

2 CROSSTALK The Journal of Defense Software Engineering May 2004

CrossTalk
Article Submissions: We welcome articles of interest to the
defense software community.Articles must be approved by the
CROSSTALK editorial board prior to publication. Please fol-
low the Author Guidelines, available at <www.stsc.hill.af.mil/
crosstalk/xtlkguid.pdf>. CROSSTALK does not pay for sub-
missions.Articles published in CROSSTALK remain the prop-
erty of the authors and may be submitted to other publications.
Reprints and Permissions: Requests for reprints must be
requested from the author or the copyright holder. Please
coordinate your request with CROSSTALK.
Trademarks and Endorsements: This DoD journal is an
authorized publication for members of the Department of
Defense. Contents of CROSSTALK are not necessarily the
official views of, or endorsed by, the government, the
Department of Defense, or the Software Technology Support
Center.All product names referenced in this issue are trade-
marks of their companies.
Coming Events:We often list conferences, seminars, sympo-
siums, etc. that are of interest to our readers.There is no fee
for this service, but we must receive the information at least
90 days before registration. Send an announcement to the
CROSSTALK Editorial Department.
STSC Online Services: www.stsc.hill.af.mil
Call (801) 777-7026, e-mail: randy.schreifels@hill.af.mil
Back Issues Available:The STSC sometimes has extra copies
of back issues of CROSSTALK available free of charge.
The Software Technology Support Center was established
at Ogden Air Logistics Center (AFMC) by Headquarters U.S.
Air Force to help Air Force software organizations identify,
evaluate, and adopt technologies to improve the quality of
their software products, efficiency in producing them, and
their ability to accurately predict the cost and schedule of
their delivery.

PUBLISHER

ASSOCIATE
PUBLISHER

MANAGING EDITOR

ASSOCIATE EDITOR

ARTICLE
COORDINATOR

CREATIVE SERVICES
COORDINATOR

PHONE

FAX

E-MAIL

CROSSTALK ONLINE

Tracy Stauder

Elizabeth Starrett

Pamela Palmer

Chelene Fortier-Lozancich

Nicole Kentta

Janna Kay Jensen

(801) 586-0095

(801) 777-8069

crosstalk.staff@hill.af.mil

www.stsc.hill.af.mil/
crosstalk

Subscriptions: Send correspondence concerning
subscriptions and changes of address to the following
address.You may e-mail or use the form on p. 25

Ogden ALC/MASE
6022 Fir AVE
BLDG 1238
Hill AFB, UT 84056-5820

Spiral Acquisition of Software-Intensive Systems of Systems
These authors discuss the benefits that software provides to network-centric and
knowledge-based systems of systems, and how the Win-Win Spiral model mitigates
software-intensive system risks.
by Dr. Barry Boehm, A. Winsor Brown, Dr. Victor Basili, and Dr. Richard Turner

Advanced Software Technologies for Protecting America
This article explains how model-driven computing, reference architectures, and
supporting technology enablers are being integrated to develop robust systems
that are key to America’s defense.
by Gregory S. Shelton, Randy Case, Louis P. DiPalma, and Dan Nash

Bridging Agile and Traditional Development Methods:A Project Management Perspective
Using actual project experience, this article will help you understand the risks, issues, and success strategies
inherent when combining agile methods with traditional development processes.
by Paul E. McMahon

Understanding Software Requirements Using Pathfinder Networks
This article reports on a technique that uses pathfinder networks to discover and evaluate mental models
that represent stakeholders’ perception of requirements.
by Udai K. Kudikyala and Dr. Rayford B.Vaughn Jr.

Efficient and Effective Testing of Multiple COTS-Intensive Systems
This author explains how to analyze, prioritize, plan, and manage the testing of commercial
off-the-shelf-intensive systems.
by Dr. Richard Bechtold

Risk Factor: Confronting the Risks That Impact Software Project Success
These authors explain what risk management is, and then discuss some common developmental risks.
by Theron R. Leishman and Dr. David A. Cook

Cover Design by
Kent Bingham.

3

3

20

30

35

DeparDepar tmentstments

Best Best PracticesPractices

ON THE COVER

4

10

16

21

26

31

SoftwarSoftware e EngineeringEngineering TTechnoloechnologgyy

From the Publisher

2003 U.S. Government’s
Top 5 Quality
Software Projects

Coming Events

Web Sites

BackTalk

Note: For an update on
CrossTalk’s future status,
please visit our Web site at
<www.stsc.hill.af.mil>.

Open Open FForumorum

22 April
Speaker Luncheon

19 April, Track 2

19 April, Track 4

22 April, Track 6

22 April, Track 5

21 April, Track 5

From the Publisher

Technology By Any Other Name

May 2004 www.stsc.hill.af.mil 3

Ilove technology. Whether the technology is a new product, a new development method, a
new process, or even a new tool, I enjoy learning about, studying, and using it. The word

technology itself seems so encompassing. It is the creative element for engineers and scientists,
the power behind programming, and the glue that bonds the triad of people, process, and
product. Most importantly, technology allows adults to connect with their inner child and play
with a new toy. Since I’m a part of the Software Technology Support Center, I believe I have
a responsibility to stay abreast of the latest hardware, software, etc. However, I’m often accused

of playing with toys. My response is invariably, “I’m just
doing my job.”

At home, my quest to work with new technology has
allowed me to become skilled at home repair. I gladly
assist in fixing anything broken, but one must have the
proper tools to do the proper job. Searching for the prop-
er tools can be a time-consuming process, which I have
found from actual experience can consume the better part
of a Saturday morning. I try to explain to my wife that
selecting the proper tools is part of project planning. I
think she believes me.

In this month’s CrossTalk, we spotlight some new
technologies by featuring some of the presentations from
the 2004 Systems and Software Technology Conference
(SSTC) held April 19-22 in Salt Lake City. The conference
allowed thousands of professionals a chance to learn
about new technologies related to building systems and
software, and gave them some new tools to use. If you
missed SSTC, this issue provides some highlights.

If you develop systems, don’t miss the discussion of
the Win-Win Spiral Development Model by Dr. Barry
Boehm, A. Winsor Brown, Dr. Victor Basili, and Dr.
Richard Turner in Spiral Acquisition of Software-Intensive
Systems of Systems. Next, Gregory S. Shelton, Randy Case,
Louis P. DiPalma, and Dan Nash share information
regarding the ontology of various architectures in
Advanced Software Technologies for Protecting America. In
Bridging Agile and Traditional Development Methods: A Project
Management Perspective by Paul E. McMahon, you will learn
about strategies for managing a project based on agile
development methods. Next, Udai K. Kudikyala and Dr.
Rayford B. Vaughn Jr. explain some of the issues that
relate to pathfinder networks in Understanding Software
Requirements Using Pathfinder Networks. Dr. Richard
Bechtold details some of the pitfalls of testing com-
mercial off-the-shelf products in Efficient and Effective
Testing of Multiple COTS-Intensive Systems. Also, don’t miss
Theron R. Leishman’s and Dr. David A. Cook’s discus-
sion of managing risks in Risk Factor: Confronting the
Risks That Impact Software Project Success.

I hope this issue of CrossTalk sparks an idea or
two that will be useful to you in your work. It may not be
as fun as a trip to Home Depot, but it won’t require an
entire Saturday morning either. As for me, I’m off to
explore more technology.

U.S. Government’s Top 5
Quality Software Projects

CrossTalk is proud to announce
the following winners of the 2003
U.S. Government’s Top 5 Quality
Software Projects. Thank you to
everyone who submitted nominations.
This year’s awards were presented at
the 2004 Systems and Software
Technology Conference.

• Advanced Field Artillery
Tactical Data System
Customer: U.S. Army/USMC/
U.S. Navy
Developer: PM Intelligence and
Effects and Raytheon Team

• Defense Medical Logistics
Standard Support
Customer: Military Health System
Developer: DMLSS Program
Office

• H1E System Configuration Set
Customer: Program Manager Air,
AIR-265
Developer: F/A-18 Advanced
Weapons Laboratory and Boeing
IDS

• OneSAF Objective System
Customer: Program Manager
OneSAF Objective System –
U.S. Army’s Program Executive
Office for Simulation, Training,
and Instrumentation
Developer: OneSAF Objective
System Integrated Product Team

• Patriot Excalibur
Customer: AFMC
Developer: 46 TW/XPI (TYBRIN)

Brent D. Baxter
SSTC Technical Conference Manager

Manager, Software Technology Support Center

4 CROSSTALK The Journal of Defense Software Engineering May 2004

Current trends toward the transforma-
tion of warfare (and other large-scale

competitive pursuits) into network-centric
and knowledge-based systems of systems
show great promise for competitive advan-
tages over traditionally organized groups
of largely independent components. How-
ever, these transformational systems of
systems are critically dependent on the
successful functioning of their computer
software [1, 2]. This article summarizes the
benefits provided by software for such
transformational systems and identifies a
top-10 list of risks and challenges that
need to be resolved in developing and
evolving software-intensive systems. It
then briefly summarizes the Win-Win
Spiral Model described in more detail in
CrossTalk [3, 4], and shows how its
application can be used to mitigate the top-
10 software-intensive system risks and
challenges.

Software Benefits for
Transformational Systems
While simpler, tangible hardware configu-
rations are easier to manage than software-
intensive system acquisitions and opera-
tions, pure hardware-based solutions can-
not provide several key benefits that soft-
ware can provide for complex transforma-
tional systems of systems. These include
the following:
• The need to accommodate many

combinations of mission options.
Trying to accommodate these in hard-
ware leads to earlier freezing of option

choices, more complex hardware pro-
duction, inflexible human computer
interfaces, and very expensive and
time-consuming hardware field
upgrades.

• The need for rapid response to
change. The pace of unforeseeable
change continues to accelerate.
Accommodating such change runs into
much the same set of hardware diffi-
culties and software opportunities as
does the accommodation of many
options. Also, many sources of soft-
ware change are often accommodated
by commercial off-the-shelf (COTS)
software upgrades made by vendors
who need to stay competitive.

• The need for fielding partial capa-
bilities. Some options for doing this in
hardware are available, but again with
higher needs to pre-commit to inter-
face choices. Current Department of
Defense (DoD) policies that emphasize
evolutionary acquisition [5, 6] are much
easier to accommodate via simpler
hardware platforms and evolutionary
software upgrades.

Risks and Challenges
The transformational benefits that soft-
ware capabilities provide are compelling
but come with associated risks and chal-
lenges. The ability to accommodate many com-
binations of mission options comes with the
need for more software and longer delivery
time for software-intensive system of sys-
tems (SISOS). A large SISOS such as the
national air traffic control system or a
major integrated industrial manufacturing
and supply chain management system will
have more than 10 million source lines of
code (or 10,000 KSLOC) that need to be

developed and integrated.
SISOS managers are frequently sur-

prised when the first cost-schedule estima-
tion model run indicates that software with
10,000 KSLOC will take at least nine years
to develop using traditional methods. Most
software cost-schedule models have cali-
brated relationships indicating that the cal-
endar time, in months, required for aver-
age-case software development scales
roughly as five times the cube root of the
size in KSLOC (see Table 1), or roughly,

Average Case Development Time =
5 x Cube Root (KSLOC)

Clearly, if the SISOS is needed quickly,
replacements for traditional software
development methods are needed. These
go from processes enabling more concur-
rent development to acquisition methods
that are both less bureaucratic and more
able to control massive concurrent devel-
opment.

The need for rapid response to change
exacerbates these risks and challenges.
Traditional requirements management and
change-control processes are no match for
the large volumes of change-traffic across
the multitudes of suppliers and opera-
tional stakeholders involved in a SISOS.
Furthermore, many of the sources of
change (externally interoperating systems,
COTS products) are outside the program’s
span of control.

The criticality, software-intensiveness,
and cross-cutting nature of many of these
changes mean that traditional project orga-
nizations with software-element managers
buried deep in the management structure
will not meet the challenge of rapid and
effective response to change. And tradi-

Best Practices

Spiral Acquisition of
Software-Intensive Systems of Systems

Dr. Richard Turner
George Washington University and
OSD/Software-Intensive Systems

The Department of Defense and other organizations are finding that the acquisition and
evolution of complex systems of systems is both software-intensive and fraught with old and
new sources of risk. This article summarizes both old and new sources of risk encountered
in acquiring and developing complex software-intensive systems of systems. It shows how
these risks can be addressed via risk analysis, risk management planning and control, and
application of the risk-driven Win-Win Spiral Model. It will also discuss techniques for
handling complicating factors such as compound risks, incremental development, and rapid
change, and illustrates the use of principles and practices with experience in applying the
model to the U.S. Army Future Combat Systems program and similar programs.

Monday, 19 April 2004
Track 2: 4:30 - 5:15

Ballroom B

Dr. Victor Basili
University of Maryland

Dr. Barry Boehm and A. Winsor Brown
University of Southern California

Size (KSLOC) 300 1,000 3,000 10,000
Time (Months) 33 50 72 108

Table 1: Average-Case Software Development
Time versus Size

Spiral Acquisition of Software-Intensive Systems of Systems

May 2004 www.stsc.hill.af.mil 5

tional contracting mechanisms and incen-
tive structures optimized around low-cost
delivery to a fixed specification will have
exactly the wrong effect on rapid cross-
supplier adaptation to change. Technically,
software architectures sacrificing ease of
change for incremental computer system
performance gains will also make rapid
change unachievable, and much more up-
front work on architecture trade-off analy-
sis is needed to get the right balance
among performance, dependability, ease of
use, and adaptation to change.

The benefits of free upgrades to COTS
software made to adapt to change also have
risks and challenges. COTS changes are
determined by COTS vendors. Each time
this happens, the SISOS integrators are
presented with a difficult challenge over
which they have limited control [7]. And
on a SISOS, it will happen a lot. Four years
of survey data from the annual U.S. Air
Force (USAF)/Aerospace Corporation
Ground Systems Architectures Workshops
indicate that the average COTS product in
the satellite ground systems domain under-
goes a new release every eight to 10
months. On a complex SISOS with dozens
of suppliers making commitments to more
than 100 different COTS products, at least
10 new releases will impact the program
every month. Also, vendors typically sup-
port only the three most recent releases.

The Total System Performance
Responsibility (TSPR) acquisition struc-
ture is not viable for a SISOS. This is due
to management’s need to coordinate sup-
plier commitments to potentially incom-
patible COTS and nondevelopmental item
(NDI) software components. Leaving
dozens of suppliers of component sys-
tems with the TSPR authority to make
hundreds of commitments to incompati-
ble COTS and NDI components will not
work. However, centralized management
of most supplier decisions will not work
either. Also, there is a significant risk of
supplier micromanagement if the SISOS
system integrator is a contractor staffed by
people more familiar with making detailed
development decisions versus making
acquisition leadership decisions. There is a
need to balance the acquisition strategy to
determine how much commonality is enough for
each aspect of the SISOS.

Lastly, the software benefits of
enabling early fielding of partial capabilities
come with risks of over-optimizing on the
early capabilities and over-optimistically
assuming that any sort of software archi-
tecture and code can be easily modified
later. This assumption is invalid for most
software; empirical data shows that the
cost of software changes on large projects

goes up by a factor of about 100 from
requirements specification to post-deploy-
ment change [8]. This factor can be
reduced significantly by thorough software
architecting for change and risk manage-
ment, as on the USAF/TRW Command
and Control Processing Display System-R
Project [9].

Win-Win Spiral Model
Overview
Current DoD acquisition policy in DoD
Directive 5000.1 and DoD Instruction
5000.2 strongly emphasizes using evolu-
tionary acquisition and spiral development
[5, 6]. Figure 1 summarizes the Win-Win
Spiral Model used on probably the largest
and most transformational system of sys-
tems under development today: the U.S.
Army/Defense Advanced Research
Projects Agency Future Combat Systems
Program. The model includes the follow-
ing highlighted strategy elements:
• Success-critical stakeholders’ win

conditions. All of the project’s suc-
cess-critical stakeholders participate in
integrated product teams (IPTs) or
their equivalent to understand each
other’s needs and to negotiate mutually
satisfactory (win-win) solution
approaches.

• Risk management. The relative risk
exposure of candidate solutions and
the need to resolve risks early drives
the content of the spiral cycles. Early
architecting spirals likely will be more
analysis-intensive; later incremental or
evolutionary development spirals will
be more code-intensive. However, all

spirals can and should be concurrent-
ly engineering their analysis products
and code.

• Spiral anchor-point milestones.
These focus review objectives and
commitments to proceed on the mutu-
tal compatibility and feasibility of con-
currently engineered artifacts (plans,
requirements, design, and code) rather
than on individual sequential artifacts.

• Feasibility rationale. In anchor-point
milestone reviews, the developers pro-
vide a feasibility rationale detailing evi-
dence obtained from prototypes, mod-
els, simulations, analysis, or production
code that supports a system built to the
specified architecture and does the fol-
lowing:
• Support the operational concept.
• Satisfy the requirements.
• Be faithful to the prototype(s).
• Be buildable within the budgets

and schedules in the plan.
• Have all major risks resolved or

covered by a risk-management
plan.

• Have its key stakeholders commit-
ted to support the full life cycle.

Having inadequate evidence is grounds
for failing the review, unless shortfalls in
the evidence are identified as risks and
covered by satisfactory risk-management
plans. Progress toward achieving a feasibil-
ity rationale for the project’s artifacts is a
much better progress indicator than per-
cent-completeness of requirements or
design specifications.

Further description of the Win-Win
Spiral Model is in [3, 4], and detailed guide-

Driven By:
Success-Critical

Stakeholder's
Win

Conditions

1b. Stakeholders
Identify System
Objectives, Constraints,
and Priorities:
Alternative Solution
Elements

1a. Identify Success-
Critical Stakeholders

Risk
Management

Spiral
Anchor-Point

Milestones

Feasibility
Rationale

Progress Through Steps

1

8

7

6

2

5

3

4

LCA: Life-Cycle Architecture
LCO: Life-Cycle Objectives

Stakeholder's
Commitment

3. Elaborate
Product and
Process Definition

2a. Evaluate
Alternatives with
Respect to Objectives,
Constraints, and Priorities

4. Verify and Validate
Product and Process
Definitions

Stakeholders'
Review

Build Build Build

 3 2 1

LCA LCO

2b. Assess,
Address
Risks

Figure 1: The Win-Win Spiral Model

Best Practices

6 CROSSTALK The Journal of Defense Software Engineering May 2004

lines on its use are at <http://sunset.
usc.edu/research/MBASE> [10].

Top 10 SISOS Risks and Spiral
Mitigation Strategies
Here is a prioritized top-10 list of SISOS
risks based on our SISOS experiences in
Command, Control, Communications,
Computers, Intelligence, Surveillance, and
Reconnaissance systems; space systems;
the Army Future Combat Systems pro-
gram; the U.S. National Air Traffic Control
System; and commercial network-centric
systems of systems, along with the results
of a number of DoD Tri-Service Assess-
ment Initiative reviews [11].

Risk 1:Acquisition Management and
Staffing
The biggest risk in acquiring a SISOS is
committing to acquisition practices and
strategies that may still work for some sys-
tems but are incompatible for a SISOS.
Often this occurs via legacy policies and
cultures that assume SISOS requirements
can be predetermined and allocated to
hardware, software, and humans before
architecting the SISOS and contracting for
its component systems. For example, the
Software Engineering Institute’s Capability
Maturity Model® Requirements Manage-
ment Key Process Area says, “Analysis and
allocation of the system requirements is
not the responsibility of the software engi-
neering group but is a prerequisite for their
work” [12].

Actually, many SISOS requirements
emerge with development and use rather
than being pre-specifiable. Feasible techni-
cal requirements emerge through develop-
ment and prototyping experience; feasible
human-computer interface and decision
support requirements emerge through
software and system exercise and use.

The Win-Win Spiral Model addresses
this risk through its risk-driven concurrent
engineering and evolutionary development
of SISOS products and processes. Mature,
highly precedented systems mostly can be
pre-specified with low risk; immature sys-
tems or unprecedented combinations of
systems may need several spiral cycles of
risk resolution to get the right combination
of requirements, architecture, system ele-
ments, and life-cycle plans.

The second major risk is the lack of rapid
response to change that happens in tradi-
tional project organizations where software
expertise and decision authority are scat-
tered at low management levels across var-
ious project elements. Instead, a project
needs an integrated software and informa-

tion processing leader reporting directly to
the project manager, with strong manage-
ment through the counterpart software
and information processing leaders who
report directly to each IPT leader and sys-
tem-supplier project manager.

The project also needs strong software
networking within the SISOS IPTs, which
may include IPTs for sensors, networks
and communications, command and con-
trol, ground/sea/air/space vehicles, logis-
tics, training, integration and test, model-
ing and simulation, and infrastructure.
Further, it needs collaborative supplier
integration and support of concurrent
incremental development as discussed in
Risk 4 and Risk 5.

The third major risk is key staff short-
ages and burnout. The key system and
software personnel on a SISOS have little
time to do their assigned work after partic-
ipating in all or most of the coordination
meetings that a SISOS requires. Further, a
SISOS evolutionary acquisition project can
go on for years, leading to a high risk of
staff burnout.

Risk mitigation practices include career
path development, mentoring junior staff
to provide replacements for key personnel,
incremental completion bonuses, flow-
down of contract award fees to project
performers, and recognition initiatives for
valued contributions.

Risk 2: Requirements/Architecture
Feasibility
The biggest risk here is committing to a set
of requirements or architecture without
validating feasibility. Requirements/archi-
tecture nature and criticality were exempli-
fied by the premature commitment to a
one-second-response time requirement by
a project discussed in [3]. The project had
to throw away 15 months’ work in archi-
tecting a custom $100 million system to
meet the one-second requirement when a
prototype belatedly showed that a $30 mil-
lion COTS-based system with a four-sec-
ond-response time would be sufficient.

Generally, requirements/architecture
infeasibilities regarding quality factors such
as response time, throughput, security,
safety, interoperability, usability, or evolv-
ability have the highest risk exposures.
They are discussed further in Risk 6. The
Win-Win Spiral Model’s anchor-point mile-
stone pass/fail criteria and feasibility ratio-
nale explicitly address this risk. They pre-
vent a project’s marrying its architecture in
haste and having to repent at leisure – that
is, if any leisure time is available.

Risk 3:Achievable Software Schedules
In the past, software cost has been the

most critical resource constraint. The large
volume of software in a SISOS tends to
put the software development schedule on
the project’s critical path more so than for
simple systems. Table 1 clearly shows the
magnitude of this risk.

The Win-Win Spiral Model’s anchor-
point milestones and feasibility rationale
again directly address this issue. Schedule
feasibility should be addressed both by
software cost and schedule estimation
models (using and comparing the results of
two independent models is a good prac-
tice), and by explicit development and crit-
ical-path analysis of project activity net-
works (probabilistic activity networks are
more conservative and realistic). The soft-
ware development time shown in Table 1
can be reduced by the major techniques for
increasing overall software productivity
(software reuse, COTS, reducing rework,
top personnel, and better tools), plus the
following two techniques that focus on
improving schedule directly.

Architecting and Organizing for Massive
Concurrent Development
If the SISOS could be architected so that
supplier-developed components could
instantly plug and play, Table 1 indicates
that organizing the project into many 300-
KSLOC components would get the job
finished in 33 months versus 108 months.
Unfortunately, the effects of architectural
imperfection and continuing change make
seamless integration an unrealistic objec-
tive, but the relative gains of reducing inte-
gration rework are worth trying to achieve.

The other main problem is the fraction
of development time it takes to produce a
fully validated integration architecture,
which has been shown to increase with the
amount of software needing to be inte-
grated. Figure 2 [13] shows how this trade-
off between architecting time before final-
izing SISOS supplier specifications and
rework time can be analyzed by the
Constructive Cost Model (COCOMO) II
Architecture and Risk Resolution Factor
[14]. It shows that for a 10,000 KSLOC
SISOS, the sweet spot minimizing the sum
of both architecting and rework time
occurs at about 37 percent of the develop-
ment time, with a relatively flat region
between 30 percent and 50 percent. Below
30 percent, the penalty curve for prema-
ture issuance of supplier specifications is
steep: A 17 percent investment in archi-
tecting yields a rework penalty of 48 per-
cent for a total delay of 65 percent com-
pared with a rework penalty of 20 percent
and a total delay of 50 percent for the 30
percent architecting investment.

This curve and its implications were
® Capability Maturity Model is registered in the U.S. Patent

and Trademark Office by Carnegie Mellon University.

Spiral Acquisition of Software-Intensive Systems of Systems

May 2004 www.stsc.hill.af.mil 7

convincing enough to help one recent
SISOS add 18 months to its schedule to
improve architectural specifications.

The Schedule as Independent Variable
Process
The schedule as independent variable
(SAIV) process [15] is a special case of the
Win-Win Spiral Model that applies when
there is a strong need to produce an initial
operational capability (IOC) by a particular
date, but the exact nature of the IOC is not
well specifiable in advance. The SAIV
process, which is compatible with the Win-
Win, incremental, and concurrent develop-
ment processes operates as follows:
• Work with stakeholders in advance to

achieve a shared product vision, realis-
tic expectations, and prioritized re-
quirements.

• Estimate the maximum size of soft-
ware buildable with high confidence
within the available schedule.

• Define a core-capability IOC content
based on priorities, end-to-end usabili-
ty, and need for early development of
central high-risk software.

• Architect the system for ease of drop-
ping or adding borderline-priority fea-
tures.

• Monitor progress; add or drop features
to accommodate high-priority changes
or to meet schedule.
The SAIV process has been used suc-

cessfully to date on all sizes of SISOS. For
example, lower-priority requirements origi-
nally within one SISOS program’s IOC set
such as automatic real-time natural lan-
guage translation were deferred to create
an achievable core-capability IOC.

Risk 4: Supplier Integration
As the SISOS system suppliers integrate
their architectures and components and
jointly respond to changes, they will need
to share information and rapidly collabo-
rate to negotiate changes in their products,
interfaces, and schedules. The COCOMO
II team cohesion factor yields an added 66
percent in effort and up to 30 percent in
added schedule between seamless team
cohesion and very low team cohesion.

In mitigating these risks, the win-win
aspects of the Win-Win Spiral Model
became paramount. Strategies for achiev-
ing win-win supplier participation include
making them first-class stakeholders in
negotiating their parts of SISOS objec-
tives, constraints, priorities, and preferred
alternatives in Figure 1; establishing early
training and team-building activities for
selected suppliers; proactively identifying
needs for supplier collaboration and net-
working of their lead software and system

architects; and establishing contract provi-
sions and award fee criteria for effective
collaboration in such areas as schedule
preservation, continuous integration sup-
port, cost containment, technical perfor-
mance, architecture and COTS compatibil-
ity, and program management and risk
management. An example award fee evalu-
ation process and criteria are provided in
[16]. One recent large SISOS program has
implemented a similar shared destiny process
into its supplier contracting.

Risk 5:Adaptation to Rapid Change
As discussed earlier, adaptation to change
is a SISOS necessity, but continuous adap-
tation to change across dozens of suppli-
ers, IPTs, and external interoperators can
be completely destabilizing. Within the
Win-Win Spiral Model, the best strategy
for balancing change and stability is incre-
mental development. As seen in Figure 1,
the spiral cycles combine architecting and
development with key parts of high-risk
elements developed in a Build 1 and used
as part of the feasibility rationale for the
SISOS Life-Cycle Architecture (LCA)
milestone. The post-LCA builds have the
suppliers concurrently developing incre-
ments of capability within the validated
architecture established at the LCA mile-
stone.

To stabilize development, proposed
changes are deferred as much as possible
to later builds, and the SAIV process can
be used to drop lower-priority features not
needed by other suppliers to keep on a
common schedule. This process is similar
to the Microsoft synchronize-and-stabilize
process [17] and works best if there is
some slack built into the end of each build.
Other strategies for adaptation to rapid
change include proactive technology-
watch, COTS-watch, and interoperability-
watch activities; cross-supplier and cross-
IPT networking; change-anticipatory archi-
tectures; and agile change control and ver-
sion control capabilities.

An example of the success of these
practices has been the Internet Spiral
Process [18] used to adapt and evolve the
Internet well before the formalization of
the spiral model.

Risk 6: Software Quality Factor
Achievability
As discussed in Risk 2, software quality
factors are the most difficult sources of
SISOS requirements/architecture feasibili-
ty risk. These factors are strongly scenario-
dependent and interact in complex ways
that cut across supplier and IPT bound-
aries. A good example is a vehicle self-
defense timeline, which imposes perfor-

mance requirements and trade-offs across
sensor, networking, fusion, command-con-
trol, software infrastructure elements of a
SISOS and more, along with additional
trade-offs between performance, security,
usability, safety, and fault tolerance.

A key Win-Win Spiral strategy for qual-
ity factor achievability is to establish a qual-
ity factor trade space by replacing single-
value quality factor requirements with a
range between acceptable and desired val-
ues. This provides the system and software
architects with enough degrees of freedom
to converge to a mutually acceptable – or
win-win – combination of achievable qual-
ity factor values. Another key strategy is
using the SEI’s Architecture Trade-off
Analysis Method (ATAM) for stakeholder
establishment, prioritization, and assess-
ment of quality factor values achievable
with a given architecture, and identification
of strategies to bring the values up to
acceptable levels. Several examples of suc-
cessful ATAM use are provided in [19].

Risk 7: Product Integration and
Electronic Upgrade
The SISOS software needs to be integrat-
ed across supplier hierarchies, IPT
domains, computing platforms, vehicle
platforms, critical scenarios, operational
profiles, system modes, and friendly-to-
adversarial environments. Having too
much or too little concurrency across these
dimensions of integration can cause signif-
icant delays and rework. This rework needs
to be fed back to developers who will
already be busy developing the next build,
causing even further SISOS delays.

The benefits of electronic software
upgrades discussed at the start of this arti-
cle come with several types of version mis-
match risks. Examples include putting the
wrong version’s upgrades onto a platform

Percent of Project Schedule
Devoted to Initial
Architecture and Risk
Resolution

Added Schedule Devoted to
Rework
(COCOMO II RESL Factor)

Total Percent Added Schedule

Percent of Time Added for Architecture and Risk Resolution

P
er

ce
n

t
o

f
T

im
e

A
d

d
ed

 t
o

 O
ve

ra
ll

S
ch

ed
u

le

100

90

80

70

60

50

40

30

20

10

0
0 10 20 30 40 50 60

10,000
KSLOC

100 KSLOC

10 KSLOC

Sweet Spot

Figure 2: How Much Architecting Is Enough?

in the field or having different fielded plat-
forms running different versions of the
SISOS software. These mismatches can
cause software crashes, communication
outages, out-of-synchronization data, or
mistaken decisions.

Key Win-Win Spiral Development
strategies for addressing these risks include
up-front involvement of software-oriented
integration, test, supportability, and mainte-
nance stakeholders in win-win negotiations
affecting stakeholders’ ability to perform;
early establishment, usage, and incremental
growth of software and system integration
laboratories for the overall SISOS and for
its key IPT areas; and architecting the soft-
ware to accommodate continuous opera-
tion and synchronized upgrades (for exam-
ple, by enabling parallel operations of old
and new versions while validating and syn-
chronizing an upgrade). Again, the Internet
is a highly successful example.

Risk 8: Software COTS and Reuse
Feasibility
The first two sections in this article includ-
ed discussion of the benefits of free COTS
software changes and some of the SISOS
risks involved in synchronizing COTS
upgrades across a wide variety of indepen-
dently evolving COTS products. For a
SISOS with many suppliers developing
ambitious capabilities within tight budgets
and schedules of more than 30 months, the
temptation is to not upgrade the COTS
products and to deliver unsupported ver-
sions [20]. In one case, we encountered a
large system delivered to the customer and
users with 55 of its 120 COTS products
operating on unsupported releases.

Win-Win Spiral Development mitiga-
tion strategies for COTS-related risks
include contract provisions prohibiting the
delivery of unsupported COTS compo-
nents; establishing key COTS vendors as
strategic partners and success-critical stake-
holders; proactive COTS-watch experi-
mentation and participation in user groups
(for example, to cover security and real-
time performance concerns), operating a
SISOS-wide COTS product and version
tracking and compatibility analysis activity;
and developing and executing a strategy for
periodic synchronized COTS upgrades.

Software reuse is a powerful strategy
for reducing software cost and schedule,
but frequently estimates of 80 percent
software reuse on a suppliers’ system turn
out to be more like 40 percent once the dif-
ferent natures of the SISOS and the legacy
software are recognized. Win-Win Spiral
Development strategies for mitigating soft-
ware reuse risks include validating the
compatibility of supplier reuse compo-

nents with SISOS product line architec-
tures, constraints, and assumptions; contin-
uous data analysis of actual versus estimat-
ed reuse parameters and recalibration of
reuse estimates; and performing root cause
analyses of reuse successes and failures.
Further reuse and product line best prac-
tices and successful examples can be found
in [21] and [22].

Risk 9: External Interoperability
Large SISOS are likely to require interop-
erability with more than 100 independent-
ly evolving external systems (and even
more if COTS components are included).
As with COTS, there are major risks of
some or all of the SISOS systems getting
out of synchronization with these external
systems. Major Win-Win Spiral Develop-
ment strategies for risk mitigation include
establishing proactive stakeholder win-win
relationships with critical interoperability
systems, including memoranda of agree-
ment on interoperability preservation;
proactive participation in the evolution of
the Joint Capabilities Integration and
Development System [23]; operating an
external systems interoperability tracking
and compatibility analysis activity; and
inclusion of external interoperability in
modeling, simulation, integration, and test
capabilities. Here again, the Internet pro-
vides an excellent example.

Risk 10:Technology Readiness
The scale and mission scope of a SISOS
may far exceed the capabilities of tech-
nologies that have demonstrated consider-
able maturity in smaller systems or friend-
lier environments. Examples are adaptive
mobile networks, autonomous agent coor-
dination capabilities, sensor fusion capabil-
ities, and software middleware services.
Assuming that a technology’s readiness
level on a smaller system will be valid for a
SISOS runs a major risk of performance
shortfalls and rework delays.

Primary Win-Win Spiral Development
risk mitigation strategies focus on satisfy-
ing a feasibility rationale for the key
advanced technologies, including the exer-
cise of models, simulations, prototypes,
benchmarks, and working SISOS applica-
tions on representative SISOS normal, cri-
sis, and adversarial scenarios. Risk manage-
ment strategies include identifying fallback
technology capabilities in case key new
technologies prove inadequate for SISOS
usage. These practices are all consistent
with the guidance in DoD Instruction
5000.2.

Conclusion
Competitive pressures for increased inte-

gration and high performance of commer-
cial, industrial, and public services capabil-
ities such as military defense or homeland
security are leading to multi-domain and
multi-supplier systems of systems, which
are increasingly software-intensive.
Acquiring such a SISOS has many differ-
ences from acquiring traditional systems.
Besides the significantly larger numbers of
options, changes, suppliers, and domains
to accommodate, there are significantly
larger numbers of external interfaces,
COTS products, coordination networks
and meetings, operational stakeholders,
and emergent versus pre-specifiable
requirements.

These differences in scope, scale, and
dynamism have made traditional acquisi-
tion practices increasingly inadequate.
Current initiatives toward evolutionary
acquisition and spiral development are
promising but many new practices need to
be worked out. Experiences on several
SISOS have identified both a set of top-10
SISOS risks and corresponding risk mitiga-
tion strategies currently being applied on
some SISOS.

Applying the corresponding risk miti-
gation strategies within a Win-Win Spiral
Development and evolutionary acquisition
process is meeting with some success, and
appears to be a good starting point for
identifying and coping with SISOS risks.
But much more experience on SISOS
acquisition and development will be need-
ed to achieve mature SISOS acquisition
capabilities.◆

References
1. Harned, D., and J. Lundquist. “What

Transformation Means for the Defense
Industry.” The McKinsey Quarterly 3
Nov. 2003: 57-63.

2. Rechtin, E., and M. Maier. The Art of
Systems Architecting. 2nd ed. CRC
Press, 2001.

3. Boehm, B., and W. Hansen. “The Spiral
Model as a Tool for Evolutionary
Acquisition.” CrossTalk May 2001:
4-11.

4. Boehm, B., and D. Port. “Balancing
Discipline and Flexibility With the
Spiral Model and MBASE.”
CrossTalk Dec. 2001: 23-28.

5. DoD Directive 5000.1. “The Defense
Acquisition System.” Washington,
D.C.: U.S. Department of Defense, 12
May 2003.

6. DoD Directive 5000.2. “Operation of
the Defense Acquisition System.”
Washington, D.C.: U.S. Department of
Defense, 12 May 2003.

7. Meyers, B.C., and P. Oberndorf.
Managing Software Acquisition: Open

Best Practices

8 CROSSTALK The Journal of Defense Software Engineering May 2004

Spiral Acquisition of Software-Intensive Systems of Systems

Systems and COTS Products Addison-
Wesley, 2001.

8. Boehm, B., and V. Basili. “Software
Defect Reduction Top-10 List.”
Computer Jan. 2001: 135-137.

9. Royce, W.E. Software Project
Management. Addison-Wesley, 1998.

10. USC-Center for Software Engineering.
“Guidelines for Model-Based (System)
Architecting and Software Engineer-
ing.” Los Angeles: University of
Southern California, 2003.

11. McGarry, J., and R. Charette. “Systemic
Analysis of Assessment Results from
DoD Software-Intensive System Ac-
quisitions.” Tri-Service Assessment In-
itiative Report. Washington, D.C.: OSD
Defense, Acquisition, Technology, and
Logistics, 2003.

12. Paulk, M., et. al. The Capability Ma-
turity Model: Guidelines for Improving
the Software Process. Addison-Wesley,
1994.

13. Boehm, B., and R. Turner. Balancing
Agility and Discipline: A Guide for the
Perplexed. Addison-Wesley, 2004.

14. Boehm, B., et al. Software Cost Esti-
mation With COCOMO II. Prentice
Hall, 2000.

15. Boehm, B., et al. “Using the Spiral
Model and MBASE to Generate New
Acquisition Process Models: SAIV,
CAIV, and SCQAIV.” CrossTalk

Jan. 2002: 20-25.
16. Reifer, D., and B. Boehm. “A Model

Contract/Subcontract Award Fee Plan
for Large, Change-Intensive Software
Acquisitions.” Los Angeles: USC Cen-
ter for Software Engineering, Apr.
2003.

17. Cusumano, M., and R. Selby. Microsoft
Secrets. The Free Press, 1995.

18. U.S. Air Force Scientific Advisory
Board. “Information Architectures
That Enhance Operational Capability
in Peacetime and Warfare.” Washing-
ton, D.C.: U.S. Air Force, Feb. 1994.

19. Clements, P., R. Kazman, and M. Klein.
Evaluating Software Architectures:
Methods and Case Studies. Addison-
Wesley, 2002.

20. Basili, V., and B. Boehm. “COTS-Based
Systems Top-10 List.” Computer May
2001: 91-93.

21. Reifer, D. Practical Software Reuse.
John Wiley and Sons, 1997.

22. Clements, P., and L. Northrop.
Software Product Lines: Practices and
Patterns. Addison-Wesley, 2002.

23. Joint Chiefs of Staff Manual. “Opera-
tion of the Joint Capabilities Devel-
opment System.” CJCSM 3170.01.
Washington, D.C.: Chairman of the
Joint Chiefs of Staff, 24 June 2003.

May 2004 www.stsc.hill.af.mil 9

About the Authors

Barry Boehm, Ph.D.,
is the TRW professor
of software engineer-
ing and director of
the Center for Soft-
ware Engineering at

the University of Southern Califor-
nia. He was previously in technical
and management positions at
General Dynamics, Rand Corp.,
TRW, and the Office of the
Secretary of Defense as the director
of Defense Research and Engineer-
ing Software and Computer Tech-
nology Office. Boehm originated
the spiral model, the Constructive
Cost Model, and the stakeholder
win-win approach to software man-
agement and requirements negotia-
tion.

University of Southern California
Center for Software Engineering
Los Angeles, CA 90089-0781
Phone: (213) 740-8163

(213) 740-5703
Fax: (213) 740-4927
E-mail: boehm@sunset.usc.edu

Victor R. Basili,
Ph.D., is Professor of
Computer Science at
the University of
Maryland, College Park
and the Executive

Director of the Fraunhofer Center –
Maryland. He was a founder of the
Software Engineering Laboratory at
NASA Goddard Space Flight Center.
He works on measuring, evaluating,
and improving software processes and
products. Basili has received several
awards, including the 2000 Association
for Computing Machinery (ACM) SIG-
SOFT Outstanding Research Award
and the 2003 Institute of Electrical and
Electronics Engineers (IEEE)
Computer Society Harlan Mills Award.
He is an IEEE and ACM Fellow.

Fraunhofer USA Center for
Experimental Software Engineering
University of Maryland
4321 Hartwick RD
STE 500
College Park, MD 20742-3290
Phone: (301) 403-8976
Fax: (301) 403-8976
E-mail: basili@cs.umd.edu

A. Winsor Brown is a
Senior Research Scien-
tist and Assistant
Director of the Univer-
sity of Southern Cali-
fornia Center for

Software Engineering. As an engineer
with decades of experience in large and
small commercial and government
contracting companies, he started his
career in computer hardware design
but shifted to software within months
and remains there today. He has a
Bachelor of Engineering Science from
Rensselaer Polytechnic Institute and a
Masters of Science in Electrical
Engineering from California Institute
of Technology.

University of Southern California
Center for Software Engineering
941 West 37th Place
Los Angeles, CA 90089-0781
Phone: (714) 891-6043
Fax: (213) 740-4927
E-mail: awbrown@cse.usc.edu

Richard Turner, D.Sc.,
is a member of the
Engineering Manage-
ment and Systems
Engineering Faculty
at The George

Washington University in Washing-
ton, D.C. Currently, he is the assistant
deputy director for Software En-
gineering and Acquisition in the
Software Intensive Systems Office of
the Under Secretary of Defense
(Acquisition, Technology, and
Logistics). Turner is co-author of the
book “CMMI Distilled.”

1931 Jefferson Davis HWY
STE 104
Arlington,VA 22202
Phone: (703) 602-0581 ext. 124
E-mail: rich.turner.ctr@osd.mil

10 CROSSTALK The Journal of Defense Software Engineering May 2004

The events of 9-11 in America and the
ongoing actions throughout the world

have keenly focused our thoughts on
issues of protection and homeland securi-
ty. Portions of the solutions to these prob-
lems will be in better human intelligence,
greater diligence, and resources applied to
traditional security. However, technology-
driven solutions are needed to better
increase the use of in-place resources and
meet newer threats.

Four system areas are vital to protect-
ing America: homeland security, missile
defense, intelligence/surveillance/recon-
naissance (ISR), and precision engage-
ment. These all require advanced software
technologies that will enable the develop-
ment of integrated mission systems.
These technologies go beyond existing
software technologies traditionally
focused on stovepipe software component
or platform solutions. Technologies sup-
porting system architecture development
are important for mission success.

Homeland Security
The threat of terrorist attacks in the
United States brings into vivid focus the

need to harness technology to detect
threats and protect against and respond to
them. Table 1 presents a list of some
recent initiatives directly related to home-
land security; the applicable enabling
advanced software technologies are also
listed. In some stand-alone activities such as
bomb detection or airline missile protec-
tion, no new software technologies are
needed. More work in domain-specific
algorithms may be required, but funda-
mental software techniques are adequate
for these programs to succeed.

Common to many homeland security
programs is the need for searching, min-
ing, and analyzing large databases (for
example, visa tracking, biometric pattern
matching, and analysis of foreign language
materials). The fundamentals of these
types of database technologies exist and
upgrades in technologies are ongoing, par-
ticularly in enhancements to speed and
accuracy.

New needs to integrate communica-
tion systems from agencies that formerly
did not use common equipment (police,
fire, etc.) and the need to fuse information
such as weather data and models of chem-

ical/biological agents requires the integra-
tion of existing system architectures.
Tools and techniques to develop these
software-intensive system architectures
such as using ontology for information
definition/retrieval and using reference
architectures are needed for the successful
development of these systems.

Missile Defense
Recent developments in world events and
national policy have renewed the dialogue
on missile defense. The mission of missile
defense is to defend successfully against
missiles of all ranges (short, intermediate,
and long) in all phases of flight (boost,
midcourse, and terminal). All components
must be fully networked to assure coordi-
nated operations with very short time-
lines. An operational missile defense sys-
tem must have three fundamental techni-
cal capabilities and associated software
technologies: sensors, interceptors, and
battle management, command, and con-
trol (BMC2), as shown in Table 2.

The sensor components (radar,
infrared, and electro-optical) have been
developed and will continue to be
matured. We are seeing model-based soft-
ware techniques used to support the defi-
nition of architectures and generation of
executable code for some of these appli-
cations. The interceptor components of
these systems require software data fusion
approaches and system architectures to
better enable the data fusion. The most
software-intensive portion of missile
defense is the BMC2 component. The
need for handling large volumes of infor-
mation accurately and within very short
timelines places demands on the develop-
ment of effective system architectures.
This area requires a host of advanced
software techniques to develop effective
system architectures, as used in software
techniques to aid human decision making
(intelligent agents, cognitive computing
techniques, etc.).

Software Engineering Technology

Advanced Software Technologies for Protecting America
Gregory S. Shelton, Randy Case, Louis P. DiPalma, and Dan Nash

Raytheon Company

Advanced software technologies are required for the success of homeland security, mis-
sile defense, intelligence/surveillance/reconnaissance, and precision engagement. State-
of-the-art software technologies for system architecture development such as model-dri-
ven computing, reference architectures, and supporting technology enablers are needed
for these critical systems.

Detection Systems
Airport Bomb Detection Software Technologies Are Adequate

Open Source Analysis
 Search Engines
 Automatic Language Translation
 Data Mining

Entry/Exit Visa Tracking Data Mining
 Predictive Analysis

Protection Systems
Biometrics Intelligent Database Searching
Commercial Airline Missile
Protection

Software Technologies Are Adequate

Response Systems

Integrated Communications
Systems (Fire, Police, National
Guard, etc.)

 Information Organization/Retrieval
Using Ontology

 Context-Sensitive Reference
Architectures

Chemical/Biological Agent
Response

Data Fusion for Virtual Weather
Modeling

Advanced Software Technologies
Needed

Table 1: Software Technologies Needed for Homeland Security

Thursday, 22 April 2004
Speaker Luncheon: 12:20 - 1:20

Marriott Grand Ballroom

Advanced Software Technologies for Protecting America

May 2004 www.stsc.hill.af.mil 11

ISR
The ISR programs cover the full spectrum
of information management, providing
the ability to task, collect, process, exploit,
and disseminate national and tactical tar-
get data (see Table 3). These abilities are
crucial for warfighters to achieve informa-
tion dominance throughout the entire bat-
tlespace. The ISR activities are typically
composed of tasking, collection, and
activities related to processing/exploita-
tion/dissemination.

A key attribute of ISR is the system
integration of multiple sensors, platforms,
and networks. This system of systems is char-
acterized by the need for well-defined sys-
tem architectures to support the needed
interoperability and integration. New soft-
ware technologies common to all tasks in
ISR include ontology for information
management, reference architectures, and
model-driven computing architectures.
Advances in data mining and intelligent
agents will expedite handling of large
information volumes in real time.
Interoperability and information dissemi-
nation to various users will require new
techniques to handle multi-level security
issues.

Precision Engagement
Precision engagement systems enhance
America’s defense by providing warfight-
ers with highly accurate, adverse weather,
rapid sensor-to-shooter capabilities
required on today’s battlefields (see Table
4, next page). Precision engagement works
in conjunction with ISR to provide a wide
range of capabilities.

The information from ISR that is
needed to provide targeting for precision
munitions requires using software tech-
niques that support the development of
system architectures (ontology, reference
architectures, and model-driven architec-
ture development). In particular, shorter
sensor-to-shooter timelines require a sys-
tem architecture construction optimized
for time sensitivity.

Software Technologies for
System Architecture
Development – A Common
Theme
Systems being deployed and developed for
protecting America require advanced soft-
ware technologies. In some cases, where
the particular system architecture is stand-
alone or composed of mostly point-to-
point connections and limited broadcast-
ing, the software approaches of today are
sufficient. There will still be needed devel-
opment of more capable algorithms and

processors to support those algorithms,
but the underlying software tools, para-
digms, and enablers do not require further
extensive research and development to be
successful.

In many of the other above cases, we
find as a common theme the need for
existing software capabilities to be extend-
ed so that large-scale systems/platforms
can work together to achieve the required
missions. We believe that success in the
new system-of-systems environment is
enhanced by using software that will be

more intelligent and developed as a direct
offspring of modeling and simulation
activities within the context of executable
enterprise reference architectures. These
technologies are being developed today at
Raytheon, other defense contractors, and
university/research organizations.

The left column of Table 5 (see next
page) shows mature deployed software
technologies used in defense applications
today. The right column summarizes the
software advances needed for the system
types previously described. While these

Missile Defense Component Advanced Software Technologies
Needed

Sensors – Detect, acquire, and track
target missiles; predict their path; identify
a threat among decoys; and direct the
interceptor to destroy the missile.

Interceptors – Seek, discriminate, and
destroy targets.

BMC2 – Provides the commander with
threat and tracking data from sensors,
suggests the most effective response,
directs interceptors to the target, and
measures damage and effectiveness.

 Context-Sensitive Software Reference
Architectures

 Model-Driven Software Architectures

 Data Fusion

Context-Sensitive Software Reference
Architectures

 Intelligent Software Agents

 Human Factors Interactions With
Complex Software Systems

 Model-Driven Software Architectures

 Cognitive Computing Techniques

Table 2: Software Technologies for Missile Defense

ISR Activity Advanced Software Technologies
Needed

Example ISR Tasking Systems

Example ISR Collection Systems

Example ISR Process/Exploit/
Disseminate Systems

 UAV Tactical Control System
 Global Hawk Mission Control Element
 Intelligence Satellites Control Element
 Space-Based Infrared Systems
 (SBIRS) Control Element

 Global Hawk Integrated Sensor Suite
 U-2 Advanced Synthetic Aperture
 Radar

 Rivet Joint Aircraft Sensors

 Multi-Platform Radar Technology
Insertion Program (MP-RTIP)

 Cooperative Engagement Capability
 (CEC)

 Global Broadcast Service (GBS)
 National Polar-Orbiting Operational

 Information Organization/Retrieval
Using Ontology

 Intelligent Software Agents

 Context-Sensitive Reference
Architectures

 Human Factors Interactions With
Complex Systems

 Information Organization/Retrieval
Using Ontology

 Context-Sensitive Reference
Architectures

 Human Factors Interactions With
Complex Systems

 Intelligent Software Agents

 Data Mining
 Multi-Level Security

 Model-Driven Computing

 Information Organization/Retrieval
Using Ontology

 Context-Sensitive Reference
Architectures

 Intelligent Software Agents
 Model-Driven Computing
 Human Factors Interactions With

Complex Systems
 Data Mining
 Cognitive Computing Techniques
 Multi-Level Security

 Model-Driven Computing

Environmental Satellite System
(NPOESS)

Table 3: ISR Systems Software Technologies

Software Engineering Technology

12 CROSSTALK The Journal of Defense Software Engineering May 2004

technologies are in various states of matu-
rity (including some such as data mining,
which are fairly robust), they have not
been widely deployed in key systems.
Technologies for the development of sys-
tem architectures are common to many of
the systems needed for protecting
America.

Looking at the key areas for defending
and protecting America, we find that sup-
port for development of large, integrated
mission systems is needed. The need for
well-defined context-sensitive architec-
tures is paramount for achieving these sys-
tems of systems such as Common
Operating Picture (COP), DDX
Destroyer, Future Combat System, or
Joint Strike Fighter. The semantics of
these large amounts of information are
captured using ontological tools. The ref-
erence architectures are defined within the

contexts of architecture frameworks.
Finally, the architectures themselves are
actually executable models supported by
model-based, architecture-driven software
development. Other enabling technologies
such as cognitive computing and intelli-
gent agents are all focused toward the
software system development. Figure 1
illustrates the relationships of several key
software technologies that will help realize
the system architectures needed in the
future.

Information Organization/
Retrieval Using Ontology
The initial step in developing large-scale
system architectures is managing large-
scale information semantics. Military
knowledge workers are immersed in data
smog. We have far more capability to cre-
ate information than to find and retrieve

relevant information. The result is huge
amounts of amorphous, unstructured
data that overwhelm us when we need
pertinent, actionable data for informed
decisions.

Technologies to help manage, search,
and retrieve data include metadata for data
descriptions, taxonomies for data cate-
gories, and ontology for data relationships
(see Figure 2). Applications have been dri-
ven by commercial needs to identify infor-
mation on the semantic Web and to pro-
vide Web services that deliver the right
information to consumers. The value of
such technologies to military applications
is recognized by the Defense Advanced
Research Projects Agency (DARPA), who
sponsored development and deployment
of a machine-processable ontology
description language called the DARPA
Agent Markup Language (DAML)1.

Military information users must make
life-critical decisions based on large
amounts of time-sensitive, rapidly chang-
ing inputs from multiple sensors and
sources. Having a single, consistently
applied meaning for concepts, categories,
and relationships reduces confusion, mis-
interpretation, and mistakes. Cognitive
overload is reduced by supplying users
with information that is relevant to their
location, situation, and responsibilities.
Ontology can be used to support both
improvements. An example of where this
applies is the Common Operating Picture
(COP), which is a distributed database.
Currently it is packed with disparate and
incompatible data. In the future, human
operators and software agents marking up
information from sensors or sources in
accordance with military standardization
will generate it.

The Common Relevant Operating
Picture is obtained by consumers (humans
or software agents) subscribing to relevant
information specified in accordance with
the same ontology used in the creation of
the COP.

Context-Sensitive Reference
Architectures
Reference architectures (see Figure 3)
bridge the gap between processes address-
ing the development of contingency oper-
ations for future systems and the imple-
mentation of domain-specific architec-
tures that build on legacy systems while
incorporating new technologies and capa-
bilities. Modeling and simulation is a key
tool to support evaluating the effective-
ness of the reference architectures and the
resulting domain-specific architectures.

The results of modeling and simula-

Precision Engagement Activity

Information Dominance and Enhanced
Situational Awareness

Precision Geo-Location of
Time-Sensitive Targets

Shorter Sensor-to-Shooter
Engagement Chain

 Context-Sensitive Reference
 Architectures

Advanced Software Technologies
Needed

Wide Range of Precision Effects
in Any Weather

 Information Organization/Retrieval
Using Ontology

 Context-Sensitive Reference
Architectures

 Intelligent Software Agents
 Model-Driven Computing
 Human Factors Interactions

With Complex Systems
 Data Mining
 Multi-Level Security

 Intelligent Software Agents

 Model-Driven Computing

 Software Technologies Are Adequate

Table 4: Precision Engagement Software Technologies

Mature, Deployed, Software
Technologies

 Technologies for Development
 of System Architectures

Advanced Software Technologies
Supporting Protection of America

 High-Level Programming Languages

 Information Organization/Retrieval
 Using Ontology
 Context-Sensitive Reference

Architectures
 Model-Driven Architecture
 Development
 Reference Architecture Frameworks
 and Associated Development
 Processes

 Data Mining

 Human Factors Interactions With
 Complex Systems

 Compilers
 Operating Systems
 Object-Oriented Technologies
 Relational Databases
 Internet
 Transmission Control Protocol/
 Internet Protocol-Based Layered
 Networking
 XML (Extensible Mark-Up Language) Other Advanced Software

 Technology Needs

 Intelligent Software Agents

 Better Collaboration Tools
 Cognitive Computing Techniques

Table 5: Mature and New Software Technologies

tion analysis provide metrics that can be
used to eliminate, aggregate, or validate
the key components and relationships
with the family of architectures, using
information organized via taxonomies and
associated ontology. The reference archi-
tecture is continually updated and refined
based on this feedback loop. The refer-
ence architecture is not the final blueprint
for implementing systems-specific design
and integration, but rather a reference of
concepts providing the enabling corner-
stone upon which systems can be empow-
ered with large-scale mission capabilities.
It is up to the organization accomplishing
a software systems task to engineer and
build an instance of the reference archi-
tecture to suit the needs of a particular
domain, while maintaining compatibility
with the overall standard reference archi-
tecture.

Reference architecture can be consid-
ered to have four abstract aspects: social,
cognitive, information, and physical. Each
aspect provides the context upon which to
view system instances. Collections of sys-
tems instances change over time. The
dynamics of a real-world environment
necessitate the flexibility inherent in refer-
ence architecture to take into account
changing elements over time.

The combination of the reference
architecture and the four domain aspects
provides the basis for examining mission
systems in three dimensions instead of the
traditional two as presented by the
Department of Defense Architecture
Framework (DoDAF)2. This three-dimen-
sional view provides the basis for systems
interoperability in a logical and meaningful
way. Further analysis makes apparent the
relationships between data, information,
knowledge, and understanding required
for combined systems operations and effi-
cient management of available communi-
cations resources.

The mission-system reference archi-
tecture has the following properties:
• Provides the conceptual framework

for specifying the four aspects (social,
cognitive, information, and physical)
of systems within the bounds of oper-
ational, system, and technical views
prescribed by DoDAF.

• Acts as a template to guide domain-
specific implementations of distrib-
uted network-centric systems while
allowing a variety of design solutions.

• Defines the ontology for discussion
and analysis purposes.

• Defines a complete set of architec-
tural elements with well-defined
interactions, functionality, and rela-
tionships with themselves and the

external context.
• Defines how the elements communi-

cate with each other, the basic opera-
tions associated with each element,
and the nature of the communication.

Enterprise Reference
Architecture Processes
The U.S. government has established
direction and expectation for how com-
plex systems of the future will be devel-
oped and integrated – via an ever-increas-
ing emphasis on the importance of for-

malized architecture and enterprise archi-
tecture. Many aerospace and information
technology companies are now developing
and maturing their architecting processes
to meet their business needs.

Lockheed Martin deploys its
Architecture-Based Design and ARQuest
Blueprint. Northrop Grumman has its
Information Systems Architecture
Analysis Continuum. IBM has the
Enterprise Architecture Method. Boeing
and General Dynamics promote their
open systems architecture frameworks,

May 2004 www.stsc.hill.af.mil 13

Advanced Software Technologies for Protecting America

Information Retrieval
Using Ontology

Defines
Semantics

Context-Sensitive
Reference Architecture

Reference Architecture
Development Processes
(REAP, etc.)

Provides
Development and
Documentation Steps

Executable Architectures Using
Model-Based Architecture Development

Definitions/
Parameters

Enabling Software Technologies:

- Cognitive Computing

- Intelligent Agents

- Data Mining

- Collaboration

Produces
Code

Defines
Architecture

Software System
Architecture Realization
(Common Air Picture,
DDx, FCS, JSF)

Figure 1: Key Software Architecture Technologies Interact to Support Large Mission Systems

Sensor 1

Sensor 2

Source 1

Source 2

DAML
Markup
Agent 1

DAML
Markup
Agent 2 DAML

Markup
Agent k

DAML
Markup

Agent k+1

Information
Grid

DAML
Search
Agent

Publish

Subscribe

Information Generation and Markup Information
Retrieval

Sensor 1

Sensor 2

Source 1

Source 2

DAML
Markup
Agent 1

DAML
Markup
Agent 2 DAML

Markup
Agent K

DAML
Markup

Agent K+1

DAML
Search
Agent

PublishPublish

SubscribeSubscribe

Figure 2: Ontology-Based Information Retrieval

Architecture
and

Technology
Recommendation:

Make
Buy

Partner

Legacy Architectures

Modelling
and

Simulation

Families of Architectures

Solutions
Programs

Vision

CONOPS

Existing and
In-Development
Architectures

Reference Architecture

Recommendation:
KEEP

Recommendation:
CUT

Sole Capability
(Critical)

Necessary
Duplications

Unnecessary
Duplications

Duplication

Non-Critical
Capability

Gaps

A
S

S
E

S
S

M
E

N
T

S

Need

System

Figure 3: Reference Architecture Application to Domain-Specific Instances

Software Engineering Technology

14 CROSSTALK The Journal of Defense Software Engineering May 2004

Bold Stroke and OpenWings, respectively.
Government, industry, and academia are
establishing consortia, certification pro-
grams, and graduate curriculum to address
the educational needs of this new disci-
pline.

The system architecting process that
Raytheon uses is known as Raytheon
Enterprise Architecture Process (REAP)
[1]. It extends a traditional focus on tech-
nical architecture to include business archi-
tecture, providing a comprehensive view
across the enterprise. The REAP defines
an end-to-end architecture process based
on industry and government standards,
including The Open Group Architecture
Framework3 Command, Control, Com-
munications, Computers, Intelligence,
Surveillance, and Reconnaissance/De-
partment of Defense Architecture Frame-
work4, Zachman Framework for Enter-
prise Architecture5, and the Software Engi-
neering Institute’s Architecture Trade-off
Analysis MethodSM (ATAMSM)6.

Components
There are established industry and gov-
ernment standards to help address enter-
prise-wide architectural alignment among
customer mission, business rules, data,
application systems, organization, and
technology. The primary standards uni-
fied within Raytheon’s architecture
process and other architecture processes
to fulfill the components noted above are
the following:
• Methodology: The Open Group

Architecture Framework (TOGAF),
Enterprise Edition.

• Products: DoDAF, final draft
Zachman Framework for Enterprise
Architecture.

• Formats: Unified Modeling
Language7, Integrated Computer-
Aided Manufacturing Definition8,
DoDAF templates.

• Validation: ATAM.
It is important to note that although

there are several integrated frameworks,
they each address very different elements
of the overall architecting process and
their interrelation is both necessary and
complementary.

Activities
Architecture processes are comprised of
five primary activities: enterprise under-
standing, architecture planning, business
architecting, technical architecting, and
architecture validation. These activities are
iterative in nature, internally and externally
to the other.

In Raytheon’s case, the five activities
act as a wrapper around the phases of

TOGAF’s Architecture Development
Method (ADM), providing supplemental
guidance and describing its relationships
to other standards. These subprocesses
extending the TOGAF ADM include
those for customer-focused architecting,
quality attribute analysis, architecture con-
cordance/configuration/consolidation,
DoDAF product generation, ATAM, and
quality attribute assessments. The comple-
tion of these activities results in a validat-
ed architecture package describing the
enterprise from a variety of viewpoints or
perspectives.

Model-Based Computing
Model-based computing is the term for sys-
tem and software development that is dri-
ven and centered on models. These models
are used to specify systems and software
architecture, and low-level system design
details. The models provide the means to
translate the specified systems architectural
artifacts defined via system architecture
development processes into constituent
platform-specific and platform-indepen-
dent components. The concept of develop-
ing platform-independent models, followed
by platform-specific models is quite power-
ful and allows our programs to migrate
models to new computing hardware with
minimal impact. Platform-independent
models can also be used in multiple envi-
ronments such as simulations, using the
same system model.

This concept has been standardized via
the Object Management Group (OMG)9 in
the Model-Driven Architecture initiative.
The OMG is working to standardize these
concepts in order to promote tool develop-
ment and interoperability. Recently, the
OMG has also formed an interest group
specifically focused on standards for
model-driven development of embedded
software. This interest group will leverage
recent significant advances made possible
in large part via the leadership, insight, and

funding support from DARPA. These new
tools and technologies are laying the neces-
sary foundations upon which the systems
of the future will be specified, developed,
tested, and maintained.

DARPA has been advancing the state-
of-the-art application of model-driven
computing to distributed, real-time, and
embedded (DRE) systems. DARPA, via the
Model-Based Integration of Embedded
Systems (MoBIES)10 program, is establish-
ing an open-source, standards-based tool
suite needed to accomplish the program’s
objectives. One MoBIES technology devel-
oper is the Institute for Software Integrated
Systems (ISIS) at Vanderbilt University11.
ISIS, as well as being a major contributor to
the MoBIES program, is working to see
that DARPA-funded efforts migrate into
the mainstream. They are working to
migrate DARPA-funded tools to the
Eclipse Open-Tool Integration Framework
via sponsorship from IBM.

Raytheon and the aerospace industry
are actively involved with the development
of standards that impact the future of
model-driven computing within the OMG.
These standards may be impacted by the
further evolution of DARPA-developed
tools and technologies from MoBIES and
other DARPA programs. The maturation
of those tools is being supported via mem-
bership in the newly formed Embedded
Systems Consortium for Hybrid and
Embedded Research.

Model-driven computing has had some
noteworthy successes despite being used in
limited domains. Two popular examples are
The Mathwork Company’s Matlab/
Simulink®12 and National Instruments’
LabVIEW13. These pioneering tool suites
demonstrate that model-driven computing
is effective in limited application domains.
Until recently, modeling of the entire sys-
tem, middleware, and application, needed
to be accomplished for each system. This
made it cumbersome, time-consuming, and
expensive to develop effective models. It
was not until the separation of the applica-
tion from the middleware, and models of
the middleware could be shared and lever-
aged, that model-driven computing has
come into its own.

Additional advances in model-driven
computing are necessary before it can
become commonplace in DRE systems
development. Scalability in both breadth
and depth of model-based computing
must be addressed. When proved success-
ful, model-driven computing has the
potential to revolutionize the current
means of systems specification, develop-
ment, testing, and maintenance. We expect
that the most significant impact will be

“When proved
successful, model-driven

computing has the
potential to revolutionize

the current means of
systems specification,

development, testing, and
maintenance.”

Advanced Software Technologies for Protecting America

May 2004 www.stsc.hill.af.mil 15

realized in system verification. With com-
plete and executable system models that
are independent of the hardware plat-
form, system verification will move for-
ward in the development process, reduc-
ing the cost and risk of errors, and facili-
tating the final system verification effort.

Conclusion
William Gibson once stated, “The future is
already here; it is just unevenly distributed”
[2]. The successful implementation of the
large systems of systems needed for
America’s protection will be expedited by
using emerging, but not yet widely deployed,
software approaches that support the devel-
opment of robust system architectures. The
key technologies of ontology, context-sensi-
tive reference architectures, architecture def-
inition processes, and model-based comput-
ing are beginning to be integrated to devel-
op robust systems that are key for America’s
defense. More research is required to make
these approaches scalable and capable of
integrating with existing systems, but the
foundations exist today.◆

Acknowledgements
We would like to acknowledge the contri-
butions of Steve Ignace, Rolf Siegers, Mike
DaBose, Chris Grounds, Ralph Woods,
Tom Flynn, Bryan Lail, Edwin Lee, Bhatra
Patel, Doris Tamanaha, Ron Williamson,
and Don Wilson.

References
1. Siegers, R. “The Raytheon Enterprise

Architecture Process.” INCOSE 2003,
Crystal City, VA., July 2003.

2. DeLong, J. Bradford. “The Real
Shopping-Cart Revolution.” Wired
Mar. 2003 <www.wired.com/archive/
11.03/view.html?pg=5>.

Notes
1. See <www.daml.org>.
2. See <http://deskbook.dau.mil/software/

gen/comparch-def.html>.
3. See <www.opengroup.org/architecture/

togaf>.
4. See <www.dod.mil/comptroller/bmmp/

pages/arch_arch_home.html>.
5. See <www.zifa.com>.
6. See <www.sei.cmu.edu/ata/ata_ method.

html>.
7. See <www-306.ibm.com/software/

rational/uml>.
8. See <www.idef.com/default.html>.
9. See <www.omg.org>.
10. See <www.rl.af.mil/tech/programs/

MoBIES>.
11. See <www.isis.vanderbilt.edu>.
12. See <www.mathworks.com>.
13. See <www.ni.com/labview>.

About the Authors

Gregory S. Shelton is
vice president of En-
gineering, Technology,
Manufacturing, and
Quality for Raytheon
Company. He is

responsible for developing and imple-
menting enterprise engineering, quali-
ty and program management process-
es and tools, and integrating technolo-
gy strategies, road maps, and compet-
itive assessments. In 2002, he was
elected associate fellow for the
American Institute of Aeronautics
and Astronautics. Shelton has a bach-
elor’s degree in electrical engineering
from California Polytechnic Univer-
sity and a master’s degree in engineer-
ing and management from the
University of California, Los Angeles.

Raytheon Global Headquarters
870 Winter ST
Waltham, MA 02451
Phone: (781) 522-3000
Fax: (781) 522-3001
E-mail: gshelton@raytheon.com

Randy Case is techni-
cal area director at
Raytheon Company for
Architectures and Sys-
tems Integration, Gar-
land, Texas. He was the

architect of the Raytheon Integrated
Product Development System. Case
has worked on projects that span the
entire life cycle from independent
research and development to opera-
tional support. He is co-chair of the
International Council on Systems
Engineering Standards Technical
Committee, and has contributed to a
number of systems-related standards.
Case has a Bachelor of Science in elec-
trical engineering from the University
of Texas at Arlington.

Raytheon/Intelligence and
Information Systems
1200 South Jupiter RD
Garland,TX 75042
Phone: (972) 205-5306
Fax: (972) 205-8083
E-mail:randy_r_case@raytheon.com

Louis P. DiPalma is the
manager of the Integra-
ted Warfare and Sensor
Systems Software De-
partment of the Ray-
theon Integrated De-

fense System Integrated Software
Development and Human Systems
Interface Engineering Center. DiPalma
has been involved in the design and devel-
opment of submarine combat control
systems and weapon launching programs,
as well as several fire control systems for
surface combatants. His focus has been
centered on the infusion of new technol-
ogy into the Raytheon integrated deci-
sion-support product line, with a primary
focus on naval combat systems.

Raytheon Integrated
Defense Systems
1847 West Main RD
Portsmouth, RI 02871
Phone: (401) 842-5592
Fax: (401) 842-5232
E-mail: louis_p_dipalma@

raytheon.com

Dan Nash is director
of Software Engi-
neering, Raytheon
Corporate Engineer-
ing, Waltham, Mass.
He is responsible for

coordinating mission-critical software
engineering activities across the vari-
ous business units, as well as other
assignments such as Red Teams. His
recent work has been in the areas of
the Capability Maturity Model®‚
Integration and software supplier
management. He holds a Bachelor of
Science in electrical engineering from
North Carolina State University.

Raytheon Company
870 Winter ST
Waltham, MA 02451-1499
Phone: (781) 522-3362
Fax: (781) 522-6434
E-mail: j_dan_nash@raytheon.com

16 CROSSTALK The Journal of Defense Software Engineering May 2004

This article was motivated by a case
study where a small company using a

well-known agile method – eXtreme
Programming (XP) – requested help
addressing specific conflicts that arose on
the project where they were a subcontrac-
tor to a larger organization employing a
traditional development method. The pur-
pose of this article is not to compare agile
and traditional methods, but to raise
awareness of potential project manage-
ment conflicts that can arise when a com-
pany employing an agile method collabo-
rates with a company employing a tradi-
tional development methodology. It also
identifies practical steps that can be taken
to reduce related risks.

It is worth noting that the case study
presented is not unique. Published refer-
ences documenting similar conflicts are
provided. Also notable is that the motiva-
tion for examining this project extends
beyond the case study itself. Today there
exist increasing opportunities for small
companies to gain new work through soft-
ware outsourcing from traditional devel-
opment organizations.

Where Are We Going?
In this article, I first identify key case study
facts along with relevant information and
common misperceptions related to tradi-
tional and agile methods. Next, I identify
four conflicts observed along with five
recommendations and one lesson learned.
The company named SubComp refers to
the subcontractor employing an agile
methodology. The company named
PrimeComp refers to the prime contractor
employing a traditional development
methodology.

Case Study Key Facts
Shortly before I was asked to help
SubComp, PrimeComp’s customer had
withheld a progress payment based on a
perceived risk observed at a recent critical
design review (CDR). Written comments
provided to PrimeComp indicated that
the customer wanted to see working soft-
ware in order to assess the proposed design and
related risk. The area of concern was
SubComp’s responsibility. Upon receiving
the customer comments, PrimeComp
requested that SubComp provide addi-
tional detailed design documentation.

It is important to note that
PrimeComp required all correspondence
between the customer and SubComp to
go through them. It is also important to
note that most of the contractually
required documentation was not formally
due until the end of the project, and, prior
to the CDR, little had been communicat-
ed to SubComp with respect to documen-
tation content and expectations. The pro-
ject was planned using a traditional water-
fall life cycle with a single CDR.

Early in the project, SubComp had
identified multiple technical risks.
However, it had decided in the early
stages to focus its small agile team on a
single technical risk that it had assessed to
be of much greater significance than all
other risks. At the recent CDR, SubComp
had provided a demonstration with work-
ing software that addressed this risk to the
customer’s satisfaction.

The risk the customer was currently
raising was one SubComp viewed as lower
priority. To address this risk, the XP team
was focusing on a second demonstration

with working software to show to the cus-
tomer at a follow-up CDR. In parallel, it
was also driving to meet PrimeComp’s
request for additional detailed design doc-
umentation. This follow-up CDR had not
originally been planned, and it was caus-
ing project tension because of the
progress payment holdup.

Agile Development Methods
In the spring of 2001, 17 advocates of
agile development methods gathered in
Utah and agreed to a set of four values
and 12 principles referred to as the Agile
Manifesto [1]. The four values are
expressed in the following:

We are uncovering better ways of
developing software by doing it
and helping others do it …
Through this work we have come
to value:
• Individuals and interactions

over processes and tools.
• Working software over com-

prehensive documentation.
• Customer collaboration over

contract negotiation.
• Responding to change over fol-

lowing a plan.
That is, while there is value in the
items on the right, we value the
items on the left more. [1]

One misperception of agile methods
is that they hold little or no value in doc-
umentation and plans. Note that the value
statements express a relative value of doc-
umentation and plans with respect to
working software and responding to
change.

Bridging Agile and Traditional Development Methods:
A Project Management Perspective

Paul E. McMahon
PEM Systems

Today, companies are reporting success in meeting rapidly changing customer needs through
agile development methods. Many of these same companies are finding they must collabo-
rate with organizations employing more traditional development processes, especially on
large Department of Defense projects. While it has been argued that agile methods are com-
patible with traditional disciplined processes, actual project experience indicates conflicts can
arise. This article identifies specific project management conflicts that companies face based
on actual project experience, along with strategies employed to resolve these conflicts and
reduce related risks. Rationale, insights, and related published references are provided along
with lessons learned and recommendations. If you work for a company that is using or con-
sidering using agile development, or your company is collaborating with a company using an
agile method, this article will help you understand the risks, issues, and strategies that can
help your project and organization succeed.

Monday, 19 April 2004
Track 4: 3:35 - 4:20

Ballroom D

May 2004 www.stsc.hill.af.mil 17

Bridging Agile and Traditional Development Methods:A Project Management Perspective

Traditional Development
Methods
The traditional waterfall model is well
known, but it is important to understand
that it is not an incremental model.
Today, Department of Defense policy
5000.1 and 5000.2 [2] strongly encour-
ages using the spiral model for software
development. Although the spiral model
was first introduced by Barry Boehm in
the mid-80s [3], the risk-driven essentials
of the model frequently have been mis-
understood. To help clarify, Boehm
recently identified six spiral essentials [2]:
• Concurrent determination of key arti-

facts.
• Stakeholder review and commitment.
• Level of effort driven by risk.
• Degree of detail driven by risk.
• Use of anchor-point milestones.
• Emphasis on system and life-cycle

artifacts (cost/performance goals,
adaptability).

A Perspective on Waterfall,
Spiral, and Agile Development
Historically, the waterfall life-cycle model
has been closely associated with heavy-
weight documentation. The spiral model
has also historically been misinterpreted
as an incremental waterfall model, rather
than as a risk-based model as clarified by
Boehm. It is important to note the focus
on people (individuals, stakeholders),
products (working software, key arti-
facts), and change (responding to change,
adaptability) common to both the Agile
Manifesto and the spiral essentials.

Methods Compatibility or
Conflict?
It would seem from this observation that
a company using an agile methodology
should be able to successfully collaborate
with a company using a traditional devel-
opment method, especially if the project
contained risk. To further support this
position, Mark Paulk, co-author of the
Software Engineering Institute’s
Capability Maturity Model® (CMM®),
which has been associated with rigorous
traditional development methods, has
stated, “XP is a disciplined process, and
the XP process is clearly well defined. We
can thus consider CMM and XP comple-
mentary” [4].

Despite this evidence of methods
compatibility, a different situation
appears to exist in the developmental
trenches. This is clearly pointed out by
Don Reifer in the following statement

made in reference to one of his own
studies:

Instead of trying to make XP work
rationally with the firm’s existing
processes, each side is pointing fin-
gers at the other. No one seems to
be trying to apply XP within the
SW-CMM context rationally and
profitably as the sages have sug-
gested ... XP adherents feel they
don’t have time for the formality
… Process proponents argue …
quality will suffer and customer
satisfaction will be sacrificed. [5]

One proposal to address this conflict
has been put forth by Scott Ambler in the
form of a blocker who runs interference for

the team by providing, in Ambler’s words,
“the documents that the bureaucrats
request” [6]. The term blocker essentially
means someone whose sole job is to keep
non-agile project stakeholders from hin-
dering the agile development team’s
progress.

In the following paragraphs we identi-
fy four conflicts observed on the
PrimeComp case study project.

Conflict 1:Working Software vs.
Early Design Documentation
Part of the difficulty faced by SubComp is
the conflict between what they perceive
the end-customer wants with respect to
risk management, and what is being asked
for by their immediate-customer,
PrimeComp. The end-customer has asked

to see working software. It appears that the
end-customer wants more than a paper
design to assess the risk, yet PrimeComp
is asking SubComp to provide more
detailed design documentation.

Conflict 2: Single vs.
Multiple-Increment Life Cycle
Assuming SubComp succeeds in address-
ing the immediate high visibility risk, what
if yet another risk pops up at the follow-
up CDR? Will there be a follow-up to the
follow-up CDR with further delays of
progress payments?

Agile teams often tackle tough issues
first, as did SubComp. They focus on
achieving customer satisfaction through
frequent software deliveries based on clear
priorities. Agile teams are also usually
small and often do not have adequate
resources to work multiple risks in parallel.
The single iteration through the waterfall
model with the planned single CDR mile-
stone was a major project management
conflict for the agile team. From a project
management perspective, it was a critical
conflict since a significant payment was
withheld.

Conflict 3: Formal Deliverable
Documentation Weight
Hearing that the documentation was not
due until the end of the project led me to
ask two questions:
• What exactly were the contractual doc-

umentation requirements?
• Did SubComp know PrimeComp’s

documentation expectations?
Companies that employ agile methods

tend to provide lightweight documentation.
This is, at least partially, because they value
working software more than documenta-
tion. Although large documents are not a
requirement of traditional development
methods, cultural expectations often tend
to the heavyweight side.

Waiting to deliver documentation until
late in the project creates a potential con-
flict, especially if expectations have not
been set through early communication.
Because of the stress being placed on the
agile team to complete the demo software
and to provide additional detailed docu-
mentation, the possibility of using a
blocker was considered.

Conflict 4: On-Site Customer
Collaboration
Agile methods embrace [7] changing
requirements, even late in development.
During my discussions with SubComp
personnel, I discovered that the contractu-
al project requirements were, in the words
of one team member, “high level and

® CMM is registered in the U.S. Patent and Trademark
Office by Carnegie Mellon University.

“Using an incremental
life-cycle model is critical

because many of the
conflicts observed are

rooted in the all up-front
thinking that comes with

the single-increment
waterfall model.

Incremental thinking is
fundamental to agile

methods and crucial to
bridging the two methods.”

open to many interpretations.” When con-
tractor and customer work closely on an
agile development project, embracing
change is eased through close collabora-
tion. When a prime contractor inserts
itself in the middle, effective collaboration
can be stifled, creating additional conflict
and risk.

During my discussions with SubComp
personnel, one member of the agile team
said,

What is difficult from my perspec-
tive is that the details they
[PrimeComp] are asking for are the
lowest risk and lowest value techni-
cally … spending time on what
they feel they need puts our small
team at risk for actually completing
the product, which is what ulti-
mately matters, I think.

This statement led me to stop and con-
sider just what ultimately did matter. The
agile team was addressing the technical
risks in a planned manner, but a key ingre-
dient to effective XP operation was miss-
ing. How could the agile team determine
and act based on what ultimately mattered
to the customer when the customer was
not collaborating closely on-site?

Given these four observed conflicts,
what strategies make sense and what can
be done to bridge agile and traditional
development?

Recommendation 1: Plan
Collaboratively and Use an
Incremental Life Cycle
Some believe those who use agile methods
do not follow a plan. This is a misunder-
standing. Planning is actually a core princi-
ple of agile methods [7]; however, agile
teams tend to plan in smaller time incre-
ments and more frequently than those
who use traditional methods. This distinc-
tion has been clarified by the characteriza-
tion of XP as planning driven rather than
plan driven [8]. Planning takes place with
both methods, but with agile methods the
focus is on the act of planning, rather than
a document.

I recommend for similar projects that
the initial planning be done collaboratively,
with the prime contractor, subcontractor,
and customer working closely. I also rec-
ommend that an incremental life-cycle
model be employed to aid in aligning the
agile subcontractor’s work within the over-
all project schedule. Using an incremental
life-cycle model is critical because many of
the conflicts observed are rooted in the all
up-front thinking that comes with the sin-
gle-increment waterfall model. Incremen-

tal thinking is fundamental to agile methods
and crucial to bridging the two methods.

In the case study, it was too late to re-
plan the project with an incremental life
cycle, but I did recommend that SubComp
step back and re-evaluate their strategy to
the upcoming follow-up CDR. The fol-
lowing questions needed to be answered:
• Were there other risks that the cus-

tomer felt had to be addressed at this
point for the project to move forward
successfully?

• What else would it take to close the
CDR?
We had to find out the customer’s

CDR completion criteria, but we had to
do it within an agile mind-set. That is,
quickly and with minimal resources given
that the small agile team was already over-
extended working to complete the demo
and the prime contractor’s request for
additional documentation.

Recommendation 2: Use the Spiral
Model and Well-Defined Anchor-
Point Milestones to Address Risk
If one of the risk-responsible collaborat-
ing team members is employing an agile
method, a spiral model with well-defined
anchor points [2, 9] can go a long way to
reduce potential project conflict and risk.
This model can help the traditional devel-
opment prime contractor as well as the
agile subcontractor.

Providing working software early to
address high-risk areas makes sense, but it
is not sufficient to meet all project man-
agement needs. If you are the prime con-
tractor, you want to make sure all the risks
are being addressed in a timely and priori-
tized fashion. The frequent feedback from
multiple spirals can help your risk mitiga-
tion visibility and ultimately your project’s
success.

From the agile subcontractor’s per-
spective, you want your team to be able to
focus and solve the highest priority risks
early, but you also want to know what the
prime contractor’s expectations are along
the way. By agreeing to the anchor-point
milestones during the early collaborative
planning activity, expectations can be

made clear on both sides, allowing the
project to operate more effectively. One of
the reasons an incremental life-cycle
model is recommended is because it often
leads to earlier communication concerning
priorities and risks. When a traditional
waterfall life-cycle model is selected, early
discussions concerning priorities are often
missed.

Recommendation 3: Plan for
Multiple Documentation Drops and
Use a Bridge Person
One reason collaborative initial planning is
recommended is to get discussions going
early concerning product deliverables
thereby reducing the likelihood of late
surprises. In the case study, it was decided
not to use a blocker to provide the contrac-
tual documentation. Discussions led the
agile team to the conclusion that the
blocker notion brought with it a negative
view of documentation. The blocker was
seen as someone outside the agile team
whose job it was to develop the documen-
tation without bothering the team. This was
not consistent with SubComp’s view of
documentation, nor was it consistent with
the values expressed in the Agile
Manifesto.

Our solution was to use what we called
a bridge person, rather than a blocker. The
bridge person, unlike the blocker, was a
member of the agile team who participat-
ed in team meetings providing a valuable
service to the team by capturing key verbal
points and whiteboard sketches thereby
providing useful maintainable lightweight
documentation that would ultimately help
both contractors and the customer.

I recommended that multiple drops of
documentation be provided to Prime-
Comp prior to the contractual delivery
date to get early feedback and reduce late
surprises. Waiting until late in the game to
deliver documentation is risky, especially
when expectations are uncertain.

Recommendation 4: Find a Way to
Make Customer Collaboration Work
for Effective Requirements
Management
The reason establishing a close collabora-
tive working relationship with the cus-
tomer was not easy in our case study was
because PrimeComp was sensitive to any
contact between the end-customer and
SubComp. This sensitivity was, at least
partially, motivated by the desire to main-
tain control. It is also possible that uncer-
tainty surrounding how the end-customer
would perceive the use of an agile
methodology fueled PrimeComp’s desire
to maintain a separation between

18 CROSSTALK The Journal of Defense Software Engineering May 2004

Software Engineering Technology

“The frequent feedback
from multiple spirals can
help your risk mitigation
visibility and ultimately
your project’s success.”

Bridging Agile and Traditional Development Methods:A Project Management Perspective

May 2004 www.stsc.hill.af.mil 19

SubComp and the end-customer.
A recommendation I would make

today to a prime contractor facing similar
situations is to recognize that the key to
maintaining real project control is the
management of risks associated with the
subcontractor’s effort. One of the most
common risks in similar situations is
requirements creep, which often fails to
get recognized until late in the project’s
test phase when the customer starts writ-
ing new discrepancies because the product
does not meet what they now perceive the
requirements to mean.

This situation frequently occurs
because the end-customer and product
developer (agile subcontractor) fail to col-
laborate sufficiently in the early stages
reaching common agreements on poten-
tially ambiguous requirements statements.
In an agile development environment, this
risk increases because requirements are
often written as story cards [7], which have
an implicit dependence on face-to-face
communication to resolve potential differ-
ing requirements interpretations.

One common misperception of agile
methods is that the requirements are not
controlled since they are allowed to change
late in the game. This is a legitimate con-
cern that could also fuel why a prime con-
tractor might want to keep an end-cus-
tomer away from an agile subcontractor,
but it also demonstrates a fundamental
misunderstanding of agile methods.

As Craig Larman explains, “Iterative
and agile methods embrace change, but
not chaos” [10]. The following rule clari-
fies the distinction: “Once the requests for
an iteration have been chosen and it is
under way, no external stakeholders may
change the work” [10].

If you are a prime contractor, I rec-
ommend that you check with your agile
subcontractor to ensure they understand
this crucial distinction between embracing
change and living in chaos. I also recom-
mend that a member of the prime con-
tractor’s team be placed on the agile team.
Then encourage and support as much cus-
tomer collaboration as you can between
the agile team and the end-customer to
help manage your own risk.

If you are an agile subcontractor, you
want to demonstrate to the prime contrac-
tor that you are effectively managing your
allocated requirements. Those employing
agile methods often use story point [11]
charts to depict work remaining and
requirements creep. While story points
and anchor points are different, they can
be used together to help bridge the two
methods.

Anchor points can be viewed as spiral

model progress checkpoints [2, 9]. One
weakness with traditional approaches has
been the accuracy of the methods
employed to measure progress. Story
points provide an objective progress-mea-
surement method based on stories verified
through successfully completed tests [11].

At the start of each increment, I rec-
ommend that the agile subcontractor pro-
vide the prime contractor with a docu-
mented list of agreed-to stories to be
completed in the upcoming increment.
Story point charts can then be used to
objectively back up anchor-point progress
assessments, leading to improved team
communication and trust.

Recommendation 5: Document and
Communicate Your Process
I recommended to SubComp that they
put together a presentation documenting
their agile process from the project man-
agement perspective. This presentation

would include key terms, roles, and
responsibilities. Terms unique to the agile
method such as coach, tracker, and
metaphor [7] would be mapped to tradi-
tional terms such as project manager and
architecture.

Recommendations for incremental life-
cycle model, contract deliverables, and
reviews compatible with both agile and tra-
ditional development methods should be
included. Key to the presentation is a
description of how SubComp’s agile
method fits within a traditional project
management framework using a spiral
model focusing on risk management. I then
recommended to SubComp that they take
every opportunity to communicate the key
points in the presentation to PrimeComp,
the end-customer, and to other traditional
development contractors who might hold
potential new business opportunities
through software outsourcing.

Lesson Learned
When on-site customer collaboration

exists, conflicts associated with vague
requirements can often be resolved quick-
ly. However, when the customer is not eas-
ily accessible, an agile subcontractor with
vague requirements can quickly be placed
at great risk.

We have learned that today’s multi-
contractor collaborative projects often do
not lend themselves well to full-time, on-
site customer collaboration. However, this
does not mean that these projects cannot
benefit from agility.

In such cases, I recommend a hybrid
agile method with a focus on a more tradi-
tional requirements development and
management method. Successful hybrid
agile methods are not new [8, 12]. Keep in
mind that hybrid does not imply all
requirements up-front, but it does imply
that once an iteration is under way, require-
ments must remain fixed to avoid chaos.

Conclusion
Today, we know how to manage geo-
graphically distributed teams formed from
companies with divergent cultures and
experiences [13]. Bridging agile and tradi-
tional development is the next step for
organizations looking to take advantage of
increasing new business opportunities
through collaboration.

If you are experiencing conflicts simi-
lar to what has been described in this arti-
cle, first examine your lines of communi-
cation. Look at your terminology. Are you
communicating effectively what it is you
do and how you do it? If you heard
recently that a customer review did not go
well, consider that the cause could be as
simple as your agile terminology not con-
necting to the ear of a listener familiar
only with traditional methods.

Allowing late requirements changes
can work when your customer is on-site
working next to you. But if you do not
have an on-site collaborative customer,
consider a hybrid approach to avoid major
trouble late in the project.

Consider bridging, rather than block-
ing to meet milestone deliverables. More
importantly, consider communicating to
your collaborative partners and customers
through examples of your products to
gain their buy-in early, including the
weight of your proposed documentation.
Let them know that being agile is not
cheating, but is in the best interests of
everyone.

While many of the solutions described
in this article are similar to those
employed on non-agile projects, these
solutions should not be taken for granted
for two reasons. First, too often on hybrid
agile-traditional projects, we find emotion

“If you are an agile
subcontractor, you want
to demonstrate to the
prime contractor that

you are effectively
managing your allocated

requirements.”

Software Engineering Technology

20 CROSSTALK The Journal of Defense Software Engineering May 2004

getting in the way of clear thinking, often
leading to a fundamental breakdown of
communication. Second, we are learning
through agile methods more effective
techniques to measure progress and com-
municate. As Robert Martin pointed out
in referring to agile methods:

They’re not a regression to the
cave, nor are they anything terribly
new: Plain and simple, the agile
bottom line is the production of
regular, reliable data – and that’s a
good thing. [11]

Don Reifer said, “No one seems to be
trying to apply XP within the SW-CMM
context rationally and profitably as the
sages have suggested” [5]. In our case,
studying the proactive steps taken based
on the recommendations led to a success-
ful follow-up CDR and to improved com-
munication and early documentation
agreements. Today, SubComp recognizes
the value of XP, but they also recognize
the value and need for fundamental pro-
ject management, and they are looking to
the CMM IntegrationSM framework [14] to
help guide related improvements.

Agility is not counter to effective pro-
ject management, but agile methods do
not provide all of the project management
needs necessary for success. Wrap your
agile development process in a lightweight
project management framework, and
watch your communication and collabora-
tion improve and your project and compa-
ny succeed.◆

References
1. Cockburn, Alistair. Agile Software

Development. Addison-Wesley, 2002:
215-218.

2. Boehm, Barry. “Spiral Model as a Tool
for Evolutionary Acquisition.”
CrossTalk May, 2001 <www.stsc.
hill.af.mil/crosstalk/2001/05/index.
html>.

3. Boehm, Barry. A Spiral Model of
Software Development and Enhance-
ment. Proc. of An International
Workshop on Software Process and
Software Environments, Trabuco
Canyon, CA., Mar. 1985.

4. Paulk, Mark. “Extreme Programming
from a CMM Perspective.” IEEE
Software Nov./Dec. 2001: 19-26.

5. Reifer, Don. “XP and the CMM.”
IEEE Software May/June 2003: 14-15.

6. Ambler, Scott. “Running Interfer-
ence.” Software Development July,
2003: 50-51.

7. Beck, Kent. Extreme Programming
Explained: Embrace Change.

Addison-Wesley, 2000.
8. Boehm, Barry, and Richard Turner.

Balancing Agility and Discipline: A
Guide for the Perplexed Addison-
Wesley, 2003: 33-34, 233.

9. Boehm, Barry, and Daniel Port.
“Balancing Discipline and Flexibility
With the Spiral Model and MBASE.”
CrossTalk Dec. 2001 <www. stsc.
h i l l . a f .mi l/cross ta lk/2001/12/
boehm.html>.

10. Larman, Craig. Agile and Iterative
Development: A Manager’s Guide.
Addison-Wesley 2003: 14.

11. Martin, Robert C. “The Bottom
Line.” Software Development Dec.
2003: 42-44.

12. McMahon, Paul E. “Integrating
Systems and Software Engineering:
What Can Large Organizations Learn
From Small Start-Ups?” Cross-

Talk Oct. 2002: 22-25 <www.stsc.
h i l l . a f .mi l/cross ta lk/2002/10/
mcmahon. html>.

13. McMahon, Paul. E. Virtual Project
Management: Software Solutions for
Today and the Future. St. Lucie Press,
2001.

14. CMMI Product Team. Capability Ma-
turity Model ® Integration (CMMI ®),
Version 1.1. Pittsburgh, PA: Software
Engineering Institute <www.sei.
cmu.edu>.

June 2-4
Symposium on Access Control Models

and Technologies 2004
Yorktown Heights, NY

www.sacmat.org

June 11-13
ACM Sigplan 2004 Conference on

Language Compilers and Tools
for Embedded Systems

Washington, DC
http://lctes04.flux.utah.edu

June 14-17
SEPG Europe 2004
London, England

www.espi.org/frm_sepg.asp

June 14-18
ICSPI 2004 International Conference

on Software Process Improvement
Washington, DC
www.icspi.com

June 23-26
Agile Development Conference 2004

Salt Lake City, UT
www.agiledevelopment

conference.com

June 27- July 2
USENIX Annual

Technical Conference
Boston, MA

www.usenix.org/events/usenix04

July 21-25
CITSA 2004 International Conference

on Cybernetics and Information
Technologies, Systems, and Applications

Orlando, FL
www.infocybernetics.org

April 18-21, 2005
2005 Systems and Software

Technology Conference

Salt Lake City, UT
www.stc-online.org

COMING EVENTS

About the Author

Paul E. McMahon,
principal of PEM Sys-
tems, provides technical
and management ser-
vices to large and small
engineering organiza-

tions. He has taught software engineer-
ing at Binghamton University; conduct-
ed workshops on engineering process
and management; and published over
20 articles, including articles on agile
development and distributed develop-
ment in CrossTalk, and a book on
collaborative development, “Virtual
Project Management: Software Solu-
tions for Today and the Future.”
McMahon also presented at the 2003
Software Technology Conference on
“Growing Effective Technical Mana-
gers.”

PEM Systems
118 Matthews ST
Binghamton, NY 13905
Phone: (607) 798-7740
E-mail: pemcmahon@acm.org

May 2004 www.stsc.hill.af.mil 21

Understanding Software Requirements
Using Pathfinder Networks

Udai K. Kudikyala and Dr. Rayford B. Vaughn Jr.
Mississippi State University

Understanding and communicating user requirements early in the software development life
cycle is essential for satisfying user needs as well as reducing defects, cost, and schedule. This
article reports on a technique that uses pathfinder networks to discover and evaluate men-
tal models that represent stakeholders’ perception of software requirements. The results
obtained by applying this technique on multiple projects are also described.

During the initial phase of any system
development activity, software devel-

opers are challenged to uncover, under-
stand, and specify user requirements. It is
important to have a common understand-
ing among users/customers, project man-
agers, and developers (collectively known
as stakeholders) regarding requirements of
the software system being developed. This
is often considered a major risk factor in
software development projects [1]. The
sooner misunderstandings are resolved,
the more likely developers will build a
product correctly [2, 3, 4].

You might consider early requirements
in the context of a mental model – or a
representation of how a customer or
developer thinks about a set of require-
ments and visualizes them as a whole.
Mental models not only model an under-
standing of the system but also miscon-
ceptions that the stakeholder may have [5].
They are also used to understand and
communicate what a user actually thinks
[6]. Empirical evidence we have obtained
indicates that such models may also be
useful in identifying misunderstood, dupli-
cate, and ambiguous requirements.

For the past three years, we have
experimented with a technique known as
pathfinder networks (PFNETs), which are
more fully described in the next section.
This technique comes from the field of
artificial intelligence and one of its prop-
erties is the ability to represent knowledge
structures as they exist in the minds of
humans. This representation is formulated
through a facilitator working with one or
more subjects who take concepts and
group them in terms of their relatedness.

In our research, we used software
requirements as concepts and applied the
PFNET technique to a requirements doc-
ument separately for both the developer
and customer. In both cases, the resulting
PFNET was considered a mental model, and
the two mental models were compared
mathematically to determine how close
they were. We also discovered this tech-
nique was useful in identifying redundant,

ambiguous, and misunderstood require-
ments.

While a complete discussion of the
mathematics of the process is beyond the
scope of this article, we do provide refer-
ences and contact information for the
interested reader. We have implemented
the required mathematics in working soft-
ware packages and have used the tech-
nique on two industrial experiments for
real-world projects. In all cases, the
PFNET technique was successful in iden-

tifying requirements misunderstandings
and contributed to a better understanding
between the developer and customer early
in the life cycle.

The techniques we have developed can
generally be learned and used in less than
eight hours of training. We have not esti-
mated the cost of this training, but believe
it to be minimal. We have validated the
utility of this technique for small to medi-
um-size software development activities
and now intend to publish the results and
assist in transferring this technique to
industrial use. We are especially grateful to
AmerInd1 Inc. and Nortel for their assis-
tance in using and validating our PFNET
work within their software development
organizations.

PFNETs
The PFNETs [7] have been used widely to
represent knowledge structures. They
have been used to model the knowledge
of experts and novices in the computer-
programming domain [8] and to assess
students’ knowledge when compared to
that of experts [9]. We have successfully
applied this technique to the software-
engineering domain and, in particular, to
the problem of requirements verification
and validation. The technique is briefly
described in this article, but more detail
can be found in [10, 11].

Essentially, we generate a PFNET for
the customer/user community and a sep-
arate network for the developer communi-
ty. These networks represent the current
mental model of the requirements for both
communities. By calculating the correla-
tion between the two network models, we
can then estimate the degree of common
understanding. With additional analysis,
we are also able to identify redundant and
ambiguous requirements.

The PFNETs’ original objective was to
generate a network model from psychologi-
cal proximity data, which is the subjective
estimate of the closeness or relatedness
between requirements as perceived by a
stakeholder. The primary goal is to arrive
at network representations with nodes
representing requirements and links repre-
senting relations between requirements.
Weights on the links represent the dissim-
ilarity between the requirements. These
edge-weights are calculated based on the
categorization of information about the
requirements that are collected from each
stakeholder.

The process of categorization basical-
ly means that stakeholders are asked to
place individual requirements into cate-
gories based on their perceived related-
ness. The pathfinder algorithm is applied
to concepts (requirements) from the com-
puter science discrete structures domain.
Figure 1 (see next page) reveals how the
categorization of information about the

“Mental models not only
model an understanding
of the system but also

misconceptions that the
stakeholder may have.
They are also used to

understand and
communicate what a
user actually thinks.”

Thursday, 22 April 2004
Track 6: 10:15 - 11:00

Room 150 D - F

22 CROSSTALK The Journal of Defense Software Engineering May 2004

concepts collected from a group of
experts results in the generation of a con-
ceptual structure represented by a
PFNET.

Essentially, a link exists between a pair
of nodes if and only if there is no shorter
alternate path between that pair. The initial
conceptual network is assumed to be a
fully connected graph since no informa-
tion is available about how the stakehold-
ers relate the list of concepts. Therefore in
Figure 1, the original conceptual structure
(on the left) is reduced to a more under-
standable structure (on the right) by
removing all links between concepts
except for the shortest path or least dis-
similar relationship.

Our assumption is that a stakeholder’s
requirements knowledge consists of the
requirements and the interrelationships
among those requirements. Figure 2 shows
a portion of a PFNET that was generated
in one of our experimental projects by the
developer. The edge-weights represent the
dissimilarity between the pairs of require-
ments. The lower the edge-weight the
lower the dissimilarity and higher the simi-
larity between the two requirements as
perceived by the stakeholder.

The similarity count for a pair of
requirements is determined by the number
of times that pair shows up together in the
categorization of information collected
from the stakeholders. A dissimilarity
matrix is computed by subtracting each
similarity count from the highest similarity
count plus one. The pathfinder algorithm
is then applied to the dissimilarity matrix

to generate the PFNET. While details of
these steps are not provided here, they are
implemented in our software. Specifics can
be provided to the reader on request.

In Figure 2, most of the developers
perceived Add/Delete User Account and
Modify User as closely related. We know this
because the link weight is the minimum
(least dissimilar), between the two require-
ments. A number of developers also per-
ceived User Account and Add/Delete User
Account to be related but to a lesser degree.
The absence of a link between require-
ments could mean that very few or none of
the developers perceived those require-
ments as being related. For example,
Admin Account and Add/Delete User Account
are not directly connected because the
developer perceived Admin Account to be
more closely related to User Account than to
Add/Delete User Account.

In summary, the primary benefit of
the PFNET is the ability to model aspects
of human semantic memory. In our case,
the ability to model the stakeholders’ per-
ception of requirements as graphs is use-
ful. It provides the ability to mathematical-
ly evaluate and compare these networks
for similarities and dissimilarities to reveal
potential misunderstandings.

While this article represents only an
overview of the PFNET technique, it is
important to note that it is not new – it has
been used in other applications outside
software engineering for many years. Our
work applies this technique to software
engineering requirements analysis for the
first time.

We generated two PFNETs – one for
the customer and one for developers. The
categorization of information collected
from each developer is combined, and a
single consensus PFNET for that group is
generated. A similar procedure is used for
the end user. We then compare and analyze
the two networks to determine the consis-
tency of understanding between the two,
as well as determine which individual
requirements may not be well understood.
Specific results of our application of this
technique in projects are presented in the
following sections.

Initial Experiment Results
Experiments were first conducted at
Mississippi State University (MSU) using
students taking a software engineering class
[12]. Four real customers agreed to work
with the class in order to obtain a needed
software product. Students developed a
software requirements specification (SRS)
for each system, which was the basis for
generating all subsequent PFNETs. The fol-
lowing procedures were used (implemented
today in software):
• Requirements were individually extract-

ed from each SRS. All participants were
asked to read the SRS to become famil-
iar with the requirements. Each student
and customer then categorized require-
ments into groups based on their per-
ceived relatedness. This was achieved by
using index cards with requirements
printed on each card. The set of index
cards and a copy of the SRS were dis-
tributed to the customer and the devel-
opers working on that project.
Instructions were given on the proce-
dure for categorization; none of the
participants were allowed to consult
with each other during the categoriza-
tion activity. The categorization activity
consisted of grouping the index cards
into piles of related categories. The
relatedness decision was entirely up to
the participant and was very subjective.
We refer to the groups of index cards
collected from each participant as the
categorization of information.

• The categorization of information was
then collected and a similarity matrix (N
rows by N columns, where N is the
number of requirements) was generated
for each participant. When a pair of
requirements appears together, the count
in that cell of the similarity matrix is
incremented by one. We refer to the sim-
ilarity count as a co-occurrence count for
that pair of requirements. To compute a
consensus (group) PFNET, the corre-
sponding elements of the similarity
matrices for that group are simply added

Software Engineering Technology

Sets

Trees
Algorithims

Boolean
Algebra

Counting

Functions

Graphs

Integers

Language and
Grammar

Logic

Mathematical
Reasoning

Matrices

Relations

Language and
Grammar

Trees Graphs

Relations Functions

Sets
Counting

Matrices Boolean
Algebra Logic

Mathematical
Reasoning

Integers

Algorithims

Figure 1: A Fully Connected Graph With 13 Concepts and the Resulting PFNET With Only
18 Links

4

4 4

4

6

6

5

5

5

5

2

1

User Logout

User Login

Check-In Print Bill

User Account

View Schedule

Computer System

Web-Based System

Modify User

Data Encryption

Admin Account

Add/Delete User AccountUser Session Functions
4

5

5

Figure 2: Example of a PFNET (Partial) Generated for a Group of Developers

Understanding Software Requirements Using Pathfinder Networks

May 2004 www.stsc.hill.af.mil 23

to generate a consensus similarity matrix.
• Dissimilarity matrices were generated by

subtracting each co-occurrence count in
the similarity matrix from the maximum
co-occurrence count plus one (to avoid
a zero dissimilarity count in any cell).

• The dissimilarity matrices for the group
of developers and the customer were
then used as input to the Pathfinder
generation program resulting in the gen-
eration of two PFNETs.

• The resulting PFNETs are then corre-
lated with each other, producing a cor-
relation coeffcient (cc) that is used to
measure similarity between the mental
models.
Adding substance to the preceding steps

and realizing that several new terms were
introduced to the reader, we provide a short
example in the online version of this article
at <www.stsc.hill.af.mil/crosstalk/2004/
05/0405kudikyala.html>.

The cc ranges from -1 through +1,
where -1 represents no similarity and +1
represents perfect similarity between the
two networks [13]. For all projects, the fol-
lowing heuristics were applied:
• A cc of a network/node below 0.4 indi-

cates little or no similarity.
• A cc from 0.4 through 0.7 indicates a

moderate degree of similarity.
• A cc of more than 0.7 indicates very

good to strong similarity.
The boundary values we assigned above

are subjective and were selected based on
empirical evidence. Table 1 shows the over-
all ccs between the developer and user
PFNETs for the four projects in our exper-
iment. In Table 2, each row shows the per-
centage of requirements with different ccs
between developer and user PFNETs for
each system developed.

Thus, the higher the value of the cc, the
more similar the mental models of the cus-
tomer and developers appeared to be at the
early stages of product development. From
Table 2, we can see that severe misunder-
standing exists for System 2 and further
requirements work is needed. In fact, this
observation was validated when, at the end
of the actual system development, the user
was not satisfied with the final product.

We also seeded the SRS with duplicate
requirements to determine if such require-
ments could be identified using PFNETs.
Table 3 shows the ccs based on path dis-
tances for each of the original and seeded
requirements.

The ccs of the original and seeded
requirements were very high when PFNETs
for both groups were compared. Further
analysis of the PFNETs for each group also
revealed that the original and duplicate
requirements were directly linked since they

were perceived to be closely related. This
provided us with evidence that PFNETs
may be useful in uncovering duplicate
requirements. In addition to the first four
experiments, we ran a fifth similar class-
room experiment the following academic
year and achieved essentially the same
results. Together, these five experimental
results encouraged us to validate the
PFNET approach in industrial settings.

Industrial Experimentation at
Nortel
Our experiments were continued at Nortel,
Inc., Dallas, Texas, [14] with their assistance
over two semesters (about eight months).
Our results again indicated that PFNETs
were useful to identify misunderstood and
duplicate requirements.

The procedure used to apply this tech-

nique was very similar to that outlined for
our classroom experiments. A Web-based
tool was introduced to collect the catego-
rization data from each stakeholder. This
tool interface consisted of check boxes to
aid the process of categorization as shown
in Figure 3 (see next page). Each Web page
consisted of a requirement with the descrip-
tion provided at the top of the page. The
remaining requirements were displayed on
the same page. The stakeholder then
checked the boxes of the requirements that

Software Systems Overall Correlation Coefficient
 System 1 0.77
 System 2 0.46
 System 3 0.91
 Syst em 4 0.87

Table 1: Overall Correlation Coefficients
Between Developers and User PFNETs

 cc >=0.9

 cc < 0.7

 43.75 21.88 34.38

 0.00 0.00 100.00

 50.00 50.00 0.00

50.00 50.00 0.00

cc < 0.9
and

cc > = 0.7

System 1

System 2

System 3

System 4

Percentage of
Requirements

Systems

Correlation
Coefficient (cc)

Table 2: Percentage of Requirements By Range of Correlation Coefficients

Software
Systems Original Requirement Seeded Requirement Correlation

Coefficient
1-13: E-mailing a Student
Resumé to a Company

1-30: Sending a Student Resumé
to a Company by E-mail

1.00

 1-16: Faxing a Student Resumé
to a Company

1-30: Sending a Student Resumé
to a Company by E-mail

0.96

1-12: E-mailing a Student
Transcript to a Company

1-31: Sending a Student
Transcript to a Company by
E-mail

1.00

1-15: Faxing a Student
Transcript to a Company

1-31: Sending a Student
Transcript to a Company by
E-mail

0.96

1-11: E-mailing a Letter of
Recommendation to a Company

1-32: Sending a Letter of
Recommendation to a Company
by E-mail

1.00

System 1

1-14: Faxing a Letter of
Recommendation to a Company

1-32: Sending a Letter of
Recommendation to a Company
by E-mail

0.96

2-2: Add Appointment 2-31: Make Appointment 0.93
2-3: Change Appointment 2-32: Modify Appointment 1.00
2-13: Delete Appointment 2-32: Modify Appointment 1.00

System 2

2-20: Modify User 2-33: Add And Delete User 1.00
3-8: Add a Major 3-39: Modify a Major 0.98
3-9: Edit a Major 3-39: Modify a Major 1.00
3-10: Delete a Major 3-39: Modify a Major 0.98
3-4: Add a College 3-40: Modify a College 1.00
3-5: Edit a College 3-40: Modify a College 1.00

System 3

3-6: Delete a College 3-40: Modify a College 1.00
4-23: Display Available Vehicle 4-30: Check Available Vehicle 1.00
4-5: Delete Reservation 4-31: Cancel Reservation 1.00

System 4

4-9: Make Reservation 4-32: Add Reservation 0.99

Table 3: Correlation Coefficients of Original and Seeded Duplicate Requirements

24 CROSSTALK The Journal of Defense Software Engineering May 2004

Software Engineering Technology

were related to the requirement provided at
the top of the page. After categorizing all
the requirements, the information for each
stakeholder was submitted over the
Internet.

A comparison of customer and devel-
oper PFNETs revealed that two require-

ments (Nos. 6 and 14) had very low ccs,
even though the overall cc between the cus-
tomer and developer networks was 0.88.
The shaded rows in Table 4 show the ccs
for these two requirements. This demon-
strates that the PFNETs in Table 4 were
found to be duplicates after facilitating a
session between the two groups. In this
case, very high ccs (1.00 and 0.99) led to
identifying this duplication. High values of
correlation may also mean, however, that
requirements might well be understood
between the stakeholders. Only after further
analyzing these requirements can we under-
stand if duplication is present.

Conclusion
Our initial research work, especially for the
student projects at MSU and the project at
Nortel, Inc. had generated encouraging
results regarding the ability of the pathfind-
er technique to predict misunderstandings
about requirements among customers and
developers during the requirements analysis
phase.

Further research conducted at AmerInd
Inc., validated the usefulness of the tech-
nique in a typical industrial setting. The
research also showed that this technique is
scalable to a medium-scale project like New
Material Acquisition. (A full version of this
article, including the AmerInd Inc. and New
Material Acquisition examples, appears on
the CrossTalk Web site at <www.

stsc.hill.af.mil/crosstalk/2004/05/0405
kudikyala.html>).

The ccs generated from the PFNETs of
the stakeholders identify potentially misun-
derstood requirements. The values of ccs
enable the groups to focus on potentially
misunderstood requirements during facilita-
tion sessions. Furthermore, duplicate and
ambiguous requirements were also identi-
fied. Additional information concerning
tools, processes, and experimental results
are available from the authors.◆

Acknowledgements
The authors wish to acknowledge the sup-
port of the National Science Foundation
(Grant #CCR-0303554); the James Worth
Bagley College of Engineering at
Mississippi State University; Nortel Inc. of
Dallas, Texas; and AmerInd Inc. of
Alexandria, Va. Without such support, this
research and results would not have been
possible. We are also grateful to the editori-
al staff of CrossTalk for their patience
and helpful suggestions to make this report
better and more readable.

References
1. Keil, M., et al. “A Framework for

Identifying Software Project Risks.”
Communications of the ACM 41.11
(1998): 76-83.

2. Davis, Alan, et al. “Identifying and
Measuring Quality in a Software
Requirement Specification.” Software
Requirements Engineering. Eds. R.H.
Thayer and M. Dorfman. Los Alamitos:
IEEE Computer Society Press, 1997:
164-75.

3. Boehm, B., and Victor R. Basili.
“Software Defect Reduction Top 10
List.” Computer 34.1 (2001): 135-37.

4. Faulk, S.R. “Software Requirements: A
Tutorial in Software Requirements
Engineering.” Software Requirement
Engineering. Eds. R.H. Thayer and M.
Dorfman. Los Alamitos: IEEE
Computer Society Press, 1997: 7-22.

5. Caroll, M.J., and J.R. Olson. “Mental
Models in Human-Computer Inter-
action.” Handbook of Human-
Computer Interaction. Ed. M. Helander.
North-Holland: Elsevier Science
Publishers B.V., 1989: 45-60.

6. Faro, A., and D. Giordano. From User’s
Mental Models to Information System’s
Specification and Vice Versa by
Extended Visual Notation. Proc. of the
International Professional Communi-
cation Conference (IPCC ’95),
Savannah, GA., Sept. 1995.

7. Dearholt, D.W., and R.W. Schvaneveldt.
“Properties of Pathfinder Networks.”
Pathfinder Associative Networks:

Figure 3: Web-Based Check Box Interface at Nortel, Inc.

Requirem e nts Correlation
Coefficients

1. IMS app lication server 0.95

2. IMS proxy server 0.87

3. IM S redirect server 0.99

4. IM S registrar server 0.94

5. IM S location server 1.00

6. IMS external interface 0.05

7. IMS hardware platform 1.00

8. IMS database interface 0.78

9. IM S S IP interface 0.67

10. IMS H.323 cl ient interface 0.74

11. IMS PSTN gateway inter face 0.67

12. IMS media gateway 0.79

13. IMS media server 1.00

14. IMS mult i-dom ain support 0.05

15. IMS performance and capacity 1.00

16. IMS BBUA component 0.75

17. IMS application server security 1.00

18. IMS d iscrim inator service 0.98

19. IMS arbitrator service 1.00

20. IMS network handl ing 0.69

21. IMS cal l transfer service 0.99

22. IMS cal l conference service 1.00

23. IMS account ing 0.77

Table 4: Correlation Coefficients of Customer
and Developer of Individual Requirements for
the Interactive Multi-Media Server (IMS)

Studies in Knowledge Organization. Ed.
R. Schvaneveldt. Norwood, N.J.: Ablex
Publishing Corp., 1990: 1-30.

8. Cooke, N.M., and R.W. Schvaneveldt.
“Effects of Computer Programming
Experience on Network Represen-
tations of Abstract Programming
Concepts.” International Journal of
Man-Machine Studies 29 (1988): 407-27.

9. Goldsmith, T.E., and P.J. Johnson. “A
Structural Assessment of Classroom
Learning.” Pathfinder Associative
Networks: Studies in Knowledge
Organization. Ed. R. Schvaneveldt.
Norwood, N.J.: Ablex Publishing Corp.,
1990. 241-53.

10. Kudikyala, Udai K., and Rayford B.
Vaughn Jr. “Software Requirements
Understanding Using Pathfinder
Networks: Discovering and Evaluating
Mental Models.” Journal of Systems and
Software (to be published in 2004).

11. Kudikyala, Udai K., and Rayford B.
Vaughn Jr. Software Requirements

Understanding Using Pathfinder
Networks as Mental Models. Proc. of
the 2004 ASEE Southeastern Section
Conference, Auburn, AL., Apr. 2004.

12. Lu, X. “Using Pathfinder Networks to
Analyze and Categorize Software
Requirements.” Master’s Thesis.
Mississippi State University, 2000.

13. Goldsmith, T.E., and D.M. Davenport.
“Assessing Structural Similarity of
Graphs.” Pathfinder Associative
Networks: Studies in Knowledge
Organization. Ed. R. Schvaneveldt.
Norwood, N.J.: Ablex Publishing Corp.,
1990: 75-87.

14. Yi, H. “Automated Web-Based Tool for
Software Requirement Refinement Using
Pathfinder Networks.” Master’s Project.
Mississippi State University, 2001.

Note
1. AmerInd Inc., <www.amerind.com> is

a medium-sized computer services com-
pany located in Alexandria, Va.

May 2004 www.stsc.hill.af.mil 25

Understanding Software Requirements Using Pathfinder Networks

About the Authors

Udai K. Kudikyala is
a Ph.D. candidate at
Mississippi State Uni-
versity and an active
research assistant. He
has two years of teach-

ing experience. His research interests
include requirements engineering,
especially modeling and evaluation of
requirements understanding using
artificial intelligence techniques, and
network routing and parallel comput-
ing. Kudikyala received a Bachelor of
Engineering in electronics and com-
munication engineering from
S.R.K.R. Engineering College,
Andhra University, Bhimavaram,
India, and a Master of Science in
computer science from Mississippi
State University.

Department of Computer
Science and Engineering
Center for Computer
Security Research
P.O. Box 9637
Mississippi State University
Mississippi State, MS 39762
Phone: (662) 325-7503
Fax: (662) 325-8997
E-mail: kumar@cse.msstate.edu

Rayford B. Vaughn Jr.,
Ph.D., is professor of
computer science at
Mississippi State Uni-
versity. A retired Army
colonel, he served 26

years, including commanding the
Army’s largest software development
organization and creating the Pentagon
Single Agency Manager organization to
centrally manage all Pentagon informa-
tion technology support. After retiring
from the Army, he was vice president
of Integration Services, Electronic
Data Systems Government Systems.
Vaughn has more than 40 publications
and actively contributes to software
engineering and information security
conferences and journals. He has a
doctorate degree in computer science
from Kansas State University.

Department of Computer
Science and Engineering
Center for Computer
Security Research
P.O. Box 9637
Mississippi State University
Mississippi State, MS 39762
Phone: (662) 325-7450
Fax: (662) 325-8997
E-mail: vaughn@cse.msstate.edu

Get Your Free Subscription

Fill out and send us this form.

OO-ALC/MASE

6022 Fir Ave

Bldg 1238

Hill AFB, UT 84056-5820

Fax: (801) 777-8069 DSN: 777-8069

Phone: (801) 775-5555 DSN: 775-5555

Or request online at www.stsc.hill.af.mil

NAME:__

RANK/GRADE:___

POSITION/TITLE:__

ORGANIZATION:___

ADDRESS:__

__

BASE/CITY:__

STATE:___________________________ZIP:___________________________________

PHONE:(_____)___

FAX:(_____)___

E-MAIL:__

CHECK BOX(ES) TO REQUEST BACK ISSUES:

MAR2003 � QUALITY IN SOFTWARE

APR2003 � THE PEOPLE VARIABLE

MAY2003 � STRATEGIES AND TECH.

JUNE2003 � COMM. & MIL. APPS. MEET

JULY2003 � TOP 5 PROJECTS

AUG2003 � NETWORK-CENTRIC ARCHT.

SEPT2003 � DEFECT MANAGEMENT

OCT2003 � INFORMATION SHARING

NOV2003 � DEV. OF REAL-TIME SW

DEC2003 � MANAGEMENT BASICS

JAN2004 � INFO. FROM SR. LEADERS

FEB2004 � SOFTWARE CONSULTANTS

MAR2004 � SW PROCESS IMPROVEMENT

APR2004 � ACQUISITION

To Request Back Issues on Topics Not

Listed Above, Please Contact Karen

Rasmussen at <karen.rasmussen@

hill.af.mil>.

26 CROSSTALK The Journal of Defense Software Engineering May 2004

Many organizations depend critically
upon the maintenance and evolution

of multiple in-house commercial off-the-
shelf (COTS)-intensive systems. Most
COTS systems are not matched perfectly
to these organizations’ specific needs and
hence companies are often adjusting para-
meters, creating scripts, developing
macros, writing code, or otherwise chang-
ing or extending functionality. Addition-
ally, COTS vendors are always developing
new packages, adding additional capability,
and releasing updated versions of their
products. Then, of course, there are the
usual service packs, security patches, and
other bug fixes that vendors want compa-
nies to install. And do not forget ongoing
hardware and network upgrades. All this
translates into a significant challenge for
those responsible for performing testing
to ensure adequate quality within this
complex infrastructure.

For most organizations, testing every-
thing is simply not an option. Hence,
somehow testing must be biased in a man-
ner that results in the maximum reduction
of organizational risk, and that helps
ensure the delivery of maximum benefit
to system end-users. Amazingly, approxi-
mately half of all software modules in a
system are defect-free and do not require
any testing at all. Further, 80 percent of
the defects come from 20 percent of the
modules, and 90 percent of system down-
time comes from at most 10 percent of
the defects [1].

The potential exists to substantially
improve upon system uptime and overall
end-user benefit by finding, for example,
just five percent more defects than are
currently found. Ironically, end-user bene-
fit can even be improved by finding fewer

defects. This might occur if the testing
approach is adjusted to focus on finding
defects that cause the greatest system
downtime. For example, the user experi-
ence will likely be substantially better if
one defect is found that would crash the
system daily versus finding three defects
that would each crash the system annually.

Given the preceding data, a significant
majority of testing efforts should be
focused on 10 percent to 20 percent of
any particular COTS system. The question
is, how do we find that 20 percent? And
since some in-house systems are clearly
more critical than others, how do we
account for that?

This article briefly identifies these and
similar major challenges associated with
performing efficient and effective testing
of multiple in-house COTS-intensive sys-
tems. Then a nine-step process is
explained that can help improve the
approach to performing testing. The steps
are as follows:
1. Identify Transaction Dialogues.
2. Analyze User Impact.
3. Determine Historical Defect Prevalence.
4. Prioritize Dialogues.
5. Prioritize Test Types.
6. Build Test-Dialogue Matrix.
7. Analyze Test Resources.
8. Establish a Test Plan.
9. Conduct Test Management.

Although the above sequence of
actions may, at first, seem a bit daunting,
several of the steps become substantially
simpler after the first planning iteration.
For example, once you have prioritized the
types of tests to perform, you can typical-
ly reuse the same prioritization during
future planning iterations. Additionally,
this method is self-correcting. In earlier

planning iterations, it is likely that you will
have to rely upon a lot of guesswork to
perform some of the steps. However, as
you collect data during subsequent testing
cycles, you can start using that data to
replace, or at least augment, estimates.
Note that the overall testing approach
described in this article can also be applied
to the testing of virtually any complex sys-
tem, or for performing testing in environ-
ments where test resources are very scarce
or test urgency is very high. However to
simplify this discussion, the remainder of
this article specifically focuses on discus-
sion and examples relevant to testing mul-
tiple COTS-intensive systems.

COTS Testing Challenges
Testing of any complex software system
can be challenging, and testing of COTS
systems even more so because they require
testing someone else’s software (and hard-
ware) and also testing your implementation
and/or extension of that system. Deploy a
few dozen COTS-intensive systems into
the organization, and you have created a
full-scale testing nightmare.

When performing testing in this type
of environment, typically you need to
consider and address most or all of the
following issues:
• Different COTS systems may be

based upon significantly different
technologies.

• System end users usually have sub-
stantially different skill and experience
levels.

• Your organization may depend upon a
wide variety of COTS vendors.

• The threat levels presented by various
COTS systems relative to core mission
or business processes can differ by

Efficient and Effective Testing of
Multiple COTS-Intensive Systems

Dr. Richard Bechtold
Abridge Technology

Testing any complex system is a challenge, but testing multiple commercial off-the-shelf
(COTS)-intensive systems is especially challenging due to a variety of factors. These factors
include (1) systems combining highly diverse technology levels, (2) organizational users span-
ning numerous skill levels, (3) incorporating wide varieties of COTS vendors and pack-
ages, and (4) updated systems arriving for testing from projects that already may be sub-
stantially behind schedule and over budget. Regardless of these challenges, it is still essential
to conduct efficient and effective testing in the context of limited time and nominal budgets.
This article explains how to analyze, prioritize, plan, and manage the testing of COTS-
intensive systems. Priorities are discussed from the perspective of identifying general types of
transaction dialogues and specific instances of key dialogues. Dialogue value escalation is
explained. Test planning and management are then discussed with the goal of maximizing
the delivered benefit to organizational end-users.

Thursday, 22 April 2004
Track 5: 1:30 - 2:15

Room: 150 G

Efficient and Effective Testing of Multiple COTS-Intensive Systems

May 2004 www.stsc.hill.af.mil 27

orders of magnitude.
• System test work requests are not

evenly distributed over time, and mul-
tiple parallel systems under test may
rapidly overwhelm available test
resources.

• Systems often become available for
testing substantially later than original-
ly planned.

• For some system failures, finding the
actual source of the failure – or even
re-creating the failure – can be quite
complex and time-consuming, espe-
cially when the COTS system involves
products from multiple vendors.

• The end-user organization may be
reluctant to provide, or is incapable of
providing (due to security reasons),
actual production data for use in testing.

• Funds or resources originally allocated
for system testing are often used to
cover cost overruns during earlier pro-
ject phases.

• System release or go live dates are often
unmovable, or at least quite painful to
move.

• Test organization resources are often
redirected to perform unplanned
emergency testing of systems to inves-
tigate problems reported by end users
working with production systems.

• Calculating return on investment for soft-
ware testing can be extremely difficult,
or impossible [2, 3].
In summary, efficient and effective

testing of multiple in-house systems
requires a thorough understanding of the
role those systems play and the value they
provide – and the threat they present to
the organization. It also requires a highly
flexible plan to accommodate potentially
significant organizational dynamics. The
following nine-step process addresses
these issues and is based upon these fun-
damental principles: (1) collect intelli-
gence, (2) prioritize objectives, (3) under-
stand resources, and (4) go for maximum
impact.

1. Identify Transaction Dialogues
The COTS system value and impact analy-
sis commences with identifying and docu-
menting transaction dialogues. A transac-
tion dialogue is a closely related set of
actions – ideally mapped to one or more
system requirements – that are normally
performed at the same time, and that typ-
ically conclude at the same place they
commenced. For example, adding new
employees to the employee database can
be viewed as a dialogue. It likely starts and
ends on the same menu screen, and the
data entry actions for adding employee
information are closely related.

Another example of a dialogue is
updating electronic timesheets with the
activities performed and hours worked
during a given day. Further examples
include entering sales orders into an
accounts receivable system, entering pay-
check information into a payroll system,
or paying invoices within an accounts
payable system. When creating transaction
dialogues, remember that the ultimate
objective is to structure or design them so
that they directly facilitate testing. (Note:
If you already have a set of use-case sce-
narios [4], you can use those in lieu of cre-
ating transaction dialogues. In the absence
of use-case scenarios, defining dialogues
will likely be faster and easier than defin-
ing scenarios).

Dialogues can be easily diagrammed as
a directed graph consisting of a set of
nodes and arcs where the nodes represent
specific (and possibly complex) activities
or steps, each with a descriptive label and
possibly a brief description. The arcs,
each of which connects two nodes, indi-
cate the sequence in which these activities
can occur. As shown in Figure 1, multiple
arcs departing from a node indicate that
any of the destination actions might occur
next. Similarly, multiple arcs arriving at a
node indicate any of the source activities
may have occurred previously. Note that
there are no semantic differences between
two arcs departing (as in Step 2) or in one
arc departing and splitting (as in Step 6).
Likewise there is no difference between
multiple arcs arriving (as in Steps 4B and
5B) or multiple arcs joining and then
arriving as one (as in Steps 6 and 8).

In order to ensure clarity and reduce
misunderstanding, it is important to keep
these drawings, and their associated
semantics or rules, simple (i.e., these dia-
grams do not require the formality or
detail of state transition diagrams). The
objective of developing these diagrams is
just to clearly indicate the boundary of the
closely related set of system and user
actions or steps that are covered by the
dialogue.

It may be infeasible or unnecessary to
try to capture all the various dialogues
within a system. Hence, develop dialogues
in a somewhat prioritized order. That is,
what are the most important things a
given system does? Capture that at a high
level. Then, resources permitting, decom-
pose complex nodes on higher-level dia-
logues into their own dialogues. If you are
preparing to perform parallel testing of
multiple COTS systems, then continue
with this strategy by documenting the
most important dialogues in the most
important COTS systems, etc.

Again, resources and time permitting,
steadily extend both coverage and formal-
ity by adding dialogues related to less-
important systems and less-important sys-
tem interactions, and by adding additional
information to previously developed high-
er-priority dialogues. For the most impor-
tant dialogues, consider augmenting them
with comprehensive use-case scenarios.

When identifying dialogues within any
given system, the ultimate objective is to
gain a better understanding of where,
how, and why users interact with that sys-
tem. This sets the foundation for analyz-
ing user impact.

2.Analyze User Impact
As you build a collection of transaction
dialogues, you can begin to identify specif-
ic user groups within the end-user organiza-
tion. Note that the groups you identify
may not align with actual job titles held by
the end-users. This is common and
acceptable because your primary objective
in this step is to improve your under-
standing of how closely related sets of
people – regardless of their titles – inter-
act with the various systems during day-
to-day usage.

Depending upon the complexity of
the end-user organization(s), you may also
find it convenient to define a set of user-
group types. Type distinction might be
quite simple such as distinguishing
between beginning, intermediate, and advanced
users. For each identified user-group (or

Step 1

Step 8

Step 2

Step 3A

Step 3B

Step 7A

Step 7B

Step 4A

Step 4B

Step 4C

Step 5A

Step 5B

Step 6

Figure 1: Identifying and Diagramming Transaction Dialogues

Software Engineering Technology

28 CROSSTALK The Journal of Defense Software Engineering May 2004

group-type combination), assign a code to
indicate that group’s estimated contribu-
tion to core mission or business perfor-
mance. For example, use A to indicate a
group that is critical to core performance,
B to indicate a group that is important,
and C to indicate a nonessential support
group.

Next, develop estimates of the num-
ber of users within each group. Typically
the sum of this number across all user-
groups will be much larger than the total
number of users because some people will
belong to multiple groups within one sys-
tem. Additionally, numerous people or
organizations may interact with multiple
systems.

The last and possibly most difficult
part of this step is to generally estimate
the number of times an average user
invokes a given dialogue. For example, an
average user within a particular group
might invoke one dialogue an average of
once per month, and another dialogue 20
times per day. Ideally, you can collect feed-
back from system end-users to help you
develop these estimates. Alternatively, you
may need to resort to best-guess estimates
developed by you, your test team, and any
available systems analysts.

The final objective of this step is to
have some idea regarding the relative fre-
quency that various dialogues are occur-
ring. This data will eventually be used to
help prioritize dialogues, but that prioriti-
zation will also depend upon a dialogue’s
historical defect profile, so that step must
be taken next.

3. Determine Historical
Defect Prevalence
For each dialogue, document the average
number of defects normally found during
testing, and add the average number
found after testing (that is, failures report-
ed by system users). This is a relatively
simple step; you will either have this data
or you will not. Probably, you will not.
Nevertheless, if you have been in the test
group for a while you can likely invent
some reasonably usable numbers.
Alternatively, you may be able to use his-
torical data from similar dialogues else-
where within the system. These numbers
do not need to be either accurate or pre-
cise. All we are trying to determine is
which dialogues tend to contain the most
defects. Whether a given dialogue has
been 10 times more defective than anoth-
er or 20 times more defective is not really
important. For the prioritization step, it is
sufficient to know that it is normally much
more defect prone.

4. Prioritize Dialogues
Eventually, we are going to be testing
based upon dialogues (and possibly use-
case scenarios). The question at this point
is which ones and how thoroughly? As
indicated previously, the overall objective
is to perform efficient and effective testing
of multiple in-house COTS-intensive sys-
tems by striving to perform testing in a
manner that reduces organizational risk
and that helps ensure the delivery of max-
imum benefit to the end-users. Given this
objective, relative importance can be
established by examining the following for
each dialogue:
• The size of the user-groups that

invoke the dialogue.
• The frequency of invocation per unit

time (e.g., 50 users, 20 invocations per
user per day).

• The relative role of the user-group and
dialogue to the organization’s core
mission capabilities.

• The historical defect prevalence asso-
ciated with the dialogue.
Note that this step is an analytical step,

not a calculation. The data developed in
prior steps is used to help make highly
informed decisions regarding how to pri-
oritize dialogues. However, remember that
much of the data may be gross estimates
at best and some may be outright specula-
tion, especially during early planning itera-
tions. Hence, use the underlying numbers
as an aid and combine them with the
experience and judgment of you and your
team.

The ideal output for this step is a
lifeboat ranking (or a fully ordered set) of all
the dialogues that are candidates for the
next phase of testing. Basically, you start
at the top of the list and keep working
downward as far as you can go, resources
permitting. If a fully ordered approach is
infeasible in your environment, then strive
to arrange dialogues into prioritized test-
ing sets (e.g., critical, highly important, impor-
tant, etc.).

5. Prioritize Test Types
This step consists of determining the
types of tests to run relative to the dia-
logues. That is, are you only interested in
testing features, or do you also consider
other tests to be important? Examples of
other types of tests include the following:
• Performance (normal load).
• Stress (approaching design limits).
• Overload (substantially beyond design

limits).
• Security.
• Safety.

The purpose of this step is to ensure

that everything that is important regarding
organization risk management and end-
user benefit is considered. For some envi-
ronments the prioritization of which types
of tests should be run first is fairly stable.
For example, in life-rated systems, safety is
typically the highest priority. After this
step, you have everything necessary to
build the test dialogue matrix.

6. Build a Test-Dialogue Matrix
This is another potentially simple step
where you build a matrix to help ensure
that all appropriate tests for each of the
designated dialogues are run. For example,
although you may be planning to conduct
testing focused specifically on security,
there may be numerous dialogues where
security is not an issue and security testing
is not required. Within this matrix (dia-
logues, in priority order, shown as rows;
and test types, also in priority order,
shown as columns), simply mark any cell
to indicate that you want to perform that
particular test (column) on that particular
dialogue (row).

7.Analyze Test Resources
The last step to perform before building
your test plan is to consider the resources
available for testing. This includes not only
human resources but also any automated
tools you have that can be used to help
with any subset of the testing. The gener-
al approach is to run the most important
tests and to cover the maximum amount
of highest priority dialogues. However,
the overall objective continues to be risk
reduction and user benefit, so it might
make sense to adjust the order of the tests
because you have one or more automated
tools that allow you to rapidly and effec-
tively test numerous lower priority dia-
logues. This would be the preferred
approach when the compound benefit of
testing a large number of lower priority
dialogues exceeds that of the delayed
higher-priority tests.

Integral to this approach is the fact
that it is often difficult, if not impossible,
to know your test resource availability rel-
ative to future demands that may be
placed on your test group. This is why
each of these steps is ultimately about pri-
oritization and best utilization of available
resources. For example, you may think you
still have a month to finish testing the
dozen COTS systems that are currently
under test, but then again, what if you do
not? Especially when it comes to the high-
ly dynamic environments typically associ-
ated with testing multiple COTS systems,
it is imperative that whatever is most
important to occur next (whether it is a

Efficient and Effective Testing of Multiple COTS-Intensive Systems

May 2004 www.stsc.hill.af.mil 29

single human-intensive test or a highly
automated set of tests) is precisely what
occurs.

8. Establish a Test Plan
Dynamic environment notwithstanding, it
is important to take the time to develop an
actual test plan, or to post your latest
updates and revisions to the existing test
plan. The formality and scope of various
test plans may vary significantly depend-
ing on system criticality (or lack thereof),
your overall test strategy, and resource
availability. For example, there undoubted-
ly will be situations where exploratory
testing [5] will give far better coverage
(and test resource utilization) than script-
ed testing; additionally, you minimize the
creation of comprehensive test docu-
ments to maximize the performance of
actual test activities. Similarly, you will like-
ly want to consider some level of combi-
natorial testing [6] to reduce the overall
number of required tests by focusing on
two-way and three-way parameter combi-
nations for effectively finding multi-mode
software faults. Regardless of the overall
strategy, however, in the interests of com-
munication, consensus, and overall risk
management, some level of documented
test plan is almost always beneficial.

In many environments, test plans (for-
mal or otherwise) are frequently overtaken
by events and therefore need frequent
revision. For example, you may want to
review your test plan on a weekly or
monthly basis to determine if any revi-
sions are required. Your test schedule,
however, including revisions to dialogue
prioritization, might need to be updated
on a daily or weekly basis.

When planning, consider the various
development groups within your organi-
zation, and absolutely consider their track
record regarding their commitments to
the test group. Do they normally deliver
system and software enhancements on
time, or do they routinely miss by a few
months? The problem is, although you
have to consider this when preparing your
test schedule, project managers might find
it a tad offensive if your schedule shows,
for example, you are not really expecting
them to deliver until six months after their
claimed completion date. Therefore, con-
sider keeping both an “official test sched-
ule” and a “pessimistic test schedule.” The
pessimistic schedule is what you use to
remind yourself how you think events are
really going to unfold.

As you are building or revising your
plan and schedule, always consider the
possibility of obtaining additional test
resources. For example, can developers

help with system testing? Absolutely. Can
system designers test? Certainly. Are sys-
tems engineers, requirements analysts, and
end users all potentially effective testers?
Of course they are. Are any of these
resources available to you? They probably
are not. But then again, maybe that
depends on the relative importance of the
items on the upcoming testing schedule
relative to some of the other work cur-
rently occurring within your organization.
Given the steps you have taken to create
the inputs to your multi-system test plan
and schedule, if you think additional
resources are needed, at a minimum you
can support your request with a very com-
pelling rationale.

9. Conduct Test Management
Effective test management requires a wide
variety of skills and activities, including the
identification, collection, and analysis of a
variety of test-related and quality-related

metrics, and metrics associated with test
status tracking, management, and control;
proper reviews (to varying levels of for-
mality) of test documentation and support
material; and the determination of clear
criteria for objectively assessing whether or
not a system is ready for piloting, and
when it is ready for operational use. Within
this context, test activities should be prior-
itized with the ultimate objective of deliv-
ering maximum benefit to the end-users.

Prioritization is also influenced by the
overall test strategy (such as exploratory
testing and/or combinatorial testing). As
testing activities are performed, there is
normally a wealth of defect data collected.
However, much of this strategically valu-
able data often is eventually lost. That is,
test results are compiled and sent back to
the development teams and are used for
system and software corrections, but that
data is not otherwise archived and man-
aged by the test organization.

Note that one of the critical steps pre-
viously described is the determination or
estimation of defect prevalence by dia-
logue. Since you are running the tests, you
absolutely can and should retain this infor-
mation. Ideally, you have (or can find or
create) one or more failure-related refer-
ence lists so that system failures can be
assigned to failure categories, failure sever-
ities, failure likelihood in the field, etc. This
data can then be stored in a database, or
even in a spreadsheet for use during future
planning iterations.

Possibly even more important, to con-
tinue to enhance this overall process you
must collect relevant data regarding fail-
ures or problems reported from system
beta testing and production usage. These
are the defects that slipped past your test-
ing process. What are they? Where are
they? When were they discovered? How
were they discovered? For a given defect,
which user group reported it first? Which
user group reported it the most? What was
the impact? This data is absolutely essen-
tial to you in your ongoing efforts to
understand end-user consequences and
organizational risk, and to continually
improve the contributions of your test
organization to overall mission success.

Delivering Maximum Benefit
Delivering maximum benefit to organiza-
tional end-users, and ultimately to the
organization, is everyone’s job. Therefore,
related to this discussion are numerous
quality topics such as the value of peer
reviews, the benefits of early inspections,
the greater benefits of perspective-based
reviews [1], etc., which directly impact
overall organizational competence and
mission performance. However, as a man-
ager or technical specialist within the test
organization, you normally do not influ-
ence such things. The projects build what
they build, the procurement organization
buys what it buys, and the maintenance
teams implement changes however they
feel like. And you are the last line of
defense, literally, for your organizational
system’s end-users.

There are many alternative approaches
to testing COTS-intensive systems. You
can, for example, assign functional require-
ments to different priority levels, and then
take a priority-driven approach to test per-
formance. Alternatively, many organiza-
tions, if they have sufficient resources,
plan and perform tests by taking one of
these approaches: try-to-test-everything-once,
top-down, front-to-back, or any of numerous
other techniques.

The premise behind the approach
described in this article is to increase your

“The potential exists to
substantially improve

upon system uptime and
overall end-user benefit
by finding, for example,
just five percent more

defects than are
currently found.”

Software Engineering Technology

30 CROSSTALK The Journal of Defense Software Engineering May 2004

efforts relative to test priority analysis and
planning, and to strive to maximize the
test organization’s contribution to the
overall delivery of benefits to systems’
end-users, and the overall end-user experi-
ence. Invariably, testing priorities will con-
tinue to be a constantly shifting landscape
due to unexpected events. However, by
regularly following the steps described in
this paper you will steadily improve your
understanding of user-group interactions
with various systems and steadily increase
the amount of data available to you relat-
ed to user-discovered defects and conse-
quences. This combination of strategy,
understanding, and data will directly sup-
port and enhance your overall efforts
toward leveraging your test organization
to deliver maximum benefit to your end-
users.◆

References
1. Boehm, B., and V. Basili. “Software

Defect Reduction Top-10 List.” NSF
Center for Empirically Based Software
Engineering, Jan. 2001 <www.cebase.
org/www/home/index.htm>.

2. Bechtold, R. “Software Quality Val-
uation: Return on Investment Versus
Reduction of Risk.” International
Conference on Practical Software
Quality Techniques/Practical Software

Testing Techniques. Washington, D.C.,
June 2003.

3. Bechtold, R. “Return on Investment for
Software Testing.” Software Testing
Forum. Reston, VA., Mar. 2003.

4. Satzinger, J., and T. Orvik. The Object
Oriented Approach, Concepts, System
Development, and Modeling with UML.
2nd ed. Course Technology, Thomson

Learning, 2001.
5. Bach, J. “What Is Exploratory Test-

ing?” <www.satisfice.com/articles/
what_is_et.htm>.

6. Daich, Gregory T. “No-Cost Combi-
natorial Testing Support.” Software
Technology Support Center, Hill AFB,
UT., <www.stsc.hill.af.mil/consulting/
sw_testing/improvement/cst.html>.

Object Management Group
www.omg.org
Founded in 1989 by 11 companies, the Object
Management Group (OMG) now has about 800 members.
It is a not-for-profit corporation formed to create a compo-
nent-based software marketplace by accelerating the intro-
duction of standardized object software. The OMG is estab-
lishing the Model Driven Architecture through its world-
wide standard specifications, including Object Services,
Internet Facilities, Domain Interface specifications, and
more.

The Agile Alliance
www.agilealliance.com/home
The Agile Alliance is a non-profit organization dedicated to
promoting the concepts of agile software development, and
helping organizations adopt those concepts. The site fea-
tures an extensive library of articles about agile processes
and agile development.

Center for Software Engineering
http://sunset.usc.edu/index.html
Dr. Barry Boehm founded the Center for Software
Engineering (CSE) in 1993. It provides an environment for
research and teaching large-scale software design and devel-
opment processes, generic and domain-specific software
architectures, software engineering tools and environments,

cooperative system design, and the economics of software
engineering. One of CSE's main goals is to research and
develop software technologies that can help reduce cost,
customize designs, and improve design quality by doing
concurrent software and systems engineering.

INCOSE
www.incose.org
The International Council on Systems Engineering
(INCOSE) was formed to develop, nurture, and enhance
the interdisciplinary approach and means to enable the real-
ization of successful systems. INCOSE works with industry,
academia, and government to disseminate systems engi-
neering knowledge, promote collaboration in systems engi-
neering, establish integrity in systems engineering stan-
dards, and encourage research and educational support to
improve the systems engineering process and its practices.

Risk Management
www.acq.osd.mil/io/se/risk _management/index.htm
This is the Department of Defense (DoD) risk management
Web site. The Systems Engineering group within the
Interoperability organization formed a working group of
representatives from the services and other DoD agencies
involved in systems acquisition to assist in the evaluation of
the DoD’s approach to risk management including the lat-
est tools and advice on managing risk.

WEB SITES

About the Author

Richard Bechtold,
Ph.D., is president of
Abridge Technology and
is an independent consul-
tant who assists industry
and government with

organizational change and systematic
process improvement, especially in the
area of implementing effective project
management. Bechtold has more than 25
years of experience in the design, devel-
opment, management, and improvement
of complex software systems, architec-
tures, processes, and environments. This
experience includes all aspects of orga-
nizational change management, process
appraisals, process definition and model-

ing, workflow design and implementa-
tion, and managerial and technical train-
ing. Bechtold is an instructor at George
Mason University where he teaches
graduate-level courses in software pro-
ject management, systems analysis and
design, principles of computer architec-
tures, and object-oriented java program-
ming. The second edition of his latest
book, “Essentials of Software Project
Management,” is scheduled for publica-
tion in 2004.

Abridge Technology
42786 Oatyer CT
Ashburn,VA 20148-5000
E-mail: rbechtold@rbechtold.com

May 2004 www.stsc.hill.af.mil 31

There is a popular television program that
appeals to the brave of heart called

“Fear Factor.” During this program, contes-
tants compete against each other in events
and activities that cause considerable fear for
most people. Although it is considered reali-
ty TV, the things the contestants are required
to eat, drink, touch, dive into, or navigate
through are not considered reality by the
average person. Contestants are eliminated
with each fear-defying competition, until a
single winner remains.

In the reality world of software develop-
ment and/or acquisition, there are circum-
stances, events, activities, etc. that instill
fear in the hearts of software developers,
acquirers, and managers. Too often these
fear factors are ignored and have devastat-
ing impacts on software projects. The
authors of this article have participated in
the review and assessment of numerous
software-intensive systems from the per-
spective of both developing software and
purchasing software. From our experi-
ences, we have identified several issues that
are common to many software-intensive
programs. These issues, risk factors, are keys
to either the success or failure of any soft-
ware-intensive system.

What Is Software Risk
Management?
Risk is defined as, “A possible future event
that, if it occurs, will lead to an undesirable
outcome” [1]. In the context of software
then, software risk management would logi-
cally imply the managing of possible future
events that could have undesirable effects on
software projects. That sounds simple
enough. What future events could possibly
negatively impact my software project? Risk
management is simply defined as a general-
ized process for managing risks [2].
However, to be an effective risk manage-
ment process, it has to be both accurate and
usable; that is, it must provide results to a

manager in time to allow the manager to
make informed decisions that allow risks to
be minimized or avoided.

Every development project has risks.
The risks can range from the common,
“We might not be able to find a JOVIAL
programming language expert by next
month,” to the uncommon, “A hurricane
might destroy all of the prototype aircraft.”
How you approach these risks is what is
important. In the rest of this article, risk
refers to software risk.

The Two Extremes of Software
Risk Management
There are two extremes of software risk
management: too little and too much. Each
one can be explained in terms of popular
operating systems.

The first extreme, the too little school,
is much like older versions of UNIX.
While UNIX is a fine operating system, its
roots show a lack of disciplined software
development. For those accustomed to a
single version of an operating system, there
existed numerous versions of UNIX – well
over 1001.

Here is an example of the too little school.
One of the authors used to work on a
Burroughs mini-computer back in the mid-
80s. It ran a version of UNIX referred to as
BNIX, which has an interesting property.
The memory table that kept a list of all cur-
rently running jobs (the process table) had a
limited size, but there was no mechanism to
protect it. The size was somewhere around
1,023 entries. If you tried to run a process
after the table was full, BNIX just bumped the
counter to 1,024 and started entering
process data.

The fact that the process table was full
did not deter it – it just wrote to whatever
memory was at the 1,024th position. Since
the process table was stored in memory, it
was likely (in fact, it was certain) that this
1,024th process just overwrote something

critical in the operating system. Assuming
that the system did not crash immediately,
you could start a 1,025th process. Eventually,
the operating system would crash in some
bizarre fashion.

By not having mechanisms to deal with
the problem, which was a limited size
process table, BNIX used the ostrich-head-in-
the-sand method of risk management. This
method means you assume that all will go
correctly, and you just pretend that no risks
exist. Many current software development
projects use this method – the equivalent of
believing in magic, which often occurs
because of a new and untested silver bullet.
For example, “Now that we are using com-
mercial off-the-shelf software in our pro-
gram, we’re going to cut the schedule by 25
percent.” This is unrealistic, unproven, and
head-in-the-sand thinking.

The second extreme of software risk
management, the too much school, is more
like Windows 98. Windows has many mech-
anisms to ensure you do not overflow
process tables, overwrite system memory, or
use memory that is currently allocated to
other programs. However, Windows 98
sometimes gave a message that said some-
thing like, “Unable to run program – not
enough memory. Try quitting a running pro-
gram and try again.” Unfortunately, this
error message occurred when only running
a single program, or even no program. What
typically happened was that a previously
running program had used memory incor-
rectly (or crashed prior to cleaning up after
itself) and left the system memory corrupt-
ed. Windows 98 was unable to ensure that a
new program would not be overwriting
memory still marked as in use, and would not
let the new program run. It usually required
a reboot to set things right. This method,
being over-cautious of the risks and always
assuming that the worst is going to happen, is
the other extreme.

To effectively manage risks, you have to

Open Forum

Risk Factor: Confronting the Risks
That Impact Software Project Success

Dr. David A. Cook
The AEgis Technologies Group, Inc.

Every systems and software project involves risk. Often, how you manage your program
risks is a deciding factor in the eventual success or failure of your program. If you ignore
the risks, your program has a higher chance of failing. On the other hand, if you try to
track and manage all possible risks, you can expend your entire budget managing the risks,
and never produce a deliverable. Risk management, like any other element of systems and
software development, requires forethought and careful planning. This article explains what
risk management is, and then discusses some common developmental risks.

Theron R. Leishman
Software Technology Support Center/Northrop Grumman

Wednesday, 21 April 2004
Track 5: 2:25 - 3:10

Room: 150 G

take the middle ground. You cannot ignore
risks and pretend that all will go well.
However, you cannot micromanage all pos-
sible risks; you do not have the time and
the resources. To take the middle ground,
you have to be aware of some common
risk factors.

Critical Systems and Software
Risk Factors
To adequately manage risks, it is essential to
evaluate the program’s/project’s unique situ-
ation. There are, however, certain risks that
tend to impact many programs/projects.
Having evaluated several programs, we have
identified the following critical risk factors as
issues that impact the success of many pro-
grams. By addressing the key risk factors,
programs can make great strides in manag-
ing risks that may impact them.

Inadequate Planning
Recently while assisting in the review of a
large Department of Defense (DoD) soft-
ware acquisition program, we asked to
review the program’s planning documents.
In response to the request, the program
office produced a Microsoft Project sched-
ule. This response is common when we ask
about planning documents while performing
program reviews.

There appears to be a lack of desire,
interest, ability, and attention to performing
adequate program/project planning. Not all
programs/projects require the same level of
planning; however, they all should include
enough planning to adequately assess their
issues. Program/project plans should con-
sider the following:
• Date and status of the plan.
• Scope of the plan.
• Issuing organization.
• References.
• Approval authority.
• Assumptions made in developing the

plan.
• Planned activities and tasks.
• Policies, etc., that dictate the need for this

plan.
• Micro-references – other plans or tasks

referenced by the plan (other plans or
task descriptions that elaborate details of
this plan).

• Schedules.
• Estimates.
• Communication chains.
• Resources and their allocation.
• Responsibilities and authority.
• Risks.
• Quality control measures.
• Cost.
• Stakeholder identification.
• Interfaces among stakeholders.

• Environment/infrastructure, including
safety needs.

• Training.
• Glossary.
• Change procedures and history.
• Schematics, diagrams, and architectures

to further clarify the intent of the plan.
A lack of adequate planning tends to

indicate a lack of forethought and direc-
tion. Inadequate planning at either a pro-
gram or project level greatly increases risk
to successful project completion. Elaine M.
Hall [2] has a good explanation of how to
plan for risk.

Unrealistic Schedules
The daughter and son-in-law of one of the
authors of this article recently built a house.
The couple was anxious to have the home
completed so they could move in early
enough in the fall to complete the yard
before winter. To them this seemed a rea-
sonable request.

As the couple negotiated the deal with
the chosen contractor, they were told the
house would not be completed in the time
schedule desired by the couple. The contrac-
tor showed them the list of tasks to be com-
pleted and the dependency of each task with
other tasks. He further explained to them the
dependency on outside factors such as
weather, availability of special materials that
were part of the couple’s design, availability
of subcontractors, whims and schedules of
building inspectors, and the priority of their
house in relationship to other homes the
developer was building. The bottom line: the
couple was not able to eliminate critical steps
in the building process, shortcut the avail-
ability of critical resources, or circumvent
required inspections.

Have you ever been coerced into or
managed a software project that begins with
a predetermined schedule? One that is
unachievable, to start with, that requires
sound processes to be altered or eliminated?
One that ignores the requirement for critical
resources, eliminates critical reviews, and
allows only minimal time for testing? If so,
then in talk-show host and author Dr. Phil’s
words, “What are you thinking?”

Why do we agree to and/or impose soft-
ware schedules that require the abandon-
ment of everything that we have learned
over the past several years as being essential
to the success of software development or
acquisition projects?

The authors have seen numerous soft-
ware projects with schedules we consider to
be unreasonable, in our opinion, due to the
following:
• Schedules based on product need rather

than a realistic assessment of engineer-
ing effort. This includes schedules based

on an arbitrarily imposed due date.
• Effort estimates and resulting schedules

based on hallucinations (or unrealistic
hope) rather than on historical basis.

• Schedules based on unrealistic, incorrect,
or unknown requirements.

• Schedules developed without adequate
understanding of sound software engi-
neering practices.

For these reasons, we have included unreal-
istic schedules as one of our software risk
factors.

Unfortunately, managers who attempt to
transform unreasonable schedules into accu-
rate and reasonable ones run the additional
risk of extreme upper management displea-
sure. This (and the risk of losing one’s job)
creates great pressure on lower-level man-
agers to continue to pretend that unreason-
able schedules are, in fact, achievable.

Unconstrained Requirements Growth
There have been volumes written over the
years about the impact of incomplete, inac-
curate, growing, unstable, and on, and on,
and on, software requirements problems. In
the April 2002 CrossTalk, we enumerat-
ed several requirements risks that can drown
software projects [3].

Research conducted by Capers Jones [4]
identified the top five risks that threaten the
success of software projects in various sec-
tors. Figure 1 summarizes the approximate
percentage of projects that suffer from
creeping user requirements.

As indicated in Figure 1, the majority of
management information systems and mili-
tary projects suffer from requirements creep.
We further saw that nearly half of the out-
sourced projects included in the study also
suffered from requirements creep.

Our experience shows that nearly all pro-
jects suffer from some form of require-
ments risk. The impact is often catastrophic
to the success of the project. We see require-
ments issues as a substantial risk to the suc-
cess of many software projects.

Dysfunctional Organizational Culture
The following is the parable of the Happy
and Productive Worker:

Once upon a time in a company not
far away, there was a worker. He was a
productive, happy worker, but alas, he was
unsupervised.

The company saw that the worker was
unsupervised and made a supervisor.

The coordinator saw that the worker was
productive and happy and made a lead
worker to make the worker more productive
and happier.

The company saw that the department in
which the productive, happy worker worked

32 CROSSTALK The Journal of Defense Software Engineering May 2004

Risk Factor: Confronting the Risks That Impact Software Project Success

May 2004 www.stsc.hill.af.mil 33

had grown and made a manager to manage
the department in which the productive,
happy worker worked productively and hap-
pily.

The manager saw that the worker was
productive and happy and made an assis-
tant manager to help manage the depart-
ment in which the productive, happy worker
worked.

The company saw that the department
where the happy, productive worker worked
had grown and made an administrator to
administer the department in which the pro-
ductive, happy worker worked.

The administrator saw that the worker
was productive and happy and made an
assistant administrator to assist in adminis-
tering the department in which the produc-
tive, happy worker worked.

More people were added until the direc-
tor saw that the department was losing
money. So he consulted a consultant. The
consultant examined the department in
which the productive, happy worker worked
productively and happily and advised there
were too many people in the department in
which the productive, happy worker worked.

And the director paid heed to the coun-
sel of the consultant and fired the produc-
tive, happy worker.

In the parable of the Happy and
Productive Worker, the organization valued
and rewarded the wrong things. As you think
of the organizations you work in, what is the
culture that exists? Is it a culture plagued
with high turnover? Do you enjoy going to
work each day, or does it take an act of God
to get you out of bed and into the office? Do
you have the training and skills required to
perform the tasks that are expected of you?
Are meetings useful with something actually
being accomplished, or are there too many
long, useless meetings that just distract from
what you are trying to get done?

The organizational culture of many soft-
ware companies appears to be that of work-
ing harder to get out of doing work rather
than actually getting things done. This risk
factor ties closely to the management. There
is an inherent risk with over-managing – and
perhaps this risk is greater than under-man-
aging. Over-management forces workers to
spend too much time justifying what they do
(and do not do). Workers need to be allowed
to fail occasionally, and learn from their fail-
ure. If you create an environment of one mis-
take and you’re out, workers will spend so
much time trying not to fail that they will not
have the time to succeed.

During a recent seminar, we asked the
attendees how many of them had ever been
part of what they considered to be a high-
performance team. Of 30 attendees, five

indicated that they had. Upon discussion
with the group, we identified the following
characteristics of a high-performance team:
• Value for all team members.
• Open communication.
• Common understanding of team goals.
• Recognition for valuable contributions.
• Clear understanding of job expectations.
• Shared desire to meet or exceed expecta-

tions.
• Demonstrated commitment to the team

by management.
It is difficult to successfully develop

software in a dysfunctional organization.
Management must look honestly at the
organization to determine if it is dysfunc-
tional. If your culture is one similar to that
of the Happy Productive Worker, that cul-
ture is a serious risk to your organization’s
success in consistently providing quality
software.

Not Having or Following Processes
Having and following a good process is
essential to the consistent development of
quality software systems. It has been said
that a software product is only as good as the
process used to develop and maintain it.

There seems to be common agreement
on the value of having and following sound
processes in the development and mainte-
nance of software, yet in the authors’ expe-
riences, this continues to be a weakness of
many software development organizations.
We see many organizations that either lack
processes or do not follow their existing
processes. Some have processes in place but
are quick to abandon them when hit with
schedule pressure.

When this happens, the good, smart
things that help ensure quality software fall
by the wayside and programs/projects grad-
ually spin out of control. Not having or fol-
lowing processes is on our list of software
risks because this is an area that is often only

given lip service. If processes exist, and are
required to be followed, many other risks
immediately become less critical.

Failure to Actively Manage
Software Risk
Have you ever thought about how much we
depend on software? The world has evolved
to the point where almost everything we do
involves software. Lt. Gen. Jim Fain (U.S. Air
Force retired), during his tenure as F-22 pro-
gram director, described software’s impor-
tance by saying, “The only thing you can do
with an F-22 that does not require software
is to take a picture of it” [5]. Now in 2004,
there is probably not even a non-disposable
camera in use that is not at least partially
operated by software.

Software has made great technological
advancement possible. This dependence on
software has also brought with it conse-
quences. Software failures have resulted in
significant financial losses and even the loss
of life. Software has become the very heart
of the new economy, and business risk man-
agement must include software risk manage-
ment to survive.

During a recent program review, one of
the authors of this article asked how soft-
ware risks were managed on the program.
The program office produced a list from
their risk database of software risks that
included risks at a very high level and were
generic to the point that they could be
applied to any program. When asked how
the list was generated, it was explained that a
tool had generated the risks based on infor-
mation provided. We call this risk manage-
ment in a can. This was a large DoD pro-
gram that included software with potential
life-threatening consequences.

Our dependence on software has pushed
us to the point where a proactive software
risk management process is essential.
Managers must determine whether any

10

20

30

40

50

60

70

80

Management Information
Systems (MIS) Projects

Military Projects

Outsourced Projects

0

Figure 1: Percentage of Three Types of Projects That Suffer From Requirements Creep

unwanted events may occur during the
development or maintenance of software,
and make appropriate plans to avoid or min-
imize the impact of these negative conse-
quences. Failure to do so may have devastat-
ing consequences. A good software risk
management process should include the fol-
lowing steps:
• Identification of program-/project-

specific software-related risks.
• Detailed analysis of each software risk.
• Development of plans to address soft-

ware risks.
• Active monitoring and tracking of

software risks.
• Use of metrics to monitor the risk-

management process.
By actively managing software-related

risks, the probability of experiencing first-
hand the consequences of a software failure
can be greatly reduced. While failure to
actively manage software risk is the last risk
mentioned, it is critical.

How detailed should your risk manage-
ment be? On one recently performed assess-
ment, the risk list on the project ran more
than 400 pages, and had a complex formula
showing each risk status. Such a complex risk
list is almost useless. It is difficult to see the
overall project risk status, and it takes a huge
amount of time to keep it current.

The authors recently performed another
assessment, and saw the risks briefed as a
25-item list, each with either a red, yellow, or
green light (standing for high, medium, and
low risk). This method was easy to use, easy
to understand, and reasonably easy to
update. The key point is that the program
manager, using this simple 25-item list, has
the information to understand the risk
exposure of the program and make good
decisions.

Conclusion
This article is not intended to present a com-
plete list of risk factors for a particular pro-
gram/project – it would take much more
space. Likewise, it is not intended to be a
primer on correct risk-management prac-
tices. What this article is intended to do is
heighten your awareness of risk manage-
ment, and give you a starting point in creat-
ing an appropriate risk management strategy.
Risk management is usually a task best done
by somebody who has some experience in
the area. Locate an appropriate source of
training or experience, and learn from
other’s mistakes. If you proactively manage
risks properly, then you will spend little time
reactively putting out unexpected fires, thus free-
ing up more time to build your system based
on current, accurate, and easy-to-understand
risk information.

During a recent “Fear Factor” episode,

contestants were required to leap from one
boat to another while the two boats were
speeding next to each other. This resulted in
some of the contestants experiencing very
traumatic falls into the water.

In this article, we have identified six risk
factors that, based upon our experience, can
have significant impact on the success or
failure of software programs and projects.
By confronting these risks, many inherent
problems can be avoided. We recommend
the following:
• Take program/project planning seri-

ously.
• Do not lie to yourself; develop schedules

based on sound facts and proven
approaches.

• Stringently control requirements growth.
• Establish a success-oriented organiza-

tional culture.
• Develop and follow sound software

development, maintenance, and pro-
gram/project management processes.

• Actively identify and manage risks spe-
cific to your program/project.
By doing these, you can reduce the prob-

ability of your program or project having a

traumatic fall into the pit of unsuccessful
software programs and projects. The biggest
risk of all is failing to manage your risks! ◆

References
1. Leishman, T., and J. VanBuren. “The

Risk of Not Being Risk Conscious:
Software Risk-Management Basics.”
STSC Seminar Series, Hill AFB, UT.,
2003.

2. Hall, Elaine M. Managing Risk. Addison-
Wesley, 1998.

3. Leishman, Theron, and Dr. David A.
Cook. “Requirements Risks Can Drown
Software Projects.” CrossTalk 15.4
(Apr. 2002): 4-8 <www.stsc.hill.af.mil/
crosstalk/2002/04/leishman.html>.

4. Jones, Capers. Assessment and Control
of Software Risks. Prentice Hall, 1994.

5. Naval Postgraduate School. “Importance
of Software to the Military.” U.S. Navy, 4
Mar. 2000 <www.nps.navy.mil/wings/
acq_topics/AcqTopics.htm>.

Note
1. See <www.scs.org/confernc/astc/

astc04/cfp/astc04.htm> for a starting
point.

Open Forum

34 CROSSTALK The Journal of Defense Software Engineering May 2004

About the Authors

Theron R. Leishman
is a consultant cur-
rently under contract
with the Software
Technology Support
Center at Hill Air

Force Base, Utah. Leishman has 19
years experience in various aspects of
software development. He has suc-
cessfully managed software projects
and performed consulting services for
the Department of Defense, aero-
space, manufacturing, health care,
higher education, and other industries.
He is a Level 2 Certified International
Configuration Manager by the
International Society of Configu-
ration Management, and is employed
by Northrop Grumman. Leishman
has a master’s degree in business
administration from the University of
Phoenix.

Software Technology
Support Center
6022 Fir AVE, BLDG 1238
Hill AFB, UT 84056
Phone: (801) 775-5738
Fax: (801) 777-8069
E-mail:theron.leishman@hill.af.mil

David A. Cook, Ph.D.,
is a senior research sci-
entist at AEgis Tech-
nologies Group, Inc.,
working as a verifica-
tion, validation, and

accreditation agent in the modelling
and simulations area. He is currently
supporting the Airborne Laser System
Program. Cook has more than 30 years
experience in software development
and management. He was formerly an
associate professor at the U.S. Air Force
Academy, a deputy department head of
the Software Professional Develop-
ment Program at the Air Force Institute
of Technology, and a consultant for the
Software Technology Support Center.
Cook has published numerous articles
on software-related topics. He has a
doctorate degree in computer science
from Texas A&M University.

AEgis Technologies Group, Inc.
6565 Americas PKWY NE
STE 975
Albuquerque, NM 87110
Phone: (505) 881-1003
Fax: (505) 881-5003
E-mail: dcook@aegistg.com

BACKTALK

May 2004 www.stsc.hill.af.mil 35

Ientered the defense industry in the midst
of the Cold War. The only action my sys-

tems saw was operational test and evalua-
tion or an occasional Top Gun or
Gunsmoke competition. It was a time of
scientific tinkering and military conjecture.

On the conjecture side of the equa-
tion, then as is now, a 2,500-year-old
Chinese general known as Sun Tzu wield-
ed tremendous influence over American
military strategy. In fact, his manuscript
“The Art of War” may be the most quot-
ed document in military history. When
asked to estimate enemy forces, Army
Gen. Tommy Franks replied, “The answer
I’m going to give you will not be a num-
ber, because, as has been the case
since Sun Tzu said it, precise knowl-
edge of self and precise knowledge
of the threat leads to victory.”

While interesting reading for gener-
als and corporate ladder climbers, most
engineers find Sun Tzu too ethereal,
more reminiscent of a Cheech and
Chong elucidation than an Orwellian
dissertation. In fact, the title turns
many engineers away because art is a
dirty word, unless you are a sanguine soft-
ware tyro. Leave the art of war to Norman
and Tommy while we examine the tech-
nology of war.

Wars give birth to society-altering
technology. During conflict, radically new
technologies surface to gain an advantage
and quell one’s adversary. Once that is
accomplished, the technology pops into
the commercial sector and alters the direc-
tion of humanity.

Eleven years after the Wright brothers
flew at Kitty Hawk, World War I erupted.
Sparsely used airplanes became courier,
reconnaissance, and fighting machines,
launching an aviation industry that
abridged the world. That war also led to
the development of radio. KDKA’s his-
toric radio broadcast in 1920 paved the
way for Elvis, John, Paul, George, Ringo,
Elton, Howard, Rush, and catchy advertis-
ing jingles.

World War II led to atomic fission and
microwave communication, changing the
way we pop popcorn forever. The first
computer calculated artillery trajectories
so one could accurately rain shells from
afar. Now computers facilitate message
trajectories so one can arbitrarily rain e-
mail from afar and annoy with SPAM,
another byproduct of World War II, the

edible kind that is.
The Cold War launched satellites to spy.

Now we spy with satellite dishes, perusing
television’s ersatz reality of survivors, bach-
elors, and apprentices. Now the Cold War is
history, with Google at ground zero, and
the BLOG intercontinental.

So what is next? What
new technology will come
from the War on Terror?
What invention will

necessity
give birth to? A paradox-
ical question for sure.

Maybe Sun Tzu’s tome can shed some
light on our uncertainty. “Rapidity is the
essence of war,” he opines. “The pinnacle
of military deployment approaches the
formless. Then even the deepest spy can-
not discern it or wise make plan against it.”
How does the largest military in the world
approach rapid formless deployment? No
one, short of George Lucas or Gene
Roddenberry, can accurately predict, but
here are some good bets.

Remote sensing and surveillance tech-
nology that can find, identify, and lock onto
individuals versus structures. Smart bombs
that get personal, if you will, reversing the
situation and striking terror back into the
terrorist. Can you hear me now? Good.

Faster processors coupled with intelli-
gent and efficient software sort and match
torrents of information from all over the
world, finding patterns that predict attacks.

That is just to reign in the Bernard Ebbers,
Ken Lays, and Martha Stewarts of the
world; imagine how it will thwart terrorists.

Bio and nanotechnology can increase a
warrior’s power while lightening his load.
Decentralizing computing and weaving it
into the fabric of the warrior increases
flexibility and reduces predictability and
vulnerability. This is the return of
Batman’s utility belt, complemented by a
utility shirt, jacket, and pants.

These technologies enable rapid
response, flexibility, and interoperability
without interdependence. All key in a rapid

formless deployment. Underlying it all
is software. Unfortunately, software’s
unpredictability and cost are also the
long pole in the tent of innovation,
toiling to catch up with its hardware,

bio, and nanotechnology counterparts.
Several decades ago, we turned to soft-

ware for its flexibility. Early simple appli-
cations were easy to change, and beat

going back to the fabrication shop to
change the hardware. Increased complexity,
unpredictable delivery times, low quality,
and cost overruns indicate that software is
not soft but rather hard.

Your challenge, if you choose to accept
it, is to put the soft back in software.

— Gary Petersen
Shim Enterprise, Inc.
garyp@shiminc.com

The Art Technology of War

Can You BackTalk?

Here is your chance to make your
point, even if it is a bit tongue-in-
cheek, without your boss censoring
your writing. In addition to accepting
articles that relate to software engi-
neering for publication in
CrossTalk, we also accept articles
for the BackTalk column.
BackTalk articles should provide a
concise, clever, humorous, and insight-
ful article on the software engineering
profession or industry or a portion of
it. Your BackTalk article should be
entertaining and clever or original in
concept, design, or delivery. The length
should not exceed 750 words.

For a complete author’s packet
detailing how to submit your
BackTalk article, visit our Web site at
<www.stsc.hill.af.mil>.

X

CrossTalk / MASE

6022 Fir AVE
BLDG 1238
Hill AFB, UT 84056-5820

PRSRT STD
U.S. POSTAGE PAID

Albuquerque, NM
Permit 737

Published by the
Software Technology

Support Center (STSC)

	Front Cover

	Table of Contents
	Best Practices
	Spiral Acquisition of Software-Intensive Systems of Systems

	Software Engineering Technology
	Advanced Software Technologies for Protecting America
	Bridging Agile and Traditional Development Methods: A Project Management Perspective
	Understanding Software Requirements Using Pathfinder Networks

	Efficient and Effective Testing of Multiple COTS-Intensive Systems

	Open Forum

	Risk Factor: Confronting the Risks That Impact Software Project Success

	From the Publisher
	U.S. Government’s Top 5 Quality Software Projects
	Coming Events

	Web Sites

	BackTalk

	Back Cover

