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ABSTRACT

In this paper, a state-of-the-art, three-dimensional, full
waveform, microseismic system was used to analyze therock failure
around a deep (> 750 m (2500 ft) of cover) bump-prone longwall
panel. The microseismic system consisted of both underground and
surface geophones coupled through radio telemetry and afiber-optic
network to produce pseudo real -time detection and | ocation of seismic
events surrounding the coal seam. This was the first microseismic
installation of this scope a a U.S. coa mine, and the system was
intended to help determine the exact stratamechani csassociated with
the redistribution of stressand the associated gob formation at one of
the U.S.’ sdeepest longwall mines. Overall, 5,000 calibrated seismic
events were recorded during the mining of one panel, including a
Richter magnitude 4.2 event which occurred inside of the array.
Analysis of these events provides a number of notable insights into
the rock mass behavior. For instance, the longwall panel was
widened during theretreat process, and the mining-induced seismicity
shows a distinctly different behavior between the start of the panel,
themining of thenarrow part of the panel and the mining of thewider
part of the panel. Also, initself, the acquisition of the M, 4.2 event
was amajor milestone in geomechanical and bump research. Thisis
thefirst timethat such an event has been recorded with this detail and
accuracy at a bump-prone coa mineintheU.S. The anaysis of this
single event has set distinct new limits on the relationship between
mining seismicity and coal bumps.

INTRODUCTION

In recent years, microseismic systems have been used in coa
mines in Australia and the United States to gain a better
understanding of the ground failures and rock mechanics involved
with longwall mining (1-5). These microseismic systems "listen" to
the rock and determine the timing and location of the failure of the
rock stratasurrounding thelongwall panel. The recent hardware and
software advances in microseismic systems have alowed this
geophysical monitoring techniqueto provide practical geomechanical
measurements at operating mines (6). The results from these
measurementshave beeninsightsintolongwall geomechanicsthat are
somewhat outside of previous strata mechanics understanding. The
microseismic events and associated rock failure have mostly been
recorded from well in front of the longwall face, with a noticeable
lack of seismic activity coming fromthegob area. The seismic events
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have been distributed fairly evenly above and bel ow the seam and the
predominent fracture mechanism has been shear failure (as
determined from focal analysis and numerical modeling (2)).

The primary objective of the field work presented in this paper
was to examine the strata failure behavior of a deep, bump-prone
longwall mine using athree-dimensional seismic monitoring system.
By analyzing the observed rock failure, we hope to increase our
knowledge of the processes governing caving of the massive main
roof, the compaction and |oad acquisition of thegob, thefailure of the
floor, and the stress redistribution in the coalbed and surrounding
strata. The application of this knowledge will enable better mine
designsinthefuturein order to mitigate dangerous bump occurrences
and unexpected failures of the massive overburden.

GEOLOGY

This research was conducted at a longwall coal mine in Utah,
situated inthe areaof the Book Cliffsand the eastern Wasatch Plateau
in the northwest corner of the Colorado Plateau. In this area, the coa
seams are located in the Blackhawk Formation of the Mesa Verde
Group (figure 1) (7). The study mineis primarily in the Castlegate
‘D’ Seam; however, over part of the study area, the underlying
Kenilworth Seam and the Castlegate ‘D’ Seam coal esce and the mine
operatesin thejoined seam. Theresultant coalbed at the mine ranges
from2.4t0 6.0 m (8to 20 ft) in thicknesswith an extraction thickness
of 2.4 to 3.0 m (8 to 10 ft). The geology immediately above and
below the seam consists of thinner (<3 m (< 10 ft)) layers of delta
deposited siltstones, mudstones, shales, sandstones, and coal. Above
the coal bearing portion of the Blackhawk Formation, approximately
150-180 m (500-600 ft) of braided stream deposits with numerous
lenticular sandstone channelsoccur (8). These braided and lenticular
deposits make up the immediate and main roofs of the mine.

Unconformably overlying the Blackhawk Formation is the
Castlegate Sandstone. The Castlegate is a massive, cliff forming
sandstonethat is 120 to 180 m (400 to 600 ft) thick with the lower 90
m (300 ft) being more compact and massi ve than the upper portion of
the unit (8). In the mine area, the Castlegate Sandstone lies
approximately 200 m (680 ft) abovethe“D” seam (8). Overlyingthe
Castlegate is the Price River Formation, consisting primarily of
sandstonewithinterbedded conglomeratesand sandstones. ThePrice
River Formation is also about 180 m (600 ft) in thickness. The
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uppermost rocks exposed at the site are lacustrine deposits of the
North Horn Formation, consisting of interbedded claystones,
mudstones, limestones, siltstones, and sandstones. Overal, the
overburden at this mine reaches up to 900 m (3,000 ft) thick
(figure 2).
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Figure 2. Plan view showing mine layout, overburden, geophone
arrays, and the location of the M 4.2 event

MICROSEISMIC SYSTEM

The microseismic monitoring array consisted of 23 geophones
deployed both underground in the mine entries and on the surface
abovethemine. Thearray had lateral and vertical extents of 2.2 and

0.8 km (1.4 by 0.5 mi), respectively, and essentially surrounded the
two longwall panes (figure 2). The underground seismic array
consisted of 14 geophones in the mains and bleeders around the
longwall panels. The underground geophones were cabled to a
central underground computer where the signals were collected and
transmitted viafiber-optic network to amain data analysis computer
in the mine office (figure 3). On the surface above the mine, 9
geophones were distributed over the panels (figure 2). The signals
from the surface network were digitized and transmitted by radio to
adigita data acquisition system residing on the same network asthe
main dataanalysis computer at the mine office (figure 3). Inthedata
analysiscomputer, themicrosei smic event signal swereautomatically
analyzed in order to calculate the event |ocations, which were then
displayed on a computer generated mine map for use by mine
personndl. Using this automatic field location process (6), over
13,000 sei smic eventswere detected and | ocated during the mining of
panel 2 between December 1999 and May 2000.
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Figure 3. Schematic representation of the microseismic system

MICROSEISMIC DATA PROCESSING

In order to obtain aconsistent data set of event locationsfor this
analysis, the raw waveform data were reprocessed in the [aboratory.
The lab processing utilized an improved seismic velocity model.
Seismic velocity data from sonic logs obtained in nearby boreholes
were used to create a starting model. Then a number of calibration
blasts and other control events with known locations (which were
largely at the accessible periphery of the array) were used to further
constrain the layered velocity model. This process culminated in a
layered seismic velocity model which best fit the available data,
although there till appears to be notable spatia variations in the
seismic velocity structure that are not considered in the simple
uniform layered model. Finally, only the eventswith a minimum of
8 stations (with at least 3 surface stationsand 3 underground stations)
reporting good first-arrival picks were kept in the database. This
post-processing procedure winnowed theoriginal 13,000 eventsdown
to agood quality data set consisting of approximately 5,000 events
from panel 2.
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Figure 4. A comparison of the number of events per day with
the mining advance rate

EVENT TIMING

One of thefirst aspects of the seismic datathat was investigated
in detail was the number and timing of the events. During the six
month period that the panel was actively being mined, 5,024 good
quality eventswererecorded. Thisisan average of 29 events per day
with a minimum of 0 and a maximum of 136 events per day.
However, thetemporal distribution of these eventswasnot very even,
asseeninfigure4 and table 1. Inthegraph in Figure 4, one can see
three distinct periods of seismic activity. From the start of the panel
on December 2, 1999 until January 20, 2000, when the face had
advanced about 300 m (1,000 ft), the seismic activity wasfairly low,
averaging around 5 events per day. (Also, in general, the eventsin
thistime period were relatively smaller (figure 5) and more scattered
about the advancing face than in subsequent periods (1)). Then, from
January 21 until April 8", there was a period of intermediate seismic
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intensity. This period corresponds to the face moving from 300 to
900 m (1,000 to 3,000 ft) of advance at which point the face was
stopped and widened from 165 to 245 m (550 to 820 ft) (figure 2).
Within this time period, the activity was relatively higher at the
beginning and at the end astheface approached the pillars connecting
the adjacent headgate. Also, at several times during thistime period
the face was stopped and the seismic activity likewise went to zero
(figure 4). Inthefina time period, April 16" to May 24", when the
longwall advanced 300 m (1,000 ft) with the wider face, the seismic
activity was quite high averaging 64 events per day.

Table 1. A comparison of the seismic activity between different

parts of the panel.
Advance | Starting | Ending |Total # of Average #
of events
(m) Date date events
per day
Tota 0-1200 |[12/02/99 | 05/25/00 | 4,930 29
Panel
Early 0-300 |12/02/99 | 01/20/00 212 5
Panel
Mid 300 - 900 | 01/21/00 | 04/08/00 2,232 28
Panel
Final
900 - 1200 | 04/16/00 | 05/24/00 2,486 64
Panel

The next analysis was to correlate the advance rate of the
longwall face to the amount of associated seismic activity. Previous
research has shown adirect correlation between the mining advance
rate and the induced seismicity (9). To perform this analysis, the
meters of advance of the longwall face per shift were correlated
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i:igure 5. A three-dimensi ohal V|ew of the seismic events with the event size scal ed by magnitude
(the M| 4.2 event removed for clarity)
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against the number of good quality seismic eventsthat were detected
during that shift (and within 4 hours after the face stopped onanidle
shift). All of the results of this analysis are shown in table 2 and an
example of the linear correlation for the fina part of the panel is
showninfigure6. First, looking at theentire panel intable 2, alinear
correlation of 2.81 events per meter of advanceisdetermined, but the
r2 value only 25%. However, if the panel is again broken into the
same three distinct periods, or section, as above, a much stronger
correlation is obtained. In fact, the average r? value for the panel
divided into the three sections is 58%. This squared value of the
correlation coefficient isfairly significant for thistype of mining data
and signifiesthat 58% of the fluctuation in the shift-based number of
events can be explained by the corresponding fluctuation in the shift

advance rate. Mechanistically, this implies that a mgjority of the
seismic events are a direct result of the advancing face. The same
relative intensity of the seismic activity as noted before in the three
sections of the panel is, of course, evident in the correlation with
advancerate. Thefirst part of the panel averages0.7 events per meter
of advance versus 3.1 events per meter of advance for the middle part
of the panel and 8.3 events per meter for the final part of the panel.

Table 2. Theresults of correlating the seismic activity to the
advance rate.

Linear Regression (y = Ax + B)
100
o P Advance Events Fixed Correlation
i . ) (m) perm | eventsper | coefficient?
g ¥ ~ (A) shift (B) (&)
@ 70 4 []
2 = Total 0- 1200 2.81 3.87 0.2498
2 - Panel
§ y =8.3378x + 7.2533
2 R'=05827 Early 0-300 0.70 0.04 0.6681
5 Panel
Mid 300 - 900 3.10 1.92 0.4886
Panel
8 10 12
Advance per Shift (m) Final 900 - 1200 8.34 7.25 0.5827
Figure 6. A graph of the correlation between the advance rate Panel
and the number of events per shift for the fina part of the panel
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Figure 7. Plan view of the normalized event locations for the last part of panel 2
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EVENT LOCATION

Oncetheoptimized velocity model was determined and thefinal
set of good quality seismic events was produced, the location and
magnitude of the events were investigated. One of the best means
that wefound to visualizethis“four” dimensiona datawasto plot the
events in three dimensiona space as spheres which are scaled by
magnitude (figure 5). Taking an overall look at thisfigure, anumber
of observations can be made. Firgt, the lack of events in the first
300 m (1,000 ft) of the panel is evident as is the high density of
eventsin the last 300 m (1,000 ft) of the panel. Second, the events
appear to be fairly evenly distributed above and below the panel.
Third, it appears that there is a higher density of smaller events and
anincreased frequency of larger eventsin thelast part of the panel as
compared to the relatively high percentage of medium size eventsin
themiddle part of the panel. Finaly, the event locations appear to be
horizontally shifted by as much as 75 m (250 ft) toward the headgate
and away from the tailgate. This shift is thought to result from
deviations of the actual heterogenous, anisotropic, seismic velocity
structure from the assumed homogenous, isotropic, layered velocity
model. In particular, we know that the geology is highly variable
horizontally, and that the previous gob on one side of the panel
influencestheseismicveocity. Soinanalyzingtheseismiclocations,
it must be remembered that the overall event locations can be shifted
alittle horizontally or vertically by a change in the velocity model.
However, the final velocity model applied to the data is the best
compromise that minimizes the mismatch between calculated event
locations and known source locations for a certain number of events.
In addition, the relative location and magnitudes of the events are
fairly consistent and can be used confidently in making inferences.
Development and use of a spatially heterogeneous, time-dependent,
three-dimensional seismic velocity model for event locations is
beyond the scope of the present work.

Inorder to visualizethelocation of theseismic eventsinrelation
to the advancing longwall face, the locations of the events were
normalized to thefaceposition and plotted on three orthogonal planes
such that the center, or zero point, of the normalized coordinate
system corresponds to the center of the longwall face at seam level.
In this paper, only the events from the last part of the panel will be
specificaly presented and analyzed using the relative face position
since the events at the beginning of the panel provide similar
information (1). Theresultsof normalizing thelocation of the events
from thefinal part of the panel to the face position are shown in plan
view infigure7,inavertical view paralel to theadvancedirectionin
figure8andinavertical view parallel to thelongwall faceinfigure9.

Figures 7 through 9 indicate that the seismic activity is mostly
located in the face areaand generally in front of, and below, the face.
Thisagreeswith seismic datafrom other coal mining sites(5) and has
been interpreted to represent the failure of the stratain the forward
stress abutment zone. It isthought that the rock failuresthat occur in
the confined high stress areain front of the face are well recorded by
the seilsmic system due to the high energy release and good
transmission characteristics; however, the low energy, unconfined
tension failures of the immediate roof in the gob behind the face are
not well recorded because of the low energy release and the high
attenuation in this generally broken rock area. Fromtheplanviewin
figure 7, it can be seen that most of the seismic activity generally lines
up in front of the advancing face. There is alittle skewness to the
event data, with the seismic activity occurring further in front of the
headgatethan thetailgate. (Also, it can be seen that the events appear
shifted towards the headgate. This may be a manifestation of the
deviation of the actua velocity structure from that assumed in the
model as discussed above.)
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Figure 8. Vertical view paraléel to face advance showing the normalized event locations for the last part of Panel 2
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Figure9. Vertical view parallel to the longwall face showing the normalized event locations for the last part of Panel 2

fromthe sideview in figure 8, it can be seen that the vast mgjority of
the seismic activity is occurring in the face abutment zone, and that
there is a notable absence of recorded seismic activity coming from
the gob area. Alsoin Figure 8, it can be seen that the seismicity is
originating both above and below the seam level. Thisresponseaso
coincides well with the response observed at other field sites (5) and
is consistent with a front abutment stress field that is vertically
symmetric about the coal seam. Infact, in figure 8, amajority of the
seismic activity appears to be coming from the floor. This response
may be dueto the presence of more competent floor strataor to ashift
of the event locations due to inaccuracies in the assumed velocity
model.

MAGNITUDE 4.2 EVENT

On March 6, 2000 at 7:16 pm, MST, a magnitude (M,) 4.2
“earthquake” occurred in the overburden above the mine and within
the confines of the active mine-wide seismic array. The event
vibrations were strongly felt by the miners, but there was very little
damage from the event on the working longwall face, and only afew
rib spalls were evident in the development entries. Thisis the first
time that such an event has been recorded with this detail and
accuracy at a U.S. coal mine. This event caused rock dides from
critical slopes on the nearby highway, which damaged automobiles.
The train tracks adjacent to the highway at that point were also
temporarily blocked. Underground, multipleroof fallsoccurredinthe
bleeder entries to the west of the first panel and several seds were
cracked around the previously abandoned panel. Also, a significant
amount of methane was rapidly liberated resulting in a temporary
evacuation of the mine. Fortunately, there were no injuries.
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Using the optimized velocity model for the site, this event was
located 90 m (300 ft) in front of the active face, 170 m (560 ft) above
the coa seam and 10 m (35 ft) in from the edge of the 60 m (200 ft)
wide barrier pillar between the active and the previous panel
(figure 2). Thislocation putsthe event near thetop of the Blackhawk
Formation and the base of the massive Castlegate Sandstone. The
event occurred when the active face was approximately 30 m (100 ft)
from aligning with the recovery room of the previous pandl.

Using P-wave first motion data from the mine wide seismic
monitoring system, three temporary University of Utah stations
located near the mine and the University of Utah regional seismic
network, a well constrained focal mechanism, which fits al of the
avalable P-wave data, was determined. The preferred focal
mechanism indicates oblique reverse faulting on a plane dipping
steeply to the south or shallowly to the north-northwest (10). The
focal mechanism of the event is consistent with the roof stratafailing
and the Castlegate formation faling into the gob. The location and
size of the event and the relative locations of the previous and active
longwall faces suggest that theM, 4.2 event was afailure of themain
roof essentialy over both panels in the vicinity of the base of the
Castlegate. Whether a functional failure of the intervening barrier
pillar to fully support the overburden may have preceded and hel ped
initiate the major failure of the main roof is not clear at thistime.

CONCLUSIONS

From examining the seismicity at the site, severa genera
observations can be made.
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The event rate is low at the beginning of the panel, about six
times higher in the middle of the panel, and twice again ashigh at the
wider end of the pandl (table 1). We hypothesize that thisisaresult
of the initia gob formation during the beginning part of the panel
versus a well established gob through the middle of the panel and
then awider facein the last part of the panel. Infact, when the panel
width increased by 50%, we see the seismic activity increase by more
than 100%. Also, the correlation between the face advance rate and
the seismic activity implies that the majority of the seismicity is a
direct and fairly immediate response to removal of the coal and the
associated stressredistribution. Looking at thelocation of theseismic
events, it can be observed that the events generally occur in advance
of thelongwall face and approximately evenly distributed above and
below the panel (1). This observation is consistent with the
interpretation that the observed seismic events come from failure of
the strata in the forward stress abutment zone and is consistent with
observation at other sites where the predominant recorded failure
mechanism was shear fracture in front of the face as opposed to
tensile failure in the gob.

A magnitude 4.2 seismic event occurred within the active
longwall panel and was recorded by the mine-wide seismic system
giving a unique opportunity to characterize important overburden
deformation processes. It haslong been acknowledged that not every
potentially hazardous bump generates a regional seismic event, nor
does every mine-induced, regional seismic event manifest itself asa
coal outburst at the seam level. Numerous larger (> M 2.0) seismic
events have been located near active mines by regiona seismic
systems (11). Some of these sei smic eventswere associated with coal
bumps underground, but many of the larger seismic events caused no
observable underground damage. Given thelocation accuracy of the
regiona seismic systems, the exact proximity of the seismic event to
the coal seam and bump location could not have been determined.
Using the mine-wide seismic systeminthisstudy, theM 4.2 seismic
event was relatively accurately located some 150-180 m (500-600 ft)
abovethelongwall face. So at least in thisone case, we know that the
large seismic event was associated with overburden failure and not
with pillar or panel failure. Also, since this very large event was
within 180 m of a highly stressed longwall face and there was no
noticeable coal discharge, thisinstance documents arather dramatic
example of how largelocal seismic eventsdo not necessarily resultin
face damage. Therefore, this one occurrence suggests that, in order
to control coal bumps, mine designers and safety personnel generally
need to be more concerned with the seismic events, stress and
geologic anomaliesthat arerelatively close (within 30 m (100 ft)) to
the working face. Also, thelocation of thislarge overburden failure
abovetheintervening “barrier” pillar and the relative closeness of the
two longwall faces at the time of the event, suggest that the two
longwall gobs were functionally combined at the location of the
failure.

In summary, the unique results of this microseismic research
project haveincreased our understanding of thelongwall stratafailure
processes and promise to improve the science of future mine designs.
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