
26 CROSSTALK The Journal of Defense Software Engineering May 2004

Many organizations depend critically
upon the maintenance and evolution

of multiple in-house commercial off-the-
shelf (COTS)-intensive systems. Most
COTS systems are not matched perfectly
to these organizations’ specific needs and
hence companies are often adjusting para-
meters, creating scripts, developing
macros, writing code, or otherwise chang-
ing or extending functionality. Addition-
ally, COTS vendors are always developing
new packages, adding additional capability,
and releasing updated versions of their
products. Then, of course, there are the
usual service packs, security patches, and
other bug fixes that vendors want compa-
nies to install. And do not forget ongoing
hardware and network upgrades. All this
translates into a significant challenge for
those responsible for performing testing
to ensure adequate quality within this
complex infrastructure.

For most organizations, testing every-
thing is simply not an option. Hence,
somehow testing must be biased in a man-
ner that results in the maximum reduction
of organizational risk, and that helps
ensure the delivery of maximum benefit
to system end-users. Amazingly, approxi-
mately half of all software modules in a
system are defect-free and do not require
any testing at all. Further, 80 percent of
the defects come from 20 percent of the
modules, and 90 percent of system down-
time comes from at most 10 percent of
the defects [1].

The potential exists to substantially
improve upon system uptime and overall
end-user benefit by finding, for example,
just five percent more defects than are
currently found. Ironically, end-user bene-
fit can even be improved by finding fewer

defects. This might occur if the testing
approach is adjusted to focus on finding
defects that cause the greatest system
downtime. For example, the user experi-
ence will likely be substantially better if
one defect is found that would crash the
system daily versus finding three defects
that would each crash the system annually.

Given the preceding data, a significant
majority of testing efforts should be
focused on 10 percent to 20 percent of
any particular COTS system. The question
is, how do we find that 20 percent? And
since some in-house systems are clearly
more critical than others, how do we
account for that?

This article briefly identifies these and
similar major challenges associated with
performing efficient and effective testing
of multiple in-house COTS-intensive sys-
tems. Then a nine-step process is
explained that can help improve the
approach to performing testing. The steps
are as follows:
1. Identify Transaction Dialogues.
2. Analyze User Impact.
3. Determine Historical Defect Prevalence.
4. Prioritize Dialogues.
5. Prioritize Test Types.
6. Build Test-Dialogue Matrix.
7. Analyze Test Resources.
8. Establish a Test Plan.
9. Conduct Test Management.

Although the above sequence of
actions may, at first, seem a bit daunting,
several of the steps become substantially
simpler after the first planning iteration.
For example, once you have prioritized the
types of tests to perform, you can typical-
ly reuse the same prioritization during
future planning iterations. Additionally,
this method is self-correcting. In earlier

planning iterations, it is likely that you will
have to rely upon a lot of guesswork to
perform some of the steps. However, as
you collect data during subsequent testing
cycles, you can start using that data to
replace, or at least augment, estimates.
Note that the overall testing approach
described in this article can also be applied
to the testing of virtually any complex sys-
tem, or for performing testing in environ-
ments where test resources are very scarce
or test urgency is very high. However to
simplify this discussion, the remainder of
this article specifically focuses on discus-
sion and examples relevant to testing mul-
tiple COTS-intensive systems.

COTS Testing Challenges
Testing of any complex software system
can be challenging, and testing of COTS
systems even more so because they require
testing someone else’s software (and hard-
ware) and also testing your implementation
and/or extension of that system. Deploy a
few dozen COTS-intensive systems into
the organization, and you have created a
full-scale testing nightmare.

When performing testing in this type
of environment, typically you need to
consider and address most or all of the
following issues:
• Different COTS systems may be

based upon significantly different
technologies.

• System end users usually have sub-
stantially different skill and experience
levels.

• Your organization may depend upon a
wide variety of COTS vendors.

• The threat levels presented by various
COTS systems relative to core mission
or business processes can differ by

Efficient and Effective Testing of
Multiple COTS-Intensive Systems

Dr. Richard Bechtold
Abridge Technology

Testing any complex system is a challenge, but testing multiple commercial off-the-shelf
(COTS)-intensive systems is especially challenging due to a variety of factors. These factors
include (1) systems combining highly diverse technology levels, (2) organizational users span-
ning numerous skill levels, (3) incorporating wide varieties of COTS vendors and pack-
ages, and (4) updated systems arriving for testing from projects that already may be sub-
stantially behind schedule and over budget. Regardless of these challenges, it is still essential
to conduct efficient and effective testing in the context of limited time and nominal budgets.
This article explains how to analyze, prioritize, plan, and manage the testing of COTS-
intensive systems. Priorities are discussed from the perspective of identifying general types of
transaction dialogues and specific instances of key dialogues. Dialogue value escalation is
explained. Test planning and management are then discussed with the goal of maximizing
the delivered benefit to organizational end-users.

Thursday, 22 April 2004
Track 5: 1:30 - 2:15

Room: 150 G

Efficient and Effective Testing of Multiple COTS-Intensive Systems

May 2004 www.stsc.hill.af.mil 27

orders of magnitude.
• System test work requests are not

evenly distributed over time, and mul-
tiple parallel systems under test may
rapidly overwhelm available test
resources.

• Systems often become available for
testing substantially later than original-
ly planned.

• For some system failures, finding the
actual source of the failure – or even
re-creating the failure – can be quite
complex and time-consuming, espe-
cially when the COTS system involves
products from multiple vendors.

• The end-user organization may be
reluctant to provide, or is incapable of
providing (due to security reasons),
actual production data for use in testing.

• Funds or resources originally allocated
for system testing are often used to
cover cost overruns during earlier pro-
ject phases.

• System release or go live dates are often
unmovable, or at least quite painful to
move.

• Test organization resources are often
redirected to perform unplanned
emergency testing of systems to inves-
tigate problems reported by end users
working with production systems.

• Calculating return on investment for soft-
ware testing can be extremely difficult,
or impossible [2, 3].
In summary, efficient and effective

testing of multiple in-house systems
requires a thorough understanding of the
role those systems play and the value they
provide – and the threat they present to
the organization. It also requires a highly
flexible plan to accommodate potentially
significant organizational dynamics. The
following nine-step process addresses
these issues and is based upon these fun-
damental principles: (1) collect intelli-
gence, (2) prioritize objectives, (3) under-
stand resources, and (4) go for maximum
impact.

1. Identify Transaction Dialogues
The COTS system value and impact analy-
sis commences with identifying and docu-
menting transaction dialogues. A transac-
tion dialogue is a closely related set of
actions – ideally mapped to one or more
system requirements – that are normally
performed at the same time, and that typ-
ically conclude at the same place they
commenced. For example, adding new
employees to the employee database can
be viewed as a dialogue. It likely starts and
ends on the same menu screen, and the
data entry actions for adding employee
information are closely related.

Another example of a dialogue is
updating electronic timesheets with the
activities performed and hours worked
during a given day. Further examples
include entering sales orders into an
accounts receivable system, entering pay-
check information into a payroll system,
or paying invoices within an accounts
payable system. When creating transaction
dialogues, remember that the ultimate
objective is to structure or design them so
that they directly facilitate testing. (Note:
If you already have a set of use-case sce-
narios [4], you can use those in lieu of cre-
ating transaction dialogues. In the absence
of use-case scenarios, defining dialogues
will likely be faster and easier than defin-
ing scenarios).

Dialogues can be easily diagrammed as
a directed graph consisting of a set of
nodes and arcs where the nodes represent
specific (and possibly complex) activities
or steps, each with a descriptive label and
possibly a brief description. The arcs,
each of which connects two nodes, indi-
cate the sequence in which these activities
can occur. As shown in Figure 1, multiple
arcs departing from a node indicate that
any of the destination actions might occur
next. Similarly, multiple arcs arriving at a
node indicate any of the source activities
may have occurred previously. Note that
there are no semantic differences between
two arcs departing (as in Step 2) or in one
arc departing and splitting (as in Step 6).
Likewise there is no difference between
multiple arcs arriving (as in Steps 4B and
5B) or multiple arcs joining and then
arriving as one (as in Steps 6 and 8).

In order to ensure clarity and reduce
misunderstanding, it is important to keep
these drawings, and their associated
semantics or rules, simple (i.e., these dia-
grams do not require the formality or
detail of state transition diagrams). The
objective of developing these diagrams is
just to clearly indicate the boundary of the
closely related set of system and user
actions or steps that are covered by the
dialogue.

It may be infeasible or unnecessary to
try to capture all the various dialogues
within a system. Hence, develop dialogues
in a somewhat prioritized order. That is,
what are the most important things a
given system does? Capture that at a high
level. Then, resources permitting, decom-
pose complex nodes on higher-level dia-
logues into their own dialogues. If you are
preparing to perform parallel testing of
multiple COTS systems, then continue
with this strategy by documenting the
most important dialogues in the most
important COTS systems, etc.

Again, resources and time permitting,
steadily extend both coverage and formal-
ity by adding dialogues related to less-
important systems and less-important sys-
tem interactions, and by adding additional
information to previously developed high-
er-priority dialogues. For the most impor-
tant dialogues, consider augmenting them
with comprehensive use-case scenarios.

When identifying dialogues within any
given system, the ultimate objective is to
gain a better understanding of where,
how, and why users interact with that sys-
tem. This sets the foundation for analyz-
ing user impact.

2.Analyze User Impact
As you build a collection of transaction
dialogues, you can begin to identify specif-
ic user groups within the end-user organiza-
tion. Note that the groups you identify
may not align with actual job titles held by
the end-users. This is common and
acceptable because your primary objective
in this step is to improve your under-
standing of how closely related sets of
people – regardless of their titles – inter-
act with the various systems during day-
to-day usage.

Depending upon the complexity of
the end-user organization(s), you may also
find it convenient to define a set of user-
group types. Type distinction might be
quite simple such as distinguishing
between beginning, intermediate, and advanced
users. For each identified user-group (or

Step 1

Step 8

Step 2

Step 3A

Step 3B

Step 7A

Step 7B

Step 4A

Step 4B

Step 4C

Step 5A

Step 5B

Step 6

Figure 1: Identifying and Diagramming Transaction Dialogues

Software Engineering Technology

28 CROSSTALK The Journal of Defense Software Engineering May 2004

group-type combination), assign a code to
indicate that group’s estimated contribu-
tion to core mission or business perfor-
mance. For example, use A to indicate a
group that is critical to core performance,
B to indicate a group that is important,
and C to indicate a nonessential support
group.

Next, develop estimates of the num-
ber of users within each group. Typically
the sum of this number across all user-
groups will be much larger than the total
number of users because some people will
belong to multiple groups within one sys-
tem. Additionally, numerous people or
organizations may interact with multiple
systems.

The last and possibly most difficult
part of this step is to generally estimate
the number of times an average user
invokes a given dialogue. For example, an
average user within a particular group
might invoke one dialogue an average of
once per month, and another dialogue 20
times per day. Ideally, you can collect feed-
back from system end-users to help you
develop these estimates. Alternatively, you
may need to resort to best-guess estimates
developed by you, your test team, and any
available systems analysts.

The final objective of this step is to
have some idea regarding the relative fre-
quency that various dialogues are occur-
ring. This data will eventually be used to
help prioritize dialogues, but that prioriti-
zation will also depend upon a dialogue’s
historical defect profile, so that step must
be taken next.

3. Determine Historical
Defect Prevalence
For each dialogue, document the average
number of defects normally found during
testing, and add the average number
found after testing (that is, failures report-
ed by system users). This is a relatively
simple step; you will either have this data
or you will not. Probably, you will not.
Nevertheless, if you have been in the test
group for a while you can likely invent
some reasonably usable numbers.
Alternatively, you may be able to use his-
torical data from similar dialogues else-
where within the system. These numbers
do not need to be either accurate or pre-
cise. All we are trying to determine is
which dialogues tend to contain the most
defects. Whether a given dialogue has
been 10 times more defective than anoth-
er or 20 times more defective is not really
important. For the prioritization step, it is
sufficient to know that it is normally much
more defect prone.

4. Prioritize Dialogues
Eventually, we are going to be testing
based upon dialogues (and possibly use-
case scenarios). The question at this point
is which ones and how thoroughly? As
indicated previously, the overall objective
is to perform efficient and effective testing
of multiple in-house COTS-intensive sys-
tems by striving to perform testing in a
manner that reduces organizational risk
and that helps ensure the delivery of max-
imum benefit to the end-users. Given this
objective, relative importance can be
established by examining the following for
each dialogue:
• The size of the user-groups that

invoke the dialogue.
• The frequency of invocation per unit

time (e.g., 50 users, 20 invocations per
user per day).

• The relative role of the user-group and
dialogue to the organization’s core
mission capabilities.

• The historical defect prevalence asso-
ciated with the dialogue.
Note that this step is an analytical step,

not a calculation. The data developed in
prior steps is used to help make highly
informed decisions regarding how to pri-
oritize dialogues. However, remember that
much of the data may be gross estimates
at best and some may be outright specula-
tion, especially during early planning itera-
tions. Hence, use the underlying numbers
as an aid and combine them with the
experience and judgment of you and your
team.

The ideal output for this step is a
lifeboat ranking (or a fully ordered set) of all
the dialogues that are candidates for the
next phase of testing. Basically, you start
at the top of the list and keep working
downward as far as you can go, resources
permitting. If a fully ordered approach is
infeasible in your environment, then strive
to arrange dialogues into prioritized test-
ing sets (e.g., critical, highly important, impor-
tant, etc.).

5. Prioritize Test Types
This step consists of determining the
types of tests to run relative to the dia-
logues. That is, are you only interested in
testing features, or do you also consider
other tests to be important? Examples of
other types of tests include the following:
• Performance (normal load).
• Stress (approaching design limits).
• Overload (substantially beyond design

limits).
• Security.
• Safety.

The purpose of this step is to ensure

that everything that is important regarding
organization risk management and end-
user benefit is considered. For some envi-
ronments the prioritization of which types
of tests should be run first is fairly stable.
For example, in life-rated systems, safety is
typically the highest priority. After this
step, you have everything necessary to
build the test dialogue matrix.

6. Build a Test-Dialogue Matrix
This is another potentially simple step
where you build a matrix to help ensure
that all appropriate tests for each of the
designated dialogues are run. For example,
although you may be planning to conduct
testing focused specifically on security,
there may be numerous dialogues where
security is not an issue and security testing
is not required. Within this matrix (dia-
logues, in priority order, shown as rows;
and test types, also in priority order,
shown as columns), simply mark any cell
to indicate that you want to perform that
particular test (column) on that particular
dialogue (row).

7.Analyze Test Resources
The last step to perform before building
your test plan is to consider the resources
available for testing. This includes not only
human resources but also any automated
tools you have that can be used to help
with any subset of the testing. The gener-
al approach is to run the most important
tests and to cover the maximum amount
of highest priority dialogues. However,
the overall objective continues to be risk
reduction and user benefit, so it might
make sense to adjust the order of the tests
because you have one or more automated
tools that allow you to rapidly and effec-
tively test numerous lower priority dia-
logues. This would be the preferred
approach when the compound benefit of
testing a large number of lower priority
dialogues exceeds that of the delayed
higher-priority tests.

Integral to this approach is the fact
that it is often difficult, if not impossible,
to know your test resource availability rel-
ative to future demands that may be
placed on your test group. This is why
each of these steps is ultimately about pri-
oritization and best utilization of available
resources. For example, you may think you
still have a month to finish testing the
dozen COTS systems that are currently
under test, but then again, what if you do
not? Especially when it comes to the high-
ly dynamic environments typically associ-
ated with testing multiple COTS systems,
it is imperative that whatever is most
important to occur next (whether it is a

Efficient and Effective Testing of Multiple COTS-Intensive Systems

May 2004 www.stsc.hill.af.mil 29

single human-intensive test or a highly
automated set of tests) is precisely what
occurs.

8. Establish a Test Plan
Dynamic environment notwithstanding, it
is important to take the time to develop an
actual test plan, or to post your latest
updates and revisions to the existing test
plan. The formality and scope of various
test plans may vary significantly depend-
ing on system criticality (or lack thereof),
your overall test strategy, and resource
availability. For example, there undoubted-
ly will be situations where exploratory
testing [5] will give far better coverage
(and test resource utilization) than script-
ed testing; additionally, you minimize the
creation of comprehensive test docu-
ments to maximize the performance of
actual test activities. Similarly, you will like-
ly want to consider some level of combi-
natorial testing [6] to reduce the overall
number of required tests by focusing on
two-way and three-way parameter combi-
nations for effectively finding multi-mode
software faults. Regardless of the overall
strategy, however, in the interests of com-
munication, consensus, and overall risk
management, some level of documented
test plan is almost always beneficial.

In many environments, test plans (for-
mal or otherwise) are frequently overtaken
by events and therefore need frequent
revision. For example, you may want to
review your test plan on a weekly or
monthly basis to determine if any revi-
sions are required. Your test schedule,
however, including revisions to dialogue
prioritization, might need to be updated
on a daily or weekly basis.

When planning, consider the various
development groups within your organi-
zation, and absolutely consider their track
record regarding their commitments to
the test group. Do they normally deliver
system and software enhancements on
time, or do they routinely miss by a few
months? The problem is, although you
have to consider this when preparing your
test schedule, project managers might find
it a tad offensive if your schedule shows,
for example, you are not really expecting
them to deliver until six months after their
claimed completion date. Therefore, con-
sider keeping both an “official test sched-
ule” and a “pessimistic test schedule.” The
pessimistic schedule is what you use to
remind yourself how you think events are
really going to unfold.

As you are building or revising your
plan and schedule, always consider the
possibility of obtaining additional test
resources. For example, can developers

help with system testing? Absolutely. Can
system designers test? Certainly. Are sys-
tems engineers, requirements analysts, and
end users all potentially effective testers?
Of course they are. Are any of these
resources available to you? They probably
are not. But then again, maybe that
depends on the relative importance of the
items on the upcoming testing schedule
relative to some of the other work cur-
rently occurring within your organization.
Given the steps you have taken to create
the inputs to your multi-system test plan
and schedule, if you think additional
resources are needed, at a minimum you
can support your request with a very com-
pelling rationale.

9. Conduct Test Management
Effective test management requires a wide
variety of skills and activities, including the
identification, collection, and analysis of a
variety of test-related and quality-related

metrics, and metrics associated with test
status tracking, management, and control;
proper reviews (to varying levels of for-
mality) of test documentation and support
material; and the determination of clear
criteria for objectively assessing whether or
not a system is ready for piloting, and
when it is ready for operational use. Within
this context, test activities should be prior-
itized with the ultimate objective of deliv-
ering maximum benefit to the end-users.

Prioritization is also influenced by the
overall test strategy (such as exploratory
testing and/or combinatorial testing). As
testing activities are performed, there is
normally a wealth of defect data collected.
However, much of this strategically valu-
able data often is eventually lost. That is,
test results are compiled and sent back to
the development teams and are used for
system and software corrections, but that
data is not otherwise archived and man-
aged by the test organization.

Note that one of the critical steps pre-
viously described is the determination or
estimation of defect prevalence by dia-
logue. Since you are running the tests, you
absolutely can and should retain this infor-
mation. Ideally, you have (or can find or
create) one or more failure-related refer-
ence lists so that system failures can be
assigned to failure categories, failure sever-
ities, failure likelihood in the field, etc. This
data can then be stored in a database, or
even in a spreadsheet for use during future
planning iterations.

Possibly even more important, to con-
tinue to enhance this overall process you
must collect relevant data regarding fail-
ures or problems reported from system
beta testing and production usage. These
are the defects that slipped past your test-
ing process. What are they? Where are
they? When were they discovered? How
were they discovered? For a given defect,
which user group reported it first? Which
user group reported it the most? What was
the impact? This data is absolutely essen-
tial to you in your ongoing efforts to
understand end-user consequences and
organizational risk, and to continually
improve the contributions of your test
organization to overall mission success.

Delivering Maximum Benefit
Delivering maximum benefit to organiza-
tional end-users, and ultimately to the
organization, is everyone’s job. Therefore,
related to this discussion are numerous
quality topics such as the value of peer
reviews, the benefits of early inspections,
the greater benefits of perspective-based
reviews [1], etc., which directly impact
overall organizational competence and
mission performance. However, as a man-
ager or technical specialist within the test
organization, you normally do not influ-
ence such things. The projects build what
they build, the procurement organization
buys what it buys, and the maintenance
teams implement changes however they
feel like. And you are the last line of
defense, literally, for your organizational
system’s end-users.

There are many alternative approaches
to testing COTS-intensive systems. You
can, for example, assign functional require-
ments to different priority levels, and then
take a priority-driven approach to test per-
formance. Alternatively, many organiza-
tions, if they have sufficient resources,
plan and perform tests by taking one of
these approaches: try-to-test-everything-once,
top-down, front-to-back, or any of numerous
other techniques.

The premise behind the approach
described in this article is to increase your

“The potential exists to
substantially improve

upon system uptime and
overall end-user benefit
by finding, for example,
just five percent more

defects than are
currently found.”

Software Engineering Technology

30 CROSSTALK The Journal of Defense Software Engineering May 2004

efforts relative to test priority analysis and
planning, and to strive to maximize the
test organization’s contribution to the
overall delivery of benefits to systems’
end-users, and the overall end-user experi-
ence. Invariably, testing priorities will con-
tinue to be a constantly shifting landscape
due to unexpected events. However, by
regularly following the steps described in
this paper you will steadily improve your
understanding of user-group interactions
with various systems and steadily increase
the amount of data available to you relat-
ed to user-discovered defects and conse-
quences. This combination of strategy,
understanding, and data will directly sup-
port and enhance your overall efforts
toward leveraging your test organization
to deliver maximum benefit to your end-
users.◆

References
1. Boehm, B., and V. Basili. “Software

Defect Reduction Top-10 List.” NSF
Center for Empirically Based Software
Engineering, Jan. 2001 <www.cebase.
org/www/home/index.htm>.

2. Bechtold, R. “Software Quality Val-
uation: Return on Investment Versus
Reduction of Risk.” International
Conference on Practical Software
Quality Techniques/Practical Software

Testing Techniques. Washington, D.C.,
June 2003.

3. Bechtold, R. “Return on Investment for
Software Testing.” Software Testing
Forum. Reston, VA., Mar. 2003.

4. Satzinger, J., and T. Orvik. The Object
Oriented Approach, Concepts, System
Development, and Modeling with UML.
2nd ed. Course Technology, Thomson

Learning, 2001.
5. Bach, J. “What Is Exploratory Test-

ing?” <www.satisfice.com/articles/
what_is_et.htm>.

6. Daich, Gregory T. “No-Cost Combi-
natorial Testing Support.” Software
Technology Support Center, Hill AFB,
UT., <www.stsc.hill.af.mil/consulting/
sw_testing/improvement/cst.html>.

Object Management Group
www.omg.org
Founded in 1989 by 11 companies, the Object
Management Group (OMG) now has about 800 members.
It is a not-for-profit corporation formed to create a compo-
nent-based software marketplace by accelerating the intro-
duction of standardized object software. The OMG is estab-
lishing the Model Driven Architecture through its world-
wide standard specifications, including Object Services,
Internet Facilities, Domain Interface specifications, and
more.

The Agile Alliance
www.agilealliance.com/home
The Agile Alliance is a non-profit organization dedicated to
promoting the concepts of agile software development, and
helping organizations adopt those concepts. The site fea-
tures an extensive library of articles about agile processes
and agile development.

Center for Software Engineering
http://sunset.usc.edu/index.html
Dr. Barry Boehm founded the Center for Software
Engineering (CSE) in 1993. It provides an environment for
research and teaching large-scale software design and devel-
opment processes, generic and domain-specific software
architectures, software engineering tools and environments,

cooperative system design, and the economics of software
engineering. One of CSE's main goals is to research and
develop software technologies that can help reduce cost,
customize designs, and improve design quality by doing
concurrent software and systems engineering.

INCOSE
www.incose.org
The International Council on Systems Engineering
(INCOSE) was formed to develop, nurture, and enhance
the interdisciplinary approach and means to enable the real-
ization of successful systems. INCOSE works with industry,
academia, and government to disseminate systems engi-
neering knowledge, promote collaboration in systems engi-
neering, establish integrity in systems engineering stan-
dards, and encourage research and educational support to
improve the systems engineering process and its practices.

Risk Management
www.acq.osd.mil/io/se/risk _management/index.htm
This is the Department of Defense (DoD) risk management
Web site. The Systems Engineering group within the
Interoperability organization formed a working group of
representatives from the services and other DoD agencies
involved in systems acquisition to assist in the evaluation of
the DoD’s approach to risk management including the lat-
est tools and advice on managing risk.

WEB SITES

About the Author

Richard Bechtold,
Ph.D., is president of
Abridge Technology and
is an independent consul-
tant who assists industry
and government with

organizational change and systematic
process improvement, especially in the
area of implementing effective project
management. Bechtold has more than 25
years of experience in the design, devel-
opment, management, and improvement
of complex software systems, architec-
tures, processes, and environments. This
experience includes all aspects of orga-
nizational change management, process
appraisals, process definition and model-

ing, workflow design and implementa-
tion, and managerial and technical train-
ing. Bechtold is an instructor at George
Mason University where he teaches
graduate-level courses in software pro-
ject management, systems analysis and
design, principles of computer architec-
tures, and object-oriented java program-
ming. The second edition of his latest
book, “Essentials of Software Project
Management,” is scheduled for publica-
tion in 2004.

Abridge Technology
42786 Oatyer CT
Ashburn,VA 20148-5000
E-mail: rbechtold@rbechtold.com

