Useful Information about Conventional and Alternative Fuels and Their Feedstocks Feedstocks

		Crude Oil	Corn	Crop Residue	Forest/Mill Residue	Energy Crops
Daily US Production	(million barrels/day)	5.746 ⁽¹⁾	-	1	-	-
Annual US Production	(million tons)	318	252 ^(2, b)	-	-	-
Estimated Availability	(million tons)	-	-	382 ⁽³⁾	1200 ⁽³⁾	159 ⁽³⁾
Wholesale Market Prices (1992-	(\$/barrel)	\$10.80 - \$38.20 ⁽⁴⁾	-	-	-	-
2002)	(\$/bushel)	-	\$1.82 - \$3.24 ⁽²⁾	-	-	-
	(\$/dry ton)	-	\$76 - \$137 ^(k)	-	-	-
Estimated Delivered Cost	(\$/dry ton)	-	-	<u>></u> \$40 ⁽⁵⁾	<u>></u> \$20 ⁽⁵⁾	<u>></u> \$40 ⁽⁵⁾
Energy Content Compared to						
Crude Oil		-	42% ^{(6) (7)}	40% ^{(8) (6)}	46% ^{(8) (6)}	39% ^{(8) (6)}
Total Sugar Content	(pounds sugar/pound feed)	-	0.81 ^(2, s)	0.64 ^(9, j) (stover)	0.66 ^(9, j) (wood)	0.62 ^(9, j) (switchgrass)

Products

		Gasoline	Ethanol	Hydrogen	Diesel	Biodiesel
Annual US Production	(million gallons)	135,517 ⁽¹⁰⁾	2,810 ⁽¹¹⁾	1,805 billion scf ^{12, l)}	36,667 ^(13, e)	25 ^(14, m)
Wholesale Market Price						
	(\$/gallon)	\$0.30 - \$1.20 ⁽¹⁵⁾	\$0.90 - \$1.80 ⁽¹⁶⁾	\$0.60 - \$1.20/kg	\$0.30 - \$1.20 ⁽¹⁷⁾	\$1.25 - \$2.25 ⁽¹⁸⁾
Energy Content Compared to						
Gasoline or Diesel		-	66% ^(19, a)	279% ^(19,d)	-	90% ⁽²⁰⁾
Current Technology			Enzymatic			Soybean oil or
			hydrolysis of corn	Steam reforming of		yellow grease
		Oil refining	w/ fermentation	natural gas	Oil refining	transesterifcation
Average Yields		0.59 bbl/bbl	2.5 - 2.7 gal/bushel	0.34 kg/ kg natural gas ^{(21, q),}	0.16 bbl/bbl crude	1.4 gal/bushel
		crude oil ^(10, o)		gas ^{(21, q),}		
	(gallons/wet ton)	164 ^(f)	89 - 96 ^(b)	-	44 ^(f)	47 ^(g)
Theoretical Yields				0.50 kg/ kg natural		
		-	124 gal/dry ton	gas ⁽ⁿ⁾	-	49 gal/wet ton ^(h)
Life Cycle Fossil Energy Ratio	/Fuel energy / feedil					
(LHV basis)	energy consumed)		42.0	42.0	,	(2.7)
,	energy consumed)	0.83:1 ⁽²³⁾	1.34:1 ⁽²⁴⁾	0.66:1 ⁽²¹⁾	0.83:1 ⁽²³⁾	3.2:1 ⁽²⁵⁾
Future Technology			Enzymatic			
			hydrolysis of	Gasification of		
			biomass w/	wood/steam		Higher oil content
		-	fermentation	methane reforming	-	seeds or greases
Theoretical Yields			98 gallon (dry stover) ^(26, c)	155 kg (dry wood) ^(27, r)		109 gallon (wet
	(per ton)	-	stover)(26, c)	wood) ^(27, r)	-	ton seeds) ⁽ⁱ⁾
	(Fuel energy / fossil					
Life Oyole i ossii Ericigy Ratio	energy consumed)		(20)	(22)		
(LHV basis)	chargy condumed)	-	4.6:1 (stover) ⁽²⁸⁾	14-29:1 (wood) ⁽²³⁾	-	-

Useful Information about Conventional and Alternative Fuels and Their Feedstocks

Compiled by: National Renewable Energy Laboratory (NREL), National Bioenergy Center

Contact: andy aden@nrel.gov

Updated: June 24, 2004

Notes

a. Using Lower Heating Value (LHV) and BTU per gallon values

- b. Based on 56 wet pounds per bushel corn
- c. Stover is a crop residue. Compositions vary considerably due to a multitude of factors. This yield is based on the stover sugar content listed in the feedstock section above.
- d. Using LHV and BTU per pound values. Used 18,500 BTU per pound for gasoline because it was the middle of the range given
- e. Sum of on-hwy diesel and off-hwy diesel for 2002
- f. 6.6 barrels per ton for crude oil, 42 gallons per barrel
- g. 60 pounds per bushel soy
- h. Assuming 18% oil content in soybeans and 0.88 specific gravity for biodiesel
- i. Assuming 40% oil content in seeds like rape seed or mustard seed
- j. 1 lb of 6-carbon polymer yields 1.11 lb of glucose, 1 lb of 5-carbon polymer yields 1.136 lb of 5 carbon sugar
- k. 16% moisture in corn
- I. Includes captive, merchant, liquid and by-product hydrogen for the U.S.
- m. 2001 biodiesel consumption
- n. 16 kg of CH₄ can produce 8 kg of H₂
- o. From diagram 2 in reference report, motor gasoline divided by crude oil refinery input
- p. Annual US diesel production divided by crude oil refinery input from diagram 2 in reference report
- q. Plant size divided by natural gas consumed, converted to kg H2 per kg natural gas
- r. Wood (forest or mill residue). From chemical equation in reference, yield is 2.07 mole of H2 per mole of wood with CH1.47O0.67 molecular formula
- s. Corn is 61% starch, 16% water (from seed drawing on reference). 1 lb of starch yields 1.11 lb of sugar

Useful Information about Conventional and Alternative Fuels and Their Feedstocks References

¹Petroleum QuickStats – US crude oil production, Energy Information Administration (http://www.eia.doe.gov/neic/quickfacts/quickoil.html)

⁵Biomass Resource Estimates, OakRidge National Laboratory

(http://bioenergy.esd.ornl.gov/papers/misc/resource estimates.html)

²The World of Corn National Corn Growers Association (http://ncga.com/03world/main/welcome.htm)

³Roadmap for Agriculture Biomass Feedstock Supply in the United States, INEEL (http://devafdc.nrel.gov/pdfs/8245.pdf)

⁴US petroleum prices – crude oil spot price history, EIA (http://www.eia.doe.gov/oil_gas/petroleum/info_glance/prices.html)

⁶Heat content of crude oil, EIA (http://www.eia.doe.gov/emeu/aer/pdf/pages/sec13 2.pdf)

⁷Agricultural Renewable Solid Fuels Data, Agricultural Utilization Research Institute (http://www.auri.org/research/fuels/pdfs/fuels.pdf)

⁸ Thermodynamic Data for Biomass Materials and Waste Components, ASME 1987

⁹Biomass Feedstock Composition and Properties Database, DOE (http://www.ott.doe.gov/biofuels/properties database.html)

¹⁰Annual Energy Review 2002 – petroleum flow (diagram 2), EIA (http://www.eia.doe.gov/emeu/aer/pdf/pages/sec5.pdf)

¹¹Ethanol Industry Outlook 2004 – Food and Fuel Products picture, Renewable Fuels Association (http://www.ethanolrfa.org/outlook2004.html)

¹² Chemical Economics Handbook, 2001 – hydrogen section, Stanford Research Institute International

¹³Sales of distillate fuel oil, EIA

⁽http://www.eia.doe.gov/pub/oil gas/petroleum/data publications/fuel oil and kerosene sales/current/pdf/table1.pdf)

¹⁴Alternative fuels consumption, EIA (http://www.eia.doe.gov/cneaf/alternate/page/datatables/table10.html)

¹⁵US gasoline data – spot price history 1992-2002, EIA (http://www.eia.doe.gov/oil_gas/petroleum/info_glance/gasoline.html)

¹⁶Fuel ethanol terminal market price history 1995-2004, Oxy-Fuel News (http://www.energy.ca.gov/gasoline/graphs/ethanol 10-year.html)

¹⁷US diesel fuel – spot price history 1992-2002, EIA (http://www.eia.doe.gov/oil_gas/petroleum/info_glance/distillate.html)

¹⁸Biodiesel Fact Sheet, DOE (http://www.afdc.doe.gov/pdfs/Biodiesel_fs.pdf)

¹⁹Properties of fuels – Lower Heating Value, DOE (http://www.afdc.doe.gov/pdfs/fueltable.pdf)

²⁰Properties of fuels – Biodiesel energy content, DOE (http://www.afdc.doe.gov/fuelcomp.html)

²¹Life Cycle Assessment of Hydrogen Production via Natural Gas Steam Reforming (Table 1), National Renewable Energy Laboratory (http://www.nrel.gov/docs/fy01osti/27637.pdf)

²²Biodiesel conversion factors, Farm Service Agency (http://www.fsa.usda.gov/daco/bioenergy/2002/2002FactorsNFormulas.pdf)

²³Preliminary Screening--Technical and Economic Assessment of Synthesis Gas to Fuels and Chemicals with Emphasis on the Potential for Biomass-Derived Syngas, NREL (http://www.nrel.gov/docs/fy04osti/34929.pdf)

²⁴The Energy Balance of Corn Ethanol: An Update, USDA (http://www.usda.gov/agency/oce/oepnu/aer-814.pdf)

²⁵Life Cycle Inventory of Biodiesel and Petroleum Diesel for use in an Urban Bus - page 33, NREL, USDA (http://www.afdc.doe.gov/pdfs/3813.pdf)

²⁶Theoretical ethanol yield calculator, DOE (http://www.ott.doe.gov/biofuels/ethanol_calculator.html)

²⁷Technical and Economic Assessment of Producing Hydrogen by Reforming Syngas from the Battelle Indirectly Heated Biomass Gasifier (page 8), NREL (http://www.osti.gov/dublincore/gpo/servlets/purl/95225-h80BdR/webviewable/95225.pdf)

²⁸Is ethanol from corn stover sustainable? Adventures in cyber-farming. A life cycle assessment of the production of ethanol from corn stover for use in a flexible fuel vehicle, NREL, Colorado State University, USDA, Kansas State University, ORNL (John Sheehan@NREL.gov)