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UNIT OF MEASURE ABBREVIATIONS USED IN THIS REPORT
cm centimeter MJ/m? megajoule per square meter
ft foot m/m meter per meter
Ib pound MPa megapascal
m meter psi pound per square inch
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MULSIM/NL THEORETICAL AND PROGRAMMER’S MANUAL

By R. Karl Zipf, Jr.!

ABSTRACT

MULSIM/NL (multiple seams, nonlinear) is a three-dimensional boundary-element method (BEM)
program developed at the U.S. Bureau of Mines for stress and displacement analysis of coal mines and
thin metalliferous veins. It can analyze one to four parallel seams that can have any orientation with
respect to the Earth’s surface. Three main new features distinguish MULSIM/NL from its predeces-
sors: (1) nonlinear material models, (2) multiple mining steps, and (3) energy release and strain energy
computations. MULSIM/NL has six material models for the in-seam material: (1) linear elastic for
coal, (2) strain softening, (3) elastic plastic, (4) bilinear hardening, (5) strain hardening, and (6) linear
elastic for gob. Detailed checks show that numerical stress and displacement calculations compare well
to known analytie solutions for simple problems. The total energy release calculated by MULSIM/NL
is comprised of three basic terms: (1) strain energy release from the mined-out material, (2) linear
kinetic energy release due to change in gravitational potential over the mined-out area; and (3) nonlinear
kinetic energy release due to nonlinear materials in the total backfill and gob area. The strain energy
release term is modified to account for nonlinear stress-strain behavior in the unmined materials.

Comparisons of these numerical energy release rate calculations with known analytic solutions show
excellent agreement.

1Structural engineer, Denver Research Center, U.S. Bureau of Mines, Denver, CO.



INTRODUCTION

PURPOSE AND OBJECTIVE

The program described in this U.S. Bureau of Mines
report is part of the MULSIM/NL package, which fea-
tures the actual BEM program described herein, as well
as a preprocessor program called MULPRE/NL and
a plotting postprocessor program called MULPLT/NL.
The preprocessor helps the user generate the requisite
input file for the main program MULSIM/NL, whereas
the postprocessor assists the user in studying the calcu-
lated stresses and displacements in a very rapid graphical
manner.

Documentation and instructions for the MULSIM/NL
package are divided into two related reports with each
providing essential elements toward an understanding of
the whole. The objective of this report, "MULSIM/NL -
Theoretical and Programmer’s Manual," is to provide
certain mathematical and programming details to those
engineers and programmers who need to fully understand
the FORTRAN program or desire to alter and enhance it.
A related report, "MULSIM/NL - Application and Practi-
tioner’s Manual,” provides users with detailed operating in-
structions for MULSIM/NL along with several practical
cxamples to better illustrate the capabilities of the
program.

Development of MULSIM/NL stems from a need to
reduce mine accidents due to bumps in U.S. coal mines.
A bump (very similar to a rock burst in many respects) is
the violent failure of highly stressed in-place coal. They
can range in size from small face bumps, which violently
eject several pounds of coal across an entry, to massive
longwall panel bumps, which violently eject hundreds of
tons of coal and damage or destroy millions of dollars
worth of longwall mining equipment. Naturally, coal mine
bumps pose a severe hazard to the miners. The smaller
bump events may severely injure a miner unlucky enough
to be in its path, whereas the larger events may result in
multiple fatalities (1).2 Even if a bump does not result in
costly lost-time accidents or fatalities, recovery of produc-
tion may take days to complete while damaged mining
equipment is repaired. Furthermore, sterilization of
large coal reserves may occur if the bump risk becomes
too great and sections of the mine are abandoned.
MULSIM/NL is an important tool for bump control be-
cause it provides a means to calculate stress, displace-
ment, and energy changes for various mining configura-
tions in bump-prone conditions. Through judicious use of

Ztalic numbers in parentheses refer to items in the list of references
preceding the appendixes at the end of this report.

numerical models such as MULSIM/NL, engineers can
choose alternate mine designs that may decrease the bump
risk.

In addition, MULSIM/NL has many practical uses be-
yond coal mine bump research. Stresses and displace-
ments calculated by MULSIM/NL can help an engineer
design pillar sizes and understand multiple-seam mining
interactions.

MULSIM/NL ENHANCEMENTS

Three significant enhancements to earlier versions of
MULSIM resulted in MULSIM/NL, namely (1) nonlinear
material models, (2) multiple mining steps, and (3) com-
prehensive energy release and strain energy computations,
These enhancements stem from the needs of current Bu-
reau research on coal mine bumps. Field measurements
made on this and numerous other coal pillar research
projects clearly indicate that coal follows highly nonlinear
stress-strain paths of various forms. In addition, the gob
or backfill material left in the wake of coal extraction
follows yet other nonlinear stress-strain paths as it con-
solidates and closure occurs. Prior versions of MULSIM
(2-3) only permitted linear stress-strain relations for in-
seam materials such as coal or gob. MULSIM/NL now
has six material models from which to choose including
(1) linear elastic for coal, (2) strain softening, (3) elastic
plastic, (4) bilinear hardening, (5) strain hardening, and
(6) linear elastic for gob.

MULSIM/NL also calculates detailed energy changes
due to mining. The basis for these calculations is the
energy release rate (ERR) concept advanced by Cook ),
later by Walsh (5), and most recently by Salamon (6) and
Brady and Brown (7). Early South African research on
rock bursts in deep gold mines found that the ERR, ie.,
the energy dissipation per unit area mined, correlated well
to the incidence and severity of devastating rock bursts
(8-9). Based on the South African experience with ERR
and rock bursts, the hypothesis is put forth that ERR also
correlates with the incidence and severity of coal bumps.
MULSIM/NL implements the theoretical developments of
Salamon (6) into its ERR computations. The implementa-
tion is also complete in that it correctly considers the
nonlinear component of the energy release arising from
nonlinear backfill or gob material. In addition, MULSIM/
NL also computes various useful strain energy quantities
for the unmined, nonlinear material in the BEM mesh,
These energy quantities include the total strain energy
delivered to an element, the recoverable elastic strain
energy available from an element, and the dissipated strain
energy from an element. Examination of these quantities




may provide some indication of the burst-bump potential
of specific regions in the BEM model.

Last, MULSIM/NL features multiple mining steps to
simulate various stages of mine development. This feature
enables the user to examine stress and displacement
changes as the mine development advances. Such changes
are generally much more readily comparable to field
measurement programs that tend to measure stress and
displacement (convergence) changes as opposed to total or
absolute stresses and displacements. The energy com-
putations also need the multiple mining step feature since
they require stress and displacement changes.

These extensive enhancements necessitated complete
restructuring and reprogramming to create MULSIM /NL.
Earlier versions of MULSIM used complicated indexing
and one-dimensional arrays throughout the program. The
new MULSIM/NL takes advantage of today’s larger mem-
ory computers and uses numerous multidimensional arrays
and vectors that better reflect the underlying mathemat-
ical foundations of MULSIM/NL. The reprogramming

resulted in a much more understandable, reliable, and
modifiable program that should serve users well in the
foreseeable future.

SCOPE

The remainder of this manual discusses theoretical and
programming details of these enhancements that form the
MULSIM/NL program. The enhancements are largely
based on Sinha’s (2) original program MULSIM; hence,
many details on vast portions of the BEM program are
best addressed in that Ph.D. dissertation.

Discussion first focuses on certain BEM developments
leading up to this Burcau version. Next, sections are
devoted to the material nonlinearities and the energy cal-
culations. Subsequent sections document checks on the
nonlinear BEM and energy computations. Finally, rec-
ommendations are suggested for future development of
MULSIM/NL.

ORIGINS AND PREVIOUS VERSIONS OF MULSIM/NL

HISTORICAL REVIEW

BEM applied to solid mechanics and geomechanics
emerged into a mature engineering discipline during the
1970’s and 1980’s. Numerous text books now exist on the
subject (10-12), as well as a steady stream of specialty
conferences (13). Very basically, BEM evolved as a nu-
merical method for solving the integral equations of
elasticity theory, at first in two dimensions, and later in
three. Two fundamentally different formulations of BEM
exist: namely, a direct method and an indirect method.
According to Wardle (14), no one formulation is clearly
superior for all problems, rather each method may have
mathematical and numerical advantages depending on the
problem geometry and boundary conditions. Research and
development work have resulted in various schemes to
improve accuracy through better element formulations (15)
and in methods to include anisotropy in the media (16).
Other significant developments have occurred in elasto-
plasticity of the continuum as reviewed by Telles (17) and
in coupling with other methods, such as finite elements
(18-19).

Much of the initial practical development work in BEM
stemmed from mining applications and the study of the
tabular orebodies, like coal seams and gold-bearing reefs.
The key notion for analysis of planar excavations was
to treat the excavation plane as a discontinuity in dis-
placement within an infinite elastic medium. Berry (20)

and Berry and Sales (21-22) used this displacement-
discontinuity approach to derive solutions for subsidence
profiles over tabular excavations. Salamon (23-25) form-
ulated the "face element method" for arbitrary tabular ex-
cavation geometries in which the displacement disconti-
nuity at one clement was the sum of the contributions
from every other element. Lacking a computer, he used
a graphical method to evaluate the summations and com-
pute closures across complicated excavation shapes. Even-
tually, Salamon’s face element approach served as the ba-
sis for the first computer program using an indirect (the
displacement discontinuity) formulation of the BEM (26).

The early BEM formulations only considered the clo-
sure distribution across the displacement-discontinuity
plane that is subject to a normal stress field. Later de-
velopments by Starfield and Crouch (27) permitted an in-
clined excavation plane relative to the primitive stress
directions. Further work by Crouch and Fairhurst (28) in-
cluded certain nonlinear material models as boundary con-
ditions across the plane of the displacement discontinuity.

In a sense, the initial indirect BEM formulations only
considered a one-component displacement discontinuity
(that is, one normal to the excavation plane). Research
to develop more general displacement discontinuities that
included shear components began in two dimensions.
Crouch (29) developed a two-dimensional BEM analysis of
a tabular seam near the Earth’s surface by making use of
elementary displacement-discontinuity solutions within an



isotropic infinite half-space. Further two-dimensional gen-
eralizations by Crouch (30) enabled analysis of nontabu-
lar and multiple seams arbitrarily close to the Earth’s
surface. Finally, Sinha (2) developed general three-
dimensional solutions for stresses and displacements both
normal and parallel to the displacement-discontinuity
plane. He presented programs for (1) tabular seams near
the Earth’s surface, (2) multiple seams at great depth,
and (3) a nontabular seam at depth. It is the second pro-
gram that formed the essence of MULSIM/BM (3) and
MULSIM/NL.

SINHA’S MULSIM

The original MULSIM was intended for stress and dis-
placement analysis of multiple seams at great depth below
the Earth’s surface. It could accommodate up to four
parallel seams where each seam is modeled by a 12 by 12
array of coarse mesh blocks. A 5 by 5 grid of fine-mesh
elements can subdivide each block if requested. Figure 1,
taken from Sinha, shows the general modeling-grid
scheme. The seams are parallel to each other and share
a common Z axis. The local X and Y axes in each seam
also remain parallel (i.e., there is no rotation about the
Z axis), and there is no origin offset.

The surrounding rock mass is a linear elastic medium,
The in-seam material is also linear elastic; however,
certain anelastic behavior is also considered. For example,
one of the seams can be considered a bedding or fault
plane parallel to the other seams. MULSIM models any
gouge material in a seam plane with a Mohr-Coulomb
failure criterion that allows the element to yield and
deform in response to normal and shear stresses.

The general structure of the original program MULSIM
is shown in figure 2. In principle, program flow is straight-
forward and simple, although the details are complex. In-
put consists of a file defining the problem and its ge-
ometry. After calculating primitive stresses and influence
coefficients, the program enters an iterative equation-
solving loop to calculate the unknown displacement com-
ponents. When it has found all the elemental displace-
ments, the program then calculates induced and total
stresses and outputs the results. All output is simply
printed as tables in a rather lengthy line printer file.

In his dissertation, Sinha (2) derives all the three-
dimensional displacement-discontinuity influence coeffi-
cients from potential theory, and he presents the basic

- programs for analyzing common mining situations in seam
deposits. He also conducts rigorous tests of the program
to ensure its accuracy.

Figure 1.—Multiple-seam grids for program MULSIM (2).
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MULSIM/BM

During the period 1984-85, the Bureau upgraded and
restructured Sinha’s original program to create MULSIM/
BM (3). All the original capabilities of the program
remain in the enhancement since MULSIM/BM still cal-
culates stresses and displacements in single or multiple
parallel seams (up to four) that are inclined at any angle
to the Earth’s surface and oriented at any angle to the
principal stress field. The program neglects the effect of
the Earth’s surface and assumes that the seam planes are
at great depth (i.e., depth greater than opening width).

MULSIM/BM includes these major new features:

(1) Additional Linear In-Seam Material Properties -
The original program permits only one linear property set
for the in-seam material, whereas the new version permits
up to 26 different linear elastic materials.

(2) Inserted Material or Gob Model - Since the orig-
inal program permits only one material, no method exists
to have a different lower modulus material remain in the
wake of mining. In addition to allowing numerous linear
elastic materials, the new version features an inserted
material or gob model to represent the layer of broken
rock, such as gob left behind in coal mining, or other
artificial supports such as backfill, packwalls, or cribs.
Certain in-seam materials can be identified as inserted
materials, in which case, the model uses a linear stress-
strain relationship with zero stress at zero seam closure
3.

(3) Increased Coarse- and Fine-Mesh Size - The orig-
inal MULSIM allows up to four seams each with a 12 by
12 array of coarse-mesh blocks, each of which can be
subdivided into a 5 by 5 array of fine-mesh elements.
MULSIM/BM expands the permissible coarse-mesh array
size up to 40 by 40. The allowable number of paral-
lel seams remains at four. The number of coarse-mesh
blocks divisible into fine-mesh elements also increased
slightly from a 12 by 12 coarse-mesh block array to a 20 by
20 array, thercby permitting a 100 by 100 array of fine-
mesh elements.

(4) Coarse-Mesh Block Stress and Displacement Cal-
culations - In the original version, MULSIM only prints
stress and displacement calculations within the array of
fine-mesh elements. Usually, only the fine-mesh cal-
culations are of interest; however, for certain applications,
having the coarse-mesh stress and displacement calcula-
tions available is desirable. MULSIM/BM now displays
those calculations in the print file. Data files retain block
and element locations and stress and displacement calcu-
lations separately for the coarse-mesh blocks and fine-
mesh elements.

(5) Addition of Extraction Ratios in Coarse Mesh -
The new version, MULSIM/BM, allows the user to specify
the extraction ratio of each coarse-mesh block. This fea-
ture enables the user to include effects of prior mining in
the coarse-mesh area without having to specify all the de-
tails of the mine layout. The program then decreases the
stiffness of a partially extracted block as a function of the
extraction ratio.

MULSIM/BM has seen considerable use in various Bu-
reau projects. Beckett and Madrid (3) describe its utility
in general coal mine modeling. Kripakov (31) also pre-
sents examples of its utility in coal mine modeling and
discusses a coupling procedure between MULSIM/BM
and a finite-clement analysis. Recently, Kripakov and
Rockwell (32) used MULSIM/BM to study various coal
mine gate road pillar configurations under bump-prone
conditions. Among other conclusions, they recommended
further developments of Bureau BEM programs to include
nonlinear in-seam material properties and various energy
calculations. These developments have been included in
the Bureau’s latest BEM development, MULSIM/NL.

ITASCA ADDITIONS

During 1988, the Itasca Consulting Group, Minneapolis,
MN, provided certain upgrades to MULSIM/BM while
under contract to the Burcau. These modifications, name-
ly multiple mining steps and basic linear energy release
computations satisfied portions of the Bureau’s goals for
a BEM-based numerical model with (1) nonlinear mate-
rial properties, (2) multiple mining steps, and (3) com-
prehensive nonlinear energy release and strain energy
computations.

Implementing multiple mining steps is an essential pre-
requisite for implementing energy computations. By itself
though, the multiple mining step feature provides a useful
tool for the analyst and/or engineer. With it, the user can
simulate a continuous mining process by several discrete
steps. For example, a mining-cut sequence might split a
barrier pillar with 20 10-ft-deep continuous miner cuts.
Each cut might be one step in a detailed BEM analysis.
To simulate progression of a longwall face, each mining
step in the BEM analysis might remove an entire row of
elements along the longwall face. Then in a sequence of
about 10 mining steps, the BEM analysis might simulate
the mine-by cycle of a tailgate pillar. With the multiple
mining step option, the analyst and/or engineer can ex-
amine progressive changes in stress and displacement.
Load transfers can be observed numerically as they occur
during mine development.




Figure 3 shows the necessary program structure modifi-
cations to implement multiple mining steps. After initial
data are read and influence coefficients are computed and
stored, the program enters a FORTRAN "Do loop," where
it reads the seam geometry and seam materials and pro-
ceeds with stress, displacement, and finally energy com-
putations. Then, it re-reads the seam geometry and seam
materials and proceeds with calculations for the next min-
ing step. This procedure is repeated for all mining steps.

As an aside, the multiple mining step option has con-
siderable computational advantages over running a series
of separate single-step problems. MULSIM uses a simple
Gauss-Seidel iteration procedure to solve the system of
equations for unknown elemental displacements. For the
first iteration of the first mining step, the unknown dis-
placements are customarily set to zero. Once convergence
is achieved and the elemental displacements are known for
the current mining step, then these displacements serve as
the initial guess for the solution at the next step. If the
mining steps are small and the change in mining geometry
is not too radical, then using the displacements of the
prior step as the initial guess ensures rapid convergence to
the solution of the next step.

As shown in figure 3, calculation of linear energy
changes follows immediately the stress and displacement

Enter

calculations. The energy release for an element mined-out
this step is

1
WR = 5% (Di - Di-l) ) (€]
where  Wp = total energy release going from state 1
to state 2,
0,1 = element stress during prior mining step,
D; = element displacement in current mining
step,
and D,; = element displacement in prior mining

step.

Graphically, this energy quantity is shown in figure 4 (top).
Total energy release is simply the sum of all the elemental
energy releases. ERR is just the total energy release di-
vided by the total elemental area mined this step, i.e., the
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Figure 4.—Stress-displacement curves showing strain energy
release. Top, From element exiraction; bottom, from element
softening.



energy release per unit area mined. (As will be discussed
later, the previous ERR relation corresponds to the domi-
nant term in an ERR expression derived and discussed by
Salamon (6).)

In addition to ERR, Itasca also provided calculations
for the energy release due to element modulus softening
given by

1
Wrms = 5 (0521 + @) (D - D) @
where Wppg = energy release due to modulus soften-

ng

and o; = clement stress in current mining step.
With the multiple mining step feature, the user can ap-
proximate a yielding or softening behavior in the seam
materials by reducing the linear elastic modulus from a
high value in the (i-1) step to a low value in the i step.
Such a modulus reduction causes the energy release given
by equation 2 and shown in figure 4 (bottom). The theo-
retical basis of this procedure seems problematic. Fur-
thermore, Wgy is also step size and path dependent. All
theoretical problems aside, the energy release due to mod-
ulus softening does provide a useful approximation to a
nonviolent component of the energy dissipation occurring
due to mining.

NONLINEAR MATERIAL PROPERTIES IN MULSIM/NL

GENERAL MECHANICS OF BOUNDARY-
ELEMENT METHOD

This section provides a simplistic discussion on the ba-
sics of how BEM work, beginning with certain mathemati-
cal concepts and analytic solutions central to the BEM.
These fundamental analytic solutions lead to the formation
of a large system of algebraic equations. Boundary con-
ditions applied to this system of equations then fully define
the particular problem at hand. Finally, the equations are
solved for stresses and displacements at each element.

Numerical methods to solve complex problems in elas-
ticity fall into two broad categories: differential methods,
such as finite-element and finite-difference methods, and
integral methods, such as BEM. With differential meth-
ods, the entire problem domain (i.e., the rock mass) is
divided into elements or node points, and certain boundary
conditions are specified on the edges of the problem do-
main. Stresses and displacements are then calculated at
each element or node point in the subdivided rock mass.
In contrast, integral methods only require subdivision of
the problem boundary into elements; therefore, the in-
tegral methods require much less computational effort
than the equivalent differential methods. Stress and
displacement calculations occur along the boundary and at
requested points in the interior. In many practical rock
mechanics problems, boundary stresses and displacements
are the only ones of interest; therefore, integral methods
are well suited.

The BEM applies quite well to the stress analysis of
thin tabular deposits such as coal seams, deep gold reefs,
and narrow veins. Sinha (2), and later Wardle (14), dis-
cuss that the key abstraction underlying BEM is visualizing

the tabular deposit as a crack or discontinuity in an other-
wise homogeneous, isotropic, linear elastic rock mass. Fig-
ure 5 shows this crack or seam plane in the surrounding
rock mass or host media. The top and bottom surfaces of
the crack plane form the problem boundary (i.e., the roof
and floor in coal mining or the hanging wall and footwall
in metal mining). The rock mass is the internal region for
this problem, whereas the coal seam or vein material is an
external region for the problem.

The next critical step in the BEM is dividing the crack
or scam plane into several square boundary elements.
Figure 6 shows the seam plane subdivided into elements.
The actual mine plan within this seam plane may have a
very complex geometry. The individual elements are then

Earth's surface
A

Depth

e L7

Figure 5.—Boundary-element-method seam plane in surround-
ing rock mass.




assigned material properties (or boundary conditions) to
approximate this geometry. Figure 7 shows an actual mine
plan and the modeling approximation where individual ele-
ments are considered either mined out or unmined with
assigned material properties.

The central foundations to BEM rest on certain analytic
solutions from basic elasticity theory. In two dimensions,
one of these solutions is for a crack of width 2a subjected
to uniform pressure components P, and P,. Figure 8
shows this pressurized crack problem. By integrating ana-
Iytic solutions to the Kelvin problem, expressions are
obined for the stress and displacement components of the
pressurized crack in terms of the crack pressure compo-
nents P, and P, and the spatial coordinates x and z.

Another even more important solution is that of a
"displacement discontinuity" in an infinite solid as shown
in figure 9. Instead of applying constant pressure com-
ponents to the crack walls, constant displacement com-
ponents are applied resulting in a so-called "displace-
ment discontinuity.” Again, it is possible to find analytic

(LSS S S S
i s
/ i

Figure 6.—Boundary-element-method seam plane subdivided
by elements.

[
1

Dol

Actual mine plan

Modeling approximation

Figure 7.—Actual mine plan in-seam plane and gridded model-
ing approximation.

expressions for the stress and displacement components in
terms of the displacement discontinuity components D,
and D, and the spatial coordinates x and z.

Basic Equations of Boundary-
Element Method

Figure 9 shows a two-dimensional displacement discon-
tinuity; however, it is also possible to extend the concept
and solutions to three dimensions. The solution forms,
following Sinha’s (2) notation, are

T, = be+ch ,

Ty = de+eDy R

©)

Px

Tttt

IR IR

_— — ——— ———— ——— ———

I |
| 20 -l

Figure 8.—Pressurized crack problem in two dimensions. 2a
is crack width, and P, and P, are pressure components.

20—

Figure 9.--Displacement-discontinuity problem in two dimen-
sions. 2a is crack width, and D, and D, are displacement com-
ponents.



where T shear stress in local x direction of ele-

X

ment,

D, = dis_placement discontinuity in x direc-
tion,

D, = displacement discontinuity in y direc-
tion,

Ty = shear stress in local y direction of ele-

ment,

Q
I

2 normal stress in local z direction of
element,

D

]

. displacement discontinuity in z direc-
tion,

and a, b, ¢, d, and e are influence functions depending on
the material properties (E,v) of the host medium and the
spatial coordinates (x, y, z). Equation 3 relates an applied
displacement discontinuity at the origin to the induced
stresses at a point (%, y, z) due to that applied displace-
ment discontinuity. While equation 3 applies to a point
displacement discontinuity, it also applies approximately
over an element as shown in figure 10. Here, constant dis-
placement discontinuities D,, D, and D, over the source
element (k, 1) induce stresses 7,, 7,, and o, at the field
element (i, j). Equation 4 reflects the change from point
stresses and displacement .discontinuities to elemental
stresses and displacement discontinuities.

Lj i, i,j
.= bD_ + ¢ D
RS S % T
i,j 1] 1,j
.= dD,+ e D
L T % T
L i,
o,= a Dz @)
k1

Again, equation 4 gives induced stress components at ele-
ment (i, j) due to displacement discontinuities at (k, 1).
Therefore, the total induced stress at element (3, j) is the
sum of the induced stresses from all the displacement
discontinuities at all the elements (k, I). Taking this
summation on equation 4 results in

i,j ll’)JD i,jD
T, = + cC
S A P T S T

If N represents the number of elements, then equation 5
represents a system of 3N equations with 6N unknowns,
3N stress components 7,, 7., and o,, and 3N displacement
discontinuities D,, D, and D,.

Application of Boundary Conditions

Obviously, a unique solution for the unknowns requires
3N additional independent equations which are generated
from the boundary conditions. Figure 11 shows an ele-
mental displacement discontinuity and the nature of the
applied boundary conditions. For unmined elastic ele-
ments (ie., those containing coal, vein material, gob, or
backfill), the elemental stresses and displacements are
related through the elemental material properties. For
simple linear elastic materials, the boundary conditions are

« = G D/t

. =
ry=G Dy/t,
o, = ED/t, )

where G is a shear modulus, E is Young’s modulus, and
t is the element thickness. It is straightforward to extend
these boundary conditions to more complex nonlinear
material properties.

Source element (k, 1)
~

[ [/ /SN

[/ /)
[/ /S )/
[/ /S S )/
[ [/ L)) S
L LSS/

Field element (i,j)

Figure 10.—Source element (k, 1) and field element (i, j) within
seam plane.



For the mined-out or open elements, the elemental
stresses are zero, and the boundary conditions are

7,=0,
Ty = 0,
o, = 0. ™

Thus, the boundary conditions given by equations 6 and
7 provide the additional 3N relations, which together with
the boundary-element equations 5, enable computation of
the remaining unknown elemental stresses and displace-
ment discontinuities. Numerical solution of this system of
linear algebraic equations is normally accomplished with
a Gauss-Seidel iteration procedure. See Dahlquist and
Bjork (33) for details of this method.

Some Notes on BEM Boundary Conditions

The three boundary conditions on an element must act
independently of one another. Thus, the normal and shear
components of stress and displacement applied to an ele-
ment are uncoupled. Coupling the normal and shear com-
ponents with some complex constitutive relation may result
in an overdetermined system of equations with unknown
consequences on the solution. Also note (fig. 11) that hor-
izontal components of stress do not exist in the in-seam
elements. Therefore, the engineer and/or analyst using
BEM must find artificial means to account for the effects
of horizontal stress or confinement on the behavior of an
element. One common procedure involves the use of a
family of stress-strain curves ranging from highly strain
softening through elastic plastic to represent materials
under increasing confinement. The highly strain-softening

Figure 11.—Three boundary conditions applied to elemental — — — — —

displacement discontinuity. D, D, and D, are elemental dis-
placement discontinuity components.

material is used near an opening where the confinement
is low, and the elastic-plastic material is used in the
interior of a model where the confinement is high.

SIX MATERIAL MODELS FOR MULSIM/NL

As alluded to in the previous discussions on the formu-
lation of BEM nonlinear in-seam material properties are
incorporated into the model via the boundary conditions
on the system of boundary-element equations. This sec-
tion discusses theoretical and programming details of the
nonlinear material models added to MULSIM/NL. Initial
discussions focus on the derivation and formulation of the
six material models now available in MULSIM/NL. Addi-
tional mathematical details provide the essence of total-
stress versus induced-stress BEM formulations. Imple-
menting the material nonlinearities required a shift from
the induced-stress approach used in MULSIM to the total-
stress approach used in MULSIM/NL. Subsequent discus-
sions then focus on the logic, algorithms, and convergence
schemes necessary to actually program the models. Final-
ly, the section closes with certain programming details of
the material property subroutines and the total-stress
BEM formulation.

Figure 12 shows the stress-strain models for MULSIM/
NL that include (1) linear elastic coal, (2) strain-softening
coal, (3) elastic-plastic coal, (4) bilinear hardening gob, (5)
strain-hardening gob, and (6) linear elastic gob. The first
three models are for the unmined in-seam coal material,
while the latter are for the broken gob material left in the
wake of mining. As will be discussed later, the distinction
between coal material models and gob material models
becomes crucial in the subsequent energy calculations.

Linear elastic coal

Strain-softening coal Elastic plastic coal

/ 2 3

Linear elastic gob Strain-hardening gob Bilinear hardening gob

6 & 4

STRESS (o)

STRAIN (€)

Figure 12.—Six different stress-strain models available in
MULSIM/NL.



Linear Elastic for Coal (Model 1)

This basic model requires little discussion since it is the
basis for MULSIM (2) and MULSIM/BM (3). The re-
quired parameters for the model are E (Young’s modulus)
and G (shear modulus) which may or may not be related
by

E
G - 5 ®

In the BEM calculations, E relates the normal stress to
the normal displacement (closure) across an element,
whereas G relates the associated shear stresses to the
corresponding shear displacements (rides). As discussed
earlier, the three boundary conditions applied to each
element behave independently of one another.

With the linear elastic model, MULSIM/NL works
internally with a stiffness K given by

K=— ©)

where E is the modulus and t is the seam thickness.

As will be discussed later, the linear elastic model
works equally well in either induced-stress or total-stress
approaches to the BEM.

Linear Elastic for Gob (Model 6)

This model is the counterpart to model 1 and is in-
tended for the gob material left in wake of the mining.
Required parameters are again E and G plus a "gob height
factor," n. The factor n is the ratio between the height of
broken, rotated gob fragments and the unmined seam
height. The factor n typically ranges from 2 to 6 and av-
erages about 4. Beyond a range of 2 to 6 seam thick-
nesses, the rock mass surrounding mined-out gob areas
remains linear elastic. With linear elastic gob elements,
MULSIM/NL uses a stiffness given by

E

K=2.
nt

(10)

In principle, the factor n accounts for the larger effective
seam thickness present in extracted areas that are now
filled with gob material. Another way to consider n is as
a modulus reduction factor as done by Beckett and Madrid
(3). For further details on the meaning of n, the gob
height factor, see appendix E of this report.

Strain-Softening for Coal (Model 2)

This model, after Crouch and Fairhurst (28), approxi-
mates the complete stress-strain curve observed during

laboratory strength tests on coal conducted under true
displacement control. In principle, it also describes the
yielding behavior of moderately sized pillars or the perim-
eters of large pillars. Field observations by Wang (34) and
Tannacchione (35) strongly support the use of a strain-
softening model to simulate the behavior of full-size pillars
in many mines.

Required input parameters for this stress-strain model
are a peak stress and peak strain plus a residual stress and
residual strain. In addition, the model requires a Poisson’s
ratio, v. For the normal components of stress and dis-
placement, the strain-softening model uses the peak and
residual stress-strain points. However, for the two shear
components, MULSIM/NL scales the specified peak and
residual stresses by a factor of 1/[2(1+v)]. In the linear
elastic portion of the strain-softening model, MULSIM/
NL relates normal stress and displacement with an elastic
modulus computed as E = o,/¢,, where o, is peak stress
and ¢, is peak strain. The shear stresses and displace-
ments satisfy a similar relation in the initial linear por-
tion where shear modulus is computed as G = (ap/Ep) /
[2(1+v)]. Recall that E and G are related via equation 8.

One restriction on the strain-softening model is that
residual strain must exceed peak strain and peak stress
must exceed residual stress. For strains greater than
residual, stress remains constant at the residual level. As
a final point, implementation of the model requires a total-
stress approach to the BEM since the model is defined in
terms of absolute or total, stresses and strains.

Elastic-Plastic for Coal (Model 3)

This stress-strain model, closely akin to the strain-
softening model, approximates a "pseudo-ductile" behavior
believed to occur in pillar cores (36). Required input for
the model is again a peak stress and peak strain, the slope
of the postyield portion (in degrees), and a Poisson’s ratio,
v. As with the previous model, the factor 1/[2(1+v)]
scales the amplitude of the normal stress-strain curve to
obtain the shear stress-strain relations. E and G satisfy
€quation 8 in the initial linear portion. Since the material
model is specified in terms of total stress and strain, as
opposed to induced stress and strain, implementation again
requires a total-stress formulation of the BEM.

Bilinear Hardening for Gob (Model 4)

This stress-strain model, analogous to the elastic-plastic
model in certain respects, permits a certain amount of de-
formation to occur prior to introducing significant element
stiffness. Input requirements for the model are stress and
strain at the hinge point, modulus in the hardening region
past the hinge point, and Poisson’s ratio, v. Again, the



stress-strain relation for the normal direction of the ele-
ment is scaled by 1/2[(1+v)] to obtain the stress-strain
relation for the tangential directions of the element.

This gob model also requires the gob height factor n.
This factor increases the effective seam thickness for those
elements employing the various material models for gob.
An alternative way to view n is as a modulus reduction
factor to account for effective seam thickness in the gob
areas that exceeds seam thickness in the coal areas.

Strain-Hardening for Gob (Model 5)

This model allows the gob material to increase in stiff-
ness as it consolidates under increasing load. Appendix E
provides the complete derivation of this model. The mod-
el assumes that the gob formation occurs via a two-step
mechanism: first, the overburden rock behind the active
face fractures, collapses, and swells to fill the newly
created void, and second, the gob consolidates and follows
a nonlinear, strain-hardening constitutive relationship ver-
tical stress on the gob increases. As shown in figure 13,
derivation of the model begins by assuming that the tan-
gent modulus of the gob increases linearly from an initial
modulus value E; to a final modulus value Ef over the
stress range 0 to oy, where o, is the final stress. Beyond
a stress level of oy, the tangent modulus of the gob may
continue to increase, but for practical purposes, stress
levels beyond o, are unlikely except in rare multilevel
mining cases. The relation describing the linear increase
in tangent modulus is '

EF_EI

g

E = U*EI.

1)

v

The differential relation between stress (o) and strain (¢)
is

do = Ede. (12)

Combining these relations and integrating produces the
following stress-strain relation for gob:

o =El|- 1% [exp [EF_EI:I[B]—ll 13)
n I_EF‘EI no t

where E;

initial modulus,

Er = final modulus,

I

o, = virgin vertical stress,

TANGENT MODULUS (E)—
m
-

m
-

oy

STRESS (o) —m8 ——

Figure 13.—Assumed linear relationship between tangent
modulus (E) and stress (o) over range 0 to oy. E; is initial
modulus at zero vertical stress, and E s final modulus at vertical
stress o,.

D = seam closure,
t = seam thickness,
and n = gob height factor.

The parameter (Eg - E))/(n 0,) controls the degree of
nonlinearity in the model. Input parameters are E,, Ep,
a, n, and v. As with the prior models, scaling the above
stress-strain relation for the normal direction of the
element by a factor 1/[2(1+v)] provides an appropriate
stress-strain relation for the tangential directions of the
element. Again, a total-stress formulation of the BEM is
required.

TOTAL-STRESS FORMULATION FOR MULSIM/NL

In making the change from strictly lincar elastic mate-
rial properties, it becomes necessary to shift the basic
boundary-element formulation from an induced-stress ap-
proach to a total-stress approach. The original MULSIM
and MULSIM/BM programs conduct computations strictly
with the induced stresses. After the equations are solved,
the induced stresses are added to the primitive stresses to
obtain the total stresses for output. With linear elastic
materials, the elastic modulus serves as the proportionality
constant between the induced stress and displacement - a
proportionality unaffected by the magnitude of total stress.
With nonlinear materials, however, the absolute magnitude



of the stresses does become important, and it is essential
to work with total stresses during the equation-solving
process.

Following the notation used by Sinha (2), the funda-
mental boundary-element equation relating elemental
stress components (T) to elemental displacement discon-
tinuities (D) is

T-Y [T+ |p 4)
mey

where [TC] and [TC'] are m x n matrices of displacement
coefficients for the infinite body and half-space solutions,
respectively, and T and D are n dimensional vectors. In
principle, equation 14 is identical to equation 5 given in
the prior simplified explanation of BEM workings.

Induced-Stress Boundary Conditions

For an induced-stress formulation, the boundary con-
ditions for the mined-out areas are

[T] + [P] = [0] 15)

and for the elastic areas are

[T] + [K]T[D] = [0] (16)

where P is the far field primitive stress and K is the ele-
ment stiffness. For linear elastic elements, the stiffnesses
K are constants and do not depend on the elemental
displacements D or the induced-elemental stresses T in
any respect. Combining equations 14, 15, and 16 results in
a linear system of equations of the form

Ax=b. 7

Direct solution of this system is not feasible since the
unknown elemental displacements D must satisfy the ad-
ditional restriction

[D] = [t] (13)

where t is a constant vector of elemental thicknesses. This
restriction necessitates use of an indirect method like the
Gauss-Seidel scheme provided by Dahlquist and Bjork (33)
forn =12,. N:

where n is the current unknown index, N is the maximum
number of unknowns, k is the iteration number, m is a
summation index, and w is the overrelaxation factor. w is
defined by the user and typically ranges from 1.0 to 1.5.
A new variable for summation of element stress influences,
T, is defined as

n-1
Ly~ Y | TCun + TCon | DE
m=1

- | TCun + T | D®

N
- Z [Emn + ﬁ;nn ] Dr(:) (20)
m=n+1

For the mined-out areas, combining equations 14 and 15
and then forming a recursive relationship after 19 results
in

. -T,-P
¢V p® ., 0T | (g

TCan * TCan

Similarly, in the elastic areas, combining equations 14 and
16 results in

x)
-T, -K D
D,ﬁk“)=D§“)+w n e

. (22)
— .
TCon * TChn + Kp

Basically, Sinha’s original MULSIM, and its enhancement
MULSIM/BM, implement and solve equations 20, 21, and
22 for a linear elastic induced-stress approach. Figure 14,
modified from Sinha (2), provides a flowchart for this
critical area of the program - namely, the equation solver.
These three equations are noted in this flowchart.

Total-Stress Boundary Conditions
With nonlinear materials, however, the elemental
stiffness K depends on the absolute magnitude of the

elemental displacements and stresses. (In fact, K becomes
a function of D.) It is therefore no longer sufficient to

19
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consider just the induced stresses in the elastic areas;
hence, total stresses are required. For a total-stress form-
ulation, the boundary conditions for the mined-out areas
are

[T] + [P] = [0] (23)
and for the elastic areas are ’
[T] + [P] + [K]"[D] = [0]. 4

As noted earlier, for nonlinear materials, K is a function
of D. Therefore, combining equations 14, 23, and 24, now

results in a nonlinear system of equations of the form:
[Alx = b(x) (25)
where the right-hand side is now some nonconstant func-

tion of x. In addition, the restriction given by equation 18,
limiting D to less than or equal to the element thickness,

still applies. Fortunately, however, the Gauss-Seidel itera-
tion procedure given by equation 19 also applies to non-
linear systems after appropriate modifications.

For the mined-out areas, combining equation 14 with 23
and then forming a recursive relation after 19 results in

. -T,-P
p¢*D -p® .o n_=n (26)

TCan * TCan

which is, of course, identical to equation 21. Similarly, in
the elastic areas, combining equations 14 and 24 results in

©
-r,-K,D." -P
ng+1) _ D.Sk) ' n nn no @7

TCan * TCan * Ky

As stated earlier, with the nonlinear material models for
the elements, K is no longer constant, but depends on D.



The solution procedure must continuously update the val-
ues of K according to the latest estimates of D until stable,
final values of D are achieved.

The new nonlinear equation solver in MULSIM/NL
invokes equations 26 and 27 and continuously updates K
as a function of D. Figure 15 presents the new flowchart
and provides key details of the new solver.

llustration of Convergence Schemes

Each iteration step for the nonlinear system proceeds
in two stages. The first stage executes the summation
given by equation 20 and provides total stress at that block
or element. Based on the new total-stress estimate and
the displacement estimate from the prior iteration, the
second stage of the iteration process computes a new es-
timate of the stiffness K at that block or element following
the specified material model and its material properties.
Using this updated stiffness value K, MULSIM/NL then
computes a new displacement estimate based on either
equation 26 or 27. Repeating this two-stage iteration proc-
ess for total stress then stiffness and displacement results

Begin equation solver

Rigid efement

Begin mgin iteration
foop

Unmined
¢lement

in rather rapid convergence to stable final values for the
unknown stresses and displacements at each block and
element.

Figure 16 shows this two-stage iteration process for two
kinds of material models. In both cases, total stress and
displacement (or strain) lie at the point 1A for the current
iteration. For the strain-softening or elastic-plastic ma-
terial models, MULSIM/NL uses the current displacement
estimate to determine the intercept labeled 1B on the
stress-strain curve. It then determines a new stiffness
estimate for use in the next iteration from that intercept.
In contrast, with the strain-hardening or bilinear harden-
ing material models, MULSIM/NL uses the current total
stress estimate to determine the intercept labeled 1B
on the stress-strain curve. In both cases, the iterative
equation-solving process repeats itself until the calculated
stresses and displacements (strains) converge to the pre-
scribed stress-strain model within acceptable limits. The
number of iterations required can range from 10 to 200
depending on the size and complexity of the model. A
typical problem may need 20 to 50 iterations.
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Figure 16.—Two-stage iteration process for nonlinear material
models in MULSIM/NL. Top, Strain-softening and elastic-plastic
materials; bottom, strain-hardening and bilinear hardening ma-
terials. Alph neric indicate two-stage iteration progress
toward final solution for stress and displacement.
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FORTRAN IMPLEMENTATION OF MATERIAL
NONLINEARITIES

Equation-Solver Logic

Figure 15 shows the flowchart-logic diagram for the
MULSIM/NL equation solver that incorporates mate-
rial nonlinearities. Much of the FORTRAN code appears
in the MULSIM/NL subroutine called SOLVER. This
solver uses three sets of nested DO loops for this process.

The first set (outermost) is the main iteration loop for the
Gauss-Seidel scheme. The iterative calculations in the
loop repeat themselves until satisfactory convergence
occurs, or the user-specified maximum number of itera-
tions is exceeded. The second set of DO loops increments
through each block in the mesh, while the optional third
set of DO loops (innermost) increments through all 25 ele-
ments in a fine-mesh block. The second and third sets of
DO loops evaluate equation 20 which provides the induced
and total stress components for the block or element.

After evaluation of the induced and total stress com-
ponents for an element or block, the program branches
three ways according to the applied boundary conditions.
In the special case of rigid blocks or elements (i.e., infinite
stiffness), the displacement discontinuity components are
identically zero as are the induced stresses. The total
stresses remain identically equal to the primitive stresses.

For the mined-out areas, the program first calculates
displacement discontinuity components for the element ac-
cording to equation 26 and then applies a series of con-
vergence tests. By definition, total stresses in the open
elements are zero, and the induced stresses are equal and
opposite to the primitive stresses. Acceptable convergence
occurs when these total stresses are approximately zero.
An exception can occur in the normal direction of the ele-
ment if the calculated normal displacement or closure ex-
ceeds the thickness of the element. In this case, the nor-
mal displacement is set equal to the thickness, and the
total stresses are allowed to have positive or compressive
values. With complete normal closure, the stresses begin
to increase, and ultimately, the total normal stress com-
ponent may approach the primitive normal stress compo-
nent. If an element fails either a displacement or a stress
convergence criterion, then the equation solver automat-
ically proceeds with another iteration up to a user-set
limit.

For the elastic areas, the program first calculates
displacement-discontinuity components according to equa-
tion 27. It then retrieves the most recent total stress and
displacement values for the element or block and enters
the appropriate material property subroutine to obtain a
new, updated modulus (or stiffness) estimate. Obtaining
updated values for total stress is the first stage of the itera-
tion process. Once inside the proper material subroutine
(from a current choice of six material models), the second
stage of the iteration process begins. As discussed earlier,
and shown in figure 16, the strain-softening and elastic-
plastic models start from the current displacement to find
the intercept on the stress-strain curve of the material,
whereas the strain-hardening and bilinear hardening mod-
els start from the current total stress to find this intercept.




In both cases, locating this intercept on the prescribed
stress-strain curve provides an updated modulus (or
stiffness) value for use in the next iteration of the equation
solver. Upon returning to the solver with this secant
modulus, the program continues the current iteration using
equation 27 to calculate updated displacements.

Material Property Subroutine Structure

MULSIM/NL uses a 26 by 10 array called EPROP to
store parameters used by the six nonlinear stress-strain
material models. The program permits up to 26 different
materials labeled A through Z which in turn can follow
any one of the six material models shown in figure 12.
EPROP allows each material model to have up to 10 de-
scriptive parameters. The value of the first parameter
directs the program to the proper stress-strain model for
cach material defined. These are the assignments for the
six models currently permitted: 1 - linear elastic coal, 2 -
strain-softening coal, 3 - elastic-plastic coal, 4 - bilinear
gob, 5 - strain-hardening gob, and 6 - linear elastic gob.
Table 1 shows the required parameters and their location
in EPROP for the six material models. Quite naturally,

when defining materials for a given model and reading the
input file, MULSIM/NL expects the material descriptors
in a compatible format.

The six material property subroutines have very similar
structures. Associated with each element or block is a ma-
terial code, A through Z, which corresponds to positions
1to 26 in EPROP. When MULSIM/NL requires updated
material properties, it reads the first parameter in EPROP
for that material which, in turn, directs MULSIM/NL to
the proper material property subroutine. Each subroutine
can then read the remaining parameters in EPROP for
that material and interpret those parameters accordingly.
As discussed earlier, each subroutine returns updated se-
cant moduli for the normal direction of the element and
the two tangential directions.

Finally, each nonlinear material property subroutine
incorporates a convergence check. The old total stress
values from the initial stage of the iteration step must
equal (or nearly equal) the new total stress value com-
puted by the material model subroutine. If the old and
new total stresses agree within an acceptable user-defined
limit, then the solution has converged. Otherwise, the
iteration steps continue up to a user-defined maximum.

Table 1.—Material model parameters and material property array EPROP structure

Model 1 2 3 4 5 6

1 ... Linearelastic Young'’s Shear modulus  NAp ......... NAp ........ NAp.
coal-(1). modulus (G).

(E).

2 ... Strain soft- Peak stress  Peak strain ... Residual stress Residual strain  Poisson’s ratio
ening coal ().
2).

3 ... Elastic- ..do .... ..do ....... Plastic modulus  Poisson’s ratio  NAp.
plastic ().
coal-(3).

4 ... Bilinear Offset Offset strain .. Hardeningmod- ..do ....... Gob height
hardening stress. ulus. factor (n).
gob-(4).

5 ... Strain- Initial mod-  Final modulus Final stress (s,).  Gob height Poisson’s ratio
hardening ulus (E)). (Ep)- factor (n). (v).
gob-(5).

6 ... Linearelastic Young's Shear modulus  Gob heightfac- NAp ........ NAp.
gob-(6). modulus G). tor (n).

©).

NAp Not applicable.

NOTE.—For these 6 material models, there are no parameters 7 through 10.



NONLINEAR ENERGY CALCULATIONS IN MULSIM/NL

This section begins by briefly tracing the origins of
energy release rate (ERR) concepts applied to rock burst
control in the mines. Salamon (6) re-examined the theo-
retical basis of the ERR concept. The analytic results of
his work provide the basis for the nonlinear ERR cal-
culations in MULSIM/NL. The discussions summarize
Salamon’s (6) derivations and provide key details of the
FORTRAN implementation in MULSIM/NL.

EVOLUTION OF ENERGY RELEASE
RATE CONCEPTS

Cook (37) first noted the enormous energy changes that
result from underground mining and postulated "excess po-
tential energy causes the damage noticed as rock bursts."
Subsequent papers by Cook (4, 38) provided complete der-
ivations and discussions of what became the ERR concept.

When an excavation is created underground, an enor-
mous gravitational potential energy, W, source becomes
available and is given approximately by

Wep = 9, Vers (28)
where o, is the in situ vertical stress and V,, is the total
excavation volume. Immediately after excavation creation,
the excavation walls converge to some extent and a portion
of the available gravitational potential energy given by
equation 28 is transformed into work. This change in
gravitational potential energy, W, is

WG = UZ VC’ (29)
where V, is the excavation closure volume. Part of the
gravitational potential energy change given by equation 29
transforms into an increase in the strain energy storage,
Wj, of the rock mass surrounding the excavation. Cook
(4) showed that this strain energy storage necessarily has
the following bounds:
O < Wg=¥%Wg. (30)
Thus, creation and subsequent partial closure of an ex-
cavation results in a certain positive strain energy storage
increase in the rock mass that never exceeds one-half the
gravitational potential energy change.

Energy conservation requires that

Wg = Wg + Wg, (31)
where Wy is the energy release due to mining. Note,
that the energy release, Wy, is introduced to preserve

conservation. Considering equations 30 and 31, the follow-
ing additional inequality must also apply:
Wg < Wg < Wg. (32
In the special case of a linear elastic rock mass, then equa-
tions 30 and 32 become:
Stated semantically, upon creation of an underground ex-
cavation, the increase in strain energy storage in the
surrounding rock mass must equal the energy release iden-

tically, which in turn, equals exactly one-half the change in
gravitational potential energy. Cook (4) concluded

“"the energy release must either be in the form of
nonviolent dissipation in the course of crushing of
rock or supports, or in the form of violent events. In
the former case, the released energy is transformed
mainly into heat through friction, and in the latter
case, into kinetic energy. A portion of the violent
events is manifested as rock bursts."

Thus, the energy release may provide a quantitative
measure of the damage potential from rock bursts.

Associated with the energy release is the ERR defined
as the energy release per unit area mined. (Note that the
use of rate in ERR is unfortunate since there is no
relation to time involved.) The energy release is fixed by
the depth and size of excavation, and engineers have
relatively little control over its magnitude. However, the
ERR depends on the layout and extraction sequence for
an excavation, and engineers can exert considerable in-
fluence over its magnitude. Researchers in South Africa
have demonstrated a clear correlation between the number
and incidence of damaging rock bursts and the ERR (8-9,
39). Thus, the ERR provides an indicator to assess rock-
burst potential. By analogy, a similar correlation may exist
between ERR and the risk of coal mine bumps. When
evaluating mine layouts and extraction sequences with
ERR, the objective is to minimize the peak ERR. This
objective is achieved by keeping the ERR relatively con-
stant over an extraction sequence. In general, the most
uniform ERR results when extraction begins at the most
highly stressed areas and proceeds toward the low stress
areas.

Subsequent researchers continued to develop un-
derstanding of the energy changes due to mining. Walsh
(5) presented general theoretical relations describing
mining-induced energy changes. These included terms to



account for energy dissipation due to cracking in the rock
mass. Brady and Brown (39) provided practical mine de-
sign applications of BEM incorporating energy change cal-
culations. Finally, energy release concepts have been
included in rock mechanics text books (7).

RECENT ENERGY RELEASE RATE CONCEPTS

Recent theoretical work by Salamon (6) demonstrated
that certain ERR concepts require serious revision. In the
1960’s, Cook (4, 37-38) recognized that when an excavation
is created, half of the change in gravitational potential
energy (i.e., half the work done by the external body
forces) is stored as elastic strain energy in the rock mass.
Therefore, as seen in the prior derivations, to preserve
energy conservation, the other half of the gravitational
potential energy change is necessarily released.

These early researchers hypothesized that the released
energy was either dissipated nonviolently as fracturing and
other inelastic behavior in the rock mass, or it was trans-
formed into kinetic energy (i.., seismic energy). Some of
these kinetic or seismic events might, in turn, manifest
themselves as damaging rock bursts. The early derivations
of energy release assumed, erroneously, that opening crea-
tion occurs suddenly or in one large step.

Salamon’s recent theoretical findings dispel the notion
that the energy release serves as the source for kinetic,
seismic, and/or rock burst energy—it is not. Other sources
for seismic and rock burst energies are required. This ma-
jor revision in thinking concerning energy release, how-
ever, does not necessarily diminish its practical utility as an
indicator of rock burst and/or coal mine bump potential.

Salamon (6, 40) reconsidered the basic energy balance
for mining and, most important, considered the step-wise
nature of mining. Retaining Salamon’s notation, the fol-
lowing derivation captures the essence of his work. As
shown in figure 17, mining progresses from state I to state
II in small steps. The small mined-out volume of rock this
mining step is V), and the surface area of the new mined-
out area is Sy,. Work, W, is done on the system, as shown
by external forces acting on the system surface, and by
internal body forces acting within the system. Basic energy
conservation requires that this energy supply W is im-
mediately transformed into three energy sinks: strain
energy in the rock mass, strain energy in the opening sup-
ports and backfill, and energy dissipation. Stated sym-
bolically, energy conservation in going from state I to state
I is

W = AU + Wgp + Wy, (34

State 1 /S KEY
| J—— v Rock mass volume
Yu_ ~Swm Vor  Volume open in state I
Vot _[~Sor Vomr Volume open in state I
Vor FSer Vg1  Volume of backfill in state I
Ve Volume of backfill in state IT
'M Volume mined this step

S Rock mass boundary area

Sor  Surface area open in state I

Som Surface area open in state IL

Sg;  Surface area of backfill in state 1
Sen  Surface area of backfill in state IL
Sm Surface area mined this step

Figure 17.—Basic notation for energy calculations as mining
progresses from state | to state Il

where W = total work done on system,
AU = change in strain energy in rock mass
volume V,
Wgp = change in backfill and support strain
energy,
and Wy = total energy release going from state I

to state II.

The total strain energy in the rock mass in state I, U,, is

U; = U + Uy, 35
where U = total strain energy in rock mass volume
V outside the mined-out volume V),
and Uy = total strain energy in rock mass volume

V) mined-out this step.
The total strain energy in the rock mass in state II, U, is

(36)

where  Ug = induced strain energy in rock mass
volume V for this step.

UII =U + Uc,

The change in strain energy for this step is thus
AU=UII'UI=U+UC

- (U + Uy = Ug- Uy, @37



Substituting into equation 34, the energy balance becomes

W= UC - UM + WSP + WR' (38)
Solving for the energy release, this step yields
Wr = Uy + (W-Uc- Wep). (39

The energy release this step is comprised of the strain
energy released from the mined-out rock, U,,, and the
kinetic energy release, Wy, where

Wi = W-Ug- Wgp. (40)

Considering the stresses in the rock mass T, body forces
in the rock mass X, stresses in the backfill (gob) and sup-
ports R, and the associated displacements u, Salamon (6)
derived the following general expression for the energy
release at this step based on equation 39:

1 1
Wg = |:_2. J.SM Trupds - E_[VMXIuldV]

1 1
= A = -
N [ZISMT, uds + 2ISG“(1 a)ARAuds}(zll)

where Ty = rock mass stress in state I,
uyp = displacement in state I,

Au = change in displacement from state I to
state II,

AR = change in gob (backfill) stress from
state I to state II,

X; = body force in state I,
Sm = surface area mined this step,
Vum = volume mined this step,
Sgn = surface area of gob (backfill) in state II,

and a = nonlinearity factor for the gob or back-
fill where 0 < a.

Specifically, for linear materials, « = 1, and for strain-
hardening materials, o < 1.

An abbreviated derivation of this relation is pre-
sented in appendix A. As with the more generic energy

conservation relation given by equation 39, the first brack-
eted term is the strain energy release from the mined-out
rock, or Uy, and the second bracketed term is called the
kinetic energy release, or Wy. Two basic parts makeup
the kinetic part of the energy release namely, a linear part
and a nonlinear part. The linear part (i.e., the first term)
represents a change in gravitational potential from the
newly mined-out area. The nonlinear term accounts for an
energy release in the total gob and/or backfill area due to
the nonlinear stress-strain behavior of this material.
Figure 18 illustrates the significance of the nonlinearity
parameter a. Introduction of this parameter accounts for
material nonlinearity when calculating strain energy at the
point (R, u). For linear gob and/or backfill materials,
equals 1 and the nonlinear part of the kinetic energy re-
lease is zero. For materials with a less than 1, a certain
positive kinetic energy release occurs in the gob and/or
backfill. For materials with o between 1 and 2, a negative
kinetic energy release occurs in the gob and/or backfill;
however, such materials do not seem to occur in nature,
Again, Salamon (6) derived equation 41 on the basis of
a small mining step that excavates a certain volume of rock
(or coal) V,, over a mining area S,,. If the final excava-
tion geometry such as that shown in figure 17 state I, is
achieved in a single large mining step, then the concepts
advanced by Cook (4) apply and an energy release equal
to one-half the change in gravitational potential occurs as
per equation 33. Considering equation 41, Salamon (6)
proves analytically that for large mining steps, the first
term (the strain energy release from the mined-out rock)
is negligible compared with the second term (the kinetic
energy release). Therefore, for large mining steps with
linear elastic backfill and/or gob, equation 41 reduces to

1
= TyAud 42
Wr ZIS yAuds (42)

GOB STRESS (R)

Dl 5 <,
DISPLACEMENT (u)
O<ac<t

1<a<2

Strain energy = /2 a Ru

Figure 18.—Strain energy calculations for various linear and
nonlinear material behaviors showing how parameter « accounts
for degree of nonlinearity.



ie., the total energy release equals half the change in
gravitational potential again, in concurrence with Cook (4).

However, mining does not occur in giant steps, rather
it occurs in small steps that approach zero size at the limit.
In this case, Salamon (6) proves that the kinetic energy re-
lease tends to zero, and, therefore, the total energy release
is nothing more than the strain energy release from the
mined-out rock! This result is plainly visible if one con-
siders a weightless rock mass (X; = 0) and a linear elastic
gob and/or backfill (o = 1) in which case equation 41
reduces to

1 1
Wg = = [. Tpuds + 2 [ T,auds. (43
R ZJSM IuIS+2.[sM 12Re “3)

At the limit, as the mining step size approaches zero, Au
tends to zero, and equation 43 can be approximated by

1
Wy =~ EISM Tyuyds. (44)

Figure 19, modified from Salamon (40), illustrates the
step-size dependence of the energy release components,
namely strain energy release U, and kinetic energy release
Wy, that are normalized by the total energy release. For
this example, Figure 19 shows that the kinetic energy term
decays rapidly as the mining step sizes become smaller.
As the mining step size becomes small, the kinetic energy
release tends to zero, and the total energy release becomes
equal to the strain energy release from the mined-out ma-
terial. Thus, the kinetic energy release component of the
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Figure 19.—Step-size dependence of energy release compo-
nents for radial expansion of circular tunnel.

total energy release cannot serve as an energy source for
devastating rock bursts or coal bumps since that term dis-
appears with small step sizes. Note, however, that the
total energy release, Wy which is the sum of U,, and Wy,
remains constant and independent of mining step size! In
the limiting case of small step sizes, the energy release is
nothing more than the strain energy release from the rock
excavated during the current step. That strain energy is
dissipated completely as heat during the excavation process
and is, therefore, totally unavailable to drive rock bursts or
coal mine bumps as was originally postulated by Cook (4).

These insights into total energy release and the associ-
ated ERR do not diminish its utility as a practical indica-
tor of rock burst or coal mine bump potential. The old in-
terpretation of energy release made the supposition that
high total energy releases corresponded to high kinetic en-
ergy releases which, in turn, might drive rock bursts. As
was shown by Salamon (6), this is not true since in the
limit, the total energy release approaches the strain energy
release from the mined-out material. The correlation be-
tween energy release and rock bursts arises because rock
bursts are most frequently associated with highly stressed
rock. Mining out highly stressed rock must result in a
high strain energy release which, in turn, must equal a
high total energy release. Thus, the total energy release
merely serves as an indicator of the stress level in the
rocks mined-out this step. Higher energy releases cor-
relate to higher rock stress states which in turn correlate
to greater rock burst hazards.

PROGRAMMING ENERGY RELEASE
CALCULATIONS IN MULSIM/NL

The step-wise energy release equation (41 or A-17)
derived by Salamon (6) provides the basis for energy cal-
culations in MULSIM/NL. This section discusses the pro-
gramming of this relationship into a practical boundary-
element program. The discussion begins with an overview
of the intermediate stress-displacement files written by
MULSIM/NL. These files serve as the essential input to
subroutine ENERGY which performs all MULSIM/NL
energy calculations. These energy calculations proceed on
two different levels—local (i.e., for each element) and
global (ie., for the entire BEM). Subroutine ENERGY
then generates final output files from MULSIM/NL that
contain calculated stresses, displacements, and the local
energy quantities on an element-by-element basis. Last,
ENERGY reports global energy changes for the entire
model in accordance with equation 41 (i.e., total energy
release, strain energy release, and kinetic energy release
for each mining step).

Implementation of equation 41 is not as straightforward
as it seems. Three different cases can arise that com-
plicate the programming logic. These cases are discussed



in relation to a flowchart diagramming the energy calcu-
lations in MULSIM/NL.

Equation 41 is repeated below as 45 for more direct
reference.

1 1
Wgr = | =], Tyupds - =] Xju;d
R [2_[5 puras 2.[VM 1Y V]
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where T; = rock mass stress in state I,
u; = displacement in state I,
Au = change in displacement from state I to
state 11,
AR = change in gob (backfill) stress from
state I to state II,
X; = body force in state I,
Sy = surface area mined this step,
Vy = volume mined this step,
Sgn = surface area of gob (backfill) in state II,
and a = anonlinearity factor for the gob and/or

backfill (for linear materials, & = 1,
and for strain-hardening materials,
a<1).

The first two terms comprise the strain energy release
from the mined-out material. The second term, reflecting
the body forces, is always small relative to the first and is
neglected in all subsequent calculations. As discussed
earlier, the third and fourth terms are called the linear and
nonlinear components of the kinetic energy release. To-
gether, the strain energy release and the kinetic energy
release form the total energy release.

Intermediate Stress-Displacement Files

To evaluate equation 45, stresses and displacements are
required from MULSIM/NL for each coarse-mesh block
and fine-mesh clement, and for every mining step in
the sequence. As developed in the previous section,
MULSIM/NL calculates each prescribed mining step using
a variety of nonlinear stress-strain models for the in-
place coal and/or vein material and the gob and/or

backfill material left in the wake of mining. Upon com-
pletion of each mining step, MULSIM/NL writes the
stress-displacement results to intermediate files. Each
seam requires a coarse-mesh and a fine-mesh data file;
thus, two stress-displacement data files are written for
each seam. These files contain the block and/or element
centroidal coordinates, the material property code, three
components of calculated stresses, and three displacement
components. These files provide a convenient way to ac-
cess stresses and displacements for the current mining step
and the previous mining step.

Local Energy Calculations

Subroutine ENERGY enters its main loops and con-
siders each block and element in the model. For each
block and/or element, six local energy quantities are
computed as follows:

(1) Strain energy release.
(2) Kinetic energy release.
Linear part (gravitational).
Nonlinear part (backfill and/or gob).
(3) Total energy release.
(4) Total strain energy.
(5) Recoverable strain energy.
(6) Dissipated strain energy.

The first three quantities are found by applying equa-
tion 45 on an elemental basis. For those elements within
the mined-out area this step, S,,, ENERGY calculates %
T, u; (the strain energy release from the mined-out mate-
rial for a linear element) and ¥ T, Au (the linear part of
the kinetic energy release for that element). For those
elements within the area Sg, i.e., the current backfill
and/or gob area, ENERGY evaluates ¥ (1-a) AR Au
(the nonlinear part of the kinetic energy release). Next,
the total energy release for that element is computed.
Normally, this quantity is, either the sum of ¥ T, u, plus ¥
T, Au if the element is within S, or just % (1-a) AR Ap
if the element is within Sg;;. Sometimes the total energy
release for that element is the sum of all three of these
quantities for the special case of an element within both
Sy and Sgy.

The last three strain energy quantities are calculated
over each unmined (nongob and/or backfill) element in
the model. These energy quantities, especially the recover-
able strain energy, may provide a very useful indicator of
potentially dangerous highly stressed areas. Moreover, the
procedure for calculating recoverable strain energy pro-
vides a basis for modifying equation 45 to account for
strain energy release from nonlinear materials in the
mined-out area S,,.




As shown in appendix A, which summarizes Salamon’s
work (6), the strain energy release for the mined-out
material (equation A-6) assumes linear stress-strain be-
havior. The modified strain energy release calculations in
subroutine ENERGY account for certain nonlinear stress-
strain behaviors. Figure 20 shows the linear and nonlinear
material models available in MULSIM/NL for the un-
mined seam material (coal or rock) and the assumed
strain energy relationships. On loading to a point (T,u),
each material requires a total strain energy input equal to
the total area under the given stress-strain curve up to that
point. Upon unloading, the modified strain energy release
calculations assume that the unloading modulus equals the
initial loading modulus. Thus, for nonlinear materials, the
strain energy release from the mined-out material must
equal the "recoverable strain energy" depicted in figure 20.
The difference between the total and recoverable strain
energy is the "dissipated strain energy" which is energy
presumed to dissipate nonviolently through cracking and
pseudoplastic flow of the material. As can be seen in fig-
ure 20, the dissipated strain energy is zero for the linear
material model, and the total strain energy equals the re-
coverable strain energy; hence, the strain energy release.

In summary, the strain energy release component of
equation 45 is modified as shown in figure 20 to account
for nonlinear (dissipative) behavior in the material mined-
out this step over the area S,,. In MULSIM/NL energy
calculations, the recoverable strain energy calculated as
shown in figure 20 replaces the strain energy release term
of equation 45.

Finally, subroutine energy writes the final output files
for MULSIM/NL. For each block and/or element, these
files contain block and/or element centroidal coordinates,
the material property code, three stress components, three
displacement components, and the following six energy
quantities for the block and/or element: total strain en-
ergy, recoverable strain energy, dissipated strain energy,

KEY
R Dissipated strain energy
E= Recoverable strain energy

~— STRESS (o) -~

DISPLACEMENT (y) —
Strain softening Elastic plastic

Linear elastic

Figure 20.—Basic strain energy relationships for linear and
nonlinear material models in MULSIM/NL that apply to unmined
seam material (either coal or rock). (T, u} is stress-displacement
state of element.

strain energy release, kinetic energy release, and total
energy release. The three energy release quantities for
the block and/or element may be nonzero over the area
mined this step (S,,) and the total backfill and/or gob area
(Sgn); whereas, the strain energy quantities may be non-
zero only in areas outside of S, and Sg;.

Global Energy Calculations

As subroutine ENERGY proceeds through the local el-
emental energy calculations, it also performs summations
of the elemental energy releases that, in effect, approxi-
mate the integrations prescribed in equation 45. The
strain energy release is the summation over the mined-out
area this step (Sy) of the elemental recoverable strain
energy. The prior section discusses this minor modifica-
tion from strict adherence to equation 45. The linear
component of the kinetic energy release is the summation
over S of the elemental change in gravitational potential
energy. The nonlinear component of the kinetic energy
release is the summation over the total backfill and/or gob
area (Sg,) of energy dissipation due to material nonlinear-
ity. The total kinetic energy release is simply the sum of
the linear and nonlinear components, and finally, the total
energy release is the sum of the strain energy and kinetic
energy releases. Upon exiting ENERGY, the aforemen-
tioned energy release summations are written to a print
file. For each mining step, this file contains the different
energy release components for the coarse-mesh blocks, the
fine-mesh elements, and their total. Finally, these energy
release quantities are normalized by the area mined this
step (area S,) to obtain the corresponding energy release
rates.

Three Special Cases

Earlier discussions alluded to certain special cases that
can arise which complicate the programming of equa-
tion 45. Figure 21 shows the three possible cases as min-
ing progresses from state I to state II. In case A, the new-
ly mined-out area Sy, exactly balances the newly backfilled
area AS;, and the open area in state I equals the open
area in state II. In case B, the backfilling lags the mining
and the open area increases, whereas in case C, the back-
filling exceeds the mining and the open area decreases.
Also, as shown in figure 21, individual elements can un-
dergo several types of changes as mining progresses in a
step from state I to state II.

In the simplest case A, four types of change exist.
Those elements in region 1 are unmined in state I and re-
main unmined in state II. Total strain energy, recoverable
strain energy, and dissipated strain energy are computed
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Figure 21.—Three special cases of mining progress from state | to state Il showing how elements
can undergo six different status changes between state | and state II.

and recorded for type 1 elements with the methods shown
in figure 20. Elements in region 2 are mined out in going
from state I to state II. As discussed earlier, strain energy
release for these elements is computed as the recoverable
strain energy shown in figure 20. This method for nonlin-
ear materials replaces the first term in equation 45 where
the strain energy release from a linear element is com-
puted as % T; u,. In addition, elements in region 2 also
contribute a linear component of the kinetic energy release
given as ¥ T; Au. Together, the strain energy release and
linear kinetic energy release comprise the total energy
release for the element. These three energy releases are
recorded for the element, and the energy release summa-
tions for this model step are updated. Elements in
regions 3 and 4 begin as open or backfilled, respectively,
in state I and change to, or remain, backfilled in state II.
For these elements, a nonlinear component of the kinetic

energy release is calculated as % (1-a) AR Au. (The only
difference between regions 3 and 4 is the state I stress,
which is zero in region 3 and nonzero in 4.) In these ele-
ments, the nonlinear kinetic energy release makes up the
whole of the total energy release. These two energy re-
leases are recorded for the element, and the energy re-
lease summations for the model are updated.

Case B in figure 21 illustrates the first exception. As
before, case B has elements in regions 1 through 4; how-
ever, when the backfilling lags the mining, a region (5)
exists with elements that were mined-out and open in
state I and remained so in state II. Such elements contrib-
ute zero energy to the energy release and contain no strain
energy. Therefore, such elements require no computations
that is easily accommodated in the program!

Finally, case C in figure 21 shows the other exception,
which arises when backfilling exceeds the mining. In this



case, elements in region 6 exist which have gone from un-
mined coal to backfill (gob) in one step without remaining
open during an intermediate step. Such elements belong
to both the set Sy, and S;;;. For these elements, the strain
energy release is computed as the recoverable strain ener-
gy; the linear component of the kinetic energy release is
computed as ¥ T; Au, and the nonlinear component of the
kinetic energy release is computed ¥ AR Au. The total
energy release for these special elements is the sum of
these three parts. The strain energy release, total kinet-
ic energy release, and total energy release are recorded

DO ALL ELEMENTS

Type 1 element
compute strain
Yes | energies

Element Type

for the element, and all energy release summations are
updated.

Subroutine Energy Logic Diagram

The three special cases just discussed give rise to six
element classes or types which require separate considera-
tion during the energy calculations. The logic diagram
shown in figure 22 reflects these six logic paths and pro-
vides the essence of subroutine ENERGY.
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Figure 22—Simplified flowchart for subroutine ENERGY showing six possible logic paths.



MULSIM/NL PROGRAM CHECKS AND BEHAVIOR

This section provides checks on the accuracy of the
stress and displacement calculations conducted by
MULSIM/NL and illustrates certain behavioral aspects of
the model. The first check compares the lincar stress-
displacement calculations of MULSIM/NL with known
analytic solutions. Simultaneously, these calculations also
examine rigid boundary effects. The presence of com-
pletely rigid material outside the problem grid can have a
severe impact on the quality of numerical results. Another
series of MULSIM/NL models examines element size ef-
fects on the numerical reliability of the stress-displacement
calculations. Finally, the last study examines the new non-
linear material models in MULSIM/NL. While it is not
possible to check the accuracy of the nonlinear models
against an exact solution, certain qualitative behavioral
checks are feasible. The intent of all these checks is to
provide some essential quality control on this complicated
numerical model.

SOME SIMPLE ANALYTIC SOLUTIONS

Jaeger and Cook (4) provide certain analytic solutions
essential for checking BEM programs. The solutions are
for an elliptic crack of width 2c subject to a stress P
perpendicular to this crack plane. Figure 23 shows this
two-dimensional crack problem. In more practical terms,
this problem corresponds to an infinitely long slot of width
2c in an infinite medium, i.e., a longwall panel of width 2¢
and infinite length. The vertical stress distribution along
the edge of this opening is given by

oy = P coth(e), (46)

where e = cosh? (x/c).
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Figure 23.—Elliptic crack of width 2¢ subject to stress P per-
pendicular to crack plane.

This equation applies along the x axis for x/c > 1. Nor-
mal convergence across this opening is given by

Ve L0 p iy, @

which applies across the region -1 < x/c < +1. These re-
lationships provide important checks on the accuracy of
MULSIM/NL. The need for this checking arises because
of the radical changes to the equation solver in MULSIM/
NL brought about by the addition of nonlinear material
models.

RIGID BOUNDARY EFFECTS

Figure 24 shows the first simple problem geometry
studied with MULSIM/NL which is an infinitely long pla-
nar opening of width 2c. The objective of these initial
studies is to compare the accuracy of MULSIM/NL with
known linear elastic solutions and to illustrate rigid
boundary effects on the computed stresses and displace-
ments. Analytic solutions presented in the previous sec-
tion give computed stresses and displacements along the
symmetry line of the meshes shown in figure 24.

Rigid boundary effects arise in BEM because the in-
seam material outside the defined mesh is infinitely stiff or
rigid. The presence of rigid material just outside the de-
fined mesh can affect stress and displacement calculations
in elements near the mesh boundary. Sinha (2) considered
this rigid boundary when designing the original linear
MULSIM program. In MULSIM, a coarse-mesh sur-
rounds a central fine mesh which is the area where ac-
curate stress and displacement calculations are desired.
The coarse mesh improves the accuracy of numerical
calculations within the fine mesh by pushing the rigid
boundary far away from it. The following studies will
illustrate these rigid boundary effects on the BEM calcula-
tions and suggest some guidelines for minimizing their
effects in practical modeling.

The numerical model used has a central fine-mesh area
4 blocks by 12 (i.e., 20 fine-mesh elements by 60). As
shown in figure 24, three different coarse-mesh sizes are
considered: a small coarse mesh 20 by 10; a middle mesh
20 by 20, and a large mesh 20 by 30. In addition, three
different block sizes are used in the model; namely, 6.25,
25, and 100 m that have corresponding element sizes of
1.25, 5.0, and 20 m. Varying the block and/or element
size also changes the opening width 2c from 25 to 100 m



and then to 400 m. All models are subject to a vertical
stress of 7 MPa and use a Young’s modulus of 3,450 MPa
and a Poisson’s ratio of 0.25.

Figure 25 shows computed and analytic displacements
(i.e., convergence) across an opening width 2c of 100 m.
Going from the small coarse-mesh (20 by 10 blocks) to the
middle-size coarse-mesh (20 by 20) gives a marked im-
provement to the accuracy of the numerical computations.
Going from the middle mesh size to the large size (20 by
30 blocks) does not result in significant improvement. As
shown in figure 25, numerical displacement calculations
agree with the analytic to within 5%. The discrepancies
are attributed to normal discretization and truncation
errors and do not suggest any programming error.

Figure 26 shows computed and analytic stresses away
from the edge of the 100-m opening, For all different
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Figure 24.—MULSIM/NL models for rigid boundary effect
studies of infinitely long planar crack of width 2c.

coarse-mesh sizes, the agreement with analytic appears
acceptable. Coarse-mesh size does have a marked effect
on the peak edge stress which increases from 22.5 to
25 MPa (or 10%) as coarse mesh size increases.

Figures 25 and 26 illustrate numerical accuracy and
rigid boundary effects for a simple MULSIM/NL analysis
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Figure 25.—-Computed and analytic displacements across
100-m opening with different coarse-mesh sizes.
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Figure 26.—Computed and analytic stresses at edge of 100-m
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Figure 27.—Comparison of computed and analytic stresses and displacements illustrating rigid boundary effects.

of a 100-m-wide opening. Appendix B shows similar fig-
ures for the 25- and 400-m openings. Again, numerical
computations agree with analytic solutions, and the com-
putations show similar rigid boundary effects.

Finally, figure 27 compares numerical calculations with
a middle-size coarse mesh to the analytic solutions for the
25-, 100-, and 400-m openings. With the displacement cal-
culations, the magnitude of the peak displacement and the
shape of the displacement profile scales with increased
opening width. However, with the stress calculations, the
magnitude of the peak stress increases slightly and only the
shape of the stress profile scales with opening width. In
all cases, agreement with the analytic solution appears
adequate.

Several interacting factors affect the peak stress mag-
nitudes shown in figure 27. Intuitively, the peak stress and
the stress profile should increase with opening width, and
indeed consideration of the analytic solution given by
equation 46 shows that it does. Block and element size

can also have a significant effect on peak stress computa-
tion. Smaller blocks and elements approximate actual
stress profiles more accurately, and, therefore, models with
smaller blocks and elements should have higher peak
stresses at opening edges. However, figure 27 exhibits just
the opposite trend, with peak stresses increasing slightly as
block and/or element and opening size increase. The
seeming discrepancy is a rigid boundary effect. The mod-
els made with smaller block and/or element and opening
widths are also smaller in overall dimensions; hence, the
rigid boundary is physically closer to the region of interest.
Again, presence of the rigid boundary tends to decrease
the magnitude of peak stresses and displacements in
elements too close to that boundary.

There are no strict guidelines that one can apply to
eliminate rigid boundary effects from BEM computations.
The magnitude of these effects depends on the specific
problem geometry under consideration. The simple prob-
lem shown here, coupled with experience, suggests that the



model edge must be about 10 block widths away from a
region of interest. Alternatively, the coarse mesh should
extend for 10 blocks beyond the fine mesh to minimize
rigid boundary effects everywhere within the fine mesh.

ELEMENT SIZE EFFECTS

As alluded to in the prior section, element size impacts
the numerical accuracy of BEM programs, particularly
near openings where stresses tend to become large at a
very fast rate. This section will examine element size ef-
fects systematically and show the effect element size can
have on the accuracy of stress and displacement calcu-
lations with MULSIM/NL. Figure 28 shows the model
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Figure 28.—-MULSIM/NL models for element size effect stud-
les.

geometries used in these studies. As in the rigid boundary
effects studies, this section considers an infinitely long
planar opening of width 2c. The coarse-mesh size is 20 by
20 blocks with a central fine-mesh 4 blocks by 12 (ie.,
20 elements by 60). The models examine three different
opening widths (25, 100, and 400 m) with block (element)
sizes of 6.25 (1.25), 12.5 (2.5), 25 (5), 50 (10), and 100
(20) m.

Figure 29 shows displacement profiles across a 100-m
opening modeled with 12.5-, 25-, and 50-m blocks (2.5-, 5-,
and 10-m elements). Normally, accuracy improves with
decreasing block size; however, once again, rigid boundary
effects enter the problem and produce the opposite effect.
Close examination of the 100-m-opening model geometries
in figure 28 shows why rigid boundary effects will impact
the 12.5-m-block model more than the 50-m-block model.
The latter case approximates a two-dimensional problem
more closely with the analytic displacement solution given
by equation 47, whereas the former requires a true three-
dimensional solution.

The stress profiles away from the opening edge do show
the expected trend, that is smaller block sizes capture high
peak edge stresses more accurately. Indeed, figure 30
shows that the peak edge stress increases dramatically as
block size decreases. (Appendix C shows additional stress
and displacement comparisons for 25- and 400-m- opening
widths. Similar observations are noted for those numerical
experiments.)

Figure 31 compares stress and displacement calculations
made with different element sizes for different opening
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Figure 29.—Computed and analytic displacements across
100-m opening with different block and element sizes.



widths. For these models, stresses agree to within about
5% of analytic. Displacements can also show reasonable
agreement with analytic (within 5%) depending on how
well the two-dimensional solution approximates the model.

The important point of this exercise is that the choice
of element size can have a profound effect on stress dis-
placement calculations. Figures 29 and 30 show that near
an opening boundary, the element size can affect displace-
ment calculations by over 30%, stress calculations by al-
most 50%. The choice of element size also impacts the
rigid boundary effect. In fact, the two are inseparable.
Smaller element sizes which tend to improve the accuracy
of stress and displacement calculations also tend to show
deleterious rigid boundary effects because of the smaller
model size. In summary, because of these somewhat fickle
element size and rigid boundary effects on stresses and
displacements computed with MULSIM/NL, caution is re-
quired in all comparisons especially when different ele-
ment sizes and different model geometries are involved.
Again, as shown in figures 29 and 30, large differences can
arise that may be artificial.
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NONLINEAR EFFECTS

Figure 32 shows the model geometry used to illustrate
the qualitative behavior of the nonlinear material models
in MULSIM/NL. Again, the problem considered is an in-
finitely long, planar opening of width 2c. The model uses
a 30- by 40-block coarse-mesh with a central fine mesh
measuring 4 by 20 blocks (20 by 100 elements). Opening
width increases from 50 to 100 m and then to 200 m. Two
different material property sets are compared. The first
set is completely linear. Young’s modulus for the rock
mass and the seam is set to 3,450 MPa. The second set
includes the linear elastic properties of the first and also
introduces strain-hardening and strain-softening elements.
For the hardening elements placed in the mined-out area,
initial modulus is 28 MPa and final modulus is 140 MPa at
a stress of 7 MPa. Table 2 gives the four types of soft-
ening elements used by the second set. The first type is
used in the first row of elements adjacent to the opening;
the second type in the second row and so forth.

Table 2.—Strain-softening properties used In nonlinear models

Peak Residual
Type Stress, Strain Stress, Strain
MPa MPa
) N 6.90 0.0020 275 0.0033
2 ..., 13.80 0040 6.90 .0080
3...... 2415 .0070 20.70 .0120
4 ...... 34.50 .0100 34.50 .1000

Finally, figure 33 compares calculated stresses and dis-
placements using the strictly linear material property set
with the nonlinear set. Using strain-softening elements
along the opening edge decreases the peak edge stress
dramatically. The magnitude of the peak stress tends to
increase with opening width as expected. The increase is
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Figure 32.—MULSIM/NL models for nonlinear effect studies.

significant (about 40%) for the linear model and somewhat
less (about 25%) for the nonlinear model. Presence of the
hardening elements causes the mined-out area to increase
its stress level; however in this case, the stress levels are
still much less than the in situ vertical stress of 7 MPa.
Hardening clements also cause the vertical displace-
ment to decrease (up to 25%) in the mined-out area as
expected.

In summary, while exact checks are not readily possible
on the nonlinear capabilities of MULSIM/NL, the model
does behave as expected when these nonlinearities are
utilized. Stress profiles in the strain-softening areas re-
flect the strain-softening material input parameters. Cal-
culated stresses and displacements for an element always
lie on or near the prescribed nonlinear stress-strain curve
of that element. These validation checks, while far from
exhaustive, lend strong credibility to the correctness of
MULSIM/NL, both in concept and in programming.

SUBROUTINE ENERGY CHECKS AND BEHAVIOR

This section examines the energy subroutine in
- MULSIM/NL with three different test sets. The purpose
of these tests is to validate the energy calculations and to
examine the many factors affecting them. The first tests
enable a rigorous comparison between MULSIM/NL en-
ergy calculations and the known analytic solution to a very
simple problem. The second tests study the influence of

mining step size on the relative proportion of energy
components comprising the total energy release. Finally,
the last tests examine quantitatively the effect of certain
key geometric and material property values on the total
energy release and its components. These final tests are
a simple parametric study of the energy release.
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Figure 33.—Comparison of computed stresses and displacements using linear and nonlinear material properties.

ANALYTIC CHECKS ON ENERGY
RELEASE CALCULATIONS

The same problem shown in figure 23 also provides
analytic checks on the accuracy and reliability of the
energy release rate implementation in MULSIM/NL.
Analytic energy release rate expressions exist for a thin,
two-dimensional crack of width 2¢ subject to a farfield
stress P perpendicular to the crack plane. For the two-
dimensional crack plane shown in figure 23, equation 47
gives the convergence across the opening as a function of
position, modulus, and farfield stress. As the opening
width (W=2c) increases, a critical width W_ is attained at
which the convergence just equals the opening thickness.
Solving equation 47 for this critical width gives:

HE
We = —no—, (48)

2(1-%)P
where H

crack or scam thickness,

Young’s modulus,

<
1l

Poisson’s ratio,
and P = farfield stress perpendicular to plane.

Brady and Brown (7) provide the required energy release
rate expressions for the two-dimensional crack shown in
figure 23 which approximates thin tabular excavations such
as longwall panels. For a panel width less than critical
(W < W_), the energy release rate is

)
Wy = "‘—(121::/ )p2w . (49)

For a panel width greater than critical (W > W_), the
energy release rate approaches the following value
asymptotically:

Wg = HP. (50)
Equation 50 shows that, well beyond a certain critical

width, this mining geometry can approach steady-state
conditions and achieve a uniform energy release rate.



Figure 34 shows the coarse-mesh grid used to simu-
late extension of a two-dimensional crack plane with
MULSIM/NL. In this model, the crack width extends
from 50 to 500 m in 10 equal 50-m steps. Figure 34 shows
just a few of these steps for clarity. Since the crack length
always exceeds the crack width by a factor of 3 or more,
the three-dimensional numerical model approximates the
two-dimensional analytic solution for the energy release
rate. Both the analytic solutions and the numerical model
use the following input parameters:

Young’s modulus - 3,750 MPa
Poisson’s ratio - 0.25

Farfield stress - 10 MPa
Thickness - 1 m.

Figure 35 compares the ERR calculated numerical-
ly with MULSIM/NL to those determined analytically.
Equation 48 gives a critical opening width of 200 m. For
widths less than critical, the ERR calculated with equation
49 increases linearly to about 8 MJ/m?2 For widths great-
er than 200 m, the ERR approaches an asymptote of
10 MJ/m2  As shown in figure 35, the 10-step numerical
ERR agree reasonably well with the analytic values. The
numerical values fall short of the analytic by about 10%.
These discrepancies are attributed to end effects. The
two-dimensional analytic solutions apply to an opening of
width W and infinite length, whereas the three-dimensional
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Figure 34.—MULSIM/NL grid for widening-crack problem.

numerical models have a finite length. Calculated dis-
placement profiles at the ends of the opening are some-
what lower than those in the middle; hence, ERR are also
somewhat low. The agreement between the numerical and
analytic results provides good evidence that the energy
calculations in MULSIM/NL function properly. In addi-
tion, this test also serves to confirm the accuracy of the
stress and displacement calculations within MULSIM/ NL,
since these calculations must be correct in order for the
subsequent energy calculations to be correct.

STEP-SIZE EFFECT TESTS

As discussed in a prior section, the total energy release
is composed of a kinetic energy release component and a
strain energy release component. Salamon (6, 40) showed
theoretically that the relative proportion between these two
components depends on the mining step size. When using
smaller mining areas per step to achieve a given state (i.c.,
using more mining steps to reach a given excavation geom-
etry), the relative proportion between kinetic and strain
energy release changes, although the total energy release
remains constant. In the limit, as the mined areas per step
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Figure 35.—Comparison of analytic and numerical energy
release rates for widening-crack problem.




approaches zero (i.e., the number of mining steps used to
create an excavation becomes a continuum), the kinetic
energy release component becomes zero, while the strain
energy release component approaches the total energy
release.

The step-size effect tests seek to observe the theoretical
energy release relationships with numerical experiments
using MULSIM/NL. Figure 36 shows the four meshes
used for the experiments. In each of these tests, an
800-m-wide opening is created with an increasing number
of effective mining steps; since, in each case, the number
of actual mining steps is always just two. The size of this
second step decreases such that its size is the same size as
the last step of an actual 4-, 8-, then 16-step model.

Figure 37 plots the kinetic and strain ERR normal-
ized to the total energy release rate versus the number of
steps used to excavate the opening. The figure shows ana-
Iytic derivations by Salamon (40) for the excavation of a
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Figure 36.—Four MULSIM/NL grids for step-size effect tests.

spherical cavity. When that cavity is created in a single
step, half the total energy release rate comes from the ki-
netic component and the other half derives from the strain
energy component. Increasing the number of steps used
to create the spherical cavity causes the strain ERR to
dominate the total ERR, while the kinetic ERR tends to
zero. Again, the total ERR remains constant.

Figure 37 also shows the numerical calculations with
MULSIM/NL for the excavation of an 800-m-wide tabular
opening. In this example, the kinetic ERR dominates the
total ERR. For practical purposes, the strain ERR is neg-
ligible. However, the same underlying trend still exists
such that increasing the number of mining steps used to
create an excavation causes the kinetic ERR component to
decrease relative to the strain ERR component, while the
total ERR remains constant.

NONLINEAR EFFECTS ON ENERGY
CALCULATIONS

The ERR derivations showed that total ERR is com-
prised of a strain ERR component and a kinetic ERR
component, which, in turn, is composed of a linear and a
nonlinear part. The following studies examine these three
components to discern what factors affect their relative
magnitude, hence, relative importance in the total ERR.
These parametric studies examine, systematically, the fol-
lowing important factors using several different small
MULSIM/NL models:

(1) The size of the open area relative to the total
backfill area in the model.

(2) The amount of open area in the whole model
which must either increase, decrease, or remain constant
between mining steps.

(3) The average stiffness of the backfill material.

(4) The degree of nonlinearity of the backfill material.
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Figure 38 shows the five, three-step MULSIM/NL grids
used for these studies. The first three meshes have a
constant open area that moves in steps across the grid.
These three meshes examine final ratios between open
area and backfill (gob) area of 0.05 (small), 0.10 (middle)
and 0.33 (large). The last three meshes vary the amount
of open area between steps two and three. In the large,
constant area test, of course, that open area amount
remains constant. In one mesh, that area decreases, and
in the other, it increases.

These models compare two basic materials for the
backfill. The first is simple linear elastic, with a 70-MPa
modulus. The second is strain hardening with a 7-MPa
initial modulus and a 560-MPa final modulus at 7 MPa
stress. Figure 39 shows the stress-strain curves for the
linear and nonlinear backfill materials used in these mod-
els. The figure shows typical values only; however, during
these studies, numerous other linear and nonlinear mate-
rial parameters received consideration.

Figures 40 and 41 show the computed total ERR and
its three components (linear kinetic, nonlinear kinetic, and
strain energy release rate) for the five models shown in
figure 38. The calculations in figure 40 use the linear
backfill propertics whereas those in figure 41 use the

nonlinear strain-hardening model.

Figure 38.—Five different three-step MULSIM/NL models used to study constant, decreasing, and increasing area effects on total
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Figure 39.—Linear and nonlinear stress-strain curves for back-
fill material used in model studies.
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material. Note: graph A + graph B + graph C = graph D,

The constant open area numerical experiments (i.c., the
first three models in figure 38) suggest the following
observations:

(1) The linear kinetic ERR and the strain ERR ap-
pear to vary approximately as the square of the open area
to backfill area ratio for both the linear and nonlinear
backfill models.

(2) Thelinear kinetic ERR dominates the strain ERR
by an order of magnitude or more. However, neglecting
the strain ERR is not recommended, since it can become

significant with low open-area-to-backfill and/or gob-area
ratios. Such low ratios are perhaps more typical of prac-
tical MULSIM/NL modeling.

(3) The nonlinear kinetic ERR may vary inversely as
the area ratio. Large backfill or gob areas may contrib-
ute a nonlinear kinetic ERR component that actually ex-
ceeds the linear kinetic ERR. Again, small open-area-to-
backfill-area ratios (i.e., large backfill and/or gob areas
relative to the open area) probably characterize practical
mining situations better than the large area ratios. Thus,
until further studies dictate otherwise, the nonlinear kinetic
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material. Note: graph A + graph B + graph C = graph D.

ERR and the strain ERR should be retained in total ERR  varying the modulus in the linear backfill from 50 to

calculations.

(4) Alternatively, there is a possibility that the above
trends which are credited to the open-area-to-backfill-area
ratio may be due to a larger overall backfill area. This
possibility requires further study.

(5 Additional MULSIM/NL tests not supported by
tables and figures suggested that increasing the modulus of
the backfill (final modulus for the nonlinear tests with the
strain-hardening backfill model), causes the linear kinetic
ERR and the total ERR to decrease. The relative magni-
tude of the ERR decrease depends on the open-area-to-
backfill-area ratio. The small ratio models had larger
relative decreases in ERR. In these example problems,

150 MPa caused a 25% decrease in ERR for the small
area ratio model and a 10% decrease from the large area
ratio model. Varying the final modulus in the nonlinear
strain-hardening backfill from 140 to 560 MPa caused 15%
and 10% ERR decreases for the small and large area ra-
tios. Present measurements of the stress-strain behavior
of gob limit the reliability of gob modulus estimates to an
order of magnitude only. Such poor reliability in gob
modulus estimates adversely impacts ERR estimates.
Thus, research studies on the stress-strain behavior of gob
material may substantially improve the quality of ERR
calculations.



(6) Changing the modulus of the backfill and/or gob,
whether linear or nonlinear, had no perceptible effect on
the strain ERR values. In all cases considered, the strain
ERR component of the total ERR remained negligible.

The changing open area tests (i.e., the last three models
in figure 38) led to many observations similar to those of
the constant area tests. However, the strain ERR and the
nonlinear kinetic ERR are negligible in the total ERR due
to the large open area to backfill and/or gob area ratio in
these models. Increasing the modulus of the backfill (gob)
always tends to decrease the total ERR and its dominant

component, the linear kinetic ERR. Also, changes in
backfill modulus or its degree of nonlinearity has an
almost negligible effect on the calculated strain ERR.

In addition to the prior observations, the changing area
tests suggest that decreasing the open area between mining
steps (causing the backfilling or gob formation activities to
accelerate) has little effect on the total ERR. Conversely,
increasing the open area between steps (allowing the back-
filling or gob formation activities to lag) causes the total
ERR to increase. In this example, that increase is on the
order of 10%. Such an increase may suggest greater burst
and/or bump potential.

SUMMARY AND RECOMMENDATIONS

SUMMARY

MULSIM/NL is a new Bureau boundary-element-
method program for stress analysis of coal mines and thin
metalliferous veins. This Information Circular provides
certain theoretical documentation on that program. Ac-
cordingly, its intended audience is those engineers and
programmers who need to understand the FORTRAN
program fully, or who need to alter and enhance it.

MULSIM/NL is a three-dimensional boundary-
element-method (BEM) program capable of performing
stress analyses of planar structures in coal seams or thin
veins. It can analyze one to four parallel seams that can
have any orientation with respect to the Earth’s surface.
Topographic or free surface effects are neglected; there-
fore, the seam depth should exceed the modeling block
width by a factor of 3 or more. MULSIM/NL utilizes a
coarse-mesh grid of blocks to approximate the larger
model bounds and a fine-mesh grid of elements embedded
within the coarse mesh to provide greater numerical detail
within a region of interest. The allowable coarse-mesh
block array size is 40 by 40. Up to a 20 by 20 array of
these blocks may be subdivided into a 100 by 100 array of
fine-mesh elements.

Three main new features distinguish MULSIM/NL
from its predecessors MULSIM (2) and MULSIM/BM
(3), namely: (1) nonlinear material models, (2) multiple
mining steps, and (3) comprehensive energy release and
strain energy computations. MULSIM/NL now has six
material models for the in-seam material from which to
choose: (1) linear elastic for coal, (2) strain softening,
(3) elastic plastic, (4) bilinear hardening, (5) strain hard-
ening, and (6) linear elastic for gob. The first three mod-
els are intended for the in-place coal or vein material

prior to mining, whereas the latter three models are in-
tended for the gob or backfill material left in the wake of
full extraction mining. The strain-hardening model for
gob and/or backfill material derived and implemented as
part of this research may be a unique addition to the
variety of material models available in mining-oriented
BEM programs.

Unlike its predecessors, MULSIM/NL uses a total
stress approach when solving the basic BEM system of
equations. Such radical changes in the equation-solving
procedure, plus the addition of the six nonlinear material
models, necessitated detailed checks on the MULSIM/NL
stress and displacement calculations. Numerical stress and
displacement calculations compare reasonably well to
known analytic solutions for simple problems. MULSIM/
NL models exhibit rigid boundary and element size effects.
Until studies with a particular model dictate otherwise,
having at least 10 coarse-mesh blocks beyond the fine-
mesh boundary will usually keep the rigid boundary out-
side the model far enough away and lead to good quality
calculations in the fine mesh. Smaller element sizes tend
to improve the accuracy of stress and displacement cal-
culations; however, they can also lead to deleterious rigid
boundary effects because of the smaller model size. Exact
checks on the nonlinear material models are not feasible;
however, stresses and displacements calculated with these
models behave qualitatively as expected.

The second distinguishing feature of MULSIM/NL is
the multiple mining step capability which enables simu-
lation of the various stages of mine development. This
feature allows the user to calculate stress and displace-
ment changes as the mine development advances. These
changes are much more directly comparable with field
measurement programs that typically measure stress and



displacement (convergence) changes as opposed to total or
absolute stresses and displacements,

The energy calculations constitute the last unique
feature of MULSIM/NL. Salamon (6) provides the theo-
retical basis for the comprehensive energy release rate
(ERR) computations performed by MULSIM/NL. The
total energy release is comprised of three basic terms:
(1) a strain energy release from the mined-out material,
(2) a linear kinetic energy release due to the change in
gravitational potential over the mined-out area, and (3) a
nonlinear kinetic energy release due to nonlinear materials
in the total backfill and/or gob area. All terms are in-
cluded in the implementation; however, the strain energy
release term is modified slightly to account for nonlin-
ear stress-strain behavior in the unmined materials.
MULSIM/NL also computes various useful strain energy
quantities for each unmined element throughout the BEM
model.

Comparisons of numerical ERR calculations from
MULSIM/NL with known analytic solutions show excel-
lent agreement. The ratio between open-area-to-backfill
or gob area influences the relative magnitude and im-
portance of the three energy release components. With
large open-area-to-gob-area ratios, the kinetic energy re-
lease component (change in gravitational potential) dom-
inates the total energy release. With the small ratios that
are more typical of most practical BEM models of mines,
then all three components of the energy release (strain,
linear kinetic, and nonlinear kinetic) have importance.

These extensive enhancements necessitated complete
restructuring and reprogramming to create MULSIM/NL.
Earlier versions of MULSIM used complicated indexing
and one-dimensional arrays throughout the program. The
new MULSIM/NL takes advantage of today’s larger mem-
ory computers and uses numerous multidimensional arrays
and vectors that better reflect the underlying mathemat-
ical foundations of MULSIM/NL. The reprogramming
resulted in a much more understandable, reliable, and
modifiable program that should serve users well irr the
foreseeable future.

Development of MULSIM/NL stems from a need to
alleviate safety hazards in certain U.S. coal mines plagued
with coal mine bumps. With its six nonlinear in-seam
material models, multiple mining step capabilities, and
comprehensive energy release and strain energy calcu-
lations, MULSIM/NL provides a means to calculate stress,
displacement, and energy changes for various mining con-
figurations in bump-prone or rock burst conditions. In

addition, MULSIM/NL has many practical uses beyond
coal mine bump research. Stresses and displacements cal-
culated by MULSIM/NL can help an engineer design pil-
lar sizes and understand multiple-seam mining interactions.
This program is one tool out of many that engineers can
use in the fight to alleviate coal mine bumps and rock
bursts. Through judicious use of numerical models such
as MULSIM/NL, engineers can choose mining methods
that decrease the risk of these violent failures.

RECOMMENDATIONS

Many avenues exist to improve MULSIM/NL. The
three possibilities suggested here may be especially useful
in the near term.

First, MULSIM/NL could benefit from further restruc-
turing and reprogramming to take advantage of modern
vectorizing compilers and future parallel computers. One
way to render MULSIM/NL highly vectorizable is to elim-
inate use of the coarse mesh.

The second suggestion is to calculate a condition num-
ber for the system of equations solved by MULSIM/NL.
Operating experience with MULSIM/NL shows that
certain models lead to an ill-conditioned system of equa-
tions with slow solution convergence and an unreliable
final solution. It is very easy to create such misbehaved
models. A condition number for the system of equations
provides a simple, quantitative measure of the solution
reliability.

The third suggestion is to include topographic influence
in the boundary-element calculations. One approach to
these calculations would define an upper displacement dis-
continuity at the topographic surface. Each element of
this surface would require elevation data. The solution
procedure would then require calculation of semi-infinite
body influence coefficients between the topographic sur-
face and the main seam plane. Unfortunately, the com-
puted topographic influence coefficients would require a
lot of memory, and the computational effort may prove
very costly.

Another, less rigorous, approach would define in situ
stresses at all elements in the seam plane. The existing
boundary-element calculations can include these element-
specific, in situ stresses very easily. The problem then
becomes one of estimating the seam plane in situ stresses
that include the topographic influence. Horizontal seam
planes only require an estimate of the vertical stress com-
ponent, which considerably simplifies the problem.
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APPENDIX A.—REDERIVATION OF SALAMON’S ENERGY RELEASE EQUATION

This appendix gives an abbreviated rederivation of Sala-
mon’s (6)! energy release equation presented as equa-
tion 41 in the text. The rederivation here uses a notation
similar to Salamon’s that is improved and, hopefully, easier
to follow. The analysis begins with equation 39, which is
the energy release relationship derived from basic energy
conservation considerations.

Wg = Uy + (W-Uc-Wgp), (A1)

where Wy = total energy release for this step,
Uy = strain energy release from the mined-
out rock,
W = work done on the system by boundary
and body forces,
Uc = change in strain energy in the rock
mass,
and Wgp = change in strain energy in the backfill

(gob) and support systems.

The term in parentheses is called the kinetic energy re-
lease Wy.

Figure A-1 (same as figure 17) illustrates the basic
problem and notation considered in this derivation, Min-
ing proceeds in a small step from state I to state IT during
which a volume of rock V,, with surface area S,; is extract-
ed. The open area and volume change from S, and V,
to Soy and Vg The backfill (gob) area and volume
change from Sg; and Vg, to Sg;; and V;,. The volume of
the rock mass and its outer boundary area remain un-
changed at V and S, respectively. A summary of basic
volume and surface area definitions follows.

<
[

rock mass volume

Vop = volume open in state I
Von = volume open in state II
Vgr = volume gob in state I
Vgn = volume gob in state II

Vum = volume mined this step

!talic numbers in parentheses refer to items in the list of references
preceding the appendixes.

AVo = Von - Vor
AVg = Ven-Var
S = rock mass boundary
Sor = surface open in state I
Son = surface open in state II
Sg1 = surface backfilled in state I
Sgun = surface backfilled in state II
Sy = surface mined this step
880 = Son - Sor
88g = Sgn - Sgr-
In this notation, subscripts have the following meanings:
I -statel
II -state IT
G - gob (backfill) area or volume
O - open area or volume

M - mined-out area or volume this step

none - rock mass area or volume.
State 1 S
L KEY
v \Y Rock mass volume
VM_~Sm Vor  Volume open in state I
Vor_~Sor Vo Volume open in state Il
\ Volume of backfill in state I
Ve [~S 61
i e Vem Volume of backfill in state IT
Volume mined this step

Rock mass boundary area

Surface area open in state [
Surface area open in state I
Surface area of backfill in state 1
Surface area of backfill in state IL
Surface area mined this step

Figure A-1.—Basic problem geometry for energy release deti-
vations.



The following notations are used for displacements,
stresses, surface tractions, and body forces:

u = displacement

T = stress

T = surface traction over rock mass areas
R = surface traction over backfilled areas
X = body forces.

In going from state I to state II, these displacements,
stresses, surface tractions and body forces must obey the
following relations:

U =y + Au

T =7p+ AT

Ty = Ty + AT (A-2)
Ry = R; + AR
Xy = X

Equilibrium of the rock mass in state I satisfies

_[VXIdV + J.STIds + ISMTIds + JISGIRIds =0, (A-3)
whereas in state II it satisfies

JVXIIdV + J‘STHdS + SGHRHdS = (. (A-4)

The work W done on the system in going from state I
to state II is found by considering the tractions on the
bounding surface S and the body forces within the rock
mass V and backfill (gob) V;; as displacements undergo a
change Au. The work done on the system is

W = - ITIA“dS - lfATAuds
S 2JS

- J.VXIA udv - VGIXGA udv

1
- EIA VGXGA udv. (A-5)

The negative signs arise from the sign convention dis-
cussed by Salamon (6).

As indicated in equation A-1, the work done on the sys-
tem depicted in figure A-1 results in strain energy changes
in the three components of that system: the rock mass
mined-out during this step, the surrounding rock mass, and
the backfill and/or gob. The strain energy changes in each
of these areas are considered next.

In going from state I to state II, the strain energy
change (or release) over the mined-out volume V,; bound-
ed by surface Sy, is found directly as

1
Uy = 5 [ ISMTIuIds - IVMXIuIdv ] (A-6)

In state I, the total strain energy in the rock mass vol-
ume V bounded by surfaces S, S, and S, is

1
UVI = - -2— [IV XIuIdV + ISTIuIdS

+ I Tmupds + I Ryuyds :| (A7)
Sm Sar
Again, the negative sign arises due to the sign convention
used. The strain energy in state I is one-half the product
of the equilibrium forces in state I (equation A-3)
multiplied by the displacements in state I u,.
In state II, the total strain energy in the rock mass
volume V bounded by surfaces S and S, is

1
Uvir = -3 [VXII“ndV

+ fSTIIuII ds + J‘SGHRHquS ]. (A'8)

Substituting equations A-2 into A-8, expanding the result,
and subtracting A-7 results in the following expression for
the change in strain energy in the rock mass volume V:

1
Uc = "5 USATuIds + ISTIA“dS + ISATAuds]

1
- ARu,d; R;Aud ARAud:
2 USGI Ut S+Iscx ke S+J.Scl " S]

1
-~ [ASGARuIds + L s Ribuds + .[A s A RAuds]

1 1
> IVXIA udv + EJISMTluIdS . (A-9)



The backfill and/or gob material may exhibit certain
nonlinear stress-displacement behavior. Accordingly, the
parameter « is introduced to account for this nonlinearity
in the strain energy calculations. Figure A-2 (same as
figure 19) illustrates the meaning of this parameter with
linear elastic and strain-hardening materials. Most typ-
ically, backfill and/or gob materials exhibit a strain-
hardening or linear elastic behavior; therefore, a has val-
ues in the % to 1 range.

Figure A-3 shows a typical stress-displacement relation-
ship expected for backfill and/or gob. Based on this fig-
ure, the total strain energy in state I of the backfill and/or
gob volume Vg, bounded by surface Sg; is

1
Ug = = Ryu;d —| Xopudv | (A-10
Gl = 3 [J;G[“ M9 = )y Sort V] (A-10)

In state II, the total strain energy in the backfill and/or
gob volume V; bounded by surface Sg; is

1
Ugn = 5 I aRpuyds - J Xonuppdv | (A-11)
2 |JSen Vo

Substituting equations A-2 into A-11, expanding the result,
and subtracting A-10 results in the following expression for
the change in strain energy in the gob volume Vg

Wg =J- aRjAuds —I XA udv
SGI VG[

1 1
+ 2[ aaRAuds - _I Xehudv, (A-12
ZISGII 2JaVg GI ( )

Equations A-5, A-6, A-9, and A-12 provide expressions for
W, Uy, Ug, and W, respectively, necessary to evaluate the
change in energy release given by equation A-1. However,
to simplify the expression that results after substituting
A-5, A-6, A-9, and A-12 into A-1 requires another rela-
tionship derived from the reciprocity theorem. This im-
portant theorem from elasticity theory states that the
energy associated with the first equilibrium force system
acting through the displacements of the second system is
equal to the energy associated with the second equilibrium
force system acting through the displacements of the first
system. Stated mathematically, the reciprocity theorem is

Fyuy = Fyyuy, (A-13)

or alternatively,

F;Au = AF u;. (A-14)

GOB STRESS (R)

DISPLACEMENT (u)
O<axi

Strain energy = /2 a Ru

Figure A-2.—Strain energy calculations for various linear and
nonlinear material behaviors showing how parameter « accounts
for degree of nonlinearity.

p]
H

QAu

STRESS (R)

BACKFILL OR GOB
o

ur ug
——— DISPLACEMENT (u) —

Figure A-3.—Typical strain-hardening stress-displacement be-
havior for backfill or gob with basic notation.

With the equilibrium force system given by equation A-3,
the reciprocity theorem gives

I XAudv + J TiAuds
vV S

+I TiAuds + R;Auds
Sm

'GI

= .[ AXugdv + JATuIds
A\ S

+ J'SMATuIds + ISGIA Ruyds. (A-15)



This expression can be changed to

l TiAuds
2J8%

1 1
3 ISTIAuds + EJ‘SATuIds

+

1 1
= ARuyds - _I RiAuds
2 JSgn ! 2Js6 !

+

1 1
Ef%TluIds - 5 [Kidudv.  (act6)

Finally, substituting A-5, A-6, A-9, and A-12 into A-1 and
simplifying with A-16 results in the following expression
for the total energy release:

1 1
Wy = [.EJSMTIulds - EIVMXIuIdV]

1 1
+ [_2_ J‘S\,{TIA uds + 3 lsen (1-a)ARAuds ] (A-17)

45

The first term in brackets is called the strain energy re-
lease from the mined material (Uy,), and the second term
is called the kinetic energy release (Wy). In most practical
circumstances, the body force term X in the strain energy
release is negligible compared with the surface traction
term T;. The energy subroutine in MULSIM/NL does
neglect this body force term. In further notation, the first
term of the kinetic energy release is referred to as the
linear part of Wy and basically represents a change in
gravitational potential. The second term in Wy, referred
to as the nonlinear part of W, arises from the nonlinear
stress-displacement behavior of the backfill and/or gob
material. In certain practical circumstances, it, too, is
negligible compared with the linear part of Wy (i.e., the
change in gravitational potential). The energy subroutine
in MULSIM/NL does retain this nonlinear term. In addi-
tion, the relative value of the first and third terms (i.e., the
strain energy release Uy and the kinetic energy release
Wy) is step-size dependent. In many practical cases, the
linear kinetic energy release may dominate the strain
energy release from the mined material. Again, that is not
always the case, hence MULSIM/NL retains the strain
energy release term for completeness.



APPENDIX B.—SUPPLEMENTAL DATA ON RIGID BOUNDARY EFFECT TESTS
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Figure B-2.—Computed and analytic displacements across
opening with different coarse-mesh sizes. A 25 m; B, 100 m; C,
400 m.

Figure B-1.—Computed and analytic stresses at edge of
opening with different coarse-mesh sizes. A 25 m; B, 100 m; C,
400 m.



APPENDIX C.—SUPPLEMENTAL DATA ON ELEMENT SIZE EFFECT TESTS
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Figure C-1.—Computed and analytic stresses at edge of open- Figure C-2.—Computed and analytic displacements across

ing with different block and element sizes. A, 25 m; B, 100 m; C, opening with different block and element sizes. A, 25 m; B,
400 m. 100 m; C, 400 m.



APPENDIX D.—SUPPLEMENTAL DATA ON NONLINEAR EFFECT TESTS
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Figure D-1.—Computed stresses at edge of opening using Figure D-2.—Computed displacements across opening using

various linear and nonlinear material models. A, 50 m; B, 100 m; various linear and nonlinear material models. A, 50 m; B, 100 m;
C, 200 m. C, 200 m.



APPENDIX E.—NONLINEAR STRESS-STRAIN RELATION FOR GOB

INTRODUCTION

This appendix develops a nonlinear stress-strain re-
lationship for gob material, which exhibits strain-hardening
behavior, and discusses implementation of that model
in MULSIM/NL. Gob formation occurs via a two step
mechanism: first, the overburden rock behind a longwall
face fractures, collapses, and swells to fill the newly
created void, and second, the gob consolidates and follows
a nonlinear, strain-hardening, constitutive relationship as
vertical stress on the gob increases. Derivation of the
model begins by assuming that the tangent modulus of the
gob increases linearly with stress from some initial value
to a final value. Based on this assumption, a nonlinear
stress-strain relation for gob results is:

3| [ e

initial modulus,

where E;

Er = final modulus,
o, = final stress,
D = seam closure,
t = seam thickness,
and n = gob height factor.

MECHANISM OF GOB FORMATION

Several geologic studies have examined rock move-
ments in the overburden behind an advancing longwall
face (42-44). Figure E-1 shows the three zones generally
found as one progresses from the mined-out seam level up
through the geologic column. First, a totally broken zone
exists for a height ranging from two to six times the seam
thickness. Rock within this zone exhibits considerable in-
elastic behavior, since it has first fractured, then moved
downward, and then rotated randomly during its downward
displacement. Above the totally broken zone is a fractured
zone, whose top may lie 20 to 60 times above seam thick-
ness. In this zone, considerable fracturing occurs with the
downward displacement and mechanical properties such as
modulus certainly decrease; however, gross rotation of the
fragments does not occur and individual rock strata remain
recognizable and correlatable. Finally, above the broken
zone lies an elastic zone where no new fracturing has oc-
curred and mechanical properties remain the same as the
original rock mass.

Subsidence data also provide information on the delin-
eation and behavior of these three zones. At risk of gross
oversimplification, surface subsidence generally amounts to
about 50% of seam thickness. Displacements at the base
of the elastic zone shown in figure E-1 may equal 50% of
the seam thickness as well. At the base of the fractured
zone, displacements are approximately 60% of the seam
thickness. Downward movement at the base of the totally
broken zone is 100% of the seam thickness.

Mechanistically, the overburden rock first swells to fill
the mined-out void, then consolidates to induce surface
subsidence. During this swelling and consolidation, the
totally broken zone sees a net vertical strain on the order
of (1.0t - 0.6t) /(4t), which equals 0.100 or 10% strain. The
fracture zone experiences a strain of (0.60t - 0.50t)/(40t)
which equals 0.0025 or 0.25% strain. The elastic zone sees
zero vertical strain. Since the strains in the broken zone
are much larger than the strains in the fractured zone,
then the mechanical behavior of the broken zone probably
dominates overall gob behavior.

In this research, the fractured zone is effectively ne-
glected by including it mechanistically with the elastic
zone. Gob formation occurs via the two-step mechanism
hypothesized in figure E-2. In the first step, the overbur-
den rock behind the longwall face fractures, collapses, and
swells to fill the newly created void. During this swelling
phase, the broken material is essentially stress free and

Surface

L Coal} . 5

lczvo

Figure E-1.—Three mechanical zones found above mined-out
coal seam. Tis seam thickness. Lowestis totally fractured zone;
middle is fractured zone; and top is elastic zone.



does not transmit any significant vertical stresses to the
floor rock. In the second step, as the longwall face moves
farther away, the gob changes gradually from a swelling
phase to a consolidation phase as it begins to experience
higher vertical stresses. Ultimately, the vertical stress in
the mined-out region may approach the virgin vertical
stress and further vertical deformation or consolidation
ceases.

DERIVATION OF NONLINEAR STRESS-STRAIN
RELATION FOR GOB

Two major assumptions underlie the gob model pre-
sented here. First, all the vertical strain that results in
surface subsidence occurs within a broken zone whose
height varies from two to six times the seam thickness.
Justification for this assumption was presented earlier.
The second assumption states that the elastic modulus of
the gob material in the broken zone increases linearly
from some initial value E; to some final value E,. The
initial modulus is that of the swelled gob material at zero
vertical pressure, whereas the final modulus is that of the
consolidated gob material at the virgin vertical stress o,.
The assumed linear relationship between tangent modulus
and vertical stress is shown in figure E-3.

The equation describing this linear relationship is

Er-E
E = MUJ'EI‘

. (E2)

v

J-_S

T ENNT/m =) | N =\ -
—=\\— =\

Swelling ¢

J’Open—!

LUnmIned

Consolidating ﬂ-‘

Figure E-2.—Swelling and consolidation mechanism of gob
formation. T is seam thickness; NT is totally fractured zone
thickness where N is gob height factor; and S is surface sub-
sidence assumed as 0.5 T.

The differential relation between stress and strain is

1

de = —do. (E3)

Substituting E-2 into E-3 and integrating between the
limits 0 to € and 0 to o yields

Er-E
e=—— 1  ml||[ZFE (2 1] (B
Ep-E; o, |E
aV
Rearranging and exponentiating gives
o Eg -
o=E/ |—X_|le —F Tlel|-1| &5
HEE ™| (E-5)

v
From figure E-2, the strain in the broken zone is calcu-
lated as

€ =

b (E-6)
t
where D is the seam closure and t is the seam thickness.

THE GOB HEIGHT FACTOR “n"

The above formulation utilizes effective modulus values
and effective strain as opposed to true modulus values and

TANGENT MODULUS (E) —
m
-

m
-

oy

STRESS, (o) ———8

Figure E-3.—Assumed linear relationship between tangent
modulus (E) and stress (o) over range 0 to oy. E, is initial
modulus at zero vertical stress, and Eis final modulus at vertical
stress o,.



true strains. Derivation of the connection between true
and effective moduli and strain follows.

Consider a zone with thickness t subject to a compres-
sive displacement of 0.1t. Suppose the NT is the true
thickness of the zone and it is subject to a vertical stress
o,. The true strain is

eT—T-n_t—_lT]_ﬁ. (E-7)
True stress is simply
o, = Eper = Ep [L] (E-8)
10n
where Er = true modulus.
The effective strain is
e (E-9)
Effective stress is
o, = Egeg = Eg [i] (E-10)
10
where  Ep = effective modulus.
Equating stresses yields
Ep [‘ml_n] - Eg [316] (E-11)
or
Eg = Eg/n.

(E-12)

Therefore, the true modulus values require modification by
factor n which is equal to the broken zone height divided
by the seam thickness.

In terms of true elastic moduli, the nonlinear stress-
strain relation for gob is

bl e

n

1

where E; = initial modulus,

Eg

= final modulus,

o, = virgin vertical stress,
D = seam closure,
t = seam thickness,
and n = gob height factor.

IMPLEMENTATION INTO MULSIM/NL

Subroutine MODHARD implements this nonlinear
stress-strain model for gob in MULSIN/NL. An array
called EPROP stores material property data for up to 26
different materials. EPROP has dimensions 26 by 10 so
each material can have up to 10 descriptors in its material
model. The first of the 10 material descriptors in EPROP
acts as a flag identifying the material model to use, which
is five for strain-hardening. For the strain-hardening case,
the EPROP descriptors are as follows:

EPROP(*,1) = 5

material type strain-hardening

EPROP(*2) = - initial modulus
EPROP(*3) = - final modulus at stress
EPROP(*,4) = - virgin vertical stress
EPROP(*,5) = - gob height factor
EPROP(*6) = - Poisson’s ratio

Descriptors 7 through 10 remain unused.

Subroutine MODHARD returns values for the Young’s
modulus perpendicular to the seam plane and the shear
moduli parallel to the seam plane based on current esti-
mates of the stresses. The user specifies material prop-
erties normal to the seam only. The associated shear
moduli are calculated as

- E -
R (E-14)

While the material property specifications for the nor-
mal and shear directions for an element are linked, the
boundary conditions for these directions are decoupled and
act independently. Coupling these boundary conditions
may have certain intuitive appeal; however, it will over-
specify the system (i.c., more equations would exist than
unknowns). Such a procedure may lead to numerical diffi-
culties of unknown proportions.



