposed to xylene include biomedical laboratory workers, distillers of xylene, wood processing plant workers, automobile garage workers, metal workers, and furniture refinishers also may be exposed to xylene. Workers who routinely come in contact with xylene-contaminated solvents in the workplace are the population most likely to be exposed to high levels of xylene. Additional information on the potential for human exposure can be found in Chapter 5.

#### 1.4 HOW CAN XYLENE ENTER AND LEAVE MY BODY?

Xylene is most likely to enter your body when you breathe xylene vapors. Less often, xylene enters the body through the skin following direct contact. It is rapidly absorbed by your lungs after you breathe air containing it. Exposure to xylene may also take place if you eat or drink xylene-contaminated food or water. The amount of xylene retained ranges from 50% to 75% of the amount of xylene that you inhale. Physical exercise increases the amount of xylene absorbed by the lungs. Absorption of xylene after eating food or drinking water containing it is both rapid and complete. Absorption of xylene through the skin also occurs rapidly following direct contact with xylene. Absorption of xylene vapor through the skin is lower than absorption of xylene vapor by the lungs. However, it is not known how much of the xylene is absorbed through the skin. At hazardous waste sites, breathing xylene vapors, drinking well water contaminated with xylene, and direct contact of the skin with xylene are the most likely ways you can be exposed. Xylene passes into the blood soon after entering the body.

In people and laboratory animals, xylene is broken down into other chemicals especially in the liver. This process changes most of the xylene that is breathed in or swallowed into a different form. Once xylene breaks down, the breakdown products rapidly leave the body, mainly in urine, but some unchanged xylene also leaves in the breath from the lungs. One of the breakdown products of xylene, methylbenzaldehyde, is harmful to the lungs of some animals. This chemical has not been found in people exposed to xylene. Small amounts of breakdown products of xylene have appeared in the urine of people as soon as 2 hours after breathing air containing xylene. Usually, most of the xylene that is taken in leaves the body within 18 hours after exposure ends. Storage of xylene in fat or muscle may prolong the time needed for xylene to leave the body. Additional information on how xylene can enter and leave your body can be found in Chapter 2.

#### 1.5 HOW CAN XYLENE AFFECT MY HEALTH?

Short-term exposure of people to high levels of xylene can cause irritation of the skin, eyes, nose, and throat; difficulty in breathing; impaired function of the lungs; delayed response to a visual stimulus; impaired memory; stomach discomfort; and possible changes in the liver and kidneys. Both short- and long-term exposure to high concentrations of xylene can also cause a number of effects on the nervous system, such as headaches, lack of muscle coordination, dizziness, confusion, and changes in one's sense of balance. People exposed to very high levels of xylene for a short period of time have died. Most of the information on long-term exposure to xylene is from studies of workers employed in industries that make or use xylene. Those workers were exposed to levels of xylene in air far greater than the levels normally encountered by the general population. Many of the effects seen after their exposure to xylene could have been caused by exposure to other chemicals that were in the air with xylene.

Results of studies of animals indicate that large amounts of xylene can cause changes in the liver and harmful effects on the kidneys, lungs, heart, and nervous system. Short-term exposure to very high concentrations of xylene causes death in animals, as well as muscular spasms, incoordination, hearing loss, changes in behavior, changes in organ weights, and changes in enzyme activity. Long-term exposure of animals to low concentrations of xylene has not been well studied.

Information from animal studies is not adequate to determine whether or not xylene causes cancer in humans. Both the International Agency for Research on Cancer (IARC) and EPA have found that there is insufficient information to determine whether or not xylene is carcinogenic and consider xylene not classifiable as to its human carcinogenicity.

Exposure of pregnant women to high levels of xylene may cause harmful effects to the fetus. Studies of unborn animals indicate that high concentrations of xylene may cause increased numbers of deaths, decreased weight, skeletal changes, and delayed skeletal development. In

many instances, these same concentrations also cause damage to the mothers. The higher the exposure and the longer the exposure to xylene, the greater the chance of harmful health effects. Lower concentrations of xylene are not so harmful. Additional information regarding the health effects of xylene can be found in Chapter 2.

# 1.6 IS THERE A MEDICAL TEST TO DETERMINE WHETHER I HAVE BEEN EXPOSED TO XYLENE?

Medical tests are available to determine if you have been exposed to xylene at higher-thannormal levels. Confirmation of xylene exposure is determined by measuring some of its
breakdown products eliminated from the body in the urine. These urinary measurements will
determine if you have been exposed to xylene. There is a high degree of agreement between
exposure to xylene and the levels of xylene breakdown products in the urine. However, a
urine sample must be provided very soon after exposure ends because xylene quickly leaves
the body. Alcohol or aspirin may produce false positive test results. Medical tests have been
developed to measure levels of xylene in blood by the National Center for Environmental
Health Laboratory and in exhaled breath by EPA's Total Exposure Assessment Methodology.
These tests may be available in certain doctors' offices. Available tests can only indicate
exposure to xylene; they cannot be used to predict which health effects, if any, will develop.
More information about xylene detection can be found in Chapters 2 (particularly Section 2.5)
and 6.

## 1.7 WHAT RECOMMENDATIONS HAS THE FEDERAL GOVERNMENT MADE TO PROTECT HUMAN HEALTH?

EPA estimates that, for an adult of average weight, exposure to 10 milligrams of xylene per liter (mg/L or ppm) of water each day for a lifetime (70 years) is unlikely to result in harmful noncancerous health effects. For a long-term but less-than-lifetime exposure (about 7 years), 27.3 ppm is estimated to be a level unlikely to result in harmful health effects in an adult.

Exposure to 12 ppm xylene in water for 1 day or to 7.8 ppm of xylene in water for 10 days or longer is unlikely to present a health risk to a small child. EPA has proposed a recommended maximum level of 10 ppm xylene in drinking water.

To protect people from the potential harmful health effects of xylene, EPA regulates xylene in the environment. EPA has set a legally enforceable maximum level of 10 mg/L (equal to 10 ppm) of xylene in water that is delivered to any user of a public water system. The Occupational Safety and Health Administration (OSHA) has set an occupational exposure limit of 100 ppm of xylene in air averaged over an 8-hour workday and a 15-minute exposure limit of 150 ppm. These regulations also match recommendations (not legally enforceable) of the American Conference of Governmental Industrial Hygienists. The National Institute for Occupational Safety and Health (NIOSH) has recommended an exposure limit (not legally enforceable) of 100 ppm of xylene averaged over a workday up to 10 hours long in a 40-hour workweek. NIOSH has also recommended that exposure to xylene not exceed 150 ppm for longer than 15 minutes. NIOSH has classified xylene exposures of 10,000 ppm as immediately dangerous to life or health.

EPA and the Food and Drug Administration (FDA) specify conditions under which xylene may be used as a part of herbicides, pesticides, or articles used in contact with food. The EPA has a chronic drinking water health advisory of 27.3 ppm for an adult and 7.8 ppm for a 10-kilogram child.

EPA regulations require that a spill of 1,000 pounds or more of xylene or used xylene solvents be reported to the Federal Government National Response Center.

More information on government regulations can be found in Chapter 7.

## 1.8 WHERE CAN I GET MORE INFORMATION?

If you have any more questions or concerns, please contact your community or state health or environmental quality department or:

Agency for Toxic Substances and Disease Registry Division of Toxicology 1600 Clifton Road NE, E-29 Atlanta, Georgia 30333 (404) 639-6000

This agency can also provide you with information on the location of occupational and environmental health clinics. These clinics specialize in the recognition, evaluation, and treatment of illness resulting from exposure to hazardous substances.