Subgroup Results for the Nation and the States

This chapter presents the 2000 mathematics results for various subgroups of students. Subgroup results are given for the nation and for the jurisdictions that participated in the assessment. The 2000 results for the nation are reported for grades 4,8 , and 12 by gender, race/ethnicity, parents'

Chapter Focus

Are selected subgroups of students making progress in mathematics? education level, type of school, type of location, and eligibility for the free/reduced-price lunch program, and are compared to results in 1990, 1992, and 1996. For jurisdictions, results are reported for grades 4 and 8 by gender, race/ethnicity and eligibility for the free/reduced-price lunch program. State results for 2000 at grade 4 are compared to those from 1992 and 1996, while grade 8 results are compared to those from 1990, 1992, and 1996. Complete information on subgroups for each jurisdiction that participated in the 2000 assessment is available on the NAEP web site at http://nces.ed.gov/ nationsreportcard/tables/.
The differences that are reported in this chapter for demographic subgroups for the 2000 assessment and previous assessments are based on statistical tests that consider both the magnitude of the difference between group average scores or percentages and the standard error of those statistics. Differences between groups and between assessment years are discussed only if they have been determined to be statistically significant. Furthermore, the reader should bear in mind that differences in mathematics performance most likely reflect a range of socioeconomic and educational factors not addressed in this report or by NAEP.

The results are most useful when they are considered in combination with other information about the student population and the educational system, such as trends in instruction, changes in school-age population, funding levels, and societal demands and expectations. Examples of related data by state that are not collected by NAEP are given in appendix C.

National Results: Performance of Selected Subgroups Gender

Figure 3.1 presents average mathematics scores across assessment years for male and female students at grades 4,8 , and 12 . As shown in this figure, both male and female students at each grade had higher scores in 2000 than in 1990.

Among fourth-graders, progress has been relatively steady for both males and females throughout the decade, with each year's average score being higher than the previous year. Steady gains are also evident across this ten-year period for male eighthgraders. The average score for female eighth-graders increased from 1990 to 1996, but the apparent increase since 1996 was not statistically significant.

Consistent with the national overall results, the gains made by twelfth-grade male and female students between 1990 and 1996 did not continue through the 2000 assessment. Although the average score for both groups of students remained higher in 2000 than in 1990, there is evidence of a decline since 1996. The

\star Significantly different from 2000.
SOURCE: National Center for Education Statistics, National Assessment of Educational Progress (NAEP), 1990, 1992, 1996, and 2000 Mathematics Assessments.
apparent decline for male students, however, was not statistically significant.

In 2000, male students outperformed their female peers in grades 8 and 12. However, the apparent score difference between males and females in the fourth grade was not statistically significant.

The percentages of male and female students at or above the mathematics achievement levels and within each achievement level range are presented in figure 3.2. At grade 4 , the percentages of both male and female students who performed at or above the Basic achievement level increased each assessment year since 1990. Overall gains are also evident in the percentages of students at or above the Proficient level, the achievement level identified by the National Assessment Governing Board (NAGB) as the goal for all students. The percentages of male and female fourth-graders performing at this level have at least doubled since 1990from 13 to 28 percent for male students, and from 12 to 24 percent for female students. Despite some gains since 1990, the percentages of male and female fourthgraders attaining the Advanced level remained small in 2000-3 and 2 percent, respectively.

At grade 8, the percentage of male eighth-graders performing at or above the Basic level increased each assessment year since 1990. The comparable percentage for female students also increased each year; however, the apparent increase between 1996 and 2000 was not statistically significant. The percentages of students at or above Proficient increased between 1990
and 2000-from 17 to 29 percent for males and from 14 to 25 percent for females. Between 1996 and 2000, gains were made by male students at this level, but the apparent increase for female students was not statistically significant. Although the percentages of males and females at the Advanced level remained small in 2000 (6 and 4 percent, respectively), for both groups of students these percentages represent an increase from 1990.

At grade 12, the percentages of male and female students at or above Basic increased from 1990 through 1996. Although both groups show a decline between 1996 and 2000 , the percentages of males and females performing at this level in 2000 remained higher than those in 1990. Performance at or above the Proficient level was demonstrated by 20 percent of males and 14 percent of females in 2000 . Since 1990 the percentages of male and female twelfthgraders reaching the Advanced level have remained mostly stable. In 2000, only 3 percent of males and 1 percent of females demonstrated performance at this highest achievement level.

Comparing the performance of male and female students in 2000 by scale scores revealed a difference favoring male students at grades 8 and 12. A comparison of achievement level results shows that a greater percentage of male students at all three grades performed at or above Proficient and at the Advanced level in 2000 than did female students. Apparent differences in the percentages of males and females at or above Basic in 2000 were not statistically significant at any of the three grades.

Figure 3.2

National Achievement
Level Results by
Gender

Percentages of students within each mathematics achievement level range and at or above achievement levels by gender, grades 4, 8, and 12: 1990-2000

Male-Grade 4

How to read these figures:

- The italicized percentages to the right of the shaded bars represent the percentages of students at or above Basic and Proficient.
- The percentages in the shaded bars represent the percentages of students within each achievement level.

Male-Grade 8

Male-Grade 12

'92

'00

Female-Grade 4

Female-Grade 8

Female-Grade 12

* Significantly different from 2000.

NOTE: Percentages within each mathematics achievement level range may not add to 100 , or to the exact percentages at or above achievement levels, due to rounding. SOURCE: National Center for Education Statistics, National Assessment of Educational Progress (NAEP), 1990, 1992, 1996, and 2000 Mathematics Assessments.

Race/Ethnicity

Students participating in the assessment were asked to indicate which of the following racial/ethnic subgroups best describes them-white, black, Hispanic, Asian/Pacific Islander, or American Indian (including Alaskan native). Figure 3.3 presents average scale scores for students by these subgroups at grades 4,8 , and 12 . Overall, while some groups of students have made progress over the past decade, results are mixed.

At grade 4, white, black, and Hispanic students attained a higher score in 2000 than in either 1990 or 1992, while the apparent increase since 1990 for American Indian students was not statistically significant. Data for Asian/Pacific Islander students were not available for 2000 because special analyses raised concerns about the accuracy and precision of these results (see appendix A for a full discussion of this).

At grade 8 , scores for white students were higher in 2000 than in any of the previous three assessment years: 1990, 1992, or 1996. Scores for black and Hispanic
eighth-graders also were up in 2000 over both 1990 and 1992. However, the apparent increases from 1990 for Asian/Pacific Islander and American Indian eighthgraders were not statistically significant.

Of the three grades assessed, grade 12 saw the fewest increases in students' mathematics performance over the past decade. Despite increases in the mathematics scores of black and Hispanic students from 1990 to 1992, the average scores for both these groups of students in 2000 was similar to that in 1990. White students showed a $7-$ point increase in scores between 1990 and 2000.

As in previous NAEP mathematics assessments, differences by racial/ethnic subgroup can be seen in students' 2000 mathematics performance at all three grade levels. ${ }^{1}$ White and Asian/Pacific Islander students scored higher, on average, than their black, Hispanic and American Indian counterparts at all three grades. Asian/ Pacific Islander students scored higher than white students at grade 12.

[^0]Figure $3.3 \quad$ Average mathematics scale scores by race/ethnicity, grades 4, 8, and 12: 1990-2000
National Scale Score
Results by Race/
Ethnicity

\star Significantly different from 2000.
NOTE: Sample size was insufficient to permit a reliable estimate for American Indian students in grade 12 in 1990 and 1992.
Special analyses raised concerns about the accuracy and precision of national grade 8 Asian/Pacific Islander results in 1996, and grade 4 Asian/Pacific
Islander results in 2000. As a result, they are omitted from the body of this report. See appendix A for a more detailed discussion.
SOURCE: National Center for Education Statistics, National Assessment of Educational Progress (NAEP), 1990, 1992, 1996, and 2000 Mathematics Assessments.

Achievement level results for the racial/ ethnic subgroups are presented in figures 3.4a-c.As with the scale score results for 2000, achievement level results for these subgroups of students are mixed.

At grade 4, the percentage at or above Proficient increased between 1990 and 2000 for four of the groups of students-white, black, Hispanic, and American Indian. (As noted earlier, results could not be reported for Asian/Pacific Islander fourth-graders in 2000.) In fact, for each of these groups, the percentage at or above Proficient in 2000
was at least double that in 1990. The percentage of white fourth-graders at or above Proficient level increased in each assessment year from 1990 to 2000, while percentages of black and Hispanic fourthgraders increased in 2000 over 1990 and 1992. There were also higher percentages of white, black, and Hispanic students in 2000 at or above Basic than in 1990 or 1992. Percentages at the Advanced level remained small for all groups in 2000, though there was a slight increase since 1990 for white fourth-graders.

Figure 3.4a
National Achievement Level Results by Race/
Ethnicity

Percentages of students within each mathematics achievement level range and at or above achievement levels by race/ethnicity, grade 4: 1990-2000

White-Grade 4

Black-Grade 4

Figure 3.4a
National Achievement Level Results by Race/
Ethnicity (continued)

Percentages of students within each mathematics achievement level range and at or above achievement levels by race/ethnicity, grade 4: 1990-2000

Hispanic-Grade 4

Asian/Pacific Islander-Grade 4

American Indian-Grade 4

\star Significantly different from 2000.
Δ Percentage is between 0.0 and 0.5 .
NOTE: Percentages within each mathematics achievement level range may not add to 100 , or to the exact percentages at or above achievement levels, due to rounding. Special analyses raised concerns about the accuracy and precision of national grade 4 Asian/Pacific Islander results in 2000. As a result, they are omitted from the body of this report. See appendix A for a more detailed discussion.
SOURCE: National Center for Education Statistics, National Assessment of Educational Progress (NAEP), 1990, 1992, 1996, and 2000 Mathematics Assessments.

At grade 8, there were higher percentages of white and Hispanic students at or above Proficient in 2000 than in 1990 and higher percentages of white, black, and Hispanic students at or above this level than in 1992. At or above the Basic level,
there were higher percentages of white, black and Hispanic students in 2000 than in 1990 or 1992. As seen at grade 4, few students attained the Advanced level, with the only increase in occurring for white students in 2000 over 1990 and 1992.

Figure 3.4b
National Achievement Level Results by Race/
Ethnicity

Percentages of students within each mathematics achievement level range and at or above achievement levels by race/ethnicity, grade 8: 1990-2000

Figure 3.4b
National Achievement
Level Results by Race/
Ethnicity (continued)

Percentages of students within each mathematics achievement level range and at or above achievement levels by race/ethnicity, grade 8: 1990-2000

Hispanic-Grade 8

Asian/Pacific Islander-Grade 8

American Indian-Grade 8

\star Significantly different from 2000.
A Percentage is between 0.0 and 0.5 .
NOTE: Percentages within each mathematics achievement level range may not add to 100 , or to the exact percentages at or above achievement levels, due to rounding. Special analyses raised concerns about the accuracy and precision of national grade 8 Asian/Pacific Islander results in 1996. As a result, they are omitted from the body of this report. See appendix A for a more detailed discussion.
SOURCE: National Center for Education Statistics, National Assessment of Educational Progress (NAEP), 1990, 1992, 1996, and 2000 Mathematics Assessments.

At grade 12, there were few changes in students' performance over the past decade. The percentages of white students at or above Proficient and at or above Basic were higher in 2000 than in 1990. There were also higher percentages of white twelfth-
graders at the Proficient level in 2000 than in 1990 and at the Basic level in 2000 over 1996. These increases for white students were accompanied by a concomitant decrease in 2000 since 1990 at the below Basic range.

Figure 3.4c
National Achievement Level Results by Race/ Ethnicity

Percentages of students within each mathematics achievement level range and at or above achievement levels by race/ethnicity, grade 12: 1990-2000

White-Grade 12

Black-Grade 12

Figure 3.4c
National Achievement
Level Results by Race/
Ethnicity (continued)

Percentages of students within each mathematics achievement level range and at or above achievement levels by race/ethnicity, grade 12: 1990-2000

Hispanic-Grade 12

Asian/Pacific Islander-Grade 12

American Indian-Grade 12

*Significantly different from 2000.
Δ Percentage is between 0.0 and 0.5 .
NOTE: Percentages within each mathematics achievement level range may not add to 100 , or to the exact percentages at or above achievement levels, due to rounding. Sample size was insufficient to permit a reliable estimate for American Indian students in 1990 and 1992.
SOURCE: National Center for Education Statistics, National Assessment of Educational Progress (NAEP), 1990, 1992, 1996, and 2000 Mathematics Assessments.

Trends in Scale Score Differences Between Selected Subgroups

Results from the past four NAEP mathematics assessments allow for comparison of performance differences between male and female students and between racial/ ethnic subgroups. These differences should be interpreted with caution. The average score of a selected subgroup does not represent the entire range of performance within that group. Furthermore, differences between groups of students can not be attributed solely to group identification.

A complex array of educational and social factors interacts to affect average student performance. Analysis of the patterns of NAEP score gaps by subgroup both within and across states has been a frequent topic in recent education policy research. ${ }^{2}$

Differences between the average scale scores of male and female students are presented in figure 3.5. Although significant at grades 8 and 12 in 2000, the gap between average scale scores by gender has been quite small and has fluctuated only slightly over the past four mathematics assessments.

Figure 3.5 Gender gaps in average mathematics scale scores, grades 4, 8, and 12: 1990-2000
National Scale Score
Differences by Gender

* Score differences are calculated based on differences between unrounded average scale scores.

SOURCE: National Center for Education Statistics, National Assessment of Educational Progress (NAEP), 1990, 1992, 1996, and 2000 Mathematics Assessments.

[^1]The gaps in scale scores between white and black students and between white and Hispanic students are shown in figure 3.6. Unlike the small gaps seen between the genders, the size of the scale score gaps between the racial/ethnic subgroups presented here are much larger. The widening of the gap from 32 to 40 points between
white and black eighth-graders from 1990 to 1992 is the only statistically significant change between either white and black students or white and Hispanic students over the past ten years. The 39 point gaps seen in 1996 and 2000 between white and black students at grade 8 are not significantly different from the gap in 1990.

Figure 3.6
National Scale Score
Differences by Race/
Ethnicity

Racial/ethnic gaps in average mathematics scale scores, grades 4, 8, and 12: 1990-2000

Grade 4

White-Black* Grade 8

White-Hispanic
Grade 8

Grade 12

Grade 12

[^2]
Parents' Highest Level of Education

Students who participated in the NAEP mathematics assessment were asked to indicate the highest level of education completed by each parent. Four levels of education were identified: did not finish high school, graduated from high school, some education after high school, and graduated from college. Students could also choose the response, "I don't know." For this analysis, the highest education level reported for either parent was used. Data are presented for students in grades 8 and 12 only. Data were not collected at grade 4 because in previous NAEP assessments fourth-graders' responses about their parents' education were highly variable and contained a large percentage of "I don't know" responses.

The scale score results for all levels of student-reported parent education are presented in figure 3.7. Almost one-half of both the eighth- and twelfth-graders (45 and 46 percent, respectively) reported that at least one parent had graduated college, whereas a small percentage of students reported that their parents had not gradu-
ated high school (7 and 6 percent at grades 8 and 12 , respectively). Additional information on the percentages of students reporting parents' highest level of education is available in appendix B.

At grade 8, scale scores for students were higher in 2000 than in 1990 and 1992, regardless of the level of parental education reported. None of the other apparent changes at this grade were statistically significant.

At grade 12, the scale score for only one group of twelfth-graders-students whose parents graduated college-was higher in 2000 compared to 1990 . None of the other apparent changes between 1990 and 2000 in performance by parental level of education was statistically significant, although there was a performance decline from 1996 to 2000 of those students whose parents' highest level of education was high school graduate.

Overall there is a clear, positive association at both grades 8 and 12 between increasing level of parental education and increasing scale scores on the mathematics assessment.

Figure 3.7
National Scale Score
Results by Parents'
Education

Average mathematics scale scores by student-reported parents' highest level of education, grades 8 and 12: 1990-2000

\star Significantly different from 2000.
SOURCE: National Center for Education Statistics, National Assessment of Educational Progress (NAEP), 1990, 1992, 1996, and 2000 Mathematics Assessments.

Achievement level results across years by level of parental education are presented in figure 3.8 a and b. At grade 8 , students in the 2000 assessment at each level of parental education had a higher percentage at or above Basic than their counterparts in 1990 or in 1992 and a higher percentage at or above Proficient than in 1990.

At grade 12 there was an increase between 1990 and 2000 in the percentages of students at or above Proficient and at or above Basic who reported that their parents had graduated from college. None of the other apparent changes since 1990 at this grade level were statistically significant.

Figure 3.8a
National Achievement
Level Results by
Parents' Education

Percentage of students within each mathematics achievement level range and at or above achievement levels by parents' highest level of education, grade 8: 1990-2000

Less Than High School-Grade 8

Graduated High School-Grade 8

Some Education After High School-Grade 8

Figure 3.8a
National Achievement
Level Results by
Parents' Education
(continuei)

Percentage of students within each mathematics achievement level range and at or above achievement levels by parents' highest level of education, grade 8: 1990-2000

Graduated College-Grade 8

Unknown-Grade 8

\star Significantly different from 2000.
Δ Percentage is between 0.0 and 0.5 .
NOTE: Percentages within each mathematics achievement level range may not add to 100 , or to the exact percentages at or above achievement levels, due to rounding. SOURCE: National Center for Education Statistics, National Assessment of Educational Progress (NAEP), 1990, 1992, 1996, and 2000 Mathematics Assessments.

Figure 3.8b
National Achievement
Level Results by
Parents' Education

Percentage of students within each mathematics achievement level range and at or above achievement levels by parent's highest level of education, grade 12: 1990-2000

Less Than High School-Grade 12

'90

'92

'96

'00

Graduated High School-Grade 12

Some Education After High School-Grade 12

Figure 3.8b
National Achievement
Level Results by
Parents' Education
(continuei)

Percentage of students within each mathematics achievement level range and at or above achievement levels by parent's highest level of education, grade 12: 1990-2000

Graduated College-Grade 12

Unknown-Grade 12

\star Significantly different from 2000.
Δ Percentage is between 0.0 and 0.5 .
NOTE: Percentages within each mathematics achievement level range may not add to 100 , or to the exact percentages at or above achievement levels, due to rounding. SOURCE: National Center for Education Statistics, National Assessment of Educational Progress (NAEP), 1990, 1992, 1996, and 2000 Mathematics Assessments.

Type of School

The schools that participate in the NAEP assessment are classified as either public or nonpublic. A further distinction is then made within the nonpublic classification between schools that are Catholic and other nonpublic schools. ${ }^{3}$ Differences in performance between public and nonpublic schools surveyed and reported on in NAEP mathematics assessments have shown that students attending nonpublic schools outperform their public school peers. ${ }^{4}$ Despite this pattern of performance results, readers are cautioned about the comparative quality of instruction in public and nonpublic schools. Socioeconomic and sociological factors that may affect student performance should be considered when interpreting these results.

Average mathematics scale scores by type of school are presented in figure 3.9. In 2000, as in previous NAEP assessments, students attending nonpublic schoolsboth Catholic and other nonpublic-had higher mathematics scale scores than did students attending public schools at each of the three grades. However, students in public schools at grades 4 and 8 showed the steadiest improvement, with scores rising regularly in every assessment from 1990 to 2000. At grade 12, students' average scores in all school types have been relatively flat since 1992. However, twelfthgraders' scores in each of the school types were higher in 2000 than in 1990.

[^3]

Achievement level results by school type are presented in figures 3.10a-c. At grade 4, the percentages of public and nonpublic school students performing at or above the Proficient achievement level increased between 1990 and 2000. The percentage of students performing at or above Proficient at Catholic schools also increased in 2000 in comparison to 1990. Despite some fluctuation, the apparent increase between 1990 and 2000 in the percentage of other nonpublic school students (i.e., non-

Catholic schools) at or above Proficient was not statistically significant. A similar pattern was evident for the percentage of students at or above Basic. There were also steady increases in the percentages of public school students performing at or above the Basic level between 1990 and 2000, while the percentages of nonpublic and Catholic school students at or above this level increased in 2000 over 1990 and 1992, and those of other nonpublic students increased between 1992 and 2000.

Figure 3.10a
National Achievement Level Results by Type
of School

Percentage of students within each mathematics achievement level range and at or above achievement levels by type of school, grade 4: 1990-2000

Public-Grade 4

Nonpublic-Grade 4

Figure 3.10a
National Achievement
Level Results by Type
of School (continued)

Percentage of students within each mathematics achievement level range and at or above achievement levels by type of school, grade 4: 1990-2000

Other Nonpublic-Grade 4

Catholic Only-Grade 4

\star Significantly different from 2000.
NOTE: Percentages within each mathematics achievement level range may not add to 100 , or to the exact percentages at or above achievement levels, due to rounding. SOURCE: National Center for Education Statistics, National Assessment of Educational Progress (NAEP), 1990, 1992, 1996, and 2000 Mathematics Assessments.

At grade 8, all of the school types had higher percentages of students at or above Proficient and at or above Basic in 2000 than in 1990. However, none of the apparent increases from 1996 to 2000 in percentages of students at or above Proficient were
statistically significant for any school type. Students in public schools at grade 8 were the only group to have higher percentages at or above Basic in 2000 compared with 1996.

Figure 3.10b
National Achievement
Level Results by Type
of School

Percentage of students within each mathematics achievement level range and at or above achievement levels by type of school, grade 8: 1990-2000

Public-Grade 8

Nonpublic-Grade 8

Figure 3.10b
National Achievement
Level Results by Type
of School (continued)

Percentage of students within each mathematics achievement level range and at or above achievement levels by type of school, grade 8: 1990-2000

Other Nonpublic-Grade 8

Catholic Only-Grade 8

\star Significantly different from 2000.
NOTE: Percentages within each mathematics achievement level range may not add to 100 , or to the exact percentages at or above achievement levels, due to rounding. SOURCE: National Center for Education Statistics, National Assessment of Educational Progress (NAEP), 1990, 1992, 1996, and 2000 Mathematics Assessments.

At grade 12, as at grade 8 , all of the school types had higher percentages of students at or above the Proficient and Basic achievement levels in 2000 than in 1990.

There was a decline, however, between 1996 and 2000 in the percentage of twelfth-graders attending public school who were at or above the Basic level.

Figure 3.10c
 National Achievement
 Level Results by Type
 of School
 Percentage of students within each mathematics achievement level range and at or above achievement levels by type of school, grade 12: 1990-2000

Public-Grade 12

Nonpublic-Grade 12

Figure 3.10c
National Achievement
Level Results by Type
of School (continued)

Percentage of students within each mathematics achievement level range and at or above achievement levels by type of school, grade 12: 1990-2000

Other Nonpublic-Grade 12

Catholic Only-Grade 12

* Significantly different from 2000.

NOTE: Percentages within each mathematics achievement level range may not add to 100 , or to the exact percentages at or above achievement levels, due to rounding. SOURCE: National Center for Education Statistics, National Assessment of Educational Progress (NAEP), 1990, 1992, 1996, and 2000 Mathematics Assessments.

Type of Location

The schools from which NAEP draws its samples of students are classified according to their type of location. Based on Census Bureau definitions of metropolitan statistical areas, including population size and density, the three mutually exclusive categories are: central city, rural/small town, and urban fringe/large town. Because of slight changes by the Census Bureau in the definitions of these categories, schools were not classified in exactly the same way in 2000 as in previous years in terms of location type. Therefore, comparisons to previous years are not possible, and only the data for the 2000 assessment are reported. More information on the definitions of the 2000 assessment classifications of location type is given in appendix A.

The performance of students in the three grades by type of school location is shown in table 3.1. At all three grades, students in the urban fringe/large town locations had higher scale scores than students in central city locations. At grades 4 and 8 , students in rural/small town
locations also outperformed their counterparts in the central city locations.

Percentages of students in each achievement level by type of school location are presented in figure 3.11. At grade 4, within the 2000 assessment, there were higher percentages of students at Advanced, at or above Proficient, and at or above Basic attending schools in urban fringe/large town locations than in central city locations.

At grade 8, there were higher percentages of students at or above Proficient and at or above Basic attending schools in urban fringe/large town locations than in central city locations.

At grade 12, there were higher percentages of students at or above Proficient and at Advanced attending schools in urban fringe/ large town locations than in rural school locations. There was also a higher percentage of twelfth-graders at or above the Basic level attending schools in urban fringe/ large town locations than in central city locations.

Table 3.1: National Scale Score Results by Type of Location

Average mathematics scale scores by type of location, grades 4, 8, and 12: 2000

	Central City	Urban Fringe/Large Town	Rural/Small Town
Grade 12	298	304	300
Grade 8	268	280	276
Grade 4	222	232	227

SOURCE: National Center for Education Statistics, National Assessment of Educational Progress (NAEP), 2000 Mathematics Assessment.

Figure 3.11
National Achievement Level Results by Type of Location

Percentage of students within each mathematics achievement level range and at or above achievement levels by type of location, grades 4, 8, and 12: 2000

Type of Location-Grade 4

Type of Location-Grade 8

Type of Location-Grade 12

NOTE: Percentages within each mathematics achievement level range may not add to 100, or to the exact percentages at or above achievement levels, due to rounding. SOURCE: National Center for Education Statistics, National Assessment of Educational Progress (NAEP), 2000 Mathematics Assessment.

Free/Reduced-Price Lunch Program Eligibility

Funded by the U.S. Department of Agriculture (USDA) as part of the National School Lunch Program, the Free/ReducedPrice Lunch Program is designed to assure that children at or near the poverty line receive nourishing meals. Eligibility guidelines for the lunch program are based on the Federal income poverty guidelines and are stated by household size. ${ }^{5}$ NAEP began collecting data on student eligibility for this program in 1996.

As shown in figure 3.12, at every grade, the scale scores for students who are not eligible for the Free/reduced Price Lunch Program (i.e., those above the poverty guidelines) are significantly higher than the scores for the students who are eligible for the program. Since information on
eligibility is not available for a substantial percentage of the students at each grade, figure 3.13 also displays the scale score averages for this third group of students. This group also has higher scale scores at every grade than the students eligible for the free/reduced-price lunch program. Some schools do not offer free/reduced price lunches. Students from these schools are counted in the Information Not Available category.

For those students eligible for the program, none of the apparent changes from 1996 to 2000 in average scores were statistically significant at any grade. For the students at grades 4 and 8 who were not eligible for the program, average scores improved from 1996 to 2000, parallel to the finding for the assessment as a whole.

Figure 3.12

National Scale Score Resulits by Free/Reduced Price Lunch Eligibility

Average mathematics scale scores by student eligibility for free/reduced price lunch program, grades 4, 8, and 12: 1996-2000

\star Significantly different from 2000.
SOURCE: National Center for Education Statistics, National Assessment of Educational Progress (NAEP), 1996 and 2000 Mathematics Assessments.

[^4]The pattern for achievement level results is displayed in figure 3.13 and parallels that seen in the scale scores. Any apparent changes between 1996 and 2000 in the percentages of students in each achievement level for those students who were eligible for the program were not statistically significant. Among students not
eligible for the program, a higher percentage in 2000 than in 1996 were at or above Proficient in grade 4, and at or above Basic in grade 8 . At every grade, there were higher percentages of students who were not eligible for the program at or above Proficient and at or above Basic than students who were eligible.

Figure 3.13
National Achievement Level Results by Free/Reduced Price Lunch Program Eligibility

Percentage of students within each mathematics achievement level range and at or above achievement levels by student eligibility for the free/reduced-price lunch program, grades 4, 8, and 12: 1996-2000

Eligible-Grade 4

Not Eligible-Grade 4

Information Not Available-Grade 4

Figure 3.13
National Achievement Level Resulits by Free/Reduced
Price Lunch Program
Eligibilty (continueai)

Percentage of students within each mathematics achievement level range and at
or above achievement levels by student eligibility for the free/reduced-price
lunch program, grades 4, 8, and 12: 1996-2000

Eligible-Grade 8

Not Eligible-Grade 8

Information Not Available-Grade 8

Figure 3.13
National Achievement Level
Resulits by Free/Reduced
Price Lunch Program
Eligibilty (continueti)

Percentage of students within each mathematics achievement level range and at or above achievement levels by student eligibility for the free/reduced-price lunch program, grades 4, 8, and 12: 1996-2000

Eligible-Grade 12

Not Eligible-Grade 12

Information Not Available-Grade 12

\star Significantly different from 2000.
Δ Percentage is between 0.0 and 0.5 .
NOTE: Percentages within each mathematics achievement level range may not add to 100 , or to the exact percentages at or above achievement levels, due to rounding SOURCE: National Center for Education Statistics, National Assessment of Educational Progress (NAEP) 1996 and 2000 Mathematics Assessments.

State Results: Performance of Selected Subgroups

Individual state assessments were administered at grades 4 and 8 in addition to the national component of the NAEP 2000 mathematics assessment. Results for public schools in participating states and jurisdictions are presented in this section by gender and race/ethnicity. Complete data for participating jurisdictions are available on the NAEP web site at http://nces.ed.gov/nationsreportcard/tables.

State NAEP assessments began in 1990 at grade 8 and in 1992 at grade 4 . Nonpublic schools were not included in the state NAEP assessments for 2000, but were included in the national samples. The national data shown for comparison at the top of the state tables in this chapter are based on the national sample (not on aggregated state samples), and also represent the performance of public schools only. The national results shown in the previous sections of this chapter represented both public and nonpublic school students combined.

In addition to results from the 2000 state assessment, results are also available from previous assessments for many of the jurisdictions. Not all jurisdictions, however, met minimum school participation guidelines in every NAEP assessment. (See appendix A for details on the participation and reporting guidelines.) In 2000, results for grades 4 and 8 in Wisconsin and grade 8 in the Virgin Islands are not included in the relevant tables and appendices because of these guidelines.

The state results presented here were obtained by assessing a representative sample of students in each state under conditions that did not permit accommodations for special-needs students. These were the same conditions under which results were obtained in previous state assessments. Consequently, it is possible to report trends in student performance across the assessment years. In 2000, a separate representative sample was assessed in each participating jurisdiction for which accommodations were offered to special-needs students. Those results are presented in chapter 4, along with a comparison of "accommodations-permitted" and "accom-modations-not-permitted" results in each state. Subgroup "accommodations-permitted" results by state are available on the NAEP web site.

In examining the state results presented in this section, it should be noted that schools participating in the NAEP assessments under these conditions are permitted to exclude those students who can not be assessed meaningfully without accommodations. Exclusion rates vary considerably across years in many jurisdictions. In 2000, in the sample that did not permit accommodations the pattern in most jurisdictions was for more special-needs students to be excluded from the assessment than in previous years.

In addition to changes across years in exclusion rates for a particular jurisdiction, there is considerable variation in exclusion rates across jurisdictions. Comparisons of assessment results across jurisdictions and within jurisdictions across years should be made with caution. No adjustments have been made for differing exclusion rates across jurisdictions or across years. Thus, a comparison within a jurisdiction across years or between two jurisdictions may be based on samples with exclusion rates that differ considerably. The exclusion rates for each jurisdiction across years are presented in appendix A.

Gender Results by State

Figures 3.14 and 3.15 present male and female students' average mathematics scores for each jurisdiction that participated in the 2000 assessment. For each subgroup of students, the 2000 average score is compared to previous years' scores where available. An upward arrow ($\boldsymbol{\uparrow}$) in the columns labeled for previous assessment years indicates the average score in 2000 was higher than that in the indicated year. A downward arrow $(\boldsymbol{\downarrow})$ indicates that the average score in 2000 was lower than that in the indicated year. A circle (\bullet) indicates that there was no significant difference between the 2000 score and the previous year's score. The dark arrows indicate that the difference between years is statistically significant when examining one jurisdiction and when using a multiple-comparison procedure based on all jurisdictions
that participated both years. The lighter arrows (\uparrow) indicate that the difference between years is statistically significant when only one jurisdiction is being examined at a time. The following discussion of trends in subgroup performance within jurisdictions is based only on results of the statistical testing using a multiplecomparison procedure, as indicated by the dark arrows in these figures.

At grade 4, the average score in 2000 was higher than that in 1992 for male students in 24 jurisdictions, and for female students in 26 jurisdictions. In 21 jurisdictions average scores increased between 1992 and 2000 for both male and female students. Between 1996 and 2000, gains are evident for males in 6 jurisdictions, and for females in 11 jurisdictions. The following 5 jurisdictions had gains for both male and female students between 1996 and 2000: Louisiana, Massachusetts, North Carolina, South Carolina, and Virginia.

At grade 8, the average score in 2000 was higher than that in 1990 for male students in 24 jurisdictions, and for female students in 28 jurisdictions. In 23 jurisdictions average scores increased between 1990 and 2000 for both male and female students. Between 1996 and 2000, gains are evident for males in 5 jurisdictions, and for females in 7 jurisdictions. In North Carolina and West Virginia, both male and female students made gains between 1996 and 2000.

Figure 3.14: State Scale Score Results by Gender, Grade 4
Comparison of 2000 state average scale scores to previous years by gender for grade 4 public schools: 1992-2000

Nation	Male			Female		
	1992	1996	2000	1992	1996	2000
	\uparrow	\uparrow	227	\uparrow	\uparrow	225
Alabama	\uparrow	\uparrow	217	\uparrow	\uparrow	219
Arizona	\uparrow	-	220	\bullet	-	218
Arkansas	\uparrow	\bullet	217	\uparrow	\bullet	217
California ${ }^{+}$	\bullet	\bullet	213	\uparrow	\uparrow	214
Connecticut	\uparrow	\bullet	235	\uparrow	\bullet	233
Georgia	\uparrow	\bullet	220	\bullet	\bullet	219
Hawaii	\bullet	-	214	\bullet	-	217
Idaho ${ }^{+}$	\uparrow	-	227	\uparrow	-	227
Illinois ${ }^{\dagger}$	-	-	227	-	-	222
Indiana ${ }^{\dagger}$	\uparrow	\uparrow	235	\uparrow	\uparrow	233
lowa ${ }^{\dagger}$	\bullet	\uparrow	235	\bullet	\bullet	231
Kansas ${ }^{\dagger}$	-	-	232	-	-	232
Kentucky	\uparrow	-	222	\uparrow	-	220
Louisiana	\uparrow	\uparrow	218	\uparrow	\uparrow	218
Maine ${ }^{\dagger}$	\bullet	\bullet	232	\bullet	\bullet	229
Maryland	\bullet	\bullet	223	\uparrow	-	221
Massachusetts	\uparrow	\uparrow	237	\uparrow	\uparrow	233
Michigan ${ }^{\dagger}$	\uparrow	\uparrow	232	\uparrow	\uparrow	230
Minnesota ${ }^{\dagger}$	\uparrow	\bullet	237	\uparrow	\bullet	233
Mississippi	\uparrow	\bullet	210	\uparrow	\bullet	211
Missouri	\uparrow	\bullet	229	\uparrow	\uparrow	228
Montana ${ }^{\dagger}$	-	\bullet	232	-	-	228
Nebraska	\bullet	\bullet	227	\bullet	-	225
Nevada	-	\bullet	222	-	\bullet	218
New Mexico	-	-	216	\bullet	-	212
New York ${ }^{\dagger}$	\uparrow	\uparrow	228	\uparrow	-	225
North Carolina	\uparrow	\uparrow	234	\uparrow	\uparrow	231
North Dakota	\bullet	-	233	\bullet	\bullet	229
Ohio ${ }^{+}$	\uparrow	-	233	\uparrow	-	228
Oklahoma	\uparrow	-	226	\uparrow	-	224
Oregon ${ }^{+}$	-	-	229	-	-	224
Rhode Island	\uparrow	\bullet	225	\uparrow	\uparrow	224
South Carolina	\uparrow	\uparrow	221	\uparrow	\uparrow	220
Tennessee	\uparrow	\bullet	222	\uparrow	\bullet	218
Texas	\uparrow	\uparrow	235	\uparrow	\bullet	231
Utah	\bullet	\bullet	227	\uparrow	\bullet	228
Vermont ${ }^{+}$	-	\uparrow	232	-	\uparrow	231
Virginia	\uparrow	\uparrow	233	\uparrow	\uparrow	228
West Virginia	\uparrow	\bullet	226	\uparrow	\bullet	223
Wyoming	\bullet	\uparrow	230	\uparrow	\uparrow	228
Other Jurisdictions						
American Samoa	-	-	156	-	-	157
District of Columbia	-	\uparrow	193	-	\uparrow	194
DDESS	-	\bullet	230	-	\bullet	226
DoDDS	-	\uparrow	230	-	\uparrow	226
Guam	\downarrow	\bullet	181	\downarrow	\bullet	187
Virgin Islands	-	-	183	-	-	183

- Indicates no significant difference between earlier year and 2000 in average scores.
\uparrow Indicates the average score in 2000 was significantly higher than in the specified year.
\downarrow Indicates the average score in 2000 was significantly lower than in the specified year.

NOTE:
Dark arrows, ($\uparrow \downarrow$) indicate a significant difference when examining only one jurisdiction and when using a multiple comparison based on all jurisdictions that participated in both years.

Light arrows ($\uparrow \downarrow$) indicate a significant change when only one jurisdiction or the nation is being examined.
${ }^{\dagger}$ Indicates that the jurisdiction did not meet one or more of the guidelines for school participation.

- Indicates that the jurisdiction did not participate.

NOTE: Comparative performance results may be affected by changes in exclusion rates for students with disabilities and limited-English-proficient students in the NAEP samples.
DDESS: Department of Defense Domestic Dependent Elementary and Secondary Schools. DoDDS: Department of Defense Dependents Schools (Overseas).
SOURCE: National Center for Education Statistics, National Assessment of Educational Progress (NAEP) 1992, 1996, and 2000 Mathematics Assessments.

Figure 3.15: State Scale Score Results by Gender, Grade 8
Comparison of 2000 state average scale scores to previous years by gender for grade 8 public schools: 1990-2000

	Male				Female			
	1990	1992	1996	2000	1990	1992	1996	2000
Nation	\uparrow	\uparrow	\uparrow	276	\uparrow	\uparrow	\bullet	273
Alabama	\uparrow	\uparrow	\bullet	262	\uparrow	\uparrow	\bullet	262
Arizona ${ }^{\dagger}$	\uparrow	\uparrow	\bullet	274	\uparrow	-	\bullet	268
Arkansas	\uparrow	\uparrow	\bullet	262	\uparrow	\uparrow	\bullet	261
California ${ }^{+}$	\bullet	\bullet	\bullet	262	\uparrow	\bullet	\bullet	262
Connecticut	\uparrow	\uparrow	\bullet	284	\uparrow	\uparrow	\bullet	279
Georgia	\uparrow	\uparrow	\uparrow	268	\uparrow	\uparrow	\bullet	265
Hawaii	\uparrow	\uparrow	\bullet	261	\uparrow	\uparrow	\bullet	264
Idaho ${ }^{+}$	\uparrow	\bullet	-	278	\uparrow	\bullet	-	278
Illinois ${ }^{\dagger}$	\uparrow	-	-	276	\uparrow	-	-	278
Indiana ${ }^{\dagger}$	\uparrow	\uparrow	\uparrow	285	\uparrow	\uparrow	\uparrow	281
Kansas ${ }^{+}$	-	-	-	285	-	-	-	283
Kentucky	\uparrow	\uparrow	\uparrow	274	\uparrow	\uparrow	\bullet	270
Louisiana	\uparrow	\uparrow	\uparrow	261	\uparrow	\uparrow	\uparrow	258
Maine ${ }^{\dagger}$	-	\uparrow	\bullet	285	-	-	\bullet	282
Maryland	\uparrow	\uparrow	\bullet	276	\uparrow	\uparrow	\uparrow	276
Massachusetts	-	\uparrow	\uparrow	285	-	\uparrow	\bullet	281
Michigan ${ }^{\dagger}$	\uparrow	\uparrow	\bullet	279	\uparrow	\uparrow	\bullet	278
Minnesota \dagger	\uparrow	\uparrow	\bullet	288	\uparrow	\uparrow	\bullet	288
Mississippi	-	\uparrow	\bullet	255	-	\uparrow	\bullet	253
Missouri	-	\bullet	\bullet	276	-	-	\bullet	271
Montana ${ }^{+}$	-	-	-	287	\uparrow	-	\bullet	286
Nebraska	\uparrow	\uparrow	\bullet	283	\bullet	\bullet	\downarrow	278
Nevada	-	-	-	269	-	-	-	267
New Mexico	\bullet	\bullet	\bullet	259	\uparrow	-	\bullet	260
New York ${ }^{\dagger}$	\uparrow	\uparrow	\uparrow	280	\uparrow	\uparrow	\bullet	273
North Carolina	\uparrow	\uparrow	\uparrow	282	\uparrow	\uparrow	\uparrow	278
North Dakota	\bullet	\bullet	\bullet	283	\uparrow	\bullet	\bullet	284
Ohio	\uparrow	\uparrow	-	283	\uparrow	\uparrow	-	282
Oklahoma	\uparrow	\bullet	-	273	\uparrow	\bullet	-	270
Oregon ${ }^{+}$	\uparrow	-	\bullet	281	\uparrow	-	\bullet	280
Rhode Island	\uparrow	\uparrow	\bullet	274	\uparrow	\uparrow	\uparrow	273
South Carolina	-	\uparrow	\bullet	266	-	\uparrow	\uparrow	267
Tennessee	-	\bullet	\bullet	265	-	\bullet	\bullet	261
Texas	\uparrow	\uparrow	\bullet	274	\uparrow	\uparrow	\uparrow	276
Utah	-	-	-	275	-	\bullet	\bullet	276
Vermont ${ }^{+}$	-	-	\bullet	283	-	-	\uparrow	283
Virginia	\uparrow	\uparrow	\uparrow	278	\uparrow	\uparrow	\uparrow	276
West Virginia	\uparrow	\uparrow	\uparrow	270	\uparrow	\uparrow	\uparrow	271
Wyoming	-	\bullet	-	277	\uparrow	\bullet	\bullet	276
Other Jurisdictions								
American Samoa	-	-	-	190	-	-	-	200
District of Columbia	-	-	\bullet	234	\bullet	-	\bullet	235
DDESS	-	-	\bullet	279	-	-	\bullet	275
DoDDS	-	-	\uparrow	280	-	-	\bullet	277
Guam	-	\bullet	\bullet	233	\bullet	\bullet	\downarrow	234

- Indicates no significant difference between earlier year and 2000 in average scores.
\uparrow Indicates the average score in 2000 was significantly higher than in the specified year.
\downarrow Indicates the average score in 2000 was significantly lower than in the specified year.

NOTE:
Dark arrows, ($\uparrow \downarrow$) indicate a significant difference when examining only one jurisdiction and when using a multiple comparison based on all jurisdictions that participated in both years.

Light arrows ($\uparrow \downarrow$) indicate a significant change when only one jurisdiction or the nation is being examined.
${ }^{\dagger}$ Indicates that the jurisdiction did not meet one or more of the guidelines for school participation.

- Indicates that the jurisdiction did not participate.

NOTE: Comparative performance results may be affected by changes in exclusion rates for students with disabilities and limited-English-proficient students in the NAEP samples.
DDESS: Department of Defense Domestic Dependent Elementary and Secondary Schools. DoDDS: Department of Defense Dependents Schools (Overseas).
SOURCE: National Center for Education Statistics, National Assessment of Educational Progress (NAEP), 1990, 1992, 1996, and 2000 Mathematics Assessments.

Figures 3.16 and 3.17 present the percentages of male and female students at or above Proficient by jurisdiction for 2000, with dark arrow symbols indicating the results of significance testing between years, using a multiple-comparison procedure, as in the previous tables. The trends in improvement in mathematics scores from 1990 to 2000 at grade 8,1992 to 2000 at grade 4, and 1996 to 2000 at both grades can also be seen in the achievement level data.

At grade 4, the percentage of students at or above Proficient in 2000 was higher than that in 1992 for male students in 19 jurisdictions, and for female students in 15 jurisdictions. In 13 jurisdictions the percentages of both males and females who
were at or above Proficient increased between 1992 and 2000. Between 1996 and 2000 , the percentages of students performing at this level increased for males in North Carolina and South Carolina, and for females in Louisiana and Massachusetts.

At grade 8, the percentage of students at or above Proficient in 2000 was higher than that in 1990 for male students in 28 jurisdictions and female students in 27 jurisdictions. In 25 jurisdictions the percentages of both males and females who were at or above Proficient increased between 1990 and 2000. Between 1996 and 2000, the percentages of students performing at this level increased for males in Indiana and West Virginia, and for both males and females in North Carolina.

Figure 3.16: State Achievement Level Results by Gender, Grade 4

Comparisons of 2000 state percentages at or above Proficient to previous years by gender for grade 4 public schools: 1992-2000

Nation	,			硣		
	1992	1996	2000	1992	1996	2000
	\uparrow	\uparrow	27	\uparrow	\uparrow	22
Alabama	\uparrow	\bullet	15	\bullet	\bullet	13
Arizona	\bullet	\bullet	18	\bullet	\bullet	16
Arkansas	\uparrow	\bullet	14	\bullet	\bullet	13
California ${ }^{+}$	\bullet	\bullet	14	\bullet	\uparrow	15
Connecticut	\uparrow	-	34	\uparrow	\bullet	29
Georgia	\bullet	\bullet	19	\bullet	\uparrow	17
Hawaii	\bullet	\bullet	14	\bullet	\bullet	14
Idaho ${ }^{+}$	\uparrow	-	23	\uparrow	-	20
Illinois ${ }^{\dagger}$	-	-	25	-	-	17
Indiana ${ }^{\dagger}$	\uparrow	\uparrow	33	\uparrow	\uparrow	29
lowa ${ }^{+}$	\bullet	\bullet	31	\bullet	\bullet	24
Kansas ${ }^{\dagger}$	-	-	32	-	-	28
Kentucky	\uparrow	\bullet	19	\uparrow	\bullet	16
Louisiana	\uparrow	\uparrow	14	\uparrow	\uparrow	14
Maine ${ }^{+}$	\bullet	-	27	\bullet	\bullet	22
Maryland	\bullet	\bullet	24	\bullet	\bullet	20
Massachusetts	\uparrow	\uparrow	36	\uparrow	\uparrow	31
Michigan ${ }^{\dagger}$	\uparrow	\uparrow	31	\uparrow	\uparrow	28
Minnesota ${ }^{\dagger}$	\uparrow	\bullet	38	\uparrow	\bullet	30
Mississippi	\uparrow	\bullet	10	\bullet	\bullet	8
Missouri	\bullet	\bullet	24	\bullet	\bullet	23
Montana ${ }^{\dagger}$	-	\bullet	29	-	\bullet	20
Nebraska	\bullet	\bullet	25	-	\bullet	23
Nevada	-	\bullet	19	-	\bullet	13
New Mexico	\bullet	\bullet	14	\bullet	\bullet	10
New York ${ }^{\dagger}$	-	\bullet	24	\uparrow	\bullet	20
North Carolina	\uparrow	\uparrow	30	\uparrow	\uparrow	26
North Dakota	\bullet	\bullet	29	\bullet	\bullet	22
Ohio ${ }^{+}$	\uparrow	-	30	\uparrow	-	22
Oklahoma	\bullet	-	18	\bullet	-	14
Oregon ${ }^{\dagger}$	-	\bullet	27	-	\bullet	20
Rhode Island	\uparrow	\uparrow	26	\uparrow	\uparrow	20
South Carolina	\uparrow	\uparrow	20	\uparrow	\uparrow	15
Tennessee	\uparrow	\bullet	20	\uparrow	\bullet	16
Texas	\uparrow	\bullet	31	\uparrow	\bullet	24
Utah	\uparrow	\bullet	25	\bullet	\bullet	23
Vermont ${ }^{\dagger}$	-	\uparrow	31	-	\uparrow	28
Virginia	\uparrow	\uparrow	29	\bullet	\bullet	22
West Virginia	\uparrow	\bullet	21	\uparrow	\bullet	15
Wyoming	\uparrow	\uparrow	27	\uparrow	\uparrow	23
Other Jurisdictions						
American Samoa	-	-	-	-	-	A
District of Columbia	\bullet	\bullet	6	\bullet	\bullet	5
DDESS	-	\bullet	26	-	\bullet	22
DoDDS	-	\uparrow	26	-	\bullet	19
Guam	\bullet	\bullet	3	\downarrow	\bullet	2
Virgin Islands	-	-	1	-	-	1

- Indicates no significant difference between earlier year and 2000 in average scores.
\uparrow Indicates the average score in 2000 was significantly higher than in the specified year.
\downarrow Indicates the average score in 2000 was significantly lower than in the specified year.

NOTE:

Dark arrows, ($\uparrow \downarrow$) indicate a significant difference when examining only one jurisdiction and when using a multiple comparison based on all jurisdictions that participated in both years

Light arrows ($\uparrow \downarrow$) indicate a significant change when only one jurisdiction or the nation is being examined.
${ }^{\dagger}$ Indicates that the jurisdiction did not meet one or more of the guidelines for school participation.

- Indicates that the jurisdiction did not participate.

A Percentage is between 0.0 and 0.5

NOTE: Comparative performance results may be affected by changes in exclusion rates for students with disabilities and limited-English-proficient students in the NAEP samples.
DDESS: Department of Defense Domestic Dependent Elementary and Secondary Schools. DoDDS: Department of Defense Dependents Schools (Overseas). SOURCE: National Center for Education Statistics, National Assessment of Educational Progress (NAEP) 1992, 1996, and 2000 Mathematics Assessments.

Figure 3.17: State Achievement Level Results by Gender, Grade 8
Comparisons of 2000 state percentages at or above Proficient to previous years by gender for grade 8 public schools: 1990-2000

- Indicates no significant difference between earlier year and 2000 in average scores.
\uparrow Indicates the average score in 2000 was significantly higher than in the specified year.
\downarrow Indicates the average score in 2000 was significantly lower than in the specified year.

NOTE:

Dark arrows, ($\uparrow \downarrow$) indicate a significant difference when examining only one jurisdiction and when using a multiple comparison based on all jurisdictions that participated in both years.

Light arrows ($\uparrow \downarrow$) indicate a significant change when only one jurisdiction or the nation is being examined.
${ }^{\dagger}$ Indicates that the jurisdiction did not meet one or more of the guidelines for school participation.

- Indicates that the jurisdiction did not participate.

NOTE: Comparative performance results may be affected by changes in exclusion rates for students with disabilities and limited-English-proficient students in the NAEP samples.
DDESS: Department of Defense Domestic Dependent Elementary and Secondary Schools. DoDDS: Department of Defense Dependents Schools (Overseas). SOURCE: National Center for Education Statistics, National Assessment of Educational Progress (NAEP), 1990, 1992, 1996, and 2000 Mathematics Assessments.

Race/Ethnicity

Figures 3.18 and 3.19 display the average mathematics scores in 2000 for each of the racial/ethnic groups by jurisdiction. Similar to the preceding figures, arrows indicate the direction of statistically significant changes since previous assessment years.

At grade 4, the average score in 2000 was higher than that in 1992 for white students in 29 jurisdictions, for black students in 17 jurisdictions, and for Hispanic students in 10 jurisdictions. American Indian students had mixed results-gaining in two states (North Carolina and Oklahoma) and declining in one (New Mexico). Jurisdictions that show gains for at least three of the five racial/ethnic groups include Arkansas, Connecticut, Indiana, Mississippi, New York, North Carolina, and Texas.

Between 1996 and 2000, gains in fourth-graders' average scores are evident for white students in 15 jurisdictions, for black students in 7 jurisdictions, for Hispanic students in 2 jurisdictions, and for Asian/Pacific Islander students in 1 jurisdiction. In Louisiana, white, black, and Hispanic students made gains between 1996 and 2000. In Alabama, Indiana, North Carolina, and Virginia, both white and black students' scores increased during this period.

At grade 8, the average score in 2000 was higher than that in 1990 for white students in 28 jurisdictions, for black students in 14 jurisdictions, and for Hispanic students in 17 jurisdictions. Gains for Asian/Pacific Islander and American Indian students were limited to 3 and 2 jurisdictions, respectively. Jurisdictions that showed gains among at least three of the five racial/
ethnic groups included: California, Georgia, Hawaii, Illinois, Indiana, Maryland, Michigan, New York, North Carolina, Ohio, Rhode Island, Texas, Virginia, and West Virginia.

Between 1996 and 2000, gains in eighth-graders' average scores were evident for white students in 11 jurisdictions, for black students in 2 jurisdictions, and for Hispanic students in 3 jurisdictions. Apparent gains for Asian/Pacific Islander and American Indian students in any jurisdiction were not statistically significant. In North Carolina, gains are evident for three of the five racial/ethnic groups-white, black, and Hispanic students. In Indiana, both white and black students' scores increased, and in Massachusetts, both white and Hispanic students made gains.

In every state where sample sizes were large enough for reliable statistical comparisons, white students outperformed black and Hispanic students at both grades 4 and 8 . Most of the apparent differences between white and Asian/Pacific Islander students were not statistically significant, with a small number of exceptions. White students had higher scale scores than Asian/ Pacific Islander students in grade 4 in Hawaii, Rhode Island, and Utah, and in grade 8 in Hawaii. Asian/Pacific Islander students outperformed white students at grade 4 in Oregon and at grade 8 in Maryland and Virginia.

The percentages of students in the different racial/ethnic subgroups who were at or above Proficient across jurisdictions in 2000, and comparisons to earlier years, are presented in figure 3.20 (grade 4) and figure 3.21 (grade 8).

Figure 3.18: State Scale Score Results by Race/Ethnicity, Grade 4
Comparison of 2000 state average scale scores to previous years by race/ethnicity for grade 4 public schools: 1992-2000 White

Nation	White			Black		
	1992	1996	2000	1992	1996	2000
	\uparrow	\bullet	235	\uparrow	-	205
Alabama	\uparrow	\uparrow	229	\uparrow	\uparrow	205
Arizona	\uparrow	\bullet	231	\bullet	\bullet	208
Arkansas	\uparrow	\bullet	225	\uparrow	\bullet	198
California ${ }^{\dagger}$	\uparrow	-	229	\uparrow	\bullet	193
Connecticut	\uparrow	\bullet	243	\uparrow	\bullet	209
Georgia	\bullet	\uparrow	232	\uparrow	\uparrow	206
Hawaii	\bullet	\bullet	225	\bullet	\bullet	204
Idaho ${ }^{\dagger}$	\uparrow	-	230	\bullet	-	****
Illinois ${ }^{\dagger}$	-	-	237	-	-	205
Indiana ${ }^{\dagger}$	\uparrow	\uparrow	238	\uparrow	\uparrow	216
lowa ${ }^{\dagger}$	\uparrow	\uparrow	235	\bullet	\bullet	****
Kansas ${ }^{\dagger}$	-	-	238	-	-	207
Kentucky	\uparrow	\bullet	225	\bullet	\bullet	200
Louisiana	\uparrow	\uparrow	230	\uparrow	\uparrow	204
Maine ${ }^{\dagger}$	\bullet	\bullet	231	\bullet	\bullet	****
Maryland	\uparrow	\bullet	237	\uparrow	\bullet	204
Massachusetts	\uparrow	\uparrow	241	\uparrow	\bullet	212
Michigan ${ }^{\dagger}$	\uparrow	\uparrow	239	\uparrow	\bullet	201
Minnesota ${ }^{\dagger}$	\uparrow	\uparrow	240	\uparrow	\uparrow	211
Mississippi	\uparrow	\bullet	224	\uparrow	\bullet	199
Missouri	\uparrow	\uparrow	235	\bullet	\bullet	202
Montana ${ }^{\dagger}$	-	\bullet	234	-	\bullet	****
Nebraska	\bullet	-	232	\bullet	\bullet	199
Nevada	-	\bullet	228	-	\bullet	206
New Mexico	\bullet	\bullet	227	\bullet	\bullet	****
New York ${ }^{\dagger}$	\uparrow	\uparrow	238	\uparrow	\uparrow	211
North Carolina	\uparrow	\uparrow	241	\uparrow	\uparrow	218
North Dakota	\uparrow	\bullet	233	\bullet	\bullet	****
Ohio ${ }^{\dagger}$	\uparrow	-	236	\uparrow	-	208
Oklahoma	\uparrow	-	230	\bullet	-	206
Oregon ${ }^{\dagger}$	-	\bullet	230	-	\bullet	****
Rhode Island	\uparrow	\uparrow	234	\bullet	\bullet	201
South Carolina	\uparrow	\uparrow	233	\uparrow	\uparrow	204
Tennessee	\uparrow	\bullet	227	\bullet	\bullet	199
Texas	\uparrow	\bullet	243	\uparrow	\uparrow	220
Utah	\uparrow	\bullet	232	\bullet	\bullet	****
Vermont ${ }^{\dagger}$	-	\uparrow	233	-	\bullet	****
Virginia	\uparrow	\uparrow	240	\uparrow	\uparrow	212
West Virginia	\uparrow	\bullet	227	\bullet	\bullet	207
Wyoming	\bullet	\uparrow	232	\bullet	\bullet	****
Other Jurisdictions						
American Samoa	-	-	****	-	-	****
District of Columbia	\bullet	\bullet	241	\bullet	\uparrow	191
DDESS	-	-	237	-	\bullet	218
DoDDS	-	\uparrow	235	-	\bullet	214
Guam	\bullet	\bullet	****	\bullet	\bullet	****
Virgin Islands	-	-	****	-	-	185

1992	1996	2000
\uparrow	-	211
\bullet	\bullet	201
\bullet	\bullet	204
\uparrow	\bullet	205
\uparrow	\bullet	201
\uparrow	\bullet	214
个	\bullet	208
\bullet	\bullet	205
\uparrow	-	213
-	-	213
\uparrow	\bullet	220
\bullet	\bullet	216
-	-	215
\bullet	\bullet	207
\bullet	\uparrow	210
\bullet	\bullet	****
\bullet	\bullet	210
\bullet	\bullet	210
\bullet	\bullet	210
\bullet	\bullet	214
\uparrow	\bullet	201
\bullet	\bullet	213
-	\bullet	219
\bullet	\bullet	206
-	\bullet	210
\bullet	\bullet	208
\uparrow	\uparrow	211
\uparrow	\uparrow	218
\bullet	\bullet	214
\uparrow	-	218
\bullet	-	215
-	\bullet	206
\bullet	\bullet	198
-	\uparrow	209
\bullet	\bullet	207
\uparrow	\uparrow	224
\bullet	\bullet	206
-	\bullet	****
\bullet	\bullet	219
\bullet	\bullet	213
\bullet	\bullet	215
-	-	150
\bullet	\bullet	189
-	\bullet	220
-	\bullet	218
\bullet	\bullet	168
-	-	176

See footnotes at end of figure.

Comparison of 2000 state average scale scores to previous years by race/ethnicity for grade 4 public schools: 1992-2000 Asian

American Indian		
1992	1996	2000
-	-	215
-	-	****
-	-	196
-	-	213
-	-	****
-	-	****
-	-	****
-	-	****
-	-	****
-	-	****
-	-	****
\bullet	\bullet	****
-	-	****
-	-	****
-	\bullet	****
-	-	****
-	-	****
-	-	****
-	-	****
-	-	****
-	-	****
-	-	****
-	-	212
\bullet	-	****
-	-	212
-	-	197
-	-	****
\uparrow	-	229
-	-	208
-	-	****
\uparrow	-	222
-	-	****
-	\bullet	****
-	-	****
-	-	****
-	\bullet	****
-	-	****
-	-	****
-	-	****
-	-	****
-	-	224
-	-	****
-	-	****
-	\bullet	****
-	-	219
-	-	****
-	-	****

- Indicates no significant difference between earlier year and 2000 in average scores.
\uparrow Indicates the average score in 2000 was significantly higher than in the specified year.
\downarrow Indicates the average score in 2000 was significantly lower than in the specified year.

NOTE:
Dark arrows, ($\uparrow \downarrow$) indicate a significant difference when examining only one jurisdiction and when using a multiple comparison based on all jurisdictions that participated in both years.

Light arrows ($\uparrow \downarrow$) indicate a significant change when only one jurisdiction or the nation is being examined.
**** Sample size is insufficient to permit a reliable estimate.
${ }^{\dagger}$ Indicates that the jurisdiction did not meet one or more of the guidelines for school participation.

- Indicates that the jurisdiction did not participate.
~Special analyses raised concerns about the accuracy and precision of national grade 4 Asian/Pacific Islander results in 2000. As a result, they are omitted from the body of this report. See appendix A for a more detailed discussion.
NOTE: Comparative performance results may be affected by changes in exclusion rates for students with disabilities and limited-English-proficient students in the NAEP samples.
DDESS: Department of Defense Domestic Dependent Elementary and Secondary Schools. DoDDS: Department of Defense Dependents Schools (Overseas). SOURCE: National Center for Education Statistics, National Assessment of Educational Progress (NAEP), 1992, 1996, and 2000 Mathematics Assessments.

Figure 3．19：State Scale Score Results by Race／Ethnicity，Grade 8
Comparison of 2000 state average scale scores to previous years by race／ethnicity for grade 8 public schools：1990－2000
Whit

	1990	1992	1996	2000
Nation	\uparrow	\uparrow	\bullet	285
Alabama	\uparrow	\uparrow	\bullet	275
Arizona ${ }^{\dagger}$	\uparrow	\uparrow	\uparrow	284
Arkansas	\uparrow	\uparrow	\bullet	272
California ${ }^{\dagger}$	\uparrow	\bullet	\bullet	278
Connecticut	\uparrow	\uparrow	\uparrow	294
Georgia	\uparrow	\uparrow	\bullet	280
Hawaii	\uparrow	\uparrow	\bullet	275
Idaho ${ }^{\dagger}$	\uparrow	\uparrow	－	282
Illinois ${ }^{\dagger}$	\uparrow	－	－	288
Indiana ${ }^{\dagger}$	\uparrow	\uparrow	\uparrow	287
Kansas ${ }^{\dagger}$	－	－	－	288
Kentucky	\uparrow	\uparrow	\uparrow	275
Louisiana	\uparrow	\uparrow	\uparrow	276
Maine ${ }^{\dagger}$	－	\uparrow	\bullet	285
Maryland	\uparrow	\uparrow	\uparrow	290
Massachusetts	－	\uparrow	\uparrow	289
Michigan ${ }^{\dagger}$	\uparrow	\uparrow	\bullet	287
Minnesota ${ }^{\dagger}$	\uparrow	\uparrow	\uparrow	291
Mississippi	－	\uparrow	\bullet	268
Missouri	－	\uparrow	\bullet	280
Montana ${ }^{\dagger}$	\uparrow	－	\uparrow	290
Nebraska	\uparrow	\bullet	\bullet	285
Nevada	－	－	－	278
New Mexico	\uparrow	\uparrow	\bullet	278
New York ${ }^{\dagger}$	\uparrow	\uparrow	\uparrow	289
North Carolina	\uparrow	\uparrow	\uparrow	291
North Dakota	\bullet	\bullet	\bullet	286
Ohio	\uparrow	\uparrow	－	287
Oklahoma	\uparrow	\uparrow	－	277
Oregon ${ }^{\dagger}$	\uparrow	－	\bullet	284
Rhode Island	\uparrow	\uparrow	\uparrow	281
South Carolina	－	\uparrow	\bullet	279
Tennessee	－	\uparrow	\bullet	271
Texas	\uparrow	\uparrow	\bullet	288
Utah	－	\bullet	\bullet	279
Vermont ${ }^{\dagger}$	－	－	\uparrow	284
Virginia	\uparrow	\uparrow	\uparrow	285
West Virginia	\uparrow	\uparrow	\uparrow	272
Wyoming	\uparrow	\bullet	\bullet	280
Other Jurisdictions				
American Samoa	－	－	－	＊＊＊＊
District of Columbia	\bullet	－	\bullet	＊＊＊＊
DDESS	－	－	\bullet	288
DoDDS	－	－	\bullet	287
Guam	\bullet	－	－	＊＊＊＊

Black			
1990	1992	1996	2000
\uparrow	\uparrow	\bullet	246
\bullet	\uparrow	\bullet	239
\bullet	\bullet	\bullet	250
－	－	\bullet	235
\bullet	\bullet	\bullet	242
\uparrow	\bullet	\bullet	248
\uparrow	\bullet	\uparrow	246
\bullet	\bullet	\bullet	256
－	－	－	＊＊＊＊
\uparrow	－	－	255
\uparrow	\uparrow	\uparrow	260
－	－	－	257
\uparrow	\uparrow	\bullet	253
\uparrow	\uparrow	\bullet	240
－	\bullet	\bullet	＊＊＊＊
\uparrow	\uparrow	\uparrow	249
－	\bullet	\bullet	254
\uparrow	\uparrow	\bullet	242
\bullet	\bullet	－	＊＊＊＊
－	\uparrow	\bullet	238
－	\bullet	\bullet	244
－	－	\bullet	＊＊＊＊
－	\bullet	\bullet	246
－	－	－	251
－	－	\bullet	＊＊＊＊
\uparrow	\uparrow	\bullet	257
\uparrow	\uparrow	\uparrow	256
\bullet	\bullet	\bullet	＊＊＊＊
\uparrow	\uparrow	－	255
\bullet	\bullet	－	248
\bullet	－	\bullet	260
\uparrow	\bullet	\bullet	245
－	\uparrow	\bullet	249
－	\bullet	－	237
\uparrow	\bullet	\bullet	252
－	－	\bullet	＊＊＊＊
－	－	－	＊＊＊＊
\uparrow	\uparrow	\uparrow	252
\uparrow	\bullet	\bullet	251
\bullet	－	\bullet	＊＊＊＊
－	－	－	＊＊＊＊
－	－	\bullet	232
－	－	\uparrow	267
－	－	\bullet	261
\bullet	－	\bullet	＊＊＊＊

Hispanic			
1990	1992	1996	2000
个	\uparrow	\bullet	252
\bullet	\uparrow	\bullet	239
\uparrow	\bullet	\bullet	252
\bullet	\bullet	\bullet	234
\uparrow	\bullet	\bullet	246
\uparrow	\bullet	\bullet	252
\uparrow	\bullet	－	247
\uparrow	\bullet	\bullet	248
\bullet	－	－	250
\uparrow	－	－	261
\uparrow	\uparrow	\bullet	264
－	－	－	261
\bullet	\bullet	\bullet	＊＊＊＊
－	\bullet	\bullet	237
－	\bullet	\bullet	＊＊＊＊
\uparrow	\uparrow	\uparrow	265
－	\uparrow	\uparrow	259
\uparrow	\bullet	\bullet	259
\uparrow	\bullet	\bullet	257
－	\bullet	\bullet	227
－	\bullet	\bullet	251
－	－	个	276
\bullet	－	\bullet	255
－	－	－	251
－	－	－	251
\uparrow	－	\bullet	259
\uparrow	\uparrow	\uparrow	269
\bullet	\bullet	\bullet	262
\uparrow	\uparrow	－	270
\bullet	\bullet	－	254
\bullet	－	\bullet	259
\uparrow	\uparrow	\bullet	246
－	\uparrow	\bullet	250
－	\uparrow	\bullet	246
\uparrow	\uparrow	个	266
－	\bullet	\bullet	249
－	－	\bullet	＊＊＊＊
\uparrow	\uparrow	\bullet	267
\uparrow	\uparrow	\bullet	256
\bullet	\bullet	\bullet	255
－	－	－	172
\bullet	－	\bullet	224
－	－	\bullet	269
－	－	\bullet	271
－	－	－	216

See footnotes at end of figure．

Figure 3.19: State Scale Score Results by Race/Ethnicity, Grade 8 (continued)
Comparison of 2000 state average scale scores to previous years by race/ethnicity for grade 8 public schools: 1990-2000

Nation	Asian			
	1990	1992	1996	2000
	-	\bullet	\sim	288
Alabama	-	-	\bullet	****
Arizona ${ }^{\dagger}$	-	-	-	282
Arkansas	\bullet	-	-	****
California ${ }^{\text {+ }}$	\uparrow	-	-	282
Connecticut	\bullet	-	\bullet	287
Georgia	\bullet	\bullet	\bullet	****
Hawaii	\uparrow	\uparrow	\bullet	263
Idaho ${ }^{\dagger}$	\bullet	\bullet	-	****
Illinois ${ }^{\dagger}$	-	-	-	****
Indiana ${ }^{\dagger}$	-	-	-	****
Kansas ${ }^{\dagger}$	-	-	-	****
Kentucky	-	-	-	****
Louisiana	-	-	-	****
Maine ${ }^{\dagger}$	-	\bullet	-	****
Maryland	\uparrow	\uparrow	-	306
Massachusetts	-	\bullet	\uparrow	295
Michigan ${ }^{\dagger}$	\bullet	\bullet	\bullet	****
Minnesota ${ }^{\dagger}$	\bullet	-	-	****
Mississippi	-	\bullet	\bullet	****
Missouri	-	-	-	****
Montana ${ }^{\dagger}$	-	-	-	****
Nebraska	-	-	-	****
Nevada	-	-	-	278
New Mexico	-	-	-	****
New York ${ }^{\dagger}$	-	-	-	288
North Carolina	\bullet	-	-	****
North Dakota	\bullet	-	-	****
Ohio	\bullet	-	-	****
Oklahoma	\bullet	-	-	****
Oregon ${ }^{\text {+ }}$	\bullet	-	\bullet	281
Rhode Island	\bullet	\bullet	\bullet	271
South Carolina	-	-	-	****
Tennessee	-	-	-	****
Texas	\bullet	\bullet	-	292
Utah	-	\bullet	\bullet	281
Vermont ${ }^{\dagger}$	-	-	\bullet	****
Virginia	\bullet	\uparrow	\uparrow	300
West Virginia	-	\bullet	\bullet	****
Wyoming	\bullet	-	\bullet	****
Other Jurisdictions				
American Samoa	-	-	-	205
District of Columbia	\bullet	\bullet	-	****
DDESS	-	-	\bullet	****
DoDDS	-	-	\bullet	283
Guam	\bullet	\bullet	\bullet	236

American Indian			
1990	1992	1996	2000
\bullet	\bullet	\bullet	261
-	-	\bullet	****
-	-	\bullet	****
-	-	\bullet	****
-	-	\bullet	****
-	\bullet	\bullet	****
-	\bullet	\bullet	****
-	-	\bullet	****
-	\bullet	-	****
-	-	-	****
-	-	\bullet	****
-	-	-	****
\bullet	\bullet	\bullet	****
-	-	\bullet	****
-	-	\bullet	****
-	-	\bullet	****
-	\bullet	\bullet	****
\bullet	\bullet	\bullet	****
-	\bullet	\bullet	****
-	-	\bullet	****
-	-	\bullet	****
-	-	\bullet	253
-	\bullet	\bullet	****
-	-	-	263
-	-	\bullet	243
-	-	\bullet	****
-	\bullet	\bullet	****
\uparrow	-	\bullet	258
\bullet	\bullet	-	****
\uparrow	\bullet	-	264
\bullet	-	\bullet	****
\bullet	\bullet	\bullet	****
-	-	\bullet	****
-	\bullet	\bullet	****
\bullet	\bullet	\bullet	****
-	-	\bullet	****
-	-	\bullet	****
-	\bullet	\bullet	****
-	-	\bullet	****
\bullet	\bullet	\bullet	253
-	-	-	****
-	-	\bullet	****
-	-	\bullet	****
-	-	\bullet	****
-	-	\bullet	****

- Indicates no significant difference between earlier year and 2000 in average scores.
\uparrow Indicates the average score in 2000 was significantly higher than in the specified year.
\downarrow Indicates the average score in 2000 was significantly lower than in the specified year.

NOTE:
Dark arrows, (ヘレ) indicate a significant difference when examining only one jurisdiction and when using a multiple comparison based on all jurisdictions that participated in both years.

Light arrows ($\uparrow \downarrow$) indicate a significant change when only one jurisdiction or the nation is being examined.
**** Sample size is insufficient to permit a reliable estimate.
${ }^{\dagger}$ Indicates that the jurisdiction did not meet one or more of the guidelines for school participation.

- Indicates that the jurisdiction did not participate.
~Special analyses raised concerns about the accuracy and precision of national grade 8 Asian/Pacific Islander results in 1996. As a result, they are omitted from the body of this report. See appendix A for a more detailed discussion.
NOTE: Comparative performance results may be affected by changes in exclusion rates for students with disabilities and limited-English-proficient students in the NAEP samples.
DDESS: Department of Defense Domestic Dependent Elementary and Secondary Schools. DoDDS: Department of Defense Dependents Schools (Overseas).
SOURCE: National Center for Education Statistics, National Assessment of Educational Progress (NAEP), 1990, 1992, 1996, and 2000 Mathematics Assessments.

Figure 3.20: State Achievement Level Results by Race/Ethnicity, Grade 4
Comparison of 2000 state percentages at or above Proficient to previous years by race/ethnicity for grade 4 public schools: 1992-2000

Nation	White		
	1992	1996	2000
	\uparrow	\uparrow	33
Alabama	\uparrow	\uparrow	23
Arizona	\uparrow	\bullet	26
Arkansas	\uparrow	-	18
California ${ }^{\dagger}$	\bullet	\bullet	25
Connecticut	\uparrow	\bullet	41
Georgia	\bullet	\uparrow	29
Hawaii	\bullet	\bullet	19
Idaho ${ }^{\dagger}$	\uparrow	-	24
Illinois ${ }^{\dagger}$	-	-	32
Indiana ${ }^{\dagger}$	\uparrow	\uparrow	34
lowa ${ }^{\dagger}$	-	\uparrow	30
Kansas ${ }^{\dagger}$	-	-	36
Kentucky	\uparrow	-	20
Louisiana	\uparrow	\uparrow	23
Maine ${ }^{\dagger}$	\bullet	\bullet	25
Maryland	\uparrow	\bullet	36
Massachusetts	\uparrow	\uparrow	39
Michigan ${ }^{\dagger}$	\uparrow	\uparrow	37
Minnesota ${ }^{+}$	\uparrow	\bullet	39
Mississippi	\bullet	\bullet	16
Missouri	\uparrow	-	28
Montana ${ }^{\dagger}$	-	-	28
Nebraska	\bullet	-	29
Nevada	-	\bullet	23
New Mexico	\bullet	\bullet	22
New York ${ }^{\dagger}$	\uparrow	\bullet	34
North Carolina	\uparrow	\uparrow	38
North Dakota	\bullet	\bullet	27
Ohio ${ }^{\dagger}$	\uparrow	-	32
Oklahoma	\bullet	-	20
Oregon ${ }^{+}$	-	\bullet	26
Rhode Island	\uparrow	\uparrow	30
South Carolina	\uparrow	\uparrow	28
Tennessee	\uparrow	\bullet	23
Texas	\uparrow	\bullet	41
Utah	\uparrow	\bullet	28
Vermont ${ }^{\dagger}$	-	\uparrow	31
Virginia	\uparrow	\uparrow	35
West Virginia	\uparrow	\bullet	19
Wyoming	\uparrow	\uparrow	28
Other Jurisdictions			
American Samoa	-	-	****
District of Columbia	\bullet	\bullet	49
DDESS	-	\bullet	34
DoDDS	-	\bullet	31
Guam	\bullet	\bullet	****
Virgin Islands	-	-	****

Black		
1992	1996	2000
\uparrow	-	5
\uparrow	-	4
\bullet	-	5
\bullet	-	2
\bullet	-	2
\bullet	-	6
\uparrow	\uparrow	6
\bullet	\bullet	3
\bullet	-	****
-	-	5
\uparrow	\uparrow	14
\bullet	\bullet	****
-	-	7
\bullet	\bullet	2
\uparrow	\uparrow	4
\bullet	\bullet	****
\bullet	-	5
\bullet	\bullet	7
\bullet	-	4
\bullet	\bullet	11
\bullet	-	2
\bullet	-	4
-	-	****
\bullet	-	6
-	-	5
\bullet	-	****
\bullet	-	5
\uparrow	\uparrow	9
\bullet	\bullet	****
\bullet	-	3
\bullet	-	3
-	\bullet	****
\bullet	\bullet	4
\uparrow	\bullet	4
\bullet	\bullet	4
\uparrow	\bullet	12
\bullet	\bullet	****
-	\bullet	****
\bullet	-	6
\bullet	\bullet	6
\bullet	\bullet	****
-	-	****
\bullet	\bullet	2
-	-	12
-	\bullet	7
\bullet	-	****
-	-	1

Hispanic		
1992	1996	2000
\uparrow	\bullet	10
\bullet	\bullet	5
\bullet	-	6
\bullet	\bullet	6
\bullet	-	5
\bullet	\bullet	9
\bullet	\bullet	8
\bullet	\bullet	7
-	-	8
-	-	8
\uparrow	\bullet	16
\bullet	\bullet	13
-	-	11
-	\bullet	9
\bullet	\bullet	7
\bullet	\bullet	****
\bullet	\bullet	10
\bullet	\bullet	10
\bullet	\bullet	15
\bullet	\bullet	13
\bullet	\bullet	6
\bullet	\bullet	11
-	\bullet	12
\bullet	\bullet	7
-	\bullet	8
\bullet	\bullet	6
\bullet	\bullet	7
\bullet	\bullet	13
\bullet	\bullet	12
\bullet	-	12
\bullet	-	9
-	\bullet	6
\uparrow	\bullet	5
\bullet	\bullet	12
\bullet	\bullet	9
\uparrow	\bullet	14
\bullet	\bullet	8
-	\bullet	****
\bullet	\bullet	11
\bullet	\bullet	13
\bullet	\bullet	12
-	-	Δ
\bullet	\bullet	4
-	\bullet	14
-	\bullet	13
\bullet	\bullet	1
-	-	1

See footnotes at end of figure.

Figure 3.20: State Achievement Level Results by Race/Ethnicity, Grade 4 (continued)

Comparison of 2000 state percentages at or above Proficient to previous years by race/ethnicity for grade 4 public schools: 1992-2000

Nation	Asian			American Indian		
	1992	1996	2000	1992	1996	2000
	\bullet	\bullet	\sim	\bullet	-	13
Alabama	\bullet	\bullet	****	\bullet	\bullet	****
Arizona	\bullet	-	28	\bullet	-	4
Arkansas	\bullet	\bullet	****	\bullet	\bullet	9
California ${ }^{\dagger}$	\bullet	\bullet	25	\bullet	\bullet	****
Connecticut	\bullet	\bullet	45	\bullet	-	****
Georgia	\bullet	\bullet	****	\bullet	\bullet	****
Hawaii	\bullet	\bullet	15	\bullet	\bullet	****
Idaho ${ }^{+}$	-	-	****	-	-	****
Illinois ${ }^{\dagger}$	-	-	****	-	-	****
Indiana ${ }^{\dagger}$	\bullet	\bullet	****	\bullet	-	****
lowa ${ }^{\dagger}$	\bullet	-	****	\bullet	-	****
Kansas ${ }^{\dagger}$	-	-	****	-	-	****
Kentucky	\bullet	-	****	\bullet	\bullet	****
Louisiana	\bullet	\bullet	****	\bullet	-	****
Maine ${ }^{+}$	\bullet	\bullet	****	\bullet	\bullet	****
Maryland	\bullet	\bullet	40	\bullet	\bullet	****
Massachusetts	\bullet	\bullet	41	\bullet	\bullet	****
Michigan ${ }^{\dagger}$	\bullet	\bullet	****	\bullet	\bullet	****
Minnesota ${ }^{\dagger}$	\bullet	\bullet	32	\bullet	\bullet	****
Mississippi	\bullet	\bullet	****	\bullet	\bullet	****
Missouri	\bullet	\bullet	****	\bullet	\bullet	****
Montana ${ }^{+}$	-	\bullet	****	-	\bullet	8
Nebraska	\bullet	\bullet	****	\bullet	\bullet	****
Nevada	-	\bullet	21	-	\bullet	7
New Mexico	\bullet	\bullet	****	\bullet	\bullet	5
New York ${ }^{+}$	\bullet	\bullet	47	\bullet	-	****
North Carolina	\bullet	\bullet	****	\bullet	\bullet	21
North Dakota	\bullet	\bullet	****	\bullet	\bullet	7
Ohio ${ }^{\dagger}$	\bullet	-	***	\bullet	-	****
Oklahoma	\bullet	-	****	\bullet	-	12
Oregon ${ }^{+}$	-	\bullet	36	-	\bullet	****
Rhode Island	\uparrow	-	21	-	-	****
South Carolina	\bullet	\bullet	****	\bullet	\bullet	****
Tennessee	\bullet	\bullet	**	\bullet	\bullet	****
Texas	\bullet	-	48	\bullet	-	****
Utah	\bullet	\bullet	16	\bullet	\bullet	****
Vermont ${ }^{\dagger}$	-	\bullet	****	-	\bullet	****
Virginia	\bullet	\bullet	45	\bullet	-	****
West Virginia	\bullet	\bullet	****	\bullet	\bullet	****
Wyoming	\bullet	\bullet	****	\bullet	\bullet	18
Other Jurisdictions						
American Samoa	-	-	-	-	-	****
District of Columbia	\bullet	\bullet	****	\bullet	\bullet	****
DDESS	-	\bullet	23	-	-	****
DoDDS	-	\bullet	27	-	-	10
Guam	-	\bullet	2	\bullet	\bullet	****
Virgin Islands	-	-	****	-	-	****

- Indicates no significant difference between earlier year and 2000 in average scores.
\uparrow Indicates the average score in 2000 was significantly higher than in the specified year.
\downarrow Indicates the average score in 2000 was significantly lower than in the specified year.

NOTE:
Dark arrows, ($\uparrow \downarrow$) indicate a significant difference when examining only one jurisdiction and when using a multiple comparison based on all jurisdictions that participated in both years.

Light arrows ($\uparrow \downarrow$) indicate a significant change when only one jurisdiction or the nation is being examined.
**** Sample size is insufficient to permit a reliable estimate.
${ }^{\dagger}$ Indicates that the jurisdiction did not meet one or more of the guidelines for school participation.

- Indicates that the jurisdiction did not participate.
~ Special analyses raised concerns about the accuracy and precision of national grade 4 Asian/Pacific Islander results in 2000. As a result, they are omitted from the body of this report. See appendix A for a more detailed discussion.
\triangle Percentage is between 0.0 and 0.5
NOTE: Comparative performance results may be affected by changes in exclusion rates for students with disabilities and limited-English-proficient students in the NAEP samples.
DDESS: Department of Defense Domestic Dependent Elementary and Secondary Schools. DoDDS: Department of Defense Dependents Schools (Overseas).
SOURCE: National Center for Education Statistics, National Assessment of Educational Progress (NAEP), 1992, 1996, and 2000 Mathematics Assessments.

Figure 3．21：State Achievement Level Results by Race／Ethnicity，Grade 8

Comparison of 2000 state percentages at or above Proficient to previous years by race／ethnicity for grade 8 public schools：1990－2000

Nation	White			
	1990	1992	1996	2000
	\uparrow	\uparrow	－	34
Alabama	\uparrow	\uparrow	－	23
Arizona ${ }^{\dagger}$	\uparrow	\uparrow	－	31
Arkansas	\uparrow	\uparrow	－	19
California ${ }^{\dagger}$	\uparrow	\bullet	\bullet	27
Connecticut	\uparrow	\uparrow	\uparrow	44
Georgia	\uparrow	\uparrow	\bullet	28
Hawaii	\uparrow	\uparrow	－	28
Idaho ${ }^{\dagger}$	\uparrow	\uparrow	－	30
Illinois ${ }^{\dagger}$	\uparrow	－	－	38
Indiana ${ }^{\dagger}$	\uparrow	\uparrow	\uparrow	35
Kansas ${ }^{\dagger}$	－	－	－	38
Kentucky	\uparrow	\uparrow	\uparrow	23
Louisiana	\uparrow	\uparrow	\uparrow	20
Maine ${ }^{\dagger}$	－	\uparrow	－	33
Maryland	\uparrow	\uparrow	－	40
Massachusetts	－	\uparrow	－	37
Michigan ${ }^{\dagger}$	\uparrow	\uparrow	－	35
Minnesota ${ }^{\dagger}$	\uparrow	\uparrow	－	42
Mississippi	－	\bullet	\bullet	14
Missouri	－	\bullet	\bullet	25
Montana ${ }^{\dagger}$	\uparrow	－	－	40
Nebraska	\uparrow	－	－	34
Nevada	－	－	－	26
New Mexico	\bullet	\uparrow	\bullet	26
New York ${ }^{\dagger}$	\uparrow	\uparrow	－	36
North Carolina	\uparrow	\uparrow	\uparrow	41
North Dakota	\bullet	－	－	33
Ohio	\uparrow	\uparrow	－	34
Oklahoma	\uparrow	－	－	22
Oregon ${ }^{+}$	\uparrow	－	\bullet	34
Rhode Island	\uparrow	\uparrow	\bullet	29
South Carolina	－	\bullet	－	28
Tennessee	－	\uparrow	－	21
Texas	\uparrow	\uparrow	\bullet	37
Utah	－	\uparrow	－	28
Vermont ${ }^{\dagger}$	－	－	\uparrow	33
Virginia	\uparrow	\uparrow	－	33
West Virginia	\uparrow	\uparrow	\uparrow	19
Wyoming	\uparrow	\bullet	\bullet	27
Other Jurisdictions				
American Samoa	－	－	－	＊＊＊＊
District of Columbia	\bullet	\bullet	\bullet	＊＊＊＊
DDESS	－	－	\bullet	38
DoDDS	－	－	－	36
Guam	\bullet	－	－	＊＊＊＊

Black			
1990	1992	1996	2000
－	\uparrow	\bullet	5
\bullet	\uparrow	\bullet	4
\bullet	\bullet	\bullet	8
\bullet	－	\bullet	2
\bullet	\bullet	\bullet	4
\bullet	\bullet	\bullet	4
\bullet	\bullet	\bullet	4
\bullet	－	\bullet	8
\bullet	\bullet	－	＊＊＊＊
\bullet	－	－	7
\bullet	\bullet	\bullet	7
－	－	－	10
\bullet	－	\bullet	7
\bullet	\bullet	\bullet	2
－	\bullet	\bullet	＊＊＊＊
\uparrow	\uparrow	\bullet	7
－	\bullet	\bullet	8
\bullet	\bullet	\bullet	2
\bullet	\bullet	\bullet	＊＊＊＊
－	\bullet	\bullet	1
－	\bullet	\bullet	5
\bullet	－	\bullet	＊＊＊＊
\bullet	－	\bullet	8
－	－	－	7
\bullet	\bullet	\bullet	＊＊＊＊
\bullet	\bullet	\bullet	10
\uparrow	\uparrow	－	7
\bullet	\bullet	－	＊＊＊＊
\uparrow	\bullet	－	8
\uparrow	\bullet	－	5
\bullet	－	\bullet	15
\bullet	\bullet	\bullet	6
－	\bullet	\bullet	4
－	\bullet	\bullet	3
\bullet	\bullet	\bullet	6
－	\bullet	\bullet	＊＊＊＊
－	－	－	＊＊＊＊
\bullet	\bullet	\bullet	5
\bullet	\bullet	\bullet	8
\bullet	\bullet	\bullet	＊＊＊＊
－	－	－	＊＊＊＊
\uparrow	\bullet	\bullet	3
－	－	\bullet	17
－	－	\bullet	10
\bullet	－	\bullet	＊＊＊＊

Hispanic			
1990	1992	1996	2000
个	个	－	9
－	\bullet	－	6
\bullet	\bullet	\bullet	8
－	－	－	4
\bullet	－	－	7
\bullet	\bullet	－	9
\bullet	\bullet	－	5
\bullet	\bullet	\bullet	5
\bullet	－	－	9
\uparrow	－	－	11
\bullet	\bullet	\bullet	13
－	－	－	13
\bullet	－	－	＊＊＊＊
\bullet	\bullet	\bullet	4
－	－	－	＊＊＊＊
\uparrow	\uparrow	－	17
－	\uparrow	－	14
\bullet	－	－	9
\bullet	\bullet	－	13
－	\bullet	\bullet	1
－	\bullet	\bullet	10
\bullet	－	\bullet	23
\bullet	\bullet	\bullet	11
－	－	－	9
\bullet	\bullet	\bullet	6
\uparrow	\bullet	\bullet	12
\uparrow	\uparrow	\bullet	18
\bullet	\bullet	\bullet	17
个	\uparrow	－	21
\bullet	\bullet	－	8
－	－	－	13
\bullet	－	－	4
－	\bullet	\bullet	9
－	－	－	12
\uparrow	\uparrow	\bullet	14
－	\bullet	\bullet	7
－	－	－	＊＊＊＊
\bullet	\bullet	\bullet	14
\uparrow	\uparrow	\bullet	14
\bullet	－	\bullet	10
－	－	－	A
\bullet	\bullet	\bullet	4
－	－	\bullet	16
－	－	－	18
\bullet	\bullet	\bullet	2

See footnotes at end of figure．

Figure 3.21: State Achievement Level Results by Race/Ethnicity, Grade 8 (continued)

Comparison of 2000 state percentages at or above Proficient to previous years by race/ethnicity for grade 8 public schools: 1990-2000

Nation	Asian				American Indian			
	1990	1992	1996	2000	1990	1992	1996	2000
	\bullet	\bullet	\sim	40	\bullet	\bullet	\bullet	12
Alabama	\bullet	\bullet	\bullet	****	\bullet	\bullet	\bullet	****
Arizona ${ }^{\dagger}$	\bullet	\bullet	\bullet	35	\bullet	\bullet	\bullet	****
Arkansas	\bullet	\bullet	-	****	-	\bullet	\bullet	****
California ${ }^{\dagger}$	-	\bullet	-	33	\bullet	-	\bullet	****
Connecticut	\bullet	-	-	38	\bullet	-	\bullet	****
Georgia	\bullet	\bullet	-	****	\bullet	-	\bullet	****
Hawaii	\uparrow	\bullet	-	16	\bullet	\bullet	\bullet	****
Idaho ${ }^{\dagger}$	\bullet	\bullet	-	****	\bullet	\bullet	-	****
Illinois ${ }^{\dagger}$	\bullet	-	-	****	\bullet	-	-	****
Indiana ${ }^{\dagger}$	\bullet	\bullet	\bullet	****	\bullet	-	\bullet	****
Kansas ${ }^{\dagger}$	-	-	-	****	-	-	-	****
Kentucky	\bullet	\bullet	\bullet	****	\bullet	\bullet	\bullet	****
Louisiana	\bullet	-	-	****	\bullet	-	\bullet	****
Maine ${ }^{\dagger}$	-	\bullet	\bullet	****	-	-	\bullet	****
Maryland	\uparrow	\uparrow	-	64	\bullet	-	-	****
Massachusetts	-	\bullet	-	49	-	-	\bullet	****
Michigan ${ }^{\dagger}$	\bullet	-	-	****	\bullet	\bullet	\bullet	****
Minnesota ${ }^{\dagger}$	\bullet	\bullet	-	****	\bullet	-	\bullet	****
Mississippi	-	-	\bullet	****	-	-	\bullet	****
Missouri	-	-	-	****	-	-	\bullet	****
Montana ${ }^{\dagger}$	\bullet	-	\bullet	****	\bullet	-	\bullet	8
Nebraska	\bullet	\bullet	\bullet	****	\bullet	\bullet	\bullet	****
Nevada	-	-	-	26	-	-	-	11
New Mexico	\bullet	\bullet	\bullet	****	\bullet	\bullet	\bullet	4
New York ${ }^{\dagger}$	\bullet	-	-	42	-	-	\bullet	****
North Carolina	\bullet	\bullet	\bullet	****	\bullet	\bullet	\bullet	****
North Dakota	-	-	-	****	-	-	\bullet	6
Ohio	-	-	-	****	\bullet	-	-	****
Oklahoma	-	-	-	****	\bullet	-	-	8
Oregon ${ }^{+}$	-	-	\bullet	35	\bullet	-	\bullet	****
Rhode Island	-	\bullet	\bullet	21	-	\bullet	\bullet	****
South Carolina	-	\bullet	-	****	-	\bullet	\bullet	****
Tennessee	-	\bullet	\bullet	****	-	\bullet	\bullet	****
Texas	\bullet	\bullet	\bullet	42	\bullet	\bullet	\bullet	****
Utah	-	\bullet	\bullet	35	-	-	\bullet	****
Vermont ${ }^{\dagger}$	-	-	-	****	-	-	\bullet	****
Virginia	\bullet	-	-	49	-	-	\bullet	****
West Virginia	\bullet	-	-	****	\bullet	-	\bullet	****
Wyoming	\bullet	-	-	****	-	-	\bullet	7
Other Jurisdictions								
American Samoa	-	-	-	1	-	-	-	****
District of Columbia	\bullet	-	\bullet	****	\bullet	-	\bullet	****
DDESS	-	-	\bullet	****	-	-	\bullet	****
DoDDS	-	-	\bullet	30	-	-	\bullet	****
Guam	\bullet	\bullet	\bullet	4	\bullet	\bullet	\bullet	****

- Indicates no significant difference between earlier year and 2000 in average scores.
\uparrow Indicates the average score in 2000 was significantly higher than in the specified year.
\downarrow Indicates the average score in 2000 was significantly lower than in the specified year.

NOTE:
Dark arrows, ($\uparrow \downarrow$) indicate a significant difference when examining only one jurisdiction and when using a multiple comparison based on all jurisdictions that participated in both years.

Light arrows ($\uparrow \downarrow$) indicate a significant change when only one jurisdiction or the nation is being examined.
**** Sample size is insufficient to permit a reliable estimate.
${ }^{\dagger}$ Indicates that the jurisdiction did not meet one or more of the guidelines for school participation.

- Indicates that the jurisdiction did not participate.
~Special analyses raised concerns about the accuracy and precision of national grade 8 Asian/Pacific Islander results in 1996. As a result, they are omitted from the body of this report. See appendix A for a more detailed discussion.
Δ Percentage is between 0.0 and 0.5
NOTE: Comparative performance results may be affected by changes in exclusion rates for students with disabilities and limited-English-proficient students in the NAEP samples.
DDESS: Department of Defense Domestic Dependent Elementary and Secondary Schools. DoDDS: Department of Defense Dependents Schools (Overseas).
SOURCE: National Center for Education Statistics, National Assessment of Educational Progress (NAEP), 1990, 1992, 1996, and 2000 Mathematics Assessments.

At grade 4, the percentage of students at or above Proficient in 2000 was higher than that in 1992 for white students in 24 jurisdictions, for black students in 6 jurisdictions, for Hispanic students in 2 jurisdictions, and for Asian/Pacific Islander students in 1 jurisdiction. None of the apparent changes for American Indian students were statistically significant in any jurisdiction.

In Indiana and Texas, the percentages of students performing at or above Proficient increased for white, black, and Hispanic students. In Alabama, Louisiana, and North Carolina, gains were made among white and black students. Between 1996 and 2000, the percentages of students at or above Proficient increased for white students in 9 jurisdictions, and for black students in 3 jurisdictions. None of the other apparent racial/ethnic group changes was statistically significant in any jurisdiction.

At grade 8, the percentage of students at or above Proficient in 2000 was higher than that in 1990 for white students in 27 jurisdictions, for black students in 3 jurisdictions, and for Hispanic students in 5 jurisdictions. None of the apparent changes for Asian/Pacific Islander or American Indian students in any state were statistically significant. North Carolina was the only state in which the percentages of white, black, and Hispanic students at or above Proficient increased during this time period. In Oklahoma, both white and black students made gains, and in Illinois, New

York, Ohio, and Texas both white and Hispanic students made gains. Between 1996 and 2000, the only increase in percentages of students at or above Proficient across the racial/ethnic groups and jurisdictions were among white students in North Carolina.

The percentages of students at or above Basic by state across assessment years are presented in appendix B (tables B. 37 and B.40). Cumulative percentages in each achievement level in 2000 by race/ethnicity for each jurisdiction are also given in appendix B (tables B. 38 and B.41).

Trends in Scale Score Differences Between Selected Subgroups by State

Similar to results for the nation, trends in the score differences or "gaps" between male and female students across the assessment years were relatively small and unchanged across the states. Also similar to the national data, the score gaps between male and female students are generally much smaller than those seen between racial/ ethnic subgroups. The only change in the magnitude of the racial/ethnic gaps studied across jurisdictions was a narrowing of the gap between white and Hispanic eighthgraders in North Carolina between 1990 and 2000. None of the other changes in racial/ethnic score gaps across years were statistically significant. The gender and racial/ethnic score gap results for jurisdictions are provided in appendix B.

Free/Reduced-Price Lunch Eligibility and NAEP Scores by State

NAEP collects data on students' eligibility for the federal Free/Reduced-Price lunch program as an indicator of economic status in both the national and state-by-state samples. Figures 3.22 and 3.23 present the results by state for grades 4 and 8 , respectively. As noted previously, data collection of student eligibility for this program began in 1996, so the trend data displayed have only two points. At grade 4, students eligible for the program (those meeting the low-income guidelines) had improved average scale scores from 1996 to 2000 in 10 jurisdictions, while students whose families had somewhat higher incomes, and were consequently ineligible for the program, had improved average scale scores in 11 jurisdictions. Both eligible and noneligible students showed gains since 1996 in five jurisdictions (Alabama, Louisiana,

North Carolina, South Carolina, and Virginia).

At grade 8, students eligible for the program had higher scores from 1996 to 2000 in 5 jurisdictions, while students ineligible had higher scores in 10 jurisdictions. Both eligible and non-eligible students made gains between 1996 and 2000 in three jurisdictions (Indiana, North Carolina, and Virginia).

The percentages of students at or above Proficient by Free/Reduced-Price Lunch eligibility are presented for each participating jurisdiction in figures 3.24 and 3.25 for grades 4 and 8 , respectively. Additional data for these subgroups of students by jurisdiction are included in appendix B:The percentages of students at or above Basic across years are presented in tables B. 49 and B.52, and the cumulative percentages of students in each achievement level in 2000 are presented in tables B. 50 and B. 53 .

Figure 3.22: State Scale Score Results by Free/Reduced-Price Lunch Eligibility, Grade 4
State average scale scores by student eligibility for free/reduced-price lunch program for grade 4 public schools: 1996-2000

${ }^{\dagger}$ Indicates that the jurisdiction did not meet one or more of the guidelines for school participation.

- Indicates that the jurisdiction did not participate.
**** Sample size is insufficient to permit a reliable estimate.
NOTE: Comparative performance results may be affected by changes in exclusion rates for students with disabilities and limited-English-proficient students in the NAEP samples.
DDESS: Department of Defense Domestic Dependent Elementary and Secondary Schools. DoDDS: Department of Defense Dependents Schools (Overseas). SOURCE: National Center for Education Statistics, National Assessment of Educational Progress (NAEP) 1996 and 2000 Mathematics Assessments.

State average scale scores by student eligibility for free/reduced-price lunch program for grade 8 public schools: 1996-2000

Nation	Eligible		Not Eligible	
	1996	2000	1996	2000
	\bullet	255	\uparrow	285
Alabama	\bullet	243	\bullet	275
Arizona ${ }^{\dagger}$	\bullet	252	\bullet	280
Arkansas	\bullet	249	\bullet	269
California ${ }^{+}$	\bullet	242	\bullet	273
Connecticut	\bullet	251	\uparrow	292
Georgia	\uparrow	248	\bullet	278
Hawaii	\bullet	251	-	270
Idaho ${ }^{\dagger}$	-	264	-	284
Illinois ${ }^{\dagger}$	-	259	-	285
Indiana ${ }^{\dagger}$	\uparrow	267	\uparrow	288
Kansas ${ }^{\dagger}$	-	267	-	290
Kentucky	\uparrow	257	\uparrow	281
Louisiana	\bullet	246	\uparrow	276
Maine ${ }^{\dagger}$	\bullet	273	\bullet	287
Maryland	\uparrow	251	\uparrow	286
Massachusetts	\bullet	261	\uparrow	289
Michigan ${ }^{+}$	\bullet	256	\bullet	286
Minnesota ${ }^{\dagger}$	-	274	\bullet	291
Mississippi	-	241	-	267
Missouri	-	256	-	280
Montana ${ }^{\dagger}$	\bullet	275	\bullet	292
Nebraska	\downarrow	262	\bullet	288
Nevada	-	248	-	275
New Mexico	\bullet	250	\bullet	272
New York ${ }^{\dagger}$	-	261	\bullet	286
North Carolina	\uparrow	261	\uparrow	289
North Dakota	-	271	\bullet	287
Ohio	-	262	-	289
Oklahoma	-	259	-	280
Oregon ${ }^{\dagger}$	\bullet	263	\bullet	287
Rhode Island	\bullet	252	\uparrow	283
South Carolina	\uparrow	252	\uparrow	278
Tennessee	\bullet	244	\bullet	274
Texas	\uparrow	261	\bullet	285
Utah	\bullet	262	\bullet	281
Vermont ${ }^{\dagger}$	\bullet	266	\uparrow	288
Virginia	\uparrow	258	\uparrow	282
West Virginia	\uparrow	259	\uparrow	278
Wyoming	-	265	\bullet	281
Other Jurisdictions				
American Samoa	-	195	-	****
District of Columbia	\bullet	227	\uparrow	261
DDESS	\bullet	268	\bullet	281
DoDDS	\bullet	271	\bullet	280
Guam	\bullet	216	\bullet	238

- Indicates no significant difference between earlier year and 2000 in average scores.
\uparrow Indicates the average score in 2000 was significantly higher than in the specified year.
\downarrow Indicates the average score in 2000 was significantly lower than in the specified year.

NOTE:
Dark arrows, ($\uparrow \downarrow$) indicate a significant difference when examining only one jurisdiction and when using a multiple comparison based on all jurisdictions that participated in both years.

Light arrows ($\uparrow \downarrow$) indicate a significant change when only one jurisdiction or the nation is being examined.
${ }^{\dagger}$ Indicates that the jurisdiction did not meet one or more of the guidelines for school participation.

- Indicates that the jurisdiction did not participate.
**** Sample size is insufficient to permit a reliable estimate.
NOTE: Comparative performance results may be affected by changes in exclusion rates for students with disabilities and limited-English-proficient students in the NAEP samples.
DDESS: Department of Defense Domestic Dependent Elementary and Secondary Schools. DoDDS: Department of Defense Dependents Schools (Overseas). SOURCE: National Center for Education Statistics, National Assessment of Educational Progress (NAEP) 1996 and 2000 Mathematics Assessments.

State percentages at or above Proficient by student eligibility for free/reduced-price lunch program for grade 4 public schools: 1996-2000

Nation	Eligible		Not Eligible	
	1996	2000	1996	2000
	\bullet	9	\uparrow	33
Alabama	\bullet	5	\bullet	24
Arizona	\bullet	7	\bullet	26
Arkansas	\bullet	5	\bullet	21
California ${ }^{\dagger}$	\bullet	5	\bullet	25
Connecticut	-	11	\bullet	40
Georgia	\bullet	5	\uparrow	29
Hawaii	\bullet	6	\bullet	22
Idaho ${ }^{\dagger}$	-	13	-	28
Illinois ${ }^{\dagger}$	-	7	-	30
Indiana ${ }^{\dagger}$	\uparrow	14	\uparrow	37
lowa ${ }^{\dagger}$	\bullet	17	\bullet	32
Kansas ${ }^{\dagger}$	-	13	-	40
Kentucky	-	7	\bullet	26
Louisiana	\uparrow	7	\uparrow	27
Maine ${ }^{\dagger}$	\bullet	14	\bullet	29
Maryland	\bullet	7	\bullet	31
Massachusetts	\bullet	9	\uparrow	42
Michigan ${ }^{\dagger}$	\bullet	11	\uparrow	38
Minnesota ${ }^{\dagger}$	\bullet	15	\bullet	40
Mississippi	-	4	\bullet	18
Missouri	\bullet	9	\bullet	31
Montana ${ }^{\dagger}$	\bullet	10	\bullet	32
Nebraska	\bullet	11	\bullet	31
Nevada	\bullet	6	\bullet	22
New Mexico	\bullet	5	-	22
New York ${ }^{\dagger}$	\bullet	8	\bullet	36
North Carolina	\uparrow	12	\uparrow	39
North Dakota	\bullet	16	\bullet	29
Ohio ${ }^{\dagger}$	-	11	-	35
Oklahoma	-	8	-	25
Oregon ${ }^{+}$	-	11	\bullet	30
Rhode Island	\bullet	7	\uparrow	33
South Carolina	\uparrow	7	\uparrow	31
Tennessee	\bullet	6	\bullet	27
Texas	\bullet	13	\bullet	40
Utah	\bullet	13	\bullet	29
Vermont ${ }^{\dagger}$	-	15	-	34
Virginia	\bullet	9	\bullet	32
West Virginia	\bullet	11	\bullet	25
Wyoming	-	16	\uparrow	30
Other Jurisdictions				
American Samoa	-	-	-	****
District of Columbia	\bullet	2	\bullet	22
DDESS	\bullet	18	\bullet	28
DoDDS	\bullet	17	\bullet	24
Guam	-	1	-	4
Virgin Islands	-	1	-	****

- Indicates no significant difference between earlier year and 2000 in average scores.
\uparrow Indicates the average score in 2000 was significantly higher than in the specified year.
\downarrow Indicates the average score in 2000 was significantly lower than in the specified year.

NOTE:
Dark arrows, ($\uparrow \downarrow$) indicate a significant difference when examining only one jurisdiction and when using a multiple comparison based on all jurisdictions that participated in both years.

Light arrows ($\uparrow \downarrow$) indicate a significant change when only one jurisdiction or the nation is being examined.
${ }^{\dagger}$ Indicates that the jurisdiction did not meet one or more of the guiaeınnes for school participation.

- Indicates that the jurisdiction did not participate.
**** Sample size is insufficient to provide a reliable estimate.
Δ Percentage is between 0.0 and 0.5 .
NOTE: Comparative performance results may be affected by changes in exclusion rates for students with disabilities and limited-English-proficient students in the NAEP samples.
DDESS: Department of Defense Domestic Dependent Elementary and Secondary Schools. DoDDS: Department of Defense Dependents Schools (Overseas). SOURCE: National Center for Education Statistics, National Assessment of Educational Progress (NAEP) 1996 and 2000 Mathematics Assessments.

Figure 3.25: State Achievement Level Results by Free/Reduced-Price Lunch Eligibility, Grade 8
State percentages at or above Proficient by student eligibility for free/reduced-price lunch program for grade 8 public schools: 1996-2000

Nation	Eligible		Not Eligible	
	1996	2000	1996	2000
	\bullet	10	\bullet	35
Alabama	\bullet	5	\bullet	23
Arizona ${ }^{\dagger}$	\bullet	9	\bullet	27
Arkansas	\bullet	7	-	18
California ${ }^{\dagger}$	\bullet	4	-	24
Connecticut	\bullet	7	\bullet	42
Georgia	\bullet	5	\bullet	27
Hawaii	\bullet	8	\bullet	21
Idaho ${ }^{\dagger}$	-	17	-	32
Illinois ${ }^{\dagger}$	-	12	-	34
Indiana ${ }^{\dagger}$	\bullet	13	\uparrow	36
Kansas ${ }^{\dagger}$	-	17	-	41
Kentucky	\uparrow	8	\uparrow	29
Louisiana	\bullet	4	\uparrow	22
Maine ${ }^{\dagger}$	\bullet	20	\bullet	36
Maryland	\bullet	7	\bullet	37
Massachusetts	\bullet	11	-	38
Michigan ${ }^{\dagger}$	\bullet	9	\bullet	35
Minnesota ${ }^{\dagger}$	\bullet	27	\bullet	42
Mississippi	-	3	-	14
Missouri	-	9	\bullet	26
Montana ${ }^{\dagger}$	\bullet	25	\bullet	43
Nebraska	\bullet	15	-	36
Nevada	-	6	-	24
New Mexico	\bullet	6	\bullet	21
New York ${ }^{\dagger}$	\bullet	12	\bullet	34
North Carolina	\uparrow	13	\uparrow	38
North Dakota	\bullet	21	\bullet	35
Ohio	-	10	-	36
Oklahoma	-	8	-	26
Oregon ${ }^{\dagger}$	\bullet	16	\bullet	37
Rhode Island	\bullet	7	\uparrow	31
South Carolina	\bullet	6	\uparrow	27
Tennessee	\bullet	7	\bullet	23
Texas	\bullet	11	\bullet	34
Utah	\bullet	15	\bullet	29
Vermont ${ }^{\dagger}$	\bullet	14	\uparrow	38
Virginia	\bullet	8	\bullet	31
West Virginia	\bullet	8	\uparrow	25
Wyoming	\bullet	15	\bullet	28
Other Jurisdictions				
American Samoa	-	1	-	****
District of Columbia	\bullet	2	\bullet	18
DDESS	-	16	\bullet	31
DoDDS	-	18	\bullet	27
Guam	-	1	\bullet	5

- Indicates no significant difference between earlier year and 2000 in average scores.
\uparrow Indicates the average score in 2000 was significantly higher than in the specified year.
\downarrow Indicates the average score in 2000 was significantly lower than in the specified year.

NOTE:
Dark arrows, ($\uparrow \downarrow$) indicate a significant difference when examining only one jurisdiction and when using a multiple comparison based on all jurisdictions that participated in both years.

Light arrows ($\uparrow \downarrow$) indicate a significant change when only one jurisdiction or the nation is being examined.
${ }^{\dagger}$ Indicates that the jurisdiction did not meet one or more of the guidelines for school participation.

- Indicates that the jurisdiction did not participate.
**** Sample size is insufficient to provide a reliable estimate.
NOTE: Comparative performance results may be affected by changes in exclusion rates for students with disabilities and limited-English-proficient students in the NAEP samples.
DDESS: Department of Defense Domestic Dependent Elementary and Secondary Schools. DoDDS: Department of Defense Dependents Schools (Overseas). SOURCE: National Center for Education Statistics, National Assessment of Educational Progress (NAEP) 1996 and 2000 Mathematics Assessments.

4

Becoming a More Inclusive National Assessment

Legislation at the federal level now mandates the inclusion of all students in large-scale academic assessments. ${ }^{1}$ As a consequence, most states have assessment programs that must make provisions for special-needs students-those with disabilities or limited English proficiency-that include the allowance of testing accommodations when appropriate. Assessing as representative a sample of the nation's students as possible is particularly important for NAEP's mission to serve as a key indicator of the academic achievement

Chapter Focus

How would the NAEP results differ if accommodations were permitted for special-needs students? of the nation's students. This mission can be satisfactorily accomplished only if the assessment results include data gathered from all groups of students, including those classified as having special needs.

Although the intent of NAEP has consistently been to include special-needs students in its assessments to the fullest degree possible, the implementation of the assessment has always resulted in some exclusion of students who could not be assessed meaningfully without accommodations. Participating schools have been permitted to exclude certain students who have been classified as having a

Chapter Contents

Two sets of 2000 NAEP Mathematics Results

Results for the Nation

National Results by Gender

National Results by Race/Ethnicity

Overall State Results disability under the Individuals with Disabilities Education Act, based upon their Individualized Education Programs (IEP) and Section 504 of the Rehabilitation Act of 1973.

[^5]Similarly, schools have been permitted to exclude some students they identify as being limited English proficient. Exclusion decisions are made in accordance with explicit criteria provided by the NAEP program.

In order to move the NAEP assessments toward more inclusive samples, the NAEP program began to explore the use of accommodations with special-needs students during the 1996 and 1998 assessments. An additional impetus for this change was an attempt to keep NAEP consistent with state and district testing policies that increasingly offered accommodations so that more special-needs students could be assessed. In both 1996 and 1998, the national NAEP sample was split so that some of the schools sampled were permitted to provide accommodations to specialneeds students and the others were not. This sample design made it possible to study the effects on NAEP results of including special-needs students in the assessments under alternate testing conditions. Technical research papers have been published with the results of these comparisons. ${ }^{2}$ Based on the outcomes of these technical analyses, the 1998 results of those NAEP assessments that used new test frameworks (writing and civics), and hence also began new trend lines, were reported with the inclusion of data from accommodated special-needs students.

The results presented in the 1996 mathematics report card included the performance of those students with disabilities (SD) or with limited English proficiency (LEP) who were assessed without the possibility of accommodations. They did
not include the performance of students for whom accommodations were permitted in order to preserve comparability with the results from 1990 and 1992. Students in those assessments had not had accommodations offered to them. However, in both the 1996 and 2000 mathematics assessments, the NAEP program used the split-sample design, so that trends in students' mathematics achievement could be reported across all the assessment years and, at the same time, the program could continue to examine the effects of including students assessed with accommodations.

Two Sets of 2000 NAEP Mathematics Results

This report card is the first to display two different sets of NAEP mathematics results based on the split-sample design: 1) those that reflect the performance of regular and special-needs students when accommodations were not permitted, and 2) those that reflect the performance of regular and special-needs students-both those who were accommodated and those who could test without accommodations-when accommodations were permitted. It should be noted that accommodated students make up a small proportion of the total weighted number of students assessed (see table A.8, page 204 in appendix A for details). Making accommodations available may change the overall assessment results in subtle and different ways. For example, when accommodations are permitted, there may be some occurrences of students being accommodated who might have taken the test under standard conditions if accommodations were not permitted. This could lead

2 Olson, J.F. and Goldstein, A. A. (1997). The inclusion of students with disabilities and limited English proficient students in large-scale assessments: A summary of recent progress. (NCES Publication No. 97-482). Washington, DC: National Center for Education Statistics.
Mazzeo, J., Carlson, J.E., Voelkl, K.E., \& Lutkus, A. D. (1999). Increasing the participation of special needs students in NAEP: A report on 1996 research activities. (NCES Publication No. 2000-473). Washington, DC: National Center for Education Statistics.
to an overall increase in the average assessment results, if accommodations were to increase special-needs students' performance. Conversely, when accommodations are permitted, special-needs students who could not have been tested without accommodations could be included in the sample. Assuming that these are generally lower-performing students, their inclusion in the sample-even with accommoda-tions-could result in an overall lower average score.

Chapters 1, 2, 3, 5, and 6 of this report are based on the first set of results (no accommodations offered). This chapter presents an overview of the second set of results-results that include students who were provided accommodations during the assessment administration. By including these results, the NAEP program begins a phased transition toward a more inclusive reporting sample. Future assessment results will be based solely on a student and school sample in which accommodations are permitted.

The two sets of results presented in this chapter were obtained by administering the assessment to a nationally representative sample of students and schools. In one part of the schools sampled, no accommodations were permitted; all students were assessed under the same conditions that were the basis for reporting results from the 1990, 1992, and 1996 NAEP mathematics assessments. In another part of the schools sampled, accommodations were permitted for students with disabilities and limited English proficient students who normally receive accommodations in their district or state assessment programs. Most accommodations that schools routinely provide for
their own testing programs were permitted. The permitted accommodations included, but were not limited to the following:
■ one-on-one testing,

- bilingual books,
- large print book,

■ small-group testing,

- extended time,
- oral reading of directions, and
- use of an aide for transcribing responses. (See appendix A, table A.10, page 209, for greater detail on the numbers and percentages of students accommodated by accommodation type in the 1996 and 2000 assessments.)

Figure 4.1 provides a visual representation of how the two sets of results were based on the two samples in 1996 and 2000. Included in both sets of results (accommodations not permitted and accommodations permitted) are those students from both samples of schools who were not identified as either SD or LEP. In addition, the first set of results (accommodations not permitted) includes SD and LEP students from the sample of schools where accommodations were not permitted (see middle portion of figure 4.1). This is the set of results that allows for trend comparisons back to 1990 and are presented in the other chapters of this report.

The second set of results, accommodations permitted (see bottom portion of figure 4.1), includes SD and LEP students from the sample of schools where accommodations were permitted. This is the set of results that form the new, more inclusive baseline for future reporting of trend comparisons for the NAEP mathematics assessment.

Figure 4.1 Split-Sample Design

The two sets of NAEP results based on a split-sample design

Sample with no accommodations permitted	Sample with accommodations permitted
Non-SD/LEP students	Non-SD/LEP students
SD/LEP	
Students	SD/LEP
Students	

Split-sample design

The national sample was split. In part of the schools, accommodations were not permitted for students with disabilities (SD) and students with limited English proficiency (LEP). In the other schools, accommodations were permitted for SD and LEP students who routinely received them in their school assessments.

Accommodations-not-permitted results

The accommodations-not-permitted results include the performance of students from both samples who were not classified as SD or LEP and the performance of SD and LEP students from the sample in which no accommodations were permitted.

Accommodations-permitted results

The accommodations-permitted results also include the performance of students from both samples who were not classified as SD or LEP; however, the SD and LEP students whose performance is included in this set of results were from the sample in which accommodations were permitted. Since students who required testing accommodations could be assessed and represented in the overall results, it was anticipated that these results would include more special-needs students and reflect a more inclusive sample.

In the NAEP 2000 sample where accommodations were not permitted, 15 percent of the students at grade 4, 14 percent at grade 8 , and 9 percent at grade 12 , were identified by their schools as having special needs (i.e., either as students with disabilities or limited English proficient students). In the other sample where accommodations were offered, 17 percent of the students at grade 4,13 percent at grade 8 , and 9 percent at grade 12 were identified as having special needs. In the sample where accommodations were not permitted, 48 percent of the special-needs students at each of the three grade levels (between 4 and 7 percent of all studentssee appendix A, table A.6, page 201) were excluded from NAEP testing by their schools. In the sample where accommodations were offered, between 22 and 28 percent of the special-needs students were excluded from the assessment (between 2 and 4 percent of the total sample). Thus, offering accommodations would appear to lead to greater inclusion of special-needs students.

The focus of this chapter is a comparison of data from the two sets of results: 1) accommodations were not permitted, and (2) accommodations were permitted. Because the split-sample design was used in both 1996 and 2000 for the NAEP national mathematics assessment, both sets of results are presented for both years. The split-sample design was first used in the NAEP state mathematics assessment in 2000 . Overall results are provided for the nation and for participating states and other
jurisdictions. In addition, national results are presented by gender and by race/ ethnicity. These results are discussed in terms of statistically significant differences between the two sets of results in each year, changes between assessment years, and differences between subgroups of students within each set of results. Throughout this chapter, the assessment results that include SD and LEP students for whom accommodations were not permitted will be referred to as the "accommodations-not-permitted" results. The set of results that includes SD and LEP students for whom accommodations were permitted will be referred to as the "accommodations-permitted" results.

Results for the Nation Accommodations Not Permitted and Accommodations Permitted

Table 4.1 displays the average mathematics scale scores for the nation in 1996 and 2000 for two sets of results: 1) accommodations not permitted, and 2) accommodations permitted. At grades 4 and 8 the apparent differences between the two average scores in either 1996 or 2000 were not statistically significant. At grade 12, the accommodations-permitted average score in 1996 was two points lower than the accommodations-not-permitted average score. The small difference between the two sets of results in 2000 was not statistically significant. Although there was a decline in average scores at grade 12 in both sets of results between 1996 and 2000 , the 2 point decline when accommodations were permitted was not statistically significant.

Table 4.1 Comparison of Two Sets of National Scale Score Results
National average mathematics scale scores by type of results, grades 4, 8, and 12: 1996-2000

	Accommodations not permitted	Accommodations permitted
Grade 4		
1996	224 *	224^{*}
2000	228	226
Grade 8		
1996	272 *	271 *
2000	275	274
Grade 12		304 *
1996	301	300
2000		302

* Significantly different from 2000.
\dagger Significantly different from the sample where accommodations were not permitted.
SOURCE: National Center for Education Statistics, National Assessment of Educational Progress (NAEP), 1996 and 2000 Mathematics Assessments.

As noted in the introduction to this chapter, NAEP has always sought to include special-needs students proportional to their representation in the U.S. population. Offering accommodations tends to reduce exclusion rates for special-needs students and therefore allows NAEP to offer a fairer and more accurate picture of the status of American education. Because special-needs students are typically classified as eligible for special educational services after having shown some difficulty in the regular learning environment, some may assume that the academic achievement of special-needs students would be lower than that of students without such needs. This assumption appears to have been justified only in the observed difference between the two sets of grade 12 mathematics results in 1996, where the accom-modations-permitted results, which included slightly more special-needs students because of the availability of accommoda-
tions, were lower than the accommoda-tions-not-permitted results. It is important to examine the percentages of students attaining the NAEP achievement levels, however, to see if there were higher percentages at the lower achievement levels (i.e., below Basic and Basic), when students were assessed with accommodations.

Table 4.2 shows the percentages of students attaining each of the achievement levels. The percentages are similar across the two sets of 1996 results for grades 4 and 8; apparent differences between the accom-modations-not-permitted and the accom-modations-permitted results were not significantly different. At grade 12, however, the percentage of students below Basic in 1996 was higher when accommodations were permitted than when they were not permitted. In 2000, the percentage of fourth-graders below Basic was higher when accommodations were permitted than when accommodations were not permitted.

Table 4.2 Comparison of Two Sets of National Achievement Level Results

Percentage of students within each mathematics achievement level range and at or above achievement levels by type of results, grades 4, 8, and 12: 1996 and 2000

* Significantly different from 2000.
\dagger Significantly different from the sample where accommodations were not permitted.
NOTE: Percentages within each mathematics achievement level range may not add to 100 or to the exact percentages at or above achievement levels due to rounding.
SOURCE: National Center for Education Statistics, National Assessment of Educational Progress (NAEP), 1996 and 2000 Mathematics Assessments.

National Results by Gender Accommodations Not Permitted and Accommodations Permitted

The average mathematics scale scores by gender for both sets of results in 1996 and 2000 are provided in table B. 58 (page 297) in appendix B. In 1996, female students at grade 12 had higher mathematics scores when accommodations were not permitted than when accommodations were permitted. The same was true for male students at grade 8 in 2000.

While the apparent difference in scores between male and female students in the
fourth grade was not statistically significant when accommodations were not permitted in 2000, male students did score higher than females when accommodations were permitted. The reverse was true at grade 8 , where male students scored higher than females when accommodations were not permitted, but the apparent difference in scores was not statistically significant when accommodations were permitted.
At grade 12, male students outperformed female students in 2000 regardless of whether or not accommodations were permitted.

There was also some variation by grade reflected in the two sets of results with respect to differences in the performance of female students between 1996 and 2000. At grade 4, female students had higher mathematics scores in 2000 than in 1996 when accommodations were not permitted and lower scores in 2000 at grade 12 when accommodations were not permitted. However, apparent differences in the performance of female students at grades 4 and 12 between 1996 and 2000 were not statistically significant when accommodations were permitted. The reverse was true at grade 8 , where female students showed no statistically significant difference in performance when accommodations were not permitted but did show an increase from 1996 to 2000 when accommodations were permitted. The relationship in the performance of male students between 1996 and 2000 was similar in both sets of results.

The percentages of male and female students attaining the Basic, Proficient, and Advanced levels are provided in table B. 59 (page 298) in appendix B. Comparing the two sets of results both in 1996 and 2000, no statistically significant differences were found in the percentages of students attaining each of the achievement levels at grades 4 or 8 . At grade 12, however, a higher percentage of both male and female students were below Basic when accommodations were permitted in 1996 than when they were not.

National Results by Race/Ethnicity
 Accommodations Not Permitted and Accommodations Permitted

NAEP assessments across academic subjects have typically reported large score differences according to race and ethnic group membership. If students with disabilities or limited English proficient students are over represented in a particular racial or ethnic group, that group's assessment scores may decrease. Table B. 60 (page 299) in appendix B provides the average mathematics scale scores for each of the race/ethnicity categories for the two sets of results in 1996 and 2000. There were no statistically significant differences observed between the average scores when accommodations were not permitted and when accommodations were permitted for any of the race/ ethnicity categories in either 1996 or 2000.

As noted in chapter 3, a pattern of performance differences by race/ethnicity can be seen in the accommodations-notpermitted results in 2000 . Both white and Asian/Pacific Islander students scored higher than black, Hispanic, or American Indian students. The same pattern can be observed in the accommodations-permitted results. The only differences noted in the performance by ethnicity pattern between the two sets of results was that in the accommodations-permitted results, American Indian students scored higher than Hispanic students at grade 4 and higher than black students at grade 8. This
was not the case in the accommodations-not-permitted results. At both grades 4 and 8, black students scored higher in 2000 than in 1996 when accommodations were permitted, while the apparent increase was not significant when accommodations were not permitted.

The percentages of students in each race/ethnicity category who attained the Basic, Proficient, and Advanced levels are provided in table B. 61 (page 300) in appendix B . No significant differences were found at either grade 4 or grade 8 between the accommodations-not-permitted results and the accommodations-permitted results for the percentages of students attaining each of the achievement levels in 1996 and 2000. At grade 12, a higher percentage of white students in 1996 were below Basic when accommodations were permitted than when accommodations were not permitted.

State Results
 Accommodations Not Permitted and Accommodations Permitted

While the split-sample design was used for both the 1996 and 2000 national assessments, it was used for the first time in the state assessment of mathematics in 2000. The two sets of average scale scores for the jurisdictions that participated in 2000 are presented in tables 4.3 and 4.4 for grades 4 and 8 , respectively. As with the presentation of results for jurisdictions in previous chapters, two types of statistical tests are indicated in these tables-one that involves a multiple-comparison procedure based on all jurisdictions that participated, and one
that examines each jurisdiction in isolation. The following discussion of differences between the accommodations-not-permitted results and the accommodationspermitted results is based solely on the multiple-comparison procedure.

Consistent with the national results, none of the apparent differences between the accommodations-not-permitted results and the accommodations-permitted results for grade 4 were statistically significant. At grade 8 , however, there were seven states that had higher average scores when accommodations were not permitted than when they were permitted: Maryland, Massachusetts, Missouri, Nevada, New York, North Carolina, and West Virginia.

Figures 4.2 and 4.3 show comparisons of scale scores across states when accommodations were permitted for fourth- and eighth-grade students, respectively. Nine states were included among the highestperforming jurisdictions at grade 4: Connecticut, Minnesota, Massachusetts, Indiana, Kansas,Vermont, Texas, Iowa and Ohio. Eight of these states were also included among the highest-performing jurisdictions when accommodations were not permitted (Ohio had lower average scores than Minnesota, Massachusetts, and Indiana when accommodations were not permit-ted-see chapter 2). At grade 8 , the cluster of highest-performing jurisdictions when accommodations were permitted included Minnesota, Montana, and Kansas. The same three states were also the highest-performing jurisdictions when accommodations were not permitted.

Table 4.3 Comparison of Two Sets of State Scale Score Results, Grade 4
State average mathematics scale scores by type of results for grade 4 public schools: 2000

	Accommodations not permitted	Accommodations permitted
Nation	226	225
Alabama	218	217
Arizona	219	219
Arkansas	217	216
California ${ }^{+}$	214	213
Connecticut	234	234
Georgia	220	219
Hawaii	216	216
Idaho ${ }^{\dagger}$	227	224 *
Illinois ${ }^{\dagger}$	225	223
Indiana ${ }^{\dagger}$	234	233
lowa ${ }^{+}$	233	231
Kansas ${ }^{+}$	232	232
Kentucky	221	219
Louisiana	218	218
Maine ${ }^{\dagger}$	231	230
Maryland	222	222
Massachusetts	235	233
Michigan ${ }^{\dagger}$	231	229 *
Minnesota ${ }^{\dagger}$	235	234
Mississippi	211	211
Missouri	229	228
Montana ${ }^{\text {+ }}$	230	228
Nebraska	226	225
Nevada	220	220
New Mexico	214	213
New York ${ }^{\dagger}$	227	225
North Carolina	232	230 *
North Dakota	231	230
Ohio ${ }^{+}$	231	230
Oklahoma	225	224
Oregon ${ }^{+}$	227	224 *
Rhode Island	225	224
South Carolina	220	220
Tennessee	220	220
Texas	233	231
Utah	227	227
Vermont ${ }^{\dagger}$	232	232
Virginia	230	230
West Virginia	225	223
Wyoming	229	229
Other Jurisdictions		
American Samoa	157	152
District of Columbia	193	192
DDESS	228	228
DoDDS	228	226
Guam	184	184
Virgin Islands	183	181

[^6]
Table 4.4 Comparison of Two Sets of State Scale Score Results, Grade 8

State average mathematics scale scores by type of results for grade 8 public schools: 2000

	Accommodations not permitted	Accommodations permitted
Nation	274	273
Alabama	262	264
Arizona ${ }^{\dagger}$	271	269
Arkansas	261	257 *
California ${ }^{\dagger}$	262	260
Connecticut	282	281
Georgia	266	265
Hawaii	263	262
Idaho ${ }^{\dagger}$	278	277
Illinois ${ }^{\dagger}$	277	275
Indiana ${ }^{\dagger}$	283	281 *
Kansas ${ }^{\dagger}$	284	283
Kentucky	272	270 *
Louisiana	259	259
Maine ${ }^{\dagger}$	284	281 *
Maryland	276	272 \#
Massachusetts	283	279 \#
Michigan ${ }^{\dagger}$	278	277
Minnesota ${ }^{\dagger}$	288	287
Mississippi	254	254
Missouri	274	271 \#
Montana ${ }^{\dagger}$	287	285
Nebraska	281	280
Nevada	268	265 \#
New Mexico	260	259
New York ${ }^{\dagger}$	276	271 \#
North Carolina	280	276
North Dakota	283	282
Ohio	283	281 *
Oklahoma	272	270
Oregon ${ }^{+}$	281	280
Rhode Island	273	269 *
South Carolina	266	265
Tennessee	263	262
Texas	275	273
Utah	275	274 *
Vermont ${ }^{\dagger}$	283	281
Virginia	277	275
West Virginia	271	266 \#
Wyoming	277	276
Other Jurisdictions		
American Samoa	195	192
District of Columbia	234	235
DDESS	277	274
DoDDS	278	278
Guam	233	234

\dagger Indicates that the jurisdiction did not meet one or more of the guidelines for school participation.
*Significantly different from the sample where accommodations were not permitted when examining only one jurisdiction.
\ddagger Significantly different from the sample where accommodations were not permitted when examining only one jurisdiction and when using a multiple comparison procedure based on all jurisdictions that participated both years.
DDESS: Department of Defense Domestic Dependent Elementary and Secondary Schools.
DoDDS: Department of Defense Dependents Schools (Overseas).
SOURCE: National Center for Education Statistics, National Assessment of Educational Progress (NAEP), 2000 Mathematics Assessments.

Figure 4.2 Cross-State Scale Score Comparisons for Accommodations-Permitted Results, Grade 4

Comparisons of average mathematics scale scores for grade 4 public schools: 2000 sample where accommodations were permitted

Instructions: Read down the column directly under a jurisdiction name listed in the heading at the top of the chart. Match the shading intensity surrounding a
jurisdiction's abbreviation to the key below to determine whether the average math scale score of this jurisdiction is higher than, the same as, or lower than the
jurisdiction in the column heading. For example, in the column under North Carolina: North Carolina's score was lower than Connecticut and Minnesota,
about the same as all the states from Massachusetts through Utah, and higher than the remaining states down the column.

Jurisdiction has statistically significantly higher average scale score than the jurisdiction listed at the top of the chart.

No statistically significant difference from the jurisdiction listed at the top of the chart.

Jurisdiction has statistically significantly lower average scale score than the jurisdiction listed at the top of the chart.

The between jurisdiction comparisons take into account sampling and measurement error and that each jurisdiction is being compared with every other jurisdiction. Significance is determined by an application of a multiple-comparison procedure (see appendix A)
\dagger Indicates that the jurisdiction did not satisfy one or more of the guidelines for school participation rates (see appendix A). NOTE: Differences between states and jurisdictions may be partially explained by other factors not included in this table. SOURCE: National Center for Education Statistics, National Assessment of Educational Progress, 2000 Mathematics Assessment.

Comparisons of average mathematics scale scores for grade 8 public schools: 2000 sample where accommodations were permitted

Instructions: Read down the column directly under a jurisdiction name listed in the heading at the top of the chart. Match the shading intensity surrounding a jurisdiction's abbreviation to the key below to determine whether the average math scale score of this jurisdiction is higher than, the same as, or lower than the jurisdiction in the column heading. For example, in the column under Indiana: Indiana's score was lower than Minnesota, about the same as all the states from Montana through Michigan, and higher than the remaining states down the column.

mN	mn		mn mn	mn mi	m ${ }^{\text {m }}$	mn m	/ mn m		un mn	un	un mn	un mn	mn mn	mn mn					m m		mN	mn							mn mn	N mn	mn										
mt	¢ ${ }^{\text {m }}$		mt mt	m	mt	MT M	m	MT MT	Mt MT	mt	MT MT	mt	mt	mt MT	T Mt	Mt M	MT	MT	MT						MT		T						mt	MT	MT MT	ит					
KS	KS		ks	KS	ks	KS Ks	ks	kS Ks	ks	KS	kS KS	KS Ks	ks ks	kS	S KS	KS K	KS K	KS ks	KS Ks	KS K	KS	KS	KS ks	KS K	KS Ks	kS K	KS KS	KS KS	kS KS	KS K	ks KS	KS KS	kS KS								
ND	ND		ND ND	ND ND	ND	ND	ND No	ND ND	ND	ND ND	ND ND	ND ND	D	ND ND	D ND	ND N	ND N	ND ND	ND N	ND ND	ND	ND	ND ND	ND	ND ND	ND N	ND ND	ND ND	ND ND	ND	ND		ND ND	ND							
ME	ME		ME ME	ME ME	ME	ME	ME	ME ME	ME ME	ME ME	ME	ME ME	ME	ME	,	E ME	ME	ME M	ME M	ME	ME	ME	ME M	ME M	ME ME	ME M	ME ME	ME ME	ME ME	ME ME	ME ME	ME ME									
in	In		in	in	in	in	N in in	in	in IN	N in	IN IN		In II	in in		in	in						IN IN									in		in in		in					
CT	CT		ct	ct	ct ${ }^{\text {c }}$	ст	ct ${ }^{\text {ct }}$	Ct CT	Ct ct	ст	ст ст	CT	CT Ct	ct	ст ст	ст ${ }^{\text {c }}$	CT C	Ct ct	CT C	ct ${ }^{\text {c }}$	ct	CT	ст	CT ${ }^{\text {c }}$				CT CT	Ct Ct	ст	Ct						Ct	ct	Ст ст		CT Ст
OH	О O		он	он	OH	OH	OH OH	OH O-	OH OH	OH	он	OH OH	OH OH	OH OH	H OH	OH	OH O	OH OH	OH OH	OH	OH	OH	OH	OH O	OH OH	он O	н	он он	О OH	OH	OH	ОН	ОН	OH	ОН	он	OH	он	OH OH	OH OH	H OH
vT	vt		vt vt	vt	vt vi	vt vt	vT	vt	vt v	vt vi	vt VT	vt VT	vt vir	vt	vt	Vt vt	vt vi	vt vt			VT VT	Vt vt	VT vt	VT	vt	vT	vT	vt	vt vi	vt	vt	vT VT	VT VT	VT VT							
OR	OR		OR	OR	OR	OR	OR OR	OR OR	OR OR	OR	OR OR	OR OR	OR OR	OR OR	R OR	OR	o	OR OR	OR	OR O	OR	OR	OR	OR OR	OR OR	OR O	or	OR OR	OR OR	OR	OR	OR	OR		OR	OR	OR	OR	OR OR	OR OR	OR OR
NE	NE		NE NE	NE NE	NE	NE N	e ne NE	NE	NE NE	NE	NE NE	Ne NE	NE NE	N	NE	NE	NE N	NE N	NE	NE N	NE	NE	NE NE	NE NE	NE NE	NE N	NE NE	NE NE	NE NE	E NE	NE NE		NE								
MA	MA		MA MA	ma m	ma	A MA	a ma m	ma ma	a MA	a ma m	MA M	ma m	MA M	MA	MA	MA	MA	MA	MA MA	MA M	MA	MA MA	MA MA	A MA	MA	A	MA MA	MA	MA												
DI	DI		DI DI	DI D	DI	DI D	DI D	DI D	DI DI	DI D	DI DI	DI	DI	DI	DI	DI D	DI D	DI D	DI D	DI	DI	DI	DI	DI	DI D					DI DI	DI					DI	D		DI DI		DI DI
M1	M1		M	m	mi	mı	mı m	mi m	mi mi	mı m	mı mı	mı Mı	mı mı	mi mi	M1 mı	11	mi M	mı M	mı м	mi	mı	MI	mı	Mı	MI M	MI N	M1	M1 MI	n1	II M1	M1		M1		M1		MI	MI	M1	M1 M1	M1 MI
10	ID		ID ID	1010	ID	ID I	ID ID	10	1 D ID	10	ID	ID ID	10	10	ID	ID 1	10	ID	1010	1 D	ID	10	ID ID	1 D	ID 10			1 D 10	D ID	ID	ID						ID		ID ID		D ID
NC	NC		NC NC	NC	NC	NC	NC NC	NC NC	NC NC	NC	NC NC	NC	NC NC	NC	NC	NC	NC N	NC NC	NC NC	NC	NC	NC	NC	NC	NC NC	NC N	NC NC	NC NC	NC NC	vc	nc		NC	NC	NC		NC	NC	NC NC	NC NC	C NC
wY	wr		wr	wy wr	wy wr	wy wr	wy	wr	wr	wy w	wy wr	wy wy	w	wy wr	wr	WY					WY	wy		wr	w wr			wy wr		w wr	wr		wy	wy			wy				
VA	va		VA	VA VA	va va	VA V	VA va	VA VA	VA VA	VA V	VA VA	va	VA	VA	A va	VA V	va Va	va va	VA VA	VA ve	VA	va	va	VA V	VA VA			VA VA	VA VA	VA	VA		va	va	va	va va	VA		va		VA
L	IL		L IL	IL IL		IL	IL IL	IL IL					IL IL	IL IL		IL						IL	IL IL							L IL											L IL
UT	Ut		UT UT	UT UT		UT U	T UT U	UT UT	UT UT	UT UT			UT UT				UT	Ut	UT UT	¢ UT	UT	UT																			
DD	DD		D	DD	DD D	DD D	DD DD	D DD	DD D	DD D	DD D	DD DD	DD D	DD	DD	DD D	DD D	DD DD	DD D	DD DD	DD	D	DD		do	DD		DD		DD	DD	DD DD	DD DD	D DD							
TX	TX		TX TX	TX TX	TX TX	TX TX	TX	TX TX	- TX	TX	TX	TX	TX TX	- TX	x	TX	TX	TX		TX	TX	TX	TX	TX TX		T TX															
MD	MD		MD MD	MD MD	MD	MD M	MD	MD MD	MD MD	MD MD	MD	MD	MD MD	MD MD	mD	md m	mD	MD M	m	md m	mD	mD	MD	md	MD MD	mD	MD MD	MD MD	MD MD	D MD	MD MD	MD MD	Id m								
NY	NY		NY NY	NY NY	NY NY	ny n	Y NY N	NY NY	Y NY	NY n	NY	NY	ny	NY N	NY NY	NY N	NY NY	NY NY	NY NY	Y NY	NY		ny Nr																		
mO	мо		м0	мо	mo	mo m	мо	мо мо	мо мо	мо мо	M0	M0 mo	мо мо	мо мо	о мо	мо м	mо м	мо	mo ma	m	MO	M0	MO	мо	mo mo	мо м	mo mo	мо мо	о мо	no	мо	мо	mo	мо	мо	мо	mo	mo	мо мо		мо
$K Y$	KY		KY KY	k	kY	KY K	ky ky	Y KY	KY KY KY	KY K	KY K	kY K	KY k	kY	KY	KY k	KY KY	KY KY	KY K	KY KY	KY KY	KY KY	Y KY	KY	kY	KY		KY		KY		k									
OK	ок		OK OK	OK OK	OK	OK	OK OK	OK OK	OK OK	OK	OK	OK OK	OK OK	OK OK	K OK	OK	OK Or	On	OK 0	0	OK	OK	ок	OK O	ок OK	ок 0	K	OK OK	¢	ок	к	OK	ок	ок			OK	ок	ок Ок		
RI	RI		RI R1	RI R			RI R1			RI R1	RI R	RI RI	RI RI	R1 R							R1	RI	RI	R1 R	RI R			RI RI	R1	R1 RI	RI						RI				R1 RI
Az	Az		A2	A2	AZ A	Az Az	A Az Az	Az	Az Az	AZ Az	Z Az	Az Az	AZ Az		Az Az	AZ Az	Az	Az	Az Az	Az Az	AZ AZ			Az Az	Az Az	Az	AZ					AZ	Az		Az		Az Az				
wv	wv		wv wv	wv wv	wv w	wv w	wo wr	wv wv	wV w	v	wv w	wv	WV w	wV w	wv w	wv	wv	wv w	wv	wv wr		w wv	wo	wo	wv	wv		wv	wv	wv	wo										
6A	GA		GA GA	GA GA	GA	G	GA	GA	GA	GA	GA G	GA GA	GA	G	GA	GA	GA G	GA G	GA GA	G	GA	GA	GA	GA GA	GA GA	GA GA															
NV	NV		NV NV	NV NV	NV N	NV NV	NV	NV	nv NV	NV N	NV NV	NV N	NV	NV	Nv	NV N	NV NV	NV N	NV NV	NV NV	NV NV	V NV		N																	
Sc	Sc		SC SC	SC Sc	SC S	Sc so	SC SC	SC	sc	c SC	SC S	Sc sc	SC SC	SC SC	SC S	SC	SC	Sc	SC S	SC SC	SC S	sc SC	SC SC	S	sc SC	SC SC	Sc sc														
AL	AL		AL AL	AL AL	AL A	AL A	AL AL	AL	AL	L AL	AL A	AL	AL AL	AL AL	AL A	AL	AL	AL AL	AL A	AL AL	AL A	AL AL	AL AL	AL AL	LL AL	AL AL	AL AL	AL AL													
H	HI		HI HI	H1 H	HI	HI	HI H	H1 H	HI H1	HI H	HI HI	HI HI	HI HI	H H	H1 HI	1 HI		H	HI H	H1			HI	HI	H1 H	HI H	HI HI	HI HI	HI HI	H1 HI	HI	HI		H1	HI	HI	HI	HI	H H		
TN	TN		in TN						in tn	in tn	in in	TN TN				TN TN		in	in Th	in T		tn	TN	- ${ }^{\text {T }}$				TN TN	in tn	N TN	TN			TN	TN	tN	tn	TN			TN
CA	CA		CA	CA	CA	CA	ca ca	CA	CA	CA	CA	CA	CA C	CA CA	C	CA ${ }^{\text {c }}$	CA	CA	CA C	CA	CA CA	CA C	CA	CA CA	CA CA	A CA	CA CA	CA CA	CA CA												
NM	M NM		NM	NN	N	-	vM	NM NN	NM NN	NM NM	NM NM	NM	Nm Nm	NM	M NM	M NM N	m	NM	nm	NM N	NM N	NM N	vM	nM	vm nm	m nm	nm	M NM		NM	Nm	NM	NM	NM	nm n						
LA	LA		LA	LA	LA	LA L	LA LA	LA LA	LA LA	LA LA	LA	LA	LA LA	LA	A LA	LA LA L	LA LA	LA La	LA LA	LA L	LA	LA	LA	LA L	LA LA	LA L	LA	LA LA	LA LA	A LA	LA L	LA LA	LA LA	LA LA							
R	R		AR	AR	AR A	AR A	AR	AR	AR	AR	AR	AR AR	ar Ar	AR	AR	AR	AR	AR	AR AR	ar Ar	AR	an	AR AR	R AR	AR	AR	AR	AR	免	AR	AR	AR AR	AR AR	AR AR	AR AR						
MS	ms		Ms	M	MS	MS M	S MS M	N	MS MS	Ms	S MS	MS	MS M	MS M	MS M	MS M	us	MS	MS	Ms	us ms	MS M	us	MS MS	Ms ms	S	ms MS	ms Ms	us ms												
DC	DC		DC DC	DC DC	DC	DC D	DC	DC	DC D	DC	D	DC	DC D	DC	DC	DC	DC D	DC DC	DC D	D	DC DC	DC DC	C DC	D	DC DC	DC DC	DC DC														
Gu	Gu		gu gu	GU GU	GU	gu	GU	GU	GU Gu	Gu	Gu gu	G	GU	GU	Gu	GU	GU GU	GU G	su	GU GU	SU GU	U GU	Gu Gu	GU GU	GU																
S	AS		AS AS	AS AS	AS A	AS AS	S AS	AS A	AS	AS	AS A	AS A	AS As	S AS	AS AS	AS AS	AS AS																								

Jurisdiction has statistically significantly higher average scale score than the jurisdiction listed at the top of the chart.

No statistically significant difference from the jurisdiction

listed at the top of the chart.
Jurisdiction has statistically significantly lower average scale score than the jurisdiction listed at the top of the chart.

The between jurisdiction comparisons take into account sampling and measurement error and that each jurisdiction is being compared with every other jurisdiction. Significance is determined by an application of a multiple-comparison procedure (see appendix A).
\dagger Indicates that the jurisdiction did not satisfy one or more of the guidelines for school participation rates (see appendix A). NOTE: Differences between states and jurisdictions may be partially explained by other factors not included in this table. SOURCE: National Center for Education Statistics, National Assessment of Educational Progress, 2000 Mathematics Assessment.

Tables 4.5 and 4.6 show the percentages of students in each jurisdiction who were at or above the Proficient level when accommodations were not permitted and when accommodations were permitted. Again, like the national results, the percentages were similar across the two sets of results at both grades 4 and 8 .

Figures 4.4 and 4.5 indicate whether differences in the percentages of students at or above Proficient between pairs of participating jurisdictions were statistically significant when accommodations were permitted. The cluster of seven states with the highest percentage at or above the Proficient
level included Minnesota, Massachusetts, Connecticut, Indiana,Vermont, Kansas, and Michigan. The same seven states were also clustered at the top when accommodations were not permitted (see chapter 2). At grade 8, Minnesota and Montana had the highest percentages of students at or above Proficient when accommodations were permitted. Although the percentages of students in Kansas and Connecticut were not statistically significantly different from that in Montana, they were lower than the percentage of students in Minnesota. The same pattern was observed in the accom-modations-not-permitted results for grade 8 .

Table 4.5 Comparisons of Two Sets of State Proficient Level Results, Grade 4

Percentage of students at or above the Proficient level in mathematics by state and type of results for grade 4 public schools: 2000

	Accommodations not permitted	Accommodations permitted
Nation	25	23
Alabama	14	13
Arizona	17	16
Arkansas	13	14
California ${ }^{\dagger}$	15	13 *
Connecticut	32	31
Georgia	18	17
Hawaii	14	14
Idaho ${ }^{\dagger}$	21	20
Illinois ${ }^{\dagger}$	21	20
Indiana ${ }^{\dagger}$	31	30
lowa ${ }^{\dagger}$	28	26
Kansas ${ }^{\dagger}$	30	29
Kentucky	17	17
Louisiana	14	14
Maine ${ }^{\dagger}$	25	23
Maryland	22	21
Massachusetts	33	31
Michigan ${ }^{\dagger}$	29	28
Minnesota ${ }^{\dagger}$	34	33
Mississippi	9	9
Missouri	23	23
Montana ${ }^{\dagger}$	25	24
Nebraska	24	24
Nevada	16	16
New Mexico	12	12
New York ${ }^{\dagger}$	22	21
North Carolina	28	25 *
North Dakota	25	25
Ohio ${ }^{\dagger}$	26	25
Oklahoma	16	16
Oregon ${ }^{\dagger}$	23	23
Rhode Island	23	22
South Carolina	18	18
Tennessee	18	18
Texas	27	25
Utah	24	23
Vermont ${ }^{\dagger}$	29	29
Virginia	25	24
West Virginia	18	17
Wyoming	25	25
Other Jurisdictions		
American Samoa	Δ	-
District of Columbia	6	5
DDESS	24	23
DoDDS	22	21
Guam	2	2
Virgin Islands	1	1

[^7]
Table 4.6 Comparisons of Two Sets of State Proficient Level Results, Grade 8

Percentage of students at or above the Proficient level in mathematics by state and type of results for grade 8 public schools: 2000

	Accommodations not permitted	Accommodations permitted
Nation	26	26
Alabama	16	16
Arizona ${ }^{+}$	21	20
Arkansas	14	13
California ${ }^{+}$	18	17
Connecticut	34	33
Georgia	19	19
Hawaii	16	16
Idaho ${ }^{+}$	27	26
Illinois ${ }^{+}$	27	26
Indiana ${ }^{\dagger}$	31	29
Kansas ${ }^{\dagger}$	34	34
Kentucky	21	20
Louisiana	12	11
Maine ${ }^{\dagger}$	32	30
Maryland	29	27 *
Massachusetts	32	30
Michigan ${ }^{\dagger}$	28	28
Minnesota ${ }^{\dagger}$	40	39
Mississippi	8	9
Missouri	22	21
Montana ${ }^{\dagger}$	37	36
Nebraska	31	30
Nevada	20	18
New Mexico	13	12
New York ${ }^{+}$	26	24
North Carolina	30	27 *
North Dakota	31	30
Ohio	31	30
Oklahoma	19	18
Oregon ${ }^{+}$	32	31
Rhode Island	24	22
South Carolina	18	17
Tennessee	17	16
Texas	24	24
Utah	26	25
Vermont ${ }^{+}$	32	31
Virginia	26	25
West Virginia	18	17
Wyoming	25	23

Other Jurisdictions		
American Samoa	1	1
District of Columbia	6	6
DDESS	27	24
DoDDS	27	27
Guam	4	4

[^8]Comparisons of percentage of students at or above Proficient in mathematics for grade 4 public schools: 2000 sample where accommodations were permitted
Instructions: Read down the column directly under a jurisdiction name listed in the heading at the top of the chart. Match the shading intensity surrounding a
jurisdiction's abbreviation to the key below to determine whether the average math scale score of this jurisdiction is higher than, the same as, or lower than the
jurisdiction in the column heading. For example, in the column under lowa: lowa's score was lower than Minnesota, Massachusetts and Connecticut, about the
same as all the states from Indiana through Rhode Island, and higher than the remaining states down the column.

MN	MN	MN	MN	MN	N MN	N MN	MN	N MN	MN	MN	MN	MN	N MN	MN	MN	N MN	N MN	MN	MN	MN		M	MN	MN	M	MN	MN	M	MN	N	MN	MN	MN	MN	MN											
A	MA	MA	MA	A MA	M	A MA	A M	A MA	MA	MA	MA	MA	A MA	A	A	A	A MA	MA	MA	A		MA M	MA																							
CT	CT	CT	CT	CT	T CT	- CT	T CT	CT	CT	CT		C	CT	CT		CT	T		CT	CT			CT	CT	T	T	CT	CT	CT																	
IN	IN	In	IN	, IN	IN	N IN	, IN	N IN	IN	IN	IN	IN	N IN	, IN	IN	, IN	N IN		IN			N IN	IN	IN	N	IN		IN	N		IN	IN	IN			IN	/							IN	IN	
VT	VT	VT	VT	VT	VT	T	VT	VT	VT	VT	VT	VT	T VT	VT	VT	VT	T VT	VT	VT			T V	VT V	VT	T		VT	VT	VT		VT	VT	VT													
KS	KS	KS	KS	KS	K KS	S KS	S	KS	KS	KS	S KS	KS	KS	KS		KS K	K	KS																												
MI	MI	MI	MI	1 MI	M MI	MI	I MI	M ${ }^{\text {M }}$	MI	MI	MI	I MI	1 MI	I MI	MI	I	MI MI	MI	MI	MI	MI	MI M	MI	MI	MI	MI	MI	MI		MI	M	MI	M		MI	MI	MI		MI	MI	M	MI		MI	MI	
IA	IA	IA	IA	IA	IA	A	IA	A IA	IA	IA	IA	IA	A IA	IA		IA	A IA					A IA	IA	IA	IA	IA	A	A		A	A				I	A				A				IA	A	IA
TX	TX	TX	TX	TX	X TX	X TX	T TX	TX	TX	TX	X TX	TX	TX	TX		TX																														
NC	NC	NC	NC	NC	C NC	C NC	NC	C NC	C NC	NC	NC	NC		N	NC																															
WY	WY	W	WY	w	WY	Y	WY	Y WY	WY	WY	WY	WY	Y WY	WY	WY	WY	Y WY	WY	WY	WY		WY W	WY W	WY	WY	WY	WY	Y	WY																	
ND	ND	ND	ND	ND	ND	D ND	N	ND	ND	ND	D ND	ND	ND	ND		N	ND N	ND																												
OH	OH	OH	OH	H OH	OH	H	OH	H OH	OH	OH	OH	OH	H OH	OH	OH	OH	H OH	OH	OH	OH		OH OH	O	OH	-	OH	OH	OH	OH		OH															
VA	VA	VA	VA	VA	VA	A	VA	VA	VA	VA	VA	VA	A VA	VA	VA	VA	A VA	VA	VA	VA		VA VA	VA VA	VA																						
MT	MT	MT	MT	T MT	MT	T MT	MT	M	MT	MT	MT	T MT	T MT	MT	MT	MT	MT MT	MT	MT	MT			MT N	MT	MT	MT	MT	T	MT	MT	T	MT	T	MT	MT	MT	MT	MT	MT	T	MT	MT	MT	MT	MT	
NE	NE	NE	NE	NE	E NE	E	E	NE	NE	NE	NE	NE	E NE	NE	NE	E	E NE	NE	NE	NE		NE	NE N	NE																						
MO	MO	MO	MO	MO	MO	0 M	MO	M	MO	0	O MO	MO	MO	MO		MO M	MO M	MO	0	MO	10	мо																								
ME	ME	ME	ME	E	ME	E	E ME	E ME	ME	ME	ME	E	E M	ME	ME	E	E ME	ME	ME	ME		ME M	ME N	ME	E	IE	ME	E	ME	ME	ME	ME														
DD	DD	DD	DD	DD	DD	D DD	DD	DD	D	DD	DD	DD	D	DD	DD	DD	D DD	DD	DD	DD		DD D	DD D	DD																						
OR	OR	OR	OR	OR	OR	R OR	R OR	OR	OR	OR	R OR	OR	OR	OR		OR OR	OR Or		OR	R	OR	OR	OR	OR	OR																					
UT	UT	UT	UT	U	UT	UT	T UT	T UT	UT	UT	UT	UT	T UT	UT			UT	UT	UT				UT UT	UT		T		UT	UT		UT	UT	UT	T	UT	UT	UT	UT		UT	UT	UT		UT	UT	
RI	RI	RI	RI	RI	R R		RI	R RI	RI	RI	RI	RI	1 RI				RI RI									R1																			RI	
MD	MD	MD	MD	MD	MD	D M	d	D MD	MD	MD	MD		D MD	MD		MD	ID	MD	MD	MD		M	MD M	MD	MD	MD	MD	MD	D	MD																
NY	NY	NY	NY	NY	Y NY	Y NY	N	NY	NY	NY	NY	NY	Y NY	NY	NY	NY	Y N	NY	NY	NY		NY N	NY N	NY																						
D	DI	DI	DI	D	D D	D	D	D	D	D	D	D	D			D	DI DI																		DI									DI	DI	
IL	IL	IL	IL	IL	IL			IL	IL	IL	IL	IL																					L	IL											L	
ID	ID	ID	ID	ID	ID ID	D		D	ID				ID		ID											D								ID	ID											
TN	TN	TN	TN	TN	N TN	N TN	N TN	TN	TN	TN	N TN	TN	TN			TN TN	TN TN		TN	TN	TN			TN	TN			TN	TN																	
SC	SC	SC	SC	SC	C SC	C	SC	C SC	SC	SC	SC		S	SC																																
GA	GA	GA	GA	GA	GA	A	GA	A GA	GA	GA	GA		GA GA	G	GA	A	GA	GA	GA	A	GA	A	GA																							
WV	WV	WV	WV	WV	w	V WV	V WV	V WV	WV	WV	WV		NV W	WV W	WV																															
KY	KY	KY	KY	KY	Y KY	KY	K	KY	K	KY	KY	KY	KY	KY	K			KY					KY KY	KY	KY			KY			KY	KY	KY		Y		KY	KY		KY		KY		KY	KY	
AZ	AZ	AZ	AZ	AZ	Z AZ	Z	AZ	Z AZ	AZ	AZ			A	AZ	z	AZ	AZ	AZ	AZ	AZ	AZ	Z	AZ	AZ	AZ	AZ	AZ																			
NV	NV	NV	NV	NV	NV	V	N	NV	NV	N	NV	NV	NV	NV	NV	NV	V NV	NV	NV			N	N	NV	vV	NV	vV	NV																		
OK	OK	OK	OK	OK	OK	K OK	K OK	OK	OK			OK OK	OK ок	OK	OK	OK	OK	OK	OK		OK	OK	OK	OK	OK	OK	K	OK		OK	OK	OK	OK	OK	K											
H	HI		H	H	H	H		H	H																																					
LA	LA	LA	LA	LA	A LA	A LA	A LA	LA	LA	LA	A LA	LA	LA	LA		L	LA	-A	A	LA	LA	A	LA	LA	LA	LA	-A	LA	LA	LA	LA	LA														
AR	AR	AR	AR	AR	R AR	R AR	R AR	AR	AR	AR		AR AR	R	AR	AR	AR	AR																													
AL	AL	AL	AL	AL	L AL	L AL	AL AL	AL	AL			AL A	AL AL	L	AL	AL	L	L	AL	AL			AL	AL	AL	AL																				
CA	CA	CA	CA	CA	A CA	A	CA	A CA	CA	CA	CA		CA C	C	CA		A	CA			CA	CA	CA	CA	CA																					
NM	NM	NM	NM	N	N	N	NM	M NM	NM	NM	NM	M	N	M	NM	NM	M NM	NM	NM	M		N	NM	NM	M	NM	NM	M	NM	NM	NM	M	NM	NM	NM	NM	NM	NM	NN	N	NM	NM	NM	NM	NM	NM
MS	MS	S	MS	MS	S MS	M	MS	S MS	MS	MS	MS	MS	S MS	S	MS	S	S	MS	S	S	S	M	MS M	MS	S	MS																				
DC	DC	DC	DC	DC	C DC	C DC	C DC	DC	DC	DC	DC	DC D	DC																																	
GU	GU	GU	GU	GU	GU	G GU	GU	U GU	U GU	GU	GU	GU		GU GU	GU																															
VI	VI		VI	VI	VI VI			1 VI	V		V1	V1	1 VI	V1			V VI	v				VI V	VI	VI	v	v		v		1	v	v	V1	VI	V1	V	VI	VI	V	vi	VI	v	v	VI	VI	VI
AS	AS	A	AS	AS	AS	A AS	S AS	AS	AS	S		AS AS	A	AS	S	AS																														

The between jurisdiction comparisons take into account sampling and measurement error and that each jurisdiction is being compared with every other jurisdiction. Significance is determined by an application of a multiple-comparison procedure (see appendix A).
\dagger Indicates that the jurisdiction did not satisfy one or more of the guidelines for school participation rates (see appendix A). NOTE: Differences between states and jurisdictions may be partially explained by other factors not included in this table. SOURCE: National Center for Education Statistics, National Assessment of Educational Progress, 2000 Mathematics Assessment.

Figure 4.5 Cross-State Proficient Level Comparisons for Accommodations-Permitted Results, Grade 8
Comparisons of percentage of students at or above Proficient in mathematics for grade 8 public schools: 2000 sample where accommodations were permitted

> Instructions: Read down the column directly under a jurisdiction name listed in the heading at the top of the chart. Match the shading intensity surrounding a jurisdiction's abbreviation to the key below to determine whether the average math scale score of this jurisdiction is higher than, the same as, or lower than the jurisdiction in the column heading. For example, in the column under Kansas: Kansas's score was lower than Minnesota, about the same as all the states from Montana through Michigan, and higher than the remaining states down the column.

			ит мt	ит мt	¢T MT	мt mt	мt	mt mi m	¢t mt mt	мt мt	mt mt	mT	m	мt mt	мT	мт мт	мt mt	мт ${ }^{\text {m }}$	мт м ${ }^{\text {¢ }}$	mt mt	it mi m	мт м	mт		ит	mit	т mi	mt mi	Mt MT	mt m		nt mi					
		s ks	ks ks	s	ks	ks ks	кs ks	ks ks ks	кs ks	кs ks	ks ks	ks	ks	кs кs		ks ks	ks ks	ks ks		ks ks	¢ ks k	ks ks	ks ks		ks ks		s ks					ks					
		ст сt	Ct ct		ct ct	ст ст		ct	ct ct ct	ст ст	ст ст																										
		or or	or or	or or	OR					OR OR		OR	OR OR	or			OR OR				OR OR O				OR OR												
			ND ND	D ND								ND ND									N N																
						WE																															
		MA MA	,	NA	MA	碞		,	ma	MA MA	S	Ma		wa		MA MA																					
			NE NE	E	NE	NE	NE NE Ne	NE	NE	NE NE	NE NE	NE		NE	NE	NE NE	NE	Ne Ne		NE NE	EE NE Ne	NE NE	NE NE	NE NE	NE N			NE									
		n1 m1	M1 m1	11					M M1 m	M1 M1																											
										DI D							D ${ }^{0}$																				
		It 10									ID $\begin{array}{ll}\text { ID } & 10 \\ \text { IL }\end{array}$		12	10 1210	IL 1210	10 110	10 10 12 12 1																				
										va va							va va																				
	UT	UT UT	UT UT	ut	UT	UT UT		UT									UT UT		UT UT	Ut UT	-t Ut U																
											ny ny																										
		DD DD	D DD	D do				DD DD								DD DD	DD DD			DD DD	D D				DD DD												
															$\mathrm{TX} \mathrm{TX}^{\mathrm{T}}$	TX TX	TX TX				- TX		TX ${ }^{\text {T }}$														
		R1 R1		R1 R1	R1 R1					R1 R1																											
																			,	m	-		,		兂												
		kY kr				k				kr				kr		KY kY	kY kY	ky ky	kY kr	ку ky	Y KY k	$\text { KY }{ }_{\mathrm{KY}}$	ky kr	kY ky	ky kr												
		Az Az	Az Az	Az		Az Az				AZ Az						Az Az	AZ AZ	a	Az Az	Az Az	I Az Az	Az	az Az	2	A2		Az	Az Az			Az						
		SA GA	SA GA	CA GA						GA GA					GA GA	GA GA	GA GA		GA GA	GA GA	A	$\left\\|_{G A}\right\\|_{G A}$	${ }^{G A}$	GA GA	SA												
		ок ок	о ок																		- ок			ок ок	ок												
		uv nv																			nv																
	,																																				
	sc	so																																			
	CA	ca CA										CA CA				CA CA	ca																				
	AL	AL AL																																			
						TN																	tn		TN TN												
		No																																			
				A LA	A LA	LA LA	a la	LA LA L	La La	LA LA		LA LA LA	-A LA	A La la	LA LA	LA		-A LA																			
			c DC	c dc	do	d		DC DC DC	DC DC	c 0		DC DC DC	dc oc	DC DC	D DC	DC DC	D DC	D DC	DC DC	DC DC	c do do										DC DC						
						gu gu																															
																																				Jurisdiction has statistically significantly higher average scale score than the jurisdiction listed at the top of the chart.	

No statistically significant difference from the jurisdiction listed at the top of the chart.

Jurisdiction has statistically significantly lower average scale score than the jurisdiction listed at the top of the chart.

The between jurisdiction comparisons take into account sampling and measurement error and that each jurisdiction is being compared with every other jurisdiction. Significance is determined by an application of a multiple-comparison procedure (see appendix A).
\dagger Indicates that the jurisdiction did not satisfy one or more of the guidelines for school participation rates (see appendix A). NOTE: Differences between states and jurisdictions may be partially explained by other factors not included in this table.

SOURCE: National Center for Education Statistics, National Assessment of Educational Progress, 2000 Mathematics Assessment.

School Contexts for Learning

Learning takes place in diverse contexts. This chapter and chapter 6 present information about the primary contexts that contribute to students learning mathematics: school and home. At school, students' teachers, the environment in which they learn, the availability of technology, and the amount of time devoted to instruction all have an impact on learning. ${ }^{1}$ This chapter considers school factors, as reported by teachers and other school staff, and examines their relationship to students' average scale scores on the NAEP assessment. The information in this chapter is based on responses to background questionnaires completed by teachers of students who participated in the NAEP mathematics assessment and by administrative staff in the participating schools. Data based on teachers' responses are presented for grades 4 and 8 only. Teachers of grade 12 students were not administered a questionnaire because of the difficulty of linking students to teachers across the diversity of mathematics courses at this grade level. The information presented in this chapter and the next may help readers interpret some of the findings presented in earlier chapters of this report.

Chapter Contents

Teacher
Preparation
Use of Technology

Instructional
Time and
Homework

Chapter Focus

What teacher factors are related to mathematics achievement?

How does technology use and instructional time relate to achievement?
the data here are based on teachers' responses to the questionnaires, the results are reported in terms of the percentages of students whose teachers responded to each question in a particular manner. The results for each of the factors discussed in this chapter include the percentage of students and their corresponding average scale scores. Results from the 2000 assessment are compared to 1996, 1992, and 1990 results. In some cases, however, data for all these years were not available.

Readers are reminded that the relationship between a contextual variable and mathematics performance is not necessarily causal. For example, data from table 5.4 show that eighth-graders whose teachers reported more than 10 years of experience had higher scores than did students whose teachers reported no more than 2 years of experience. This finding seems to imply that teachers' experience has a positive impact on students' scores. Some school systems, however, allow experienced teachers to choose the school where they will teach, and some schools allow experienced teachers to select which classes they will teach. Teachers may prefer to teach in schools and classes with high-performing students. Thus, it may be that some students of experienced teachers have higher scores
because experienced teachers choose to teach high-performing students, not because experienced teachers are more effective teachers. NAEP data can identify relationships between contextual variables and student performance, but cannot explain why the relationships exist.

Teacher Preparation: Area of Certification

Certification is one way that teachers can indicate they have had course work relevant to teaching. However, certification does not ensure that teachers have knowledge of the subject they teach or the skill to use that knowledge to instruct students. While most states have increased their licensing standards since 1980, more than half of the states still permit teachers to be hired who have not met the relevant licensing standards, a practice that has been on the rise in recent years as a result of the demand for teachers. ${ }^{2}$

Teachers who responded to the 2000 NAEP questionnaire were asked whether they had state-recognized teaching certification in various areas. Table 5.1 shows the percentages of students whose teachers indicated having certification in a particular area and the average mathematics scores of those students.

[^9] ment R-99-1). Washington, DC: University of Washington, Center for the Study of Teaching and Policy.

Table 5.1

Percentage of fourth- and eighth-graders and average score by teachers' reports on area of certification:1992-2000

	1992	1996	2000
Elementary or middle/junior high school education (general)			
Yes	97 *	95	95
No	3*	5	5
	217	218	217
Not offered	\triangle	-	-
Elementary mathematics			
Yes	-	40*	30
	-	225	228
No	-	37 *	49
	-	222	228
Not offered	-	23	21
	-	227	232
Middle/junior high school or secondary mathematics			
Yes	15	14	11
	219	227	225
No	85	84	86
	221	224	229
Not offered	1 *	2	3
	****	234	233

Table 5.1 (continued)

Percentage of fourth- and eighth-graders and average score by teachers' reports on area of certification:1992-2000

199219962000
Elementary or middle/junior high school education (general)

Yes	62	63	60
	268	271	275
No	36	36	40
	272	276	280
Not offered	2	1	$* *$
	280	$* * * *$	$* * *$

Elementary mathematics

Yes	-	26	24
	-	274	277
No	-	65	67
	-	275	279
Not offered	-	8	9
	-	278	277

Middle/junior high school or secondary math

Yes	83	$85 *$	78
	270	276	281
No	17	$14 *$	19
	266	267	267
Not offered	\mathbf{A}^{*}	1	3
	$* * *$	$* * *$	285

The percentage of students is listed first with the corresponding average scale score presented below.

* Significantly different from 2000.
- Comparable data were not available.
**** Sample size is insufficient to permit a reliable estimate.
Δ Percentage is between 0.0 and 0.5 .
NOTE: Percentages may not add to 100 due to rounding.
SOURCE: National Center for Education Statistics, National Assessment of Educational Progress (NAEP),
1992, 1996, and 2000 Mathematics Assessments.

In 2000, the relationship between teachers' reports on areas of certification and their students' average mathematics scores was mixed, and varied across the two grades. At grade 4, the students of teachers who reported having certification in elementary or middle/junior high school education scored higher, on average, than did the students of teachers who did not have this certification. Conversely, eighthgraders taught by teachers certified in elementary or middle/junior high school education actually scored lower, on average, than did eighth-graders taught by teachers without this certification.

At the eighth-grade, teachers' certification in middle/junior high school or secondary mathematics had a positive relationship with performance-students with teachers certified in this area had higher average scores than students with teachers without this certification. These results suggest that, at least at grade 8 , teacher certification in a field and at a level consistent with the subject and grade-level taught does have a positive relationship with students' mathematics performance.

Few significant changes since 1992 or 1996 are evident in the percentages of students taught by teachers with different areas of certification. Almost all fourthgrade students who participated in the 1992, 1996, and 2000 mathematics assessments had teachers who reported being certified in elementary or middle/junior high school education. There was, however, a small decrease in the percentage of students taught by teachers with this certification-from 97 percent in 1992 to 95 percent in 2000. In addition, the percentage of fourth-graders with teachers
certified specifically in elementary mathematics decreased from 40 percent in 1996 to 30 percent in 2000. The small percentage of fourth-graders with teachers certified in middle/junior high school or secondary mathematics did not change significantly between 1992 and 2000.

In 2000, about three-quarters of the students at grade 8 were taught by teachers who were certified in middle/junior high school or secondary mathematics, which was lower than the percentage reported in 1996. None of the other apparent changes across years in eighth-grade teachers' reports of certification area were statistically significant.

Teacher Preparation: Undergraduate Major Fields of Study

In order for students to meet higher standards in mathematics, it is important that their teachers have adequate knowledge of mathematical content and adequate skill to put that knowledge into practice in the classroom. ${ }^{3}$ With this in mind, it is of interest to examine teachers' reports of their undergraduate major fields of study and their relationship to students' mathematics performance. Teachers who responded to the NAEP 2000 questionnaires were asked to identify their undergraduate major fields of study. Table 5.2 provides a summary of results for the various math-ematics-related fields. The "yes" column provides results for students of teachers who marked a field as their major. The "no" column provides results for students of teachers who did not mark that field. It should be noted that teachers sometimes reported multiple fields of study.

[^10]Table 5.2
Percentage of fourth- and eighth-graders and average score by teachers' reports of undergraduate major: 1996-2000

Grade
Teachers'促 undergraduate major
(more than one
response could be
given)

	1996		$\mathbf{2 0 0 0}$	
	Yes	No	Yes	No
Education	44	56	38	62
	227	222	228	227
Elementary education	79	21	75	25
	226	218	228	226
Secondary education	4	96	3	97
	228	224	234	227
Mathematics	7	93	4	96
	218	225	227	228
Mathematics education	6	94	4	96
	232	224	233	227

Grade

	1996			2000	
	Yes	No	Yes	No	
Education	$\begin{array}{r} 31 \\ 273 \end{array}$	$\begin{array}{r} 69 \\ 274 \end{array}$	$\begin{array}{r} 30 \\ 277 \end{array}$	$\begin{array}{r} 70 \\ 277 \end{array}$	Eighth-graders had lower average scores when their teachers did not major in math or math education.
Elementary education	$\begin{array}{r} 25 \\ 271 \\ \hline \end{array}$	$\begin{array}{r} 75 \\ 274 \end{array}$	$\begin{array}{r} 31 \\ 275 \\ \hline \end{array}$	$\begin{array}{r} 69 \\ 277 \\ \hline \end{array}$	
Secondary education	$\begin{array}{r} 33 \\ 276 \end{array}$	$\begin{array}{r} 67 \\ 272 \end{array}$	$\begin{array}{r} 29 \\ 278 \end{array}$	$\begin{array}{r} 71 \\ 276 \end{array}$	
Mathematics	$\begin{array}{r} 44 \\ 278 \\ \hline \end{array}$	$\begin{array}{r} 56 \\ 269 \\ \hline \end{array}$	$\begin{array}{r} 43 \\ 282 \\ \hline \end{array}$		
Mathematics education	$\begin{array}{r} 22 \\ 273 \\ \hline \end{array}$	$\begin{array}{r} 78 \\ 273 \\ \hline \end{array}$	$\begin{array}{r} 26 \\ 281 \end{array}$	$\begin{aligned} & 74 \\ & \text { (275) } \end{aligned}$	
The percentage of students is listed first with the corresponding average scale score presented below. NOTE: Percentages may not add to 100 due to rounding. Teachers may have reported more than one major. SOURCE: National Center for Education Statistics, National Assessment of Educational Progress (NAEP), 1996 and 2000 Mathematics Assessments.					

At the fourth-grade, students' average scores in 2000 had no significant relationship to whether or not their teacher reported majoring in any of the fields of study listed in the table. At the eighthgrade, however, two fields of study did show a relationship to student performance. In 2000, the students of teachers who majored in mathematics or mathematics education scored higher, on average, than did students whose teachers did not major in these fields. These results are consistent with those in the previous section, providing further evidence that, at grade 8 , training within the field being taught does have a positive relationship to student performance.

Between 1996 and 2000, no significant change in teachers' reports of undergraduate majors is evident at either grade 4 or 8 . At the fourth-grade, about three-quarters of the students in 2000 were taught by teachers who reported majoring in elementary education, while only 4 percent were taught by teachers who majored in either mathematics or mathematics education.

While fourth-graders were most commonly taught by teachers with education or elementary education majors, eighthgraders were taught by teachers who reported a wider distribution of majors. Although 43 percent of the eighth-graders in 2000 were taught by teachers who reported mathematics as a major, a substantial percentage of students were taught by teachers who reported other majors. This finding is consistent with a recent TIMMS international report in which it was noted that 41 percent of the U.S. eighth-graders were taught by teachers who have math-
ematics degrees compared to 71 percent of those who responded to an international survey. ${ }^{4}$ These results are also consistent with those reported in a Council of Chief State School Officers report of classroom practices and subject content. ${ }^{5}$ The Council's report noted that approximately 5 percent of elementary school teachers were mathematics or mathematics education majors, whereas almost one-half of middle school teachers had one of these majors.

Teacher Preparation: Preparation to Teach Mathematics Topics

To best serve the students they teach, teachers need preparation in the content areas of mathematics that are part of their students' curriculum. Therefore, it is interesting to examine the percentages and average scale scores of students whose teachers reported having different degrees of preparedness in content areas of mathematics. As noted in chapter 1, the questions used in the NAEP mathematics assessment were classified as belonging to one of five content strands: number sense, properties, and operations; measurement; geometry and spatial sense; data analysis, statistics, and probability; and algebra and functions. Teachers of students who participated in the assessment were asked how well prepared they were to teach each of these content strands. Table 5.3 presents the 2000 results for grades 4 and 8 based on teachers' responses to these questions. At both grades, the majority of students in 2000 were taught by teachers who considered themselves to be very well prepared or moderately well prepared to teach each of the content strands.

[^11]Table 5.3

Teachers' preparedness
 Grade
 4

Percentage of fourth- and eighth-graders and average score by teachers' reports on how well prepared they were to teach certain topics: 2000

	Very Well Prepared	Moderately Well Prepared	Not Very Well Prepared	Not Prepared
Number sense	74	25		
	228	225	218	$* * * *$
Measurement	62	36	2	0
	229	226	226	$* * * *$
Geometry	51	43	6	$* *$
	228	227	225	$* * *$
Data analysis	34	46	17	3
	229	227	226	228
Algebra	36	45	16	3
	229	227	227	223

Grade

	Very Well Prepared	Moderately Well Prepared	Not Very Well Prepared	Not Prepared
Number sense		$\begin{array}{r} 15 \\ 267 \\ \hline \end{array}$	269	$\underset{* * * *}{\boldsymbol{A}}$
Measurement	$\left.\begin{array}{c} 74 \\ 279 \end{array}\right)$	$\begin{array}{r} 24 \\ 272 \end{array}$	$\begin{array}{r} 2 \\ 265 \\ \hline \end{array}$	****
Geometry	$\begin{aligned} & 64 \\ & 280 \\ & \hline \end{aligned}$	$\begin{array}{r} 32 \\ 274 \end{array}$	$\begin{array}{r} 4 \\ 258 \end{array}$	****
Data analysis	61 280	$\begin{array}{r} 33 \\ 272 \end{array}$	$\begin{array}{r} 6 \\ 272 \end{array}$	247
Algebra	$\begin{gathered} 84 \\ 279 \end{gathered}$	$\begin{array}{r} 14 \\ 267 \\ \hline \end{array}$	$\begin{array}{r} 2 \\ 250 \\ \hline \end{array}$	$\underset{* * * *}{\boldsymbol{A}}$

Eighth-graders
whose teachers
reported being very
well prepared
generally scored
highest.

The percentage of students is listed first with the corresponding average scale score presented below.
**** Sample size is insufficient to permit a reliable estimate.
Δ Percentage is between 0.0 and 0.5 .
NOTE: Percentages may not add to 100 due to rounding.
SOURCE: National Center for Education Statistics, National Assessment of Educational Progress (NAEP), 2000 Mathematics Assessment.

Similar to the results presented in the previous two sections, the relationship between this aspect of teacher preparation and students' scores was different at each grade. At grade 4, average mathematics scores did not vary significantly according to teachers' reports on how prepared they felt to teach each of the content strands. However, a positive relationship between teacher preparedness and students' average scores is quite evident at grade 8 . For each content strand, students whose teachers reported being very well prepared to teach that content area scored higher, on average, than did students whose teachers reported being moderately well prepared.

Teacher Preparation: Total Years of Teaching Experience

Students who participated in the 2000 mathematics assessment were taught by teachers with various years of teaching experience, ranging from 2 years or less to 25 years or more. This section examines how long teachers of assessed students have been teaching, and the relationship between this aspect of teacher preparation and mathematics achievement. Teachers were asked how many years in total (including part-time teaching) they had taught at either the elementary or secondary level. Table 5.4 presents the 1996 and 2000 results for fourth- and eighth-grade students.

Table 5.4

Percentage of fourth- and eighth-graders and average score by teachers' reports on the number of years of experience teaching mathematics: 1996-2000

	$\mathbf{1 9 9 6}$	$\mathbf{2 0 0 0}$
Two years or less	11	15
Three to five years	221	224
Six to ten years	15	17
Eleven to twenty-four years	218	228
Twenty-five years or more	227	18
	33	32

	1996	2000
Two years or less	13	18
Three to five years	267	270
Six to ten years	13	16
Eleven to twenty-four years	271	277
Twenty-five years or more	272	279

Eighth-graders whose teachers had more than 10 years of experience scored higher than students whose teachers had 2 years or less experience.

The percentage of students is listed first with the corresponding average scale score presented below.

* Significantly different from 2000.

NOTE: Percentages may not add to 100 due to rounding.
SOURCE: National Center for Education Statistics, National Assessment of Educational Progress (NAEP), 1996 and 2000 Mathematics Assessments.

Similar to the previous factors related to teacher preparation presented in this chapter, years of teaching experience had a somewhat positive relationship with student performance at grade 8 , but no significant relationship at grade 4. In 2000, students' performance at grade 4 did not vary significantly in relation to the number of years of experience reported by their teachers. At grade 8, however, the scores of students whose teachers reported having more than 10 years of teaching experience were higher, on average, than the scores of students whose teachers reported having only 2 years or less of teaching experience.

About one-half of fourth- and eighthgraders in 2000 were taught by teachers with more than 10 years of experience. Teachers with only 2 years or less of experience were teaching 15 percent of fourth-graders and 18 percent of eighthgraders in 2000. These percentages did not change significantly between 1996 and 2000.

Teacher Preparation: Teachers' Familiarity with the NCTM Standards

The National Council of Teachers of Mathematics (NCTM) is a leading professional association concerned with providing leadership at the elementary and secondary levels to improve the learning and teaching of mathematics. The Council published Curriculum and Evaluation Standards for School Mathematics in 1989 and issued revised Principles and Standards for School Mathematics in 2000. ${ }^{6,7}$ The earlier Standards document influenced the NAEP framework developed for the 1990 and 1992 assessments as well as the minor refinements made for the 1996 and 2000 assessments. Thus, it is of interest to find out the degree to which teachers at the fourth- and eighth-grade levels are familiar with the NCTM Standards. Teachers were asked how knowledgeable they were about the Standards, with response choices ranging from "Very knowledgeable" to "I have little or no knowledge." Table 5.5 presents the percentages of students and their average scores based on teachers' responses to this question.

[^12]Table 5.5
Percentage of fourth- and eighth-graders and average score by teachers' reports on their level of knowledge about the

Eighth-graders
with teachers who
had little or no
knowledge of the
NCTM standards

Teacher familiarity
with
NCTM standards

NCTM standards: 1996-2000

NCTM standards: 1996-2000		
	1996	2000
Very knowledgeable	5	6
	236	234
Knowledgeable	17	16
	223	227
Somewhat knowledgeable	32 *	41
	224	227
Little or no knowledge	46 *	36
	223	227

Grade

	1996	2000
Very knowledgeable	16	22
	282	282
Knowledgeable	32 *	40
	276	277
Somewhat knowledgeable	$33 *$	25
	270	278
Little or no knowledge	$19 *$	13

* Significantly different from 2000.

NOTE: Percentages may not add to 100 due to rounding.
SOURCE: National Center for Education Statistics, National Assessment of Educational Progress (NAEP), 1996 and 2000
Mathematics Assessments.
scored lowest.

Here again, the relationship between this aspect of teacher preparation and student scores varied across the two grades. In 2000, eighth-graders whose teachers reported being very knowledgeable about the standards had higher average scores than those whose teachers reported being knowledgeable or having little knowledge about the standards. Students with teachers who reported having little or no knowledge of the standards scored the lowest. Among fourth-graders, however, there was no significant variation in average scores by teachers' familiarity with the Standards.

At both grades 4 and 8 , there was evidence of a moderate increase in teachers' familiarity with the Standards between 1996 and 2000. The percentage of fourthgraders who were taught by teachers that were somewhat knowledgeable about the NCTM Standards increased from 32 to 41 percent, while the percentage of students taught by teachers with little or no knowledge of the Standards decreased by a similar amount. Nevertheless, despite the 11 years of exposure since the appearance of the Standards, only 6 percent of the fourthgraders in 2000 were taught by teachers who reported that they were very knowledgeable about the standards, while only another 16 percent of the students were taught by teachers who reported they were knowledgeable.

At grade 8, the percentage of students with teachers knowledgeable about the Standards increased, while the percentage taught by teachers who reported less familiarity decreased between 1996 and 2000. Eighth-graders appeared more likely to be taught by teachers with greater familiarity of the Standards than were fourth-graders. In 2000, 62 percent of eighth-grade students were taught by teachers who reported that they were at least knowledgeable about the Standards.

Use of Technology:

Calculators in the Classroom

The proper role of calculators in the K-12 curriculum has been and continues to be debated. Calculator use policies vary across schools and, even within the same school, teachers have different opinions about how calculators should be integrated with instruction. For the past several NAEP mathematics assessments, fourth- and eighth-grade teachers of participating students have been asked questions about calculator use in their classes. The questions asked include how often students use calculators, whether instruction in the use of calculators is provided, whether calculator usage is restricted, and whether calculators can be used on tests. Table 5.6 presents the data for each of these questions. Additional information about calculator usage based on students' responses to related but different questions can be found in chapter 6.

Table 5.6
Percentage of fourth- and eighth-graders and average score by teachers' reports on calculator usage: 1990-2000

	1990	1992	1996	2000
How often do students use a calculator?				
Every day	-	1^{*}	5	5
	-	209	228	230
Weekly	-	15	28	21
	-	225	229	230
Monthly	-	32	42	37
	-	222	224	230
Never/Hardly ever	-	51^{*}	26^{*}	37
	-	217	219	225

How often do students use a calculator?

Do you provide instruction in the use of calculators?

Yes	-	$62 *$	$81 *$	75
	-	221	225	229
0	-	$38 *$	$19 *$	25
	-	216	219	227

Do you permit unrestricted use of calculators?

Yes	-	5^{*}	13	12
	-	220	225	229
0	-	95^{*}	87	88
	-	219	224	228

Do you permit calculator use on tests?

Yes	$2{ }^{*}$	$5 *$	10	11
	$* * * *$	228	223	228
No	98^{*}	95^{*}	90	89
	215	219	224	228

Grade 4

Calculator usage

No significant
relationship
between teachers'
reports of calculator
use and student
performance at grade 4.

Table 5.6 (continued)
Percentage of fourth- and eighth-graders and average score by teachers' reports on calculator usage: 1990-2000

How often do students use a calculator?				
Every day	-	34^{*}	55	48
	-	280	281	283
Weekly	-	22	21	23
	-	269	271	275
Monthly	-	21^{*}	14	15
	-	259	263	267
Never/Hardly ever	-	24^{*}	9	14
	-	265	256	268

Do you provide instruction in the use of calculators?

Yes	-	-	83	80
	-	-	274	277
No	-	-	17	20
	-	-	273	274

Do you permit unrestricted use of calculators?

Yes	-	30	47 *	(281)	Unrestricted calculator use
	-	281	280		
No	-	70	53 *	67	and permitting
	-	264	268	274	
Do you permit calculator use on tests?					on tests were both associated with
Yes	32 *	48 *	67	65	higher scores.
	272	276	280	(281)	er scores.
No	68 *	52 *	33	35	
	259	263	262	269	

The percentage of students is listed first with the corresponding average scale score presented below.

* Significantly different from 2000.
**** Sample size is insufficient to permit a reliable estimate.
- Comparable data were not available.

NOTE: Percentages may not add to 100 due to rounding.
SOURCE: National Center for Education Statistics, National Assessment of Educational Progress (NAEP), 1990, 1992, 1996, and 2000 Mathematics Assessments.

Eighth-graders
whose teachers
reported daily
calculator use
scored highest.

Unrestricted calculator use and permitting calculator use on tests were both associated with higher scores.

Student performance at grade 4 showed no significant relationship to teachers' reports of calculator use-regardless of its frequency, instruction provided, or the degree of restriction placed on its use. At grade 8 , however, a mostly positive relationship was evident between students' average scores and teachers' reports on calculator use. Eighth-graders whose teachers reported that calculators were used almost every day scored highest. Weekly use was also associated with higher average scores than less frequent use. In addition, teachers who permitted unrestricted use of calculators and those who permitted calculator use on tests had eighth-graders with higher average scores than did teachers who did not indicate such use of calculators in their classrooms.

The most notable change in the frequency of calculator use at grade 4 is evident in the drop in the percentage of students with teachers who reported that calculators were never or hardly ever used in class-from 51 percent in 1992, to 26 percent in 1996, and then rising to 37 percent in 2000 . Despite the increase between 1996 and 2000, the percentage in 2000 remained lower than that in 1992.

This was accompanied by a small increase in the percentage of fourth-graders using calculators everyday-from 1 percent in 1992 to 5 percent in 1996 and 2000.

A similar pattern was observed in the percentage of fourth-graders with teachers who reported providing instruction in calculator use, which increased from 62 percent in 1992 to 81 percent in 1996, and then decreased to 75 percent in 2000. Despite the decrease between 1996 and 2000 , the percentage in 2000 remained higher than that in 1992. Even though three-quarters of fourth-grade students in 2000 had teachers who reported providing some instruction on how to use calculators, the vast majority of fourth-graders were not permitted unrestricted use of calculators, or permitted to use a calculator for testing. There is some evidence, however, that such uses of calculators in fourthgrade classrooms is increasing. The percentage of students whose teachers permitted unrestricted calculator use increased from 5 percent in 1992 to 12 percent in 2000, and the percentage of students whose teachers permitted calculator use on tests increased from 2 percent in 1990 to 11 percent in 2000.

In contrast to the reports of fourth-grade teachers, the teachers of eighth-grade students reported more frequent use of calculators. In 2000, almost half of the students at grade 8 were taught by teachers who indicated that calculators were used on a daily basis. This represents an increase since 1992 when 34 percent of the eighthgraders used calculators every day. Teacherreported information on instruction in the use of calculators was only available for 1996 and 2000, and showed no significant change in the fact that a large majority of eighth-grade students did receive some kind of instruction in both years.

The extent to which eighth-grade students' use of calculators has been restricted seems to have fluctuated across the years, with less restricted use in 1996 than in 1992, and more restricted use in 2000 compared to 1996 . One-third of the eighth-graders in 2000 had teachers who permitted unrestricted calculator use. The percentage of students at grade 8 whose
teachers allowed them to use calculators on tests has doubled since 1990—from 32 to 65 percent.

Use of Technology: Availability of Computers

Over the past decade, computers have played an increasingly important role in the nation's classrooms. Furthermore, research into the use of computer technology has shown that it can have a positive impact on student achievement when implemented properly. ${ }^{8}$ As part of the NAEP mathematics assessment, school administrators were asked about the availability of computers in the school for students at grades 4,8 , and 12. Specifically they were asked to report whether or not computers were available to students in each of the following ways: in the classroom at all times, grouped in a separate computer laboratory available to classes, or available to bring to classrooms when needed. The results presented in table 5.7 highlight the increasing availability of computers in classrooms.

[^13]
Table 5.7

Percentage of students and their average

Availability of
computers scores by school reports on the availability of computers at grades 4,8 , and 12 : 1996-2000

Grade
 4

	1996		2000		
	Yes	No	Yes	No	
Available at all times	$61 *$	$39 *$	83	17	
in classrooms	226	221	228	225	
Grouped in computer lab	78	22	83	17	
but available	224	223	229	226	
Available to bring to classrooms	$42 *$	58	22	27	73
	226	222	227	230	

At each grade,
the percentage of students with computers available at all times in classrooms increased by at least 20 percentage points between 1996 and 2000.

	1996		2000	
	Yes	No	Yes	No
	$30 *$	$70 *$	52	48
Available at all times	275	272	274	278
in classrooms	87	13	92	8
Grouped in computer lab	273	271	277	275
but available	$49 *$	$51 *$	37	63
Available to bring to classrooms	274	272	276	276

	1996		2000	
	Yes	No	Yes	No
	$18 *$	$82 *$	43	57
Available at all times	304	304	301	302
in classrooms	97	3	95	5
Grouped in computer lab	304	298	302	287
but available	$47 *$	53	36	64
Available to bring to classrooms	306	302	304	300

[^14]Few significant relationships between computer availability and students' mathematics performance in 2000 are evident at any grade. Among eighth-graders, those students from schools that indicated computers were available at all times in classrooms scored lower, on average, than students from schools that did not indicate this level of computer availability. Among twelfth-graders, those students from schools that indicated computers were available in a computer laboratory had higher average scores than students from schools who did not indicate that computers were available in this manner. It should be noted, however, that only 5 percent of twelfth-graders in 2000 attended schools that did not have computers available for use in a laboratory setting.

In 2000, 83 percent of fourth-graders, 52 percent of eighth-graders, and 43 percent of twelfth-graders had access to computers in the classroom at all times. At each grade,
these percentages represented an increase of at least 20 percentage points from 1996. As computers have become more available in the classrooms since 1996, there has been a concomitant decrease in the percentage of students in schools where computers are available to bring into the classroom. The availability of computers in labs has not changed significantly since 1996.

Use of Technology: Uses of Computers in Grades 4 and 8

The data presented in the previous section suggests that computers are widely available in individual classrooms, computer labs, or both places. But what instructional use is being made of these computers? Teachers of fourth- and eighth-grade students who participated in the mathematics assessment were asked, if they did use computers, what the primary uses of the computers were for mathematics instruction. The results for this question are presented in table 5.8.

Table 5.8

Percentage of fourth- and eighth-graders and average score by teachers' reports on their primary use of computers for mathematics instruction: 1996-2000

Instructional use
of computers

	1996	2000
Drill	27	24
	223	229
Demonstrate new math topics	2	3
	222	234
Play math learning games	41	42
	226	228
Simulations and applications	6	5
	225	230
Not used	25	26
	222	227

	1996	$\mathbf{2 0 0 0}$
Drill	16	15
	270	271
Demonstrate new math topics	4	8
	280	281
Play math learning games	13	14
	267	271
Simulations and applications	12	12
	281	281
Not used	54	52
	272	278

The percentage of students is listed first with the corresponding average scale score presented below. NOTE: Percentages may not add to 100 due to rounding.
SOURCE: National Center for Education Statistics, National Assessment of Educational Progress (NAEP), 1996 and 2000 Mathematics Assessments.

Using computers for demonstrating new topics and for simulations and applications was associated with higher scores than other uses.

At grade 4, students' average mathematics scores in 2000 did not vary significantly across the different types of instructional uses of computers reported by teachers. At grade 8, however, there were some differences. Eighth-graders whose teachers reported using computers primarily for demonstrating new math topics or for simulations and applications had higher mathematics scores, on average, than students whose teachers reported using computers primarily for drill or for playing math learning games. In addition, the use of computers for drill and for games was associated with lower average scores than not using computers at all for instruction.

There were no significant changes between 1996 and 2000 in the patterns of computer use for mathematics instruction
at either grade 4 or grade 8 . In 2000, 26 percent of fourth-grade students and 52 percent of eighth-grade students had teachers who reported never using computers for instruction.

Instructional Time and Homework: Availability of Eighth-Grade Algebra

Algebra has been identified as a key course in the mathematics sequence. ${ }^{9}$ Once offered primarily to ninth-graders, algebra is now commonly offered to eighth-grade students. Administrators in schools participating in the mathematics assessment were asked whether or not the school offers an eighth-grade algebra course for high school course placement or credit. Table 5.9 presents the results for this question.

Table 5.9
Percentage of eighth-graders and average scores by school reports on whether or not an algebra course was offered to eighth-grade students for high school credit: 1996-2000

| | 1996 | 2000 |
| :--- | ---: | ---: | ---: |
| Yes | 80 | 82 |
| | 275 | 277 |
| No | 20 | 18 |
| | 267 | 272 |
| | | |
| The percentage of students is listed first with the corresponding average scale score presented below. | | |
| NOTE: Percentages may not add to 100 due to rounding. | | |
| SOURCE: National Center for Education Statistics, National Assessment of Educational Progress (NAEP), 1996 and 2000 | | |
| Mathematics Assesments. | | |

[^15]Although there was no significant relationship to mathematics performance, a large majority of eighth-grade students (82 percent) in 2000 were in schools that offered algebra to them for course placement or credit. This percentage has not changed significantly since 1996. Additional information about algebra, including which years students tend to be taking first- and second-year algebra, can be found in chapter 6 .

Instructional Time and Homework: Math Instructional Time Per Week in Grades 4 and 8

Teachers of fourth- and eighth-grade students participating in the mathematics assessment were asked how many hours of mathematics instruction they delivered per week, ranging from two and one-half hours or less to four hours or more per week. Table 5.10 presents the results for this question.

Table 5.10

Percentage of fourth- and eighth-graders and average score by teachers' reports on the amount of instructional time spent on mathematics each week: 1992-2000

	1992	1996	2000
Two and one-half hours or less	5	6	7
More than two and one-half hours but less than 4 hours	224	228	222
Four hours or more	25	26	20
	224	226	228

Grade

	1992	$\mathbf{1 9 9 6}$	$\mathbf{2 0 0 0}$
Two and one-half hours or less	13	20 *	12
	270	269	273
More than two and one-half hours but less than 4 hours	55	47	49
	270	275	279
Four hours or more	32	33	40
	268	274	274

The percentage of students is listed first with the corresponding average scale score presented below.

* Significantly different from 2000.

NOTE: Percentages may not add to 100 due to rounding.
SOURCE: National Center for Education Statistics, National Assessment of Educational Progress (NAEP), 1992, 1996 and 2000 Mathematics Assessments.

The amount of time teachers reported spending on mathematics instruction at grade 4 had no significant relationship to students' performance on the mathematics assessment in 2000. However, students at grade 8 whose teachers reported spending between two and one-half hours and four hours on mathematics instruction scored higher, on average, than those whose teachers spent four hours or more.

In 2000, 73 percent of fourth-grade students had teachers who reported spending four hours or more on mathematics instruction each week. This drops to 40 percent at grade 8 where almost half of the students were in classes where teachers spend between two and one-half and four hours per week on mathematics. These patterns of instructional time have remained fairly stable since 1992 with the exception of a decrease in the percentage of eighth-grade students with teachers reporting spending two and one-half hours or less on mathematics-from 20 percent in 1996 to 12 percent in 2000.

Instructional Time and Homework: Amount of Homework Assigned in Grades 4 and 8

In 1999, American eighth-graders scored above the 38-nation average in mathematics in the Third International Mathematics and Science Study-Repeat (TIMSS-R), but did not distinguish themselves as high achievers. ${ }^{10}$ One of the factors related to achievement in mathematics is homework. ${ }^{11}$

For the 2000 NAEP mathematics assessment, teachers of fourth- and eighthgraders who participated in the assessment were asked how much mathematics homework they assigned to students each day. The results are presented in table 5.11.

[^16]
Table 5.11

Percentage of fourth- and eighth-graders and average score by teachers' reports on the amount of mathematics homework assigned per day: 1992-2000

Work assigned per day: 1992-2000			
	1992	1996	$\mathbf{2 0 0 0}$
None	6	4	6
	222	232	231
15 minutes	52	50	47
	222	226	230
30 minutes	37	40	40
	218	222	227
45 minutes	4	4	5
	203	214	212
1 hour	1	1	1
	$* * *$	206	219
More than 1 hour	$* * *$	$* * * *$	$* * * *$

	1992	$\mathbf{1 9 9 6}$	$\mathbf{2 0 0 0}$
None	3	2	2
	238	241	255
15 minutes	29	30	25
	263	266	269
30 minutes	49	54	55
	269	276	276
45 minutes	16	$10{ }^{*}$	15
	282	284	290
1 hour	4	4	3
	289	284	298
More than 1 hour	\mathbf{A}	1	$\mathbf{4}$
	$* * *$	273	$* * * *$

Eighth-graders whose teachers assigned 45 minutes of homework daily scored higher than students whose teachers assigned lesser amounts of homework.

[^17]Mathematics
homework assigned

In 2000, fourth-grade teachers who reported that they assigned 45 minutes of mathematics homework had students with lower average scores than teachers who assigned less homework. There were no significant differences among the average scores for students of teachers who assigned lesser amounts of homework. The relationship between amount of homework and mathematics performance was different at grade 8. In 2000, eighth-grade teachers who reported that they assigned 45 minutes of homework had students with higher average scores than did students with teachers who assigned lesser amounts of homework. Also, the average score of
students whose teachers assigned no homework was lower than that for students of teachers who assigned 30 minutes, 45 minutes, or 1 hour of homework.

Most fourth- and eighth-graders in 2000 were taught by teachers who reported assigning either 15 or 30 minutes of homework in each of the three assessment years. There were no significant changes across the years at the fourth grade. For eighthgraders, the only significant change was an increase from 10 to 15 percent between 1996 and 2000 in the percentage of students whose teachers assigned 45 minutes of homework.

6
 Classroom Practices and Home Contexts for Learning

The classroom teacher guides the learning of mathematics. However, unless students make a commitment to learning, even a rich and well-taught curriculum can fail to achieve the desired result. Evidence from a variety of sources makes it clear that a substantial number of students are not learning the mathematics they need to function in daily life and in the workplace. ${ }^{1}$ In fact, earlier chapters of this report revealed that the performance of some population subgroups continues to lag far behind the performance of

Chapter Focus

What classroom practices and home factors are related to mathematics achievement? How have these practices and factors changed across years? others.

This chapter continues the examination of the school contexts in which students learn. However, unlike chapter 5, which considers students' performance on NAEP in terms of teachers' and school administrators' perceptions, this chapter looks at performance in light of students' perceptions. In addition, it looks at the course-taking patterns reported by eighth- and twelfth-graders and provides average scale scores for those who have taken particular courses in grades eight through twelve. This chapter also examines students' performance on NAEP with regard to their own perceptions about home

Chapter Contents

Teachers'
Classroom
Practices
Calculator Use
Mathematics
Course-Taking
Beyond-School
Activities
Attitudes Toward Mathematics factors, such as television viewing habits and hours worked at a job for pay, that may have an impact on mathematics achievement.

[^18]The information presented in this chapter is based on students' responses to background questions administered as part of the NAEP 2000 mathematics assessment. In some cases, results from the 2000 assessment are compared with results from prior mathematics assessments to observe trends in students' responses. In other cases, data from previous years are not available.

As mentioned in the previous chapter, it is important to keep in mind that the relationship between a contextual variable and students' mathematics performance is not necessarily causal. For example, data from table 6.4 show that twelfth-graders who reported using graphing calculators had higher scores than those who did not. This finding may suggest that the use of graphing calculators is responsible for the higher level of performance. However, another plausible explanation for this result is that those students who use graphing calculators at grade 12 have taken more advanced mathematics courses or are otherwise more mathematically able than those students who reported not using graphing calculators at this grade level. NAEP data can identify relationships between contextual variables and student performance, but cannot explain why the relationships exist.

Classroom Practices

Table 6.1 presents three of the instructional practices students were asked about, including how often they do math problems from textbooks, talk with other students during class about how to solve problems, and use a calculator for mathematics. This table provides the percentages and corresponding average scores of students by frequency of these activities.

In 2000, fourth-graders generally seemed to perform best when certain classroom activities were engaged in on a moderate basis, rather than on a daily basis. Fourth-grade students who reported never or hardly ever doing math problems from a textbook scored lower in 2000 than those who did so more frequently. Students who reported talking with others about how to solve math problems on a monthly basis not only scored higher than students who never talked with other students, but also had higher average scores than those students who did so daily or weekly. A similar relationship was associated with fourth-grade students' performance and calculator use.

At grade 8, higher average scores were more likely to be associated with engaging in certain practices more frequently. Eighth-grade students who reported doing math problems from a textbook every day scored higher than those who engaged in this practice less frequently. The same was true for students' reported calculator use. Students who reported never or hardly ever engaging in these activities consistently had the lowest scores.

More frequent engagement in certain classroom activities was also associated with higher scores on the assessment at grade 12. Twelfth-grade students who reported doing math problems from a textbook every day, or using a calculator every day, scored higher than those who engaged in these activities less frequently. Twelfthgrade students who reported talking with others about how to solve math problems at least weekly scored higher than those students who reported talking with others either monthly or never.

Table 6.1
Percentage of students and average scores by students' reports on how often
they do certain classroom activities at grades 4, 8, and 12: 1996-2000

Grade

19962000
Do math problems from textbook

Every day	57	56
	227	230
Weekly	21	21
Monthly	223	228
Never/Hardly ever	66	7
	221	230

Talk with other students during class about how to solve problems

Every day	21	19
	218	222
Weekly	18^{*}	22
	$224{ }^{2}$	229
Monthly	$12{ }^{*}$	15
	230	235
Never/Hardly ever	49^{*}	44
	226	229

Use a calculator for mathematics

Every day	10	10
	207	214
Weekly	23	20
	225	228
Monthly	26	25
Never/Hardly ever	234	238
	42	45

Classroom Activities

Fourth-graders who reported never doing math
problems from a textbook scored lowest.

Fourth-graders who reported monthly use of a calculator scored highest.

See footnotes at end of table

Table 6.1 (continued)
Percentage of students and average scores by students' reports on how often they do certain classroom activities at grades 4, 8, and 12: 1996-2000

Grade
\bigcirc

19962000
Do math problems from textbook

Every day	$76 *$	72
	277	281
Weekly	15^{*}	18
	261	265
Monthly	$3{ }^{*}$	4
	257	268
Never/Hardly ever	7	6
	256	255

Talk with other students during class about how to solve problems

Every day	31^{*}	38
	270	277
Weekly	17 *	27
	273	278
Monthly	13	13
	274	279
Never/Hardly ever	$39 *$	22
	273	269

Use a calculator for mathematics

Every day	48	48
	280	282
Weekly	26	25
	268	274
Monthly	14	13
	267	272
Never/Hardly ever	12	13
	258	263

Classroom Activities

Eighth-graders who reported doing math problems from a texthook daily scored highest.

Eighth-graders who reported using a
calculator daily
scored highest.

See footnotes at end of table $>$

Table 6.1 (continued)
Percentage of students and average scores by students' reports on how often they do certain classroom activities at grades 4, 8, and 12: 1996-2000

Do math problems from textbook

Every day	71^{*}	65
	311	309
Weekly	10^{*}	13
	293	293
Monthly	3	4
	284	286
Never/Hardly ever	16^{*}	18
	286	283

Talk with other students during class about how to solve problems

Every day	$23 *$	42
	307	309
Weekly	$15 *$	24
	306	306
Monthly	$13 *$	9
	307	300
Never/Hardly ever	$50 *$	24
	302	285

Use a calculator for mathematics

Every day	69	69
	311	309
Weekly	15	14
	294	289
Monthly	7	6
	285	283
Never/Hardly ever	9	11
	283	279

Twelfth-graders who reported doing math problems from a
textbook daily
scored highest.

Twelfth-graders who
reported using a
calculator daily
scored highest.

The percentage of students is listed first with the corresponding average scale score presented below.

* Significantly different from 2000.

NOTE: Percentages may not add to 100 due to rounding.
SOURCE: National Center for Education Statistics, National Assessment of Educational Progress (NAEP), 1996 and 2000 Mathematics Assessments.

Except for an increase in the percentage of fourth-graders who reported talking with other students about how to solve math problems on a weekly or monthly basis, there has been little change in the frequency of classroom activities reported at grade 4 since 1996. The percentage of eighth-grade students who reported doing textbook problems every day dropped from 76 percent in 1996 to 72 percent in 2000. Similarly, the percentage of twelfth-graders decreased from 71 percent to 65 percent in the same span of time. In contrast, the percentage of students who reported solving problems with other students every day or weekly increased at both grades between 1996 and 2000. Most notably, the percentage of twelfth-graders engaged in this activity on a daily basis increased from 23 to 42 percent.

Frequency of Calculator Use for Classwork, Homework, and Quizzes

Students are permitted to use calculators on approximately one-third of the NAEP mathematics assessment blocks at each grade level. At grade 4, a four-function calculator is provided; at grades 8 and 12 , a scientific calculator is provided. Although calculator use is permitted on some blocks, many of the questions in these blocks can be answered without the use of a calculator. Students must decide when the use of a calculator is helpful.

Students in all three grades were asked how frequently they used a calculator for classwork, homework, and on tests or quizzes. Table 6.2 presents the percentages and average scores for students who responded that they used a calculator for these activities every day, weekly, monthly, or never or hardly ever.

The relationship between calculator use and students' performance was markedly different at grade 4 than it was at either grade 8 or grade 12 . Whereas lower scores on the mathematics assessment were associated with more frequent calculator use at grade 4 , the opposite was generally true for eighth- and twelfth-grade students.

In 2000, about one-quarter of the fourth-grade students reported using calculators every day for classwork or for homework, and only a small percentage (4 percent) for tests and quizzes. Students at grade 4 who indicated that they used a calculator every day, whether for classwork, for homework, or for tests and quizzes, consistently scored lower than students who reported less frequent use of calculators for the same purposes. In contrast, students at both grades 8 and 12 who reported using calculators daily for these same purposes scored higher on the mathematics assessment than those at the same grade level who reported less frequent calculator use.

While there has been a decline since 1996 in the percentage of fourth-grade students who reported using a calculator every day for classwork and for homework, there has been no significant change in the proportion of students using calculators on tests and quizzes every day. At grade 8, there has been a decrease in the percentage of students using calculators daily for classwork (from 58 percent in 1996 to 44 percent in 2000) and for homework (from 52 percent in 1996 to 41 percent in 2000). There has been no significant change since 1996 in the reported frequency of calculator use by twelfth-grade students.

Table 6.2
Percentage of students and average scores by students' reports on how
often they use a calculator for mathematics activities at grades 4, 8, and 12: 1996-2000

Grade

4

1996
Classwork

	1996	2000
Classwork		
Every day	33 *	24
	208	217
Weekly	17	14
	227	230
Monthly	17	17
	241	240
Never/Hardly ever	$34 *$	44
	232	235

Homework

Every day	$\begin{gathered} 30 \\ 208 \end{gathered}$	24
Weekly	16	16
	223	222
Monthly	14 *	15
	236	238
Never/Hardly ever	40 *	45
	234	238
Tests and Quizzes		
Every day		1
Every day	198	(202)
Weekly	17 *	15
	210	213
Monthly	18 *	13
	220	222
Never/Hardly ever	60 *	68
	233	236

Frequency of
Calculator Use

More frequent use
of calculators was
generally associated
with lower scores at grade 4.

See footnotes at end of table

Table 6.2 (continued)
Percentage of students and average scores by students' reports on how often they use a calculator for
mathematics activities at grades 4, 8, and 12: 1996-2000

Grade

1996
2000
Classwork

	1996	2000
Classwork		
Every day	58^{*}	44
	271	279
Weekly	21^{*}	25
	275	276
Monthly	$9{ }^{*}$	12
Never/Hardly ever	277	275

Homework

Every day	$52 *$	41
	274	283
Weekly	24	26
	271	274
Monthly	10^{*}	13
	275	275
Never/Hardly ever	14^{*}	21
Tests and Quizzes	266	265
Sometimes	-	$24 /$
	-	45
Never	-	374

Frequency of
Calculator Use

More frequent use
of calculators was
associated with
higher scores at
grade 8.

See footnotes at end of table

Table 6.2 (continued)
Percentage of students and average scores by students' reports on how often they use a calculator for mathematics activities at grades 4, 8, and 12: 1996-2000

	1996	$\mathbf{2 0 0 0}$
Classwork		
Every day	68	
	68	
Weekly	309	308
Monthly	14	14
	302	292
Never/Hardly ever	4	3
	290	286

Homework

Every day	61	61
	312	$(310$

The percentage of students is listed first with the corresponding average scale score presented below.

* Significantly different from 2000.
- Comparable data were not available.

NOTE: Percentages may not add to 100 due to rounding.
SOURCE: National Center for Education Statistics, National Assessment of Educational Progress (NAEP), 1996 and 2000 Mathematics Assessments.

Type of Calculator Used

Since calculator usage is so prevalent, and because enhancements are added regularly to calculators to increase their power, it is important to examine the types of calculators students are using in their regular schoolwork and to observe how students who customarily use different types of calculators perform on the NAEP assessment. This information is presented for fourth-grade students in table 6.3 and eighth- and twelfth-grade students in table 6.4.

At grade 4, students who use calculators generally work with a fairly simple fourfunction model. Fourth-graders participating in the mathematics assessment were

Table 6.3

Percentage of students and average scores by fourth-grade students' reports on whether or not they have a calculator for schoolwork: 1992-2000
asked whether or not they have a calculator that can be used to do mathematics schoolwork. Their responses are summarized in table 6.3

In 2000, more than one-half (55 percent) of the fourth-grade students indicated that they had access to a calculator to use for mathematics schoolwork. Fourth-graders who indicated that they have a calculator scored higher than their peers who did not. The extent to which fourth-grade students have reported having access to a calculator seems to have fluctuated over the years, increasing from 46 percent with access in 1992 to 62 percent in 1996, and then decreasing to 55 percent in 2000.

	1992	1996	2000
Yes	46^{*}	$62 *$	55
	221	227	231
No	54^{*}	$38 *$	45

The percentage of students is listed first with the corresponding average scale score presented below.

* Significantly different from 2000.

NOTE: Percentages may not add to 100 due to rounding.
SOURCE: National Center for Education Statistics, National Assessment of Educational Progress (NAEP, 1992, 1996 and 2000 Mathematics Assessments.

Scientific and graphing calculators are the most common types of calculators used in grades 7-12. Eighth- and twelfth-graders who participated in the mathematics assessment were shown pictures and descriptions of scientific and graphing calculators. They were asked whether or not they used either of these types of calculators for their mathematics schoolwork. These students were also asked whether or
not they used a calculator that can manipulate symbols, solve equations, and carry out other procedures (sometimes referred to as "symbol manipulators" or as having "algebraic logic"). For this question, a picture of a sample calculator screen was presented with the question to illustrate how the calculator screen for this type of calculator might look. Students' responses to these questions are shown in table 6.4.

Table 6.4
Percentage of students and average scores by students' reports on whether or not they use a particular type of calculator at grades 8 and 12: 1996-2000

	1996	2000
Scientific		
Yes	${ }_{277}^{61 *}$	$\begin{array}{r} 67 \\ (279) \end{array}$
No	$\begin{gathered} 39 \text { * } \\ 265 \end{gathered}$	$\begin{array}{r} 33 \\ 269 \\ \hline \end{array}$
Graphing		
	$\begin{array}{r} 11 \\ 275 \end{array}$	(286)
No	$\begin{gathered} 89 \text { * } \\ 272 \\ \hline \end{gathered}$	$\begin{array}{r} 82 \\ 273 \\ \hline \end{array}$
Symbol Manipulator		
Yes	-	$\begin{array}{r} 9 \\ 259 \\ \hline \end{array}$
No	-	$\begin{array}{r} 91 \\ 277 \end{array}$
	e	
	1996	2000
Scientific		
Yes	$\begin{array}{r} 70 \\ 305 \\ \hline \end{array}$	$\begin{array}{r} 68 \\ 299 \\ \hline \end{array}$
No	$\begin{array}{r} 30 \\ 303 \end{array}$	$\begin{array}{r} 32 \\ 306 \\ \hline \end{array}$
Graphing Yes	$\begin{gathered} 51 \text { * } \\ 316 \end{gathered}$	$\frac{62 /}{(311)}$
No	$\begin{gathered} 49 \text { * } \\ 292 \end{gathered}$	$\begin{array}{r} 38 \\ 286 \end{array}$
Symbol Manipulator		
Yes	-	$\begin{array}{r} 15 \\ 301 \end{array}$
No	-	$\begin{array}{r} 85 \\ 302 \\ \hline \end{array}$

The percentage of students is listed first with the corresponding average scale score presented below.

* Significantly different from 2000.
- Comparable data were not available.

NOTE: Percentages may not add to 100 due to rounding.
SOURCE: National Center for Education Statistics, National Assessment of Educational Progress (NAEP), 1996 and 2000 Mathematics Assessments.

There was a relationship at both grades 8 and 12 between whether or not students used a particular type of calculator and how they performed on the mathematics assessment. This relationship was, however, dependent on the specific type of calculator and grade level.

In 2000, about two-thirds of the students at both grades 8 and 12 reported using a scientific calculator. While eighth-grade students who indicated they used a scientific calculator had higher average scores than their peers who did not use one, students at grade 12 who reported using a scientific calculator scored lower than other twelfth-graders who indicated that they did not. Using a graphing calculator was associated with higher mathematics scores at both grades 8 and 12. At grade 12, those students who reported using a graphing calculator scored an average of 25 scale score points higher than those who did not. Relatively few students at either grade 8 or grade 12 reported using a symbol manipulator. While eighth-grade students who indicated that they did not use a symbol manipulator had higher average scores than those who did, there was no relationship between student performance and the use of a symbol manipulator at grade 12.

Students' reported use of both scientific and graphing calculators at grade 8 has increased since 1996. While more twelfthgrade students reported using a graphing calculator in 2000 than in 1996, there has been no change in the proportion of students using a scientific calculator.

Mathematics Course-Taking in Grade 8

There was considerable variety in the mathematics classes eighth-graders reported taking. This section looks at the classes they reported taking and how percentages of students and average scale scores varied by class. Students were asked what mathematics class they were taking during the year in which the assessment took place. The response choices offered a wide range of courses from which students could choose. Eighth-graders' responses, broken down by males and females for each of the classes listed, are shown in table 6.5.

In 2000, most eighth-grade students reported being enrolled in either an eighth-grade mathematics course (37 percent), a prealgebra course (31 percent), or a first-year algebra course (25 percent). Eighth-graders who were enrolled in either an eighth-grade mathematics course or in prealgebra had lower mathematics scores than those enrolled in a first- or second-year algebra course, geometry, or integrated or sequential mathematics. There were no significant differences in performance for eighth-graders enrolled in first- or second-year algebra, geometry, or integrated or sequential mathematics. These same relationships between the course eighth-grade students were enrolled in and their performance on the mathematics assessment carried over for both male and female students.

Table 6.5
Percentage of students and average scores by eighth-grade students' reports on what mathematics class they are currently taking: 2000

	2000
All Students	
Eighth-grade mathematics	$\begin{aligned} & 37 \\ & (264) \end{aligned}$
Prealgebra	
First-year algebra	$\begin{array}{r} 25 \\ 301 \end{array}$
Geometry	$\begin{array}{r} 2 \\ 295 \\ \hline \end{array}$
Second-year algebra	$\begin{array}{r} 1 \\ 291 \\ \hline \end{array}$
Integrated or sequential math	$\begin{array}{r} 2 \\ 296 \\ \hline \end{array}$
Other math class	$\begin{array}{r} 3 \\ 247 \\ \hline \end{array}$
Male	
Eighth-grade mathematics	$\begin{array}{r} 38 \\ 265 \\ \hline \end{array}$
Prealgebra	$(272$
First-year algebra	$\begin{array}{r} 25 \\ 302 \end{array}$
Geometry	$\begin{array}{r} 2 \\ 296 \end{array}$
Second-year algebra	$\begin{array}{r} 2 \\ 293 \\ \hline \end{array}$
Integrated or sequential math	$\begin{array}{r} 2 \\ 298 \\ \hline \end{array}$
Other math class	$\begin{array}{r} 3 \\ 248 \\ \hline \end{array}$
Female	
Eighth-grade mathematics	$\begin{aligned} & 36 \\ & 263 \end{aligned}$
Prealgebra	
First-year algebra	$\begin{array}{r} 25 \\ 299 \\ \hline \end{array}$
Geometry	$\begin{array}{r} 1 \\ 294 \end{array}$
Second-year algebra	$\begin{array}{r} 1 \\ 287 \\ \hline \end{array}$
Integrated or sequential math	$\begin{array}{r} 2 \\ 293 \\ \hline \end{array}$
Other math class	$\begin{array}{r}3 \\ 246 \\ \hline\end{array}$

The percentage of students is listed first with the corresponding average scale score presented below.
NOTE: Percentages may not add to 100 due to rounding.
SOURCE: National Center for Education Statistics, National Assessment of Educational Progress (NAEP), 2000 Mathematics Assessment.

Trends in Courses Taken by Twelfth-Grade Students

Assessment results are strongly linked to the opportunity to study challenging material and the degree to which students take advantage of these opportunities. This includes not only the way students apply themselves in the courses they take, but also the particular courses students choose to take as they progress through school. In grades 8-12, students can take a variety of mathematics courses. In 2000, students who participated in the twelfth-grade assessment were asked the following question about a group of 13 mathematics courses:

Which courses have you taken from eighth-grade to present? You should fill in more than one oval in each row if you have taken a course of that description more than once. If you have never taken a particular course, fill in the oval in the column "Course not taken." Fill in at least one oval in each row.

The specific courses listed started with general mathematics and ended with calculus. Table 6.6 presents the results for this question for each of the courses listed.

The "Not Taken" column provides evidence about the popularity of the various courses. Of the course titles listed, only 6 percent marked first-year algebra as not taken, so this was taken by nearly all high-school students (i.e., by 94 percent of the students). Some students marked more than one grade for a particular course. For example, they may have marked geometry in both grades 9 and 10. In such cases, the last year in which the course was taken was the one considered in the tabulation. It is of interest to peruse the table and note the most common grade in which various courses were taken and the average scores
of students who took the course in that grade. For first-year algebra, 50 percent of the students took the course in grade 9 with an average score of 303 . This is the traditional grade for taking first-year algebra. There has been a trend toward moving algebra earlier to make room for other mathematics courses. So it is not surprising to see that 23 percent of the students reported that they took first-year algebra in grade 8 and that their average score of 328 was higher than the average score of 303 for students who reported taking this course in grade 9 .

The first four mathematics courses listed (general, business, applied, and introduction to algebra) are not considered to be part of the typical college preparatory curriculum. As one might expect, for each of these courses, the average score of students who reported that they did not take the course was higher than the average for those who did take the course in various other years.

Some schools offer students the opportunity to take unified, integrated, or sequential mathematics. Students may take courses by one of these names in more than one grade. For example, a student may take Course 1, Course 2, and Course 3 of unified mathematics in grades 9,10 , and 11 . These courses would build on one another and get progressively more advanced as one moves from Course 1 to Course 3. Since, for a given course, the tabulations were done by considering only the last year in which a course was taken, a student who marked this course in grades 9,10 , and 11 would have had this response tabulated under grade 11, the last year the unified course was taken. Note that the percentages are generally low for this course, but the average scores tend to increase from grade 8 to grade 12 .

The course with the highest average score at any grade is calculus taken in grade 12. Other courses with high average
scores were precalculus at grade 11 (336) and geometry at grades 8 (339) and 9 (330).

Table 6.6
Percentage of students and average scores by twelfth-grade students' reports on mathematics courses taken since eighth-grade: 2000

Not Taken Grade 8 Grade 9 Grade 10 Grade 11 Grade 12

1. General mathematics	36	53	5	2	2	3
	318	296	274	276	276	288
2. Business mathematics	80	2	4	3	4	7
	306	285	280	283	291	289
3. Applied mathematics	82	4	5	3	3	3
	307	294	276	278	280	290
4. Introduction to algebra	26	42	23	6	2	1
	317	310	285	267	270	263
5. Algebra I	6	23	50	16	4	1
	283	328	303	283	274	269
6. Geometry	12	2	20	44	16	5
	271	339	330	306	291	280
7. Algebra II	20	1	6	27	36	10
	276	306	328	323	305	290
8. Trigonometry	74	\mathbf{A}	\mathbf{A}	3	12	10
	299	$* * * *$	300	332	324	307
9. Precalculus	63	\mathbf{A}	\mathbf{A}	2	18	17
10. Unified, integrated, or	291	$* * * *$	$* * * *$	335	336	318
sequential mathematics	89	1	2	2	4	3
11. Statistics	304	276	281	303	304	307
12. Discrete/finite mathematics	92	1	2	2	5	8
	304	275	289	300	311	317
13. Calculus	1	1	1	2		
	82	$* * * *$	288	302	315	
14. Other	297	$* * * *$	$* * * *$	$* * * *$	2	16
	83	1	2	2	4	8

Twelfth-graders who had taken higherlevel courses generally scored higher.

The percentage of students is listed first with the corresponding average scale score presented below.
**** Sample size is insufficient to permit a reliable estimate.
Δ Percentage is between 0.0 and 0.5 .
NOTE: Percentages may not add to 100 due to rounding.
SOURCE: National Center for Education Statistics, National Assessment of Educational Progress (NAEP), 2000 Mathematics Assessment.

Mathematics Courses Taken vs. NAEP Performance

Students who take certain courses listed in table 6.6 may be better prepared to take the NAEP twelfth-grade assessment than are students who take, for example, only one or two of the more basic courses such as general mathematics or introduction to algebra. To explore how the particular pattern of courses students take relates to performance, four groupings of the courses were considered. A description of each grouping is presented in figure 6.1. The groupings are generally consistent with the
course sequencing practices of most school districts. The course groups are organized in ascending order of mathematics preparation with Group I representing the lowest level of course taking and Group IV the highest. The groupings are imperfect because course titles are imperfect representations of course content. For example, a course listed as "introduction to algebra" at one school may be just as demanding as first-year algebra at another school. Nevertheless, the courses in each successive grouping represent a generally agreed upon hierarchy of courses offered in grades 8 through 12 .

Figure 6.1
Groupings of
Courses Taken

Group I Level

Group II Level

Group III Level

Group IV Level

Mathematics courses associated with each group as related to the twelfth-grade mathematics assessment

Students were placed in Group I if they had not taken any math course or if the only courses they had taken were those numbered 1 through 4 in table 6.6 (general mathematics through introduction to algebra). Students in this group have had the opportunity to be exposed to some mathematical content in each of the five mathematics content strands, but not at the level needed to deal with much of the content assessed by NAEP.

Students were placed in Group II if they took first-year algebra no later than grade 9 or took course 10, unified, integrated, or sequential mathematics in grade 9. Students who, in addition, took one or more of the Group I courses (numbers 1-4) were included in this group. Students who took courses such as geometry, secondyear algebra, or other higher-numbered courses were not included in this group. The primary difference between this group and the previous group is the higher level of preparation in algebra.

Students were placed in Group III if they marked one or more of courses 6, 7, or 10 with course 6 (geometry) taken in grade 10 or earlier and course 10 (unified) taken in grades 10, 11, or 12 . Students who, in addition, took courses listed in Group I or II above were included in this group. Students who took any of the more advanced courses numbered $8,9,11,12$, or 13 were not included in this group. As an example, a student who took general mathematics, first-year algebra, and geometry would be considered to be in Group III.

Students were placed in Group IV if they took at least one of courses 8, 9, 11, 12, or 13. Students who, in addition, took any of the courses listed above were also included in this group. For example, a student who took first-year algebra, geometry, second-year algebra, precalculus, and calculus would be considered in this group. Students in this group should have had the opportunity to learn most of the material needed to answer NAEP mathematics questions, and in certain cases (e.g., precalculus or calculus) to learn material beyond that required by NAEP.

Table 6.7 provides the percentage of students who fall in each of the four course groupings described in figure 6.1 and their average scale scores. Groups III and IV account for 32 percent and 50 percent, respectively, of the twelfth-grade students. There is a strong relationship between group membership and average scores. The average score of the students in each group is higher than the average for students in any lower numbered group. For example, the average score of students in Group III (294) is higher than that of Group I (275) and Group II (282). These findings indicate that successively more advanced course taking had a positive relationship with average mathematics scores.

These performance results are consistent with data presented in the 2000 College

Bound Seniors Report. ${ }^{2}$ In that report, the average SAT I mathematics scores of college bound seniors who studied mathematics for 2 years was 449 , whereas the average for 4 years of study was 522 . Relative to mathematics courses taken, the average SAT I score for students who took geometry was 518, while for those who took calculus the average was 610.ACT results show a similar relationship to achievement. ${ }^{3}$ Students who reported taking core mathematics courses (three or more years of mathematics, including Algebra I, Algebra II, and Geometry) had an average ACT score of 21.8 compared to 19.0 for those who took less than the core courses.

The percentage of students is listed first with the corresponding average scale score presented below.
NOTE: Percentages may not add to 100 due to rounding.
SOURCE: National Center for Education Statistics, National Assessment of Educational Progress (NAEP), 2000 Mathematics Assessment.

[^19]
Students' Reported Time Spent on Mathematics Homework

It has been observed that the correlation between homework and achievement is weaker in elementary school than in secondary school. ${ }^{4}$ One of the possible reasons advanced to explain this observation is that elementary school teachers are more likely to use homework to review class material, whereas secondary school teachers more often used homework to prepare for and enrich class lessons.

Table 6.8 presents information about time spent on mathematics homework in 2000 for grades 4,8 , and 12 . Most students at all three grades reported spending between 15 and 45 minutes per day on mathematics homework in 2000 (keeping in mind that 29 percent of the students at grade 12 reported not taking a mathematics course at all in their senior year). Although the relationship between student performance and the amount of time spent on mathematics homework varied by grade level, there was a common pattern that suggested more time was not necessarily better.

Fourth-grade students who reported spending 15 or 30 minutes per day on math homework had higher average scores than students who reported spending more
time. In addition, fourth-graders who reported not doing any homework performed similarly to those who spent anywhere from 15 to 45 minutes per day, and actually had higher average scores than those who spent one hour or more on homework.

Students at grade 8 who reported not doing mathematics homework had lower average scores than those students who spent between 15 minutes and one hour on mathematics homework, but did not differ in performance from students who reported spending more than one hour on homework. Eighth-grade students who reported spending as little as 15 minutes per day doing math homework had higher scores than those who spent an hour or more; however, only 3 percent of eighthgraders reported spending more than one hour daily on homework.

Students at grade 12 who reported not spending any time doing mathematics homework scored lower than their peers who reported spending anywhere from 15 minutes to as much as an hour or more on homework. However, there was no significant difference in the performance of students who reported spending any amount of time from 15 minutes to an hour or more on mathematics homework.

[^20]Table 6.8
Percentage of students and average scores by students' reports on time spent per day on mathematics homework at grades 4, 8, and 12: 2000

See footnotes at end of table

The percentage of students is listed first with the corresponding average scale score presented below.
NOTE: Percentages may not add to 100 due to rounding.
SOURCE: National Center for Education Statistics, National Assessment of Educational Progress (NAEP), 2000 Mathematics Assessment.

Time Spent Working at a Part-Time Job

Most twelfth-graders spend time working at part-time jobs. This section reports how much time students are spending at these jobs and provides average scale scores for those who worked various numbers of hours. Students were asked how many hours per week they usually work in a part-time job, and were told to exclude vacations. The response choices to this question ranged from "None" to "More
than 30 hours." The full range of responses is shown in table 6.9.

In 2000, 71 percent of twelfth-grade students reported working at a part-time job. Students who reported working 21 hours per week or more had lower average scores than those who did not work at all or worked fewer hours. There was no difference between the performance of students who didn't work at all and those who worked up to 20 hours per week.

Table 6.9
Percentage of students and average scores by twelfth-grade students' reports on hours spent at a part-time job: 2000

The percentage of students is listed first with the corresponding average scale score presented below.
NOTE: Percentages may not add to 100 due to rounding.
SOURCE: National Center for Education Statistics, National Assessment of Educational Progress (NAEP), 2000 Mathematics Assessment.

Time Spent Watching Television

The impact of television on school learning has been a topic for discussion and debate for many years. Although many television programs have sound educational value, watching too much television is widely believed to detract from academic pursuits. Other forms of entertainment such as video games, computer games, and surfing the internet also compete for students' time, but they are not considered in this report.

After-school activities such as television viewing, extracurricular activities, homework, and jobs have been found to be related to test scores and grades. ${ }^{5}$ While more time in extracurricular and other structured activities were associated with higher test scores and class grades, more time spent watching television and at jobs were associated with lower test scores and grades.

Students who participated in the 2000 assessment in grades 4,8 , and 12 were asked how much television they usually watch each day and could choose a response ranging from "None" to " 6 hours or more." For this analysis, their responses have been collapsed into three categories. Table 6.10 presents the results for grades 4,8 , and 12 , respectively. Results are presented for
the 2000 mathematics assessment as well as for the mathematics assessments in 1990, 1992, and 1996 when this same question was asked.

About one-third of the students at both grades 4 and 8 , and less than one-fifth at grade 12 , reported watching television four hours or more per day in 2000 . The relationship between students' performance in mathematics and more frequent television watching was similar at all three gradesthat is, students who watched television for four or more hours per day scored lower than those who watched less frequently. At grade 4, however, students who watched television two or three hours per day scored higher than those who watched one hour or less, while the reverse was true at grades 8 and 12.

At grades 4 and 8, students' reports indicate a trend toward less television viewing on a daily basis. The percentage of students watching four hours or more of television each day decreased between 1990 and 2000-from 44 percent of fourth-graders and 43 percent of eighthgraders in 1990 to only 33 percent at each grade in 2000 . Only minimal changes across years are evident in the television viewing habits of twelfth-graders, with no significant differences between the reports of students in 1990 and those in 2000.

[^21]Table 6.10
Percentage of students and average scores by students' reports on the amount of time spent watching television each day at grades 4, 8, and 12: 1990-2000

Grade

	1990	1992	1996	2000
One hour or less	$\begin{gathered} 19 \\ 213 \end{gathered}$	$\begin{gathered} 21 \text { * } \\ 223 \\ \hline \end{gathered}$	$\begin{array}{r} 25 \\ 225 \\ \hline \end{array}$	$\begin{array}{r} 28 \\ 230 \end{array}$
Two or three hours	$\begin{gathered} 36 \\ 220 \\ \hline \end{gathered}$	$\begin{gathered} 36^{*} \\ 226 \\ \hline \end{gathered}$	$\begin{gathered} 36 \text { * } \\ 230 \\ \hline \end{gathered}$	$\begin{array}{r} 39 \\ 233 \\ \hline \end{array}$
Four hours or more	$\begin{gathered} 44 \text { * } \\ 208 \\ \hline \end{gathered}$	$\begin{gathered} 43^{*} \\ 213 \\ \hline \end{gathered}$	$\begin{gathered} 39 \text { * } \\ 217 \\ \hline \end{gathered}$	$\begin{array}{r} 33 \\ 219 \end{array}$
	Grade			
One hour or less	$\begin{array}{r} 13 \text { * } \\ 270 \\ \hline \end{array}$	$\begin{gathered} 17 \text { * } \\ 279 \end{gathered}$	$\begin{gathered} 18 \text { * } \\ 278 \\ \hline \end{gathered}$	$\begin{array}{r} 20 \\ 285 \\ \hline \end{array}$
Two or three hours	$\begin{gathered} 44^{*} \\ 267 \\ \hline \end{gathered}$	$\begin{array}{r} 46 \\ 275 \\ \hline \end{array}$	$\begin{array}{r} \hline 46 \\ 277 \\ \hline \end{array}$	$\begin{array}{r} \hline 47 \\ 280 \\ \hline \end{array}$
Four hours or more	$\begin{gathered} 43 \text { * } \\ 256 \\ \hline \end{gathered}$	$\begin{gathered} 37 * \\ 256 \\ \hline \end{gathered}$	$\begin{gathered} 37 \text { * } \\ 262 \\ \hline \end{gathered}$	$\begin{aligned} & 33 \\ & (264) \end{aligned}$
		Gra	e	
	1990	1992	1996	2000
One hour or less	$\begin{array}{r} 33 \\ 304 \end{array}$	$\begin{gathered} 33 \text { * } \\ 309 \end{gathered}$	$\begin{array}{r} 34 \\ 314 \end{array}$	$\begin{array}{r}36 \\ 310 \\ \hline\end{array}$
Two or three hours	$\begin{array}{r} 47 \\ 295 \\ \hline \end{array}$	$\begin{array}{r} 46 \\ 300 \\ \hline \end{array}$	$\begin{array}{r} 46 \\ 304 \\ \hline \end{array}$	$\begin{array}{r} 46 \\ 301 \\ \hline \end{array}$
Four hours or more	$\begin{array}{r} 20 \\ 278 \end{array}$	$\begin{gathered} 20 \text { * } \\ 284 \\ \hline \end{gathered}$	$\begin{gathered} 20 \text { * } \\ 288 \\ \hline \end{gathered}$	$\begin{array}{r} 18 \\ (285 \end{array}$

The percentage of students is listed first with the corresponding average scale score presented below.

* Significantly different from 2000.

NOTE: Percentages may not add to 100 due to rounding.
SOURCE: National Center for Education Statistics, National Assessment of Educational Progress (NAEP), 1990, 1992, 1996, and 2000 Mathematics Assessments.

Students’ Attitudes Toward Mathematics

Students' attitudes about a subject have been found to be related to performance. ${ }^{6}$ In fact, as will be seen in this section, the attitudes of students who took the NAEP assessment relate rather strongly to performance. Students who participated in the mathematics assessment at all three grades were asked to consider several statements (not all of which are included in this report) about mathematics, such as "I like mathematics," and to indicate the extent to which they agreed with each statement. There were five response choices associated with each statement: strongly agree, agree, undecided, disagree, and strongly disagree. These choices were collapsed for reporting purposes as follows: strongly agree or agree were collapsed to "agree"; and disagree and strongly disagree were collapsed to "disagree." Table 6.11 presents the results for four statements at grades 4,8 , and 12 . Results for two of these questions are presented for the 2000 mathematics assessment as well as for the mathematics assessments in 1990, 1992, and 1996 when the same questions were asked.

All three grade levels showed a positive relationship between students' performance and their attitudes toward mathematics. Students who agreed that they liked math
and that math was useful for solving problems had higher average scores than those who disagreed. Students at all three grades who disagreed that math was mostly memorizing facts and that there was only one way to solve a problem scored higher than those who agreed with these statements. In addition, students at grade 12 who indicated that they would not study mathematics if they had the choice scored lower than those who indicated that they would.

The extent to which students' attitudes toward mathematics have changed since the early 1990s varies somewhat by grade. While there has been no change since 1990 in the percentage of fourth-graders who reported liking math, fewer eighthand twelfth-grade students reported liking math in 2000 than in the early 1990s. While the percentage of fourth-grade students who agreed that math was useful for solving everyday problems increased from 63 percent in 1990 to 71 percent in 2000 , the percentage of twelfth-grade students who responded similarly decreased from 73 percent in 1990 to 61 percent in 2000 . The percentage of students who disagreed that math was mostly memorizing facts increased at all three grade levels between 1992 and 2000.

[^22]Table 6.11
Percentage of students and average scores by students' reports on their attitudes toward mathematics at grades 4, 8, and 12: 1990-2000

	1990	1992	1996	2000

I like Math

Agree	70	71	69	70
	215	222	226	231
Undecided	16	16	17	16
	213	221	225	229
Disagree	14	12	14	14
	204	209	219	221

Math is useful for solving problems

Agree	63^{*}	66^{*}	69	71
	216	224	229	234
Undecided	22^{*}	$21 *$	17	18
	213	219	222	225
Disagree	14^{*}	13^{*}	$14{ }^{*}$	11
	203	208	213	217

Math is mostly memorizing facts

Agree	-	57^{*}	54	52
		218	221	225
Undecided	-	28	25^{*}	27
		225	228	233
Disagree	-	16^{*}	21	21
		224	235	240

Only one way to solve a problem

Agree	-	-	17	16
			207	212
Undecided	-	-	20	19
			221	225
Disagree	-	-	63	65

Table 6.11 (continued)
Percentage of students and average scores by students' reports on their attitudes toward mathematics at grades 4, 8, and 12: 1990-2000

Students' Attitudes
Toward Mathematics

$1990 \quad 1992 \quad 1996 \quad 2000$

I like Math

Agree	57	$57 *$	56	54
	267	273	277	(282)
Undecided	22	20	21	21
	261	268	271	277
Disagree	$21 *$	$23 *$	$23 *$	26
	254	260	263	267

Math is useful for solving problems

Agree	76	81^{*}	80^{*}	75
	266	271	275	279
Undecided	15	12^{*}	12^{*}	15
	262	269^{*}	274	280
Disagree	9	7^{*}	8^{*}	10
	245	259	259	269

Math is mostly memorizing facts

Agree	-	44^{*}	41^{*}	37
		259	263	268
Undecided	-	26^{*}	28	28
		273	275	278
Disagree	-	30^{*}	$31 *$	35
		283	284	289

Only one way to solve a problem

Agree	-	-	8	9
			246	255
Undecided	-	-	14	13
			264	268
Disagree	-	-	78	78

Eighth-graders who did not think math is mostly memorizing facts or that there's only one way to
solve a problem
scored highest.

See footnotes at end of table

Table 6.11 (continued)

Percentage of students and average scores by students' reports on their attitudes toward mathematics at grades 4, 8, and 12: 1990-2000

I like Math

Agree	54^{*}	51^{*}	50 *	47
	304	308	313	(312)
Undecided	17	17	17	17
	286	297	301	298
Disagree	29 *	$32 *$	$33 *$	37
	284	288	293	289

Twelfith-graders who
said they like math
scored highest.

Math is useful for solving problems

Agree	$73 *$	71^{*}	$70 *$	61
	298	302	307	305
Undecided	15^{*}	18^{*}	16^{*}	19
	289	298	301	302
Disagree	12^{*}	12^{*}	14^{*}	19
	286	292	296	292

Math is mostly memorizing facts

Agree	-	41^{*}	35	36
		288	292	290
Undecided	-	20^{*}	21	22
		297	299	297
Disagree	-	$39 *$	44	42

Only one way to solve a problem

Agree	-	-	6	6
			291	284
Undecided	-	-	12	12
			290	288
Disagree	-	-	82	83

Would not study math if given choice

Agree	-	-	31^{*}	295^{37}
Undecided	-	-	22^{*}	19
Disagree	-	-	301	47^{*}
		312	43	

Twelfith-graders who
would not study
math if given a
choice scored
lowest.

The percentage of students is listed first with the corresponding average scale score presented below.

* Significantly different from 2000.
- Comparable data were not available.

NOTE: Percentages may not add to 100 due to rounding.
SOURCE: National Center for Education Statistics, National Assessment of Educational Progress (NAEP), 1990, 1992, 1996, and 2000 Mathematics Assessments.

[^0]: ${ }^{1}$ Reese, C.M., Miller, K.E., Mazzeo, J., \& Dossey, J.A. (1997). NAEP 1996 mathematics report card for the nation and states. Washington, DC: National Center for Education Statistics.

[^1]: ${ }^{2}$ Barton, P.E. (2001) Raising achievement and reducing gaps: Reporting progress toward goals for academic achievement. Washington, DC: National Education Goals Panel.
 Haycock, K., Jerald, C., \& Huang, S. (2001). New frontiers for a new century: A national overview. Thinking K-16, Education Trust., Vol. 5, Issue 2.
 Sadowski, M. (2001). Closing the gap one school at a time, Harvard Education Letter, Research OnLine. [Available online at http://www.edletter.org/current/].
 The College Board, (1999). Reaching the top: A report of the national task force on minority high achievement. New York: Author. [Available online at http://www.collegeboard.com].
 Jencks, C. and Phillips, M. (eds.) (1998). The black-white test score gap. Washington, DC: Brookings Institution.

[^2]: * Score differences are calculated based on differences between unrounded average scale scores.

 SOURCE: National Center for Education Statistics, National Assessment of Educational Progress (NAEP), 1990, 1992, 1996, and 2000 Mathematics Assessments.

[^3]: ${ }^{3}$ More detail on results by school type including additional breakouts by types of nonpublic schools are available at the NAEP website (http://nces.ed.gov/nationsreportcard).
 ${ }^{4}$ Campbell, J.R.,Voelkl, K.E., \& Donahue, P.L. (1997). NAEP 1996 trends in academic progress. Washington, DC: National Center for Education Statistics.
 Campbell, J.R., Hombo, C.M., \& Mazzeo, J. (2000) NAEP 1999 trends in academic progress:Three decades of student performance. Washington, DC: National Center for Education Statistics (NCES 2000-469).

[^4]: 5 U.S. General Services Administration. (1999) Catalogue of federal domestic assistance. Washington, DC: Executive Office of the President, Office of Management and Budget.

[^5]: 1 Goals 2000, Elementary and Secondary Education Act (ESEA), Improving America's Schools Act (IASA), Individuals with Disabilities Education Act (IDEA). See also:Title VI of the Civil Rights Act, Equal Educational Opportunities Act, Section 504 of the Rehabilitation Act.

[^6]: \dagger Indicates that the jurisdiction did not meet one or more of the guidelines for school participation.
 *Significantly different from the sample where accommodations were not permitted when examining only one jurisdiction.
 DDESS: Department of Defense Domestic Dependent Elementary and Secondary Schools.
 DoDDS: Department of Defense Dependents Schools (Overseas).
 SOURCE: National Center for Education Statistics, National Assessment of Educational Progress (NAEP), 2000 Mathematics Assessments.

[^7]: \dagger Indicates that the jurisdiction did not meet one or more of the guidelines for school participation.
 *Significantly different from the sample where accommodations were not permitted when examining only one jurisdiction.
 Δ Percentage is between 0.0 and 0.5 .
 DDESS: Department of Defense Domestic Dependent Elementary and Secondary Schools.
 DoDDS: Department of Defense Dependents Schools (Overseas).
 SOURCE: National Center for Education Statistics, National Assessment of Educational Progress (NAEP), 2000 Mathematics Assessment.

[^8]: \dagger Indicates that the jurisdiction did not meet one or more of the guidelines for school participation.
 *Significantly different from the sample where accommodations were not permitted when examining only one jurisdiction.
 DDESS: Department of Defense Domestic Dependent Elementary and Secondary Schools.
 DoDDS: Department of Defense Dependents Schools (Overseas).
 SOURCE: National Center for Education Statistics, National Assessment of Educational Progress (NAEP), 2000 Mathematics Assessment.

[^9]: 2 Darling-Hammond, L. (1999). Teacher quality and student achievement: A review of state policy evidence (p. 10). (Docu-

[^10]: 3 Kilpatrick, J., Swafford, J., Findell, B., (Eds.). (Forthcoming). Adding it up: Helping children learn mathematics. Washington, DC: National Academy Press.

[^11]: 4 Gonzales et al. (2000). Pursuing excellence: Comparisons of eighth-grade mathematics and science achievement from a U. S. perspective, 1995 and 1999 (p. 44). Washington, DC: National Center for Education Statistics. Available online: www.nces.ed.gov/timss/timss-r
 5 Council of Chief State School Officers (May, 2000). Using data on enacted curriculum in mathematics \& science (p. 27). Washington, DC: Author.

[^12]: 6 National Council of Teachers of Mathematics (1989). Curriculum and evaluation standards for school mathematics. Reston,VA: Author.
 7 National Council of Teachers of Mathematics (2000). Principles and standards for school mathematics. Reston,VA: Author.

[^13]: 8 Wenglinsky, H. (1998). Does it compute? The relationship between education technology and student achievement in mathematics. Princeton, NJ: Educational Testing Service.

[^14]: The percentage of students is listed first with the corresponding average scale score presented below.

 * Significantly different from 2000.

 NOTE: Percentages may not add to 100 due to rounding.
 SOURCE: National Center for Education Statistics, National Assessment of Educational Progress (NAEP), 1996 and 2000 Mathematics Assessments.

[^15]: 9 Choike, J. R. (2000). Teaching strategies for "algebra for all." Mathematics Teacher (93) 7, 556-560.

[^16]: 10 Gonzales, et al. (2000). Pursuing excellence: Comparisons of eighth-grade mathematics and science achievement from a U. S. perspective, 1995 and 1999 (p. 116). Washington, DC: National Center for Education Statistics. Available online: www.nces.ed.gov/timss/timss-r
 11 Campbell, J.R., Hombo, C.M., and Mazzeo, J. NAEP 1999 trends in academic progress: Three decades of student performance. Washington, DC: National Center for Education Statistics.

[^17]: The percentage of students is listed first with the corresponding average scale score presented below.

 * Significantly different from 2000.
 **** Sample size is insufficient to permit a reliable estimate.
 Δ Percentage is between 0.0 and 0.5 .
 NOTE: Percentages may not add to 100 due to rounding.
 SOURCE: National Center for Education Statistics, National Assessment of Educational Progress (NAEP), 1992, 1996 and 2000 Mathematics Assessments.

[^18]: 1 National Council of Teachers of Mathematics. (2000). Principles and standards for school mathematics (p.4). Reston, VA: Author

[^19]: 2 The College Board. (2000). College bound seniors national report (p.3). New York, NY: Author.
 3 ACT. (2000). ACT assessment 2000 results: Summary report national (p.4). Iowa City, IA: Author.

[^20]: 4 Muhlenbruck, L., Cooper, H., Nye, B., \& Lindsay, J. (2000). Homework and achievement: Explaining the different strengths of relation at the elementary and secondary levels. Social Psychology of Education, 3, 295-317.

[^21]: 5 Cooper, H.,Valentine, J., Nye, B., \& Lindsay, J. (1999). Relationship between five after-school activities and academic achievement. Journal of Educational Psychology, 91(2), 369-378.

[^22]: 6 National Academy Press. (1999). Global perspectives for legal action: Using TIMSS to improve U.S. mathematics and science education (p.18). Washington, DC:Author.

