Alex Bugarski, Mridul Gautam West Virginia University Morgantown USA

Size Distribution and Deposition in Human Respiratory Tract: Particle Mass and Number

Size Distribution and Deposition in Human Respiratory Tract: Particle Mass and Number

Aleksandar Bugarski and Mridul Gautam

National Research Center for Alternative Transportation Fuels, Engines and Emissions

Department of Mechanical and Aerospace Engineering
West Virginia University

TOXICITY OF ULTRAFINES

(MAUDERLY et al.)

- •FINER PARTICLES PENETRATE MORE READILY INTO CELLS AND THROUGH TISSUE BARRIERS
- •FINER PARTICLES HAVE GREATER SURFACE AREA PER UNIT MASS, AND A LARGE NUMBER OF TOXIC REACTIONS OCCUR AT THE SURFACE
- •FINER PARTICLES DISSOLVE MORE READILY THAN LARGER PARTICLES THUS ENHANCING THE BIO-AVAILABILITY OF SOLUBILIZED COMPOUNDS
- EPIDEMIOLOGICAL STUDIES INDICATE THAT THE IMPORTANCE OF ULTRAFINES REMAINS SPECULATIVE

OBJECTIVES

- TO DETERMINE THE REGIONAL DEPOSITION OF PARTICULATE MATTER IN HUMAN LUNGS FOR A VARIETY OF STEADY-STATE ENGINE OPERATING CONDITIONS, FUEL FORMULATIONS AND COMBINATIONS OF AFTERTREATMENT DEVICES.
- TO CHARACTERIZE THE SIZE DISTRIBUTION AND MASS EMISSION RATES OF PARTICULATE MATTER EMISSIONS FROM OFF-ROAD AND ON-HIGHWAY HEAVY-DUTY VEHICLES OPERATING ON CONVENTIONAL DIESEL, AND ULTRA-LOW SULFUR SYNTHETIC DIESEL FUELS.

BACKGROUND

- REGIONAL DEPOSITION IS DEFINED AS THE FRACTION OF PARTICLES INSPIRED WHICH IS DEPOSITED IN THE REGION OF INTEREST.
- MODEL FOR POLYDISPERSED AEROSOLS (0.5 nm TO 15 μm) DEVELOPED KOBRITCH, RUDOLF, AND STAHLHOFEN (1994) WAS EMPLOYED.
- HOWEVER, REGIONAL DEPOSITION IN HUMANS HAS SO FAR ONLY BEEN MEASURED WITH PARTICLES WITH DIAMETERS GREATER THAN 100 nm.