Open Forum

Risk F
That Im

Theron R. Leishman

Software Technology Support Center/ Northrop Grumman

>
Svﬂsms & Software
Technology Conference

Wednesday, 21 April 2004
Track 5: 2:25 - 3:10
Room: 150 G

here is a popular television program that

appeals to the brave of heart called
“Fear Factor.”” During this program, contes-
tants compete against each other in events
and activities that cause considerable fear for
most people. Although it is considered reali-
ty TV, the things the contestants ate required
to cat, drink, touch, dive into, or navigate
through are not considered reality by the
average person. Contestants are eliminated
with each fear-defying competition, until a
single winner remains.

In the reality world of software develop-
ment and/or acquisition, there are circum-
stances, events, activities, etc. that instill
fear in the hearts of software developers,
acquirers, and managers. Too often these
fear factors ate ignored and have devastat-
ing impacts on software projects. The
authors of this article have participated in
the review and assessment of numerous
software-intensive systems from the per-
spective of both developing software and
purchasing software. From our experi-
ences, we have identified several issues that
are common to many software-intensive
programs. These issues, ris& factors, are keys
to either the success or failure of any soft-
ware-intensive system.

What Is Software Risk

Management?

Risk is defined as, “A possible future event
that, if it occurs, will lead to an undesirable
outcome” [1]. In the context of software
then, software risk management would logi-
cally imply the managing of possible future
events that could have undesirable effects on
software projects. That sounds simple
enough. What future events could possibly
negatively impact my software project? Risk
management is simply defined as a general-
ized process for managing risks [2].
However, to be an effective risk manage-
ment process, it has to be both accurate and
usable; that is, it must provide results to a

May 2004

actor: Confronting the Risks
pact Software Project Success

Dr. David A. Cook
The AEgis Technologies Group, Inc.

Every systems and software project involves risk. Often, how you manage your program
risks is a deciding factor in the eventual success or failure of your program. If you ignore
the risks, your program bas a higher chance of failing. On the other band, if you try fo
track and manage all possible risks, you can expend your entire budget managing the risks,
and never produce a deliverable. Risk management, like any other element of systems and
software development, requires forethought and careful planning. This article explains what
risk management is, and then discusses some common developmental risks.

manager in time to allow the manager to
make informed decisions that allow risks to
be minimized or avoided.

Every development project has risks.
The risks can range from the common,
“We might not be able to find a JOVIAL
programming language expert by next
month,” to the uncommon, “A hurricane
might destroy all of the prototype aircraft.”
How you approach these risks is what is
important. In the rest of this article, risk
refers to software risk.

The Two Extremes of Software

Risk Management

There are two extremes of software risk
management: too little and too much. Each
one can be explained in terms of popular
operating systems.

The first extreme, the too little school,
is much like older versions of UNIX.
While UNIX is a fine operating system, its
roots show a lack of disciplined software
development. For those accustomed to a
single version of an operating system, there
existed numerous versions of UNIX — well
over 100"

Here is an example of the 790 /ittle school.
One of the authors used to work on a
Burroughs mini-computer back in the mid-
80s. It ran a version of UNIX referred to as
BNIX, which has an interesting property.
The memory table that kept a list of all cur-
rently running jobs (the process tabl) had a
limited size, but there was no mechanism to
protect it. The size was somewhere around
1,023 entries. If you tried to run a process
after the table was full, BNIX just bumped the
counter to 1,024 and started entering
process data.

The fact that the process table was full
did not deter it — it just wrote to whatever
memory was at the 1,024th position. Since
the process table was stored in memory, it
was likely (in fact, it was certain) that this
1,024th process just overwrote something

critical in the operating system. Assuming
that the system did not crash immediately,
you could start a 1,025th process. Eventually,
the operating system would crash in some
bizarre fashion.

By not having mechanisms to deal with
the problem, which was a limited size
process table, BNIX used the ostrich-head-in-
the-sand method of risk management. This
method means you assume that all will go
correctly, and you just pretend that no risks
exist. Many curtent software development
projects use this method — the equivalent of
believing in magic, which often occurs
because of a new and untested silver bullet.
For example, “Now that we are using com-
mercial off-the-shelf softwate in our pro-
gram, we’re going to cut the schedule by 25
percent.” This is unrealistic, unproven, and
head-in-the-sand thinking;

The second extreme of software risk
management, the o much school, is more
like Windows 98. Windows has many mech-
anisms to ensure you do not overflow
process tables, overwrite system memory, or
use memory that is curtently allocated to
other programs. However, Windows 98
sometimes gave a message that said some-
thing like, “Unable to run program — not
enough memory. Try quitting a running pro-
gram and try again.” Unfortunately, this
error message occurred when only running
a single program, or even no program. What
typically happened was that a previously
running program had used memory incor-
rectly (or crashed prior to cleaning up after
itself) and left the system memory corrupt-
ed. Windows 98 was unable to ensute that a
new program would not be overwriting
memory still marked as 7 use, and would not
let the new program run. It usually required
a reboot to set things right. This method,
being over-cantions of the risks and always
assuming that the worst is going to happen, is
the other extreme.

To effectively manage risks, you have to

www.stsc.hillaf.mil 31

take the middle ground. You cannot ignore
risks and pretend that all will go well.
However, you cannot micromanage all pos-
sible risks; you do not have the time and
the resources. To take the middle ground,
you have to be aware of some common
risk factofrs.

Critical Systems and Software

Risk Factors

To adequately manage risks, it is essential to
evaluate the program’s/project’s unique situ-
ation. There are, however, certain risks that
tend to impact many programs/projects.
Having evaluated several programs, we have
identified the following critical risk factors as
issues that impact the success of many pro-
grams. By addressing the key risk factors,
programs can make great strides in manag-
ing risks that may impact them.

Inadequate Planning

Recently while assisting in the review of a

large Department of Defense (DoD) soft-

ware acquisition program, we asked to
review the program’s planning documents.

In response to the request, the program

office produced a Microsoft Project sched-

ule. This response is common when we ask
about planning documents while performing
program reviews.

There appears to be a lack of desire,
interest, ability, and attention to performing
adequate program/project planning. Not all
programs/projects requite the same level of
planning; however, they all should include
enough planning to adequately assess their
issues. Program/project plans should con-
sider the following:

* Date and status of the plan.

* Scope of the plan.

e Issuing organization.

e References.

* Approval authority.

* Assumptions made in developing the
plan.

e Planned activities and tasks.

e Policies, etc., that dictate the need for this
plan.

* Micro-references — other plans or tasks
referenced by the plan (other plans or
task descriptions that elaborate details of
this plan).

e Schedules.

* Estimates.

e Communication chains.

e Resources and their allocation.

* Responsibilities and authority.

* Risks.
* Quality control measures.
* Cost.

¢ Stakeholder identification.
* Interfaces among stakeholders.

32 CrossTALK The Journal of Defense Software Engincering

* Environment/infrastructure, including
safety needs.

e Training,

e Glossary.

* Change procedures and history.

* Schematics, diagrams, and architectures
to further clarify the intent of the plan.
A lack of adequate planning tends to

indicate a lack of forethought and direc-

tion. Inadequate planning at either a pro-

gram or project level greatly increases risk

to successful project completion. Elaine M.

Hall 2] has a good explanation of how to

plan for risk.

Unrealistic Schedules

The daughter and son-in-law of one of the
authors of this article recently built a house.
The couple was anxious to have the home
completed so they could move in eatly
enough in the fall to complete the yard
before winter. To them this seemed a rea-
sonable request.

As the couple negotiated the deal with
the chosen contractor, they were told the
house would not be completed in the time
schedule desired by the couple. The contrac-
tor showed them the list of tasks to be com-
pleted and the dependency of each task with
other tasks. He further explained to them the
dependency on outside factors such as
weather, availability of special materials that
were part of the couple’s design, availability
of subcontractors, whims and schedules of
building inspectors, and the priority of their
house in relationship to other homes the
developer was building, The bottom line: the
couple was not able to eliminate critical steps
in the building process, shortcut the avail-
ability of critical resources, ot circumvent
required inspections.

Have you ever been coerced into or
managed a software project that begins with
a predetermined schedule? One that is
unachievable, to start with, that requires
sound processes to be altered or eliminated?
One that ignores the requirement for critical
resources, eliminates critical teviews, and
allows only minimal time for testing? If so,
then in talk-show host and author Dr. Phil’s
wotds, “What are you thinking?”

Why do we agtee to and/or impose soft-
ware schedules that require the abandon-
ment of everything that we have learned
over the past several years as being essential
to the success of software development or
acquisition projects?

The authors have seen numerous soft-
ware projects with schedules we consider to
be unreasonable, in our opinion, due to the
following:

* Schedules based on product need rather
than a realistic assessment of engineer-
ing effort. This includes schedules based

on an arbitrarily imposed due date.

* Effort estimates and resulting schedules
based on hallucinations (or unrealistic
hope) rather than on historical basis.

e Schedules based on unrealistic, incorrect,
or unknown requirements.

* Schedules developed without adequate
understanding of sound software engi-
neering practices.

For these reasons, we have included unreal-

istic schedules as one of our software risk

factots.

Unfortunately, managers who attempt to
transform unreasonable schedules into accu-
rate and reasonable ones run the additional
risk of extreme upper management displea-
sure. This (and the risk of losing one’s job)
creates great pressure on lower-level man-
agers to continue to pretend that unreason-
able schedules are, in fact, achievable.

Unconstrained Requirements Growth
There have been volumes written over the
years about the impact of incomplete, inac-
curate, growing, unstable, and on, and on,
and on, software requirements problems. In
the April 2002 CROSSTALK, we enumerat-
ed several requirements risks that can drown
software projects [3].

Research conducted by Capers Jones [4]
identified the top five risks that threaten the
success of softwate projects in various sec-
tors. Figure 1 summarizes the approximate
percentage of projects that suffer from
creeping user requirements.

As indicated in Figure 1, the majority of
management information systems and mili-
tary projects suffer from requirements creep.
We further saw that nearly half of the out-
sourced projects included in the study also
suffered from requirements creep.

Our experience shows that neatly all pro-
jects suffer from some form of require-
ments risk. The impact is often catastrophic
to the success of the project. We see require-
ments issues as a substantial risk to the suc-
cess of many software projects.

Dysfunctional Organizational Culture
The following is the parable of the Happy

and Productive Worker:

Once upon a time in a company not
Sar away, there was a worker. He was a
productive, happy worker, but alas, be was
unsupervised.

The company saw that the worker was
unsupervised and made a supervisor.

The coordinator saw that the worker was
productive and happy and made a lead
worker to mafke the worker more productive
and happier.

The company saw that the department in
which the productive, happy worker worked

May 2004

had grown and made a manager to manage
the department in which the productive,
happy worker worked productively and hap-
piby.

The manager saw that the worker was
productive and happy and made an assis-
tant manager to help manage the depart-
ment in which the productive, happy worker
worked.

The company saw that the department
where the happy, productive worker worked
had grown and made an administrator to
administer the department in which the pro-
ductive, happy worker worked.

The administrator saw that the worker
was productive and happy and made an
assistant administrator to assist in adpinis-
tering the department in which the produc-
tive, happy worker worked.

More people were added until the direc-
tor saw that the department was losing
money. So be consulted a consultant. The
consultant examined the department in
which the productive, happy worker worked
productively and happily and advised there
were too many pegple in the department in
which the productive, happy worker worked.

And the director paid heed to the coun-
sel of the consultant and fired the produc-
tive, happy worker.

In the parable of the Happy and
Productive Worker, the organization valued
and rewarded the wrong things. As you think
of the organizations you work in, what is the
culture that exists? Is it a culture plagued
with high turnover? Do you enjoy going to
work each day, or does it take an act of God
to get you out of bed and into the office? Do
you have the training and skills required to
perform the tasks that are expected of your
Are meetings useful with something actually
being accomplished, or are there too many
long, useless meetings that just distract from
what you are trying to get done?

The organizational culture of many soft-
ware companies appeats to be that of work-
ing harder to get out of doing work rather
than actually getting things done. This risk
factor ties closely to the management. There
is an inherent risk with over-managing — and
perhaps this risk is greater than under-man-
aging. Over-management forces workers to
spend too much time justifying what they do
(and do not do). Workers need to be allowed
to fail occasionally, and learn from their fail-
ure. If you create an environment of oze zis-
take and you're ont, workers will spend so
much time trying not to fail that they will not
have the time to succeed.

During a recent seminar, we asked the
attendees how many of them had ever been
part of what they considered to be a high-
performance team. Of 30 attendees, five

May 2004

Risk Factor: Confronting the Risks That Impact Software Project Success

8
NN NN NN\

O Management Information
Systems (MIS) Projects

B Military Projects

O Outsourced Projects

Figure 1: Percentage of Three Types of Projects That Suffer From Requirements Creep

indicated that they had. Upon discussion

with the group, we identified the following

characteristics of a high-performance team:

¢ Value for all team members.

* Open communication.

* Common understanding of team goals.

* Recognition for valuable contributions.

* Clear understanding of job expectations.

* Shared desire to meet or exceed expecta-
tions.

¢ Demonstrated commitment to the team
by management.

It is difficult to successfully develop
software in a dysfunctional organization.
Management must look honestly at the
organization to determine if it is dysfunc-
tional. If your culture is one similar to that
of the Happy Productive Worker, that cul-
ture is a serious risk to your organization’s
success in consistently providing quality
software.

Not Having or Following Processes
Having and following a good process is
essential to the consistent development of
quality software systems. It has been said
that a software product is only as good as the
process used to develop and maintain it.

There seems to be common agreement
on the value of having and following sound
processes in the development and mainte-
nance of software, yet in the authors’ expe-
riences, this continues to be a weakness of
many software development organizations.
We see many organizations that either lack
processes or do not follow their existing
processes. Some have processes in place but
are quick to abandon them when hit with
schedule pressure.

When this happens, the good, smart
things that help ensure quality software fall
by the wayside and programs/projects grad-
ually spin out of control. Not having or fol-
lowing processes is on our list of software
risks because this is an area that is often only

given lip service. If processes exist, and are
requited to be followed, many other risks
immediately become less critical.

Failure to Actively Manage

Software Risk

Have you ever thought about how much we
depend on software? The world has evolved
to the point where almost everything we do
involves software. Lt. Gen. Jim Fain (US. Air
Force retired), during his tenure as F-22 pro-
gram director, described software’s impor-
tance by saying, “The only thing you can do
with an F-22 that does not require software
is to take a picture of it” [5]. Now in 2004,
there is probably not even a non-disposable
camera in use that is not at least partially
operated by software.

Software has made great technological
advancement possible. This dependence on
software has also brought with it conse-
quences. Software failures have resulted in
significant financial losses and even the loss
of life. Software has become the very heart
of the new economy, and business risk man-
agement must include software risk manage-
ment to survive.

During a recent program treview, one of
the authors of this article asked how soft-
ware risks were managed on the program.
The program office produced a list from
their risk database of software risks that
included risks at a very high level and were
generic to the point that they could be
applied to any program. When asked how
the list was generated, it was explained that a
tool had generated the risks based on infor-
mation provided. We call this risk manage-
ment in a can. This was a large DoD pro-
gram that included software with potential
life-threatening consequences.

Our dependence on software has pushed
us to the point where a proactive software
risk management process is essential.
Managers must determine whether any

www.stsc.hill.af.mil 33

Open Forum

unwanted events may occur during the

development or maintenance of software,

and make appropriate plans to avoid or min-

imize the impact of these negative conse-

quences. Failure to do so may have devastat-

ing consequences. A good software risk

management process should include the fol-

lowing steps:

* Identification of program-/project-
specific software-related risks.

* Detailed analysis of each software risk.

* Development of plans to address soft-
ware risks.

* Active monitoring and tracking of
software risks.

e Use of metrics to monitor the risk-
management process.

By actively managing software-related
risks, the probability of experiencing first-
hand the consequences of a softwate failure
can be greatly reduced. While failure to
actively manage software risk is the last risk
mentioned, it is critical.

How detailed should your risk manage-
ment be? On one recently performed assess-
ment, the 7isk /st on the project ran more
than 400 pages, and had a complex formula
showing each risk status. Such a complex risk
list is almost useless. It is difficult to see the
overall project risk status, and it takes a huge
amount of time to keep it current.

The authors recently performed another
assessment, and saw the risks briefed as a
25-item list, each with either a red, yellow, or
green light (standing for high, medium, and
low risk). This method was easy to use, easy
to understand, and reasonably easy to
update. The key point is that the program
manager, using this simple 25-item list, has
the information to understand the risk
exposure of the program and make good
decisions.

Conclusion
This article is not intended to present a com-
plete list of risk factors for a particular pro-
gram/project — it would take much more
space. Likewise, it is not intended to be a
primer on correct risk-management prac-
tices. What this article is intended to do is
heighten your awareness of risk manage-
ment, and give you a starting point in creat-
ing an appropriate risk management strategy.
Risk management is usually a task best done
by somebody who has some experience in
the area. Locate an appropriate source of
training or experience, and learn from
other’s mistakes. If you proactively manage
risks propetly, then you will spend little time
reactively putting ont unexpected fires, thus free-
ing up more time to build your system based
on current, accurate, and easy-to-understand
risk information.

During a recent “Fear Factor” episode,

34 CrossTALK The Journal of Defense Software Engincering

contestants were required to leap from one

boat to another while the two boats were

speeding next to each other. This resulted in
some of the contestants experiencing very
traumatic falls into the watet.

In this article, we have identified six risk
factors that, based upon our experience, can
have significant impact on the success or
failure of software programs and projects.
By confronting these risks, many inherent
problems can be avoided. We recommend
the following:

* Take program/project planning seti-
ously.

* Do not lie to yourself; develop schedules
based on sound facts and proven
approaches.

» Stringently control requirements growth.

* Establish a success-oriented organiza-
tional culture.

* Develop and follow sound software
development, maintenance, and pro-
gram/project management processes.

* Actively identify and manage risks spe-
cific to your program/project.

By doing these, you can reduce the prob-
ability of your program or project having a

traumatic fall into the pit of unsuccessful
software programs and projects. The biggest
risk of all is failing to manage your risks! O

References

1. Leishman, T., and]. VanBuren. “The
Risk of Not Being Risk Conscious:
Software Risk-Management Basics.”
STSC Seminar Series, Hill AFB, UT,
2003.

2. Hall, Elaine M. Managing Risk. Addison-
Wesley, 1998.

3. Leishman, Theron, and Dr. David A.
Cook. “Requirements Risks Can Drown
Software Projects.” CROSSTALK 15.4
(Apt. 2002): 4-8 <wwwstsc.hill.af.mil/
crosstalk/2002/04/leishman.html]>.

4. Jones, Capers. Assessment and Control
of Software Risks. Prentice Hall, 1994.

5. Naval Postgraduate School. “Importance
of Software to the Military.”” U.S. Navy, 4
Mar. 2000 <www.nps.navy.mil/wings/
acq_topics/AcqTopics.htm>.

Note

1. See <www.scs.otg/confernc/astc/
astc04/cfp/astc04.htm> for a starting
point.

About the Authors

Theron R. Leishman
is a consultant cur-
rently under contract
with the Software
Technology Support
Center at Hill Air
Force Base, Utah. Leishman has 19
yeats expetience in various aspects of
software development. He has suc-
cessfully managed softwatre projects
and performed consulting services for
the Department of Defense, aero-
space, manufacturing, health care,
higher education, and other industties.
He is a Level 2 Certified International
Configuration Manager by the
International Society of Configu-
ration Management, and is employed
by Northrop Grumman. Leishman
has a master’s degree in business
administration from the University of
Phoenix.

Software Technology

Support Center

6022 Fir AVE, BLDG 1238

Hill AFB, UT 84056

Phone: (801) 775-5738

Fax: (801) 777-8069

E-mail: theron.leishman@hill.af.mil

David A. Cook, Ph.D.,
is a senior research sci-
| entist at AEgis Tech-
| nologies Group, Inc.,
| working as a verifica-
tion, wvalidation, and
accreditation agent in the modelling
and simulations area. He is currently
supporting the Airborne Laser System
Program. Cook has more than 30 years
experience in software development

and management. He was formetly an
associate professor at the U.S. Air Force
Academy, a deputy department head of
the Software Professional Develop-
ment Program at the Air Force Institute
of Technology, and a consultant for the
Software Technology Support Center.
Cook has published numerous articles
on software-related topics. He has a
doctorate degree in computer science
from Texas A&M University.

AEgis Technologies Group, Inc.
6565 Americas PKWY NE
STE 975

Albuquerque, NM 87110
Phone: (505) 881-1003

Fax: (505) 881-5003

E-mail: dcook@aegistg.com

May 2004

