APPENDIX G
 UNITS OF MEASUREMENT

Weight

Volume

cc or cm^{3}	cubic centimeter(s)	1 cc	$=$	approximately 1 mL
gal	gallon(s) (U.S.)	1 gal	$=$	3.8 L
1 or L	liter(s)	1 L	$=$	1.05 liquid quarts
m^{3}	cubic meter(s)	$1 \mathrm{~m}^{3}$	$=$	35 cubic feet
ml or mL	milliliter(s)	1 mL	$=$	$10^{-3} \mathrm{~L}$
ft^{3}	cubic foot (feet)	$1 \mathrm{ft}^{3}$	$=$	$0.028 \mathrm{~m}^{3}$

Length

cm	centimeter(s)
km	kilometer(s)
m	meter(s)
mm	millimeter(s)

$100 \mathrm{~cm}=1 \mathrm{~m}$
$1 \mathrm{~km} \quad=\quad 0.6 \mathrm{mile}$
$1 \mathrm{~m} \quad=\quad 3.3$ feet
$1 \mathrm{~mm}=1 / 1,000 \mathrm{~m} ; 10^{-3} \mathrm{~m}$

Temperature

${ }^{\circ} \mathrm{C}$	degree(s) Celsius	${ }^{\circ} \mathrm{C}$	$=$
${ }^{\circ} \mathrm{F}$	degree(s) Fahrenheit	$\left.{ }^{\circ} \mathrm{F}-32\right) \times 5 / 9$	
		$=$	$\left({ }^{\circ} \mathrm{C} \times 9 / 5\right)+32$

Exponentials

$10^{2}, 10^{3}, 10^{6}$, etc.: superscripts refer to the number of times " 10 " is multiplied by itself, e.g., $10^{2}=$ $10 \times 10=100 ; 10^{3}=10 \times 10 \times 10=1,000$.

Airborne Concentrations

$\mathrm{mg} / \mathrm{m}^{3} \quad$ milligram(s) per cubic meter air
ppm
part per million; $1 \mathrm{ppm}=1 / 10^{6}=1 \times 10^{-6}$
mppcf millions of particles per cubic foot of contaminated air based on impinger samples counted by light-field techniques; mppcf x 35.3 = millions of particles per cubic meter.

Permissible Exposure Limit (PEL) in ppm $=$
$\left(\mathrm{PEL}\right.$ in $\left.\mathrm{mg} / \mathrm{m}^{3}\right)(24.45 \mathrm{~L})\left(\mathrm{m}^{3} / 1000 \mathrm{~L}\right)$
(mol. wt. in g) ($1000 \mathrm{mg} / \mathrm{g}$)

$$
\begin{equation*}
\text { PEL in } \mathrm{mg} / \mathrm{m}^{3}=\frac{\left(\text { PEL in ppm } \times 10^{-6}\right)(\mathrm{mol} . \mathrm{wt} . \text { in } \mathrm{g})(1000 \mathrm{mg} / \mathrm{g})}{(24.45 \mathrm{~L})\left(\mathrm{m}^{3} / 1000 \mathrm{~L}\right)} \tag{2}
\end{equation*}
$$

where ppm equal the parts of vapor or gas per million parts of contaminated air by volume at $25^{\circ} \mathrm{C}$ and 760 torr barometric pressure, and where 24.45 L is the volume occupied by 1 mol of the vapor or gas under these conditions.

Let $x=$ value of PEL in $\mathrm{mg} / \mathrm{m}^{3}$ and $y \cdot 10^{-6}=$ the value of the PEL in ppm . Then equation (2) reduces to

$$
x \mathrm{mg} / \mathrm{m}^{3}=\frac{(y)(\mathrm{mol} . \mathrm{wt} .) \mathrm{mg} / \mathrm{m}^{3}}{24.45}
$$

and equation (1) reduces to

$$
y \mathrm{ppm} \quad=\frac{24.45 x}{\text { mol. wt. }}
$$

