
4 CROSSTALK The Journal of Defense Software Engineering May 2004

Current trends toward the transforma-
tion of warfare (and other large-scale

competitive pursuits) into network-centric
and knowledge-based systems of systems
show great promise for competitive advan-
tages over traditionally organized groups
of largely independent components. How-
ever, these transformational systems of
systems are critically dependent on the
successful functioning of their computer
software [1, 2]. This article summarizes the
benefits provided by software for such
transformational systems and identifies a
top-10 list of risks and challenges that
need to be resolved in developing and
evolving software-intensive systems. It
then briefly summarizes the Win-Win
Spiral Model described in more detail in
CrossTalk [3, 4], and shows how its
application can be used to mitigate the top-
10 software-intensive system risks and
challenges.

Software Benefits for
Transformational Systems
While simpler, tangible hardware configu-
rations are easier to manage than software-
intensive system acquisitions and opera-
tions, pure hardware-based solutions can-
not provide several key benefits that soft-
ware can provide for complex transforma-
tional systems of systems. These include
the following:
• The need to accommodate many

combinations of mission options.
Trying to accommodate these in hard-
ware leads to earlier freezing of option

choices, more complex hardware pro-
duction, inflexible human computer
interfaces, and very expensive and
time-consuming hardware field
upgrades.

• The need for rapid response to
change. The pace of unforeseeable
change continues to accelerate.
Accommodating such change runs into
much the same set of hardware diffi-
culties and software opportunities as
does the accommodation of many
options. Also, many sources of soft-
ware change are often accommodated
by commercial off-the-shelf (COTS)
software upgrades made by vendors
who need to stay competitive.

• The need for fielding partial capa-
bilities. Some options for doing this in
hardware are available, but again with
higher needs to pre-commit to inter-
face choices. Current Department of
Defense (DoD) policies that emphasize
evolutionary acquisition [5, 6] are much
easier to accommodate via simpler
hardware platforms and evolutionary
software upgrades.

Risks and Challenges
The transformational benefits that soft-
ware capabilities provide are compelling
but come with associated risks and chal-
lenges. The ability to accommodate many com-
binations of mission options comes with the
need for more software and longer delivery
time for software-intensive system of sys-
tems (SISOS). A large SISOS such as the
national air traffic control system or a
major integrated industrial manufacturing
and supply chain management system will
have more than 10 million source lines of
code (or 10,000 KSLOC) that need to be

developed and integrated.
SISOS managers are frequently sur-

prised when the first cost-schedule estima-
tion model run indicates that software with
10,000 KSLOC will take at least nine years
to develop using traditional methods. Most
software cost-schedule models have cali-
brated relationships indicating that the cal-
endar time, in months, required for aver-
age-case software development scales
roughly as five times the cube root of the
size in KSLOC (see Table 1), or roughly,

Average Case Development Time =
5 x Cube Root (KSLOC)

Clearly, if the SISOS is needed quickly,
replacements for traditional software
development methods are needed. These
go from processes enabling more concur-
rent development to acquisition methods
that are both less bureaucratic and more
able to control massive concurrent devel-
opment.

The need for rapid response to change
exacerbates these risks and challenges.
Traditional requirements management and
change-control processes are no match for
the large volumes of change-traffic across
the multitudes of suppliers and opera-
tional stakeholders involved in a SISOS.
Furthermore, many of the sources of
change (externally interoperating systems,
COTS products) are outside the program’s
span of control.

The criticality, software-intensiveness,
and cross-cutting nature of many of these
changes mean that traditional project orga-
nizations with software-element managers
buried deep in the management structure
will not meet the challenge of rapid and
effective response to change. And tradi-

Best Practices

Spiral Acquisition of
Software-Intensive Systems of Systems

Dr. Richard Turner
George Washington University and
OSD/Software-Intensive Systems

The Department of Defense and other organizations are finding that the acquisition and
evolution of complex systems of systems is both software-intensive and fraught with old and
new sources of risk. This article summarizes both old and new sources of risk encountered
in acquiring and developing complex software-intensive systems of systems. It shows how
these risks can be addressed via risk analysis, risk management planning and control, and
application of the risk-driven Win-Win Spiral Model. It will also discuss techniques for
handling complicating factors such as compound risks, incremental development, and rapid
change, and illustrates the use of principles and practices with experience in applying the
model to the U.S. Army Future Combat Systems program and similar programs.

Monday, 19 April 2004
Track 2: 4:30 - 5:15

Ballroom B

Dr. Victor Basili
University of Maryland

Dr. Barry Boehm and A. Winsor Brown
University of Southern California

Size (KSLOC) 300 1,000 3,000 10,000
Time (Months) 33 50 72 108

Table 1: Average-Case Software Development
Time versus Size

Spiral Acquisition of Software-Intensive Systems of Systems

May 2004 www.stsc.hill.af.mil 5

tional contracting mechanisms and incen-
tive structures optimized around low-cost
delivery to a fixed specification will have
exactly the wrong effect on rapid cross-
supplier adaptation to change. Technically,
software architectures sacrificing ease of
change for incremental computer system
performance gains will also make rapid
change unachievable, and much more up-
front work on architecture trade-off analy-
sis is needed to get the right balance
among performance, dependability, ease of
use, and adaptation to change.

The benefits of free upgrades to COTS
software made to adapt to change also have
risks and challenges. COTS changes are
determined by COTS vendors. Each time
this happens, the SISOS integrators are
presented with a difficult challenge over
which they have limited control [7]. And
on a SISOS, it will happen a lot. Four years
of survey data from the annual U.S. Air
Force (USAF)/Aerospace Corporation
Ground Systems Architectures Workshops
indicate that the average COTS product in
the satellite ground systems domain under-
goes a new release every eight to 10
months. On a complex SISOS with dozens
of suppliers making commitments to more
than 100 different COTS products, at least
10 new releases will impact the program
every month. Also, vendors typically sup-
port only the three most recent releases.

The Total System Performance
Responsibility (TSPR) acquisition struc-
ture is not viable for a SISOS. This is due
to management’s need to coordinate sup-
plier commitments to potentially incom-
patible COTS and nondevelopmental item
(NDI) software components. Leaving
dozens of suppliers of component sys-
tems with the TSPR authority to make
hundreds of commitments to incompati-
ble COTS and NDI components will not
work. However, centralized management
of most supplier decisions will not work
either. Also, there is a significant risk of
supplier micromanagement if the SISOS
system integrator is a contractor staffed by
people more familiar with making detailed
development decisions versus making
acquisition leadership decisions. There is a
need to balance the acquisition strategy to
determine how much commonality is enough for
each aspect of the SISOS.

Lastly, the software benefits of
enabling early fielding of partial capabilities
come with risks of over-optimizing on the
early capabilities and over-optimistically
assuming that any sort of software archi-
tecture and code can be easily modified
later. This assumption is invalid for most
software; empirical data shows that the
cost of software changes on large projects

goes up by a factor of about 100 from
requirements specification to post-deploy-
ment change [8]. This factor can be
reduced significantly by thorough software
architecting for change and risk manage-
ment, as on the USAF/TRW Command
and Control Processing Display System-R
Project [9].

Win-Win Spiral Model
Overview
Current DoD acquisition policy in DoD
Directive 5000.1 and DoD Instruction
5000.2 strongly emphasizes using evolu-
tionary acquisition and spiral development
[5, 6]. Figure 1 summarizes the Win-Win
Spiral Model used on probably the largest
and most transformational system of sys-
tems under development today: the U.S.
Army/Defense Advanced Research
Projects Agency Future Combat Systems
Program. The model includes the follow-
ing highlighted strategy elements:
• Success-critical stakeholders’ win

conditions. All of the project’s suc-
cess-critical stakeholders participate in
integrated product teams (IPTs) or
their equivalent to understand each
other’s needs and to negotiate mutually
satisfactory (win-win) solution
approaches.

• Risk management. The relative risk
exposure of candidate solutions and
the need to resolve risks early drives
the content of the spiral cycles. Early
architecting spirals likely will be more
analysis-intensive; later incremental or
evolutionary development spirals will
be more code-intensive. However, all

spirals can and should be concurrent-
ly engineering their analysis products
and code.

• Spiral anchor-point milestones.
These focus review objectives and
commitments to proceed on the mutu-
tal compatibility and feasibility of con-
currently engineered artifacts (plans,
requirements, design, and code) rather
than on individual sequential artifacts.

• Feasibility rationale. In anchor-point
milestone reviews, the developers pro-
vide a feasibility rationale detailing evi-
dence obtained from prototypes, mod-
els, simulations, analysis, or production
code that supports a system built to the
specified architecture and does the fol-
lowing:
• Support the operational concept.
• Satisfy the requirements.
• Be faithful to the prototype(s).
• Be buildable within the budgets

and schedules in the plan.
• Have all major risks resolved or

covered by a risk-management
plan.

• Have its key stakeholders commit-
ted to support the full life cycle.

Having inadequate evidence is grounds
for failing the review, unless shortfalls in
the evidence are identified as risks and
covered by satisfactory risk-management
plans. Progress toward achieving a feasibil-
ity rationale for the project’s artifacts is a
much better progress indicator than per-
cent-completeness of requirements or
design specifications.

Further description of the Win-Win
Spiral Model is in [3, 4], and detailed guide-

Driven By:
Success-Critical

Stakeholder's
Win

Conditions

1b. Stakeholders
Identify System
Objectives, Constraints,
and Priorities:
Alternative Solution
Elements

1a. Identify Success-
Critical Stakeholders

Risk
Management

Spiral
Anchor-Point

Milestones

Feasibility
Rationale

Progress Through Steps

1

8

7

6

2

5

3

4

LCA: Life-Cycle Architecture
LCO: Life-Cycle Objectives

Stakeholder's
Commitment

3. Elaborate
Product and
Process Definition

2a. Evaluate
Alternatives with
Respect to Objectives,
Constraints, and Priorities

4. Verify and Validate
Product and Process
Definitions

Stakeholders'
Review

Build Build Build

 3 2 1

LCA LCO

2b. Assess,
Address
Risks

Figure 1: The Win-Win Spiral Model

Best Practices

6 CROSSTALK The Journal of Defense Software Engineering May 2004

lines on its use are at <http://sunset.
usc.edu/research/MBASE> [10].

Top 10 SISOS Risks and Spiral
Mitigation Strategies
Here is a prioritized top-10 list of SISOS
risks based on our SISOS experiences in
Command, Control, Communications,
Computers, Intelligence, Surveillance, and
Reconnaissance systems; space systems;
the Army Future Combat Systems pro-
gram; the U.S. National Air Traffic Control
System; and commercial network-centric
systems of systems, along with the results
of a number of DoD Tri-Service Assess-
ment Initiative reviews [11].

Risk 1:Acquisition Management and
Staffing
The biggest risk in acquiring a SISOS is
committing to acquisition practices and
strategies that may still work for some sys-
tems but are incompatible for a SISOS.
Often this occurs via legacy policies and
cultures that assume SISOS requirements
can be predetermined and allocated to
hardware, software, and humans before
architecting the SISOS and contracting for
its component systems. For example, the
Software Engineering Institute’s Capability
Maturity Model® Requirements Manage-
ment Key Process Area says, “Analysis and
allocation of the system requirements is
not the responsibility of the software engi-
neering group but is a prerequisite for their
work” [12].

Actually, many SISOS requirements
emerge with development and use rather
than being pre-specifiable. Feasible techni-
cal requirements emerge through develop-
ment and prototyping experience; feasible
human-computer interface and decision
support requirements emerge through
software and system exercise and use.

The Win-Win Spiral Model addresses
this risk through its risk-driven concurrent
engineering and evolutionary development
of SISOS products and processes. Mature,
highly precedented systems mostly can be
pre-specified with low risk; immature sys-
tems or unprecedented combinations of
systems may need several spiral cycles of
risk resolution to get the right combination
of requirements, architecture, system ele-
ments, and life-cycle plans.

The second major risk is the lack of rapid
response to change that happens in tradi-
tional project organizations where software
expertise and decision authority are scat-
tered at low management levels across var-
ious project elements. Instead, a project
needs an integrated software and informa-

tion processing leader reporting directly to
the project manager, with strong manage-
ment through the counterpart software
and information processing leaders who
report directly to each IPT leader and sys-
tem-supplier project manager.

The project also needs strong software
networking within the SISOS IPTs, which
may include IPTs for sensors, networks
and communications, command and con-
trol, ground/sea/air/space vehicles, logis-
tics, training, integration and test, model-
ing and simulation, and infrastructure.
Further, it needs collaborative supplier
integration and support of concurrent
incremental development as discussed in
Risk 4 and Risk 5.

The third major risk is key staff short-
ages and burnout. The key system and
software personnel on a SISOS have little
time to do their assigned work after partic-
ipating in all or most of the coordination
meetings that a SISOS requires. Further, a
SISOS evolutionary acquisition project can
go on for years, leading to a high risk of
staff burnout.

Risk mitigation practices include career
path development, mentoring junior staff
to provide replacements for key personnel,
incremental completion bonuses, flow-
down of contract award fees to project
performers, and recognition initiatives for
valued contributions.

Risk 2: Requirements/Architecture
Feasibility
The biggest risk here is committing to a set
of requirements or architecture without
validating feasibility. Requirements/archi-
tecture nature and criticality were exempli-
fied by the premature commitment to a
one-second-response time requirement by
a project discussed in [3]. The project had
to throw away 15 months’ work in archi-
tecting a custom $100 million system to
meet the one-second requirement when a
prototype belatedly showed that a $30 mil-
lion COTS-based system with a four-sec-
ond-response time would be sufficient.

Generally, requirements/architecture
infeasibilities regarding quality factors such
as response time, throughput, security,
safety, interoperability, usability, or evolv-
ability have the highest risk exposures.
They are discussed further in Risk 6. The
Win-Win Spiral Model’s anchor-point mile-
stone pass/fail criteria and feasibility ratio-
nale explicitly address this risk. They pre-
vent a project’s marrying its architecture in
haste and having to repent at leisure – that
is, if any leisure time is available.

Risk 3:Achievable Software Schedules
In the past, software cost has been the

most critical resource constraint. The large
volume of software in a SISOS tends to
put the software development schedule on
the project’s critical path more so than for
simple systems. Table 1 clearly shows the
magnitude of this risk.

The Win-Win Spiral Model’s anchor-
point milestones and feasibility rationale
again directly address this issue. Schedule
feasibility should be addressed both by
software cost and schedule estimation
models (using and comparing the results of
two independent models is a good prac-
tice), and by explicit development and crit-
ical-path analysis of project activity net-
works (probabilistic activity networks are
more conservative and realistic). The soft-
ware development time shown in Table 1
can be reduced by the major techniques for
increasing overall software productivity
(software reuse, COTS, reducing rework,
top personnel, and better tools), plus the
following two techniques that focus on
improving schedule directly.

Architecting and Organizing for Massive
Concurrent Development
If the SISOS could be architected so that
supplier-developed components could
instantly plug and play, Table 1 indicates
that organizing the project into many 300-
KSLOC components would get the job
finished in 33 months versus 108 months.
Unfortunately, the effects of architectural
imperfection and continuing change make
seamless integration an unrealistic objec-
tive, but the relative gains of reducing inte-
gration rework are worth trying to achieve.

The other main problem is the fraction
of development time it takes to produce a
fully validated integration architecture,
which has been shown to increase with the
amount of software needing to be inte-
grated. Figure 2 [13] shows how this trade-
off between architecting time before final-
izing SISOS supplier specifications and
rework time can be analyzed by the
Constructive Cost Model (COCOMO) II
Architecture and Risk Resolution Factor
[14]. It shows that for a 10,000 KSLOC
SISOS, the sweet spot minimizing the sum
of both architecting and rework time
occurs at about 37 percent of the develop-
ment time, with a relatively flat region
between 30 percent and 50 percent. Below
30 percent, the penalty curve for prema-
ture issuance of supplier specifications is
steep: A 17 percent investment in archi-
tecting yields a rework penalty of 48 per-
cent for a total delay of 65 percent com-
pared with a rework penalty of 20 percent
and a total delay of 50 percent for the 30
percent architecting investment.

This curve and its implications were
® Capability Maturity Model is registered in the U.S. Patent

and Trademark Office by Carnegie Mellon University.

Spiral Acquisition of Software-Intensive Systems of Systems

May 2004 www.stsc.hill.af.mil 7

convincing enough to help one recent
SISOS add 18 months to its schedule to
improve architectural specifications.

The Schedule as Independent Variable
Process
The schedule as independent variable
(SAIV) process [15] is a special case of the
Win-Win Spiral Model that applies when
there is a strong need to produce an initial
operational capability (IOC) by a particular
date, but the exact nature of the IOC is not
well specifiable in advance. The SAIV
process, which is compatible with the Win-
Win, incremental, and concurrent develop-
ment processes operates as follows:
• Work with stakeholders in advance to

achieve a shared product vision, realis-
tic expectations, and prioritized re-
quirements.

• Estimate the maximum size of soft-
ware buildable with high confidence
within the available schedule.

• Define a core-capability IOC content
based on priorities, end-to-end usabili-
ty, and need for early development of
central high-risk software.

• Architect the system for ease of drop-
ping or adding borderline-priority fea-
tures.

• Monitor progress; add or drop features
to accommodate high-priority changes
or to meet schedule.
The SAIV process has been used suc-

cessfully to date on all sizes of SISOS. For
example, lower-priority requirements origi-
nally within one SISOS program’s IOC set
such as automatic real-time natural lan-
guage translation were deferred to create
an achievable core-capability IOC.

Risk 4: Supplier Integration
As the SISOS system suppliers integrate
their architectures and components and
jointly respond to changes, they will need
to share information and rapidly collabo-
rate to negotiate changes in their products,
interfaces, and schedules. The COCOMO
II team cohesion factor yields an added 66
percent in effort and up to 30 percent in
added schedule between seamless team
cohesion and very low team cohesion.

In mitigating these risks, the win-win
aspects of the Win-Win Spiral Model
became paramount. Strategies for achiev-
ing win-win supplier participation include
making them first-class stakeholders in
negotiating their parts of SISOS objec-
tives, constraints, priorities, and preferred
alternatives in Figure 1; establishing early
training and team-building activities for
selected suppliers; proactively identifying
needs for supplier collaboration and net-
working of their lead software and system

architects; and establishing contract provi-
sions and award fee criteria for effective
collaboration in such areas as schedule
preservation, continuous integration sup-
port, cost containment, technical perfor-
mance, architecture and COTS compatibil-
ity, and program management and risk
management. An example award fee evalu-
ation process and criteria are provided in
[16]. One recent large SISOS program has
implemented a similar shared destiny process
into its supplier contracting.

Risk 5:Adaptation to Rapid Change
As discussed earlier, adaptation to change
is a SISOS necessity, but continuous adap-
tation to change across dozens of suppli-
ers, IPTs, and external interoperators can
be completely destabilizing. Within the
Win-Win Spiral Model, the best strategy
for balancing change and stability is incre-
mental development. As seen in Figure 1,
the spiral cycles combine architecting and
development with key parts of high-risk
elements developed in a Build 1 and used
as part of the feasibility rationale for the
SISOS Life-Cycle Architecture (LCA)
milestone. The post-LCA builds have the
suppliers concurrently developing incre-
ments of capability within the validated
architecture established at the LCA mile-
stone.

To stabilize development, proposed
changes are deferred as much as possible
to later builds, and the SAIV process can
be used to drop lower-priority features not
needed by other suppliers to keep on a
common schedule. This process is similar
to the Microsoft synchronize-and-stabilize
process [17] and works best if there is
some slack built into the end of each build.
Other strategies for adaptation to rapid
change include proactive technology-
watch, COTS-watch, and interoperability-
watch activities; cross-supplier and cross-
IPT networking; change-anticipatory archi-
tectures; and agile change control and ver-
sion control capabilities.

An example of the success of these
practices has been the Internet Spiral
Process [18] used to adapt and evolve the
Internet well before the formalization of
the spiral model.

Risk 6: Software Quality Factor
Achievability
As discussed in Risk 2, software quality
factors are the most difficult sources of
SISOS requirements/architecture feasibili-
ty risk. These factors are strongly scenario-
dependent and interact in complex ways
that cut across supplier and IPT bound-
aries. A good example is a vehicle self-
defense timeline, which imposes perfor-

mance requirements and trade-offs across
sensor, networking, fusion, command-con-
trol, software infrastructure elements of a
SISOS and more, along with additional
trade-offs between performance, security,
usability, safety, and fault tolerance.

A key Win-Win Spiral strategy for qual-
ity factor achievability is to establish a qual-
ity factor trade space by replacing single-
value quality factor requirements with a
range between acceptable and desired val-
ues. This provides the system and software
architects with enough degrees of freedom
to converge to a mutually acceptable – or
win-win – combination of achievable qual-
ity factor values. Another key strategy is
using the SEI’s Architecture Trade-off
Analysis Method (ATAM) for stakeholder
establishment, prioritization, and assess-
ment of quality factor values achievable
with a given architecture, and identification
of strategies to bring the values up to
acceptable levels. Several examples of suc-
cessful ATAM use are provided in [19].

Risk 7: Product Integration and
Electronic Upgrade
The SISOS software needs to be integrat-
ed across supplier hierarchies, IPT
domains, computing platforms, vehicle
platforms, critical scenarios, operational
profiles, system modes, and friendly-to-
adversarial environments. Having too
much or too little concurrency across these
dimensions of integration can cause signif-
icant delays and rework. This rework needs
to be fed back to developers who will
already be busy developing the next build,
causing even further SISOS delays.

The benefits of electronic software
upgrades discussed at the start of this arti-
cle come with several types of version mis-
match risks. Examples include putting the
wrong version’s upgrades onto a platform

Percent of Project Schedule
Devoted to Initial
Architecture and Risk
Resolution

Added Schedule Devoted to
Rework
(COCOMO II RESL Factor)

Total Percent Added Schedule

Percent of Time Added for Architecture and Risk Resolution

P
er

ce
n

t
o

f
T

im
e

A
d

d
ed

 t
o

 O
ve

ra
ll

S
ch

ed
u

le

100

90

80

70

60

50

40

30

20

10

0
0 10 20 30 40 50 60

10,000
KSLOC

100 KSLOC

10 KSLOC

Sweet Spot

Figure 2: How Much Architecting Is Enough?

in the field or having different fielded plat-
forms running different versions of the
SISOS software. These mismatches can
cause software crashes, communication
outages, out-of-synchronization data, or
mistaken decisions.

Key Win-Win Spiral Development
strategies for addressing these risks include
up-front involvement of software-oriented
integration, test, supportability, and mainte-
nance stakeholders in win-win negotiations
affecting stakeholders’ ability to perform;
early establishment, usage, and incremental
growth of software and system integration
laboratories for the overall SISOS and for
its key IPT areas; and architecting the soft-
ware to accommodate continuous opera-
tion and synchronized upgrades (for exam-
ple, by enabling parallel operations of old
and new versions while validating and syn-
chronizing an upgrade). Again, the Internet
is a highly successful example.

Risk 8: Software COTS and Reuse
Feasibility
The first two sections in this article includ-
ed discussion of the benefits of free COTS
software changes and some of the SISOS
risks involved in synchronizing COTS
upgrades across a wide variety of indepen-
dently evolving COTS products. For a
SISOS with many suppliers developing
ambitious capabilities within tight budgets
and schedules of more than 30 months, the
temptation is to not upgrade the COTS
products and to deliver unsupported ver-
sions [20]. In one case, we encountered a
large system delivered to the customer and
users with 55 of its 120 COTS products
operating on unsupported releases.

Win-Win Spiral Development mitiga-
tion strategies for COTS-related risks
include contract provisions prohibiting the
delivery of unsupported COTS compo-
nents; establishing key COTS vendors as
strategic partners and success-critical stake-
holders; proactive COTS-watch experi-
mentation and participation in user groups
(for example, to cover security and real-
time performance concerns), operating a
SISOS-wide COTS product and version
tracking and compatibility analysis activity;
and developing and executing a strategy for
periodic synchronized COTS upgrades.

Software reuse is a powerful strategy
for reducing software cost and schedule,
but frequently estimates of 80 percent
software reuse on a suppliers’ system turn
out to be more like 40 percent once the dif-
ferent natures of the SISOS and the legacy
software are recognized. Win-Win Spiral
Development strategies for mitigating soft-
ware reuse risks include validating the
compatibility of supplier reuse compo-

nents with SISOS product line architec-
tures, constraints, and assumptions; contin-
uous data analysis of actual versus estimat-
ed reuse parameters and recalibration of
reuse estimates; and performing root cause
analyses of reuse successes and failures.
Further reuse and product line best prac-
tices and successful examples can be found
in [21] and [22].

Risk 9: External Interoperability
Large SISOS are likely to require interop-
erability with more than 100 independent-
ly evolving external systems (and even
more if COTS components are included).
As with COTS, there are major risks of
some or all of the SISOS systems getting
out of synchronization with these external
systems. Major Win-Win Spiral Develop-
ment strategies for risk mitigation include
establishing proactive stakeholder win-win
relationships with critical interoperability
systems, including memoranda of agree-
ment on interoperability preservation;
proactive participation in the evolution of
the Joint Capabilities Integration and
Development System [23]; operating an
external systems interoperability tracking
and compatibility analysis activity; and
inclusion of external interoperability in
modeling, simulation, integration, and test
capabilities. Here again, the Internet pro-
vides an excellent example.

Risk 10:Technology Readiness
The scale and mission scope of a SISOS
may far exceed the capabilities of tech-
nologies that have demonstrated consider-
able maturity in smaller systems or friend-
lier environments. Examples are adaptive
mobile networks, autonomous agent coor-
dination capabilities, sensor fusion capabil-
ities, and software middleware services.
Assuming that a technology’s readiness
level on a smaller system will be valid for a
SISOS runs a major risk of performance
shortfalls and rework delays.

Primary Win-Win Spiral Development
risk mitigation strategies focus on satisfy-
ing a feasibility rationale for the key
advanced technologies, including the exer-
cise of models, simulations, prototypes,
benchmarks, and working SISOS applica-
tions on representative SISOS normal, cri-
sis, and adversarial scenarios. Risk manage-
ment strategies include identifying fallback
technology capabilities in case key new
technologies prove inadequate for SISOS
usage. These practices are all consistent
with the guidance in DoD Instruction
5000.2.

Conclusion
Competitive pressures for increased inte-

gration and high performance of commer-
cial, industrial, and public services capabil-
ities such as military defense or homeland
security are leading to multi-domain and
multi-supplier systems of systems, which
are increasingly software-intensive.
Acquiring such a SISOS has many differ-
ences from acquiring traditional systems.
Besides the significantly larger numbers of
options, changes, suppliers, and domains
to accommodate, there are significantly
larger numbers of external interfaces,
COTS products, coordination networks
and meetings, operational stakeholders,
and emergent versus pre-specifiable
requirements.

These differences in scope, scale, and
dynamism have made traditional acquisi-
tion practices increasingly inadequate.
Current initiatives toward evolutionary
acquisition and spiral development are
promising but many new practices need to
be worked out. Experiences on several
SISOS have identified both a set of top-10
SISOS risks and corresponding risk mitiga-
tion strategies currently being applied on
some SISOS.

Applying the corresponding risk miti-
gation strategies within a Win-Win Spiral
Development and evolutionary acquisition
process is meeting with some success, and
appears to be a good starting point for
identifying and coping with SISOS risks.
But much more experience on SISOS
acquisition and development will be need-
ed to achieve mature SISOS acquisition
capabilities.◆

References
1. Harned, D., and J. Lundquist. “What

Transformation Means for the Defense
Industry.” The McKinsey Quarterly 3
Nov. 2003: 57-63.

2. Rechtin, E., and M. Maier. The Art of
Systems Architecting. 2nd ed. CRC
Press, 2001.

3. Boehm, B., and W. Hansen. “The Spiral
Model as a Tool for Evolutionary
Acquisition.” CrossTalk May 2001:
4-11.

4. Boehm, B., and D. Port. “Balancing
Discipline and Flexibility With the
Spiral Model and MBASE.”
CrossTalk Dec. 2001: 23-28.

5. DoD Directive 5000.1. “The Defense
Acquisition System.” Washington,
D.C.: U.S. Department of Defense, 12
May 2003.

6. DoD Directive 5000.2. “Operation of
the Defense Acquisition System.”
Washington, D.C.: U.S. Department of
Defense, 12 May 2003.

7. Meyers, B.C., and P. Oberndorf.
Managing Software Acquisition: Open

Best Practices

8 CROSSTALK The Journal of Defense Software Engineering May 2004

Spiral Acquisition of Software-Intensive Systems of Systems

Systems and COTS Products Addison-
Wesley, 2001.

8. Boehm, B., and V. Basili. “Software
Defect Reduction Top-10 List.”
Computer Jan. 2001: 135-137.

9. Royce, W.E. Software Project
Management. Addison-Wesley, 1998.

10. USC-Center for Software Engineering.
“Guidelines for Model-Based (System)
Architecting and Software Engineer-
ing.” Los Angeles: University of
Southern California, 2003.

11. McGarry, J., and R. Charette. “Systemic
Analysis of Assessment Results from
DoD Software-Intensive System Ac-
quisitions.” Tri-Service Assessment In-
itiative Report. Washington, D.C.: OSD
Defense, Acquisition, Technology, and
Logistics, 2003.

12. Paulk, M., et. al. The Capability Ma-
turity Model: Guidelines for Improving
the Software Process. Addison-Wesley,
1994.

13. Boehm, B., and R. Turner. Balancing
Agility and Discipline: A Guide for the
Perplexed. Addison-Wesley, 2004.

14. Boehm, B., et al. Software Cost Esti-
mation With COCOMO II. Prentice
Hall, 2000.

15. Boehm, B., et al. “Using the Spiral
Model and MBASE to Generate New
Acquisition Process Models: SAIV,
CAIV, and SCQAIV.” CrossTalk

Jan. 2002: 20-25.
16. Reifer, D., and B. Boehm. “A Model

Contract/Subcontract Award Fee Plan
for Large, Change-Intensive Software
Acquisitions.” Los Angeles: USC Cen-
ter for Software Engineering, Apr.
2003.

17. Cusumano, M., and R. Selby. Microsoft
Secrets. The Free Press, 1995.

18. U.S. Air Force Scientific Advisory
Board. “Information Architectures
That Enhance Operational Capability
in Peacetime and Warfare.” Washing-
ton, D.C.: U.S. Air Force, Feb. 1994.

19. Clements, P., R. Kazman, and M. Klein.
Evaluating Software Architectures:
Methods and Case Studies. Addison-
Wesley, 2002.

20. Basili, V., and B. Boehm. “COTS-Based
Systems Top-10 List.” Computer May
2001: 91-93.

21. Reifer, D. Practical Software Reuse.
John Wiley and Sons, 1997.

22. Clements, P., and L. Northrop.
Software Product Lines: Practices and
Patterns. Addison-Wesley, 2002.

23. Joint Chiefs of Staff Manual. “Opera-
tion of the Joint Capabilities Devel-
opment System.” CJCSM 3170.01.
Washington, D.C.: Chairman of the
Joint Chiefs of Staff, 24 June 2003.

May 2004 www.stsc.hill.af.mil 9

About the Authors

Barry Boehm, Ph.D.,
is the TRW professor
of software engineer-
ing and director of
the Center for Soft-
ware Engineering at

the University of Southern Califor-
nia. He was previously in technical
and management positions at
General Dynamics, Rand Corp.,
TRW, and the Office of the
Secretary of Defense as the director
of Defense Research and Engineer-
ing Software and Computer Tech-
nology Office. Boehm originated
the spiral model, the Constructive
Cost Model, and the stakeholder
win-win approach to software man-
agement and requirements negotia-
tion.

University of Southern California
Center for Software Engineering
Los Angeles, CA 90089-0781
Phone: (213) 740-8163

(213) 740-5703
Fax: (213) 740-4927
E-mail: boehm@sunset.usc.edu

Victor R. Basili,
Ph.D., is Professor of
Computer Science at
the University of
Maryland, College Park
and the Executive

Director of the Fraunhofer Center –
Maryland. He was a founder of the
Software Engineering Laboratory at
NASA Goddard Space Flight Center.
He works on measuring, evaluating,
and improving software processes and
products. Basili has received several
awards, including the 2000 Association
for Computing Machinery (ACM) SIG-
SOFT Outstanding Research Award
and the 2003 Institute of Electrical and
Electronics Engineers (IEEE)
Computer Society Harlan Mills Award.
He is an IEEE and ACM Fellow.

Fraunhofer USA Center for
Experimental Software Engineering
University of Maryland
4321 Hartwick RD
STE 500
College Park, MD 20742-3290
Phone: (301) 403-8976
Fax: (301) 403-8976
E-mail: basili@cs.umd.edu

A. Winsor Brown is a
Senior Research Scien-
tist and Assistant
Director of the Univer-
sity of Southern Cali-
fornia Center for

Software Engineering. As an engineer
with decades of experience in large and
small commercial and government
contracting companies, he started his
career in computer hardware design
but shifted to software within months
and remains there today. He has a
Bachelor of Engineering Science from
Rensselaer Polytechnic Institute and a
Masters of Science in Electrical
Engineering from California Institute
of Technology.

University of Southern California
Center for Software Engineering
941 West 37th Place
Los Angeles, CA 90089-0781
Phone: (714) 891-6043
Fax: (213) 740-4927
E-mail: awbrown@cse.usc.edu

Richard Turner, D.Sc.,
is a member of the
Engineering Manage-
ment and Systems
Engineering Faculty
at The George

Washington University in Washing-
ton, D.C. Currently, he is the assistant
deputy director for Software En-
gineering and Acquisition in the
Software Intensive Systems Office of
the Under Secretary of Defense
(Acquisition, Technology, and
Logistics). Turner is co-author of the
book “CMMI Distilled.”

1931 Jefferson Davis HWY
STE 104
Arlington,VA 22202
Phone: (703) 602-0581 ext. 124
E-mail: rich.turner.ctr@osd.mil

