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Abstract
Fire experiments were conducted in the Safety Research Coal Mine (SRCM) at the National Institute

for Occupational Safety and Health, Pittsburgh Research Laboratory, with coal, diesel-fuel, electrical-
cable, conveyor-belt, and metal-cutting fire sources to determine the response of fire sensors to products-
of-combustion (POC).  Metal oxide semiconductor (MOS) and smoke fire sensors demonstrated an
earlier fire detection capability than a CO sensor.  This capability was of particular significance for a
conveyor-belt fire in which the optical visibility was reduced to 1.52 m with an increase in CO of less
than 2 ppm at a distance of 148 m from the fire.  Application of a neural-network program to the sensor
responses from each type of fire source resulted in correct classifications of coal, diesel-fuel, cable, belt,
and metal-cutting combustion with a mean of 96% of the test data correctly classified.

Introduction
Fire detection in underground coal mines is important for

early fire location and safe miner evacuation.  Fire detection
is aided by the in-mine ventilation which transports the fire
products-of-combustion (POC) from the fire source to fire
sensors, and it is impeded by the diluting effects of the
ventilation which reduces the measurable signal.  Early mine
fire detection experiments in both normally ventilated and
near zero airflow mine entries have been previously
investigated experimentally [1, 2].  The results of that
research showed the improved performance of ionization
and optical smoke fire sensors over CO sensors.  The next
advancement beyond early detection, in addition to
determination of the fire location, is the determination of the
material burning, the mode of combustion, and the extent of
fire growth.  This knowledge can be applied to the
determination of appropriate actions to be taken to
extinguish a mine fire and to initiate escape and rescue
procedures for miners.  Various in-mine materials can
provide the initial fuel for a mine fire.  The common fire
source materials considered in this program were coal,
diesel fuel, electrical cable, conveyor belt, and acetylene gas
used for metal cutting.  The solid material combustion was
advanced using heaters through a smoldering combustion
stage to produce a slowly increasing range of measurable

POC.  The POC include CO and other oxidizable gases and
smoke particles with submicron diameters. 

It is the types of combustion products and their rate of
change which will indicate the combustion material, mode,
and growth rate.  One method which can be deployed to
make these determinations is the use of multiple fire sensors
to discriminate the POC.  The rapid analysis of mine fire
products with a neural network program has been reported
elsewhere [3, 4].  These approaches utilize temperature and
gaseous POC from combustion of home materials [3] and
laboratory heating of coal [4].  CO and smoke sensors are
used for the early detection of underground coal mine fires.
While CO sensors, in the absence of cross-interference from
other gases, respond to the concentration of CO, the
response of smoke sensors in mining applications is
presented in terms of the smoke optical density.  Ultimately,
the optical density depends upon the smoke mass
concentration, smoke particle diameter, and the dielectric
constant of the smoke particles.  Ionization smoke sensors
are more responsive to smoke from flaming combustion, and
optical smoke sensors are more responsive to smoke from
smoldering combustion.  The intense turbulent combustion
during the flaming stage reduces the average particle size
associated with smoldering combustion.

In addition to these fire sensors, there are MOS sensors
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Figure 1.  Plan view of mine section.

which respond to oxidizable gases.  These MOS sensors
operate on the principle that oxygen (O2) is adsorbed on the
surface at grain boundaries which increases the electrical
resistance across the surface.  The oxidation of POC gases
removes O2 from the surface and reduces the electrical
resistance across the surface.  The measurable change in
surface resistance is a measure of the POC concentration.
These sensors are very responsive but not very selective of
the target gas.  They are also temperature and humidity
dependent.  However, it is their extreme sensitivity to
various hydrocarbons that increases their potential for use as
mine fire sensors.  The selection of a base set of multiple
sensors is a key decision for a neural network program to
successfully discriminate between hazardous mine-fire
combustion and normal mining combustion that may result
from sources such as diesel engines and cutting and welding
procedures.

Specific Objectives
This research has two objectives.  One objective is to

evaluate the comparative time sequence of alarm values for
CO, smoke, and MOS fire sensors for in-mine combustible
source fires.  The second objective is to determine a suitable
set of mine fire sensors and a neural network analysis
program which can be used to classify a mine fire
combustible source.  

Experimental Method
The plan view of the SRCM section in which the

experiments were conducted is shown in figure 1.  Room 10,

in which the fire is located, has an average height and width
of 2.0 m and 3.9 m, respectively.  F-Butt has an average
height and width of 1.9 m and 4.5 m, respectively.  The
cloth brattice at Room 10 and B-Butt was adjusted to
regulate the airflow into Room 10 and F-Butt.  Air quantity
measurements were made at the fire zone and near the end

of F-Butt, 7.6 m downwind from sensor station S2.  For the
experiments conducted, the average air quantity at the fire
zone was 3.49 m3/s and at the end of F-Butt was 5.17 m3/s.
The increase in air quantity downwind of the fire zone was
caused by air leakage into F-Butt around brattices shown
along the ribs in figure 1 blocking crosscuts connecting F-
Butt and parallel airways.  The fire sensors used for the
experiments are listed in table 1 below. 

Table 1.  Fire sensor types used
Sensor Type

SA Optical Smoke
SB Ionization Smoke
CO Carbon Monoxide 

FA, FB MOS

Sensor SA is an optical path sensor which operates at an
infrared wavelength with a transmitter-receiver separation
path of 9.65 m.  Sensors SB, CO, FA, and FB are point-type
sensors.  Sensors FA and FB are MOS sensors which are
similar in their responses to various POC gases.  These
sensors were located at station S2, as was an optical-path
light monitor to measure the optical density of the smoke.
At station S1, a CO sensor was located to calculate the
transport time of the CO component of the POC between
stations S1 and S2.

The heating of the coal, cable, and belt was conducted
with electrical heaters to which power was supplied slowly
such that the smoldering mode passed through a slow growth
phase with the emanation of POC prior to flaming
combustion in order to validate the sensitivity of the fire
sensors and to duplicate a slowly developing mine-fire
event.  The heating time prior to flaming combustion for the
solid fuels varied between 42 and 109 min.  To validate the
discriminating capability of a neural network program when
applied to a normal mine combustion source, an experiment
was conducted which consisted of cutting a rail section with
an acetylene torch 14 m upwind from sensor station S2. 

Neural Network Analysis
A neural network analysis was applied to the

classification of fire sensor responses to differentiate
between possible fire events.  In this neural network,
temporal experimental data were compared to the nonlinear
approximations generated by the neural network until

adequate approximations for correct classifications were
obtained through corrective iterations.  The input layer of
neurons contained the experimental sensor data along with
variables generated from the experimental data.  The output
layer of neurons contained the fire source classifications
generated by the neural network.  Between the input and
output layers were two hidden layers of neurons or process
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Figure 2. Visibility and CO concentration at station S2 for
experiment No. 10.

elements (PEs).  The inputs to the hidden layers of neurons
were multiplied by weights, summed, and processed through
a bounded, nonlinear activation function.  In the training
phase of the neural network, the output classifications were
subtracted from the correct classifications and the
differences, or errors, were used by a backpropagation
method, which is a modification of the gradient-descent
search technique, to adjust the values of the weights until a
sum of the errors was less than a reasonable tolerance.  For
the sensor data analysis considered here, the neural network
software package entitled NeuroSolutions for Excel** from
NeuroDimension, Inc. was used.

Results and Discussion
Table 2 lists the fire experiments conducted with

reference to fuel type and the relative alarm times of the fire
sensors with respect to the sensor which alarmed first
(indicated by 0 s).  The estimated arrival time of the POC at
station S2 from the flaming-stage, solid fuels, relative to the
first sensor alarm time, is listed as Tf and is based upon the
measured ventilation rate.

Table 2. Fire sensor relative alarm times

Exp. Fuel FA, s FB, s CO, s SA, s SB, s Tf, s

1 Coal 80 0 3521 556 736 1579

2 Diesel 34 0 105 6 34 na1
1

3 Cable 219 59 2614 0 149 2388

4 Belt1 178 98 1486 38 0 1307

5 Coal 218 204 1590 0 242 881

6 Coal 174 0 3690 1736 2166 3242

7 Diesel na3
3 55 83 0 29 na1

1

8 Diesel 0 7 196 42 84 na1
1

9 Cable 149 109 2746 0 191 2518

10 Belt1 952 892 2709 0 294 2572

11 Belt2 14 0 2853 156 92 na2
2

12 Belt3 910 758 4735 406 0 4627
1Symbol na1 -flame at initial heating time.
2Symbol na2 - no flaming combustion.
3Symbol na3 -alarm not achieved due to fuel vapors.

The alarm time for CO is based upon a 5-ppm rise above
the ambient concentration.  For the smoke and MOS sensors,
the alarm time is based upon a ten-standard-deviation
change from the sensor ambient signal.  A ten-standard-
deviation change is less probable than a value at the mean in
a Gaussian distribution by a factor of about 1022.  The diesel
fuel experiments required the calculation of a background
value for sensors FA and FB which excluded vapors from
heptane used to ignite the fuel.  In the case of experiment
No. 7, the background concentration was too high to define
an alarm for FA.  Table 2 shows that the smoke and MOS
fire sensors always alarmed before the solid fuel, flaming-
stage POC reached the sensor station at time Tf, which
occurred before the CO sensor alarm time.  For the diesel
fuel fires, the smoke and MOS fire sensors alarmed prior to
the CO sensor.  Figure 2 shows for experiment No. 10 that

the optical visibility, which is calculated from the optical
density measured by the light obscuration monitor as defined
by a visibility optical density relationship [5], decreased to
1.52 m while the CO concentration increased to 1.1 ppm
above ambient concentration 1,900 s after the first alarm
and, based upon table 2 data, 948 s after the last of the non-
CO, fire-sensor alarms.  A visibility of 36.4 m corresponds
to an optical density of 0.022 m-1, which is the alarm value
for a mine-fire smoke sensor.  The times plotted in figure 2
are from the first alarm time.  The flaming mode POC did
not reach the sensor station until 2,572 s after the first sensor
alarmed.  This flaming event is coincidental with the
significant increase in measurable CO seen in figure 2.  The
in-mine hazard of severely reduced visibility without a CO
alarm, but with an alarm for each smoke sensor, reinforces
the importance of fire smoke sensors.

In order to use the neural network program, the data for
each experiment were prepared in files with the fire sensor
signals normalized to their ambient background signals.  For
sensors FA and FB, the sensor electrical resistance value

**Reference to a specific product does not imply
endorsement by NIOSH.
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Figure 3.  Sensors FA and CO response to coal combustion
for experiment No. 6.
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Figure 4.  Sensor SA and SB response to coal combustion
for experiment No. 6.

was normalized to unity under ambient conditions.  Figures
3 and 4 show the data recorded from coal fire experiment
No. 6 for sensors FA, SA, SB, and the CO sensor relative to
the first alarm time.  The responses of FA and FB were
nearly identical.

The training of the neural network was accomplished

with the five sets of sensor data from coal, diesel-fuel,
electrical-cable, and conveyor-belt fires, which are the fires
of experiment numbers 1 to 4 in table 2, and an acetylene-
torch, metal-cutting experiment.  Seven data inputs were
processed from the sensor data to classify the five fire types.

The inputs, which include time and multiplicative
combinations of the data from four of the sensors but
excluding sensor SB, were determined by trial-and-error to
be the most suitable inputs for accurate classifications.  The
size of the training data sets ranged from 85 to 991

exemplars, or time samples, of the four sensor inputs and
two functions of the sensor inputs with the total size of the
training set being 2,988 exemplars.  Time zero at the
beginning of each data set corresponded to the first sensor
alarm for each type of fire.  Sampling by the sensors
occurred at two-second intervals.

Various neural network programs provided in the
package by the vendor were applied to the data in attempts
to successfully classify the fire types.  A two-hidden-layered
perceptron network with momentum backpropagation of
error algorithm produced reproducible results.  No
smoothing of the data or inclusion of rates of data change
was necessary for successful training and testing.  The first
hidden layer consisted of 20 PEs and the second hidden
layer consisted of 10 PEs.  It was discovered that the testing
results were reproducible even though the initial weights
between the PEs were assigned randomly.  The activation
function used in the hidden layers was the hyperbolic
tangent function with the output layer using a softmax
classification function.  One thousand epochs, or iterations,
through the samples were performed with error correction
after every epoch.  The minimum squared error achieved
after 1,000 epochs was 0.0012.

For testing the neural network, seven data files were
presented to the trained network.  These files included
experiment numbers 5 to10 in table 2 and 1 metal-cutting
experiment.  The number of testing exemplars in each file
ranged from 121 to 1,854 with the total size of the testing set
being 4,255 exemplars.  Two coal and two diesel-fuel fires
were included in the set of testing files.  The percentage of
exemplars predicted correctly in each of the seven testing
data files is presented in table 3.

Table 3.  Percentages of testing files predicted correctly

Exp. 5 6 7 8 9 10 Cutting

% Correct 100 86 90 99 94 100 100

The average correct classification of the seven tests in
table 3 is 96%.  The minimum value of 86% for a single
experiment is not unreasonable.  Evaluation of
experiments 11 and 12 could not be made with the neural
network program because experiments using materials
similar to those of BELT2 and BELT3 were not available to
include in the testing set.

Conclusions
The role for mine-fire smoke sensors and MOS sensors

was shown to be enhanced by their earlier alarm times
relative to a CO sensor.  The low optical visibility in the
absence of significant CO for flammable material, BELT1,
further supports the role of smoke sensors for early mine-fire
detection.  Data, recorded from an optical path smoke, a CO,
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and MOS sensors placed in a multiple sensor arrangement
and inserted into a backpropagation neural network
program, enabled the program to correctly classify coal,
diesel-fuel, electrical-cable, and conveyor-belt test fires and
a metal-cutting procedure based upon a training set similar
to the testing set.  This correct mine fire combustible source
classification is based upon an average 96% correct
classification of seven tests of the test data with the worst
case probability of a correct prediction being 86%.
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