Technical Description for the Residence Hall/Dormitory Building Model

January 14, 2004

Data Source

Energy consumption and building characteristics data for the analysis of residence hall/dormitory buildings were obtained from the U.S. Department of Energy, Energy Information Administration's (EIA) 1999 Commercial Buildings Expenditures and Consumption Survey (CBECS).

Data Set and Basic Filters

The subset of data extracted from the 1999 CBECS survey to create this model provided an initial data set for analysis of 81 observations. These data represent the specific building activity of "Dormitory/Fraternity/Sorority" as defined in the 1999 survey (PBAPLUS value of 9) and are representative of the U.S. population of these building types. A single filter was applied for the purpose of obtaining a more homogenous data set and is presented below. Those data records that did not meet this criterion were removed from the analysis.

Basic Filter:		
Description	CBECS Variable	Criteria
Source energy use intensity (kBtu/sqft-yr)	None (calculated)	>40 and <425

Application of this screen eliminated two observations from the analysis data set. The remaining analysis data set consisted of 79 observations.

Dependent Variable

The basis of the regression, that is, the dependent variable chosen for the regression was annual source energy use, Source EU, expressed in kBtu. Site energy use of each fuel was converted to its source equivalent using standard site-source energy conversion factors and then summed to yield annual total source energy use for each building.

Independent Variables

After examining the correlation of many CBECS variables to source energy use, the following independent variables were examined for their significance and correlation with the dependent variable as well as with the other independent variables.

HDD65	heating degree days
CDD65	cooling degree days
COOLP	percentage of the gross floor area that is mechanically cooled
HEATP	percentage of the gross floor area that is heated
SQFT	gross building square footage
LODGRM	number of guest/occupant rooms

Weighting Factors

The stated purpose of CBECS is to develop and publish estimates of population values. Thus, the CBECS sample is designed so that survey responses can be used to estimate characteristics of the entire stock of commercial buildings in the United States (EIA, CBECS 1999). CBECS calculates basic sampling weights that relate sampled buildings to the entire stock of commercial buildings. While sampling weights – or weighting factors – are necessary to estimate characteristics of the entire stock of U.S. commercial buildings, they are not necessary to perform meaningful regression analyses. Thus, the CBECS weighting factors were not used in the analysis.

Source Energy

The analysis relied upon source energy consumption. A one-page discussion regarding the use of the source energy convention versus the site energy convention can be viewed and

downloaded via www.energystar.gov. The following conversion factors were used to calculate source energy consumptions from the CBECS site energy values:

	Site	Source
Fuel Type	<u>Site (kBtu)</u>	Source (kBtu)
Electricity	1	3.013
Natural Gas	1	1.024
Fuel Oil	1	1
Steam	1	1.38
Hot Water	1	1

Regression Results

The objective of this analysis was to determine the significant drivers of building energy use on a source energy use (Source EU) basis. Prior to undertaking this analysis, the explanatory power of the simple relationship of annual source energy consumption to the primary driver of energy use in buildings, gross building area, was examined.

A simple regression model was examined with the natural logarithm of annual source energy use (expressed Ln Source EU) as the dependent variable and the natural logarithm of gross building area as the independent variable. Using the natural logarithm basis for each variable produced a much more normal distribution for the statistical analysis, a stronger correlation between the variables, and significantly less error in the resulting model. The analysis indicated the R-squared for this simple model to be 0.86. Thus, the inclusion of other variables in the model effectively means that the expanded regression model is attempting to explain the remaining 14% ([1-0.86]*100) of the variation in source energy use since building area alone explains 86%.

Table-1 presents the results of the regression analysis. The independent variables used were SQFT and LODGRM in natural logarithm form, HDDxHEATP (the product of HDD and heated percent), and CDDxCOOLP (the product of CDD and cooled percent). The variables SQFT, HDDxHEATP product, and the CDDxCOOLP product were all found to be statistically significant by the standard statistical definition where the T-statistic is greater than +/- 2.0. While not showing to be statistically significant, LODGRM was left in the model because of its strong independent correlation to dormitory energy use (R-squared = 0.62) and its resulting potential for influencing dormitory energy use in the expanded model. The expanded model provided a marginal improvement in model fit. The R-squared of the expanded Source EU model was found to be 0.88. Table-2 presents the basic statistics – mean/median, minimum/maximum, and standard deviation – for each of the model variables.

Dependent Variable: LN SOURCE_EU (kBtu)									
Method: Least Squares									
Sample: 81									
Included observations:	79								
White Heteroskedastic	city-Consistent	Standard Error	s & Covariance						
Variable	Coefficient	Std. Error	t-Statistic	Prob.					
Intercept	4.99455	0.5671	8.81	<.0001					
LSqft	0.91308	0.07724	11.82	<.0001					
HDDxheatp	0.00009774	0.00003297	2.96	0.0041					
CDDxcoolp	0.00016279	0.00007609	2.14	0.0357					
LLodgrm	0.09455	0.08141	1.16	0.2492					
R-squared	R-squared 0.8834 Mean dependent var 15.717								
Adjusted R-squared	0.8771	0.8771 S.D. dependent var 1.286							

Table-1 Regression Model Results

S.E. of regression	0.4509	F-statistic	140.1
		Prob (F-statistic)	<0.0001

Variable	Obs	Mean	Std Dev	Minimum	Maximum
Ln Source kBtu	79	15.717	1.286	12.584	18.699
LSqft	79	10.705	1.166	8.161	13.653
HDDxheatp	79	4575	1859	116.2	7339
CDDxcoolp	79	510.3	775	0	3162
LLodgrm	79	4.417	1.094	1.386	6.397

Table-2 Basic Statistics, Model Variables

Look-Up Table

Table-3 is used to determine the Energy Performance Rating (EPR) on a 1 to 100 scale seen by the user. The Predicted Source EU is the adjusted source energy use, in kBtu/yr, obtained by applying the regression model to the CBECS records. Thus, they represent normalized Source EU values based on a percentile basis. The column of Fitted Source EU takes the Predicted (normalized) Source EU values and fits them to a gamma distribution. In fitting Predicted Source EU, the value corresponding to an EPR of 75 – the minimum threshold for ENERGY STAR – is held constant. Once done, the values in the Fitted Source EU column corresponding to the EPRs of 1 to 100 now represent the nominal look-up table used to assess an individual building's performance. The purpose of fitting the Source EU values about various EPRs. Early beta tests with the public indicated that this phenomenon – where relatively large (2 or 3 points) movements in EPR would occur for small changes in Source EU – was confusing to users.

	Predicted	Fitted		Predicted	Fitted
EPR	Source EU	Source EU	EPR	Source EU	Source EU
	(Ln kBtu)	(Ln kBtu)		(Ln kBtu)	(Ln kBtu)
100	14.5891	14.5000	50	15.7679	15.7497
99	14.6793	14.729	49	15.7768	15.7609
98	14,7738	14.8462	48	15,7769	15.7722
97	14.8885	14.9209	47	15.7772	15.7835
96	14.8886	14.9773	46	15.7809	15.7948
95	14.8899	15.0233	45	15.7928	15.8061
94	14.8954	15.0625	44	15,7993	15.8175
93	14.9015	15.0969	43	15.7994	15.8289
92	15.0196	15.1277	42	15.8259	15.8404
91	15.0197	15.1558	41	15.8447	15.852
90	15,1546	15,1817	40	15.8567	15,8636
89	15.2007	15.2058	39	15.8568	15.8753
88	15.2212	15.2284	38	15.864	15.8871
87	15.2412	15.2498	37	15.884	15.899
86	15 2413	15 27	36	15 9389	15 911
85	15 2515	15 2893	35	15 946	15 9232
84	15 322	15.3078	34	15 9461	15 9355
83	15 3360	15 3255	33	15.0706	15 9479
82	15 3503	15 3426	32	15.9750	15.9473
81	15.3503	15.3420	31	16.0114	15.9004
80	15 358	15.3391	30	16.01/2	15.9752
70	15 39/5	15.3731	20	16.0142	15.9001
79	15.3045	15.3907	29	16.0143	16.0126
70	15.3003	15.4006	20	16.0407	16.0262
76	15.3004	15.4200	21	16.0719	16.0202
70	15.4233	15.435	20	16.0710	16.05401
73	15.4491	15.449	20	16.0747	16.0542
74	15.477	15.4020	24	16.0957	16.0835
73	15.40	15.4704	20	16.0001	16.0007
71	15.4001	15.4097	22	16 1100	16 1142
71	15.4922	15.5027	21	10.1122	10.1142
70	10.0007	15.5150	 20	10.1123	10.1303
69	15.54	15.5283	19	10.1138	10.1408
08	15.5824	15.5408	18	10.1140	10.1039
67	15.5825	15.5532	17	10.1107	10.1810
00	15.5948	15.5054	10	16.1505	10.2
60	15.6007	15.5775	CI	10.1500	16.2192
64	15.6228	15.5894	14	16.2158	16.2393
63	15.6391	15.6013	13	16.2218	16.2604
62	15.6392	15.613	 12	16.2441	16.2827
61	15.654	15.6247	 11	16.2479	16.3064
60	15.6579	15.6363	10	16.248	16.3316
59	15.6632	15.6478	 9	16.3314	16.3589
58	15.6633	15.6593	8	16.4025	16.3885
57	15.7034	15.6707	 1	16.4503	16.4211
56	15.7096	15.6821	6	16.472	16.4575
55	15.7178	15.6934	 5	16.4721	16.4992
54	15.7243	15.7047	 4	16.5088	16.5482
53	15.7244	15.7159	3	16.5319	16.6086
52	15.7288	15.7272	2	16.5467	16.6891

Table-3 Energy Performance Rating, Predicted Source EU, and Fitted Source EU

51	15.7342	15.7384		1	16.5468	16.8165
----	---------	---------	--	---	---------	---------

Assessing Performance

To assess the performance of a building via the Energy Performance Rating (EPR) on the 1 to 100 scale, two calculations are made upon the user entering in the requisite data. First, as explained in the Weather Normalization file (downloadable at www.energystar.gov), the user's actual annual Source EU, in kBtu, is weather normalized to reflect the annual Source EU the building would have seen in a normal (i.e. 30-year average) weather year. In the second calculation, the regression model equation is used to calculate a Predicted Source EU value based on the operating characteristics entered by the user. This Predicted Source EU is then divided by the mean Source EU of the regression model, yielding an adjustment factor. The adjustment factor is then applied to each of the Fitted Source EU values corresponding to EPRs from 1 to 100 to provide a range of Customized Source EU values (see Table 4). Finally, to determine the EPR of the building, the building's weather-normalized Source EU is compared to the table of Customized Source EU values.

Table-4 is intended for use with the following example to illustrate how an EPR is determined for a given building. In this example, the buildings Source EU was weather-normalized down approximately 3%; in essence meaning that over the course of the year in which the building's energy consumption was reported the building "experienced" a net 3% more severe weather year than normal. When entered into the model, the building's characteristics yield a Ln Predicted Source EU of 15.692 kBtu/yr (natural logarithm basis). Dividing this value by the Ln Mean Source EU of the model, the adjustment factor is determined to be 0.986 and is applied in Table 4. The EPR of 82 is found in Table 4 where the buildings Weather Norm. Source EU matches the Customized Source EU.

Example Reside	ence Ha	ll/Dormit	ory				
Area (Sqft)	=	44,000	ft^{2}		CDDxcoolp	=	500
Lodgrm	=	80			HDDxheatp	=	4500
Source EU Weather Norm.	Source	EU	=	5,905,0 5,727,8	00 kBtu/yr 50 kBtu/yr		
Ln Weather Nor	rm. Sour	ce EU	=	15.561	kBtu/yr		
Regression Equ Ln Predicted So C₄(Ln(Lodgrm))	<u>uation</u> ource EL	J	=	C ₀ + C ₁	(Ln(Sqft)) + C	€₂(HDDxhe	eatp) + C ₃ (CDDxcoolp) +
Ln Predicted So Ln Mean Source	ource EL e EU	J= =	15.692 15.915	kBtu/yr kBtu/yr			
Adjustment Fac	tor	= =	(15.692 0.986	kBtu/yr	/ 15.915 kBtu	/yr)	
EPR		=	82 (see	Table 4)		

Note that when the model is placed onto the production site with the Energy Performance Rating software tool, users can include other space types to further characterize their building. These space types include office, computer rooms, garage space, and parking lots. With the exception of parking lots, these other space types, if used to characterize a dormitory, are incorporated into the Energy Performance Rating by using weighted averages. If defined by the user, the energy impact associated with parking lots is simply added to the customized look up table.

	Ln Fitted		Ln Customized	
	Source EU	Adjustment	Source EU	
EPR	(kBtu/yr)	Factor	(kBtu/yr)	
100	14.5000	0.986	14.71	
99	14.729	0.986	14.94	
98	14.8462	0.986	15.06	
83	15.3255	0.986	15.54	
82	15.3426	0.986	(15.56)	
81	15.3591	0.986	15.58	
1	16.8165	0.986	17.06	

Table-4 Determining Energy Performance Rating