DATE: January 8, 2004

TO: \quad State Survey Agency Directors
FROM: Director
Survey and Certification Group
SUBJECT: Clinical Laboratory Improvement Amendments (CLIA) Policy and Data Reporting Guidance for First Survey Cycle Following the Effective Date of CMS-2226-F

Letter Summary

Begin Laboratory Survey Process Effective January 12, 2004:
The national implementation date for the State agencies to use the revised laboratory regulations, interpretive guidelines and survey protocol is January 12, 2004.

This memorandum contains information addressing:

- ASPEN Survey Explorer updates to include the current CLIA regulations and the associated Interpretive Guidelines
- OSCAR System Conversion to accommodate "new" D tags
- Special Reporting for tracking deficiency citations
- Guidance on laboratory survey protocol

In this memorandum we provide official notification to the State Survey Agencies (SAs) and Centers for Medicare \& Medicaid Services (CMS) regional offices (ROs) of the date to begin using the revised regulations, interpretive guidelines and survey protocols to implement CMS-2226-F ("Medicare, Medicaid, and CLIA Programs; Laboratory Requirements Relating to Quality Systems and Certain Personnel Qualifications," 68 FR 3640). The new interpretive guidelines will be available on CLIA's web site (http://www.cms.hhs.gov/clia) on that date.

The CLIA final rule reorganized portions of the prior CLIA regulations. However, the provisions outlined in Subpart K-Quality Systems for Nonwaived Testing at 42 CFR section 493.1250, Analytic systems requirements, now apply to all laboratories performing nonwaived testing.

Page 2 - State Survey Agency Directors

Prior to the above rule, laboratories that performed moderate complexity tests using an instrument, kit, or test system cleared by the Food and Drug Administration through the premarket notification (510(k)) or premarket approval (PMA) process for in-vitro diagnostic use were not held to all of these requirements. In keeping with CMS' educational approach and the continued use of the outcome-oriented survey process, surveyors are to use the two attached letters when laboratories are not in compliance with the analytic systems provisions that are new to the laboratory. (See Attachment 1 for examples of two model letters provided in the 8/14/2003 S\&C 03-33 policy letter.) In addition, refer to Attachment 2 for specific guidance on the survey protocol to follow when applying the provisions of the final rule.

The final rule also made a number of data reporting and system changes in ASPEN Survey Explorer and in the Online Survey, Certification, and Reporting (OSCAR) system, to accommodate the revised laboratory regulations. The changes include:

- ASPEN Survey Explorer

The ASPEN Survey Explorer has been updated to include the current CLIA regulations, published in the Federal Register on January 24, 2003 and their associated interpretive guidelines. Refer to Attachment 3 for specific information and guidance on the contents of the laboratory information available in ASPEN Explorer. In a separate memorandum, the QIES Technical Support Office will notify the QIES State Coordinators that the revised Laboratory Regulation Sets are available for ASPEN Survey Explorer users. The Laboratory Regulation Sets will be posted on the QTSO website to be downloaded for use during laboratory surveys.

- OSCAR System

The OSCAR system will be converted to accommodate the 'new D tags' associated with the revised laboratory requirements. This means that any initial or recertification surveys conducted using the 'old D tags' must be entered into the OSCAR system prior to OSCAR's software release. If the surveys using the 'old D' tags are not entered into OSCAR/ODIE until after the release, the SA data entry staff will need to convert the deficiency tags to the 'new D tags' using the 'D' tag crosswalk provided in Attachment 4. (CMS will provide additional instructions to users closer to OSCAR's software release date.)

- Special Data Reporting

To keep track of the citations for statistical and planning purposes and to determine subsequent eligibility for Alternative Quality Assessment Surveys (AQAS), each state will need to count the number of times each of the 30 specified ' D tags' are cited, and the number of times Letters 1 and 2 are issued. The totals will be sent to the RO on a monthly basis. The citations will be tallied on the Excel sheet provided at Attachment 5. In addition, at the time a survey record is entered into the OSCAR/ODIE system, a new field will be established to determine if the laboratory received Letter 1 or 2. This information will be used to determine eligibility for AQAS during subsequent survey cycles.

Timeline for Data System Changes

January 12: The SAs will begin the survey process by using the revised laboratory regulations and interpretive guidelines and by following the survey policy outlined in Attachments 1 and 2.

January 12: The ASPEN Survey Explorer will be updated with the newest version of the ' D ' tags, regulatory text and interpretive guidelines. (Refer to Attachment 3.) The QTSO will notify the QIES State Coordinators in a separate memorandum that the revised Laboratory Regulation Sets are available for ASPEN Survey Explorer users. The Laboratory Regulation Sets will be posted on the QTSO website to be downloaded.

January 12 through the end of FY2005: The SAs will keep track of the number of times each of the 30 specified 'D tags' are cited, and the number of times Letters 1 and 2 are issued. Send the counts to the RO on a monthly basis in the format provided in Attachment 5.

February 26: The SAs will complete entry of all surveys conducted using the 'old D tags' into the OSCAR/Online Data Input and Edit (ODIE) system, prior to OSCAR's system conversion.

March 1: The OSCAR system will be converted by changing the 'old D tags' to the comparable 'new D tags' in the OSCAR system, and the OSCAR dictionary will be revised to contain the new prefix tags and descriptions.

March 1 and thereafter: Surveys conducted using the 'new D tags' will be entered into ODIE by the SAs. Any surveys conducted using the 'old D tags' that are not entered by February 26 (cut-off date) will be converted to the 'new D tags' using the ' D tag' crosswalk (see Attachment 4).

If you need additional clarification on the survey policies and procedures, please contact Judy Yost at 410-786-3407 or Virginia Wanamaker at 410-786-7304. If you have questions concerning data issues, please contact Kate Kremann on 410-786-3400 or Carol Zeller on 410-786-3113.

We appreciate your ongoing dedication to the effective administration of the CLIA program and your assistance during this upcoming survey cycle.

Effective Date: January 12, 2004.

Training: This information should be shared with all appropriate survey and certification staff, their managers, QIES coordinators, and the state/RO training coordinators.
/s/

Thomas E. Hamilton
cc: Survey and Certification Regional Office Management (G-5)
RO Laboratory Consultants
Attachment 1 - Survey and Certification 03-33 policy letter, dated 08/14/2003
Attachment 2 - Survey Protocol for First Cycle Surveys
Attachment 3 - ASPEN Survey Explorer Update
Attachment 4 - CLIA Deficiency Crosswalk
Attachment 5-Special Data Reporting (Dtag Exclusions)

DEPARTMENT OF HEALTH \& HUMAN SERVICES
Centers for Medicare \& Medicaid Services
7500 Security Boulevard, Mail Stop S2-26-12
Baltimore, Maryland 21244-1850

Center for Medicaid and State Operations
Ref: S\&C-03-30
\section*{DATE: August 14, 2003}
FROM: Director
Survey and Certification Group
SUBJECT: Clinical Laboratory Improvement Amendments (CLIA) Policy Letters for First Survey Cycle Following the Effective Date of CMS-2226-F
TO: \quad Survey and Certification Regional Office Management (G-5) State Survey Agency Directors

This memorandum presents two letters for use in certain first survey cycle (FY2004-FY2005) compliance situations involving CMS-2226-F ("Medicare, Medicaid, and CLIA Programs; Laboratory Requirements Relating to Quality Systems and Certain Personnel Qualifications," 68 FR 3640).

For the most part, this final rule simply reorganizes portions of the prior CLIA regulations. However, the provisions outlined in Subpart K-Quality Systems for Nonwaived Testing at section 493.1250, Analytic systems requirements, now apply to all laboratories performing nonwaived testing. Prior to this rule, laboratories that performed moderate complexity tests using an instrument, kit, or test system cleared by the Food and Drug Administration through the premarket notification (510(k)) or premarket approval (PMA) process for in-vitro diagnostic use were not held to all of these requirements. In keeping with CMS' educational approach and the continued use of the outcome-oriented survey process, surveyors are to use the two attached letters when laboratories are not in compliance with the analytic systems provisions that are new to the laboratory.

Letter number 1 (first survey cycle letter without accompanying CMS-2567) is to be used when the laboratory's only deficiencies include analytic systems provisions that are new to that laboratory. Letter number 2 (first survey cycle letter with accompanying CMS-2567) will be used to accompany a survey report form (CMS-2567) when the laboratory has deficiencies in items that were required under the former rule as well as deficiencies in the analytic systems provisions of CMS-2226-F that are new to the laboratory.

Page 2 - Survey and Certification Regional Office Management; State Survey Agency Directors

If you have questions or would like further clarification, please contact Judy Yost at 410-786-3407 or Virginia Wanamaker at 410-786-7304. We appreciate your ongoing dedication to the effective administration of the CLIA program and your assistance during this upcoming survey cycle.

/s/
Steven A. Pelovitz

Attachments

First survey cycle letter without accompanying CMS-2567

Date \qquad
[Laboratory Director]
[Laboratory's Name]
[Address]
[City], [State], [Zip Code]

Re: CLIA \#
State ID \# \qquad
Dear [Laboratory Director]:
A representative [or name of the surveyor] of the [State Survey Agency] surveyed your laboratory on [date] for the Centers for Medicare \& Medicaid Services (CMS) for CLIA purposes. I hope the on-site survey was helpful to you and your staff.

During the exit conference, the representative [or the surveyor's name] discussed some items needing correction due to provisions contained in the newly effective revised CLIA regulations. (See 68 Federal Register 3640 that became effective April 24, 2003.) The majority of the material contained in this regulation was merely a reorganization of existing provisions, but there are a limited number of new provisions in the rule as well.

During this survey cycle, CMS is seeking to educate providers about the new regulatory requirements, and hopes to obtain voluntary compliance with these requirements. As such, these items are listed in this letter rather than the survey report. We encourage you and your staff to familiarize yourselves with these new provisions. Correction of the items listed below will improve the quality of care for your patients and will assist you in the future, when deficiencies in meeting these requirements will be included as part of the survey report and resolution process.

At the time of your survey on [date], your laboratory was not in compliance with the following new provisions contained in the revised CLIA regulations:
[List any of the following that are applicable]

- Section 493.1253: Establishment and verification of performance specifications
- Section 493.1254: Maintenance and function checks
- Section 493.1255: Calibration and calibration verification procedures
- Section 493.1256: Control procedures
[Include any pertinent specific information that will clarify the concern or help the laboratory understand how to comply here.]

The representative [or surveyor's name] will follow up in [x days] to determine if your laboratory has addressed the areas needing correction. In the meantime if you would like additional information or need further assistance, please contact [State Representative's name] at [phone number].

Sincerely,

State Agency Signature
Name and Title

Model Letter \# 2
 First survey cycle letter with CMS-2567

Date \qquad
[Laboratory Director]
[Laboratory's Name]
[Address]
[City], [State], [Zip Code]

Re: CLIA \#
State ID \# \qquad
Dear [Laboratory Director]:
A representative [or name of the surveyor] of the [State Survey Agency] surveyed your laboratory on [date] for the Centers for Medicare \& Medicaid Services (CMS) for CLIA purposes. I hope the on-site survey was helpful to you and your staff.

During the exit conference, the representative [or the surveyor's name] discussed some items that appear on the survey report requiring correction by you/your staff. Details concerning those items are provided in the accompanying letter and survey report. Please note that the items listed on the survey report form are those items that were required of your laboratory both under the former CLIA rules and the newly effective revised rules. (See 68 Federal Register 3640 that became effective April 24, 2003.) These items must be addressed by the time frame specified in the accompanying letter in order to avoid any adverse actions by CMS.

The representative [or surveyor's name] also discussed some items needing correction due to provisions solely contained in the newly effective revised rules. During this survey cycle, CMS is seeking to educate providers abut the new regulatory requirements, and hopes to obtain voluntary compliance with these requirements. As such, these items are listed in this letter rather than the survey report. We encourage you and your staff to familiarize yourselves with these new provisions. Correction of the items listed below will improve the quality of care for your patients and will assist you in the future, when deficiencies in meeting these requirements will be included as part of the survey report and resolution process.

At the time of your survey on (date), your laboratory was not in compliance with the following new provisions contained in the revised CLIA regulations:
[List any of the following that are applicable]

- Section 493.1253: Establishment and verification of performance specifications
- Section 493.1254: Maintenance and function checks
- Section 493.1255: Calibration and calibration verification procedures
- Section 493.1256: Control procedures
[Include any pertinent specific information that will clarify the concern or help the laboratory understand how to comply here.]

Please note that the deficiencies listed above are in addition to any items listed on the survey report form. Both lists of deficiencies need correction before your laboratory will be in complete compliance with the CLIA regulations.

The representative [or surveyor's name] will follow up in [x days] to determine if your laboratory has addressed the areas needing correction that are listed on this letter. In the meantime if you would like additional information or need further assistance, please contact [State Representative's name] at [phone number].

Sincerely,

State Agency Signature
Name and Title

Attachment 2

Survey Protocol for First Cycle (FY2004-FY2005) (Includes Initial and Recertification Surveys)

Outlined below are four survey finding scenarios listing the required forms that need to be completed and entered into the ODIE/CLIA systems and in ASPEN Survey Explorer.

Scenario 1 Laboratory has no deficiencies.

Forms: CMS-1539, Certification \& Transmittal form: mark 'in compliance with program requirements.'
CMS-1557, Laboratory Survey Report Form: update with personnel and specialty/test volume information.
CMS-670, Survey Team Composition and Workload form: complete according to standard instructions.
CMS-2567, Statement of Deficiencies and Plan of Correction form: update ASPEN Survey Explorer by annotating D0000 with 'no deficiencies.' CMS-116, Laboratory Application form: ask laboratory to provide any updates to information on record.

Scenario 2 Laboratory's only deficiency(ies) include analytic systems provisions that are new to that laboratory.

Forms: \quad CMS-1539: mark 'in compliance with program requirements, based on receipt of an acceptable plan of correction'; annotate State Agency Remarks to state that Model Letter 1 was sent to laboratory.
CMS-1557: update with personnel and specialty/test volume information; also update the 'Letter Sent' field in ODIE.
CMS-2567: update ASPEN Survey Explorer by annotating D0000 with 'see attached letter.'
Model Letter 1: prepare and present to laboratory.
CMS-670: complete according to standard instructions, count time taken to prepare Model Letter 1 in Off-Site Report Preparation category.
CMS-116: ask laboratory to provide any updates to information on record.
Scenario 3 Laboratory's only deficiency(ies) include provisions that were required under the former CLIA rules.
Forms: CMS-1539: mark 'in compliance with program requirements, based on receipt of an acceptable plan of correction.'
CMS-1557: update with personnel and specialty/test volume information.
CMS-2567, CMS-2567B: update ODIE and ASPEN Survey Explorer with required deficiency data.
CMS-670: complete according to standard instructions.
CMS-116: ask laboratory to provide any updates to information on record.
Scenario 4 Laboratory has deficiencies in items that were required under the former rule as well as deficiencies in the analytic systems provisions of CMS-2226-F that are new to the laboratory.

Forms: CMS-1539: mark 'in compliance with program requirements, based on receipt of an acceptable plan of correction;' annotate State Agency Remarks to state that Model Letter 2 was sent to laboratory, along with CMS-2567.
CMS-1557: update with personnel and specialty/test volume information; also update the 'Letter Sent' field.
CMS-2567, CMS-2567B: update ODIE and ASPEN Explorer with required deficiency data, as appropriate. Also, annotate D0000 with 'see attached letter.'
Model Letter 2: prepare and present with CMS-2567.
CMS-670: complete according to standard instructions, include time taken to prepare Model Letter 2 in report preparation category.
CMS-116: ask laboratory to provide any updates to information on record.

Other Survey Protocols for First Cycle (FY2004-FY2005)

Follow-up/Revisit Surveys

Any deficiencies cited at the time of the survey on the CMS-2567 will require corrective action by the laboratory. Use the standard operating procedures already in place. For deficiencies listed in either letter, encourage the laboratory to correct by the next recertification survey. In lieu of a follow-up survey, contact laboratories to provide education and assistance. Any time immediate jeopardy is found, consult with the CMS RO.

- Deficiencies cited that apply to former CLIA rules must be collected on the PostCertification Revisit Report form, CMS-2567B, and reported in both OSCAR/ODIE and in ASPEN Survey Explorer.
- Deficiencies cited that apply to provisions solely contained in the newly effective revised rules, as listed in Model Letters 1 and 2, are not reported in OSCAR/ODIE or in ASPEN Survey Explorer.

Complaint Surveys

Investigate complaint allegations according to existing survey policies and procedures. If problems are noted in provisions contained in the newly effective revised rules, base deficiency citations/letter issuances and enforcement action(s) on whether or not the issue concerns analytic systems provisions that are new to the laboratory and have an impact on patient care (see Attachment 1). Consult the CMS RO when in doubt. Follow standard operating procedures for problems identified that are contained in the final regulations, but not new to the laboratory.

Validation surveys

As always, validation surveys are to be conducted like compliance surveys and copies of all validation packages (including Letter 1 or 2, if used) forwarded to the CMS RO as soon as the survey is closed out. For the validation review, no action will be necessary regarding deficiencies related to analytic systems provisions new to the laboratory surveyed that are communicated in Letters 1 or 2 . The rationale is two-fold:

- In the validation review, determinations about similarity of accreditation
organization inspection findings/CLIA survey findings and the calculation of disparity rate are focused only on condition-level deficiencies cited on the CMS2567.
- For the first cycle, CMS will have an educational approach for those laboratories having deficiencies related to the analytic provisions newly applicable to them (except for harm or potential risk of harm).

Please note: Even though deficiencies listed a Letter 1 and 2 will not be included in the validation review comparisons and disparity rate calculations, include the letter, if issued, with the validation package when forwarded to Central Office. It will help provide a fuller picture of the case, which is helpful for the overall review.

Enforcement Actions

The enforcement procedures remain the same for the CLIA regulations that have not changed in the final regulation.

In order to help laboratories understand the new requirements, the first cycle survey conducted under the final regulation will take an educational approach. For first cycle surveys, no enforcement actions will be taken when a laboratory is not in compliance with analytic systems provisions that are new to the laboratory. However, enforcement action may be taken during the first cycle of the final regulation requirements when there is immediate jeopardy. If there is any question regarding enforcement during this first survey cycle, consult with the CMS RO or Central Office.

After the first cycle survey, enforcement for all final regulation requirements will be handled as for the former regulation requirements, i.e., all deficiencies will be cited on the CMS-2567 and enforcement actions will be taken if deficiencies are not corrected.

Attachment 3

ASPEN Survey Explorer Update

The ASPEN Survey Explorer program has been updated to include the current CLIA regulations, published in the Federal Register on January 24, 2003. Because it has been a while since there has been an update for CLIA, we want to remind you of what is included in the ASPEN program:

- Only tagged regulation text, along with its associated interpretive guidelines and probes, are included in the ASPEN program. For example, the first "D tags" in the Interpretive Guidelines for Laboratories and Laboratory Services is D1000, §493.15(c) Certificate of waiver tests.
- Regulation text that is not tagged is not included in the ASPEN program. For example, none of the regulation text prior to D1000, or the associated interpretive guidelines and probes, is included in ASPEN.

Given that only tagged regulation text can be included in ASPEN, you may need to ensure that certain information is available to your State and Regional surveyors. For example:

```
O The Survey Process
O The Definitions section at §493.2
O The certificate sections at §§493.19,493.20 and 493.25
O Subparts B, C, and D
```

In addition, due to the formatting of certain tables in the Interpretive Guidelines, the below listed tables are not included in ASPEN Explorer. Please ensure that your State and Regional surveyors either take these tables or bring a copy of the Interpretive Guidelines to the laboratory at the time of the survey. (The Interpretive Guidelines are available in (http://www.cms.hhs.gov/clia).) They are provided for you here.

The tables not in ASPEN Survey Explorer (but included in the Interpretive Guidelines) are:

- The NCCLS M2-A8 Antimicrobial Disk Diffusion Susceptibility (Bauer, Kirby, Sherris and Turk Method) appropriate control strains and the associated Table 3 quality control limits tables at D5507;
- The NCCLS M7-A6 Minimum Inhibitory Concentration (MIC) appropriate control strains and the associated Table 3 breakpoint tables at D5507;
- The table that defines the frequency and type of quality control to be performed for each container of antisera and reagent red cells in immunohematology testing at D5551;
- The table at Interpretive Guidelines $\S 493.1276(\mathrm{~b})(1)-(\mathrm{b})(3)$ in Clinical cytogenetics;
- The NCCLS M22-A2 Quality Assurance for Commercially Prepared Microbiological Culture Media; Approved Standard-Second Edition Table 2 at D5477.

ANTIMICROBIAL DISK DIFFUSION SUSCEPTIBILITY (BAUER, KIRBY, SHERRIS AND TURK METHOD)
Each new batch of medium and each new lot/shipment of antimicrobial disks must be checked as follows:

ANTIMICROBIAL DISK SUSCEPTIBILITY TEST

Appropriate Control Strain	Each New Batch of Media and Disks	Each Day If Isolates Are:
$\frac{\text { S. aureus ATCC } 25923 \text { or }}{\text { equivalent** }}$	X	Staphylococcus spp.
E. coli ATCC 25922 or equivalent**	\boldsymbol{X}	Enterobacteriaceae
P. aeruginosa ATCC 27853 and E. coli ATCC 25922 or equivalent**	X	Pseudomonas aeruginosa Acinteobacter spp.

NOTE 1: Routine quality control testing of commercially prepared MuellerHinton agar for thymine and thymidine is not needed. However, if problems with quality control of sulfonamides and trimethoprim occur, the Mueller-Hinton agar should be checked with
E. faecalis ATCC 29212 or alternatively, E. faecalis ATCC 33186 with trimethoprimsulfamethoxazole disks. Satisfactory media will provide essentially clear distinct zones of inhibition 20 mm or greater in diameter. Unsatisfactory media will produce no zone of inhibition, growth within the zone, or a zone of less than 20 mm .

NOTE 2: If testing beta-lactam/beta-lactamase inhibitor antimicrobial agents (e.g., ampicillinsulbactam, amoxicillin- clavulanic acid, piperacillin-tazobactam, or ticarcillin-clavulanic acid), the laboratory should test E. coli ATCC 35218 (beta-lactamase producing strain).

NOTE 3: If performing extended spectrum beta-lactamase (ESBL) tests, the laboratory should test Klebsiella pneumoniae ATCC 700603 (ESBL-producing strain).

Zone sizes must be recorded for each antimicrobial control and limits must be established.
**An equivalent strain is one which demonstrates reactivity similar to an ATCC strain and for which limits have been established. Organisms which manufacturers recommend or require for use in their systems are acceptable strains of control organisms.

Refer to Table 3A*** of the NCCLS Standard, "Performance Standards for Antimicrobial Disk Susceptibility Tests; Approved Standard-Eighth Edition (M2-A8)" to determine the control strain to be used when performing antimicrobial disk susceptibility tests on isolates of Haemophilus spp., Neisseria gonorrhoeae, Streptococcus pneumoniae or other organisms as applicable.

MINIMUM INHIBITORY CONCENTRATION (MIC)

Each new batch of macrodilution tubes, microdilution trays, or agar dilution plates must be checked as follows:

MINIMUM INHIBITORY CONCENTRATION (MIC)

Appropriate Control Strain	Each New Batch of Media	Each Day If Isolates are:
S. aureus ATCC 29213 or equivalent**	X	Staphylococcus spp.
E. coli ATCC 25922 or equivalent**	X	Enterobacteriaceae
P. aeruginosa ATCC 27853 and E. coli ATCC 25922 or equivalent	X	Non-Enterobacteriaceae to include Acinteobacter spp., Stenotrophomonas $\frac{\text { maltophilia, }}{}$
Pseudomonas spp. and other nonfastidious, glucose nonfermenting, gram-negative bacilli		
E. faecalis ATCC 29212 or equivalent**	X	Enterococcus spp.

NOTE 1: To determine the suitability of the Mueller-Hinton broth for sulfonamide and trimethoprim tests, MICs may be performed with E. faecalis ATCC 29212. Routine quality control testing of commercially manufactured panels for thymine and thymidine is not needed. However, should problems with QC of sulfonamides and trimethoprim occur, an MIC test should be performed with E. faecalis ATCC 29212 with trimethoprim-sulfamethoxazole. If the MIC for trimethoprim-sulfamethoxazole is $<0.5 / 9.5 \mathrm{ug} / \mathrm{ml}$, the medium may be considered adequate.

NOTE 2: If testing beta-lactam/beta-lactamase inhibitor antimicrobial agents (e.g., ampicillinsulbactam, amoxicillin-clavulanic acid, piperacillin-tazobactam, or ticarcillin-clavulanic acid), the laboratory should test E. coli ATCC 35218.

NOTE 3: If performing extended spectrum beta-lactamase (ESBL) tests, the laboratory should test Klebsiella pneumoniae ATCC 700603 (ESBL-producing strain).

NOTE 4: If performing oxacillin salt agar screen tests, the laboratory should test S. aureus ATCC 29213 and 43300.

NOTE 5: If performing vancomycin BHI screen tests, the laboratory must test E. faecalis 29212 and 51299.
**An equivalent strain is one which demonstrates reactivity similar to an ATCC strain and for which limits have been established. Organisms which manufacturers recommend or require for use in their systems are acceptable strains of control organisms.

Table 3. Acceptable Limits for Quality Control Strains Used to Monitor Accuracy of Disk Diffusion Testing of Nonfastidious Organisms (Using Mueller-Hinton Medium Without Blood or Other Supplements)

Antimicrobial Agent	Disk Content	$\begin{aligned} & \text { Escherichia } \\ & \text { coli } \\ & \text { ATCC }^{\circledR} 25922^{\text {b }} \end{aligned}$	Staphylococcus aureus ATCC ${ }^{\circledR} 25923$	Pseudomonas aeruginosa ATCC ${ }^{\circledR} 27853$	$\begin{gathered} \text { Escherichia } \\ \text { coli } \\ \text { ATCC }^{\circledR} 35218^{\mathrm{f}} \end{gathered}$
Amikacin	$30 \mu \mathrm{~g}$	19-26	20-26	18-26	-
Amoxicillin-clavulanic acid	$20 / 10 \mu \mathrm{~g}$	18-24	28-36	-	17-22
Ampicillin	$10 \mu \mathrm{~g}$	16-22	27-35	-	6
Ampicillin-sulbactam	10/10 $\mu \mathrm{g}$	19-24	29-37	-	13-19
Azithromycin	$15 \mu \mathrm{~g}$	-	21-26	-	-
Azlocillin	$75 \mu \mathrm{~g}$	-	-	24-30	-
Aztreonam	$30 \mu \mathrm{~g}$	28-36	-	23-29	-
Carbenicillin	$100 \mu \mathrm{~g}$	23-29	-	18-24	-
Cefaclor	$30 \mu \mathrm{~g}$	23-27	27-31	-	-
Cefamandole	$30 \mu \mathrm{~g}$	26-32	26-34	-	-
Cefazolin	$30 \mu \mathrm{~g}$	21-27	29-35	-	-
Cefdinir	$5 \mu \mathrm{~g}$	24-28	25-32	-	-
Cefditoren	$5 \mu \mathrm{~g}$	22-28	20-28	-	-
Cefepime	$30 \mu \mathrm{~g}$	31-37	23-29	24-30	-
Cefetamet	$10 \mu \mathrm{~g}$	24-29	-	-	-
Cefixime	$5 \mu \mathrm{~g}$	23-27	-	-	-
Cefmetazole	$30 \mu \mathrm{~g}$	26-32	25-34	-	-
Cefonicid	$30 \mu \mathrm{~g}$	25-29	22-28	-	-
Cefoperazone	$75 \mu \mathrm{~g}$	28-34	24-33	23-29	-
Cefotaxime	$30 \mu \mathrm{~g}$	29-35	25-31	18-22	-
Cefotetan	$30 \mu \mathrm{~g}$	28-34	17-23	-	-
Cefoxitin	$30 \mu \mathrm{~g}$	23-29	23-29	-	-
Cefpodoxime	$10 \mu \mathrm{~g}$	23-28	19-25	-	-
Cefprozil	$30 \mu \mathrm{~g}$	21-27	27-33	-	-
Ceftazidime	$30 \mu \mathrm{~g}$	25-32	16-20	22-29	-
Ceftibuten	$30 \mu \mathrm{~g}$	27-35	-	-	-
Ceftizoxime	$30 \mu \mathrm{~g}$	30-36	27-35	12-17	-
Ceftriaxone	$30 \mu \mathrm{~g}$	29-35	22-28	17-23	-
Cefuroxime	$30 \mu \mathrm{~g}$	20-26	27-35	-	-
Cephalothin	$30 \mu \mathrm{~g}$	15-21	29-37	-	-
Chloramphenicol	$30 \mu \mathrm{~g}$	21-27	19-26	-	-
Cinoxacin	$100 \mu \mathrm{~g}$	26-32	-	-	-
Ciprofloxacin	$5 \mu \mathrm{~g}$	30-40	22-30	25-33	-
Clarithromycin	$15 \mu \mathrm{~g}$	-	26-32	-	-
Clinafloxacin	$5 \mu \mathrm{~g}$	31-40	28-37	27-35	-
Clindamycin	$2 \mu \mathrm{~g}$	-	24-30	-	-
Daptomycin ${ }^{\text {d }}$	$30 \mu \mathrm{~g}$	-	18-23	-	-
Dirithromycin	$15 \mu \mathrm{~g}$	-	18-26	-	-
Doxycycline	$30 \mu \mathrm{~g}$	18-24	23-29	-	-
Enoxacin	$10 \mu \mathrm{~g}$	28-36	22-28	22-28	-
Ertapenem	$10 \mu \mathrm{~g}$	29-36	24-31	13-21	-
Erythromycin	$15 \mu \mathrm{~g}$	-	22-30	-	-
Fleroxacin	$5 \mu \mathrm{~g}$	28-34	21-27	12-20	-
Fosfomycin ${ }^{\text {c }}$	$200 \mu \mathrm{~g}$	22-30	25-33	-	-
Garenoxacin	$5 \mu \mathrm{~g}$	28-35	30-36	19-25	-
Gatifloxacin	$5 \mu \mathrm{~g}$	30-37	27-33	20-28	-
Gemifloxacin	$5 \mu \mathrm{~g}$	29-36	27-33	19-25	-
Gentamicin ${ }^{\text {a }}$	$10 \mu \mathrm{~g}$	19-26	19-27	16-21	-
Grepafloxacin	$5 \mu \mathrm{~g}$	28-36	26-31	20-27	-
Imipenem	$10 \mu \mathrm{~g}$	26-32	-	20-28	-
Kanamycin	$30 \mu \mathrm{~g}$	17-25	19-26	-	-
Levofloxacin	$5 \mu \mathrm{~g}$	29-37	25-30	19-26	-

Antimicrobial Agent	Disk Content	$\begin{gathered} \text { Escherichia } \\ \text { coli } \\ \text { ATCC }^{\circledR} 25922^{\text {b }} \end{gathered}$	Staphylococcus aureus ATCC ${ }^{\circledR} 25923$	Pseudomonas aeruginosa ATCC ${ }^{\circledR} 27853$	$\begin{aligned} & \text { Escherichia } \\ & \text { coli } \\ & \text { ATCC }^{\circledR} 35218^{\text {f }} \end{aligned}$
I inemolid	30 пй	-	25-32	-	-
Lomefloxacin	$10 \mu \mathrm{~g}$	27-33	23-29	22-28	-
Loracarbef	$30 \mu \mathrm{~g}$	23-29	23-31	-	-
Mecillinam	$10 \mu \mathrm{~g}$	24-30	-	-	-

Table 3. (Continued)

Antimicrobial Agent	Disk Content	$\begin{gathered} \text { Escherichia } \\ \text { coli } \\ \text { ATCC }^{\circledR} 25922^{\text {b }} \end{gathered}$	Staphylococcus aureus ATCC ${ }^{\circledR} 25923$	Pseudomonas aeruginosa ATCC ${ }^{\text {® }} 27853$	$\begin{gathered} \text { Escherichia } \\ \text { coli } \\ \text { ATCC }^{\circledR} 35218^{\mathrm{f}} \end{gathered}$
Meropenem	$10 \mu \mathrm{~g}$	28-34	29-37	27-33	-
Methicillin	$5 \mu \mathrm{~g}$	-	17-22	-	-
Mezlocillin	$75 \mu \mathrm{~g}$	23-29	-	19-25	-
Minocycline	$30 \mu \mathrm{~g}$	19-25	25-30	-	-
Moxalactam	$30 \mu \mathrm{~g}$	28-35	18-24	17-25	-
Moxifloxacin	$5 \mu \mathrm{~g}$	28-35	28-35	17-25	-
Nafcillin	$1 \mu \mathrm{~g}$	-	16-22	-	-
Nalidixic acid	$30 \mu \mathrm{~g}$	22-28	-	-	-
Netilmicin	$30 \mu \mathrm{~g}$	22-30	22-31	17-23	-
Nitrofurantoin	$300 \mu \mathrm{~g}$	20-25	18-22	-	-
Norfloxacin	$10 \mu \mathrm{~g}$	28-35	17-28	22-29	-
Ofloxacin	$5 \mu \mathrm{~g}$	29-33	24-28	17-21	-
Oxacillin	$1 \mu \mathrm{~g}$	-	18-24	-	-
Penicillin	10 units	-	26-37	-	-
Piperacillin	$100 \mu \mathrm{~g}$	24-30	-	25-33	12-18
Piperacillin-tazobactam	100/10 $\mu \mathrm{g}$	24-30	27-36	25-33	24-30
Quinupristin-dalfopristin	$15 \mu \mathrm{~g}$	-	21-28	-	-
Rifampin	$5 \mu \mathrm{~g}$	8-10	26-34	-	-
Sparfloxacin	$5 \mu \mathrm{~g}$	30-38	27-33	21-29	-
Streptomycin ${ }^{\text {a }}$	$10 \mu \mathrm{~g}$	12-20	14-22	-	-
Sulfisoxazole ${ }^{\text {e }}$	$250 \mu \mathrm{~g}$ or $300 \mu \mathrm{~g}$	15-23	24-34	-	-
Teicoplanin	$30 \mu \mathrm{~g}$	-	15-21	-	-
Telithromycin	$15 \mu \mathrm{~g}$	-	24-30	-	-
Tetracycline	$30 \mu \mathrm{~g}$	18-25	24-30	-	-
Ticarcillin	$75 \mu \mathrm{~g}$	24-30	-	21-27	6
Ticarcillin-clavulanic acid	75/10 $\mu \mathrm{g}$	24-30	29-37	20-28	21-25
Tobramycin	$10 \mu \mathrm{~g}$	18-26	19-29	19-25	-
Trimethoprim ${ }^{\text {e }}$	$5 \mu \mathrm{~g}$	21-28	19-26	-	-
Trimethoprim-sulfamethoxazole ${ }^{\text {e }}$	1.25/23.75 $\mu \mathrm{g}$	23-29	24-32	-	-
Trospectomycin	$30 \mu \mathrm{~g}$	10-16	15-20	-	-
Trovafloxacin	$10 \mu \mathrm{~g}$	29-36	29-35	21-27	-
Vancomycin	$30 \mu \mathrm{~g}$	-	17-21	-	-

NOTE: Information in boldface type is considered tentative for one year.

Footnotes

a. For control limits of gentamicin $120-\mu \mathrm{g}$ and streptomycin $300-\mu \mathrm{g}$ disks, use Enterococcus faecalis ATCC ${ }^{\circledR} 29212$ (gentamicin: 16 to 23 mm ; streptomycin: 14 to 20 mm).
b. ATCC is a registered trademark of the American Type Culture Collection.
c. The $200-\mu \mathrm{g}$ fosfomycin disk contains $50 \mu \mathrm{~g}$ of glucose-6-phosphate.
d. Some lots of Mueller-Hinton agar are deficient in calcium and give small zones.
e. These agents can be affected by excess levels of thymidine and thymine. See M2, Section 4.1.4 for guidance should a problem with quality control occur.
f. Careful organism maintenance is required; refer to M2, Section 10.3.

Table 3. Acceptable Limits for Quality Control Strains Used to Monitor Accuracy of Minimal Inhibitory Concentrations (MICs) ($\mu \mathrm{g} / \mathrm{mL}$) of Nonfastidious Organisms (Using Mueller-Hinton Medium Without Blood or Other Supplements)

Antimicrobial Agent	Staphylococcus aureus ATCC ${ }^{\circledR}{ }^{29213}{ }^{\text {a }}$	Enterococcus faecalis ATCC ${ }^{\circledR} 29212$	$\begin{gathered} \text { Escherichia } \\ \text { coli } \\ \text { ATCC }^{\circledR} 25922 \end{gathered}$	Pseudomonas aeruginosa ATCC ${ }^{\circledR}{ }^{17853}$	$\begin{gathered} \text { Escherichia } \\ \text { coli } \\ \text { ATCC }^{\oplus} 35218^{\text {b }} \end{gathered}$
Amikacin	1-4	64-256	0.5-4	1-4	-
Amoxicillin-clavulanic acid	0.12/0.06-0.5/0.25	$\begin{gathered} 0.25 / 0.12- \\ 1.0 / 0.5 \end{gathered}$	2/1-8/4	-	4/2-16/8
Ampicillin	0.5-2	0.5-2	2-8	-	-
Ampicillin-sulbactam	-	-	2/1-8/4	-	8/4-32/16
Azithromycin	0.5-2	-	-	-	-
Azlocillin	2-8	1-4	8-32	2-8	-
Aztreonam	-	-	0.06-0.25	2-8	-
Carbenicillin	2-8	16-64	4-16	16-64	-
Cefaclor	1-4	-	1-4	-	-
Cefamandole	0.25-1	-	0.25-1	-	-
Cefazolin	0.25-1	-	1-4	-	-
Cefdinir	0.12-0.5	-	0.12-0.5	-	-
Cefditoren	0.25-2	-	0.12-1	-	-
Cefepime	1-4	-	0.016-0.12	1-8	-
Cefetamet	-	-	0.25-1	-	-
Cefixime	8-32	-	0.25-1	-	-
Cefmetazole	0.5-2	-	0.25-2	> 32	-
Cefonicid	1-4	-	0.25-1	-	-
Cefoperazone	1-4	-	0.12-0.5	2-8	-
Cefotaxime	1-4	-	0.03-0.12	8-32	-
Cefotetan	4-16	-	0.06-0.25	-	-
Cefoxitin	1-4	-	2-8	-	-
Cefpodoxime	1-8	-	0.25-1	-	-
Cefprozil	0.25-1	-	1-4.	-	-
Ceftazidime	4-16	-	0.06-0.5	1-4	-
Ceftibuten	-	-	0.12-0.5	-	-
Ceftizoxime	2-8	-	0.03-0.12	16-64	-
Ceftriaxone	1-8	-	0.03-0.12	8-64	-
Cefuroxime	0.5-2	-	2-8	-	-
Cephalothin	0.12-0.5	-	4-16	-	-
Chloramphenicol	2-8	4-16	2-8	-	-
Cinoxacin	-	-	2-8	-	-
Ciprofloxacin	0.12-0.5	0.25-2	0.004-0.016	0.25-1	-
Clarithromycin	0.12-0.5	-	-	-	-
Clinafloxacin	0.008-0.06	0.03-0.25	0.002-0.016	0.06-0.5	-
Clindamycin	0.06-0.25	4-16	-	-	-
Daptomycin ${ }^{\text {c }}$	0.25-1	1-8	-	-	-
Dirithromycin	1-4	-	-	-	-
Doxycycline	-	-	0.5-2	-	-
Enoxacin	0.5-2	2-16	0.06-0.25	2-8	-
Ertapenem	0.06-0.25	4-16	0.004-0.016	2-8	-
Erythromycin	0.25-1	1-4	-	-	-
Fleroxacin	0.25-1	2-8	0.03-0.12	1-4	-
Fosfomycin ${ }^{\text {d }}$	0.5-4	32-128	0.5-2	2-8	-
Garenoxacin	0.004-0.03	0.03-0.25	0.004-0.03	0.5-2	-
Gatifloxacin	0.03-0.12	0.12-1.0	0.008-0.03	0.5-2	-
Gemifloxacin	0.008-0.03	0.016-0.12	0.004-0.016	0.25-1	-
Gentamicin ${ }^{\text {e }}$	0.12-1	4-16	0.25-1	0.5-2	-
Grepafloxacin	0.03-0.12	0.12-0.5	0.004-0.03	0.25-2.0	-
Imipenem	0.016-0.06	0.5-2	0.06-0.25	1-4	-
Kanamycin	1-4	16-64	1-4	-	-
Levofloxacin	0.06-0.5	0.25-2	0.008-0.06	0.5-4	-
Linezolid	1-4	1-4	-	-	-

Table 3. (Continued)

Antimicrobial Agent	Staphylococcus aureus ATCC ${ }^{\circledR}{ }^{29213}{ }^{\text {a }}$	Enterococcus faecalis ATCC ${ }^{\circledR} 29212$	Escherichia coli ATCC ${ }^{\oplus} 25922$	Pseudomonas aeruginosa ATCC ${ }^{\oplus} 27853$	$\begin{gathered} \text { Escherichia } \\ \text { coli } \\ \text { ATCC }^{\oplus} 35218^{\text {b }} \end{gathered}$
Lomefloxacin	0.25-2	2-8	0.03-0.12	1-4	
Loracarbef	0.5-2	-	0.5-2	>8	
Mecillinam	-	-	$0.03-0.25^{\text {f }}$	-	-
Meropenem	0.03-0.12	2-8	0.008-0.06	0.25-1	-
Methicillin	0.5-2	>16	-	-	-
Mezlocillin	1-4	1-4	2-8	8-32	-
Minocycline	0.06-0.5	1-4	0.25-1	-	-
Moxalactam	4-16	-	0.12-0.5	8-32	-
Moxifloxacin	0.016-0.12	0.06-0.5	0.008-0.06	1-8	-
Nafcillin	0.12-0.5	2-8	-	-	-
Nalidixic acid	-	-	1-4	-	_
Netilmicin	≤ 0.25	4-16	$\leq 0.5-1$	0.5-8	-
Nitrofurantoin	8-32	4-16	4-16	-	-
Norfloxacin	0.5-2	2-8	0.03-0.12	1-4	-
Ofloxacin	0.12-1	1-4	0.015-0.12	1-8	-
Oxacillin	0.12-0.5	8-32	-	-	-
Penicillin	0.25-2	1-4	-	-	-
Piperacillin	1-4	1-4	1-4	1-8	-
Piperacillin-tazobactam	0.25/4-2/4	1/4-4/4	1/4-4/4	1/4-8/4	0.5/4-2/4
Quinupristin-dalfopristin	0.25-1	2-8	-	-	-
Rifampin	0.004-0.016	0.5-4	4-16	16-64	-
Sparfloxacin	0.03-0.12	0.12-0.5	0.004-0.016	0.5-2	-
Sulfisoxazole ${ }^{\text {g }}$	32-128	32-128	8-32	-	-
Teicoplanin	0.25-1	0.06-0.25	-	-	-
Telithromycin	0.06-0.25	0.016-0.12	-	-	-
Tetracycline	0.12-1	8-32	0.5-2	8-32	-
Ticarcillin	2-8	16-64	4-16	8-32	-
Ticarcillin-clavulanic acid	0.5/2-2/2	16/2-64/2	4/2-16/2	8/2-32/2	8/2-32/2
Tobramycin	0.12-1	8-32	0.25-1	0.25-1	-
Trimethoprim ${ }^{\text {g }}$	1-4	≤ 1	0.5-2	>64	-
Trimethoprim-sulfamethoxazole	$\leq 0.5 / 9.5$	$\leq 0.5 / 9.5$	$\leq 0.5 / 9.5$	8/152-32/608	-
Trospectomycin	2-16	2-8	8-32	-	-
Trovafloxacin	0.008-0.03	0.06-0.25	0.004-0.016	0.25-2	-
Vancomycin ${ }^{\text {h }}$	0.5-2	1-4	-	-	-

NOTE 1: These MICs were obtained in several reference laboratories by broth microdilution. If four or fewer concentrations are tested, quality control may be more difficult.

NOTE 2: Information in boldface type is considered tentative for one year.
NOTE 3: For four-dilution ranges, results at the extremes of the acceptable range(s) should be suspect. Verify control validity with data from other control strains.
a. ATCC is a registered trademark of the American Type Culture Collection.
b. Careful organism maintenance is required; refer to M7, Section 12.4. .
c. QC ranges reflect MICs obtained when Mueller-Hinton broth is supplemented with calcium to a final concentration of $50 \mu \mathrm{~g} / \mathrm{mL}$.
d. The approved MIC susceptibility testing method is agar dilution. Agar media should be supplemented with $25 \mu \mathrm{~g} / \mathrm{mL}$ of glucose6 -phosphate. Broth dilution should not be performed.
e. For control organisms for gentamicin and streptomycin high-level aminoglycoside screen tests for enterococci, see Table 2D.
f. This test should be performed by agar dilution only.
g. Very medium-dependent, especially with enterococci.
h. For control organisms for vancomycin screen test for enterococci, see Table 2D.

Table 3A. Acceptable Limits for Quality Control Strains Used to Monitor Accuracy of Minimal Inhibitory Concentrations (MICs) ($\mu \mathrm{g} / \mathrm{mL}$) of Fastidious Organisms

Antimicrobial Agent	Haemophilus influenzae ATCC ${ }^{\circledR} 49247$	Haemophilus influenzae ATCC ${ }^{\circledR} 49766$	Neisseria gonorrhoeae ATCC ${ }^{\circledR} 49226$	Streptococcus pneumoniae ATCC ${ }^{\circledR} 49619$	Helicobacter pylori ATCC ${ }^{\circledR} 43504$	Campylobacter jejuni ATCC ${ }^{\circledR} 33560^{\text {b }}$ $36{ }^{\circ} \mathrm{C} / 48$ hours	Campylobacter jejuni ATCC ${ }^{\text {® }} 33560^{\text {b }}$ $42{ }^{\circ} \mathrm{C} / 24$ hours
Amoxicillin	-	-	-	0.03-0.12	0.016-0.12	-	-
Amoxicillinclavulanic	2/1-16/8	-	-	$\begin{gathered} 0.03 / 0.016- \\ 0.12 / 0.06 \end{gathered}$	-	-	-
Ampicillin	2-8	-	-	0.06-0.25	-	-	-
Ampicillinsulbactam	2/1-8/4	-	-	-	-	-	-
Azithromycin	1-4	-	-	0.06-0.25	-	-	-
Aztreonam	0.12-0.5	-	-	-	-	-	-
Cefaclor	-	1-4	-	1-4	-	-	-
Cefamandole	-	0.25-1	-	-	-	-	-
Cefdinir	-	0.12-0.5	0.008-0.03	0.03-0.25	-	-	-
Cefditoren	0.06-0.25	-	-	0.016-0.12	-	-	-
Cefepime	0.5-2	-	0.016-0.06	0.03-0.25	-	-	-
Cefetamet	0.5-2	-	0.016-0.25	0.5-2	-	-	-
Cefixime	0.12-1	-	0.004-0.03	-	-	-	-
Cefmetazole	2-16	-	0.5-2	-	-	-	-
Cefonicid	-	0.06-0.25	-	-	-	-	-
Cefotaxime	0.12-0.5	-	0.015-0.06	0.03-0.12	-	-	-
Cefotetan	-	-	0.5-2	-	-	-	-
Cefoxitin	-	-	0.5-2	-	-	-	-
Cefpirome	0.25-1	-	-	-	-	-	-
Cefpodoxime	0.25-1	-	0.03-0.12	0.03-0.12	-	-	-
Cefprozil	-	1-4	-	0.25-1	-	-	-
Ceftazidime	0.12-1	-	0.03-0.12	-	-	-	-
Ceftibuten	0.25-1	-	-	-	-	-	-
Ceftizoxime	0.06-0.5	-	0.008-0.03	0.12-0.5	-	-	-
Ceftriaxone	0.06-0.25	-	0.004-0.016	0.03-0.12	-	-	-
Cefuroxime	-	0.25-1	0.25-1	0.25-1	-	-	-
Cephalothin	-	-	-	0.5-2	-	-	-
Chloramphenicol	0.25-1	-	-	2-8	-	-	-
Ciprofloxacin	0.004-0.03	-	0.001-0.008	-	-	0.12-1	0.06-0.5
Clarithromycin	4-16	-	-	0.03-0.12	0.016-0.12	-	-
Clinafloxacin	0.001-0.008	-	-	0.03-0.12	-	-	-
Clindamycin	-	-	-	0.03-0.12	-	-	-
Daptomycin ${ }^{\text {c }}$	-	-	-	$0.06-0.5$	-	-	-
Dirithromycin	8-32	-	-	0.06-0.25	-	-	-
Doxycycline	-	-	-	-	-	0.5-2	0.25-2
Enoxacin	-	-	0.016-0.06	-	-	-	
Ertapenem	-	0.016-0.06	-	0.03-0.25	-	-	-
Erythromycin	-	-	-	0.03-0.12	-	1-8	1-4
Fleroxacin	0.03-0.12	-	0.008-0.03	-	-	-	-
Garenoxacin	0.002-0.008	-	-	0.016-0.06	-	-	-
Gatifloxacin	0.004-0.03	-	0.002-0.016	0.12-0.5	-	-	-
Gemifloxacin	0.002-0.008	-	-	0.008-0.03	-	-	-
Gentamicin	-	-	-	-	-	0.5-2	0.5-4
Grepafloxacin	0.002-0.016	-	0.004-0.03	0.06-0.5	-	-	-
Imipenem	-	0.25-1	-	0.03-0.12	-	-	-
Levofloxacin	0.008-0.03	-	-	0.5-2	-	-	-
Linezolid	-	-	-	0.5-2	-	-	-
Lomefloxacin	0.03-0.12	-	0.008-0.03	-	-	-	-
Loracarbef	-	0.5-2	-	2-8	-	-	-
Metronidazole	-	-	-	-	64-256	-	-
Meropenem	-	0.03-0.12	-	0.06-0.25	-	0.004-0.015	0.008-0.03
Moxifloxacin	0.008-0.03	-	-	0.06-0.25	-	-	-

Table 3A. (Continued)

Antimicrobial Agent	Haemophilus influenzae ATCC ${ }^{\circledR} 49247^{\text {a }}$	Haemophilus influenzae ATCC 49766	Neisseria gonorrhoeae ATCC ${ }^{\circledR} 49226$	Streptococcus pneumoniae ATCC ${ }^{\circledR} 49619$	Helicobacter pylori ATCC ${ }^{\circledR} 43504$	Campylobacter jejuni ATCC ${ }^{\text {® }} 33560^{\text {b }}$ $36{ }^{\circ} \mathrm{C} / 48$ hours	Campylobacter jejuni ATCC ${ }^{\oplus} 33560^{\text {b }}$ $42{ }^{\circ} \mathrm{C} / 24$ hours
Nitrofurantoin	-	-	-	4-16	-	-	-
Norfloxacin	-	-	-	2-8	-	-	-
Ofloxacin	0.016-0.06	-	0.004-0.016	1-4	-	-	-
Penicillin	-	-	0.25-1	0.25-1	-	-	-
Piperacillintazobactam	0.06/4-0.5/4	-	-	-	-	-	-
Quinupristindalfopristin	2-8	-	-	0.25-1	-	-	-
Rifampin	0.25-1	-	-	0.015-0.06	-	-	-
Sparfloxacin	0.004-0.016	-	0.004-0.016	0.12-0.5	-	-	-
Spectinomycin	-	-	8-32	-	-	-	-
Telithromycin	1-4	-	-	0.004-0.03	0.06-0.5	-	-
Tetracycline	4-32	-	0.25-1	0.12-0.5	0.12-1.0	-	-
Trimethoprim-sulfamethoxazole	$\begin{gathered} 0.03 / 0.59- \\ 0.25 / 4.75 \end{gathered}$	-	-	$\begin{gathered} 0.12 / 2.4- \\ 1 / 19 \end{gathered}$	-	-	-
Trospectomycin	0.5-2	-	1-4	1-4	-	-	-
Trovafloxacin	0.004-0.016	-	0.004-0.016	0.06-0.25	-	-	-
Vancomycin	-	-	-	0.12-0.5	-	-	-

Testing Conditions for Clinical Isolates and Performance of Quality Control

Organism	Haemophilus influenzae	Neisseria gonorrhoeae	Streptococcus pneumoniae	Helicobacter pylori	Campylobacter spp.
Medium	Broth dilution: Haemophilus Test Medium (HTM) broth	Agar dilution: GC agar base and 1% defined growth supplement. The use of a cysteine-free supplement is required for agar dilution tests with carbapenems and clavulanate. Cysteinecontaining defined growth supplements do not significantly alter dilution test results with other drugs.	Broth dilution: Cationadjusted MuellerHinton broth with lysed horse blood (2$5 \% \mathrm{v} / \mathrm{v})$.	Agar Dilution: Mueller-Hinton agar with aged (\geq 2-week-old) sheep blood ($5 \% \mathrm{v} / \mathrm{v}$).	Agar dilution: Mueller-Hinton agar with 5% defibrinated sheep blood
Inoculum	Direct colony suspension, equivalent to a 0.5 McFarland standard	Direct colony suspension, equivalent to a 0.5 McFarland standard	Direct colony suspension, equivalent to a 0.5 McFarland standard	See footnote d, below.	Direct colony suspension, equivalent to a 0.5 McFarland standard
Incubation Characteristics	$35^{\circ} \mathrm{C}$; ambient air; 20-24 hours	$35^{\circ} \mathrm{C} ; 5 \% \mathrm{CO}_{2} ; 20-24$ hours	$35^{\circ} \mathrm{C}$; ambient air; 20-24 hours	$35^{\circ} \mathrm{C}$; 3 days; microaerobic atmosphere produced by gasgenerating system suitable for campylobacters.	$36^{\circ} \mathrm{C} / 48$ hours or $42{ }^{\circ} \mathrm{C} / 24$ hours; $10 \% \mathrm{CO}_{2}, 5 \% \mathrm{O}_{2}$ and $85 \% \mathrm{~N}_{2}$ or a microaerophilic environment

NOTE 1: Information in boldface type is considered tentative for one year.
NOTE 2: For four-dilution ranges, results at the extremes of the acceptable range(s) should be suspect. Verify control validity with data from other control strains.

Footnotes

a. ATCC is a registered trademark of the American Type Culture Collection.
b. Since some isolates of C. jejuni ssp. doylei, C. fetus and C. lari may not grow at $42{ }^{\circ} \mathrm{C}$, susceptibility testing of these isolates should be performed at $36{ }^{\circ} \mathrm{C}$.
c. QC ranges reflect MICs obtained when Mueller-Hinton broth is supplemented with calcium to a final concentration of 50 $\mu \mathrm{g} / \mathrm{mL}$.
d. The inoculum for testing of Helicobacter pylori should be as follows: a saline suspension equivalent to a 2.0 McFarland standard (containing 1×10^{7} to $1 \times 10^{8} \mathrm{CFU} / \mathrm{mL}$), to be prepared from a 72 -hour-old subculture from a blood agar plate. The inoculum (1 to $3 \mu \mathrm{~L}$ per spot) is replicated directly on the antimicrobial agent-containing agar dilution plate

D5551

Interpretive Guidelines \$493.1271(a)(1)
The following table defines the frequency and the type of quality control to be performed for each container of antisera and reagent red cells use for immunohematology testing:

Reagent
ABO Antisera
Rh Antisera
Other Anti-sera
*Anti-human globulin sera ABO Reagent red cells Antibody Screening cells

Positive

 ControlEach day of use
Each day of use
*Each day of use
*Each day of use
Each day of use
Each day of use
(at least one known antibody)

Negative Control

N/A
Each day of use
Each day of use
*Each day of use
N/A
N/A

In daily quality control testing, it is sufficient to test antiglobulin serum for IgG only. Anticomplement activity can be checked, if desired, against complement coated RBC's but this need not be a routine procedure.
*This requirement is satisfied by checking the antihuman immune globulin (Coombs Serum) in one of the following ways:

- React anti-human globulin with a pre-sensitized reagent red blood cell which is either prepared commercially or by the laboratory;
- Perform the quality control for antibody detection using a known antibody which is demonstrated by the addition of antihuman globulin; or
- Add a pre-sensitized reagent red blood cell to all negative antiglobulin tests (direct antiglobulin, indirect antiglobulin, antibody detection and identification test) to indicate that antiglobulin serum present in the test was not inactivated by

Interpretive Guidelines $\$ 493.1271(a)(1)$

unbound globulins or diluted by excess residual saline, and that the negative results reflect true absence of reactivity in the test. Using green antiglobulin serum does not substitute for this control.

D5683

Interpretive Guidelines $\$ 493.1276(b)(1)-(b)(3)$

Culture Type	Minimum Number of Spreads Counted per Patient	Minimum Number of Cells Analyzed per Patient
Amniotic Fluid		
Flasks	15 cells from at least 2 independent primary cultures	5 cells from at least 2 independent primary cultures
in situ	15 cells from at least 10 colonies from 2 independent primary cultures	5 cells from different colonies and split between different primary cultures
Many laboratories use a combination of the flask and in situ culture methods or use the flask method as a backup for the in situ method.		
Chorionic Villus		
Direct	15 cells	5 cells
Culture	as in amniotic fluid, flask technique	
Peripheral Blood		
Constitutional	20 cells	5 cells
Possible sex chromosome abnormality	30 cells (total count)	5 cells
Culture Type	Minimum Number of Spreads Counted per Patient	Minimum Number of Cells Analyzed per Patient
Blood (cancer)	20 cells	20 cells
Bone Marrow (cancer)	20 cells	20 cells
Tissue Fibroblasts	15 cells from 2 independent cultures	5 cells split between 2 independent cell cultures

For confirmation of chromosomally abnormal amniotic fluid results, or familial chromosome abnormality, examination of fewer cells is permitted.

Manufacturers' Quality Assurance Procedure for Commercially Prepared Media

dium	Atmosphere, Length of Incubation ${ }^{1}$	Control Organisms (ATCC No.) ${ }^{2}$	Expected Results
sheep blood and od agar media (non-	Anaerobic, 24-48 h	B. fragilis (25285) C. perfringens (13124) F. nucleatum (25586) P. anaerobius (27337)	Growth Growth, beta hemolysis Growth Growth
broths - see llate medium			
ar-nonselective sheep r media	Aerobic or $\mathrm{CO}_{2}, 24 \mathrm{~h}$	S. pyogenes (19615) S. pneumoniae (6305) S. aureus (25923) E. coli (25922)	Growth, beta hemolysis Growth, alpha hemolysis Growth Growth
	Aerobic, 24 h	S. aureus (33862) or S. aureus (25923) S. agalactiae (12386) S. pyogenes (19615)	Positive reaction (arrowhead area of clearing) Negative reaction (no arrowhead formation)
r-Selective sheep media a CNA Agar, yl alcohol agar)	Columbia CNA $\mathrm{CO}_{2}, 24-48 \mathrm{~h}$	S. pyogenes (19615) S. pneumoniae (6305) S. aureus (25923) P. mirabilis (12453)	Growth, beta hemolysis Growth, alpha hemolysis Growth Inhibition (partial)
	Phenylethyl alcohol agar $\mathrm{CO}_{2}, 24-48 \mathrm{~h}$	S. pyogenes (19615) S. aureus (25923) P. mirabilis (12453)	Growth Growth Inhibition (partial)
ure media lies to BHI, TSB, -based media. Other blood culture are om user nce testing provided that urers certify ional organisms te for their intended been tested.)	Anaerobic (nonvented) within 5 days	B. fragilis (25285) S. pneumoniae (6305)	Growth Growth
	Aerobic (vented) within 5 days	P. aeruginosa (27853) S. pneumoniae (6305)	Growth Growth
acter agar ality control	Reduced O_{2}, enriched with $\mathrm{CO}_{2}, 4{ }^{\circ} \mathrm{C}$, 48 h	C. jejuni (33291) E. coli (25922)	Growth Inhibition (partial)

Table 2. Manufacturers' Quality Assurance Procedure for Commercially Prepared Media (Continued)

dium	Atmosphere, Length of Incubation ${ }^{1}$	Control Organisms (ATCC No.) ${ }^{2}$	Expected Results
agar	$\mathrm{CO}_{2}, 24$ and 48 h	N. gonorrhoeae (43069 or 43070) H. influenzae (10211)	Growth Growth
	Aerobic, 24-48 h $25^{\circ} \mathrm{C}$	Y. enterocolitica (9610) E. coli (25922) P. aeruginosa (27853) E. faecalis (29212)	Growth; deep red center, transparent border (bulls eye) Inhibition (partial to complete) Inhibition (partial to complete) Inhibition (partial to complete)
r	Aerobic, 24-48 h	E. coli (25922) P. vulgaris (8427) S. aureus (25923)	Growth; yellow centers Growth; bluish, spreading inhibited (partial) Growth; uniform deep yellow
E Agar	Aerobic, 48-72 h	L. pneumophilia (33152) L. bozemanii (33217)	Growth; yellow-green fluorescence under long-wave u.v. light Growth; blue-white fluorescence under long-wave u.v. light
nt broths for GN Broth, Broths)	Aerobic, up to 24 h	S. typhimurium (14028) S. sonnei (9290) E. coli (25922)	Growth on subculture Growth on subculture (may be inhibited by Selenite media) Inhibition (partial to complete) on subculture. Growth on subculture from GN broth
hylene blue media MB Agar; EMB dified)	Aerobic, 24 h	S. typhimurium (14028) E. coli (25922) E. faecalis (29212)	Growth, colorless to amber colonies Growth, blue-black colonies w/green metallic sheen Inhibition (partial)
nteric agar	Aerobic, 24 h	S. typhimurium (14028) S. flexneri (12022) E. faecalis (29212) E. coli (25922)	Growth, colonies blue to green-blue with black centers Growth, colonies green to blue-green Inhibition (partial; colonies yellow) Inhibition (partial to complete; colonies yellow to salmon colored)
ey agar	Aerobic, 24 h	E. coli (25922) P. mirablis (12453) S. typhimurium (14028) E. faecalis (29212)	Growth, pink colonies Growth, colorless colonies, inhibition of swarming (partial) Growth, colorless colonies Inhibition (partial)
alt agar	Aerobic, 24 and 48 h	S. aureus (25923) S. epidermidis (12228) P. mirabilis (12453)	Growth, colonies have yellow zones at 48 h Growth, colonies have red zones at 48 h Inhibition (partial)

Table 2. Manufacturers' Quality Assurance Procedure for Commercially Prepared Media (Continued)

dium	Atmosphere, Length of Incubation ${ }^{1}$	Control Organisms (ATCC No.) ${ }^{2}$	Expected Results
eria agar media ein-Jensen and ook)	CO_{2} up to 21 days	M. tuberculosis H37Ra (25177) M. kansasii Group I (12478) M. scrofulaceum Group II (19981)	Growth Growth Growth-May be inhibited on selective L-J and selective Middlebrook media

\(\left.$$
\begin{array}{l|l|l|l}\hline & & \begin{array}{l}\text { M. intracellulare Group III (13950) } \\
\text { M. fortuitum } \text { Group IV (6841) } \\
\text { E. coli (25922) }\end{array} & \begin{array}{c}\text { Growth—May be inhibited on selective L-J and } \\
\text { selective Middlebrook media } \\
\text { Growth }\end{array}
$$

Inhibition (partial to complete)—Use only for

selective mycobacteria media\end{array}\right]\)| Growth |
| :--- |
| Growth |

Table 2. Manufacturers' Quality Assurance Procedure for Commercially Prepared Media (Continued)

edium	Atmosphere, Length of Incubation ${ }^{1}$	Control Organisms (ATCC No.) ${ }^{2}$	Expected Results
late medium, pithout indicator	Aerobic, 48 h (tightened cap)	B. fragilis (25285) S. aureus (25923)	Growth Growth
late medium, with vitamin K and	Aerobic, 48 h (tightened cap)	P. anaerobius (27337) B. vulgatus (8482) C. perfringens (13124)	Growth Growth Growth
dia (BHI and Tryptic h)	Aerobic, $24-48 \mathrm{~h}$	E. coli (25922) S. aureus (25923)	Growth Growth
se lysine holate) Agar	Aerobic, 24 h	S. typhimurium (14028) S. flexneri (12022) E. faecalis (29212) E. coli (25922)	Growth—Colonies red with black centers Growth-Colonies red Inhibition (partial) Inhibition (partial to complete; colonies yellow to yellow-red)

${ }^{1}$ Temperature is $35^{\circ} \mathrm{C}$ unless otherwise specified.
${ }^{2}$ ATCC is a registered trademark of the American Type Culture Collection.
${ }^{3}$ Required for commercial manufacturers; not necessary for testing by users.

2039	2039	N				
2040	2039	N				
2041	2039	N				
2042	2039	N				
2043	2043	N				
2044	2044	N				
2045	2044	N				
2046	2046	N				
2047	2047	N				
2048	2048	N				
2049	2048	N				
2050	2048	N				
2051	2048	N				
2052	2052	N				
2053	2053	N				
2054	2053	N				
2055	2055	N				
2056	2056	N				
2057	2057	N				
2058	2057	N				
2059	2057	N				
2060	2057	N				
2061	2061	N				
2062	2062	N				
2063	2062	N				
2064	2064	N				
2065	-----	N				
2066	2066	N				
2067	2067	N				
2068	2067	N				
2069	2067	N				
2070	2067	N				
2071	2071	N				
2072	2072	N				
2073	2072	N				
2074	2074	N				
2075	2075	N				
2076	2076	N				
2077	2077	N				
2078	2077	N				
2079	2077	N				
2080	2077	N				
2081	2081	N				
2082	2082	N				
2083	2082	N				
2084	2084	N				
2085	2085	N				
2086	-----	N				
2087	2087	N				
2088	2088	N				
2089	2089	N				
2090	2089	N				

Page 2

2091	2089	N				
2092	2089	N				
2093	2093	N				
2094	2094	N				
2095	2094	N				
2096	2096	N				
2097	2097	N				
2098	2098	N				
2099	2099	N				
2100	2100	N				
2101	2100	N				
2102	2100	N				
2103	2100	N				
2104	2104	N				
2105	2105	N				
2106	2105	N				
2107	2107	N				
2108	2108	N				
2109	2109	N				
2110	2110	N				
2111	2111	N				
2112	2111	N				
2113	2111	N				
2114	2111	N				
2115	2115	N				
2116	2116	N				
2117	2116	N				
2118	2118	N				
2119	2119	N				
2120	-----	N				
2121	2121	N				
2122	2122	N				
2123	2123	N				
2124	2123	N				
2125	2123	N				
2126	2123	N				
2127	2127	N				
2128	2128	N				
2129	2128	N				
2130	2130	N				
2131	2131	N				
2132	-----	N				
2133	2133	N				
2134	2134	N				
2135	2134	N				
2136	2136	N				
2137	2137	N				
2138	2138	N				
2139	-	N				
2140	-----	N				
2141	2141	N				
2142	2142	N				

Page 3

2143	2143	N				
2144	2144	N				
2145	2145	N				
2146	2146	N				
2147	2147	N				
2148	2148	N				
2149	2149	N				
2150	2150	N				
2151	2150	N				
2152	-----	N				
2153	2153	N				
2154	2154	N				
2155	2155	N				
2156	2155	N				
2157	2155	N				
2158	2155	N				
2159	2159	N				
2160	2160	N				
2161	2160	N				
2162	2162	N				
2163	2163	N				
2164	2164	N				
2165	2165	N				
2166	2165	N				
2167	2165	N				
2168	2165	N				
2169	2169	N				
2170	2170	N				
2171	2171	N				
2172	2172	N				
2173	2173	N				
2174	2174	N				
2175	2174	N				
2176	2174	N				
2177	2174	N				
2178	2178	N				
2179	2179	N				
2180	2179	N				
2181	2181	N				
2182	2182	N				
2183	2183	N				
2184	2183	N				
2185	2183	N				
2186	2183	N				
2187	2187	N				
2188	2188	N				
2189	2188	N				
2190	2190	N				
2191	2191	N				
3000	5203	N	Y			
3001	5311	Y	Y			
3001	5403	Y	Y			

3004	5203	Y	Y			
3004	5311	Y	Y			
3004	5403	Y	Y			
3007	5311	Y	Y			
3007	5403	Y	Y			
3010	5203	Y	Y			
3010	5311	Y	Y			
3010	5403	Y	Y			
3013	5311	Y	Y			
3013	5403	Y	Y			
3014	5311	Y	Y			
3014	5403	Y	Y			
3016	5317	N	Y			
3017	5301	N	Y			
3018	5303	N	Y			
3019	3027	N	Y			
3020	5307	N	Y			
3022	5305	N	Y			
3023	5305	N	Y			
3024	5305	N	Y			
3025	5305	N	Y			
3026	5305	N	Y			
3029	5305	N	Y			
3032	5787	N	Y			
3034	3031	Y	Y			
3034	5789	Y	Y			
3035	3035	N	Y			
3036	5787	N	Y			
3037	5787	N	Y			
3038	5313	N	Y			
3039	5313	N	Y			
3040	5787	N	Y			
3041	5787	N	Y			
3042	5787	N	Y			
3043	5811	N	Y			
3044	3041	N	Y			
3048	3041	N	Y			
3049	3041	N	Y			
3050	5801	Y	Y			
3050	5805	Y	Y			
3054	5201	N	Y			
3056	5805	N	Y			
3061	5805	N	Y			
3062	5807	N	Y			
3063	5811	N	Y			
3064	5403	Y	Y			
3064	5813	Y	Y			
3066	5813	N	Y			
3067	5809	N	Y			
3069	5809	N	Y			
3070	5809	N	Y			
3071	5819	N	Y			

Page 5

Page 7

4089	5433	N	Y			
4090	5433	N	Y			
4094	5435	N	Y			
4095	5435	N	Y			
4096	5435	N	Y			
4097	5435	N	Y			
4098	5437	Y	Y			
4098	5439	Y	Y			
4101	5437	N	Y			
4105	5437	N	Y			
4110	5437	N	Y			
4111	5437	N	Y			
4113	5439	N	Y			
4115	5439	N	Y			
4117	-----	N	Y			
4118	5439	N	Y			
4119	5439	N	Y			
4120	5439	N	Y			
4121	5439	N	Y			
4122	5439	N	Y			
4123	5439	N	Y			
4124	5437	Y	Y			
4124	5439	Y	Y			
4127	5441	N	Y			
4128	5441	N	Y			
4129	5441	Y	Y			
4129	5469	Y	Y			
4131	5441	N	Y			
4132	5449	N	Y			
4135	5447	N	Y			
4138	5459	N	Y			
4139	5459	N	Y			
4140	5449	N	Y			
4142	5453	N	Y			
4144	5485	N	Y			
4145	5465	N	Y			
4146	5469	N	Y			
4147	5469	N	Y			
4149	5469	N	Y			
4150	5481	N	Y			
4151	5471	N	Y			
4154	5473	N	Y			
4156	5475	Y	Y			
4156	5601	Y				
4159	5477	N	Y			
4160	5477	N	Y			
4163	5477	N	Y			
4165	5479	N	Y			
4166	5779	Y	Y			
4166	5781	Y	Y			
4166	5783	Y	Y			
4166	5485	Y	Y			

Page 8

Page 9

4182	5517	Y	Y			
4182	5519	Y	Y			
4182	5523	Y	Y			
4182	5525	Y	Y			
4182	5527	Y	Y			
4182	5531	Y	Y			
4182	5535	Y	Y			
4182	5537	Y	Y			
4182	5539	Y	Y			
4182	5543	Y	Y			
4182	5545	Y	Y			
4182	5547	Y	Y			
4182	5551	Y	Y			
4182	5553	Y	Y			
4182	5555	Y	Y			
4182	5557	Y	Y			
4182	5559	Y	Y			
4182	5601	Y	Y			
4182	5603	Y	Y			
4182	5605	Y	Y			
4182	5607	Y	Y			
4182	5609	Y	Y			
4182	5613	Y	Y			
4182	5615	Y	Y			
4182	5617	Y	Y			
4182	5619	Y	Y			
4182	5621	Y	Y			
4182	5623	Y	Y			
4182	5625	Y	Y			
4182	5627	Y	Y			
4182	5629	Y	Y			
4182	5631	Y	Y			
4182	5633	Y	Y			
4182	5635	Y	Y			
4182	5637	Y	Y			
4182	5639	Y	Y			
4182	5641	Y	Y			
4182	5643	Y	Y			
4182	5645	Y	Y			
4182	5647	Y	Y			
4182	5649	Y	Y			
4182	5651	Y	Y			
4182	5653	Y	Y			
4182	5655	Y	Y			
4182	5657	Y	Y			
4182	5659	Y	Y			
4182	5661	Y	Y			
4182	5663	Y	Y			
4182	5665	Y	Y			
4182	5681	Y	Y			
4182	5683	Y	Y			
4182	5685	Y	Y			

7054	5777	Y	Y			
7054	5791	Y	Y			
7055	5209	Y	Y			
7055	5291	Y	Y			
7055	5293	Y	Y			
7057	5207	N	Y			
7058	5291	N	Y			
7059	5205	N	Y			
7060	5205	Y	Y			
7060	5291	Y	Y			
7062	5293	Y	Y			
7062	5393	Y	Y			
7062	5793	Y	Y			
7062	5893	Y	Y			
7065	5293	Y	Y			
7065	5393	Y	Y			
7065	5793	Y	Y			
7065	5893	Y	Y			
7066	3039	Y	Y			
7066	3045	Y	Y			
7066	5293	Y	Y			
7066	5393	Y	Y			
7066	5793	Y	Y			
7066	5893	Y	Y			
7067	3039	Y	Y			
7067	3045	Y	Y			
7067	8103	Y	Y			
8000	8101	N				
8001	8103	N				
8002	8103	N				
8003	8103	N				
8004	8103	N				
8005	8105	N				
8006	8103	N				
8007	-----	N				
8008	8103	N				
8009	8103	N				
8044	8101	N				
8045	8103	N				
8046	8103	N				
8047	8103	N				
8048	8103	N				
8049	8105	N				
8050	8103	N				
8051	-----	N				
8052	8103	N				
8053	8103	N				
8011	8101	Y				
8011	8103	Y				
8012	8103	N				
8013	8103	N				
8014	8103	N				

5980	PPM lab dir condition			
5981	PPM lab dir qualifications			
5983	PPM lab dir responsibilities			
5985	PPM lab dir directs no more than 5 labs			
5987	PPM lab dir assures test performed properly			
5990	PPM test personnel condition			
5991	PPM test personnel qualifications			
5993	PPM test personnel responsibilities			
5995	PPM test person use brightfield/phase contrast microscope			

