C.I. BASIC RED 9 MONOHYDROCHLORIDE CAS No. 569-61-9

First Listed in the Fifth Annual Report on Carcinogens

CARCINOGENICITY

C.I. Basic Red 9 monohydrochloride is reasonably anticipated to be a human carcinogen based on sufficient evidence of carcinogenicity in experimental animals (NTP 1986). When administered in the diet, the compound induced subcutaneous fibromas, thyroid gland follicular cell adenomas and carcinomas, and Zymbal gland carcinomas in rats of both sexes, and squamous cell carcinomas, trichoepitheliomas, sebaceous adenomas of the skin, and hepatocellular carcinomas in male rats. Increased incidences of mammary gland tumors in female rats also may have been related to exposure to the compound. C.I. Basic Red 9 monohydrochloride induced hepatocellular carcinomas in mice of both sexes and adrenal gland pheochromocytomas in female mice. Increased incidences of hematopoietic system tumors in female mice also may have been related to exposure to the compound. When administered by subcutaneous injection, C.I. Basic Red 9 monohydrochloride induced local sarcomas in rats (IARC 1974, 1987).

Evidence for the possible carcinogenicity of C.I. Basic Red 9 monohydrochloride in humans comes from an epidemiological study that indicated an increase in urinary bladder tumors in workers involved in the manufacture of magenta dye, of which C.I. Basic Red 9 monohydrochloride is a component. An IARC Working Group reported that it was not possible to determine whether the increased incidence of urinary bladder cancer in magenta workers was attributable to exposure to magenta or to one or more of its intermediates and impurities (IARC 1974). A subsequent Working Group determined that the evidence for the carcinogenicity in humans is inadequate for magenta and sufficient for the manufacture of magenta (IARC 1987).

PROPERTIES

C.I. Basic Red 9 monohydrochloride is a triphenylmethane pigment that ranges from colorless to red crystals, with its color changing as it forms bonds. As a free base, it is very combustible, but the monohydrochloride salt is not combustible. C.I. Basic Red 9 monohydrochloride is soluble in water, ether, and alcohol. When heated to decomposition, C.I. Basic Red 9 monohydrochloride emits toxic fumes of hydrochloric acid and nitrogen oxides (IARC 1974, 1987, HSDB 2000).

USE

C.I. Basic Red 9 monohydrochloride is used primarily in a nutrient agar for bacterium identification (75% of the C.I. Basic Red 9 monohydrochloride produced), and as a biological stain, basic fuchsin (about 25%) (EPA 1985, NTP 1986). It is also used as a dye for textiles (silks and acrylics), leather, and paper (SRI 1982). It is one of three components of commercial magenta which is used as a dye for coloring textiles (cotton, wool, silks, and acrylics), china clay products, leather, printing inks, and as a filter dye in photography (Colour Index 1971, IARC 1974). Its specialty applications include tinting automobile antifreeze solutions and toilet sanitary preparations (HSDB 2000).

PRODUCTION

C.I. Basic Red 9 monohydrochloride is not currently manufactured for commercial use; however, it is produced by two companies in the United States as an on-site intermediate in the production of the nitrate salt of C.I. Basic Red 9, which is used to produce Pigment Blue 61 that is widely used in blue printing inks (IARC 1993). At one of these firms, 1,500 lb of the nitrate salt is isolated and sold to a dye company that converts it to the hydrochloride salt (EPA 1985, CHIP 1986). The 1979 TSCA Inventory listed one manufacturer producing 1 million to 10 million lb of C.I. Basic Red 9 (nitrate salt) in 1977. Another manufacturer/importer was listed in the TSCA Inventory, but no data on production or imports were reported (TSCA 1979). U.S. production of C.I. Basic Red 9 monohydrochloride was reported to be over 1,000 lb in 1975 and approximately 2,000 lb in 1972 (IARC 1993). In 1974, the United States imported 4,410 lb of the chemical (EPA 1985, IARC 1974). No data on exports were available. Chem Sources (2001) identified 17 suppliers of C.I. Basic Red 9 in the United States.

EXPOSURE

The primary route of potential human exposure to C.I. Basic Red 9 monohydrochloride is dermal contact (NTP 1986). Potential consumer exposure could possibly occur through contact with products containing residual C.I. Basic Red 9 monohydrochloride. The compound is produced as an intermediate in the production of the nitrate salt of C.I. Basic Red 9 at two sites, but is used as an on-site or captive intermediate. Three workers per site spend up to 1 hour per day operating the production equipment. Workers potentially may also be exposed during transferring, packaging, and cleaning operations (SRI 1982). Laboratory personnel who use and handle basic fuchsin dye may account for additional exposure to the compound (CHIP 1986).

The National Occupational Exposure Survey (1981-1983) indicated that 770 workers, including 617 women, were potentially exposed to C.I. Basic Red 9 monohydrochloride (NIOSH 1984). This estimate was derived from observations of the actual use of the compound (27% of total observations) and the use of trade name products known to contain the compound (73%). The National Occupational Hazard Survey, conducted by NIOSH from 1972 to 1974, estimated that 223,910 workers were potentially exposed to C.I. Basic Red 9 monohydrochloride in the workplace (NIOSH 1976). This estimate was derived only from observations of the use of generic products suspected of containing the compound.

REGULATIONS

OSHA regulates C.I. Basic Red 9 monohydrochloride under the Hazard Communication Standard and as a chemical hazard in laboratories. Regulations are summarized in Volume II, Table 46.

REFERENCES

Chem Sources. Chemical Sources International, Inc. http://www.chemsources.com, 2001.

CHIP. Chemical Hazard Information Profile. C.I. Basic Red 9 Monohydrochloride and Its Free Base. Office of Pesticide Programs and Toxic Substances, U.S. EPA, Washington, DC, 1986.

Colour Index, Third Edition. Vol. 4. Bradford, West Yorkshire, England: The Society of Dyers and Colourists, 1971.

EPA. U.S. Environmental Protection Agency. ETD Production/Exposure Profile: C.I. Basic Red 9. Washington, DC: Office of Pesticide Programs and Toxic Substances, U.S. EPA, 1985.

HSDB. Hazardous Substances Data Bank. Online database produced by the National Library of Medicine. C.I. Basic Read 9. Profile last updated February 11, 2000. Last review date, September 29, 1994.

IARC. International Agency for Research on Cancer. IARC Monographs on the Evaluation of the Carcinogenic Risk of Chemicals to Man. Some Aromatic Amines, Hydrazine and Related Substances, N-Nitroso Compounds and Miscellaneous Alkylating Agents. Vol. 4. 286 pp. Lyon, France: IARC, 1974.

IARC. International Agency for Research on Cancer. IARC Monographs on the Evaluation of Carcinogenic Risks to Humans. Overall Evaluations of Carcinogenicity. Supplement 7. 440 pp. Lyon, France: IARC, 1987.

IARC. International Agency for Research on Cancer. IARC Monographs on the Evaluation of Carcinogenic Risks to Humans. Occupational Exposures of Hairdressers and Barbers and Personal Use of Hair Colourants; Some Hair Dyes, Cosmetic Colourants, Industrial Dyestuffs and Aromatic Amines. Vol. 57. 428 pp. Lyon, France: IARC, 1993.

NIOSH. National Institute for Occupational Safety and Health. National Occupational Hazard Survey (1972-74). Cincinnati, OH: Department of Health, Education, and Welfare, 1976.

NIOSH. National Institute for Occupational Safety and Health. National Occupational Exposure Survey (1981-83). Cincinnati, OH: Department of Health and Human Services, 1984.

NTP. National Toxicology Program. Technical Report Series No. 285. Toxicology and Carcinogenesis Studies of C.I. Basic Red 9 Monohydrochloride (Pararosaniline) (CAS No. 569-61-9) in F344/N Rats and B6C3F₁ Mice (Feed Studies). NIH Publication No. 86-2541. 228 pp. National Toxicology Program, Research Triangle Park, NC, and Bethesda, MD, 1986.

SRI. Chemical Economics Handbook. Stanford Research Institute, Menlo Park, CA: SRI International, 1982.

TSCA.	Toxic Substances Control Act, Chemical Substance	ce Inventory, 1979: public record	l.