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Assigning Boundary Conditions to the Southern Inland
and Coastal Systems (SICS) Model Using Results from the
South Florida Water Management Model (SFWMM)

By Melinda A. Wolfert, Christian D. Langevin, and Eric D. Swain

Abstract

The Comprehensive Everglades Restoration Plan (CERP)
requires the testing and evaluation of different water-manage-
ment scenarios for southern Florida. As part of CERP, the
South Florida Water Management District is using its regional
hydrologic model, the South Florida Water Management
Model (SFWMM), to evaluate different hydrologic scenarios.
The SFWMM was designed specifically for the inland fresh-
water areas in southern Florida, and extends only slightly into
Florida Bay. Thus, the U.S. Geological Survey developed the
Southern Inland and Coastal Systems (SICS) model, which is
an integrated surface-water and ground-water model designed
to simulate flows, stages, and salinities in the southern Ever-
glades and Florida Bay. Modifications to the SICS boundary
conditions allow the local-scale SICS model to be linked to
the regional-scale SFWMM. The linked model will be used to
quantify the effects of restoration alternatives on flows, stages,
and salinities in the SICS area. This report describes the
procedure for linking the SICS model with the SFWMM. The
linkage is shown to work by comparing the results of a linked
5-year simulation with the results from a simulation in which
the model boundaries are assigned using field data.

The surface-water module of the SICS model is driven by
areal influences and lateral boundaries. The areal influences
(wind, rainfall, and evapotranspiration) remain the same when
the SICS model is modified to link to the SFWMM. Four
types of lateral boundaries (discharge, water level, no flow,
and salinity) are used in the SICS model. Two of three dis-
charge boundaries (at Taylor Slough Bridge and C-111 Canal)
in the current SICS model domain are converted to water-level
boundaries to increase accuracy. The only change to the third
discharge boundary (at Levee 31W) is that the flow data are
derived from SFWMM model output instead of using mea-
sured field data flows. Three water-level boundaries are modi-
fied only by receiving their data from SFWMM model output
data. Additionally, two marine water-level boundaries remain
the same because the SFWMM does not include Florida
Bay and, therefore, this model cannot provide input data for
these boundaries. The SICS no-flow boundaries remain intact
because no additional data, provided by the SFWMM, suggest

that any significant flow occurs along these boundaries. The
Florida Bay salinity boundary is not modified because the
SFWMM does not contain any salinity data that can be used to
modify the model.

The ground-water module of the SICS model contains a
general-head boundary and a no-flow boundary. The general-
head boundary, which extends along the edges of the wetland
part of the SICS model domain, is modified by acquiring
stage values from SFWMM cells that correspond in location
to the SICS model cells. Values from the SFWMM cells are
bilinearly interpolated and assigned to the appropriate SICS
general-head boundary cells in all layers of the ground-water
model. The ground-water no-flow boundary in Florida Bay is
unaltered because the SFWMM does not include this area.

A 5-year simulation was developed to test the linkage of
the SICS model with the SFWMM. Results from the linked
model are similar to those obtained from the original SICS
model in which boundaries are assigned using field data. The
simulated discharges at the coastal creeks along Florida Bay
are about 5 percent lower than the field data simulation; water
levels in the wetlands are about 4 percent lower, and salinities
at the various coastal creeks are slightly higher.

Introduction

As part of the Comprehensive Everglades Restoration
Plan (CERP), the South Florida Water Management District
(SFWMD) evaluates alternative water-management sce-
narios using the South Florida Water Management Model
(SFWMM). This regional-scale model has 3.218 x 3.218-km
(2- x 2-mi) grid cells and covers most of southern Florida
(fig. 1), but does not include Florida Bay nor many of the
Everglades coastal wetlands. Consequently, the SFWMM is
not designed to simulate and/or predict local-scale effects of
alternative water-management scenarios or the effects of alter-
natives on coastal wetland stages, salinities, and freshwater
discharges to Florida Bay. A high-resolution local-scale model
is required to more accurately evaluate the effects of alterna-
tives on coastal wetlands and Florida Bay.
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Figure 1. Location of the
South Florida Water Man-
agement Model (SFWMM)
grid and the outline of

the Southern Inland and
Coastal Systems (SICS)
model boundary.
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The U.S. Geological Survey (USGS) recently developed Restoration scenarios proposed under CERP contain
a local-scale model of the southern Everglades (fig. 2) that can ~ water-management system modifications that are far north
simulate coastal wetland stages and salinities and freshwater from the SICS domain area, and a method was needed to
discharge to Florida Bay. The model, known as the Southern evaluate the effects of these system modifications within the
Inland and Coastal Systems (SICS) model (Swain and others, SICS area. The SFWMM was developed to represent many of
2003), is a hydrodynamic surface-water flow and transport the regional effects of the proposed modifications within most
model coupled with a ground-water flow and transport model of southern Florida. However, to accomplish the goals of the
(Langevin and others, 2002). The surface-water and ground- CERP near the southern coastal area, which includes scenario
water models share the same finite-difference grid with a testing, the local-scale SICS model had to be linked to the
304.8- x 304.8-m horizontal resolution. The ground-water regional-scale SFWMM. The linking approach adopted for the
model also contains a vertical three-dimensional 10 layer SICS application is sequential and uses model results from the
(each 3.2-m thick) grid that extends from land surface to a SFWMM as boundary conditions for the SICS model, with no

depth of 32 m.

feedback from the SICS model to the SFWMM.
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Figure 2. Overlay of the South Florida Water Management Model (SFWMM) grid on the Southern Inland
and Coastal Systems (SICS) model grid. Inset displays the column and row numbering of the SFWMM grid,

which covers the SICS model domain.
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Purpose and Scope

This report, prepared as part of the USGS Priority
Ecosystem Science Program and the National Park Service
Critical Ecosystem Studies Initiative, documents the SICS
model boundaries developed using model results from the
SFWMM. By specifying selected SICS model boundary con-
ditions with SFWMM results, the local-scale effects of alter-
native water-management scenarios on coastal wetland stage,
salinity, and freshwater flows to Florida Bay can be simulated.
This report first presents an overview of the SFWMM and
SICS models. The current method for assigning SICS model
boundaries using field data then are described, followed by
a description of designing SICS boundaries with SFWMM
results. Finally, the results from a linked model are compared
with those from a model that uses field data to assign the
boundaries.
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Overview of Models

The South Florida Water Management Model (SFWMM)
originally was developed by the SFWMD in the late 1970’s
and early 1980’s to simulate the hydrology and the highly
managed water system in an approximately 19,700-km? area
of southern Florida (fig. 1), but has since been substantially
improved and updated. The SFWMM is currently used by the
SFWMD to evaluate feasible water-supply alternatives for pro-
jected land use and water demand over the next decades (Bales
and others, 1996). The SFWMM was designed specifically for
the inland freshwater areas in southern Florida and does not
cover Florida Bay and the coastal wetlands. The need for tools
to scientifically examine the hydrology of the coastal wetlands
in southeastern Everglades National Park (ENP) led the USGS
to develop the SICS (Southern Inland and Coastal Systems)
model (Swain and Langevin, 2001).

South Florida Water Management Model

The SFWMM (South Florida Water Management Dis-
trict, 1997; and MacVicar and others, 1984) covers the south-
ern Florida peninsula from about Lake Okeechobee to the
southern tip of the Everglades at Florida Bay (fig. 1). Rainfall,
evapotranspiration, infiltration, overland and ground-water
flow, canal flow, seepage, ground-water pumping, and other
such hydrologic components are simulated by the SFWMM.
Additionally, the SFWMM simulates effects of SFWMD
operational rules and the operation of water-management
control structures. The regional-scale SFWMM attempts to
simulate current conditions and also any operational changes
proposed for southern Florida. As previously discussed, CERP
relies on the SFWMM to test different operational and water-
management scenarios. The SFWMM uses a 30-year dataset
for calibration and verification with field measurements.
Water-management scenarios are tested with the SFWMM
by first simulating a 30-year base case with operational rules
from one single year. The model is then modified to reflect
proposed changes to the system and the 30-year simulation is
repeated using the same set of climate data. Finally, a compari-
son is made between the alternative and the base-case scenario
in order to quantify potential hydrologic changes.

The SFWMM was designed specifically for the inland
freshwater areas in southern Florida, but not for coastal
wetlands or adjacent estuaries; therefore, the model does not
represent density-dependent flow nor the effects of winds and
tides on water movement. Thus, a link between the coarse-grid
SFWMM and a finer grid hydrodynamic model was required
to better simulate changes in coastal wetlands hydrology
resulting from different water-management scenarios. The
SFWMM is important for representing the base-case and
scenarios runs and for providing boundary conditions to local-
scale models.

Southern Inland and Coastal Systems Model

The SICS model is an integrated surface-water and
ground-water model designed to simulate flows, stages, and
salinities in the southern Everglades. This local-scale, fine-
grid model uses the Flow and Transport in a Linked Overland
Aquifer Density Dependent System (FTLOADDS) computer
program to simulate coupled surface-water and ground-water
flows (Langevin and others, 2002). Surface-water simulations
are performed by using a modified version of the SWIFT2D
code (Swain and others, 2003), and ground-water simulations
are handled by using the SEAWAT code (Guo and Langevin,
2002).

The Surface Water Integrated Flow and Transport in
Two Dimensions (SWIFT2D) code simulates overland sur-
face-water flow and transport of dissolved salt in two dimen-
sions (Leenderste, 1987; Swain and others, 2003). This fully
dynamic circulation model uses the finite-difference method to
solve the vertically averaged momentum and conservation of



mass equations. The SWIFT2D code was originally designed
to simulate flow and transport in vertically well-mixed estuar-
ies, coastal embayments, lakes, rivers, and inland waterways.
The code was modified for this study to include such pro-
cesses as rainfall, evapotranspiration, and flow resistance of
marsh vegetation.

Ground-water flow and transport of dissolved salt is
simulated using the SEAWAT code (Guo and Langevin, 2002).
The SEAWAT code was developed by combining MODFLOW
(McDonald and Harbaugh, 1988) and MT3DMS (Zheng and
Wang, 1998) to solve the variable-density ground-water flow
equation formulated in terms of equivalent freshwater head,
rather than pressure. This ground-water calculation considers
all zones to be saturated. The finite-difference method is used
to solve the flow equation.

FTLOADDS is a linked version of SWIFT2D and
SEAWAT that allows information simulated at different time
intervals to be passed seamlessly between the two programs.
Transient ground-water flow is simulated by dividing stress
periods, or periods of time when hydrologic stresses on the
system remain constant, into many timesteps. A single ground-
water stress period may contain many surface-water model
timesteps. For example, the ground-water model may have
daily stress periods, but the surface-water model may require
timesteps that are only 15 minutes or less. In this case, there
would be 96 surface-water model timesteps per ground-water
model stress period.

The main linkage between SWIFT2D and SEAWAT is
through a leakage quantity passed between the two models.
First, SWIFT2D simulates conditions for the current stress
period and then SEAWAT does the same. In SWIFT2D, leak-
age is calculated using a variable-density form of Darcy’s law,
the current surface-water stage, the ground-water head from
the end of the previous stress period, and a leakage coefficient.
SEAWAT then evenly applies the average leakage rate over the
entire stress period. The transfer of salt mass between surface
water and ground water is based on the leakage volume and
salinity of the donor cell. Upward leakage to the surface-water
system is assumed to have the concentration of the underlying
ground-water cell from the end of the previous stress period.
Downward leakage is assumed to have the concentration of
the surface-water cell, which is averaged over each stress
period. At the end of the stress period, the cumulative salt flux
is divided by the leakage rate to calculate the average leak-
age concentration. This average concentration and average
leakage rate is then applied in the current stress period to the
ground-water model. Using this approach, salt and fluid mass
is conserved within the system.

Several other enhancements were programmed in
FTLOADDS for the case when a surface-water cell becomes
dry. In this case, recharge and evapotranspiration, which are
calculated by the surface-water model (Swain and others,
2003), are applied to the cells in the uppermost layer in the
ground-water model. The model code also includes the capa-
bility for upward leakage to rewet a surface-water cell, which

Boundary Conditions Assigned Using Field Data 5

can be important to adequately represent isolated depressions
in the land surface.

Boundary Conditions Assigned Using
Field Data

This section describes the use of field data to specify the
SICS model boundary conditions. The integrated SICS model
was calibrated using a wide range of field data, and results
from the model have been used for various purposes, includ-
ing use as input for biological models. An example of this is
the ALFISHES model (an ecological model created under
the USGS Across Trophic Level System Simulation (ATLSS)
program, which uses water levels and salinity output data from
the SICS model (Cline and Swain, 2002). For integrated simu-
lations, SICS model boundaries are specified using field data.
Information and documentation about the field data sites and
the sources of the data are presented in appendix I. The clas-
sification of the data collected at field stations or calculated
from other physical characteristics is presented in appendix II.

Surface-Water Boundaries

The surface-water part of the SICS model has areal influ-
ences and lateral boundaries. Three areal influences (wind,
rainfall, and evapotranspiration) are used in the SICS model.
Wind is included in the model as a term applied to the momen-
tum equation for each cell computation. In the present model,
wind conditions are spatially uniform over the entire model
grid (Swain and others, 2003). Scalar wind speeds and vector
wind directions were obtained from the ENP Joe Bay weather
station (fig. 3, JBWS) to describe the wind field in the model
domain, owing to a lack of spatial data.

Volumes for rainfall and evapotranspiration boundar-
ies are prescribed for each cell and for each timestep. These
volumes are then removed as evapotranspiration or added
as rainfall to the cells. The rainfall data have been spatially
represented by using data collected at 14 field stations (fig. 3
and app. I). The data from most of the stations are collected
at hourly intervals and interpolated to a 15-minute timestep.
These data are then kriged over the model domain for each
15-minute timestep to calculate a rainfall value for each cell.
The evapotranspiration data are calculated by using a modi-
fied Priestley-Taylor equation (Swain and others, 2003) that
is dependent on water depth and solar radiation. The model
simulates the water depth for each timestep, and the solar
radiation data are obtained from pyranometer measurements
at the USGS Old Ingraham Highway station and the ENP Joe
Bay weather station (fig. 3, OIH and JBWS). The 15-minute
pyranometer data are used to represent spatially uniform solar
radiation values over the entire model domain.
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Lateral boundaries are defined as open (having free
exchange of water and salt across the boundary) or closed

when structure S-197 is opened, flow data are obtained and
provided by the SFWMD. The boundary flows are created

(having no flow across the boundary). Open boundaries can be by uniformly distributing the discharge along an artificial

described by a time series of discharge or water levels. Four
types of lateral boundaries (discharge, water level, no flow,
and salinity) are used in the SICS model (fig. 4).

The SICS model contains three discharge boundar-
ies (fig. 4 and table 1, SW8, SW11, and SW12). Boundary
SWS8 is located between structures S-18C and S-197 on the

topographic low along the entire section of the C-111 Canal
between structures S-18C and S-197. The boundary is defined
in this manner in order to ensure that the cells where the
discharge is applied do not become dry during any timestep.
This topographic low simulates the removal of the levee on
the southern part of the C-111 Canal, which promotes delivery

C-111 Canal (fig. 4). The discharge released into the wetlands  of additional water to the easternmost part of the Everglades

along the SW8 discharge boundary is assumed to be the dif-
ference in releases measured at structures S-18C and S-197.
Normally, the gate at structure S-197 is closed; however,

wetlands.
Discharge data for boundary SW11 (fig. 4) is provided by
the SFWMD at structure S-175 (fig. 4) using a stage-discharge
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rating. The discharge through the structure enters the northern
section of the SICS model through Levee 31W Canal at cell
(100,88), which is located in the northern part of the model.
Levee 31W extends south into the SICS model area about
6 km where it terminates. Water entering the model domain
at cell (100,88) flows southward along Levee 31W, which is a
topographic low in the model, and is subsequently distributed
into adjacent wetlands.

Boundary SW12 (fig. 4) uses inflow provided by ENP
using a stage-discharge relation at Taylor Slough Bridge
(fig. 5, TSB). The discharge is specified at cell (90,90) just
inside the SICS model boundary (fig. 4, SW12).

The SICS model contains five water-level boundar-
ies (fig. 4 and table 1, SW1, SW2, SW4, SW6 and SW9).
Boundaries SW1 and SW2 are located along Old Ingraham

Highway and the southern part of Main Park Road, respec-
tively (fig. 4). Both boundaries experience periodic culvert
flow and overtopping. Because very little actual flow data
exist along these boundaries, water-level data from four ENP
field stations were used to create the model boundaries. Each
station, located just within the model boundaries, provides
good representation of stage along Old Ingraham Highway
and Main Park Road. Boundary SW1 is actually divided

into two segments within the SICS model. The first segment
extends between stations P67 and CY3, and the second seg-
ment extends between stations CY3 and P46 (fig. 5). Bound-
ary SW2 is a single segment that extends from station P46

to NMP (fig. 5). The water-level boundary is specified by
linearly interpolating daily mean stage between each pair of
adjacent stations.

7



8 Assigning Boundary Conditions to the Southern Inland and Coastal Systems (SICS) Model

Table 1. Description of the current and modified boundary conditions for the Southern Inland and

Coastal Systems (SICS) surface-water model

[Model boundary locations are shown in figure 4. Boundary type: D, discharge boundary; NF, no-flow boundary; S,
salinity boundary; SFWMM, South Florida Water Management Model; WL, water-level boundary; --, not applicable]

Boundary

Boundary conditions SFWMM

cells used for

number BT Field data Linked source data
model model (row,column)
SW1 Old Ingraham Highway (north) WL, S WL, S (7,17) (7,18) (7,22)
SW2 Old Ingraham Highway (west) WL, S WL, S (5,17) (7,17)
SW3 Old Ingraham Highway NF NF _
(southwest)
SW4 Florida Bay WL, S WL, S -
SW5 Florida Bay islands NF NF --
SW6 US-1 culverts WL, S WL, S -
SW7 C-111 tidal canal NF NF --
SWS8 C-111 (S-18C to S-197) D,S WL, S (7,26) (6,27) (6,26)
(6,28)
SW9 C-111 (north of S-18C) WL, S WL, S (7,26)
SW10 C-111/Park Road NF NF --
SWI1 Levee 31W D D -
SW12 Taylor Slough inflow D,S WL, S (9,23)
SWI3 Old Ingraham Highway NF NF _
(northeast)

Water-level boundaries SW4 and SW6 (fig. 4) are speci-
fied using measured water-level values from nearby creeks.
Boundary SW4, located along the southern part of the model
boundary, uses an average of daily mean stage values from
McCormick Creek, Taylor River, and Trout Creek. The aver-
age is used across the entire boundary to avoid any numeri-
cal oscillations that can occur when small lateral water-level
differences are forced along a long open boundary. Boundary
SW6 uses daily mean stage values from West Highway Creek
due to the lack of available flow data for the culverts under US
Highway 1.

Boundary SW9, located along the northeastern part of the
C-111 Canal, is defined using measured daily mean water-
level values from the upstream measuring station at structure
S-18C (figs. 4 and 5). The stage from the S-18C upstream
station is applied along the entire boundary, unlike boundaries
SW1 and SW2 (fig. 4), where water levels between two sta-
tions are interpolated. When water levels in the C-111 Canal
are greater than the land-surface elevation west of the levee,
the model permits leakage beneath and through the levee into
the wetlands. A friction coefficient is defined to represent flow

resistance equivalent to the resistance of the levee, so leakage
through the levee is actually represented as flow through this

boundary even though this boundary is designated as a water-
level boundary.

Boundaries SW3, SW5, SW7, SW10, and SW13 (fig. 4
and table 1) are no-flow boundaries. Field measurements for
boundary SW3 obtained by Stewart and others (2000) indicate
that the culverts in this area along Old Ingraham Highway
south of station NMP (fig. 5) may not have any significant
flow.

Salinity values, in 15-minute intervals, were defined
along all of the lateral boundaries. The inland water-level and
discharge boundaries (fig. 4, SW1, SW2, SW8, SW9, SW11
and SW12) are essentially freshwater inputs to the model and
have an assigned salinity value of zero. No salinity value is
required at the no-flow boundaries (fig. 4, SW3, SW5, SW7,
SW10, and SW13). Salinity measured at offshore ENP stations
BK, WB, and BN (fig. 6) are linearly interpolated between
adjacent stations and applied along the southern open-water
boundary (fig. 4, SW4). Salinity west of BK at SW4 is set
equal to the value at BK, and salinity east of BN is set equal to
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Figure 5. Surface-water stations used for determination of water level and discharge in the Southern Inland and
Coastal Systems (SICS) model. All sites are water-level stations, except for McCormick, Trout, West Highway Creeks
and Taylor River (water level and discharge) and S-18C, S-197, S-175, TSB, and Mud Creek (discharge). Site names and

identifiers are listed in appendix 1.

measurements at BN. Salinity recorded at station LS (fig. 6)
is applied to boundary SW6 (fig. 4), which represents flow
through the culverts beneath US Highway 1.

Ground-Water Boundaries

The ground-water part of the SICS model contains
general-head boundaries (GHBs) and no-flow boundaries
(table 2). The GHBs are head-dependent boundaries where the
volumetric flux is proportional to the head difference between
the boundary and the attached model cell. The GHB cells in

the SICS ground-water model are aligned in the horizontal
direction, although they can be vertically aligned as well. Due
to the coupling method between the surface-water and ground-
water models, vertical GHBs are not necessary. The GHBs are
represented by boundary GW 1, which includes Old Ingraham
Highway, the southern part of Main Park Road to the west,
and the southern reach of C-111 Canal to the east (fig. 7).
The southern part of boundary GW1 ends at the Florida Bay
coastline.

Boundary GW1 extends vertically downward into the
Biscayne aquifer to include cells representing the aquifer. At
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Table 2. Description of the current and modified boundary conditions for the Southern Inland and Coastal Systems
(SICS) ground-water model

[Model boundary locations are shown in figure 7. SFWMM, South Florida Water Management Model; --, not applicable]

Boundary conditions

SFWMM

Boundary Description cells used for
number P Field data Linked source data
model model (row, column)
(2,15) (3,15) (3,16) (4,16) (4,17) (5,17)
GW1 Land portion of General head, General head, (5,28) (6,17) (6,26) (6,27) (6,28) (7,17)
model boundary salinity salinity (7,18) (7,19) (7,20) (7,21) (7,22) (7,26)
(8,22) (8,26) (9,22) (9,23) (9,24) (9,25)
GW2 Florida Bay No flow No flow --

boundary
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cells where the elevation of the center of the cell is below the
estimated bottom elevation of the Biscayne aquifer (fig. 8), a
GHB cell is not used and the model cell is assigned as inactive
in that layer and all lower layers. The equivalent freshwater
head values for the GHBs are calculated by using time-vary-
ing stage and salinity from a simulation model using only the
surface-water component of the SICS model and the distance
to the center of the ground-water cell. The GHB cells in layers
2 to 10 also use the stage and salinity from the corresponding
layer 1 GHB cell to calculate the freshwater head values. The
only difference between layer 1 head values and the heads
from lower layers is the freshwater head correction based on
the depth to the center of the ground-water cell. In the surface-
water model along no-flow and discharge boundaries, the
surface-water cell does not have a defined stage value and

can be intermittently dry. If the surface-water cell became dry

during the simulation period, a head value at each dry cell then
was interpolated from kriged grids of time-varying mea-

sured water levels. These water levels were attained from the
surface-water stations shown in figure 5 and from the ground-
water wells shown in figure 9. The salinity for the GHBs was
defined by the salinity input from the surface-water model at
each cell for each timestep.

Boundary GW2 (fig. 7) represents a no-flow condition,
which indicates that no horizontal flow occurs across this
boundary. Unfortunately, field data are lacking to evaluate
the appropriateness of this prescribed no-flow condition. An
advantage of using a no-flow condition is that there is no need
to specify a boundary salinity concentration, which could be
problematic for the evaluation of restoration scenarios if the
scenario itself were to change salinity values in the Biscayne
aquifer beneath Florida Bay.
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Linked Model Boundary Conditions

In developing the method for “driving” the SICS model
with output from the SFWMM, decisions were made regard-
ing the most accurate and defensible method for assign-
ing spatially variable hydrologic input to SICS boundaries.
Perhaps the most important decision was determining whether
to use simulated stages from the SFWMM as hydrologic input
for SICS boundaries, or whether to utilize simulated flows
from the SFWMM. In a previous endeavor by the SFWMD,
the SFWMM model was modified to simulate hydrologic
conditions in southern Florida without the presence of water-
management canals or other anthropogenic influences. At the
request of SFWMD, this model, called the SFWMD’s Natu-
ral Systems Model (NSM), was technically reviewed by the
USGS (Bales, and others, 1997). After evaluating the NSM,
the USGS concluded that: “In general, reasonable simulations
of water depth are easier to obtain in all hydraulic simula-
tion models than reasonable simulations of flow” (Bales, and
others, 1997). Thus, from this evaluation of the NSM, it was
decided that the most accurate method for driving the SICS
model would be to convert discharge boundaries to water-
level boundaries and assign stages based on output from the
SFWMM. This procedure then allowed for the SFWMM to
supply reasonable water levels as input to the SICS model.

Several SICS model boundary conditions, prescribed by
field data, were modified in order to link the SICS model and
the SFWMM. The three areal influences (wind, rainfall, and
evapotranspiration) in the SICS model were not altered. The
SEFWMM does not simulate effects of wind on flow, and there-
fore, does not provide the data required by the SICS model
for the boundary. Rainfall and evapotranspiration data in the
SEFWMM model, like the SICS model, are based on measured
data and would not provide any new information for the SICS
boundaries. The subsequent sections describe the procedures
used to assign the remaining boundary conditions for surface-
water and ground-water components of the SICS model from
the SFWMM.

Surface-Water Boundaries

Discharge boundaries SW8, SW11, SW12 and water-
level boundaries SW1, SW2, and SW9 were modified in
order to couple the SFWMM to the SICS model. No-flow
and salinity boundaries SW3-7, SW10, and SW13 were not
modified. Discharge boundaries SW8 and SW12 in the current
SICS model domain were converted to water-level boundar-
ies (table 1). These boundaries are in the southeastern part of
the C-111 Canal (fig. 4, SW8) and at Taylor Slough Bridge
(fig. 4, SW12). The flows into the model through Levee 31W
from structure S-175 (fig. 5) remain a discharge boundary
(fig. 4, SW11) in the linked model. The source of the data
for this boundary, however, comes from the discharge values
calculated by the SFWMM at structure S-175 rather than from
measured data at this control structure.

Discharge boundary SW12 at Taylor Slough Bridge
(fig. 4 and table 1) was modified by converting SICS model
cells (88,92), (89,92), (90,92) along the boundary to represent
water levels, and removing previous discharge input from
a single cell just inside the model boundary. Taylor Slough
Bridge is located outside of the actual SICS model boundary;
however, because of a developed stage-discharge relation,
flow was entered as a direct discharge input into the model
designated cell. This relation does not correspond to the input
of stages at the boundary. Stages reflect land-surface eleva-
tions; therefore, a comparison between the different eleva-
tions at Taylor Slough Bridge and the location of the three
boundary cells precludes the direct use of stage values. The
elevation difference is made larger in the SFWMM because
each cell spans about 3.2 km, and land-surface elevations
increase northward. A reason for the larger difference is that
the SFWMM outputs values for each cell as water levels. In
order to transform these values to stages for input into the
SICS model, they must be corrected for land-surface eleva-
tion. The elevation that the SFWMM uses is the average
land-surface elevation of the entire 3.218- x 3.218-km (2- x
2-mi) cell, which can overlook smaller scale elevation changes
that show up in the SICS model. Even though these elevation
changes are small, slight differences in land-surface elevation
observed in southern Florida can create substantial differences
in water levels. The SFWMM cell (10,23) that represents
Taylor Slough Bridge is about 2.6 km away from the location
of the SICS boundary cells, which can cause even larger eleva-
tion discrepancies. To represent the stages at the boundary
more accurately, the SFWMM cell (9,23) directly south of the
SFWMM cell (10,23) that includes Taylor Slough Bridge was
used. The SFWMM cell (9, 23) also overlaps SICS boundary
cells (88,92), (89,92), (90,92) where the stage is defined.

For the restoration effort, one proposed change is the
removal of the southeastern part of C-111 Canal between
structures S-18C and S-197 (fig. 5). To test this scenario,
boundary SWS (fig. 4) in the SICS model was changed from
a discharge boundary to a water-level boundary. This modi-
fication involved applying simulated SFWMM stage values
to corresponding SICS cells for structures S-18C and S-197,
and linearly interpolating a water-level boundary along C-111
Canal for the SICS model water-level boundary condition.

Boundaries SW1 and SW2 (fig. 4) represent water levels
in the original SICS model, so the boundary type does not
change with the linkage—only the source of the data input is
changed. These data are acquired from SFWMM cells (7,22)
at station P67, (7,18) at CY3, (7,17) at P46, and (5,17) at NMP
(fig. 5). Once the stages are input, the SICS model then lin-
early interpolates between the stations to create the water-level
boundaries SW1 and SW2 (fig. 4).

Water-level boundary SW9 is located along the northern
part of C-111 Canal (fig. 4). Like boundaries SW1 and SW2,
the only modification for SW9 is in the source of its data.
Water levels are acquired from the SFWMM at cell (7,26),
which corresponds to the upstream location of the upstream
S-18C gaged water-level station. The stage is then applied to



the SICS model along the entire boundary, unlike boundaries
SW1 and SW2, where stages are interpolated along the canal
reach.

Boundaries SW3 to SW7, SW10, and SW13 (fig. 4 and
table 1) are not modified. The specified water levels and salini-
ties along Florida Bay and at West Highway Creek (fig. 4,
SW4 and SW6) are not altered because the southern SFWMM
boundaries are north of the southern SICS model boundaries
and, therefore, do not provide any input information for the
SICS model. No-flow boundaries SW3, SW5, SW7, SW10
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discharges, the overall flow difference between the two models
for the entire simulation period is about 5 percent, and the
overall stage difference in the wetlands is only 4 percent lower
in the linked model than in the field data model. The largest
difference between the two simulations occurs in the salini-
ties. The linked model predicts salinities that are higher than
the field data model. This difference ranges from 1 to 5 g/L,
though the larger differences occur only in the smaller creeks,
which carry a minimal portion of the overall flow through the
model area.

and SW13 also are not modified.

Ground-Water Boundaries

Boundary GW1 (fig. 7 and table 2)
for the SICS ground-water model is

modified by acquiring stage values from Linked model Base field data model
all of the SFWMM cells that surround
each of the SICS boundary cells. Table 2 Station Count | mean Mean Mean Mean
gives the SFWMM cells in which the error ab::‘l)l:te LS error abesr::::te RMSE
SICS model cells overlap. Ground-water .
boundary heads are spatially interpolated Discharge
using the bilinear interpolation method. McCormick Creek 1,827 | 0.22 1.50 2.00 0.29 1.56 2.03
These interpolated values are assigned to Mud Creek 1828 | 36 | 1.81 389 39 | 176 | 3.55
Fhe appropriate SICS boundary GW1 cell Trout Creek 1,797 | -1.11 | 5.22 7.23 | -1.35 4.97 6.97
ﬁ:&gf‘ym of the SICS ground-water Taylor River 1826 | -20 | 114 | 259 -08 | 120 | 3.24
Boundary GW?2 (ﬁg 7 and table 2)’ West Highway Creek 1,753 -.66 1.11 1.63 -.25 1.16 1.68
which represents a no-flow condition Stage/Head
gﬁsvg@ﬁﬂda Bay; is ulnzltetf;d- The Nine Mile Pond 1561 [ -007 | 007 | 009] 002 | 002 | 002
oes not include this area;
therefore, no SFWMM simulation data Cypress No. 3 1,581 -.13 14 A8 -.07 .07 .07
are available to modify the boundary. ENP-P46 1,751 -08 09 2] -0l 06 08
ENP-P67 1,813 -.02 .07 .10 .01 .06 .08
Cypress No. 2 1,521 -.09 .10 14 -.03 .04 .05
Model cOmpa rison Taylor Slough Hilton | 1,806 -.02 .06 .08 .00 .05 .07
ENP-E146 1,755 .03 .05 .08 .04 .06 .08
To verify the linkage procedure, a Craighead Pond 1,761 -.04 .07 .09( -.03 .06 .08
test simulation was performed. The test Everglades EPSW 1,751 .09 .09 A2 .08 .08 .10
simulation covered the time period from g yeralades 6 1665 | -06 | .08 00 -04 | 05 07
January 1, 1996, to December 31, 2000. Everglades 7 1739 | -02 | .05 06] -03 | .05 06
Data were acquired from the SFWMD ’
for that simulation period from the ENP-127 1,770 -.02 .07 .09 .01 .06 .09
SFWMM 2000B1 Existing Conditions ENP-P37 1,736 -.02 .05 .07 .00 .05 .07
simulation. The data were applied to the G-3619 1,736 || -.05 A1 A5) -.03 .07 .10
SICS model by using the procedure pre- G-3353 1,795 || .16 16 19| .14 15 17
viously described in this report. Results G-1251 1362 04 11 11 05 07 09
from this linked rr.lodel simulations then el
were compared with the SICS field data
model results (C.D. Langevin and others, McCormick Creek 1,823 6.76 7.50 8.83[ 3.28 8.31 10.59
U.S. Geological Survey, written com- Mud Creek 1,828 [ 3.93 4.65 5.86( 2.12 3.89 5.02
mun., 2004). Trout Creek 1,805 | 3.81 | 5.17 6.60( 244 | 478 6.32
In general, the error stastistics Taylor River 1817 | 833 | 850 |10.15| 583 | 646 | 7.97
for the two models are within reason- West Highway Creek |1,786 | 4.19 | 6.39 800 -86 | 452 | 554
able ranges (table 3). For coastal creek

Table 3. Error statistics for model simulations using the linked and base field data

models

[RMSE, root mean square error]
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Figures 10 and 11 display results of the linked SICS

and SFWMM model simulation in comparison to the field
data model simulation and actual measured values at selected
sites in the model area. Discharges and salinities at Trout

Creek from August 1, 1997, to July 31, 1998, are shown in

figure 10. Stages for the entire simulation at ENP-P37 (P37)
and Taylor Slough Hilton (TSH) are shown in figure 11. In
general, these plots show close agreement between the SICS
model linked with the SFWMM and the SICS field data
model.
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Figure 10. (A) Discharge and (B) salinity values at Trout Creek, August 1, 1997, to July 31, 1998. Plots display the
measured field data values relative to the computed values from the field data model and the linked model. The
location of the Trout Creek site is shown in figure 5.
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Summary

This report describes the general procedure for per-
forming simulations with the SICS integrated surface-water/
ground-water model using boundary data generated by the
SFWMM. Boundary conditions were defined for both surface-
and ground-water parts of the SICS model. The surface-water
model contains two types of boundaries: areal (wind, rainfall,
and evapotranspiration) and lateral boundaries (discharge,
water level, no flow, and salinity). The ground-water model
contains two types of boundaries: general head and no flow. In
the linkage of the SFWMM and SICS models, areal boundar-
ies were not changed; however, the lateral and general-head
boundaries were changed. Once the appropriate changes were
implemented, a 5-year test simulation using data from the
SFWMM 200B1 Existing Conditions simulation was run to
verify the linkage procedure.

Results from the test simulation indicate that the linkage
procedure works well, and the linked model runs with the new
boundaries. The test simulation also shows that the results pro-
duced by the linked model are reasonable and within plausible
error ranges. This demonstrates that the linkage procedure is
applicable for testing future CERP scenarios.
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Appendix |. Temporal Data-Collection Stations Used in the Southern Inland and

Coastal Systems Model

Latitude/longitude is in degrees, minutes, and seconds (ddmmss). Terminology: Field station name refers to the name of
the station at which data were collected. Model component refers to which model regime the data were applied to. Purpose
refers to how the collected data were used in the model; boundary refers to data that are used to create the model boundaries for
each model run—these data will change with scenario runs; comparison refers to data from field stations that are used to verify
how well the model is simulating the real system. Timestep refers to the interval in which the data were collected at the field
sites—this is not necessarily the interval in which the data were applied to the model; point data refers to a measuring point that

was only sampled a few times.

Acronyms and symbols:

ADAPS
ENP
GW
SOFIA
SFNRC
SFWMD
SW

UM
USGS

automated data processing system
Everglades National Park

ground water

South Florida Information Access

South Florida Natural Resource Center
South Florida Water Management District
surface water

University of Miami

U.S. Geological Survey

not applicable
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Appendix Il. Sources Used to Develop Model Spatial Information

[Model component: SW, surface water; GW, ground water]

Data type LU Data source’
component
Peat thickness SW, GW Harvey and others (2000)

Peat hydraulic conductivity SW, GW Harvey and others (2000)

Hydraulic conductivity GW Fish and Stewart (1991)

Biscayne aquifer depth GW Fish and Stewart (1991)

Florida Bay bottom types SW, GW Halley (1997)

Salinity interface GW Fitterman and others (1999)
Specific yield GW Merritt (1996)

Porosity GW Merritt (1996)

Land-surface elevation SW Desmond and others (2000)

Bay bathymetry SW Hansen and Dewitt (2000)
Vegetation SW Lee and others (1999); Jones (1999)
Evapotranspiration SW German (2000)

H.L Jenter (U.S. Geological Survey,

Wind-sheltering term SW written commun., 1999)

'Most data available under the investigator’s name at http://sofia.usgs.gov.
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