APPENDIX G UNITS OF MEASUREMENT

<u>Weight</u>

g J kg lb mg Mg	becquerel(s) gram(s) joule (s) kilogram(s) pound(s) milligram(s) megagram(s), metric ton(s) milliwatt (s)	1 g 1 lb 1 mg 1 Mg	= = =	0.03035 oz (avoirdupois) 0.45 kg 1/1,000 g; 10 ⁻³ g 10 ⁶ g or 2,205 lb	
ng oz	nanogram(s) ounce(s) (avoirdupois)	1 ng 1 oz	= =	10 ⁻⁹ g 28.3 ຊ	
pCi ppb ppm	picocurie(s) parts per billion parts per million; when referring to dosing in a feeding study, ppm may be used to express the concentration of the substance in the feed (see also Airborne Concentrations below)	1 ppb 1 ppm	=	μg/kg mg/kg	
ppt µg mg/kg mol	Concentrations below). parts per trillion microgram(s) when referring to dosing, it means milligrams (mg) of chemical administered per kilogram (kg) body weight of the dosed animal. mole, molecular weight (mol. wt.) in grams	1 pp 1 μg	t	=	ng/kg 10 ⁻⁶ g
<u>Volume</u>					
cc or cm ³ gal l or L m ³ ml or mL ft ³	cubic centimeter(s) gallon(s) (U.S.) liter(s) cubic meter(s) milliliter(s) cubic foot (feet)	1 cc 1 gal 1 L 1 m ³ 1 mI 1 ft ³		= = = =	approximately 1 mL 3.8 L 1.05 liquid quarts 35 cubic feet 10 ⁻³ L 0.028 m ³
Length					
cm km m mm	centimeter(s) kilometer(s) meter(s) millimeter(s)	100 1 km 1 m 1 mr	1	= = =	1 m 0.6 mile 3.3 feet 1/1,000 m; 10 ⁻³ m

Temperature

°C	degree(s) Celsius	°C	=	(°F - 32) x 5/9
°F	degree(s) Fahrenheit	°F	=	$(^{\circ}C \times 9/5) + 32$

Exponentials

 10^2 , 10^3 , 10^6 , etc.: superscripts refer to the number of times "10" is multiplied by itself, e.g., $10^2 = 10 \times 10 = 100$; $10^3 = 10 \times 10 \times 10 = 1,000$.

Airborne Concentrations

mg/m ³	milligram(s) per cubic meter air	
ppm	part per million; 1 ppm = $1/10^6 = 1 \times 10^{-6}$	
mppcf	millions of particles per cubic foot of contaminated air based on impinger samples counted by light-field techniques; mppcf x $35.3 =$ millions of particles per cubic meter.	
(1)	Permissible Exposure Limit (PEL) in ppm =	
	<u>(PEL in mg/m³) (24.45 L) (m³/1000 L)</u> (mol. wt. in g) (1000 mg/g)	
(2)	PEL in mg/m ³ = (PEL in ppm x 10^{-6}) (mol. wt. in g) (1000 mg/g)	

where ppm equal the parts of vapor or gas per million parts of contaminated air by volume at 25° C and 760 torr barometric pressure, and where 24.45 L is the volume occupied by 1 mol of the vapor

Let x = value of PEL in mg/m³ and $y \cdot 10^{-6}$ = the value of the PEL in ppm. Then equation (2) reduces to

$$x \text{ mg/m}^3 = (v) (\text{mol. wt.}) \text{ mg/m}^3$$

24.45

(24.45 L) (m³/1000 L)

and equation (1) reduces to

or gas under these conditions.

$$y \text{ ppm} = \frac{24.45 x}{\text{mol. wt.}}$$