Technical Description for the Medical Office Building Model

January 14, 2004

Data Source

Pacia Eiltore

Energy consumption and building characteristics data for the analysis of medical office buildings were obtained from the U.S. Department of Energy, Energy Information Administration's (EIA) 1999 Commercial Buildings Expenditures and Consumption Survey (CBECS).

Data Set and Basic Filters

The subset of data extracted from the 1999 CBECS survey to create this model provided an initial data set for analysis of 93 observations. These data represent the specific building activity defined as "Doctor/Dentist Office" as defined in the 1999 survey (PBAPLUS value of 8). Basic filters were applied for the purpose of obtaining a more homogenous data set and are presented below. The basic filters that were applied are presented below. Those data records that did not meet these criteria were removed from the analysis.

CBECS Variable	<u>Criteria</u>
WKHRS	> 30; <168
NWKER	> 1
None (calculated)	>38 and <575
	WKHRS NWKER

Application of these screens eliminated 11 observations from the analysis data set. Ten observations were screened out from the weekly hours of use and source energy use intensity criteria. An additional observation was eliminated by the number of workers screen. The remaining analysis data set consisted of 82 observations.

Dependent Variable

The basis of the regression, that is, the dependent variable chosen for the regression was annual source energy use, Source EU, expressed in kBtu. Site energy use of each fuel was converted to its source equivalent using standard site-source energy conversion factors and then summed to yield annual total source energy use for each building.

Independent Variables

After examining the correlation of many CBECS variables to source energy use, the following independent variables were examined for their significance and correlation with the dependent variable as well as with the other independent variables.

HDD65	heating degree days
CDD65	cooling degree days
COOLP	percentage of the gross floor area that is mechanically cooled
HEATP	percentage of the gross floor area that is heated
SQFT	gross building square footage
WKHRS	average weekly hours when building is at least 50% occupied
NWKER	number of workers

Weighting Factors

The stated purpose of CBECS is to develop and publish estimates of population values. Thus, the CBECS sample is designed so that survey responses can be used to estimate characteristics of the entire stock of commercial buildings in the United States (EIA, CBECS 1999). CBECS calculates basic sampling weights that relate sampled buildings to the entire stock of commercial buildings. While sampling weights – or weighting factors – are necessary to estimate characteristics of the entire stock of U.S. commercial buildings, they are not necessary to perform meaningful regression analyses. Thus, the CBECS weighting factors were not used in the analysis.

Source Energy

The analysis relied upon source energy consumption. A one-page discussion regarding the use of the source energy convention versus the site energy convention can be viewed and downloaded via www.energystar.gov. The following conversion factors were used to calculate source energy consumptions from the CBECS site energy values:

	Site	Source
<u>Fuel Type</u>	<u>(kBtu)</u>	<u>(kBtu)</u>
Electricity	1	3.013
Natural Gas	1	1.024
Fuel Oil	1	1
Steam	1	1.38
Hot Water	1	1

Regression Results

The objective of this analysis was to determine the significant drivers of building energy use on a source energy use (Source EU) basis. Prior to undertaking this analysis, the explanatory power of the simple relationship of annual source energy consumption to the primary driver of energy use in buildings, gross building area, was examined.

A simple regression model was examined with the natural logarithm of annual source energy use (expressed Ln Source EU) as the dependent variable and the natural logarithm of gross building area as the independent variable. Using the natural logarithm basis for each variable produced a much more normal distribution for the statistical analysis, a stronger correlation between the variables, and significantly less error in the resulting model. The analysis revealed an R-squared for this simple model to be 0.91. Thus, the inclusion of other variables in the model effectively means that the expanded regression model is attempting to explain the remaining 9% ([1-0.91]*100) of the variation in source energy use since building area alone explains 91%.

Table-1 presents the basic statistics – mean/median, minimum/maximum, and standard deviation – for each of the model variables. Table-2 presents the results of the regression analysis. The independent variables used were SQFT, NWKER, and WKHRS all in a natural logarithm form, HDDxHEATP (the product of HDD and heated percent), and CDDxCOOLP (the product of CDD and cooled percent). The variables SQFT, NWKER, and the CDDxCOOLP product were all found to be statistically significant by the standard statistical definition where the T-statistic is greater than +/- 2.0. While not showing to be statistically significant, WKHRS and HDDxHEATP were left in the model since previous analyses for other building types show that they are typically drivers of energy use in buildings. The expanded model provided a marginal improvement in model fit. The R-squared of the expanded Source EU model was found to be 0.93.

Variable	Obs	Mean	Std Dev	Minimum	Maximum
Ln Source kBtu	82	14.919	1.774	11.344	18.878
LSqft	82	9.856	1.459	6.908	13.122
LNwker	82	3.840	1.541	0.693	7.718
LWkhrs	82	3.937	0.214	3.555	4.820
HDDxheatp	82	3692	1953	0	8176
CDDxcoolp	82	1253	946.6	54	4143

Table-1 Basic Statistics, Model Variables

Table-2	Regression	Model	Results
---------	------------	-------	---------

Dependent Variable: LN SOURCE_EU (kBtu)								
Method: Least Square	Method: Least Squares							
Sample: 93								
Included observations:	: 82							
White Heteroskedastic	ity-Consistent	Standard Error	s & Covariance					
Variable	Variable Coefficient Std. Error t-Statistic Prob.							
Intercept	2.78889	1.19393	2.34	<.0221				
LSqft	0.91433	0.09998	9.14	<.0001				
LNwker	0.21568	0.21568 0.09332 2.31 0.0235						
LWkhrs	0.46768	0.29816	1.57	0.1209				
HDDxheatp	0.00005321	0.00003712	1.43	0.1558				
CDDxcoolp	0.00020111	0.00020111 0.00007429 2.71 <.0084						
R-squared	0.9336 Mean dependent var 14.9195							
Adjusted R-squared	0.9292 S.D. dependent var 1.7745							
S.E. of regression	. of regression 238 F-statistic 213.6							
		Prob (F	-statistic)	<0.0001				

Look-Up Table

Table-3 is used to determine the Energy Performance Rating (EPR) on a 1 to 100 scale seen by the user. The Predicted Source EU is the adjusted source energy use, in kBtu/yr, obtained by applying the regression model to the CBECS records. Thus, they represent normalized Source EU values based on a percentile basis. The column of Fitted Source EU takes the Predicted (normalized) Source EU values and fits them to a gamma distribution. In fitting Predicted Source EU, the value corresponding to an EPR of 75 – the minimum threshold for ENERGY STAR – is held constant. Once done, the values in the Fitted Source EU column corresponding to the EPRs of 1 to 100 now represent the nominal look-up table used to assess an individual building's performance. The purpose of fitting the Source EU values about various EPRs. Early beta tests with the public indicated that this phenomena – where relatively large (2 or 3 points) movements in EPR would occur for small changes in Source EU – was confusing to users.

Predicted Fitted Predicted Fitted EPR LnSource LnSource EPR LnSource LnSource (kBtu) (kBtu) (kBtu) (kBtu) 13.708 14.998 15.033 100 13.801 50 99 13.893 13.859 49 15.005 15.045 98 13.997 13.915 48 15.006 15.056 97 14.013 13.967 47 15.019 15.067 96 14.066 14.017 46 15.032 15.077 45 95 14.066 14.064 15.032 15.088 94 14.128 14.108 44 15.064 15.098 93 14 135 Т 14 150 43 15 094 15 107

Table-3 Energy Performance Rating, Predicted Source EU, and Fitted Source EU

93	14.135	14.150	43	15.094	15.107
92	14.183	14.190	42	15.131	15.117
91	14.250	14.227	41	15.135	15.126
90	14.264	14.263	40	15.144	15.134
89	14.264	14.297	39	15.144	15.143
88	14.277	14.330	38	15.156	15.151
87	14.304	14.361	37	15.170	15.159
86	14.336	14.390	36	15.189	15.166
85	14.347	14.419	35	15.190	15.174
84	14.347	14.446	34	15.190	15.181
83	14.384	14.472	33	15.198	15.188
82	14.491	14.497	32	15.211	15.195
81	14.534	14.521	31	15.212	15.202
80	14.547	14.544	30	15.231	15.209
79	14.576	14.567	29	15.238	15.216
78	14.576	14.588	28	15.238	15.223
77	14.662	14.610	27	15.250	15.230
76	14.686	14.630	26	15.251	15.238
75	14.723	14.650	25	15.255	15.245
74	14.729	14.669	24	15.266	15.253
73	14.729	14.688	23	15.266	15.261
72	14.777	14.707	22	15.270	15.270
71	14.778	14.725	21	15.283	15.280
70	14.782	14.742	20	15.330	15.290
69	14.797	14.760	19	15.334	15.301
68	14.814	14.777	18	15.350	15.313
67	14.814	14.793	17	15.350	15.325
66	14.820	14.810	16	15.370	15.339
65	14.832	14.826	15	15.374	15.355
64	14.837	14.841	14	15.381	15.371
63	14.860	14.857	13	15.396	15.390
62	14.860	14.872	12	15.396	15.410
61	14.870	14.887	11	15.397	15.431
60	14.879	14.902	10	15.422	15.455
59	14.881	14.916	9	15.430	15.482
58	14.904	14.930	8	15.462	15.510
57	14.963	14.944	7	15.486	15.541
56	14.963	14.958	6	15.486	15.576
55	14.964	14.971	5	15.528	15.613
54	14.971	14.984	4	15.529	15.653
53	14.992	14.997	3	15.792	15.697

52	14.993	15.009	2	15.879	15.745
51	14.995	15.021	1	15.879	15.797

Assessing Performance

To assess the performance of a building via the Energy Performance Rating (EPR) on the 1 to 100 scale, two calculations are made upon the user entering in the requisite data. First, as explained in the Weather Normalization file (downloadable at www.energystar.gov), the user's actual annual Source EU, in kBtu, is weather normalized to reflect the annual Source EU the building would have seen in a normal (i.e. 30-year average) weather year. In the second calculation, the regression model equation is used to calculate a Predicted Source EU value based on the operating characteristics entered by the user. This Predicted Source EU is then divided by the mean Source EU of the regression model, yielding an adjustment factor. The adjustment factor is then applied to each of the Fitted Source EU values corresponding to EPRs from 1 to 100 to provide a range of Customized Source EU values (see Table 4). Finally, to determine the EPR of the building, the building's weather-normalized Source EU is compared to the table of Customized Source EU values.

Table-4 is intended for use with the following example to illustrate how an EPR is determined for a given building. In this example, the buildings Source EU was weathernormalized down approximately 3%; in essence meaning that over the course of the year in which the building's energy consumption was reported the building "experienced" a net 3% more severe weather year than normal. When entered into the model, the building's characteristics yield a Ln Predicted Source EU of 14.506 kBtu/yr (natural logarithm basis). Dividing this value by the Ln Mean Source EU of the model, the adjustment factor is determined to be 0.986 and is applied in Table 4. The EPR of 82 is found in Table 4 where the buildings Weather Norm. Source EU matches the Customized Source EU.

Example	Medical	Office	Building	

Area (Sqft) Nwker Wkhrs	= = =	14,000 25 50		CDDxcoolp HDDxheatp		1200 4200
Source EU Weather Norm.	Source	EU	= =	1,660,400 kBtu/yr 1,612,000 kBtu/yr		
Ln Weather No	rm. Sou	rce EU	=	14.293 kBtu/yr	-	
Regression Eq Ln Predicted So C ₄ (HDDxheatp	ource El	-	= lp)	$C_0 + C_1(Ln(Sqft)) + C_1(Ln(Sqft))$	C₂(Ln(Nwk	xer)) + C ₃ (Ln(Wkhrs)) +
Ln Predicted So Ln Mean Sourc		J= =		kBtu/yr kBtu/yr		
Adjustment Fac	ctor	= =	(14.506 0.986	6 kBtu/yr / 14.715 kBti	u/yr)	
EPR		=	82 (see	e Table 4)		

Note that when the model is placed onto the production site with the Energy Performance Rating software tool, users can include other space types to further characterize their building. These space types include office, computer rooms, garage space, and parking lots. With the exception of parking lots, these other space types, if used to characterize a medical office building, are incorporated into the Energy Performance Rating by using weighted averages. If defined by the user, the energy impact associated with parking lots is simply added to the customized look up table.

	Ln Fitted		Ln Customized	
	Source EU	Adjustment	Source EU	
EPR	(kBtu/yr)	Factor	(kBtu/yr)	
100	13.801	0.986	13.608	
99	13.859	0.986	13.665	
98	13.915	0.986	13.720	
83	14.472	0.986	14.269	
82	14.497	0.986	(14.294)	
81	14.521	0.986	14.318	
1	15.797	0.986	15.576	

Table-4 Determining Energy Performance Rating