
May 2004 www.stsc.hill.af.mil 21

Understanding Software Requirements
Using Pathfinder Networks

Udai K. Kudikyala and Dr. Rayford B. Vaughn Jr.
Mississippi State University

Understanding and communicating user requirements early in the software development life
cycle is essential for satisfying user needs as well as reducing defects, cost, and schedule. This
article reports on a technique that uses pathfinder networks to discover and evaluate men-
tal models that represent stakeholders’ perception of software requirements. The results
obtained by applying this technique on multiple projects are also described.

During the initial phase of any system
development activity, software devel-

opers are challenged to uncover, under-
stand, and specify user requirements. It is
important to have a common understand-
ing among users/customers, project man-
agers, and developers (collectively known
as stakeholders) regarding requirements of
the software system being developed. This
is often considered a major risk factor in
software development projects [1]. The
sooner misunderstandings are resolved,
the more likely developers will build a
product correctly [2, 3, 4].

You might consider early requirements
in the context of a mental model – or a
representation of how a customer or
developer thinks about a set of require-
ments and visualizes them as a whole.
Mental models not only model an under-
standing of the system but also miscon-
ceptions that the stakeholder may have [5].
They are also used to understand and
communicate what a user actually thinks
[6]. Empirical evidence we have obtained
indicates that such models may also be
useful in identifying misunderstood, dupli-
cate, and ambiguous requirements.

For the past three years, we have
experimented with a technique known as
pathfinder networks (PFNETs), which are
more fully described in the next section.
This technique comes from the field of
artificial intelligence and one of its prop-
erties is the ability to represent knowledge
structures as they exist in the minds of
humans. This representation is formulated
through a facilitator working with one or
more subjects who take concepts and
group them in terms of their relatedness.

In our research, we used software
requirements as concepts and applied the
PFNET technique to a requirements doc-
ument separately for both the developer
and customer. In both cases, the resulting
PFNET was considered a mental model, and
the two mental models were compared
mathematically to determine how close
they were. We also discovered this tech-
nique was useful in identifying redundant,

ambiguous, and misunderstood require-
ments.

While a complete discussion of the
mathematics of the process is beyond the
scope of this article, we do provide refer-
ences and contact information for the
interested reader. We have implemented
the required mathematics in working soft-
ware packages and have used the tech-
nique on two industrial experiments for
real-world projects. In all cases, the
PFNET technique was successful in iden-

tifying requirements misunderstandings
and contributed to a better understanding
between the developer and customer early
in the life cycle.

The techniques we have developed can
generally be learned and used in less than
eight hours of training. We have not esti-
mated the cost of this training, but believe
it to be minimal. We have validated the
utility of this technique for small to medi-
um-size software development activities
and now intend to publish the results and
assist in transferring this technique to
industrial use. We are especially grateful to
AmerInd1 Inc. and Nortel for their assis-
tance in using and validating our PFNET
work within their software development
organizations.

PFNETs
The PFNETs [7] have been used widely to
represent knowledge structures. They
have been used to model the knowledge
of experts and novices in the computer-
programming domain [8] and to assess
students’ knowledge when compared to
that of experts [9]. We have successfully
applied this technique to the software-
engineering domain and, in particular, to
the problem of requirements verification
and validation. The technique is briefly
described in this article, but more detail
can be found in [10, 11].

Essentially, we generate a PFNET for
the customer/user community and a sep-
arate network for the developer communi-
ty. These networks represent the current
mental model of the requirements for both
communities. By calculating the correla-
tion between the two network models, we
can then estimate the degree of common
understanding. With additional analysis,
we are also able to identify redundant and
ambiguous requirements.

The PFNETs’ original objective was to
generate a network model from psychologi-
cal proximity data, which is the subjective
estimate of the closeness or relatedness
between requirements as perceived by a
stakeholder. The primary goal is to arrive
at network representations with nodes
representing requirements and links repre-
senting relations between requirements.
Weights on the links represent the dissim-
ilarity between the requirements. These
edge-weights are calculated based on the
categorization of information about the
requirements that are collected from each
stakeholder.

The process of categorization basical-
ly means that stakeholders are asked to
place individual requirements into cate-
gories based on their perceived related-
ness. The pathfinder algorithm is applied
to concepts (requirements) from the com-
puter science discrete structures domain.
Figure 1 (see next page) reveals how the
categorization of information about the

“Mental models not only
model an understanding
of the system but also

misconceptions that the
stakeholder may have.
They are also used to

understand and
communicate what a
user actually thinks.”

Thursday, 22 April 2004
Track 6: 10:15 - 11:00

Room 150 D - F

22 CROSSTALK The Journal of Defense Software Engineering May 2004

concepts collected from a group of
experts results in the generation of a con-
ceptual structure represented by a
PFNET.

Essentially, a link exists between a pair
of nodes if and only if there is no shorter
alternate path between that pair. The initial
conceptual network is assumed to be a
fully connected graph since no informa-
tion is available about how the stakehold-
ers relate the list of concepts. Therefore in
Figure 1, the original conceptual structure
(on the left) is reduced to a more under-
standable structure (on the right) by
removing all links between concepts
except for the shortest path or least dis-
similar relationship.

Our assumption is that a stakeholder’s
requirements knowledge consists of the
requirements and the interrelationships
among those requirements. Figure 2 shows
a portion of a PFNET that was generated
in one of our experimental projects by the
developer. The edge-weights represent the
dissimilarity between the pairs of require-
ments. The lower the edge-weight the
lower the dissimilarity and higher the simi-
larity between the two requirements as
perceived by the stakeholder.

The similarity count for a pair of
requirements is determined by the number
of times that pair shows up together in the
categorization of information collected
from the stakeholders. A dissimilarity
matrix is computed by subtracting each
similarity count from the highest similarity
count plus one. The pathfinder algorithm
is then applied to the dissimilarity matrix

to generate the PFNET. While details of
these steps are not provided here, they are
implemented in our software. Specifics can
be provided to the reader on request.

In Figure 2, most of the developers
perceived Add/Delete User Account and
Modify User as closely related. We know this
because the link weight is the minimum
(least dissimilar), between the two require-
ments. A number of developers also per-
ceived User Account and Add/Delete User
Account to be related but to a lesser degree.
The absence of a link between require-
ments could mean that very few or none of
the developers perceived those require-
ments as being related. For example,
Admin Account and Add/Delete User Account
are not directly connected because the
developer perceived Admin Account to be
more closely related to User Account than to
Add/Delete User Account.

In summary, the primary benefit of
the PFNET is the ability to model aspects
of human semantic memory. In our case,
the ability to model the stakeholders’ per-
ception of requirements as graphs is use-
ful. It provides the ability to mathematical-
ly evaluate and compare these networks
for similarities and dissimilarities to reveal
potential misunderstandings.

While this article represents only an
overview of the PFNET technique, it is
important to note that it is not new – it has
been used in other applications outside
software engineering for many years. Our
work applies this technique to software
engineering requirements analysis for the
first time.

We generated two PFNETs – one for
the customer and one for developers. The
categorization of information collected
from each developer is combined, and a
single consensus PFNET for that group is
generated. A similar procedure is used for
the end user. We then compare and analyze
the two networks to determine the consis-
tency of understanding between the two,
as well as determine which individual
requirements may not be well understood.
Specific results of our application of this
technique in projects are presented in the
following sections.

Initial Experiment Results
Experiments were first conducted at
Mississippi State University (MSU) using
students taking a software engineering class
[12]. Four real customers agreed to work
with the class in order to obtain a needed
software product. Students developed a
software requirements specification (SRS)
for each system, which was the basis for
generating all subsequent PFNETs. The fol-
lowing procedures were used (implemented
today in software):
• Requirements were individually extract-

ed from each SRS. All participants were
asked to read the SRS to become famil-
iar with the requirements. Each student
and customer then categorized require-
ments into groups based on their per-
ceived relatedness. This was achieved by
using index cards with requirements
printed on each card. The set of index
cards and a copy of the SRS were dis-
tributed to the customer and the devel-
opers working on that project.
Instructions were given on the proce-
dure for categorization; none of the
participants were allowed to consult
with each other during the categoriza-
tion activity. The categorization activity
consisted of grouping the index cards
into piles of related categories. The
relatedness decision was entirely up to
the participant and was very subjective.
We refer to the groups of index cards
collected from each participant as the
categorization of information.

• The categorization of information was
then collected and a similarity matrix (N
rows by N columns, where N is the
number of requirements) was generated
for each participant. When a pair of
requirements appears together, the count
in that cell of the similarity matrix is
incremented by one. We refer to the sim-
ilarity count as a co-occurrence count for
that pair of requirements. To compute a
consensus (group) PFNET, the corre-
sponding elements of the similarity
matrices for that group are simply added

Software Engineering Technology

Sets

Trees
Algorithims

Boolean
Algebra

Counting

Functions

Graphs

Integers

Language and
Grammar

Logic

Mathematical
Reasoning

Matrices

Relations

Language and
Grammar

Trees Graphs

Relations Functions

Sets
Counting

Matrices Boolean
Algebra Logic

Mathematical
Reasoning

Integers

Algorithims

Figure 1: A Fully Connected Graph With 13 Concepts and the Resulting PFNET With Only
18 Links

4

4 4

4

6

6

5

5

5

5

2

1

User Logout

User Login

Check-In Print Bill

User Account

View Schedule

Computer System

Web-Based System

Modify User

Data Encryption

Admin Account

Add/Delete User AccountUser Session Functions
4

5

5

Figure 2: Example of a PFNET (Partial) Generated for a Group of Developers

Understanding Software Requirements Using Pathfinder Networks

May 2004 www.stsc.hill.af.mil 23

to generate a consensus similarity matrix.
• Dissimilarity matrices were generated by

subtracting each co-occurrence count in
the similarity matrix from the maximum
co-occurrence count plus one (to avoid
a zero dissimilarity count in any cell).

• The dissimilarity matrices for the group
of developers and the customer were
then used as input to the Pathfinder
generation program resulting in the gen-
eration of two PFNETs.

• The resulting PFNETs are then corre-
lated with each other, producing a cor-
relation coeffcient (cc) that is used to
measure similarity between the mental
models.
Adding substance to the preceding steps

and realizing that several new terms were
introduced to the reader, we provide a short
example in the online version of this article
at <www.stsc.hill.af.mil/crosstalk/2004/
05/0405kudikyala.html>.

The cc ranges from -1 through +1,
where -1 represents no similarity and +1
represents perfect similarity between the
two networks [13]. For all projects, the fol-
lowing heuristics were applied:
• A cc of a network/node below 0.4 indi-

cates little or no similarity.
• A cc from 0.4 through 0.7 indicates a

moderate degree of similarity.
• A cc of more than 0.7 indicates very

good to strong similarity.
The boundary values we assigned above

are subjective and were selected based on
empirical evidence. Table 1 shows the over-
all ccs between the developer and user
PFNETs for the four projects in our exper-
iment. In Table 2, each row shows the per-
centage of requirements with different ccs
between developer and user PFNETs for
each system developed.

Thus, the higher the value of the cc, the
more similar the mental models of the cus-
tomer and developers appeared to be at the
early stages of product development. From
Table 2, we can see that severe misunder-
standing exists for System 2 and further
requirements work is needed. In fact, this
observation was validated when, at the end
of the actual system development, the user
was not satisfied with the final product.

We also seeded the SRS with duplicate
requirements to determine if such require-
ments could be identified using PFNETs.
Table 3 shows the ccs based on path dis-
tances for each of the original and seeded
requirements.

The ccs of the original and seeded
requirements were very high when PFNETs
for both groups were compared. Further
analysis of the PFNETs for each group also
revealed that the original and duplicate
requirements were directly linked since they

were perceived to be closely related. This
provided us with evidence that PFNETs
may be useful in uncovering duplicate
requirements. In addition to the first four
experiments, we ran a fifth similar class-
room experiment the following academic
year and achieved essentially the same
results. Together, these five experimental
results encouraged us to validate the
PFNET approach in industrial settings.

Industrial Experimentation at
Nortel
Our experiments were continued at Nortel,
Inc., Dallas, Texas, [14] with their assistance
over two semesters (about eight months).
Our results again indicated that PFNETs
were useful to identify misunderstood and
duplicate requirements.

The procedure used to apply this tech-

nique was very similar to that outlined for
our classroom experiments. A Web-based
tool was introduced to collect the catego-
rization data from each stakeholder. This
tool interface consisted of check boxes to
aid the process of categorization as shown
in Figure 3 (see next page). Each Web page
consisted of a requirement with the descrip-
tion provided at the top of the page. The
remaining requirements were displayed on
the same page. The stakeholder then
checked the boxes of the requirements that

Software Systems Overall Correlation Coefficient
 System 1 0.77
 System 2 0.46
 System 3 0.91
 Syst em 4 0.87

Table 1: Overall Correlation Coefficients
Between Developers and User PFNETs

 cc >=0.9

 cc < 0.7

 43.75 21.88 34.38

 0.00 0.00 100.00

 50.00 50.00 0.00

50.00 50.00 0.00

cc < 0.9
and

cc > = 0.7

System 1

System 2

System 3

System 4

Percentage of
Requirements

Systems

Correlation
Coefficient (cc)

Table 2: Percentage of Requirements By Range of Correlation Coefficients

Software
Systems Original Requirement Seeded Requirement Correlation

Coefficient
1-13: E-mailing a Student
Resumé to a Company

1-30: Sending a Student Resumé
to a Company by E-mail

1.00

 1-16: Faxing a Student Resumé
to a Company

1-30: Sending a Student Resumé
to a Company by E-mail

0.96

1-12: E-mailing a Student
Transcript to a Company

1-31: Sending a Student
Transcript to a Company by
E-mail

1.00

1-15: Faxing a Student
Transcript to a Company

1-31: Sending a Student
Transcript to a Company by
E-mail

0.96

1-11: E-mailing a Letter of
Recommendation to a Company

1-32: Sending a Letter of
Recommendation to a Company
by E-mail

1.00

System 1

1-14: Faxing a Letter of
Recommendation to a Company

1-32: Sending a Letter of
Recommendation to a Company
by E-mail

0.96

2-2: Add Appointment 2-31: Make Appointment 0.93
2-3: Change Appointment 2-32: Modify Appointment 1.00
2-13: Delete Appointment 2-32: Modify Appointment 1.00

System 2

2-20: Modify User 2-33: Add And Delete User 1.00
3-8: Add a Major 3-39: Modify a Major 0.98
3-9: Edit a Major 3-39: Modify a Major 1.00
3-10: Delete a Major 3-39: Modify a Major 0.98
3-4: Add a College 3-40: Modify a College 1.00
3-5: Edit a College 3-40: Modify a College 1.00

System 3

3-6: Delete a College 3-40: Modify a College 1.00
4-23: Display Available Vehicle 4-30: Check Available Vehicle 1.00
4-5: Delete Reservation 4-31: Cancel Reservation 1.00

System 4

4-9: Make Reservation 4-32: Add Reservation 0.99

Table 3: Correlation Coefficients of Original and Seeded Duplicate Requirements

24 CROSSTALK The Journal of Defense Software Engineering May 2004

Software Engineering Technology

were related to the requirement provided at
the top of the page. After categorizing all
the requirements, the information for each
stakeholder was submitted over the
Internet.

A comparison of customer and devel-
oper PFNETs revealed that two require-

ments (Nos. 6 and 14) had very low ccs,
even though the overall cc between the cus-
tomer and developer networks was 0.88.
The shaded rows in Table 4 show the ccs
for these two requirements. This demon-
strates that the PFNETs in Table 4 were
found to be duplicates after facilitating a
session between the two groups. In this
case, very high ccs (1.00 and 0.99) led to
identifying this duplication. High values of
correlation may also mean, however, that
requirements might well be understood
between the stakeholders. Only after further
analyzing these requirements can we under-
stand if duplication is present.

Conclusion
Our initial research work, especially for the
student projects at MSU and the project at
Nortel, Inc. had generated encouraging
results regarding the ability of the pathfind-
er technique to predict misunderstandings
about requirements among customers and
developers during the requirements analysis
phase.

Further research conducted at AmerInd
Inc., validated the usefulness of the tech-
nique in a typical industrial setting. The
research also showed that this technique is
scalable to a medium-scale project like New
Material Acquisition. (A full version of this
article, including the AmerInd Inc. and New
Material Acquisition examples, appears on
the CrossTalk Web site at <www.

stsc.hill.af.mil/crosstalk/2004/05/0405
kudikyala.html>).

The ccs generated from the PFNETs of
the stakeholders identify potentially misun-
derstood requirements. The values of ccs
enable the groups to focus on potentially
misunderstood requirements during facilita-
tion sessions. Furthermore, duplicate and
ambiguous requirements were also identi-
fied. Additional information concerning
tools, processes, and experimental results
are available from the authors.◆

Acknowledgements
The authors wish to acknowledge the sup-
port of the National Science Foundation
(Grant #CCR-0303554); the James Worth
Bagley College of Engineering at
Mississippi State University; Nortel Inc. of
Dallas, Texas; and AmerInd Inc. of
Alexandria, Va. Without such support, this
research and results would not have been
possible. We are also grateful to the editori-
al staff of CrossTalk for their patience
and helpful suggestions to make this report
better and more readable.

References
1. Keil, M., et al. “A Framework for

Identifying Software Project Risks.”
Communications of the ACM 41.11
(1998): 76-83.

2. Davis, Alan, et al. “Identifying and
Measuring Quality in a Software
Requirement Specification.” Software
Requirements Engineering. Eds. R.H.
Thayer and M. Dorfman. Los Alamitos:
IEEE Computer Society Press, 1997:
164-75.

3. Boehm, B., and Victor R. Basili.
“Software Defect Reduction Top 10
List.” Computer 34.1 (2001): 135-37.

4. Faulk, S.R. “Software Requirements: A
Tutorial in Software Requirements
Engineering.” Software Requirement
Engineering. Eds. R.H. Thayer and M.
Dorfman. Los Alamitos: IEEE
Computer Society Press, 1997: 7-22.

5. Caroll, M.J., and J.R. Olson. “Mental
Models in Human-Computer Inter-
action.” Handbook of Human-
Computer Interaction. Ed. M. Helander.
North-Holland: Elsevier Science
Publishers B.V., 1989: 45-60.

6. Faro, A., and D. Giordano. From User’s
Mental Models to Information System’s
Specification and Vice Versa by
Extended Visual Notation. Proc. of the
International Professional Communi-
cation Conference (IPCC ’95),
Savannah, GA., Sept. 1995.

7. Dearholt, D.W., and R.W. Schvaneveldt.
“Properties of Pathfinder Networks.”
Pathfinder Associative Networks:

Figure 3: Web-Based Check Box Interface at Nortel, Inc.

Requirem e nts Correlation
Coefficients

1. IMS app lication server 0.95

2. IMS proxy server 0.87

3. IM S redirect server 0.99

4. IM S registrar server 0.94

5. IM S location server 1.00

6. IMS external interface 0.05

7. IMS hardware platform 1.00

8. IMS database interface 0.78

9. IM S S IP interface 0.67

10. IMS H.323 cl ient interface 0.74

11. IMS PSTN gateway inter face 0.67

12. IMS media gateway 0.79

13. IMS media server 1.00

14. IMS mult i-dom ain support 0.05

15. IMS performance and capacity 1.00

16. IMS BBUA component 0.75

17. IMS application server security 1.00

18. IMS d iscrim inator service 0.98

19. IMS arbitrator service 1.00

20. IMS network handl ing 0.69

21. IMS cal l transfer service 0.99

22. IMS cal l conference service 1.00

23. IMS account ing 0.77

Table 4: Correlation Coefficients of Customer
and Developer of Individual Requirements for
the Interactive Multi-Media Server (IMS)

Studies in Knowledge Organization. Ed.
R. Schvaneveldt. Norwood, N.J.: Ablex
Publishing Corp., 1990: 1-30.

8. Cooke, N.M., and R.W. Schvaneveldt.
“Effects of Computer Programming
Experience on Network Represen-
tations of Abstract Programming
Concepts.” International Journal of
Man-Machine Studies 29 (1988): 407-27.

9. Goldsmith, T.E., and P.J. Johnson. “A
Structural Assessment of Classroom
Learning.” Pathfinder Associative
Networks: Studies in Knowledge
Organization. Ed. R. Schvaneveldt.
Norwood, N.J.: Ablex Publishing Corp.,
1990. 241-53.

10. Kudikyala, Udai K., and Rayford B.
Vaughn Jr. “Software Requirements
Understanding Using Pathfinder
Networks: Discovering and Evaluating
Mental Models.” Journal of Systems and
Software (to be published in 2004).

11. Kudikyala, Udai K., and Rayford B.
Vaughn Jr. Software Requirements

Understanding Using Pathfinder
Networks as Mental Models. Proc. of
the 2004 ASEE Southeastern Section
Conference, Auburn, AL., Apr. 2004.

12. Lu, X. “Using Pathfinder Networks to
Analyze and Categorize Software
Requirements.” Master’s Thesis.
Mississippi State University, 2000.

13. Goldsmith, T.E., and D.M. Davenport.
“Assessing Structural Similarity of
Graphs.” Pathfinder Associative
Networks: Studies in Knowledge
Organization. Ed. R. Schvaneveldt.
Norwood, N.J.: Ablex Publishing Corp.,
1990: 75-87.

14. Yi, H. “Automated Web-Based Tool for
Software Requirement Refinement Using
Pathfinder Networks.” Master’s Project.
Mississippi State University, 2001.

Note
1. AmerInd Inc., <www.amerind.com> is

a medium-sized computer services com-
pany located in Alexandria, Va.

May 2004 www.stsc.hill.af.mil 25

Understanding Software Requirements Using Pathfinder Networks

About the Authors

Udai K. Kudikyala is
a Ph.D. candidate at
Mississippi State Uni-
versity and an active
research assistant. He
has two years of teach-

ing experience. His research interests
include requirements engineering,
especially modeling and evaluation of
requirements understanding using
artificial intelligence techniques, and
network routing and parallel comput-
ing. Kudikyala received a Bachelor of
Engineering in electronics and com-
munication engineering from
S.R.K.R. Engineering College,
Andhra University, Bhimavaram,
India, and a Master of Science in
computer science from Mississippi
State University.

Department of Computer
Science and Engineering
Center for Computer
Security Research
P.O. Box 9637
Mississippi State University
Mississippi State, MS 39762
Phone: (662) 325-7503
Fax: (662) 325-8997
E-mail: kumar@cse.msstate.edu

Rayford B. Vaughn Jr.,
Ph.D., is professor of
computer science at
Mississippi State Uni-
versity. A retired Army
colonel, he served 26

years, including commanding the
Army’s largest software development
organization and creating the Pentagon
Single Agency Manager organization to
centrally manage all Pentagon informa-
tion technology support. After retiring
from the Army, he was vice president
of Integration Services, Electronic
Data Systems Government Systems.
Vaughn has more than 40 publications
and actively contributes to software
engineering and information security
conferences and journals. He has a
doctorate degree in computer science
from Kansas State University.

Department of Computer
Science and Engineering
Center for Computer
Security Research
P.O. Box 9637
Mississippi State University
Mississippi State, MS 39762
Phone: (662) 325-7450
Fax: (662) 325-8997
E-mail: vaughn@cse.msstate.edu

Get Your Free Subscription

Fill out and send us this form.

OO-ALC/MASE

6022 Fir Ave

Bldg 1238

Hill AFB, UT 84056-5820

Fax: (801) 777-8069 DSN: 777-8069

Phone: (801) 775-5555 DSN: 775-5555

Or request online at www.stsc.hill.af.mil

NAME:__

RANK/GRADE:___

POSITION/TITLE:__

ORGANIZATION:___

ADDRESS:__

__

BASE/CITY:__

STATE:___________________________ZIP:___________________________________

PHONE:(_____)___

FAX:(_____)___

E-MAIL:__

CHECK BOX(ES) TO REQUEST BACK ISSUES:

MAR2003 � QUALITY IN SOFTWARE

APR2003 � THE PEOPLE VARIABLE

MAY2003 � STRATEGIES AND TECH.

JUNE2003 � COMM. & MIL. APPS. MEET

JULY2003 � TOP 5 PROJECTS

AUG2003 � NETWORK-CENTRIC ARCHT.

SEPT2003 � DEFECT MANAGEMENT

OCT2003 � INFORMATION SHARING

NOV2003 � DEV. OF REAL-TIME SW

DEC2003 � MANAGEMENT BASICS

JAN2004 � INFO. FROM SR. LEADERS

FEB2004 � SOFTWARE CONSULTANTS

MAR2004 � SW PROCESS IMPROVEMENT

APR2004 � ACQUISITION

To Request Back Issues on Topics Not

Listed Above, Please Contact Karen

Rasmussen at <karen.rasmussen@

hill.af.mil>.

