

DEVELOPMENT AND APPLICATION OF TECHNIQUES FOR SAMPLING BIOAVAILABLE AIRBORNE ORGANIC CONTAMINANTS

Prepared By: J.D. Petty J.N. Huckins W.L. Cranor R.W. Gale D.A. Alvarez And R.C. Clark

U.S. Geological Survey/Columbia Environmental Research Center

4200 New Haven Road

Columbia, MO 65201

Prepared For:

G. L. Robertson

U.S. EPA/National Exposure Research Lab

Las Vegas, NV

IAG No. DW14937889-01-0

September 13,1999

Prepared by:

Reviewed by:

Walter Cranor

Chemist

Jim Petty, Chief

Environmental Chemistry Branch

Reviewed by:

Reviewed by:

James Huckins

Research Chemist

Paul R. Heine

CERC Quality Assurance Officer

Approved by:

Jim Petty, Chief

Environmental Chemistry Branch

Approved by:

Wilbur Mauck, Director

Columbia Environmental Research Center

EXECUTIVE SUMMARY

As a focused part of a much broader study of human exposure to chemicals in the Southwestern United States, semipermeable membrane devices (SPMDs) were deployed in enclosed areas along the border between Arizona and Mexico. The main objective of this project was to determine the applicability of the integrative sampling approach of the SPMD technology to define the potential exposure of the people living in the sampled areas to complex mixtures of airborne chemicals. The SPMDs were deployed for thirty days and the sample extracts were subsequently analyzed for residues of organochlorine pesticides, polychlorinated biphenyls, polycyclic aromatic hydrocarbons, and the current use pesticides, diazinon, chloropyrifos, endosulfan, permethrin, and trifluralin. Residues of all analyte classes were determined to be present at varying concentrations in the samples from all deployment sites. Total levels of contaminant classes ranged from ng to ug quantities. In particular, the DDT complex and the current use pesticides were found at higher levels than expected. The polycyclic aromatic hydrocarbon (PAH) profiles were very complex and appear to contain a broad array of alkylated PAHs. Previously developed models were modified and employed to estimate ambient airborne concentrations of a limited set of contaminants. Additional research is ongoing to confirm the identities of residues identified by gas chromatographic techniques and to tentatively identify other chemicals present in the sample extracts. Also, research will be conducted to determine SPMD airborne chemical uptake rates for selected chemicals found in this study.

TABLE OF CONTENTS

INTRODUCTION1
EXPERIMENTAL4
RESULTS AND DISCUSSIONS
ACKNOWLEDGEMENTS
LITERATURE CITED
TABLES
FIGURES

INTRODUCTION

Aerial transport of organic contaminants occurs globally. Atmospheric contaminants exist in the vapor phase and are associated with airborne particulate matter. Organic contaminants are removed from the atmosphere by particulate fallout, vapor phase solution, rainout and snowfall of particulate matter, and vapor phase sorption processes. Before these processes femove airborne contaminants, the chemicals are often transported great distances from the original pollution source. Consequently, airborne contaminants have the potential to adversely affect ecosystems and human populations far removed from the source of contamination. Because people spend the majority of their lives inside buildings where they may be exposed to airborne chemicals through infiltration and input from ventilation systems and from sources within the building, assessing the consequences of exposure to chemicals present in indoor areas is of great concern.

The U.S. Environmental Protection Agency (EPA) has mandated air monitoring responsibilities under the provisions of the Clean Air Act. The major monitoring efforts of EPA have historically been related to gaseous pollutants (SO_X, NO_X, etc.), toxic metals, and particulate matter. More recently, the paucity of information concerning the atmospheric transport and deposition of toxic organic compounds (e.g., polycyclic aromatic hydrocarbons [PAHs], organochlorine pesticides [OCs], polychlorinated biphenyls [PCBs], etc.) has received increased attention.

Several techniques have been employed to measure deposition of airborne contaminants. These techniques include passive samplers such as glycerol-coated plates or pans, Teflon[®] sheets, containers of water, and the waxy outer surfaces of plants (e.g., the needles of conifers). Active or forced-air samplers-including polyurethane foam plugs, activated adsorbent traps (e.g., carbon, Florisil[®], etc.) and glass fiber or paper filters-are even more widely employed.

While progress has been made in improving active air-sampling technology, these devices suffer the disadvantages of complexity and mechanical operation. Passive air samplers of either the air-diffusion or membrane-permeation design are attractive because of their integrative capacity and simple design. However, diverse and variable environmental conditions can cause unpredictable analyte uptake by influencing overall sampling rates.

Scientists at the U.S. Geological Survey's Columbia Environmental Research Center (CERC) have developed a semipermeable membrane device (SPMD) for passive integrative monitoring of airborne contaminants (1,2,3,4,5). This technology is the subject of U.S. Government patent No. 5,395,426. The SPMD consists of layflat polyethylene (PE) tubing containing a thin film of a high molecular weight (≥ 600 Da) neutral lipid such as triolein. Other sequestration phases such as high molecular weight silicone fluids, adsorbents, etc., may also be used. The polymeric membrane used in the SPMD sampler functions by allowing vapors (i.e., the readily bioavailable portion) of

contaminant molecules to pass through transient membrane cavities approaching 10 Å in cross sectional diameter. Transfer through these polymeric cavities appears to be very similar to the transport of contaminants through biomembranes via respiration (6).

Phenomenologically, the SPMD appears to mimic key aspects of the respiratory uptake of airborne chemicals. Respiratory uptake generally involves active transport to a biomembrane surface, diffusion through the exterior mucosal layer and the biomembrane, and in the case of bioconcentratable contaminants, export away from the membrane's inner surface to lipid containing tissues. Although contaminant uptake via air is complex, the respiration process can be simplified to its passive elements which include diffusion of organic chemicals through thin immobile air and liquid phase layers, then the nonpolar regions of the biomembranes and finally into the organism's lipid pool. The SPMD has been employed as a passive integrative air sampler (2) and appears to simulate these key portions of respiratory uptake of chemicals by a broad array of species, including man.

The purpose of this research project is to determine if the SPMD technique can be successfully applied to provide an integrated assessment of selected airborne organic contaminants present in the residential areas in the study. The present study is a limited component to a much more comprehensive U.S./Mexico border study. Reported herein are the results of the analysis of the SPMD samples for residues of PAHs, OCs, PCBs, and selected current use pesticides (diazinon, chlorpyrifos, endosulfan, permethrin and trifluralin) sequestered in the SPMDs deployed in indoor areas along the border between Arizona and Mexico.

EXPERIMENTAL

Materials: Low density polyethylene (PE) layflat tubing was purchased from Environmental Sampling Technologies, St. Joseph, MO. The PE tubing was a 2.54 cm wide, No. 940, untreated (pure PE; no slip additives, antioxidants, etc.) clear tubing. The wall thickness ranged from 84 to 89 μm. Triolein (1,2,3-tri-[cis-9-octadecenoyl]glycerol) was obtained from Sigma Chemical Co., St. Louis, MO and was ≥ 95% pure. Florisil® (60-100 mesh) was obtained from Fisher Scientific Company, Pittsburgh, PA. The Florisil was heated at 475 °C for 8 hours and stored at 130 °C. Silica gel (SG-60, 70-230) mesh) was obtained from Thomas Scientific, Swedesboro, NJ. The silica gel was washed with 40:60 methyl tert-butyl ether:hexane (V:V) followed by 100% hexane. The silica gel was activated at 130 °C for a minimum of 72 hours before use and subsequently stored at room temperature over P2O5 as a desiccant. Potassium silicate (KS) was prepared by reacting silica gel; SG-60 (300 g) with a methanolic solution of potassium hydroxide (168 g in 750 mL of methanol). The KS was subsequently washed in a column with 100 mL of methanol followed by 170 mL of methyl tert-butyl ether. The KS was activated at 130 °C for a minimum of 12 hrs prior to use and stored at room temperature over P₂O₅ as a desiccant. Phosphoric acid/silica gel was prepared by reacting prewashed silica gel (see above) with organic free phosphoric acid (500 g SG-60; 330 g phosphoric acid). The mixture was shaken until free flowing and stored at room temperature over P2O5 as a desiccant. All organic solvents were Optima® grade from Fisher Scientific, except methyl tert-butyl ether, which was purchased from Baxter Healthcare Corp., McGraw Park, IL.

SPMD Preparation: The SPMDs for the project were constructed using an 86 cm long piece of the LDPE tubing with 1mL of triolein being added to each SPMD. Four replicate SPMDs were created for each of the fifty-seven field deployment sites as well as four replicate SPMDs for field blanks for each of these sites. Due to the large number of SPMDs required to satisfy the experimental design of the project, SPMDs were made in three batches. Four replicate SPMD Day-0 samples were made for each of these three batches of SPMDs. The field deployment sample SPMDs were sealed into labeled, solvent rinsed, argon flushed cans. The field blank SPMDs were treated similarly and shipped to the field along with the SPMDs for deployment.

SPMD Storage and Custody: Following preparation of the SPMDs at CERC and prior to shipment to the field, the SPMDs were stored in sealed metal cans in a clean-room free of organic vapors. The cans containing the "Day-0" samples remained at CERC and were stored in a laboratory freezer at –15 °C. Following deployment, the samples were returned to CERC. Following receipt of the samples at CERC and prior to processing, the SPMDs were stored in a laboratory freezer at -15 °C. A record of custody and processing was maintained for each of these blind samples.

SPMD Deployment: The field portion of this project was performed by scientists from the University of Arizona and will be reported in detail by them in a separate report.

Briefly, four SPMDs were deployed in each indoor area chosen for assessment. The samplers were deployed within the houses in such a manner that the composite sample

consisting of four individual SPMDs per sampling site represented the entirety of the enclosed area.

<u>Sample Processing and Residue Enrichment</u>: Sample processing was similar to procedures previously described (2,3,4), with specific details noted in the following sections.

SPMD Cleanup: SPMDs, as received from field exposures, were subjected to a cleanup before dialysis. This cleanup was applied to all SPMDs received from the field as well as to all QA/QC SPMDs generated in conjunction with the analysis sets. The steps associated with this cleanup were applied to each SPMD individually and sequentially and were as follows. The sealed metal cans with field deployed SPMDs were opened and the SPMDs were removed and rinsed by immersion into 100 mL of hexane. Then, the hexane was discarded. The SPMDs were placed individually into a large flat stainless steel pan and washed using running tap water and a clean brush to remove all remaining surface adhering material. Any SPMD tether loops outside the lipid containment seals were cut off and discarded at this point. Next, the water was drained from each SPMD. The SPMDs were then separately immersed in a glass tank containing 1 N HCl for a period of approximately 30 seconds. Then, they were rinsed with tap water to remove the acid. Afterwards, all surface water was removed from individual SPMDs by using successive rinses of acetone followed by isopropanol. SPMDs were air dried by laying the SPMD on a piece of solvent-rinsed aluminum foil.

SPMD Dialysis: Canning jars with solvent-rinsed aluminum foil under the lid were used for the dialysis step. The 86 cm SPMDs containing 1 mL lipid, as used in this project, required 175 mL hexane and the use of a half-pint canning jar. The SPMDs were dialyzed individually at 18 °C for 18 hours. The hexane was removed and transferred into an evaporation flask. A second volume of 175 mL of hexane was added to the dialysis jar and the SPMDs were dialyzed for an additional 6 hours at 18 °C. The second dialysate was transferred into the flask containing the first dialysate. The SPMDs were then discarded. The combined dialysates were reduced to a volume of ~ 3 mL on a rotoevaporation system, and quantitatively transferred through a pre-rinsed glass fiber filter into appropriately labeled test tubes. The solvent volume was then reduced to ~ 1 mL, using high purity nitrogen.

Gel Permeation Chromatography (GPC) Cleanup, Principal Method: The following method describes the processing given to the bulk of the study samples which were not targeted for the analysis of contaminant levels of the current use pesticides trifluralin, diazinon, chlorpyrifos, endosulfan, and permethrin. The specific modifications to this principal method which were made to accommodate the processing of the 12 site samples which were targeted for these current use pesticides (also referred to in this report as "Additional Compounds") follows in a separate section. A Perkin-Elmer Series 410 HPLC (Perkin-Elmer, Inc., Norwalk, CN) was employed as the solvent delivery system for the GPC cleanup. This HPLC unit was equipped with a Perkin-Elmer ISS-200 autosampler. The GPC column was a 300-mm X 21.2-mm i.d. (10-μm particle size, 100 Å pore size) Phenogel column (Phenomenex, Inc., Torrance, CA), equipped with a 50-

mm X 7.5-mm i.d. Phenogel guard column. The isocratic mobile phase was 98:2 (V:V) dichloromethane:methanol (DCM:MeOH) at a flow rate of 4.0 mL per minute. The GPC system was equipped with an ISCO Foxy 200 (ISCO, Inc., Lincoln, NE) fraction collector connected to the output end of the GPC column.

GPC Calibration: The GPC system was calibrated on a daily basis by the injection of a solution of compounds representative of the analytes and potentially interfering materials. The substances contained by this calibration solution, in sequence of elution, are diethylhexylphthalate (DEHP; a model compound with lipid-like chromatographic behavior), biphenyl and naphthalene (small aromatic analytes), coronene (a large PAH later eluting than any anticipated analyte), and elemental sulfur (a problematic interfering substance encountered frequently in environmental samples). Elution of these components was monitored using a UV detector (254 nm) and a strip chart recorder.

Sample Processing: GPC cleanup was accomplished using a "Collect" fraction defined by the calibration of the system on the day of operation. The "Collect" fraction was initiated at the point 70% of the time between the apex of the DEHP chromatographic peak and the onset of the biphenyl chromatographic peak. The "Collect" fraction was terminated at 70% of the time between the apex of the coronene chromatographic peak and the onset of the sulfur chromatographic peak. This collect fraction contained PAHs, PCBs, and OCs. For the SPMD exposure samples, the replicate sample dialysates (4 SPMDs dialized individually) were collected in a common flask to give a composite sample. The fractions collected

were amended with ~ 2 mL of isooctane, reduced to a volume of ~ 1 mL on a rotoevaporation system, and quantitatively transferred with hexane into appropriately labeled test tubes.

GPC Cleanup, Modifications to the Principal Method: The following method modifications apply to the processing of the 12 site samples, which were targeted for the current use pesticides previously identified. Each of these samples was subjected to two stages of GPC cleanup. During the first pass, the GPC was identical in all respects to that described previously. Likewise, the isocratic mobile phase was 98:2 (V:V) DCM:MeOH at a flow rate of 4.0 mL per minute. During the second pass, the GPC column was a 250-mm X 22.5-mm i.d. (10-μm particle size, 100 Å pore size) Phenogel column (Phenomenex, Inc., Torrance, CA), equipped with a 50-mm X 7.5-mm i.d. Phenogel guard column. The isocratic mobile phase was 80:20 (V:V) hexane:DCM at a flow rate of 4.0 mL per minute.

GPC Calibration: The GPC system was calibrated on a daily basis by the injection of a solution of compounds representative of the analytes and potentially interfering materials. The substances contained in this calibration solution, in sequence of elution, are diethylhexylphthalate (DEHP; a model compound with lipid-like chromatographic behavior), diazinon (an early eluting current use pesticide), biphenyl and naphthalene (small aromatic analytes), coronene (a large PAH later eluting than any anticipated analyte), and elemental sulfur

(a problematic interfering substance encountered frequently in environmental samples). Elution of these components was monitored using an UV detector (254 nm) and a strip chart recorder.

Sample Processing: GPC cleanup was accomplished using a "Collect" fraction defined by the calibration of the system on the day of operation. During both the first pass and second pass cleanup, the "Collect" fractions were initiated at the minimum baseline between the apex of the DEHP chromatographic peak and the apex of the diazinon chromatographic peak. The "Collect" fraction for the first pass cleanup was terminated at 70% of the time between the apex of the coronene chromatographic peak and the onset of the sulfur chromatographic peak. The "Collect" fraction for the second pass cleanup was terminated when the coronene chromatographic peak came back to the baseline. These collect fractions contained the current use pesticides as well as PAHs, PCBs, and OCs. Following the first pass cleanup step, the replicate sample dialysates (4 SPMDs dialyzed individually) were collected in a common flask to give a composite sample. The fractions collected were amended with ~ 2 mL of isooctane, reduced to a volume of ~ 1 mL on a rotoevaporation system, and quantitatively transferred with hexane into appropriately labeled test tubes. Following the second pass cleanup step, the collect fractions were amended with ~ 2 mL of isooctane, reduced to a volume of ~ 1 mL on a rotoevaporation system, and quantitatively transferred with hexane into appropriately labeled test tubes.

Post GPC Sample Splitting: Because different enrichment techniques were required for the targeted environmental contaminants, the samples were split into two equal portions prior to further fractionation and enrichment. These were then identified as the "PAH" fractions and the "OC" fractions. After splitting, the two fractions were each reduced to a volume of ~ 1 mL using nitrogen blowdown.

<u>Column Cleanup</u>: Following GPC cleanup, the SPMD sample extracts were processed using open column chromatography. The procedures employed to enrich the "OC" and "PAH" fractions are presented separately as follows:

"OC" Fractions: The "OC" fractions, at ~ 1 mL in hexane, were applied to Florisil columns (5 g) and subsequently eluted with 60 mL of 75:25 (V:V) methyl tert-butyl ether:hexane. The fractions collected were amended with ~5 mL of isooctane, and reduced to a volume of ~ 0.5 mL on a rotoevaporation system. Following volume reduction to ~0.5 mL, each sample was applied to a silica gel column (5 g). Two fractions were collected; fraction SG-1 (46 mL of hexane) and SG-2 (55 mL of 40:60 [V:V] methyl tert-butyl ether:hexane). This enrichment procedure provided fractions for analysis of PCBs and OCs. The fractions collected were amended with ~2 mL of isooctane, reduced to a volume of ~ 0.5 mL on a rotoevaporation system, and quantitatively transferred with hexane into labeled GC vials. Sample volumes at this point were adjusted to 1.0 mL using nitrogen blowdown.

"PAH" Fractions: The "PAH" fractions, at ~ 0.5 mL in hexane, were treated using a triadsorbent column consisting of from top to bottom, 3 g phosphoric acid/silica gel; 3 g of KS; and 3 g of silica gel. The tri-adsorbent column was eluted with 50 mL of 4% (V:V) methyl tert-butyl ether in hexane. This procedure resulted in a solution suitable for analysis of PAH residues. The fractions collected were amended with ~2 mL of isooctane, reduced to a volume of ~ 0.5 mL on a rotoevaporation system, and quantitatively transferred with hexane into labeled GC vials. Sample volumes at this point were adjusted to 1.0 mL using nitrogen blowdown.

Gas Chromatography: Gas chromatographic analyses were conducted using a Hewlett Packard 5890 series gas chromatograph (GC) equipped with a Hewlett Packard 7673A autosampler (Hewlett Packard, Inc., Palo Alto, CA). In all analyses, 1.0 μL of sample extract was injected using the "cool-on-column" technique with hydrogen as the carrier gas. Analysis of PAH fractions was performed using a DB-5 (30 m x 0.25 mm i.d x 0.25 μm film thickness) capillary column (J&W Scientific, Folsom, CA) with the following temperature program: injection at 60 °C, then 15 °C/min to 165 °C, followed by 2.5 °C/min to 250 °C, then 10 °C/min to 320 °C and held at 320 °C for 1 min.

Detection was performed using an HNU photoionization detector (PID) with a 9.5 eV lamp operating at 270 °C (HNU, Inc., Newton, MA). Quantitation of PAHs was accomplished using a six point curve with 4-Terphenyl- d₁₄ as the instrumental internal standard. The levels of the PAH standards spanned a 32-fold range of concentration for each priority pollutant PAH. Analysis of SG-1 and SG-2 fractions for OCs, PCBs, and current use pesticides was performed using a DB-35MS (30 m x 0.25 mm i.d. x 0.25 μm

film thickness) capillary column (J&W Scientific, Folsom, CA) with the following temperature program: injection at 90 °C; then 15 °C/min to 165 °C; followed by 2.5 °C/min to 250 °C; then at 10 °C/min to 320 °C. The electron capture detector (ECD) was maintained at 330 °C (Hewlett Packard, Inc., Palo Alto, CA). Quantitation of OCs in SG-1 and in SG-2 was accomplished using a six point curve with octachloronaphthalene (OCN) as the instrumental internal standard. The levels of the OC standards spanned an 80-fold range of concentration for each compound determined. Quantitation of total PCBs was accomplished using a six point curve employing solutions containing a 1:1:1:1 mixture of Aroclor® 1242, 1248, 1254, and 1260 with OCN as the instrumental internal standard. The levels of the PCB standards spanned a 40-fold concentration range. Quantitation of select current use pesticides was accomplished using a six point curve with OCN as the instrumental internal standard. The levels of the current use pesticide standards spanned an 80-fold range of concentration for each compound determined.

RESULTS AND DISCUSSIONS

Quality Control: Trip blank SPMDs (one set of four SPMDs for each sampling site) accompanied the deployed SPMDs during deployment, retrieval, and transportation to CERC. These trip blanks were processed and analyzed exactly as deployed samples. The trip blank samples exhibited no coincident GC peaks at a level higher than those associated with the laboratory control SPMDs and were indicative of successful deployment and retrieval. Procedural blanks (also referred to as SPMD controls or SPMD blanks) were freshly prepared SPMDs taken through the entire fractionation and analysis sequence. Samples containing contaminant residues exceeding the procedural blank values were considered positive and were subsequently background corrected. Reagent blanks (equivalent volumes of solvents used in processing the deployed SPMDs taken through the analytical sequence), GPC blanks, SPMD spikes, and Day-0 samples were processed to allow for the determination of chromatographic backgrounds and procedural recoveries of individual analytes during subsequent analyses. These samples were generated for each of the twenty-five dialysis sets associated with this project.

The method detection limit (MDL) and method quantitation limit (MQL) for analysis of SPMD samples were determined for each analyte by measuring the values of coincident GC-ECD or GC-PID peaks for each compound in the SPMD blank samples taken through the entire processing and analysis procedure. The MDL was defined as the mean plus three standard deviations of values so determined (7). The MQL was defined as the

mean plus 10 standard deviations of values so determined (7). For individual analytes having no coincident GC peak, an assumed value equal to the low sample reject for the method was used to calculate the mean. In the cases where the MQLs were below the level of the calibration curve employed in the GC-analysis, the MQLs were set at the value of the lowest level of the calibration curve employed in quantifying the analyte levels. The background, MDLs and MQLs for analysis of the study samples for PAHs, OCs, PCBs, and current use pesticides are presented in Table I.

For each of the twenty-five dialysis sets required to process the total number of SPMDs associated with this project, dialytic recoveries were monitored by spiking an individual SPMD with approximately 90,000 disintegrations per minute (DPM) of ¹⁴C-dibenz(a,h)anthracene. These spikes were processed concurrently with deployed SPMDs. During dialysis of the contaminants sequestered by the SPMDs, recovery of the ¹⁴C-dibenz[a,h]anthracene surrogate had a mean value of 88.6% (Table II).

Operation of the GPC was monitored by injecting approximately 40,000 DPM of ¹⁴C-2,5,2',5'-tetrachlorobiphenyl. Samples were processed by GPC in forty-one sets.

Recovery of ¹⁴C-activity through the GPC system had a mean value of 97.5 % (Table III). During the processing of the sample sets containing the twelve samples targeting the current use pesticides, operation of the GPC was also monitored by injecting approximately 60,000 DPM of ¹⁴C-diazinon onto the GPC column and determining its recovery. These samples were processed through GPC in nine sets. Recovery of ¹⁴C-diazinon through the GPC system had a mean value of 97.1 % (Table IV).

The recoveries of the analytes of interest were determined for the tri-adsorbent treatment for PAHs (Table V), and the Florisil and silica gel fractionation procedure for OCs, PCBs, and current use pesticides (Tables VI and VII). The recoveries of PAHs averaged 89.3%. The recoveries of the OCs averaged 88.7%. The recoveries of the current use pesticides averaged 76.7%. The recoveries of total PCBs averaged 96.2%.

To complete the Quality Control efforts for this project, the overall recoveries of the analytes of interest through the dialysis, fractionation and enrichment procedures were monitored using spiked SPMD samples. SPMD spikes were prepared by fortifying individual SPMDs with 8 µg of each priority pollutant PAH, a mixture of twenty-seven individual OC-pesticides at 40 ng each and with 8,000 total ng of PCBs. A total of fourteen SPMD spikes were processed concurrently with selected dialysis sets. The recoveries of PAHs averaged 70.8% (Table VIII). The recoveries of the OCs averaged 69.9% (Table IX). The recoveries of total PCBs averaged 82.3% (Table IX). These results are consistent with results from similar samples (3).

During the processing of the dialysis sets associated with the twelve samples targeting the current use pesticides, an additional SPMD spike was prepared using a mixture of trifluralin, diazinon, chlorpyrifos, and permethrins. The recoveries of the current use pesticides averaged 85.0% (Table X).

Observations and Findings: The SPMDs associated with this study were processed concurrently with the above referenced quality control samples. Therefore, the results

obtained from processing and analyses conducted on these SPMDs are taken to be similar to the observed results for the quality control samples described. During the gas chromatographic analysis of study sample fractions, conditions were optimized to give sufficient resolution for quantitation of the targeted analytes (Table XI and Figures 1,2,3, and 4). The results of the gas chromatographic analyses of study samples are given for all targeted analytes on a site-by-site basis (Table XII and Figure 5). The presentation of a selected portion of these data is repeated on a house-to-house basis to give a direct comparison of Inside/Outside sampling (Tables XIII, XIV, and XV and Figure 6). A portion of these data is also presented for the analyses of study samples for the current use pesticides (Table XVI and Figure 7).

The SPMD samples were analyzed for PAH residues and values are reported for identified individual priority pollutant PAHs. The PAH profile in the SPMD samples is extremely complex and typical of alkylated PAHs (Figure 8). Because of the extreme complexity of the GC-PID response, the entire PAH response was quantified by comparing the total area to the response of a standard of a widely occurring PAH, pyrene. The levels of PAHs varied from <MDL/4 SPMD composite to 20 µg/4 SPMD composite for individual PAHs detected. The SPMD sample from Site # 43 contained the highest levels of PAHs at 1400 µg/4 SPMD composite total PAH as pyrene. Thus, depending on the structures of PAHs in the PAH response envelope, PAH levels at certain study sites may be of concern.

The SPMD sample extracts were analyzed for OCs, total PCBs, and select current use pesticides following the Florisil-silica gel fractionation procedure. The GC-ECD profiles obtained from these samples were extremely complex (Figures 9 and 10). Identifiable and quantifiable levels of individual OCs were found at all sites. The concentrations of targeted OCs ranged form <MDL to µg quantities. The total identified OC-pesticides quantified at individual sites ranged from 110 ng to 20,000 ng. The DDT family of compounds are present and quantifiable at several of the sites. Other OCs in the SPMD samples included heptachlor, hexachlorobenzene (HCB), pentachloroanisole (a bacterial metabolite of pentachlorophenol), as well as chlordane and nonachlor components.

Interestingly, PCBs were found in the SPMD samples from only half of the sites at concentrations ranging from 1.3 to 10 total μg .

During the analysis of the samples from the twelve randomly selected study sites for the current use pesticides, diazinon and chlorpyrifos were found in all samples (Table XVI). Of the sites investigated, Site # 2 had the highest levels of these two compounds at 27 and 72 µg respectively.

In the three cases where SPMDs were deployed inside and outside of the same house (Tables XIII, XIV, and XV), observed levels of contaminants were generally elevated within the house. In the case of total PAH as pyrene, the inside levels were higher by a factor of five. The ratios of PCBs could not be estimated as outside levels were all MDL. The levels of total identified OC-pesticides were also elevated within the houses

by factors of four or greater. The OC-pesticides α -BHC and endosulfan were the exceptions being at higher levels in the SPMDs deployed outside the houses.

A preliminary examination of a representative sample (Site # 14) by GC-mass spectrometry (MS) confirmed the presence of the DDT complex, dacthal, the chlordane components, dieldrin, methoxychlor, and the endosulfan complex. Additional sample extracts will be examined by GC-MS to provide more rigorous confirmation of analytes identified by GC analysis and to provide tentative identification of other chemicals. However, the GC-MS confirmation of these analytes supports the identification of the contaminants present in the sample extracts as analyzed by GC.

SPMD uptake kinetic data are required to accurately estimate ambient airborne concentrations of environmental contaminants. Using models previously developed (1) and preliminary data from ongoing uptake kinetic studies, the airborne concentrations of selected contaminants present in the air at the sampling sites can be estimated for these 30-day exposures.

An example of the overall estimation procedure is as follows. The analyte sampling rate (R_{sw}) is determined from laboratory exposures conducted under about the same conditions (i.e., air temperature and exposure duration) as the field study. The linear SPMD uptake of OCs with high K_{ow} s (octanol-water partition coefficients) from water was described by Huckins, et al. (1) as follows:

$$C_{L} = C_{W}k_{o}K_{mW}At/V_{L} \qquad (2)$$

substituting R_{sw} for $k_o K_{mW}A$ in equation 2 gives

$$C_{L} = C_{W}R_{sw}t/V_{L} \qquad (3)$$

where C_L is the concentration of the analyte in the lipid, C_W is the concentration of the analyte in the water, t is the exposure time in days, and V_L is the volume of the lipid. Rearranging equation 3 results in

$$C_W = C_L V_L / R_{sw} t \qquad (4)$$

Because the analytes present in the membrane were also recovered during the dialysis procedure, equation 4 can be rewritten as

$$C_{W} = C_{SPMD} M_{SPMD} / R_{sw} t \quad (5)$$

where C_{SPMD} is the concentration of the individual analyte in the SPMD and M_{SPMD} is the mass of the SPMD. In our case we use the uptake rate constant (k_{uw}) defined as $L/d \cdot g$ (Liters per day per gram) of SPMD (membrane + lipid).

$$C_W = C_{SPMD} / (R_{sw}/M_{SPMD}) t \quad (6)$$

$$C_{W} = C_{SPMD} / k_{uw} t \qquad (7)$$

For SPMD uptake from air, equations 6 and 7 can be rewritten as

$$C_{a} = C_{SPMD} / (R_{sa}/M_{SPMD}) t \qquad (8)$$

$$C_a = C_{SPMD} / k_{ua} t \qquad (9)$$

Where C_a is concentration of the analyte in air, R_{sa} is the SPMD sampling rate in air, and k_{ua} is the uptake rate constant in air.

Although little SPMD sampling rate (calibration) data exists for vapor phase contaminants, there is a fairly extensive set of calibration data set for aqueous phase contaminants. Conversion of a chemical's sampling rate in water to its sampling rate in air is feasible because SPMD concentrations have been shown to be proportional to both levels in water and air. The following rationale can be used for the extrapolation:

Assumptions-

- 1) The ratio of the air-sampling rate constant (k_{ua}) divided by the water-sampling rate constant (k_{uw}) , for similar compounds and conditions, is constant.
- 2) The air and water temperatures are 26 °C.
- 3) Facial velocity of air and water is low, i.e., quiescent conditions during the exposures.

From existing laboratory data the k_{ua} and k_{uw} of PCB congener 52 (IUPAC no., 2,5,2',5'-tetrachlorobiphenyl), under the conditions described above is 600 L / d·g and 1.3 L/d·g, respectively. Note that the dramatic difference in the volumes of the two matrices sampled is due to the their difference in density, i.e. at sea level the density of water is 1220 times greater than air. The ratio of the SPMD -air and -water sampling rates ($S_{ra/w}$) is given by

$$S_{ra/w} = k_{ua} / k_{uw} \quad (10)$$

Using equation 10 and the sampling rate values given above for congener 52

$$S_{ra/w} = (600 \text{ L/d} \cdot \text{g}) / (1.3 \text{ L/d} \cdot \text{g}) = 460$$
 (11)

and from equation 10

$$k_{ua} = k_{uw} \cdot S_{ra/w} \quad (12)$$

also
$$R_{sa} = k_{ua} \cdot M_{SPMD} \quad (13)$$

Using approximate SPMD air sampling rates, the estimated airborne concentration of selected contaminants present at representative sampling sites are derived from equation 9 and presented in Tables XVII, XVIII, and XIX. These values were generated using an average R_s for an ambient temperature of 26° C.

The presence of persistent contaminants in the air of the deployment sites undoubtedly results from the present or former use of these chemicals in the area. While the estimated ambient concentrations of the chemicals are in general below the NIOSH time weighted average (TWA) exposure limits based on a maximum 10 h work day and a 40 h work week, the values estimated from the SPMD data are representative of up to 24 h per day, 7 d per week. This extended exposure period and the complexity of the chemical mixtures present in these homes and the potential for synergistic effects need further investigation to assess possible health effects.

For example, most of the chlorinated chemicals have been banned - some for nearly 20 years (8). The apparent longevity of these chlorinated contaminants may result in a continued reduction in environmental quality. For instance, dieldrin, the DDT complex,

and the chlordane components along with a much larger set of diverse environmental contaminants have been reported to cause endocrine-disruption in some organisms (9). The potential biological effects from exposure to complex mixtures of airborne chemicals requires further research.

ACKNOWLEDGEMENTS

We gratefully acknowledge the support and the cooperation of Gary Robertson and the financial support of the U.S. Environmental Protection Agency during the course of this research project. We also thank Mary O'Rourke and Séamus Rogan of the University of Arizona for their help during deployment and retrieval of the SPMD samplers.

LITERATURE CITED

- Huckins, J.N., Manuweera, G.K., Petty, J.D., MacKay, D., Lebo, J.A. 1993.
 Environ. Sci. Technol., 27:2489-2496.
- 2. Petty, J.D., Huckins, J.N., and Zajicek, J.L. 1993. Chemosphere, <u>27</u>:1609-1624.
- 3. Petty, J.D., Huckins, J.N., Orazio, C.E., Lebo, J.A., Poulton, B.C., Gale, R.W., Charbonneau, C.S., Kaiser, E.M. 1995. Environ. Sci. Technol., 29:2561-2566.
- 4. Lebo, J.A., Gale, R.W., Petty, J.D., Huckins, J.N., Echols, K.R., Schroeder, D.J., Inmon, L.E. 1995. Environ. Sci. Technol., 29:2886-2892.
- 5. Huckins, J.N., Tubergen, M.W., Manuweera, G.K. 1990. Chemosphere, <u>20</u>:533-553.
- 6. Oppenhuizen, A., Velde, E.W., Gobas, F.A.P., Leim, D.A.K., Steen, J.M.D. 1985. Chemosphere, 14:1871-1896
- 7. Keith, L.H. 1991 Environmental Sampling and Analysis: A Practical Guide, CRC Press, Inc.; Boca Raton, FL, pp 101-113.
- 8. Colborn, T., Vom Saal, F.S., Soto, A.M. 1993. Environ. Health Perspect., 101:378-384.
- Davis, W.P., Bortone, S.A. In "Chemically Induced Alterations in Sexual and Functional Development: The Wildlife/Human Connection", Colborn, T., Clement, C. Eds, Princeton Scientific Publishing: Princeton, NJ, 1992, pp 113-127.

Table I

Background, MDL, & MQL Values for Targeted Analytes

Bkg	MDL	MQL		Bkg	MDL	MQL
ng	ng	ng	PAHs	μg	μg	μg
0.1	0.8	2.2	Nanhthalene	0.04	0.15	0.42
			=			0.71
			- •			0.03
				0.03	0.34	1.06
			Phenanthrene	0.02	0.09	0.24
			Anthracene	0.00	0.00	0.01
		9.8	Fluoranthene	0.03	0.16	0.48
0.2	1.0	2.7	Pyrene	0.02	0.12	0.36
0.4	3.0	9.1	Benz[a]anthracene	0.00	0.01	0.02
1.1	4.9	13.9	Chrysene	0.00	0.01	0.03
0.2	1.0	2.8	Benzo[b]fluoranthene	0.00	0.00	0.01
0.2	0.8	2.3	Benzo[k]fluoranthene	0.00	0.01	0.02
0.2	1.2	3.5	Benzo[a]pyrene	0.00	0.01	0.02
0.2	0.7	2.0	Indeno[1,2,3-cd]pyrene	0.00	0.01	0.03
0.3	1.8	5.5	Dibenz[a,h]anthracene	0.00	0.01	0.03
0.1	1.1	3.2	Benzo[g,h,i]perylene	0.00	0.02	0.05
0.5	2.3	6.6				
3.4	15.1	42.5	Total PID Response ****	25	44	90
0.7	5.2	15.8				
0.1	1.2	3.7				
1.7	14.4	44.1				
0.4	2.3	6.8	Additional	Bkg	MDL	MQL
1.7	10.8	31.9	Compounds	ng	ng	ng
0.2	1.4	4.2				
0.1	1.4	4.4	Trifluralin	0.9	3.5	8.6
0.1	0.4	1.0	Diazinon	1.0		9.6
0.3	3.0	9.3	Chlorpyrifos	0.1	0.4	2.0
			cis-Permethrin	1.7		21.7
86	233	576	trans-Permethrin	1.9	7.6	24.2
	0.1 0.6 0.1 0.5 0.6 0.4 0.5 0.2 0.2 0.2 0.2 0.2 0.2 0.3 0.1 0.5 3.4 0.7 0.1 1.7 0.4 1.7 0.2 0.1 0.3	ng ng 0.1 0.8 0.6 1.8 0.1 0.3 0.5 1.9 0.6 7.1 0.4 2.1 0.5 3.3 0.2 1.0 0.4 3.0 1.1 4.9 0.2 1.0 0.2 0.8 0.2 1.2 0.2 0.7 0.3 1.8 0.1 1.1 0.5 2.3 3.4 15.1 0.7 5.2 0.1 1.2 1.7 14.4 0.4 2.3 1.7 10.8 0.2 1.4 0.1 0.4 0.1 0.4 0.3 3.0	ng ng ng 0.1 0.8 2.2 0.6 1.8 4.5 0.1 0.3 0.7 0.5 1.9 5.0 0.6 7.1 22.3 0.4 2.1 6.1 0.5 3.3 9.8 0.2 1.0 2.7 0.4 3.0 9.1 1.1 4.9 13.9 0.2 1.0 2.8 0.2 0.8 2.3 0.2 0.8 2.3 0.2 1.2 3.5 0.2 0.7 2.0 0.3 1.8 5.5 0.1 1.1 3.2 0.5 2.3 6.6 3.4 15.1 42.5 0.7 5.2 15.8 0.1 1.2 3.7 1.7 14.4 44.1 0.4 2.3 6.8 1.7 10.8 31.9 <td>ng ng PAHs 0.1 0.8 2.2 Naphthalene 0.6 1.8 4.5 Acenaphthylene 0.1 0.3 0.7 Acenaphthene 0.1 0.3 0.7 Acenaphthene 0.5 1.9 5.0 Fluorene 0.6 7.1 22.3 Phenanthrene 0.4 2.1 6.1 Anthracene 0.5 3.3 9.8 Fluoranthene 0.2 1.0 2.7 Pyrene 0.4 3.0 9.1 Benz[a]anthracene 0.1 4.9 13.9 Chrysene 0.2 1.0 2.8 Benzo[b]fluoranthene 0.2 0.8 2.3 Benzo[a]pyrene 0.2 0.7 2.0 Indeno[1,2,3-cd]pyrene 0.3 1.8 5.5 Dibenz[a,h]anthracene 0.1 1.1 3.2 Benzo[g,h,i]perylene 0.5 2.3 6.6 3.4 15.1</td> <td>ng ng PAHs μg 0.1 0.8 2.2 Naphthalene 0.04 0.6 1.8 4.5 Acenaphthylene 0.03 0.1 0.3 0.7 Acenaphthene 0.00 0.5 1.9 5.0 Fluorene 0.03 0.6 7.1 22.3 Phenanthrene 0.02 0.4 2.1 6.1 Anthracene 0.00 0.5 3.3 9.8 Fluoranthene 0.03 0.2 1.0 2.7 Pyrene 0.02 0.4 3.0 9.1 Benz[a]anthracene 0.00 0.4 3.0 9.1 Benz[a]anthracene 0.00 0.2 1.0 2.8 Benzo[b]fluoranthene 0.00 0.2 1.0 2.8 Benzo[k]fluoranthene 0.00 0.2 0.8 2.3 Benzo[a]pyrene 0.00 0.2 0.7 2.0 Indeno[1,2,3-cd]pyrene 0.00 0.5</td> <td>ng ng PAHs μg μg 0.1 0.8 2.2 Naphthalene 0.04 0.15 0.6 1.8 4.5 Acenaphthylene 0.03 0.23 0.1 0.3 0.7 Acenaphthene 0.00 0.01 0.5 1.9 5.0 Fluorene 0.03 0.34 0.6 7.1 22.3 Phenanthrene 0.02 0.09 0.4 2.1 6.1 Anthracene 0.00 0.00 0.5 3.3 9.8 Fluoranthene 0.03 0.16 0.2 1.0 2.7 Pyrene 0.02 0.12 0.4 3.0 9.1 Benz[a]anthracene 0.00 0.01 0.4 3.0 9.1 Benz[a]anthracene 0.00 0.01 1.1 4.9 13.9 Chrysene 0.00 0.01 0.2 1.0 2.8 Benzo[bfluoranthene 0.00 0.01 0.2 1.2<</td>	ng ng PAHs 0.1 0.8 2.2 Naphthalene 0.6 1.8 4.5 Acenaphthylene 0.1 0.3 0.7 Acenaphthene 0.1 0.3 0.7 Acenaphthene 0.5 1.9 5.0 Fluorene 0.6 7.1 22.3 Phenanthrene 0.4 2.1 6.1 Anthracene 0.5 3.3 9.8 Fluoranthene 0.2 1.0 2.7 Pyrene 0.4 3.0 9.1 Benz[a]anthracene 0.1 4.9 13.9 Chrysene 0.2 1.0 2.8 Benzo[b]fluoranthene 0.2 0.8 2.3 Benzo[a]pyrene 0.2 0.7 2.0 Indeno[1,2,3-cd]pyrene 0.3 1.8 5.5 Dibenz[a,h]anthracene 0.1 1.1 3.2 Benzo[g,h,i]perylene 0.5 2.3 6.6 3.4 15.1	ng ng PAHs μg 0.1 0.8 2.2 Naphthalene 0.04 0.6 1.8 4.5 Acenaphthylene 0.03 0.1 0.3 0.7 Acenaphthene 0.00 0.5 1.9 5.0 Fluorene 0.03 0.6 7.1 22.3 Phenanthrene 0.02 0.4 2.1 6.1 Anthracene 0.00 0.5 3.3 9.8 Fluoranthene 0.03 0.2 1.0 2.7 Pyrene 0.02 0.4 3.0 9.1 Benz[a]anthracene 0.00 0.4 3.0 9.1 Benz[a]anthracene 0.00 0.2 1.0 2.8 Benzo[b]fluoranthene 0.00 0.2 1.0 2.8 Benzo[k]fluoranthene 0.00 0.2 0.8 2.3 Benzo[a]pyrene 0.00 0.2 0.7 2.0 Indeno[1,2,3-cd]pyrene 0.00 0.5	ng ng PAHs μg μg 0.1 0.8 2.2 Naphthalene 0.04 0.15 0.6 1.8 4.5 Acenaphthylene 0.03 0.23 0.1 0.3 0.7 Acenaphthene 0.00 0.01 0.5 1.9 5.0 Fluorene 0.03 0.34 0.6 7.1 22.3 Phenanthrene 0.02 0.09 0.4 2.1 6.1 Anthracene 0.00 0.00 0.5 3.3 9.8 Fluoranthene 0.03 0.16 0.2 1.0 2.7 Pyrene 0.02 0.12 0.4 3.0 9.1 Benz[a]anthracene 0.00 0.01 0.4 3.0 9.1 Benz[a]anthracene 0.00 0.01 1.1 4.9 13.9 Chrysene 0.00 0.01 0.2 1.0 2.8 Benzo[bfluoranthene 0.00 0.01 0.2 1.2<

^{*} Hexachlorobenzene

^{**} Pentachloroanisole

^{***} Benzenehexachloride

^{****} As pyrene (i.e. total GC-PID response using the response factor of pyrene to quantify)

Table II

Recovery of ¹⁴C- Dibenz[a,h]anthracene *

Following Dialysis and Size Exclusion Chromatography

Validation #1 88.2 Validation #2, Replicate # 1 83.9 Validation #2, Replicate # 2 86.5 Validation #2, Replicate # 3 85.7 Set # 1 80.0 Set # 2 89.8 Set # 3 93.7 Set # 4 89.5 Set # 5 91.3 Set # 6 90.9 Set # 7 89.2 Set # 8 96.3 Set # 9 88.5 Set # 10 87.7 Set # 11 88.5 Set # 12 86.5 Set # 13 86.2 Set # 14, Replicate # 1 89.3 Set # 14, Replicate # 2 86.6 Set # 15 89.2 Set # 16 89.3 Set # 17 86.6 Set # 18 89.1 Set # 19 88.2 Set # 20 90.2 Set # 21 90.7
Validation #2, Replicate # 1 83.9 Validation #2, Replicate # 2 86.5 Validation #2, Replicate # 3 85.7 Set # 1 80.0 Set # 2 89.8 Set # 3 93.7 Set # 4 89.5 Set # 5 91.3 Set # 6 90.9 Set # 7 89.2 Set # 8 96.3 Set # 9 88.5 Set # 10 87.7 Set # 11 88.5 Set # 12 86.5 Set # 13 86.2 Set # 14, Replicate # 1 89.3 Set # 14, Replicate # 2 86.6 Set # 15 89.2 Set # 16 89.3 Set # 17 86.6 Set # 18 89.1 Set # 19 88.2 Set # 20 90.2
Validation #2, Replicate # 2 86.5 Validation #2, Replicate # 3 85.7 Set # 1 80.0 Set # 2 89.8 Set # 3 93.7 Set # 4 89.5 Set # 5 91.3 Set # 6 90.9 Set # 7 89.2 Set # 8 96.3 Set # 9 88.5 Set # 10 87.7 Set # 11 88.5 Set # 12 86.5 Set # 13 86.2 Set # 14, Replicate # 1 89.3 Set # 14, Replicate # 2 86.6 Set # 14, Replicate # 3 86.9 Set # 15 89.2 Set # 16 89.3 Set # 17 86.6 Set # 18 89.1 Set # 19 88.2 Set # 20 90.2
Validation #2, Replicate # 3 85.7 Set # 1 80.0 Set # 2 89.8 Set # 3 93.7 Set # 4 89.5 Set # 5 91.3 Set # 6 90.9 Set # 7 89.2 Set # 8 96.3 Set # 9 88.5 Set # 10 87.7 Set # 11 88.5 Set # 12 86.5 Set # 13 86.2 Set # 14, Replicate # 1 89.3 Set # 14, Replicate # 2 86.6 Set # 14, Replicate # 3 86.9 Set # 15 89.2 Set # 16 89.3 Set # 17 86.6 Set # 18 89.1 Set # 19 88.2 Set # 20 90.2
Set # 1 80.0 Set # 2 89.8 Set # 3 93.7 Set # 4 89.5 Set # 5 91.3 Set # 6 90.9 Set # 7 89.2 Set # 8 96.3 Set # 9 88.5 Set # 10 87.7 Set # 11 88.5 Set # 12 86.5 Set # 13 86.2 Set # 14, Replicate # 1 89.3 Set # 14, Replicate # 2 86.6 Set # 15 89.2 Set # 16 89.3 Set # 17 86.6 Set # 18 89.1 Set # 19 88.2 Set # 20 90.2
Set # 2 89.8 Set # 3 93.7 Set # 4 89.5 Set # 5 91.3 Set # 6 90.9 Set # 7 89.2 Set # 8 96.3 Set # 9 88.5 Set # 10 87.7 Set # 11 88.5 Set # 12 86.5 Set # 13 86.2 Set # 14, Replicate # 1 89.3 Set # 14, Replicate # 2 86.6 Set # 15 89.2 Set # 16 89.3 Set # 17 86.6 Set # 18 89.1 Set # 19 88.2 Set # 20 90.2
Set # 3 93.7 Set # 4 89.5 Set # 5 91.3 Set # 6 90.9 Set # 7 89.2 Set # 8 96.3 Set # 9 88.5 Set # 10 87.7 Set # 11 88.5 Set # 12 86.5 Set # 13 86.2 Set # 14, Replicate # 1 89.3 Set # 14, Replicate # 2 86.6 Set # 15 89.2 Set # 16 89.3 Set # 17 86.6 Set # 18 89.1 Set # 19 88.2 Set # 20 90.2
Set # 4 89.5 Set # 5 91.3 Set # 6 90.9 Set # 7 89.2 Set # 8 96.3 Set # 9 88.5 Set # 10 87.7 Set # 11 88.5 Set # 12 86.5 Set # 13 86.2 Set # 14, Replicate # 1 89.3 Set # 14, Replicate # 2 86.6 Set # 15 89.2 Set # 16 89.3 Set # 17 86.6 Set # 18 89.1 Set # 19 88.2 Set # 20 90.2
Set # 5 91.3 Set # 6 90.9 Set # 7 89.2 Set # 8 96.3 Set # 9 88.5 Set # 10 87.7 Set # 11 88.5 Set # 12 86.5 Set # 13 86.2 Set # 14, Replicate # 1 89.3 Set # 14, Replicate # 2 86.6 Set # 15 89.2 Set # 16 89.3 Set # 17 86.6 Set # 18 89.1 Set # 19 88.2 Set # 20 90.2
Set # 6 90.9 Set # 7 89.2 Set # 8 96.3 Set # 9 88.5 Set # 10 87.7 Set # 11 88.5 Set # 12 86.5 Set # 13 86.2 Set # 14, Replicate # 1 89.3 Set # 14, Replicate # 2 86.6 Set # 14, Replicate # 3 86.9 Set # 15 89.2 Set # 16 89.3 Set # 17 86.6 Set # 18 89.1 Set # 19 88.2 Set # 20 90.2
Set # 7 89.2 Set # 8 96.3 Set # 9 88.5 Set # 10 87.7 Set # 11 88.5 Set # 12 86.5 Set # 13 86.2 Set # 14, Replicate # 1 89.3 Set # 14, Replicate # 2 86.6 Set # 14, Replicate # 3 86.9 Set # 15 89.2 Set # 16 89.3 Set # 17 86.6 Set # 18 89.1 Set # 19 88.2 Set # 20 90.2
Set # 8 96.3 Set # 9 88.5 Set # 10 87.7 Set # 11 88.5 Set # 12 86.5 Set # 13 86.2 Set # 14, Replicate # 1 89.3 Set # 14, Replicate # 2 86.6 Set # 14, Replicate # 3 86.9 Set # 15 89.2 Set # 16 89.3 Set # 17 86.6 Set # 18 89.1 Set # 19 88.2 Set # 20 90.2
Set # 9 88.5 Set # 10 87.7 Set # 11 88.5 Set # 12 86.5 Set # 13 86.2 Set # 14, Replicate # 1 89.3 Set # 14, Replicate # 2 86.6 Set # 14, Replicate # 3 86.9 Set # 15 89.2 Set # 16 89.3 Set # 17 86.6 Set # 18 89.1 Set # 19 88.2 Set # 20 90.2
Set # 10 87.7 Set # 11 88.5 Set # 12 86.5 Set # 13 86.2 Set # 14, Replicate # 1 89.3 Set # 14, Replicate # 2 86.6 Set # 15 89.2 Set # 15 89.2 Set # 16 89.3 Set # 17 86.6 Set # 18 89.1 Set # 19 88.2 Set # 20 90.2
Set # 11 88.5 Set # 12 86.5 Set # 13 86.2 Set # 14, Replicate # 1 89.3 Set # 14, Replicate # 2 86.6 Set # 14, Replicate # 3 86.9 Set # 15 89.2 Set # 16 89.3 Set # 17 86.6 Set # 18 89.1 Set # 19 88.2 Set # 20 90.2
Set # 12 86.5 Set # 13 86.2 Set # 14, Replicate # 1 89.3 Set # 14, Replicate # 2 86.6 Set # 14, Replicate # 3 86.9 Set # 15 89.2 Set # 16 89.3 Set # 17 86.6 Set # 18 89.1 Set # 19 88.2 Set # 20 90.2
Set # 13 86.2 Set # 14, Replicate # 1 89.3 Set # 14, Replicate # 2 86.6 Set # 14, Replicate # 3 86.9 Set # 15 89.2 Set # 16 89.3 Set # 17 86.6 Set # 18 89.1 Set # 19 88.2 Set # 20 90.2
Set # 14, Replicate # 1 89.3 Set # 14, Replicate # 2 86.6 Set # 14, Replicate # 3 86.9 Set # 15 89.2 Set # 16 89.3 Set # 17 86.6 Set # 18 89.1 Set # 19 88.2 Set # 20 90.2
Set # 14, Replicate # 2 86.6 Set # 14, Replicate # 3 86.9 Set # 15 89.2 Set # 16 89.3 Set # 17 86.6 Set # 18 89.1 Set # 19 88.2 Set # 20 90.2
Set # 14, Replicate # 3 86.9 Set # 15 89.2 Set # 16 89.3 Set # 17 86.6 Set # 18 89.1 Set # 19 88.2 Set # 20 90.2
Set # 15 89.2 Set # 16 89.3 Set # 17 86.6 Set # 18 89.1 Set # 19 88.2 Set # 20 90.2
Set # 16 89.3 Set # 17 86.6 Set # 18 89.1 Set # 19 88.2 Set # 20 90.2
Set # 17 86.6 Set # 18 89.1 Set # 19 88.2 Set # 20 90.2
Set # 18 89.1 Set # 19 88.2 Set # 20 90.2
Set # 19 88.2 Set # 20 90.2
Set # 20 90.2
Set # 21 90.7
Set # 22 88.1
Set # 23 90.8
Set # 24 89.4
Set # 25 88.6
Mean (n=31) 88.6
Std Dev 2.9

^{*} Each SPMD spiked with ~ 90,000 DPM of ¹⁴C- Dibenz[a,h]anthracene.

Table III

Recovery of ¹⁴C-2,5,2',5'-Tetrachlorobiphenyl*

Through the Size Exclusion Chromatography System

Run Date	%	Run Date	%
5/8/98	98.7	11/19/98	98.3
5/21/98	96.3	12/2/98	97.4
6/4/98	100	12/3/98	95.9
6/4/98	97.8	12/7/98	95.8
7/14/98	98.6	12/16/98	95.6
7/16/98	97.2	1/28/99	98.3
7/20/98	96.9	2/1/99	98.3
7/29/98	99.2	2/4/99	95.8
8/5/98	95.0	2/10/99	96.0
8/17/98	98.0	2/16/99	97.7
9/1/98	97.1	2/17/99	95.7
9/4/98	98.3	4/27/99	97.8
9/17/98	95.1	4/30/99	96.6
9/29/98	97.5	5/4/99	97.5
9/30/98	96.2	5/5/99	97.8
10/7/98	95.9	5/7/99	97.3
10/13/98	98.1	5/11/99	97.8
10/20/98	98.6	5/13/99	98.2
11/16/98	97.3	5/17/99	97.0
11/18/98	98.0	5/20/99	97.7
		6/14/99	96.3
		Mean (n=41)	97.5
		Std Dev	1.3

^{*} Each GPC recovery sample was spiked with $\sim 40,000$ DPM of 14 C-2,5,2',5'-tetrachlorobiphenyl.

Table IV

Recovery of ¹⁴C-Diazinon*

Through the Size Exclusion Chromatography System

Run Date		%
4/27/99		97.0
4/30/99		95.8
5/4/99		97.0
5/5/99		100
5/7/99		99.0
5/11/99		97.2
5/13/99		95.2
5/17/99		97.6
5/20/99		94.9
6/14/99		
	Mean (n=9)	97.1
	Std Dev	1.7

^{*} Each GPC recovery sample was spiked with $\sim 65,000$ DPM of 14 C-Diazinon.

Table V

Recovery of PAHs

Through Tri-Adsorbent Chromatographic Cleanup

	Naphthalene	Acenaphthylene	Acenaphthene	Fluorene
	%	%	%	%
Method Validation Rep # one	77.3	69.1	78.0	65.3
Method Validation Rep # two	70.5	71.5	82.4	70.8
Method Validation Rep # three	64.9	83.5	90.9	80.9
Column Spike of 9-24-98	78.5	91.0	99.5	99.5
Column Spike of 10-2-98	76.9	83.9	95.5	92.8
Column Spike of 10-7-98	95.8	90.2	102.5	98.4
Column Spike of 10-20-98	51.1	62.2	58.4	71.6
Column Spike of 10-29-98	87.7	92.5	92.9	100
Column Spike of 11-3-98	91.3	92.2	97.4	99.4
Column Spike of 1-26-99	76.0	81.4	80.0	76.9
Column Spike of 2-10-99	88.5	90.4	95.4	97.8
Column Spike of 3-4-99	95.6	92.4	93.9	96.4
Column Spike of 3-10-99	71.6	66.7	75.7	75.1
Column Spike of 5-19-99	55.8	62.6	71.4	74.9
Column Spike of 5-20-99	40.8	52.8	58.3	64.7
Mean	74.8	78.8	84.8	84.3
Standard Deviation	16.3	13.4	14.2	13.7
RSD (%)	21.8	17.0	16.8	16.3
(,				
	Phenanthrene	Anthracene	Fluoranthene	Pyrene
	%	%	%	%
Method Validation Rep # one	77.2	76.0	78.1	80.1
Method Validation Rep # two	90.0	88.2	87.9	88.2
Method Validation Rep # three	96.3	94.6	94.0	95.8
Column Spike of 9-24-98	103	118	106	104
Column Spike of 10-2-98	97.9	107	98.7	102
Column Spike of 10-7-98	100	94.8	99.8	100
Column Spike of 10-20-98	92.1	81.2	97.5	98.7
Column Spike of 10-29-98	97.7	92.7	97.1	101
Column Spike of 11-3-98	102	97.3	103	99.8
Column Spike of 1-26-99	81.3	85.2	84.3	83.0
Column Spike of 2-10-99	95.2	93.0	98.9	94.5
Column Spike of 3-4-99	88.8	90.7	89.3	87.9
Column Spike of 3-10-99	76.4	77.7	81.3	80.4
Column Spike of 5-19-99	79.8	79.7	82.0	82.0
Column Spike of 5-20-99	83.1	79.8	86.1	92.2
, Mean	90.7	90.4	92.2	92.7
Standard Deviation				
	9.1	11.5	8.7	8.5
RSD (%)	9.1 10.0	11.5 12.7	8.7 9.4	8.5 9.1

Table V (Continued)

Recovery of PAHs

Through Tri-Adsorbent Chromatographic Cleanup

	Benzo[a]anthracene	Chrysene	Benzo[b]fluoranthene
	%	%	%
Method Validation Rep # one	72.8	75.5	70.4
Method Validation Rep # two	79.0	82.9	82.3
Method Validation Rep # three	98.6	103	97.6
Column Spike of 9-24-98	101	102	101
Column Spike of 10-2-98	99.0	97.3	98.0
Column Spike of 10-7-98	103	106	103
Column Spike of 10-20-98	112	103	107
Column Spike of 10-29-98	101	95.5	98.1
Column Spike of 11-3-98	105	104	107
Column Spike of 1-26-99	85.3	83.2	88.4
Column Spike of 2-10-99	97.1	91.4	101
Column Spike of 3-4-99	83.9	84.6	81.6
Column Spike of 3-10-99	86.3	87.5	82.8
Column Spike of 5-19-99	86.6	81.9	78.6
Column Spike of 5-20-99	95.5	93.8	89.5
Mean	93.6	92.7	92.4
Standard Deviation		9.6	11.2
RSD (%)		10.4	12.2
	Benzo[k]fluoranthene		Indeno[1,2,3-cd]pyrene
	Benzo[k]fluoranthene %	Benzo[a]pyrene %	Indeno[1,2,3-cd]pyrene %
Mathod Validation Dan # and	%	%	%
Method Validation Rep # one	% 73.1	%	71.4
Method Validation Rep # two	% 73.1 80.1	% 69.2 80.7	% 71.4 84.9
Method Validation Rep # two Method Validation Rep # three	% 73.1 80.1 95.7	% 69.2 80.7 91.3	% 71.4 84.9 95.0
Method Validation Rep # two Method Validation Rep # three Column Spike of 9-24-98	% 73.1 80.1 95.7 99.5	% 69.2 80.7 91.3 105	% 71.4 84.9 95.0 101
Method Validation Rep # two Method Validation Rep # three Column Spike of 9-24-98 Column Spike of 10-2-98	% 73.1 80.1 95.7 99.5 95.8	% 69.2 80.7 91.3 105 98.8	% 71.4 84.9 95.0 101 101
Method Validation Rep # two Method Validation Rep # three Column Spike of 9-24-98 Column Spike of 10-2-98 Column Spike of 10-7-98	% 73.1 80.1 95.7 99.5 95.8 106	% 69.2 80.7 91.3 105 98.8 102	% 71.4 84.9 95.0 101 101 102
Method Validation Rep # two Method Validation Rep # three Column Spike of 9-24-98 Column Spike of 10-2-98 Column Spike of 10-7-98 Column Spike of 10-20-98	% 73.1 80.1 95.7 99.5 95.8 106 104	% 69.2 80.7 91.3 105 98.8 102 112	% 71.4 84.9 95.0 101 101 102 110
Method Validation Rep # two Method Validation Rep # three Column Spike of 9-24-98 Column Spike of 10-2-98 Column Spike of 10-7-98 Column Spike of 10-20-98 Column Spike of 10-29-98	% 73.1 80.1 95.7 99.5 95.8 106 104 99.8	% 69.2 80.7 91.3 105 98.8 102 112 96.5	% 71.4 84.9 95.0 101 101 102 110 101
Method Validation Rep # two Method Validation Rep # three Column Spike of 9-24-98 Column Spike of 10-2-98 Column Spike of 10-7-98 Column Spike of 10-20-98 Column Spike of 10-29-98 Column Spike of 11-3-98	% 73.1 80.1 95.7 99.5 95.8 106 104 99.8 109	% 69.2 80.7 91.3 105 98.8 102 112 96.5 113	% 71.4 84.9 95.0 101 101 102 110 101 108
Method Validation Rep # two Method Validation Rep # three Column Spike of 9-24-98 Column Spike of 10-2-98 Column Spike of 10-7-98 Column Spike of 10-20-98 Column Spike of 10-29-98 Column Spike of 11-3-98 Column Spike of 1-26-99	% 73.1 80.1 95.7 99.5 95.8 106 104 99.8 109 86.7	% 69.2 80.7 91.3 105 98.8 102 112 96.5 113 85.9	% 71.4 84.9 95.0 101 101 102 110 101 108 89.8
Method Validation Rep # two Method Validation Rep # three Column Spike of 9-24-98 Column Spike of 10-2-98 Column Spike of 10-7-98 Column Spike of 10-20-98 Column Spike of 10-29-98 Column Spike of 11-3-98 Column Spike of 1-26-99 Column Spike of 2-10-99	% 73.1 80.1 95.7 99.5 95.8 106 104 99.8 109 86.7 98.3	% 69.2 80.7 91.3 105 98.8 102 112 96.5 113 85.9 86.0	% 71.4 84.9 95.0 101 101 102 110 101 108 89.8 97.2
Method Validation Rep # two Method Validation Rep # three Column Spike of 9-24-98 Column Spike of 10-2-98 Column Spike of 10-7-98 Column Spike of 10-20-98 Column Spike of 10-29-98 Column Spike of 11-3-98 Column Spike of 1-26-99 Column Spike of 2-10-99 Column Spike of 3-4-99	% 73.1 80.1 95.7 99.5 95.8 106 104 99.8 109 86.7 98.3 84.2	% 69.2 80.7 91.3 105 98.8 102 112 96.5 113 85.9 86.0 82.6	% 71.4 84.9 95.0 101 101 102 110 101 108 89.8 97.2 81.5
Method Validation Rep # two Method Validation Rep # three Column Spike of 9-24-98 Column Spike of 10-2-98 Column Spike of 10-7-98 Column Spike of 10-20-98 Column Spike of 10-29-98 Column Spike of 11-3-98 Column Spike of 1-26-99 Column Spike of 2-10-99 Column Spike of 3-4-99 Column Spike of 3-10-99	% 73.1 80.1 95.7 99.5 95.8 106 104 99.8 109 86.7 98.3 84.2 76.9	% 69.2 80.7 91.3 105 98.8 102 112 96.5 113 85.9 86.0 82.6 83.3	% 71.4 84.9 95.0 101 101 102 110 101 108 89.8 97.2 81.5 80.7
Method Validation Rep # two Method Validation Rep # three Column Spike of 9-24-98 Column Spike of 10-2-98 Column Spike of 10-7-98 Column Spike of 10-20-98 Column Spike of 10-29-98 Column Spike of 11-3-98 Column Spike of 1-26-99 Column Spike of 2-10-99 Column Spike of 3-4-99 Column Spike of 3-10-99 Column Spike of 5-19-99	% 73.1 80.1 95.7 99.5 95.8 106 104 99.8 109 86.7 98.3 84.2 76.9 67.2	% 69.2 80.7 91.3 105 98.8 102 112 96.5 113 85.9 86.0 82.6 83.3 82.5	% 71.4 84.9 95.0 101 101 102 110 101 108 89.8 97.2 81.5 80.7 84.7
Method Validation Rep # two Method Validation Rep # three Column Spike of 9-24-98 Column Spike of 10-2-98 Column Spike of 10-20-98 Column Spike of 10-20-98 Column Spike of 10-29-98 Column Spike of 11-3-98 Column Spike of 1-26-99 Column Spike of 2-10-99 Column Spike of 3-4-99 Column Spike of 3-10-99 Column Spike of 5-19-99 Column Spike of 5-20-99	% 73.1 80.1 95.7 99.5 95.8 106 104 99.8 109 86.7 98.3 84.2 76.9 67.2 86.1	% 69.2 80.7 91.3 105 98.8 102 112 96.5 113 85.9 86.0 82.6 83.3 82.5 100.3	% 71.4 84.9 95.0 101 101 102 110 101 108 89.8 97.2 81.5 80.7 84.7 93.9
Method Validation Rep # two Method Validation Rep # three Column Spike of 9-24-98 Column Spike of 10-2-98 Column Spike of 10-20-98 Column Spike of 10-20-98 Column Spike of 10-29-98 Column Spike of 11-3-98 Column Spike of 1-26-99 Column Spike of 2-10-99 Column Spike of 3-4-99 Column Spike of 3-10-99 Column Spike of 5-19-99 Column Spike of 5-20-99 Mean	% 73.1 80.1 95.7 99.5 95.8 106 104 99.8 109 86.7 98.3 84.2 76.9 67.2 86.1 90.8	% 69.2 80.7 91.3 105 98.8 102 112 96.5 113 85.9 86.0 82.6 83.3 82.5 100.3 92.5	% 71.4 84.9 95.0 101 101 102 110 101 108 89.8 97.2 81.5 80.7 84.7 93.9 93.4
Method Validation Rep # two Method Validation Rep # three Column Spike of 9-24-98 Column Spike of 10-2-98 Column Spike of 10-20-98 Column Spike of 10-20-98 Column Spike of 10-29-98 Column Spike of 11-3-98 Column Spike of 1-26-99 Column Spike of 2-10-99 Column Spike of 3-4-99 Column Spike of 3-10-99 Column Spike of 5-19-99 Column Spike of 5-20-99	% 73.1 80.1 95.7 99.5 95.8 106 104 99.8 109 86.7 98.3 84.2 76.9 67.2 86.1 90.8 12.7	% 69.2 80.7 91.3 105 98.8 102 112 96.5 113 85.9 86.0 82.6 83.3 82.5 100.3	% 71.4 84.9 95.0 101 101 102 110 101 108 89.8 97.2 81.5 80.7 84.7 93.9

Table V (Continued)

Recovery of PAHs

Through Tri-Adsorbent Chromatographic Cleanup

	Dibenz(a,h)anthracene	Benzo(g,h,i)perylene	Over All
	%	%	%
Method Validation Rep # one	69.5	75.4	73.6
Method Validation Rep # two	86.5	82.2	81.8
Method Validation Rep # three	96.5	92.2	91.9
Column Spike of 9-24-98	100	104	101
Column Spike of 10-2-98	104	102	96.9
Column Spike of 10-7-98	99.1	100	100
Column Spike of 10-20-98	105	107	92.0
Column Spike of 10-29-98	102	101	97.3
Column Spike of 11-3-98	112	108	103
Column Spike of 1-26-99	86.4	84.0	83.6
Column Spike of 2-10-99	88.4	96.8	94.3
Column Spike of 3-4-99	80.1	78.2	87.0
Column Spike of 3-10-99	82.3	89.1	79.6
Column Spike of 5-19-99	85.9	74.9	76.9
Column Spike of 5-20-99	96.3	82.0	80.9
Mean	92.9	91.8	89.3
Standard Deviation	11.3	11.7	11.6
RSD (%)	12.1	12.8	13.2

Table VI

Recovery of OC-Pesticides and PCBs

Through Florisil and Silica Gel Chromatographic Cleanup

Sample Name	HCB %	PCA %	α-BHC %	β-BHC %	δ-BHC %
Column Spike #1 of M.V. *	71.6	107.9	86.6	95.4	107
Column Spike #2 of M.V. *	60.0	100	79.1	91.8	98.0
Column Spike #3 of M.V. *	65.6	102	80.5	89.4	96.2
Column Spike of 9-23-98	129	115	71.5	74.3	77.5
Column Spike of 10-5-98	111	139	116	87.2	92.5
Column Spike of 10-21-98	108	137	82.6	88.1	87.6
Column Spike of 10-22-98	0.0	107	91.5	87.5	89.6
Column Spike of 11-3-98	75.7	125	96.6	104	100
Column Spike of 11-23-98	0.0	136	113	101	101
Column Spike of 11-27-98	75.0	119	82.5	85.7	86.9
Column Spike of 2-3-99	89.0	105	70.6	74.7	72.9
Column Spike of 2-18-99	52.5	123	97.4	92.7	93.2
Column Spike of 3-3-99	75.6	113	84.5	81.1	-1.7
Column Spike of 3-4-99	82.0	114	81.4	79.0	89.0
Column Spike # 1 of 5-24-99	70.6	114	73.1	78.8	77.8
Column Spike # 2 of 5-24-99	66.2	108	72.8	79.2	73.6
Mean	70.7	116	86.2	86.8	83.8
Standard Deviation	34.1	12.3	13.7	8.7	24.9
RSD (%)	48.2	10.6	15.9	10.0	29.7
	Lindane		•	Heptachlor Epoxide	
Sample Name	Lindane %	Dacthal %	Heptachlor %	Heptachlor Epoxide %	Oxychlordane %
·	%	%	%	%	%
Column Spike #1 of M.V. *	% 93.2	% 91.5	% 98.5	% 97.8	91.6
Column Spike #1 of M.V. * Column Spike #2 of M.V. *	% 93.2 87.2	% 91.5 88.5	98.5 94.1	% 97.8 96.0	% 91.6 92.4
Column Spike #1 of M.V. * Column Spike #2 of M.V. * Column Spike #3 of M.V. *	% 93.2 87.2 88.0	% 91.5 88.5 88.1	% 98.5 94.1 101	% 97.8 96.0 97.1	% 91.6 92.4 92.6
Column Spike #1 of M.V. * Column Spike #2 of M.V. * Column Spike #3 of M.V. * Column Spike of 9-23-98	% 93.2 87.2 88.0 76.6	% 91.5 88.5 88.1 79.9	% 98.5 94.1 101 103	% 97.8 96.0 97.1 79.3	% 91.6 92.4 92.6 83.7
Column Spike #1 of M.V. * Column Spike #2 of M.V. * Column Spike #3 of M.V. * Column Spike of 9-23-98 Column Spike of 10-5-98	% 93.2 87.2 88.0 76.6 110	% 91.5 88.5 88.1 79.9 85.1	% 98.5 94.1 101 103 97.5	% 97.8 96.0 97.1 79.3 100	% 91.6 92.4 92.6 83.7 122
Column Spike #1 of M.V. * Column Spike #2 of M.V. * Column Spike #3 of M.V. * Column Spike of 9-23-98 Column Spike of 10-5-98 Column Spike of 10-21-98	% 93.2 87.2 88.0 76.6 110 87.6	% 91.5 88.5 88.1 79.9 85.1 95.5	98.5 94.1 101 103 97.5 106.8	% 97.8 96.0 97.1 79.3 100 98.6	% 91.6 92.4 92.6 83.7 122 102
Column Spike #1 of M.V. * Column Spike #2 of M.V. * Column Spike #3 of M.V. * Column Spike of 9-23-98 Column Spike of 10-5-98 Column Spike of 10-21-98 Column Spike of 10-22-98	% 93.2 87.2 88.0 76.6 110 87.6 90.6	% 91.5 88.5 88.1 79.9 85.1 95.5 93.4	98.5 94.1 101 103 97.5 106.8 5.6	% 97.8 96.0 97.1 79.3 100 98.6 97.2	% 91.6 92.4 92.6 83.7 122 102 94.5
Column Spike #1 of M.V. * Column Spike #2 of M.V. * Column Spike #3 of M.V. * Column Spike of 9-23-98 Column Spike of 10-5-98 Column Spike of 10-21-98 Column Spike of 10-22-98 Column Spike of 11-3-98	% 93.2 87.2 88.0 76.6 110 87.6 90.6 102	% 91.5 88.5 88.1 79.9 85.1 95.5 93.4 90.2	% 98.5 94.1 101 103 97.5 106.8 5.6 83.6	% 97.8 96.0 97.1 79.3 100 98.6 97.2 97.7	% 91.6 92.4 92.6 83.7 122 102 94.5 94.2
Column Spike #1 of M.V. * Column Spike #2 of M.V. * Column Spike #3 of M.V. * Column Spike of 9-23-98 Column Spike of 10-5-98 Column Spike of 10-21-98 Column Spike of 10-22-98 Column Spike of 11-3-98 Column Spike of 11-3-98	% 93.2 87.2 88.0 76.6 110 87.6 90.6 102 111	% 91.5 88.5 88.1 79.9 85.1 95.5 93.4 90.2 97.1	98.5 94.1 101 103 97.5 106.8 5.6 83.6 13.0	% 97.8 96.0 97.1 79.3 100 98.6 97.2 97.7 107	% 91.6 92.4 92.6 83.7 122 102 94.5 94.2 106
Column Spike #1 of M.V. * Column Spike #2 of M.V. * Column Spike #3 of M.V. * Column Spike of 9-23-98 Column Spike of 10-5-98 Column Spike of 10-21-98 Column Spike of 10-22-98 Column Spike of 11-3-98 Column Spike of 11-3-98 Column Spike of 11-23-98 Column Spike of 11-27-98	% 93.2 87.2 88.0 76.6 110 87.6 90.6 102 111 87.5	% 91.5 88.5 88.1 79.9 85.1 95.5 93.4 90.2 97.1 91.0	98.5 94.1 101 103 97.5 106.8 5.6 83.6 13.0 85.0	% 97.8 96.0 97.1 79.3 100 98.6 97.2 97.7 107 93.5	% 91.6 92.4 92.6 83.7 122 102 94.5 94.2 106 91.6
Column Spike #1 of M.V. * Column Spike #2 of M.V. * Column Spike #3 of M.V. * Column Spike of 9-23-98 Column Spike of 10-5-98 Column Spike of 10-21-98 Column Spike of 10-22-98 Column Spike of 11-3-98 Column Spike of 11-3-98 Column Spike of 11-23-98 Column Spike of 11-27-98 Column Spike of 2-3-99	% 93.2 87.2 88.0 76.6 110 87.6 90.6 102 111 87.5 73.2	% 91.5 88.5 88.1 79.9 85.1 95.5 93.4 90.2 97.1 91.0 76.4	98.5 94.1 101 103 97.5 106.8 5.6 83.6 13.0 85.0 86.2	% 97.8 96.0 97.1 79.3 100 98.6 97.2 97.7 107 93.5 79.6	% 91.6 92.4 92.6 83.7 122 102 94.5 94.2 106 91.6 79.0
Column Spike #1 of M.V. * Column Spike #2 of M.V. * Column Spike #3 of M.V. * Column Spike of 9-23-98 Column Spike of 10-5-98 Column Spike of 10-21-98 Column Spike of 10-22-98 Column Spike of 11-3-98 Column Spike of 11-3-98 Column Spike of 11-23-98 Column Spike of 11-23-98 Column Spike of 2-3-99 Column Spike of 2-18-99	% 93.2 87.2 88.0 76.6 110 87.6 90.6 102 111 87.5 73.2 98.4	% 91.5 88.5 88.1 79.9 85.1 95.5 93.4 90.2 97.1 91.0 76.4 103	% 98.5 94.1 101 103 97.5 106.8 5.6 83.6 13.0 85.0 86.2 70.0	% 97.8 96.0 97.1 79.3 100 98.6 97.2 97.7 107 93.5 79.6 98.3	% 91.6 92.4 92.6 83.7 122 102 94.5 94.2 106 91.6 79.0 101
Column Spike #1 of M.V. * Column Spike #2 of M.V. * Column Spike #3 of M.V. * Column Spike of 9-23-98 Column Spike of 10-5-98 Column Spike of 10-21-98 Column Spike of 10-22-98 Column Spike of 11-3-98 Column Spike of 11-3-98 Column Spike of 11-23-98 Column Spike of 11-27-98 Column Spike of 2-3-99 Column Spike of 2-3-99 Column Spike of 3-3-99	% 93.2 87.2 88.0 76.6 110 87.6 90.6 102 111 87.5 73.2 98.4 89.6	% 91.5 88.5 88.1 79.9 85.1 95.5 93.4 90.2 97.1 91.0 76.4 103 86.7	% 98.5 94.1 101 103 97.5 106.8 5.6 83.6 13.0 85.0 86.2 70.0 83.3	% 97.8 96.0 97.1 79.3 100 98.6 97.2 97.7 107 93.5 79.6	% 91.6 92.4 92.6 83.7 122 102 94.5 94.2 106 91.6 79.0
Column Spike #1 of M.V. * Column Spike #2 of M.V. * Column Spike #3 of M.V. * Column Spike of 9-23-98 Column Spike of 10-5-98 Column Spike of 10-21-98 Column Spike of 10-22-98 Column Spike of 11-3-98 Column Spike of 11-3-98 Column Spike of 11-23-98 Column Spike of 11-27-98 Column Spike of 2-3-99 Column Spike of 2-18-99 Column Spike of 3-3-99 Column Spike of 3-4-99	% 93.2 87.2 88.0 76.6 110 87.6 90.6 102 111 87.5 73.2 98.4 89.6 82.9	% 91.5 88.5 88.1 79.9 85.1 95.5 93.4 90.2 97.1 91.0 76.4 103 86.7 80.2	98.5 94.1 101 103 97.5 106.8 5.6 83.6 13.0 85.0 86.2 70.0 83.3 85.5	% 97.8 96.0 97.1 79.3 100 98.6 97.2 97.7 107 93.5 79.6 98.3 85.4	% 91.6 92.4 92.6 83.7 122 102 94.5 94.2 106 91.6 79.0 101 85.2
Column Spike #1 of M.V. * Column Spike #2 of M.V. * Column Spike #3 of M.V. * Column Spike of 9-23-98 Column Spike of 10-5-98 Column Spike of 10-21-98 Column Spike of 10-22-98 Column Spike of 11-3-98 Column Spike of 11-3-98 Column Spike of 11-23-98 Column Spike of 11-27-98 Column Spike of 2-3-99 Column Spike of 2-3-99 Column Spike of 3-3-99 Column Spike of 3-4-99 Column Spike # 1 of 5-24-99	% 93.2 87.2 88.0 76.6 110 87.6 90.6 102 111 87.5 73.2 98.4 89.6 82.9 77.8	% 91.5 88.5 88.1 79.9 85.1 95.5 93.4 90.2 97.1 91.0 76.4 103 86.7 80.2 87.1	98.5 94.1 101 103 97.5 106.8 5.6 83.6 13.0 85.0 86.2 70.0 83.3 85.5 69.3	% 97.8 96.0 97.1 79.3 100 98.6 97.2 97.7 107 93.5 79.6 98.3 85.4 83.4 86.6	% 91.6 92.4 92.6 83.7 122 102 94.5 94.2 106 91.6 79.0 101 85.2 80.0
Column Spike #1 of M.V. * Column Spike #2 of M.V. * Column Spike #3 of M.V. * Column Spike of 9-23-98 Column Spike of 10-5-98 Column Spike of 10-21-98 Column Spike of 10-22-98 Column Spike of 11-3-98 Column Spike of 11-3-98 Column Spike of 11-23-98 Column Spike of 11-27-98 Column Spike of 2-3-99 Column Spike of 2-18-99 Column Spike of 3-3-99 Column Spike of 3-4-99	% 93.2 87.2 88.0 76.6 110 87.6 90.6 102 111 87.5 73.2 98.4 89.6 82.9 77.8 75.4	% 91.5 88.5 88.1 79.9 85.1 95.5 93.4 90.2 97.1 91.0 76.4 103 86.7 80.2	98.5 94.1 101 103 97.5 106.8 5.6 83.6 13.0 85.0 86.2 70.0 83.3 85.5	% 97.8 96.0 97.1 79.3 100 98.6 97.2 97.7 107 93.5 79.6 98.3 85.4 83.4	% 91.6 92.4 92.6 83.7 122 102 94.5 94.2 106 91.6 79.0 101 85.2 80.0 86.1
Column Spike #1 of M.V. * Column Spike #2 of M.V. * Column Spike #3 of M.V. * Column Spike of 9-23-98 Column Spike of 10-5-98 Column Spike of 10-21-98 Column Spike of 10-22-98 Column Spike of 11-3-98 Column Spike of 11-3-98 Column Spike of 11-23-98 Column Spike of 11-27-98 Column Spike of 2-3-99 Column Spike of 2-18-99 Column Spike of 3-3-99 Column Spike of 3-4-99 Column Spike # 1 of 5-24-99 Column Spike # 2 of 5-24-99	% 93.2 87.2 88.0 76.6 110 87.6 90.6 102 111 87.5 73.2 98.4 89.6 82.9 77.8	% 91.5 88.5 88.1 79.9 85.1 95.5 93.4 90.2 97.1 91.0 76.4 103 86.7 80.2 87.1 84.0	98.5 94.1 101 103 97.5 106.8 5.6 83.6 13.0 85.0 86.2 70.0 83.3 85.5 69.3 67.5	% 97.8 96.0 97.1 79.3 100 98.6 97.2 97.7 107 93.5 79.6 98.3 85.4 83.4 86.6 87.1	% 91.6 92.4 92.6 83.7 122 102 94.5 94.2 106 91.6 79.0 101 85.2 80.0 86.1 86.9
Column Spike #1 of M.V. * Column Spike #2 of M.V. * Column Spike #3 of M.V. * Column Spike of 9-23-98 Column Spike of 10-5-98 Column Spike of 10-21-98 Column Spike of 10-22-98 Column Spike of 11-3-98 Column Spike of 11-3-98 Column Spike of 11-23-98 Column Spike of 11-27-98 Column Spike of 2-3-99 Column Spike of 2-18-99 Column Spike of 3-3-99 Column Spike of 3-4-99 Column Spike # 1 of 5-24-99 Column Spike # 2 of 5-24-99 Mean	% 93.2 87.2 88.0 76.6 110 87.6 90.6 102 111 87.5 73.2 98.4 89.6 82.9 77.8 75.4 89.5	% 91.5 88.5 88.1 79.9 85.1 95.5 93.4 90.2 97.1 91.0 76.4 103 86.7 80.2 87.1 84.0 88.6	% 98.5 94.1 101 103 97.5 106.8 5.6 83.6 13.0 85.0 86.2 70.0 83.3 85.5 69.3 67.5 78.2	% 97.8 96.0 97.1 79.3 100 98.6 97.2 97.7 107 93.5 79.6 98.3 85.4 83.4 86.6 87.1 92.8	% 91.6 92.4 92.6 83.7 122 102 94.5 94.2 106 91.6 79.0 101 85.2 80.0 86.1 86.9 93.1

^{*} M.V. = Method Validation

Recovery of OC-Pesticides and PCBs

Through Florisil and Silica Gel Chromatographic Cleanup

Sample Name	cis-Chlordane %	trans-Chlordane %	cis-Nonachlor %	trans-Nonachlor %	o,p'-DDT %
Column Spike #1 of M.V. *	96.9	96.7	97.3	92.2	106
Column Spike #2 of M.V. *	96.8	95.0	97.0	89.7	105
Column Spike #3 of M.V. *	96.8	96.0	98.2	92.1	103
Column Spike of 9-23-98	85.4	80.7	82.0	80.7	97.4
Column Spike of 10-5-98	98.2	97.1	92.0	94.8	92.9
Column Spike of 10-21-98	94.8	95.4	98.3	95.8	97.9
Column Spike of 10-22-98	94.6	93.6	97.0	92.0	103
Column Spike of 11-3-98	97.3	96.6	96.1	93.6	93.0
Column Spike of 11-23-98	100	102	98.7	100	106
Column Spike of 11-27-98	94.6	93.2	92.1	95.8	102
Column Spike of 2-3-99	78.0	76.6	77.8	78.2	80.9
Column Spike of 2-18-99	96.7	95.6	97.0	93.8	92.0
Column Spike of 3-3-99	88.0	88.2	90.4	78.5	88.4
Column Spike of 3-4-99	84.8	84.9	87.9	83.2	85.9
Column Spike # 1 of 5-24-99	87.9	88.0	88.0	85.1	89.4
Column Spike # 2 of 5-24-99	87.6	89.0	87.6	88.0	92.5
Mear	n 92.4	91.8	92.3	89.6	95.9
Standard Deviation	n 6.3	6.7	6.3	6.7	7.7
RSD (%)	6.8	7.3	6.8	7.4	8.0
	o n' DDE	o,p'-DDD	p,p'-DDT	p,p'-DDE	p,p'-DDD
Comple Name	o,p'-DDE %	0,р-DDD %	ρ,ρ -DD1 %	ρ,ρ -DDL %	р,р -ооо %
Sample Name	/0	/0	/6	76	70
Column Spike #1 of M.V. *	94.2	96.1	104	100	95.8
Column Spike #2 of M.V. *	90.9	95.9	101	101	94.1
Column Spike #3 of M.V. *	90.9	96.2	100	104	95.8
Column Spike of 9-23-98	80.4	76.7	110	117	73.4
Column Spike of 10-5-98	95.2	89.2	81.4	101	83.6
Column Spike of 10-21-98	96.7	97.2	90.9	107	95.1
Column Spike of 10-22-98	91.9	93.5	100	25.6	94.2
Column Spike of 11-3-98	84.3	94.2	86.1	79.0	92.7
Column Spike of 11-23-98	97.0	92.8	92.9	49.9	90.4
Column Spike of 11-27-98	99.3	89.2	108	11.8	94.9
Column Spike of 2-3-99	81.9	76.0	77.7	19.7	77.0
Column Spike of 2-18-99	95.7	95.3	81.9	80.4	95.9
Column Spike of 3-3-99	86.7	90.7	89.5	70.3	94.1
Column Spike of 3-4-99	86.5	85.9	92.0	37.6	89.4
Column Spike # 1 of 5-24-99	85.6	82.4	84.6	81.6	83.4
Column Spike # 2 of 5-24-99	83.3	81.1	79.4	76.2	79.3
Mear		89.5	92.5	72.6	89.3
Standard Deviation		7.1	10.3	33.8	7.5
RSD (%) 6.7	7.9	11.1	46.6	8.4

^{*} M.V. = Method Validation

Recovery of OC-Pesticides and PCBs

Through Florisil and Silica Gel Chromatographic Cleanup

Sample Name	Dieldrin %	Endrin %	Methoxychlor %	Mirex %	Endosulfan %	Endosulfan-II %
Column Spike #1 of M.V. *	96.6	110	120	98.8	94.4	90.8
Column Spike #2 of M.V. *	93.7	109	117	99.9	95.5	87.3
Column Spike #3 of M.V. *	95.6	108	113	100	96.9	92.6
Column Spike of 9-23-98	79.8	103	135	105	82.4	84.9
Column Spike of 10-5-98	95.6	90.1	87.2	113	121	85.6
Column Spike of 10-21-98	93.8	92.4	97.9	114	96.9	95.4
Column Spike of 10-22-98	95.5	89.3	94.6	0.0	92.4	89.7
Column Spike of 11-3-98	95.0	102	90.1	102	101	74.5
Column Spike of 11-23-98	96.4	107	93.2	0.0	106	66.1
Column Spike of 11-27-98	88.0	86.7	115	100	96.6	66.1
Column Spike of 2-3-99	72.9	68.4	83.4	105	81.3	73.0
Column Spike of 2-18-99	93.4	87.2	75.8	102	68.0	32.3
Column Spike of 3-3-99	81.1	77.4	24.2	90.7	85.5	0.0
Column Spike of 3-4-99	84.8	81.6	85.3	102	72.3	35.1
Column Spike # 1 of 5-24-99	86.7	78.9	89.8	82.1	89.1	89.3
Column Spike # 2 of 5-24-99	87.3	81.1	88.6	82.1	89.8	88.6
Mean	89.8	92.0	94.4	87.3	91.8	72.0
Standard Deviation	7.1	13.0	24.8	35.2	12.7	27.1
RSD (%)	7.9	14.2	26.3	40.3	13.8	37.6
	Endosulfan Sulfate	Over All	Total PCBs			

Sample Name	Endosulfan Sulfate %	Over All %	Total PCB %
Column Colleg #4 of MV *	70 7	06.7	82.9
Column Spike #1 of M.V. *	78.7	96.7	
Column Spike #2 of M.V. *	73.2	93.7	80.2
Column Spike #3 of M.V. *	75.1	94.6	82.6
Column Spike of 9-23-98	81.6	90.6	89.2
Column Spike of 10-5-98	85.6	98.6	61.1
Column Spike of 10-21-98	98.1	98.2	95.6
Column Spike of 10-22-98	90.9	81.3	93.7
Column Spike of 11-3-98	72.8	93.3	96.0
Column Spike of 11-23-98	68.9	87.1	101
Column Spike of 11-27-98	79.8	89.3	89.9
Column Spike of 2-3-99	76.8	77.5	91.8
Column Spike of 2-18-99	170	92.0	89.9
Column Spike of 3-3-99	1.0	74.3	82.1
Column Spike of 3-4-99	124	83.7	84.4
Column Spike # 1 of 5-24-99	88.5	84.5	83.2
Column Spike # 2 of 5-24-99	91.1	83.5	95.0
Mear	84.8	88.7	96.2
Standard Deviation	33.5	15.3	87.8
RSD (%)	39.6	18.1	9.6

^{*} M.V. = Method Validation

Table VII

Recovery of Current Use Pesticides

Through Florisil and Silica Gel Chromatographic Cleanup

	Trifluralin	Diazinon	Chlorpyrifos	cis-Permethrin	trans-Permethrin
Sample Name	%	%	%	%	%
Florisil, Rep.# 1 of M.V. *	81.0	86.3	87.2	96.9	95.1
Florisil, Rep.# 2 of M.V. *	80.0	81.2	85.3	97.6	98.5
Florisil, Rep.# 3 of M.V. *	79.1	83.0	85.0	97.8	96.5
Silica Gel, Rep.# 1 of M.V. *	84.3	72.6	76.7	110	108
Silica Gel, Rep.# 2 of M.V. *	85.9	83.0	77.5	95.6	94.5
Silica Gel, Rep.# 3 of M.V. *	82.1	76.4	73.4	95.0	92.7
Column Spike # 1	77.5	63.7	50.9	87.6	99.4
Column Spike # 2	78.1	65.2	50.1	89.9	104.8
Mean	81.0	76.4	73.3	96.3	98.7
Standard Deviation	2.9	8.5	14.9	6.7	5.3
RSD(%)	3.6	11.2	20.3	6.9	5.4

^{*} M.V. = Method Validation

Table VIII

Recovery of PAHs From SPMD Spikes

	Naphthalene %	Acenaphthylene %	Acenaphthene %	Fluorene %
Method Validation Rep # one	32.7	63.0	67.9	78.2
Method Validation Rep # two	27.2	57.5	77.4	84.2
Method Validation Rep # three	19.1	54.4	61.6	71.0
SPMD Spike of 9-15-98	25.5	55.3	63.3	67.1
SPMD Spike of 9-24-98	43.1	64.2	69.3	84.7
SPMD Spike of 9-28-98	50.7	68.7	75.4	79.8
SPMD Spike of 10-1-98	43.6	63.6	81.2	72.1
SPMD Spike of 10-8-98	49.2	79.8	79.7	98.9
SPMD Spike of 10-15-98	39.2	63.6	66.0	86.8
SPMD Spike of 11-19-98	46.3	90.5	75.9	72.6
SPMD Spike of 12-15-98	33.9	59.5	64.2	62.1
SPMD Spike of 1-11-99	36.8	68.9	69.4	76.5
SPMD Spike of 2-8-99	38.8	71.9	64.2	74.7
SPMD Spike of 2-10-99	57.5	80.8	80.2	77.8
SPMD Spike of 3-29-99	40.9	79.8	86.3	77.6
SPMD Spike of 4-7-99	31.4	46.2	49.8	61.2
SPMD Spike of 4-1-99	30.3	56.4	61.8	55.8
Mean	38.0	66.1	70.2	75.4
Standard Deviation	9.9	11.5	9.3	10.5
RSD (%)	26.1	17.4	13.3	13.9
	Phenanthrene	Anthracene	Fluoranthene	Pyrene
	Phenanthrene %	Anthracene %	Fluoranthene %	Pyrene %
Method Validation Rep # one				•
·	%	%	%	%
Method Validation Rep # one Method Validation Rep # two Method Validation Rep # three	% 100	% 82.7	% 93.6	% 91.3
Method Validation Rep # two	% 100 96.2	% 82.7 80.1	% 93.6 85.7	% 91.3 87.9
Method Validation Rep # two Method Validation Rep # three	% 100 96.2 84.2	% 82.7 80.1 74.9	% 93.6 85.7 88.7	% 91.3 87.9 82.6
Method Validation Rep # two Method Validation Rep # three SPMD Spike of 9-15-98	% 100 96.2 84.2 83.3	% 82.7 80.1 74.9 72.5	% 93.6 85.7 88.7 76.7	% 91.3 87.9 82.6 85.6
Method Validation Rep # two Method Validation Rep # three SPMD Spike of 9-15-98 SPMD Spike of 9-24-98	% 100 96.2 84.2 83.3 85.8	% 82.7 80.1 74.9 72.5 70.0	% 93.6 85.7 88.7 76.7 103	% 91.3 87.9 82.6 85.6 82.9
Method Validation Rep # two Method Validation Rep # three SPMD Spike of 9-15-98 SPMD Spike of 9-24-98 SPMD Spike of 9-28-98	% 100 96.2 84.2 83.3 85.8 89.2	% 82.7 80.1 74.9 72.5 70.0 84.9	% 93.6 85.7 88.7 76.7 103 87.9	% 91.3 87.9 82.6 85.6 82.9 106
Method Validation Rep # two Method Validation Rep # three SPMD Spike of 9-15-98 SPMD Spike of 9-24-98 SPMD Spike of 9-28-98 SPMD Spike of 10-1-98	% 100 96.2 84.2 83.3 85.8 89.2 83.5	% 82.7 80.1 74.9 72.5 70.0 84.9 93.2	% 93.6 85.7 88.7 76.7 103 87.9 84.3	% 91.3 87.9 82.6 85.6 82.9 106 80.9
Method Validation Rep # two Method Validation Rep # three SPMD Spike of 9-15-98 SPMD Spike of 9-24-98 SPMD Spike of 9-28-98 SPMD Spike of 10-1-98 SPMD Spike of 10-8-98	% 100 96.2 84.2 83.3 85.8 89.2 83.5 94.7	% 82.7 80.1 74.9 72.5 70.0 84.9 93.2 92.0	% 93.6 85.7 88.7 76.7 103 87.9 84.3 100	% 91.3 87.9 82.6 85.6 82.9 106 80.9 90.1
Method Validation Rep # two Method Validation Rep # three SPMD Spike of 9-15-98 SPMD Spike of 9-24-98 SPMD Spike of 9-28-98 SPMD Spike of 10-1-98 SPMD Spike of 10-8-98 SPMD Spike of 10-15-98	% 100 96.2 84.2 83.3 85.8 89.2 83.5 94.7	% 82.7 80.1 74.9 72.5 70.0 84.9 93.2 92.0 72.8	% 93.6 85.7 88.7 76.7 103 87.9 84.3 100 96.2	% 91.3 87.9 82.6 85.6 82.9 106 80.9 90.1 93.6
Method Validation Rep # two Method Validation Rep # three SPMD Spike of 9-15-98 SPMD Spike of 9-24-98 SPMD Spike of 9-28-98 SPMD Spike of 10-1-98 SPMD Spike of 10-8-98 SPMD Spike of 10-15-98 SPMD Spike of 11-19-98	% 100 96.2 84.2 83.3 85.8 89.2 83.5 94.7 87.7 95.5	% 82.7 80.1 74.9 72.5 70.0 84.9 93.2 92.0 72.8 88.8	% 93.6 85.7 88.7 76.7 103 87.9 84.3 100 96.2 117 76.2 88.5	% 91.3 87.9 82.6 85.6 82.9 106 80.9 90.1 93.6 95.7 72.7 86.3
Method Validation Rep # two Method Validation Rep # three SPMD Spike of 9-15-98 SPMD Spike of 9-24-98 SPMD Spike of 9-28-98 SPMD Spike of 10-1-98 SPMD Spike of 10-8-98 SPMD Spike of 10-15-98 SPMD Spike of 11-19-98 SPMD Spike of 11-19-98 SPMD Spike of 12-15-98	% 100 96.2 84.2 83.3 85.8 89.2 83.5 94.7 87.7 95.5 72.5	% 82.7 80.1 74.9 72.5 70.0 84.9 93.2 92.0 72.8 88.8 61.9	% 93.6 85.7 88.7 76.7 103 87.9 84.3 100 96.2 117 76.2 88.5 96.4	% 91.3 87.9 82.6 85.6 82.9 106 80.9 90.1 93.6 95.7 72.7 86.3 99.4
Method Validation Rep # two Method Validation Rep # three SPMD Spike of 9-15-98 SPMD Spike of 9-24-98 SPMD Spike of 9-28-98 SPMD Spike of 10-1-98 SPMD Spike of 10-1-98 SPMD Spike of 10-15-98 SPMD Spike of 11-19-98 SPMD Spike of 12-15-98 SPMD Spike of 1-11-99 SPMD Spike of 2-8-99 SPMD Spike of 2-10-99	% 100 96.2 84.2 83.3 85.8 89.2 83.5 94.7 87.7 95.5 72.5 86.3	% 82.7 80.1 74.9 72.5 70.0 84.9 93.2 92.0 72.8 88.8 61.9 82.0	% 93.6 85.7 88.7 76.7 103 87.9 84.3 100 96.2 117 76.2 88.5 96.4 1036	% 91.3 87.9 82.6 85.6 82.9 106 80.9 90.1 93.6 95.7 72.7 86.3 99.4 104
Method Validation Rep # two Method Validation Rep # three SPMD Spike of 9-15-98 SPMD Spike of 9-24-98 SPMD Spike of 9-28-98 SPMD Spike of 10-1-98 SPMD Spike of 10-8-98 SPMD Spike of 10-15-98 SPMD Spike of 11-19-98 SPMD Spike of 11-19-98 SPMD Spike of 1-11-99 SPMD Spike of 2-8-99	% 100 96.2 84.2 83.3 85.8 89.2 83.5 94.7 87.7 95.5 72.5 86.3 92.0 100 108	% 82.7 80.1 74.9 72.5 70.0 84.9 93.2 92.0 72.8 88.8 61.9 82.0 83.5 88.4 90.3	% 93.6 85.7 88.7 76.7 103 87.9 84.3 100 96.2 117 76.2 88.5 96.4 1036 126	% 91.3 87.9 82.6 85.6 82.9 106 80.9 90.1 93.6 95.7 72.7 86.3 99.4 104 107
Method Validation Rep # two Method Validation Rep # three SPMD Spike of 9-15-98 SPMD Spike of 9-24-98 SPMD Spike of 9-28-98 SPMD Spike of 10-1-98 SPMD Spike of 10-1-98 SPMD Spike of 10-15-98 SPMD Spike of 11-19-98 SPMD Spike of 12-15-98 SPMD Spike of 1-11-99 SPMD Spike of 2-8-99 SPMD Spike of 2-10-99	% 100 96.2 84.2 83.3 85.8 89.2 83.5 94.7 87.7 95.5 72.5 86.3 92.0 100 108 76.4	% 82.7 80.1 74.9 72.5 70.0 84.9 93.2 92.0 72.8 88.8 61.9 82.0 83.5 88.4 90.3 52.9	% 93.6 85.7 88.7 76.7 103 87.9 84.3 100 96.2 117 76.2 88.5 96.4 1036 126 74.6	% 91.3 87.9 82.6 85.6 82.9 106 80.9 90.1 93.6 95.7 72.7 86.3 99.4 104 107 87.8
Method Validation Rep # two Method Validation Rep # three SPMD Spike of 9-15-98 SPMD Spike of 9-24-98 SPMD Spike of 9-28-98 SPMD Spike of 10-1-98 SPMD Spike of 10-1-98 SPMD Spike of 10-15-98 SPMD Spike of 11-19-98 SPMD Spike of 11-19-98 SPMD Spike of 12-15-98 SPMD Spike of 1-11-99 SPMD Spike of 2-8-99 SPMD Spike of 3-29-99 SPMD Spike of 4-7-99 SPMD Spike of 4-7-99 SPMD Spike of 4-1-99	% 100 96.2 84.2 83.3 85.8 89.2 83.5 94.7 87.7 95.5 72.5 86.3 92.0 100 108 76.4 76.4	% 82.7 80.1 74.9 72.5 70.0 84.9 93.2 92.0 72.8 88.8 61.9 82.0 83.5 88.4 90.3 52.9 66.9	% 93.6 85.7 88.7 76.7 103 87.9 84.3 100 96.2 117 76.2 88.5 96.4 1036 126 74.6 77.2	% 91.3 87.9 82.6 85.6 82.9 106 80.9 90.1 93.6 95.7 72.7 86.3 99.4 104 107 87.8 91.2
Method Validation Rep # two Method Validation Rep # three SPMD Spike of 9-15-98 SPMD Spike of 9-24-98 SPMD Spike of 9-28-98 SPMD Spike of 10-1-98 SPMD Spike of 10-15-98 SPMD Spike of 10-15-98 SPMD Spike of 11-19-98 SPMD Spike of 12-15-98 SPMD Spike of 12-15-98 SPMD Spike of 2-8-99 SPMD Spike of 2-8-99 SPMD Spike of 3-29-99 SPMD Spike of 4-7-99 SPMD Spike of 4-1-99 Mean	% 100 96.2 84.2 83.3 85.8 89.2 83.5 94.7 87.7 95.5 72.5 86.3 92.0 100 108 76.4 76.4 88.9	% 82.7 80.1 74.9 72.5 70.0 84.9 93.2 92.0 72.8 88.8 61.9 82.0 83.5 88.4 90.3 52.9 66.9 78.7	% 93.6 85.7 88.7 76.7 103 87.9 84.3 100 96.2 117 76.2 88.5 96.4 1036 126 74.6 77.2 92.6	% 91.3 87.9 82.6 85.6 82.9 106 80.9 90.1 93.6 95.7 72.7 86.3 99.4 104 107 87.8 91.2 90.9
Method Validation Rep # two Method Validation Rep # three SPMD Spike of 9-15-98 SPMD Spike of 9-24-98 SPMD Spike of 9-28-98 SPMD Spike of 10-1-98 SPMD Spike of 10-1-98 SPMD Spike of 10-15-98 SPMD Spike of 11-19-98 SPMD Spike of 11-19-98 SPMD Spike of 12-15-98 SPMD Spike of 1-11-99 SPMD Spike of 2-8-99 SPMD Spike of 3-29-99 SPMD Spike of 4-7-99 SPMD Spike of 4-7-99 SPMD Spike of 4-1-99	% 100 96.2 84.2 83.3 85.8 89.2 83.5 94.7 87.7 95.5 72.5 86.3 92.0 100 108 76.4 76.4 88.9 9.4	% 82.7 80.1 74.9 72.5 70.0 84.9 93.2 92.0 72.8 88.8 61.9 82.0 83.5 88.4 90.3 52.9 66.9	% 93.6 85.7 88.7 76.7 103 87.9 84.3 100 96.2 117 76.2 88.5 96.4 1036 126 74.6 77.2	% 91.3 87.9 82.6 85.6 82.9 106 80.9 90.1 93.6 95.7 72.7 86.3 99.4 104 107 87.8 91.2

Recovery of PAHs From SPMD Spikes

	Benz[a]anthracene	Chrysene	Benzo[b]fluoranthene
	%	%	%
Method Validation Rep # one	99.5	97.9	104
Method Validation Rep # two	99.0	98.4	101
Method Validation Rep # three	101	103	95.5
SPMD Spike of 9-15-98	86.9	81.8	92.6
SPMD Spike of 9-24-98	91.6	94.0	94.7
SPMD Spike of 9-28-98	88.6	87.4	87.6
SPMD Spike of 10-1-98	78.3	82.2	81.6
SPMD Spike of 10-8-98	102	110	94.3
SPMD Spike of 10-15-98	97.7	105	96.8
SPMD Spike of 11-19-98	92.1	99.5	87.7
SPMD Spike of 12-15-98	73.3	73.0	69.1
SPMD Spike of 1-11-99	132	108	69.0
SPMD Spike of 2-8-99	156	137	88.6
SPMD Spike of 2-10-99	112	93.9	97.4
SPMD Spike of 3-29-99	100	119	93.3
SPMD Spike of 4-7-99	75.9	94.6	71.2
SPMD Spike of 4-1-99	73.7	84.9	65.2
Mean	97.6	98.2	87.6
Standard Deviation	20.9	15.3	12.1
RSD (%)	21.5	15.6	13.8
` '			
	Benzo[k]fluoranthene		Indeno[1,2,3-cd]pyrene
	%	%	%
Method Validation Rep # one	% 102	% 104	% 107
Method Validation Rep # two	% 102 104	% 104 99.7	% 107 102
Method Validation Rep # two Method Validation Rep # three	% 102 104 93.8	% 104 99.7 96.4	% 107 102 90.9
Method Validation Rep # two Method Validation Rep # three SPMD Spike of 9-15-98	% 102 104 93.8 97.6	% 104 99.7 96.4 86.3	% 107 102 90.9 85.6
Method Validation Rep # two Method Validation Rep # three SPMD Spike of 9-15-98 SPMD Spike of 9-24-98	% 102 104 93.8 97.6 94.3	% 104 99.7 96.4 86.3 92.6	% 107 102 90.9 85.6 88.1
Method Validation Rep # two Method Validation Rep # three SPMD Spike of 9-15-98 SPMD Spike of 9-24-98 SPMD Spike of 9-28-98	% 102 104 93.8 97.6 94.3 95.7	% 104 99.7 96.4 86.3 92.6 93.0	% 107 102 90.9 85.6 88.1 79.8
Method Validation Rep # two Method Validation Rep # three SPMD Spike of 9-15-98 SPMD Spike of 9-24-98 SPMD Spike of 9-28-98 SPMD Spike of 10-1-98	% 102 104 93.8 97.6 94.3 95.7 91.9	% 104 99.7 96.4 86.3 92.6 93.0 72.9	% 107 102 90.9 85.6 88.1 79.8 75.5
Method Validation Rep # two Method Validation Rep # three SPMD Spike of 9-15-98 SPMD Spike of 9-24-98 SPMD Spike of 9-28-98 SPMD Spike of 10-1-98 SPMD Spike of 10-8-98	% 102 104 93.8 97.6 94.3 95.7 91.9	% 104 99.7 96.4 86.3 92.6 93.0 72.9 98.8	% 107 102 90.9 85.6 88.1 79.8 75.5
Method Validation Rep # two Method Validation Rep # three SPMD Spike of 9-15-98 SPMD Spike of 9-24-98 SPMD Spike of 9-28-98 SPMD Spike of 10-1-98	% 102 104 93.8 97.6 94.3 95.7 91.9 98.5	% 104 99.7 96.4 86.3 92.6 93.0 72.9 98.8 97.2	% 107 102 90.9 85.6 88.1 79.8 75.5 97.0
Method Validation Rep # two Method Validation Rep # three SPMD Spike of 9-15-98 SPMD Spike of 9-24-98 SPMD Spike of 9-28-98 SPMD Spike of 10-1-98 SPMD Spike of 10-8-98	% 102 104 93.8 97.6 94.3 95.7 91.9 98.5 104 87.3	% 104 99.7 96.4 86.3 92.6 93.0 72.9 98.8 97.2 77.6	% 107 102 90.9 85.6 88.1 79.8 75.5 97.0 94.2 83.0
Method Validation Rep # two Method Validation Rep # three SPMD Spike of 9-15-98 SPMD Spike of 9-24-98 SPMD Spike of 9-28-98 SPMD Spike of 10-1-98 SPMD Spike of 10-8-98 SPMD Spike of 10-15-98	% 102 104 93.8 97.6 94.3 95.7 91.9 98.5	% 104 99.7 96.4 86.3 92.6 93.0 72.9 98.8 97.2	% 107 102 90.9 85.6 88.1 79.8 75.5 97.0 94.2 83.0 63.1
Method Validation Rep # two Method Validation Rep # three SPMD Spike of 9-15-98 SPMD Spike of 9-24-98 SPMD Spike of 9-28-98 SPMD Spike of 10-1-98 SPMD Spike of 10-8-98 SPMD Spike of 10-15-98 SPMD Spike of 11-19-98	% 102 104 93.8 97.6 94.3 95.7 91.9 98.5 104 87.3	% 104 99.7 96.4 86.3 92.6 93.0 72.9 98.8 97.2 77.6 62.6 0.0	% 107 102 90.9 85.6 88.1 79.8 75.5 97.0 94.2 83.0 63.1 0.0
Method Validation Rep # two Method Validation Rep # three SPMD Spike of 9-15-98 SPMD Spike of 9-24-98 SPMD Spike of 9-28-98 SPMD Spike of 10-1-98 SPMD Spike of 10-8-98 SPMD Spike of 10-15-98 SPMD Spike of 11-19-98 SPMD Spike of 11-19-98 SPMD Spike of 12-15-98	% 102 104 93.8 97.6 94.3 95.7 91.9 98.5 104 87.3 79.8	% 104 99.7 96.4 86.3 92.6 93.0 72.9 98.8 97.2 77.6 62.6	% 107 102 90.9 85.6 88.1 79.8 75.5 97.0 94.2 83.0 63.1
Method Validation Rep # two Method Validation Rep # three SPMD Spike of 9-15-98 SPMD Spike of 9-24-98 SPMD Spike of 9-28-98 SPMD Spike of 10-1-98 SPMD Spike of 10-8-98 SPMD Spike of 10-15-98 SPMD Spike of 11-19-98 SPMD Spike of 12-15-98 SPMD Spike of 1-11-99	% 102 104 93.8 97.6 94.3 95.7 91.9 98.5 104 87.3 79.8 0.0	% 104 99.7 96.4 86.3 92.6 93.0 72.9 98.8 97.2 77.6 62.6 0.0	% 107 102 90.9 85.6 88.1 79.8 75.5 97.0 94.2 83.0 63.1 0.0
Method Validation Rep # two Method Validation Rep # three SPMD Spike of 9-15-98 SPMD Spike of 9-24-98 SPMD Spike of 9-28-98 SPMD Spike of 10-1-98 SPMD Spike of 10-8-98 SPMD Spike of 10-15-98 SPMD Spike of 11-19-98 SPMD Spike of 12-15-98 SPMD Spike of 1-11-99 SPMD Spike of 2-8-99	% 102 104 93.8 97.6 94.3 95.7 91.9 98.5 104 87.3 79.8 0.0 82.8	% 104 99.7 96.4 86.3 92.6 93.0 72.9 98.8 97.2 77.6 62.6 0.0 90.8 101 70.2	% 107 102 90.9 85.6 88.1 79.8 75.5 97.0 94.2 83.0 63.1 0.0 93.0 107 84.3
Method Validation Rep # two Method Validation Rep # three SPMD Spike of 9-15-98 SPMD Spike of 9-24-98 SPMD Spike of 9-28-98 SPMD Spike of 10-1-98 SPMD Spike of 10-8-98 SPMD Spike of 10-15-98 SPMD Spike of 11-19-98 SPMD Spike of 12-15-98 SPMD Spike of 1-11-99 SPMD Spike of 2-8-99 SPMD Spike of 2-10-99	% 102 104 93.8 97.6 94.3 95.7 91.9 98.5 104 87.3 79.8 0.0 82.8 118	% 104 99.7 96.4 86.3 92.6 93.0 72.9 98.8 97.2 77.6 62.6 0.0 90.8 101 70.2 69.4	% 107 102 90.9 85.6 88.1 79.8 75.5 97.0 94.2 83.0 63.1 0.0 93.0 107 84.3 66.0
Method Validation Rep # two Method Validation Rep # three SPMD Spike of 9-15-98 SPMD Spike of 9-24-98 SPMD Spike of 9-28-98 SPMD Spike of 10-1-98 SPMD Spike of 10-15-98 SPMD Spike of 10-15-98 SPMD Spike of 11-19-98 SPMD Spike of 12-15-98 SPMD Spike of 12-15-98 SPMD Spike of 2-8-99 SPMD Spike of 2-8-99 SPMD Spike of 3-29-99	% 102 104 93.8 97.6 94.3 95.7 91.9 98.5 104 87.3 79.8 0.0 82.8 118 125	% 104 99.7 96.4 86.3 92.6 93.0 72.9 98.8 97.2 77.6 62.6 0.0 90.8 101 70.2 69.4 74.6	% 107 102 90.9 85.6 88.1 79.8 75.5 97.0 94.2 83.0 63.1 0.0 93.0 107 84.3 66.0 62.7
Method Validation Rep # two Method Validation Rep # three SPMD Spike of 9-15-98 SPMD Spike of 9-24-98 SPMD Spike of 9-28-98 SPMD Spike of 10-1-98 SPMD Spike of 10-15-98 SPMD Spike of 10-15-98 SPMD Spike of 11-19-98 SPMD Spike of 12-15-98 SPMD Spike of 12-15-98 SPMD Spike of 2-10-99 SPMD Spike of 2-8-99 SPMD Spike of 3-29-99 SPMD Spike of 4-7-99	% 102 104 93.8 97.6 94.3 95.7 91.9 98.5 104 87.3 79.8 0.0 82.8 118 125 96.9	% 104 99.7 96.4 86.3 92.6 93.0 72.9 98.8 97.2 77.6 62.6 0.0 90.8 101 70.2 69.4	% 107 102 90.9 85.6 88.1 79.8 75.5 97.0 94.2 83.0 63.1 0.0 93.0 107 84.3 66.0
Method Validation Rep # two Method Validation Rep # three SPMD Spike of 9-15-98 SPMD Spike of 9-24-98 SPMD Spike of 9-28-98 SPMD Spike of 10-1-98 SPMD Spike of 10-15-98 SPMD Spike of 10-15-98 SPMD Spike of 11-19-98 SPMD Spike of 12-15-98 SPMD Spike of 1-11-99 SPMD Spike of 2-8-99 SPMD Spike of 2-10-99 SPMD Spike of 3-29-99 SPMD Spike of 4-7-99 SPMD Spike of 4-1-99	% 102 104 93.8 97.6 94.3 95.7 91.9 98.5 104 87.3 79.8 0.0 82.8 118 125 96.9 78.7	% 104 99.7 96.4 86.3 92.6 93.0 72.9 98.8 97.2 77.6 62.6 0.0 90.8 101 70.2 69.4 74.6	% 107 102 90.9 85.6 88.1 79.8 75.5 97.0 94.2 83.0 63.1 0.0 93.0 107 84.3 66.0 62.7

Recovery of PAHs From SPMD Spikes

	Dibenz[a,h]anthracene %	Benzo[g,h,i]perylene %	Over All %
Method Validation Rep # one	107	105	89.7
Method Validation Rep # two	104	103	88.0
Method Validation Rep # three	88.5	91.5	81.1
SPMD Spike of 9-15-98	89.3	78.7	76.8
SPMD Spike of 9-24-98	90.4	84.4	83.3
SPMD Spike of 9-28-98	67.9	84.9	83.0
SPMD Spike of 10-1-98	78.3	73.5	77.3
SPMD Spike of 10-8-98	102	92.1	92.5
SPMD Spike of 10-15-98	90.4	95.9	86.7
SPMD Spike of 11-19-98	88.5	78.9	86.0
SPMD Spike of 12-15-98	58.6	38.3	63.8
SPMD Spike of 1-11-99	0.0	0.0	56.5
SPMD Spike of 2-8-99	98.3	79.9	90.4
SPMD Spike of 2-10-99	122	112	97.1
SPMD Spike of 3-29-99	103	125	95.9
SPMD Spike of 4-7-99	77.0	78.2	69.3
SPMD Spike of 4-1-99	80.8	96.3	70.8
Mean	85.0	83.4	81.7
Standard Deviation	26.8	28.6	16.6
RSD (%)	31.5	34.2	20.5

Table IX

Recovery of OC-Pesticides and PCBs From SPMD Spikes

	HCB	PCA	α -BHC	β-ВНС	δ -BHC
Sample Name	%	%	%	%	%
SPMD Spike #1 of M.V. *	16.1	37.2	37.5	54.9	41.3
SPMD Spike #2 of M.V. *	54.2	277	218	152	119
SPMD Spike #3 of M.V. *	58.9	131	102	66.7	57.5
SPMD Spike of 9-15-98	105	103	51.9	38.5	31.3
SPMD Spike of 9-24-98	107	92.3	58.0	48.5	41.8
SPMD Spike of 9-28-98	97.0	112	64.3	50.4	45.4
SPMD Spike of 10-1-98	0.0	89.5	58.5	50.6	42.0
SPMD Spike of 10-8-98	46.3	93.6	64.6	59.0	48.0
SPMD Spike of 10-15-98	0.0	75.0	49.2	41.5	34.5
SPMD Spike of 11-19-98	74.3	122	73.5	51.9	45.1
SPMD Spike of 12-15-98	77.7	119	71.8	67.5	45.9
SPMD Spike of 1-11-99	60.2	124	77.1	58.3	39.6
SPMD Spike of 2-8-99	79.3	118	68.0	54.0	0.0
SPMD Spike of 2-10-99	81.8	114	67.7	55.8	46.2
SPMD Spike of 3-29-99	64.4	112	71.6	0.0	39.6
SPMD Spike of 4-7-99	66.8	107	73.0	0.0	72.5
SPMD Spike of 4-14-99	69.9	112	78.0	0.0	46.0
Mean	62.3	114	75.5	50.0	46.8
Standard Deviation	32.0	47.4	39.2	34.3	23.4
RSD (%)	51.4	41.6	51.9	68.7	50.1
, ,					
	Lindane	Dacthal	Heptachlor	Heptachlor Epoxide	Oxychlordane
Sample Name	%	%	. %	%	%
SPMD Spike #1 of M.V. *	% 60.1	% 29.5	% 45.6	% 56.4	% 57.7
SPMD Spike #1 of M.V. * SPMD Spike #2 of M.V. *	% 60.1 257	% 29.5 197	% 45.6 82.2	% 56.4 170	% 57.7 180
SPMD Spike #1 of M.V. * SPMD Spike #2 of M.V. * SPMD Spike #3 of M.V. *	% 60.1 257 100	% 29.5 197 63.0	% 45.6 82.2 75.7	% 56.4 170 75.8	% 57.7 180 71.0
SPMD Spike #1 of M.V. * SPMD Spike #2 of M.V. * SPMD Spike #3 of M.V. * SPMD Spike of 9-15-98	% 60.1 257 100 61.7	% 29.5 197 63.0 39.6	% 45.6 82.2 75.7 67.9	% 56.4 170 75.8 54.8	% 57.7 180 71.0 78.1
SPMD Spike #1 of M.V. * SPMD Spike #2 of M.V. * SPMD Spike #3 of M.V. * SPMD Spike of 9-15-98 SPMD Spike of 9-24-98	% 60.1 257 100 61.7 67.4	% 29.5 197 63.0 39.6 61.1	% 45.6 82.2 75.7 67.9 88.8	% 56.4 170 75.8 54.8 61.1	% 57.7 180 71.0 78.1 87.6
SPMD Spike #1 of M.V. * SPMD Spike #2 of M.V. * SPMD Spike #3 of M.V. * SPMD Spike of 9-15-98 SPMD Spike of 9-24-98 SPMD Spike of 9-28-98	% 60.1 257 100 61.7 67.4 72.4	% 29.5 197 63.0 39.6 61.1 28.4	% 45.6 82.2 75.7 67.9 88.8 86.6	% 56.4 170 75.8 54.8 61.1 70.1	% 57.7 180 71.0 78.1 87.6 85.3
SPMD Spike #1 of M.V. * SPMD Spike #2 of M.V. * SPMD Spike #3 of M.V. * SPMD Spike of 9-15-98 SPMD Spike of 9-24-98 SPMD Spike of 9-28-98 SPMD Spike of 10-1-98	% 60.1 257 100 61.7 67.4 72.4 70.8	% 29.5 197 63.0 39.6 61.1 28.4 86.0	% 45.6 82.2 75.7 67.9 88.8 86.6 2.7	% 56.4 170 75.8 54.8 61.1 70.1 68.2	% 57.7 180 71.0 78.1 87.6 85.3 66.3
SPMD Spike #1 of M.V. * SPMD Spike #2 of M.V. * SPMD Spike #3 of M.V. * SPMD Spike of 9-15-98 SPMD Spike of 9-24-98 SPMD Spike of 9-28-98 SPMD Spike of 10-1-98 SPMD Spike of 10-8-98	% 60.1 257 100 61.7 67.4 72.4 70.8 71.7	% 29.5 197 63.0 39.6 61.1 28.4 86.0 26.0	% 45.6 82.2 75.7 67.9 88.8 86.6 2.7 66.9	% 56.4 170 75.8 54.8 61.1 70.1 68.2 75.6	% 57.7 180 71.0 78.1 87.6 85.3 66.3 68.1
SPMD Spike #1 of M.V. * SPMD Spike #2 of M.V. * SPMD Spike #3 of M.V. * SPMD Spike of 9-15-98 SPMD Spike of 9-24-98 SPMD Spike of 9-28-98 SPMD Spike of 10-1-98 SPMD Spike of 10-1-98 SPMD Spike of 10-8-98 SPMD Spike of 10-15-98	% 60.1 257 100 61.7 67.4 72.4 70.8 71.7 54.7	% 29.5 197 63.0 39.6 61.1 28.4 86.0 26.0 42.0	% 45.6 82.2 75.7 67.9 88.8 86.6 2.7 66.9 14.0	% 56.4 170 75.8 54.8 61.1 70.1 68.2 75.6 64.2	% 57.7 180 71.0 78.1 87.6 85.3 66.3 68.1 88.9
SPMD Spike #1 of M.V. * SPMD Spike #2 of M.V. * SPMD Spike #3 of M.V. * SPMD Spike of 9-15-98 SPMD Spike of 9-24-98 SPMD Spike of 9-28-98 SPMD Spike of 10-1-98 SPMD Spike of 10-1-98 SPMD Spike of 10-15-98 SPMD Spike of 11-19-98	% 60.1 257 100 61.7 67.4 72.4 70.8 71.7 54.7 87.6	% 29.5 197 63.0 39.6 61.1 28.4 86.0 26.0 42.0 108	% 45.6 82.2 75.7 67.9 88.8 86.6 2.7 66.9 14.0 74.8	% 56.4 170 75.8 54.8 61.1 70.1 68.2 75.6 64.2 113	% 57.7 180 71.0 78.1 87.6 85.3 66.3 68.1 88.9
SPMD Spike #1 of M.V. * SPMD Spike #2 of M.V. * SPMD Spike #3 of M.V. * SPMD Spike of 9-15-98 SPMD Spike of 9-24-98 SPMD Spike of 9-28-98 SPMD Spike of 10-1-98 SPMD Spike of 10-1-98 SPMD Spike of 10-15-98 SPMD Spike of 11-19-98 SPMD Spike of 11-19-98 SPMD Spike of 12-15-98	% 60.1 257 100 61.7 67.4 72.4 70.8 71.7 54.7 87.6 79.3	% 29.5 197 63.0 39.6 61.1 28.4 86.0 26.0 42.0 108 57.4	% 45.6 82.2 75.7 67.9 88.8 86.6 2.7 66.9 14.0 74.8 75.6	% 56.4 170 75.8 54.8 61.1 70.1 68.2 75.6 64.2 113 78.6	% 57.7 180 71.0 78.1 87.6 85.3 66.3 68.1 88.9 111 73.6
SPMD Spike #1 of M.V. * SPMD Spike #2 of M.V. * SPMD Spike #3 of M.V. * SPMD Spike of 9-15-98 SPMD Spike of 9-24-98 SPMD Spike of 10-1-98 SPMD Spike of 10-8-98 SPMD Spike of 10-15-98 SPMD Spike of 11-19-98 SPMD Spike of 11-19-98 SPMD Spike of 11-19-98 SPMD Spike of 12-15-98 SPMD Spike of 1-11-99	% 60.1 257 100 61.7 67.4 72.4 70.8 71.7 54.7 87.6 79.3 83.5	% 29.5 197 63.0 39.6 61.1 28.4 86.0 26.0 42.0 108 57.4 50.0	% 45.6 82.2 75.7 67.9 88.8 86.6 2.7 66.9 14.0 74.8 75.6 72.8	% 56.4 170 75.8 54.8 61.1 70.1 68.2 75.6 64.2 113 78.6 86.1	% 57.7 180 71.0 78.1 87.6 85.3 66.3 68.1 88.9 111 73.6 71.1
SPMD Spike #1 of M.V. * SPMD Spike #2 of M.V. * SPMD Spike #3 of M.V. * SPMD Spike of 9-15-98 SPMD Spike of 9-24-98 SPMD Spike of 10-1-98 SPMD Spike of 10-1-98 SPMD Spike of 10-15-98 SPMD Spike of 11-19-98 SPMD Spike of 11-19-98 SPMD Spike of 12-15-98 SPMD Spike of 1-11-99 SPMD Spike of 2-8-99	% 60.1 257 100 61.7 67.4 72.4 70.8 71.7 54.7 87.6 79.3 83.5 76.6	% 29.5 197 63.0 39.6 61.1 28.4 86.0 26.0 42.0 108 57.4 50.0 45.3	% 45.6 82.2 75.7 67.9 88.8 86.6 2.7 66.9 14.0 74.8 75.6 72.8 81.5	% 56.4 170 75.8 54.8 61.1 70.1 68.2 75.6 64.2 113 78.6 86.1 83.7	% 57.7 180 71.0 78.1 87.6 85.3 66.3 68.1 88.9 111 73.6 71.1
SPMD Spike #1 of M.V. * SPMD Spike #2 of M.V. * SPMD Spike #3 of M.V. * SPMD Spike of 9-15-98 SPMD Spike of 9-24-98 SPMD Spike of 10-1-98 SPMD Spike of 10-1-98 SPMD Spike of 10-8-98 SPMD Spike of 10-15-98 SPMD Spike of 11-19-98 SPMD Spike of 11-19-98 SPMD Spike of 12-15-98 SPMD Spike of 1-11-99 SPMD Spike of 2-8-99 SPMD Spike of 2-10-99	% 60.1 257 100 61.7 67.4 72.4 70.8 71.7 54.7 87.6 79.3 83.5 76.6 78.2	% 29.5 197 63.0 39.6 61.1 28.4 86.0 26.0 42.0 108 57.4 50.0 45.3 37.3	% 45.6 82.2 75.7 67.9 88.8 86.6 2.7 66.9 14.0 74.8 75.6 72.8 81.5 82.4	% 56.4 170 75.8 54.8 61.1 70.1 68.2 75.6 64.2 113 78.6 86.1 83.7 84.7	% 57.7 180 71.0 78.1 87.6 85.3 66.3 68.1 88.9 111 73.6 71.1 62.0 61.8
SPMD Spike #1 of M.V. * SPMD Spike #2 of M.V. * SPMD Spike #3 of M.V. * SPMD Spike of 9-15-98 SPMD Spike of 9-24-98 SPMD Spike of 10-1-98 SPMD Spike of 10-1-98 SPMD Spike of 10-15-98 SPMD Spike of 11-19-98 SPMD Spike of 11-19-98 SPMD Spike of 12-15-98 SPMD Spike of 12-15-98 SPMD Spike of 2-8-99 SPMD Spike of 2-8-99 SPMD Spike of 3-29-99	% 60.1 257 100 61.7 67.4 72.4 70.8 71.7 54.7 87.6 79.3 83.5 76.6 78.2 89.0	% 29.5 197 63.0 39.6 61.1 28.4 86.0 26.0 42.0 108 57.4 50.0 45.3 37.3 8.7	% 45.6 82.2 75.7 67.9 88.8 86.6 2.7 66.9 14.0 74.8 75.6 72.8 81.5 82.4 62.1	% 56.4 170 75.8 54.8 61.1 70.1 68.2 75.6 64.2 113 78.6 86.1 83.7 84.7 71.3	% 57.7 180 71.0 78.1 87.6 85.3 66.3 68.1 88.9 111 73.6 71.1 62.0 61.8 91.7
SPMD Spike #1 of M.V. * SPMD Spike #2 of M.V. * SPMD Spike #3 of M.V. * SPMD Spike of 9-15-98 SPMD Spike of 9-24-98 SPMD Spike of 9-28-98 SPMD Spike of 10-1-98 SPMD Spike of 10-1-98 SPMD Spike of 11-15-98 SPMD Spike of 11-15-98 SPMD Spike of 11-19-98 SPMD Spike of 12-15-98 SPMD Spike of 12-15-98 SPMD Spike of 2-8-99 SPMD Spike of 2-8-99 SPMD Spike of 3-29-99 SPMD Spike of 3-29-99 SPMD Spike of 4-7-99	% 60.1 257 100 61.7 67.4 72.4 70.8 71.7 54.7 87.6 79.3 83.5 76.6 78.2 89.0 90.4	% 29.5 197 63.0 39.6 61.1 28.4 86.0 26.0 42.0 108 57.4 50.0 45.3 37.3 8.7 24.1	% 45.6 82.2 75.7 67.9 88.8 86.6 2.7 66.9 14.0 74.8 75.6 72.8 81.5 82.4 62.1 67.8	% 56.4 170 75.8 54.8 61.1 70.1 68.2 75.6 64.2 113 78.6 86.1 83.7 84.7 71.3 96.8	% 57.7 180 71.0 78.1 87.6 85.3 66.3 68.1 88.9 111 73.6 71.1 62.0 61.8 91.7 88.0
SPMD Spike #1 of M.V. * SPMD Spike #2 of M.V. * SPMD Spike #3 of M.V. * SPMD Spike of 9-15-98 SPMD Spike of 9-24-98 SPMD Spike of 9-28-98 SPMD Spike of 10-1-98 SPMD Spike of 10-1-98 SPMD Spike of 11-19-98 SPMD Spike of 11-19-98 SPMD Spike of 11-19-98 SPMD Spike of 12-15-98 SPMD Spike of 12-15-98 SPMD Spike of 2-8-99 SPMD Spike of 2-8-99 SPMD Spike of 3-29-99 SPMD Spike of 4-7-99 SPMD Spike of 4-14-99	% 60.1 257 100 61.7 67.4 72.4 70.8 71.7 54.7 87.6 79.3 83.5 76.6 78.2 89.0 90.4 96.9	% 29.5 197 63.0 39.6 61.1 28.4 86.0 26.0 42.0 108 57.4 50.0 45.3 37.3 8.7 24.1 26.8	% 45.6 82.2 75.7 67.9 88.8 86.6 2.7 66.9 14.0 74.8 75.6 72.8 81.5 82.4 62.1 67.8 60.2	% 56.4 170 75.8 54.8 61.1 70.1 68.2 75.6 64.2 113 78.6 86.1 83.7 84.7 71.3 96.8 83.8	% 57.7 180 71.0 78.1 87.6 85.3 66.3 68.1 88.9 111 73.6 71.1 62.0 61.8 91.7 88.0 85.5
SPMD Spike #1 of M.V. * SPMD Spike #2 of M.V. * SPMD Spike #3 of M.V. * SPMD Spike of 9-15-98 SPMD Spike of 9-24-98 SPMD Spike of 9-28-98 SPMD Spike of 10-1-98 SPMD Spike of 10-1-98 SPMD Spike of 11-19-98 SPMD Spike of 11-19-98 SPMD Spike of 12-15-98 SPMD Spike of 12-15-98 SPMD Spike of 2-8-99 SPMD Spike of 2-8-99 SPMD Spike of 3-29-99 SPMD Spike of 4-7-99 SPMD Spike of 4-14-99 Mean	% 60.1 257 100 61.7 67.4 72.4 70.8 71.7 54.7 87.6 79.3 83.5 76.6 78.2 89.0 90.4 96.9 88.1	% 29.5 197 63.0 39.6 61.1 28.4 86.0 26.0 42.0 108 57.4 50.0 45.3 37.3 8.7 24.1 26.8 54.7	% 45.6 82.2 75.7 67.9 88.8 86.6 2.7 66.9 14.0 74.8 75.6 72.8 81.5 82.4 62.1 67.8 60.2 65.1	% 56.4 170 75.8 54.8 61.1 70.1 68.2 75.6 64.2 113 78.6 86.1 83.7 84.7 71.3 96.8 83.8 82.0	% 57.7 180 71.0 78.1 87.6 85.3 66.3 68.1 88.9 111 73.6 71.1 62.0 61.8 91.7 88.0 85.5 84.0
SPMD Spike #1 of M.V. * SPMD Spike #2 of M.V. * SPMD Spike #3 of M.V. * SPMD Spike of 9-15-98 SPMD Spike of 9-24-98 SPMD Spike of 9-28-98 SPMD Spike of 10-1-98 SPMD Spike of 10-1-98 SPMD Spike of 11-19-98 SPMD Spike of 11-19-98 SPMD Spike of 11-19-98 SPMD Spike of 12-15-98 SPMD Spike of 12-15-98 SPMD Spike of 1-11-99 SPMD Spike of 2-8-99 SPMD Spike of 3-29-99 SPMD Spike of 4-7-99 SPMD Spike of 4-14-99 Mean Standard Deviation	% 60.1 257 100 61.7 67.4 72.4 70.8 71.7 54.7 87.6 79.3 83.5 76.6 78.2 89.0 90.4 96.9 88.1 45.3	% 29.5 197 63.0 39.6 61.1 28.4 86.0 26.0 42.0 108 57.4 50.0 45.3 37.3 8.7 24.1 26.8 54.7 43.9	% 45.6 82.2 75.7 67.9 88.8 86.6 2.7 66.9 14.0 74.8 75.6 72.8 81.5 82.4 62.1 67.8 60.2 65.1 24.0	% 56.4 170 75.8 54.8 61.1 70.1 68.2 75.6 64.2 113 78.6 86.1 83.7 84.7 71.3 96.8 83.8 82.0 26.9	% 57.7 180 71.0 78.1 87.6 85.3 66.3 68.1 88.9 111 73.6 71.1 62.0 61.8 91.7 88.0 85.5 84.0 28.2
SPMD Spike #1 of M.V. * SPMD Spike #2 of M.V. * SPMD Spike #3 of M.V. * SPMD Spike of 9-15-98 SPMD Spike of 9-24-98 SPMD Spike of 9-28-98 SPMD Spike of 10-1-98 SPMD Spike of 10-1-98 SPMD Spike of 11-19-98 SPMD Spike of 11-19-98 SPMD Spike of 12-15-98 SPMD Spike of 12-15-98 SPMD Spike of 2-8-99 SPMD Spike of 2-8-99 SPMD Spike of 3-29-99 SPMD Spike of 4-7-99 SPMD Spike of 4-14-99 Mean	% 60.1 257 100 61.7 67.4 72.4 70.8 71.7 54.7 87.6 79.3 83.5 76.6 78.2 89.0 90.4 96.9 88.1	% 29.5 197 63.0 39.6 61.1 28.4 86.0 26.0 42.0 108 57.4 50.0 45.3 37.3 8.7 24.1 26.8 54.7	% 45.6 82.2 75.7 67.9 88.8 86.6 2.7 66.9 14.0 74.8 75.6 72.8 81.5 82.4 62.1 67.8 60.2 65.1	% 56.4 170 75.8 54.8 61.1 70.1 68.2 75.6 64.2 113 78.6 86.1 83.7 84.7 71.3 96.8 83.8 82.0	% 57.7 180 71.0 78.1 87.6 85.3 66.3 68.1 88.9 111 73.6 71.1 62.0 61.8 91.7 88.0 85.5 84.0

^{*} M.V. = Method Validation

Recovery of OC-Pesticides and PCBs From SPMD Spikes

	cis-Chlordane	trans-Chlordane	cis-Nonachlor	trans-Nonachlor	o,p'-DDT
Sample Name	%	%	%	%	%
SPMD Spike #1 of M.V. *	56.6	52.6	37.4	47.3	77.9
SPMD Spike #2 of M.V. *	155	142	99.3	131	179
SPMD Spike #3 of M.V. *	68.2	65.5	45.0	61.6	90.1
SPMD Spike of 9-15-98	70.0	53.2	38.5	48.5	72.6
SPMD Spike of 9-24-98	55.7	63.2	50.5	54.9	78.5
SPMD Spike of 9-28-98	61.9	69.3	52.1	60.9	75.9
SPMD Spike of 10-1-98	59.1	65.6	51.4	59.9	74.8
SPMD Spike of 10-8-98	64.7	71.8	57.0	62.6	76.6
SPMD Spike of 10-15-98	46.5	52.4	43.8	47.9	61.3
SPMD Spike of 11-19-98	78.5	121	51.0	83.9	95.7
SPMD Spike of 12-15-98	60.3	68.9	62.7	56.0	93.5
SPMD Spike of 1-11-99	59.6	69.3	71.1	54.5	70.7
SPMD Spike of 2-8-99	56.2	64.9	46.8	57.8	76.6
SPMD Spike of 2-10-99	55.7	66.7	61.5	57.7	82.8
SPMD Spike of 3-29-99	54.1	67.3	61.6	44. 1	77.0
SPMD Spike of 4-7-99	73.2	87.1	86.3	73.1	78.2
SPMD Spike of 4-14-99	54.6	68.0	47.2	48.9	64.2
Mean	66.5	73.5	56.7	61.8	83.8
Standard Deviation	24.1	23.7	16.4	20.4	26.1
RSD (%)	36.3	32.2	28.9	33.1	31.1
	o.p'-DDE	o.p'-DDD	D.DOT-'a.a	p.p'-DDE	p.p'-DDD
Sample Name	o,p'-DDE %	o,p'-DDD %	p,p'-DDT %	p,p'-DDE %	p,p'-DDD %
Sample Name SPMD Spike #1 of M.V. *	%	%	%	%	%
SPMD Spike #1 of M.V. *	% 62.2	% 61.9	% 48.6		
SPMD Spike #1 of M.V. * SPMD Spike #2 of M.V. *	% 62.2 162	% 61.9 167	% 48.6 134	% 73.0	% 50.5
SPMD Spike #1 of M.V. * SPMD Spike #2 of M.V. * SPMD Spike #3 of M.V. *	% 62.2 162 79.6	% 61.9 167 68.3	% 48.6 134 60.7	% 73.0 121 79.6	% 50.5 123 59.1
SPMD Spike #1 of M.V. * SPMD Spike #2 of M.V. * SPMD Spike #3 of M.V. * SPMD Spike of 9-15-98	% 62.2 162 79.6 68.9	% 61.9 167 68.3 59.9	% 48.6 134 60.7 56.3	% 73.0 121 79.6 88.7	% 50.5 123
SPMD Spike #1 of M.V. * SPMD Spike #2 of M.V. * SPMD Spike #3 of M.V. * SPMD Spike of 9-15-98 SPMD Spike of 9-24-98	% 62.2 162 79.6 68.9 76.4	% 61.9 167 68.3 59.9 78.2	% 48.6 134 60.7 56.3 59.0	% 73.0 121 79.6	% 50.5 123 59.1 52.4
SPMD Spike #1 of M.V. * SPMD Spike #2 of M.V. * SPMD Spike #3 of M.V. * SPMD Spike of 9-15-98 SPMD Spike of 9-24-98 SPMD Spike of 9-28-98	% 62.2 162 79.6 68.9 76.4 77.9	% 61.9 167 68.3 59.9 78.2 72.0	% 48.6 134 60.7 56.3	% 73.0 121 79.6 88.7 77.6	% 50.5 123 59.1 52.4 72.4
SPMD Spike #1 of M.V. * SPMD Spike #2 of M.V. * SPMD Spike #3 of M.V. * SPMD Spike of 9-15-98 SPMD Spike of 9-24-98 SPMD Spike of 9-28-98 SPMD Spike of 10-1-98	% 62.2 162 79.6 68.9 76.4 77.9 73.0	% 61.9 167 68.3 59.9 78.2	% 48.6 134 60.7 56.3 59.0 59.0	% 73.0 121 79.6 88.7 77.6 123.9	% 50.5 123 59.1 52.4 72.4 67.8
SPMD Spike #1 of M.V. * SPMD Spike #2 of M.V. * SPMD Spike #3 of M.V. * SPMD Spike of 9-15-98 SPMD Spike of 9-24-98 SPMD Spike of 9-28-98 SPMD Spike of 10-1-98 SPMD Spike of 10-8-98	% 62.2 162 79.6 68.9 76.4 77.9 73.0 67.1	% 61.9 167 68.3 59.9 78.2 72.0 60.1	% 48.6 134 60.7 56.3 59.0 59.0	% 73.0 121 79.6 88.7 77.6 123.9 39.4	% 50.5 123 59.1 52.4 72.4 67.8 65.7
SPMD Spike #1 of M.V. * SPMD Spike #2 of M.V. * SPMD Spike #3 of M.V. * SPMD Spike of 9-15-98 SPMD Spike of 9-24-98 SPMD Spike of 9-28-98 SPMD Spike of 10-1-98 SPMD Spike of 10-8-98 SPMD Spike of 10-15-98	% 62.2 162 79.6 68.9 76.4 77.9 73.0 67.1 53.6	% 61.9 167 68.3 59.9 78.2 72.0 60.1 75.9	% 48.6 134 60.7 56.3 59.0 59.0 62.1 59.9	% 73.0 121 79.6 88.7 77.6 123.9 39.4 62.1	% 50.5 123 59.1 52.4 72.4 67.8 65.7 76.7
SPMD Spike #1 of M.V. * SPMD Spike #2 of M.V. * SPMD Spike #3 of M.V. * SPMD Spike of 9-15-98 SPMD Spike of 9-24-98 SPMD Spike of 9-28-98 SPMD Spike of 10-1-98 SPMD Spike of 10-1-98 SPMD Spike of 10-15-98 SPMD Spike of 11-19-98	% 62.2 162 79.6 68.9 76.4 77.9 73.0 67.1	% 61.9 167 68.3 59.9 78.2 72.0 60.1 75.9 51.9	% 48.6 134 60.7 56.3 59.0 59.0 62.1 59.9 51.8	% 73.0 121 79.6 88.7 77.6 123.9 39.4 62.1 32.5	% 50.5 123 59.1 52.4 72.4 67.8 65.7 76.7 50.4
SPMD Spike #1 of M.V. * SPMD Spike #2 of M.V. * SPMD Spike #3 of M.V. * SPMD Spike of 9-15-98 SPMD Spike of 9-24-98 SPMD Spike of 9-28-98 SPMD Spike of 10-1-98 SPMD Spike of 10-15-98 SPMD Spike of 11-15-98 SPMD Spike of 11-15-98 SPMD Spike of 11-15-98	% 62.2 162 79.6 68.9 76.4 77.9 73.0 67.1 53.6 121	% 61.9 167 68.3 59.9 78.2 72.0 60.1 75.9 51.9	% 48.6 134 60.7 56.3 59.0 59.0 62.1 59.9 51.8 93.4	% 73.0 121 79.6 88.7 77.6 123.9 39.4 62.1 32.5 101.5	% 50.5 123 59.1 52.4 72.4 67.8 65.7 76.7 50.4 72.0
SPMD Spike #1 of M.V. * SPMD Spike #2 of M.V. * SPMD Spike #3 of M.V. * SPMD Spike of 9-15-98 SPMD Spike of 9-24-98 SPMD Spike of 9-28-98 SPMD Spike of 10-1-98 SPMD Spike of 10-1-98 SPMD Spike of 10-15-98 SPMD Spike of 11-19-98 SPMD Spike of 11-19-98 SPMD Spike of 12-15-98 SPMD Spike of 1-11-99	% 62.2 162 79.6 68.9 76.4 77.9 73.0 67.1 53.6 121 77.4	% 61.9 167 68.3 59.9 78.2 72.0 60.1 75.9 51.9 67.9	% 48.6 134 60.7 56.3 59.0 59.0 62.1 59.9 51.8 93.4 74.7	% 73.0 121 79.6 88.7 77.6 123.9 39.4 62.1 32.5 101.5 40.6	% 50.5 123 59.1 52.4 72.4 67.8 65.7 76.7 50.4 72.0 71.6
SPMD Spike #1 of M.V. * SPMD Spike #2 of M.V. * SPMD Spike #3 of M.V. * SPMD Spike of 9-15-98 SPMD Spike of 9-24-98 SPMD Spike of 9-28-98 SPMD Spike of 10-1-98 SPMD Spike of 10-1-98 SPMD Spike of 10-15-98 SPMD Spike of 11-19-98 SPMD Spike of 11-19-98 SPMD Spike of 12-15-98 SPMD Spike of 1-11-99 SPMD Spike of 2-8-99	% 62.2 162 79.6 68.9 76.4 77.9 73.0 67.1 53.6 121 77.4 73.1	% 61.9 167 68.3 59.9 78.2 72.0 60.1 75.9 51.9 67.9 64.4 85.1	% 48.6 134 60.7 56.3 59.0 59.0 62.1 59.9 51.8 93.4 74.7 58.5	% 73.0 121 79.6 88.7 77.6 123.9 39.4 62.1 32.5 101.5 40.6 80.6	% 50.5 123 59.1 52.4 72.4 67.8 65.7 76.7 50.4 72.0 71.6 62.7
SPMD Spike #1 of M.V. * SPMD Spike #2 of M.V. * SPMD Spike #3 of M.V. * SPMD Spike of 9-15-98 SPMD Spike of 9-24-98 SPMD Spike of 9-28-98 SPMD Spike of 10-1-98 SPMD Spike of 10-1-98 SPMD Spike of 10-15-98 SPMD Spike of 11-19-98 SPMD Spike of 11-19-98 SPMD Spike of 12-15-98 SPMD Spike of 1-11-99	% 62.2 162 79.6 68.9 76.4 77.9 73.0 67.1 53.6 121 77.4 73.1 73.6	% 61.9 167 68.3 59.9 78.2 72.0 60.1 75.9 51.9 67.9 64.4 85.1 72.4	% 48.6 134 60.7 56.3 59.0 59.0 62.1 59.9 51.8 93.4 74.7 58.5 54.3	% 73.0 121 79.6 88.7 77.6 123.9 39.4 62.1 32.5 101.5 40.6 80.6 50.1	% 50.5 123 59.1 52.4 72.4 67.8 65.7 76.7 50.4 72.0 71.6 62.7 63.1
SPMD Spike #1 of M.V. * SPMD Spike #2 of M.V. * SPMD Spike #3 of M.V. * SPMD Spike of 9-15-98 SPMD Spike of 9-24-98 SPMD Spike of 9-28-98 SPMD Spike of 10-1-98 SPMD Spike of 10-1-98 SPMD Spike of 11-19-98 SPMD Spike of 11-15-98 SPMD Spike of 12-15-98 SPMD Spike of 12-15-98 SPMD Spike of 1-11-99 SPMD Spike of 2-8-99 SPMD Spike of 2-10-99	% 62.2 162 79.6 68.9 76.4 77.9 73.0 67.1 53.6 121 77.4 73.1 73.6 72.3	% 61.9 167 68.3 59.9 78.2 72.0 60.1 75.9 51.9 67.9 64.4 85.1 72.4 94.8	% 48.6 134 60.7 56.3 59.0 59.0 62.1 59.9 51.8 93.4 74.7 58.5 54.3 75.7	% 73.0 121 79.6 88.7 77.6 123.9 39.4 62.1 32.5 101.5 40.6 80.6 50.1 43.3 128.8 139.7	% 50.5 123 59.1 52.4 72.4 67.8 65.7 76.7 50.4 72.0 71.6 62.7 63.1 65.1 69.4 86.7
SPMD Spike #1 of M.V. * SPMD Spike #2 of M.V. * SPMD Spike #3 of M.V. * SPMD Spike of 9-15-98 SPMD Spike of 9-24-98 SPMD Spike of 9-28-98 SPMD Spike of 10-1-98 SPMD Spike of 10-15-98 SPMD Spike of 11-15-98 SPMD Spike of 11-15-98 SPMD Spike of 12-15-98 SPMD Spike of 12-15-98 SPMD Spike of 12-10-99 SPMD Spike of 2-8-99 SPMD Spike of 3-29-99	% 62.2 162 79.6 68.9 76.4 77.9 73.0 67.1 53.6 121 77.4 73.1 73.6 72.3 47.7	% 61.9 167 68.3 59.9 78.2 72.0 60.1 75.9 51.9 67.9 64.4 85.1 72.4 94.8 64.9	% 48.6 134 60.7 56.3 59.0 59.0 62.1 59.9 51.8 93.4 74.7 58.5 54.3 75.7 58.8	% 73.0 121 79.6 88.7 77.6 123.9 39.4 62.1 32.5 101.5 40.6 80.6 50.1 43.3 128.8 139.7 81.4	% 50.5 123 59.1 52.4 72.4 67.8 65.7 76.7 50.4 72.0 71.6 62.7 63.1 65.1 69.4 86.7 72.9
SPMD Spike #1 of M.V. * SPMD Spike #2 of M.V. * SPMD Spike #3 of M.V. * SPMD Spike of 9-15-98 SPMD Spike of 9-24-98 SPMD Spike of 9-28-98 SPMD Spike of 10-1-98 SPMD Spike of 10-1-98 SPMD Spike of 11-19-98 SPMD Spike of 11-19-98 SPMD Spike of 12-15-98 SPMD Spike of 12-15-98 SPMD Spike of 2-8-99 SPMD Spike of 2-8-99 SPMD Spike of 3-29-99 SPMD Spike of 4-7-99	% 62.2 162 79.6 68.9 76.4 77.9 73.0 67.1 53.6 121 77.4 73.1 73.6 72.3 47.7 63.0 55.0	% 61.9 167 68.3 59.9 78.2 72.0 60.1 75.9 51.9 67.9 64.4 85.1 72.4 94.8 64.9 81.4	% 48.6 134 60.7 56.3 59.0 59.0 62.1 59.9 51.8 93.4 74.7 58.5 54.3 75.7 58.8 56.7	% 73.0 121 79.6 88.7 77.6 123.9 39.4 62.1 32.5 101.5 40.6 80.6 50.1 43.3 128.8 139.7	% 50.5 123 59.1 52.4 72.4 67.8 65.7 76.7 50.4 72.0 71.6 62.7 63.1 65.1 69.4 86.7 72.9 69.5
SPMD Spike #1 of M.V. * SPMD Spike #2 of M.V. * SPMD Spike #3 of M.V. * SPMD Spike of 9-15-98 SPMD Spike of 9-24-98 SPMD Spike of 9-28-98 SPMD Spike of 10-1-98 SPMD Spike of 10-1-98 SPMD Spike of 11-19-98 SPMD Spike of 11-19-98 SPMD Spike of 11-19-98 SPMD Spike of 12-15-98 SPMD Spike of 12-15-98 SPMD Spike of 2-8-99 SPMD Spike of 2-8-99 SPMD Spike of 3-29-99 SPMD Spike of 4-7-99 SPMD Spike of 4-7-99 SPMD Spike of 4-14-99	% 62.2 162 79.6 68.9 76.4 77.9 73.0 67.1 53.6 121 77.4 73.1 73.6 72.3 47.7 63.0 55.0 76.7	% 61.9 167 68.3 59.9 78.2 72.0 60.1 75.9 51.9 67.9 64.4 85.1 72.4 94.8 64.9 81.4 69.8	% 48.6 134 60.7 56.3 59.0 59.0 62.1 59.9 51.8 93.4 74.7 58.5 54.3 75.7 58.8 56.7 52.4	% 73.0 121 79.6 88.7 77.6 123.9 39.4 62.1 32.5 101.5 40.6 80.6 50.1 43.3 128.8 139.7 81.4	% 50.5 123 59.1 52.4 72.4 67.8 65.7 76.7 50.4 72.0 71.6 62.7 63.1 65.1 69.4 86.7 72.9

^{*} M.V. = Method Validation

Recovery of OC-Pesticides and PCBs From SPMD Spikes

	Dieldrin	Endrin	Methoxychlor	Mirex	Endosulfan
Sample Name	%	%	%	%	%
SPMD Spike #1 of M.V. *	52.0	82.0	43.6	68.5	63.1
SPMD Spike #2 of M.V. *	174	189	139	77.6	168
SPMD Spike #3 of M.V. *	53.3	94.3	66.6	73.5	74.1
SPMD Spike of 9-15-98	58.3	66.7	40.0	74.7	65.0
SPMD Spike of 9-24-98	54.4	71.5	60.0	76.5	105
SPMD Spike of 9-28-98	63.7	70.3	46.4	90.4	86.1
SPMD Spike of 10-1-98	69.4	62.4	46.7	0.0	67.9
SPMD Spike of 10-8-98	61.5	80.5	36.2	91.0	75.2
SPMD Spike of 10-15-98	73.0	55.6	25.8	0.0	69.8
SPMD Spike of 11-19-98	98.6	85.4	67.5	79.0	98.5
SPMD Spike of 12-15-98	71.1	61.1	65.1	85.4	77.1
SPMD Spike of 1-11-99	77.6	74.3	35.5	87.4	66.9
SPMD Spike of 2-8-99	41.8	63.0	0.0	82.2	63.1
SPMD Spike of 2-10-99	57.9	80.7	46.3	81.7	65.9
SPMD Spike of 3-29-99	56.6	75.5	7.5	60.0	66.5
SPMD Spike of 4-7-99	63.8	85.4	36.2	86.6	83.3
SPMD Spike of 4-14-99	57.9	74.8	23.4	63.3	71.7
Mean	69.7	80.7	46.2	69.3	80.4
Standard Deviation	29.8	29.7	30.6	27.5	25.6
RSD (%)	42.7	36.8	66.3	39.7	31.9
	ENDO-II	ENDO-S	Over All	Total PCBs	
Sample Name	%	%	%	%	
SPMD Spike #1 of M.V. *	% 52.1	% 32.3	% 51.8	% 74.5	
SPMD Spike #1 of M.V. * SPMD Spike #2 of M.V. *	% 52.1 125	% 32.3 78.7	% 51.8 151	% 74.5 84.7	
SPMD Spike #1 of M.V. * SPMD Spike #2 of M.V. * SPMD Spike #3 of M.V. *	% 52.1 125 59.2	% 32.3 78.7 38.9	% 51.8 151 71.8	% 74.5 84.7 85.8	
SPMD Spike #1 of M.V. * SPMD Spike #2 of M.V. * SPMD Spike #3 of M.V. * SPMD Spike of 9-15-98	% 52.1 125 59.2 63.9	% 32.3 78.7 38.9 43.0	% 51.8 151 71.8 61.2	% 74.5 84.7 85.8 77.3	
SPMD Spike #1 of M.V. * SPMD Spike #2 of M.V. * SPMD Spike #3 of M.V. * SPMD Spike of 9-15-98 SPMD Spike of 9-24-98	% 52.1 125 59.2 63.9 66.0	% 32.3 78.7 38.9 43.0 57.1	% 51.8 151 71.8 61.2 69.3	% 74.5 84.7 85.8 77.3 64.2	
SPMD Spike #1 of M.V. * SPMD Spike #2 of M.V. * SPMD Spike #3 of M.V. * SPMD Spike of 9-15-98 SPMD Spike of 9-24-98 SPMD Spike of 9-28-98	% 52.1 125 59.2 63.9 66.0 64.2	% 32.3 78.7 38.9 43.0 57.1 57.4	% 51.8 151 71.8 61.2 69.3 70.8	% 74.5 84.7 85.8 77.3 64.2 85.4	
SPMD Spike #1 of M.V. * SPMD Spike #2 of M.V. * SPMD Spike #3 of M.V. * SPMD Spike of 9-15-98 SPMD Spike of 9-24-98	% 52.1 125 59.2 63.9 66.0 64.2 58.0	% 32.3 78.7 38.9 43.0 57.1 57.4 48.6	% 51.8 151 71.8 61.2 69.3 70.8 55.5	% 74.5 84.7 85.8 77.3 64.2 85.4 83.8	
SPMD Spike #1 of M.V. * SPMD Spike #2 of M.V. * SPMD Spike #3 of M.V. * SPMD Spike of 9-15-98 SPMD Spike of 9-24-98 SPMD Spike of 9-28-98 SPMD Spike of 10-1-98 SPMD Spike of 10-8-98	% 52.1 125 59.2 63.9 66.0 64.2 58.0 66.7	% 32.3 78.7 38.9 43.0 57.1 57.4 48.6 58.7	% 51.8 151 71.8 61.2 69.3 70.8 55.5 65.3	% 74.5 84.7 85.8 77.3 64.2 85.4 83.8 84.6	
SPMD Spike #1 of M.V. * SPMD Spike #2 of M.V. * SPMD Spike #3 of M.V. * SPMD Spike of 9-15-98 SPMD Spike of 9-24-98 SPMD Spike of 9-28-98 SPMD Spike of 10-1-98	% 52.1 125 59.2 63.9 66.0 64.2 58.0 66.7 33.9	% 32.3 78.7 38.9 43.0 57.1 57.4 48.6 58.7 30.9	% 51.8 151 71.8 61.2 69.3 70.8 55.5 65.3 46.1	% 74.5 84.7 85.8 77.3 64.2 85.4 83.8 84.6 73.6	
SPMD Spike #1 of M.V. * SPMD Spike #2 of M.V. * SPMD Spike #3 of M.V. * SPMD Spike of 9-15-98 SPMD Spike of 9-24-98 SPMD Spike of 9-28-98 SPMD Spike of 10-1-98 SPMD Spike of 10-8-98	% 52.1 125 59.2 63.9 66.0 64.2 58.0 66.7 33.9 53.9	% 32.3 78.7 38.9 43.0 57.1 57.4 48.6 58.7 30.9 48.8	% 51.8 151 71.8 61.2 69.3 70.8 55.5 65.3 46.1 84.4	% 74.5 84.7 85.8 77.3 64.2 85.4 83.8 84.6 73.6 93.2	
SPMD Spike #1 of M.V. * SPMD Spike #2 of M.V. * SPMD Spike #3 of M.V. * SPMD Spike of 9-15-98 SPMD Spike of 9-24-98 SPMD Spike of 9-28-98 SPMD Spike of 10-1-98 SPMD Spike of 10-1-98 SPMD Spike of 10-15-98	% 52.1 125 59.2 63.9 66.0 64.2 58.0 66.7 33.9	% 32.3 78.7 38.9 43.0 57.1 57.4 48.6 58.7 30.9 48.8 51.3	% 51.8 151 71.8 61.2 69.3 70.8 55.5 65.3 46.1 84.4 69.9	% 74.5 84.7 85.8 77.3 64.2 85.4 83.8 84.6 73.6 93.2 86.3	
SPMD Spike #1 of M.V. * SPMD Spike #2 of M.V. * SPMD Spike #3 of M.V. * SPMD Spike of 9-15-98 SPMD Spike of 9-24-98 SPMD Spike of 9-28-98 SPMD Spike of 10-1-98 SPMD Spike of 10-8-98 SPMD Spike of 10-15-98 SPMD Spike of 11-19-98	% 52.1 125 59.2 63.9 66.0 64.2 58.0 66.7 33.9 53.9 60.0 49.1	% 32.3 78.7 38.9 43.0 57.1 57.4 48.6 58.7 30.9 48.8 51.3 53.8	% 51.8 151 71.8 61.2 69.3 70.8 55.5 65.3 46.1 84.4 69.9 68.6	% 74.5 84.7 85.8 77.3 64.2 85.4 83.8 84.6 73.6 93.2 86.3 82.8	
SPMD Spike #1 of M.V. * SPMD Spike #2 of M.V. * SPMD Spike #3 of M.V. * SPMD Spike of 9-15-98 SPMD Spike of 9-24-98 SPMD Spike of 9-28-98 SPMD Spike of 10-1-98 SPMD Spike of 10-15-98 SPMD Spike of 10-15-98 SPMD Spike of 11-15-98 SPMD Spike of 11-19-98 SPMD Spike of 12-15-98	% 52.1 125 59.2 63.9 66.0 64.2 58.0 66.7 33.9 53.9 60.0 49.1 0.6	% 32.3 78.7 38.9 43.0 57.1 57.4 48.6 58.7 30.9 48.8 51.3 53.8 0.0	% 51.8 151 71.8 61.2 69.3 70.8 55.5 65.3 46.1 84.4 69.9 68.6 56.9	% 74.5 84.7 85.8 77.3 64.2 85.4 83.8 84.6 73.6 93.2 86.3 82.8 76.8	
SPMD Spike #1 of M.V. * SPMD Spike #2 of M.V. * SPMD Spike #3 of M.V. * SPMD Spike of 9-15-98 SPMD Spike of 9-24-98 SPMD Spike of 9-28-98 SPMD Spike of 10-1-98 SPMD Spike of 10-15-98 SPMD Spike of 11-15-98 SPMD Spike of 11-19-98 SPMD Spike of 12-15-98 SPMD Spike of 12-15-98 SPMD Spike of 1-11-99	% 52.1 125 59.2 63.9 66.0 64.2 58.0 66.7 33.9 53.9 60.0 49.1	% 32.3 78.7 38.9 43.0 57.1 57.4 48.6 58.7 30.9 48.8 51.3 53.8	% 51.8 151 71.8 61.2 69.3 70.8 55.5 65.3 46.1 84.4 69.9 68.6	% 74.5 84.7 85.8 77.3 64.2 85.4 83.8 84.6 73.6 93.2 86.3 82.8	
SPMD Spike #1 of M.V. * SPMD Spike #2 of M.V. * SPMD Spike #3 of M.V. * SPMD Spike of 9-15-98 SPMD Spike of 9-24-98 SPMD Spike of 9-28-98 SPMD Spike of 10-1-98 SPMD Spike of 10-15-98 SPMD Spike of 10-15-98 SPMD Spike of 11-19-98 SPMD Spike of 12-15-98 SPMD Spike of 12-15-98 SPMD Spike of 1-11-99 SPMD Spike of 2-8-99	% 52.1 125 59.2 63.9 66.0 64.2 58.0 66.7 33.9 53.9 60.0 49.1 0.6	% 32.3 78.7 38.9 43.0 57.1 57.4 48.6 58.7 30.9 48.8 51.3 53.8 0.0	% 51.8 151 71.8 61.2 69.3 70.8 55.5 65.3 46.1 84.4 69.9 68.6 56.9 67.6 61.1	% 74.5 84.7 85.8 77.3 64.2 85.4 83.8 84.6 73.6 93.2 86.3 82.8 76.8 80.1 85.0	
SPMD Spike #1 of M.V. * SPMD Spike #2 of M.V. * SPMD Spike #3 of M.V. * SPMD Spike of 9-15-98 SPMD Spike of 9-24-98 SPMD Spike of 9-28-98 SPMD Spike of 10-1-98 SPMD Spike of 10-15-98 SPMD Spike of 10-15-98 SPMD Spike of 11-19-98 SPMD Spike of 12-15-98 SPMD Spike of 12-15-98 SPMD Spike of 2-10-99 SPMD Spike of 2-8-99 SPMD Spike of 2-10-99	% 52.1 125 59.2 63.9 66.0 64.2 58.0 66.7 33.9 53.9 60.0 49.1 0.6 46.3	% 32.3 78.7 38.9 43.0 57.1 57.4 48.6 58.7 30.9 48.8 51.3 53.8 0.0 61.8	% 51.8 151 71.8 61.2 69.3 70.8 55.5 65.3 46.1 84.4 69.9 68.6 56.9 67.6 61.1 75.4	% 74.5 84.7 85.8 77.3 64.2 85.4 83.8 84.6 73.6 93.2 86.3 82.8 76.8 80.1 85.0 92.6	
SPMD Spike #1 of M.V. * SPMD Spike #2 of M.V. * SPMD Spike #3 of M.V. * SPMD Spike of 9-15-98 SPMD Spike of 9-24-98 SPMD Spike of 9-28-98 SPMD Spike of 10-1-98 SPMD Spike of 10-15-98 SPMD Spike of 10-15-98 SPMD Spike of 11-19-98 SPMD Spike of 11-19-98 SPMD Spike of 12-15-98 SPMD Spike of 1-11-99 SPMD Spike of 2-8-99 SPMD Spike of 2-10-99 SPMD Spike of 3-29-99	% 52.1 125 59.2 63.9 66.0 64.2 58.0 66.7 33.9 53.9 60.0 49.1 0.6 46.3 58.1	% 32.3 78.7 38.9 43.0 57.1 57.4 48.6 58.7 30.9 48.8 51.3 53.8 0.0 61.8 41.3	% 51.8 151 71.8 61.2 69.3 70.8 55.5 65.3 46.1 84.4 69.9 68.6 56.9 67.6 61.1	% 74.5 84.7 85.8 77.3 64.2 85.4 83.8 84.6 73.6 93.2 86.3 82.8 76.8 80.1 85.0 92.6 89.1	
SPMD Spike #1 of M.V. * SPMD Spike #2 of M.V. * SPMD Spike #3 of M.V. * SPMD Spike of 9-15-98 SPMD Spike of 9-24-98 SPMD Spike of 9-28-98 SPMD Spike of 10-1-98 SPMD Spike of 10-15-98 SPMD Spike of 10-15-98 SPMD Spike of 11-19-98 SPMD Spike of 11-19-98 SPMD Spike of 12-15-98 SPMD Spike of 2-10-99 SPMD Spike of 3-29-99 SPMD Spike of 3-29-99 SPMD Spike of 4-7-99	% 52.1 125 59.2 63.9 66.0 64.2 58.0 66.7 33.9 53.9 60.0 49.1 0.6 46.3 58.1 84.5	% 32.3 78.7 38.9 43.0 57.1 57.4 48.6 58.7 30.9 48.8 51.3 53.8 0.0 61.8 41.3 83.9	% 51.8 151 71.8 61.2 69.3 70.8 55.5 65.3 46.1 84.4 69.9 68.6 56.9 67.6 61.1 75.4	% 74.5 84.7 85.8 77.3 64.2 85.4 83.8 84.6 73.6 93.2 86.3 82.8 76.8 80.1 85.0 92.6	
SPMD Spike #1 of M.V. * SPMD Spike #2 of M.V. * SPMD Spike #3 of M.V. * SPMD Spike of 9-15-98 SPMD Spike of 9-24-98 SPMD Spike of 9-28-98 SPMD Spike of 10-1-98 SPMD Spike of 10-15-98 SPMD Spike of 10-15-98 SPMD Spike of 11-19-98 SPMD Spike of 11-19-98 SPMD Spike of 12-15-98 SPMD Spike of 2-8-99 SPMD Spike of 2-10-99 SPMD Spike of 3-29-99 SPMD Spike of 4-7-99 SPMD Spike of 4-14-99	% 52.1 125 59.2 63.9 66.0 64.2 58.0 66.7 33.9 53.9 60.0 49.1 0.6 46.3 58.1 84.5 58.9	% 32.3 78.7 38.9 43.0 57.1 57.4 48.6 58.7 30.9 48.8 51.3 53.8 0.0 61.8 41.3 83.9 50.1	% 51.8 151 71.8 61.2 69.3 70.8 55.5 65.3 46.1 84.4 69.9 68.6 56.9 67.6 61.1 75.4 62.0	% 74.5 84.7 85.8 77.3 64.2 85.4 83.8 84.6 73.6 93.2 86.3 82.8 76.8 80.1 85.0 92.6 89.1	

^{*} M.V. = Method Validation

Table X

Recovery of Current Use Pesticides From SPMD Spikes

	Trifluralin	Diazinon	Chlorpyrifos	cis-Permethrin	trans-Permethrin
Sample Name	%	%	%	%	%
SPMD Spike of 3-29-99	92.7	88.8	91.7	109	94.0
SPMD Spike of 4-7-99	102	94.0	87.3	98.0	75.9
SPMD Spike of 4-14-99	86.4	49.8	6.7	98.1	101
Mean	93.8	77.5	61.9	102	90.2
Standard Deviation	7.9	24.2	47.9	6.5	12.8
RSD(%)	8.4	31.2	77.4	6.4	14.2

Table XI

Elution Order of Targeted Analytes During

Gas Chromatographic Analysis*

OC-Pesticides (on DB-35 MS)	Retention Time Min.	PAHs (on DB-5)	Retention Time Min.
НСВ	10.8	Naphthalene	6.7
PCA	11.2	Acenaphthylene	13.1
α-BHC	11.6	Acenaphthene	14.5
Lindane	13.1	Fluorene	18.3
β-ВНС	14.9	Phenanthrene	24.5
Heptachlor	15.1	Anthracene	25.4
δ-BHC	16.3	Fluoranthene	34.3
Dacthal	18.7	Pyrene	35.7
Oxychlordane	19.8	D ₁₄ -4-Terphenyl as Internal Std	38.9
Heptachlor Epoxide	20.6	Benz[a]anthracene	46.7
trans-Chlordane	21.6	Chrysene	46.8
trans-Nonachlor	21.8	Benzo[b]fluoranthene	59.5
o,p'-DDE	22.0	Benzo[k]fluoranthene	59.6
cis-Chlordane	22.2	Benzo[a]pyrene	61.7
Endosulfan	22.3	Indeno[1,2,3-cd]pyrene	68.6
p,p'-DDE	24.8	Dibenz[a,h]anthracene	68.8
Dieldrin	25.1	Benzo[g,h,i]perylene	69.7
o,p'-DDD	26.3		
Endrin	27.1	Total PID Response *	8.0 to 75.0
cis-Nonachlor	27.8	*As pyrene	
o,p'-DDT	28.0		
p,p'-DDD	28.9	Additional Compounds	
Endosulfan-II	29.3	(on DB-35 MS)	
p,p'-DDT	31.0	Trifluralin	7.9
Endosulfan Sulfate	32.9	Diazinon	11.8
Methoxychlor	36.7	Chlorpyrifos	17.7
Mirex	37.2	cis-Permethrin	38.4
OCN as Internal Std.	44.1	trans-Permethrin	39.0
Total PCBs	10.0 to 30	OCN as Internal Std.	41.2

^{*} NOTE: Slight variations in retention times were noted on a run by run basis. Retention times as given reflect the example provided in Figures 1,2,3 and 4.

Table XII

Total Analytes per Sample (n= 4 SPMDs)

Site # 1 EPA # 79 12128 House # 671981A

OC-Pesticides	ng	PAHs	μg
НСВ	62	Naphthalene	5.4
PCA	420	Acenaphthylene	<mdl< td=""></mdl<>
lpha-BHC	11	Acenaphthene	<mql< td=""></mql<>
β-ВНС	230	Fluorene	<mql< td=""></mql<>
δ-BHC	56	Phenanthrene	1.6
Lindane	36	Anthracene	<mql< td=""></mql<>
Dacthal	37	Fluoranthene	1.3
Heptachlor	3800	Pyrene	1.3
Heptachlor Epoxide	120	Benz[a]anthracene	<mdl< td=""></mdl<>
Oxychlordane	53	Chrysene	<mdl< td=""></mdl<>
cis-Chlordane	850	Benzo[b]fluoranthene	<mdl< td=""></mdl<>
trans-Chlordane	2000	Benzo[k]fluoranthene	<mdl< td=""></mdl<>
cis-Nonachlor	42	Benzo[a]pyrene	<mdl< td=""></mdl<>
trans-Nonachlor	650	Indeno[1,2,3-cd]pyrene	<mdl< td=""></mdl<>
o,p'-DDT	78	Dibenz[a,h]anthracene	<mdl< td=""></mdl<>
o,p'-DDE	100	Benzo[g,h,i]perylene	<mql< td=""></mql<>
o,p'-DDD	<mdl< td=""><td>T I DID D</td><td>000</td></mdl<>	T I DID D	000
p,p'-DDT	88	Total PID Response *	200
p,p'-DDE	100		
p,p'-DDD	<mql< td=""><td></td><td></td></mql<>		
Dieldrin	96		
Endrin	19 MD		
Methoxychlor	<mdl< td=""><td></td><td></td></mdl<>		
Mirex	0.41 52		
Endosulfan Endosulfan-II	52 120		
	<mdl< td=""><td></td><td></td></mdl<>		
Endosulfan Sulfate	<iviul< td=""><td></td><td></td></iviul<>		
Sum of Identified OCs	9000		
Total PCBs	5500		

^{*} As pyrene (i.e. total GC-PID response using the response factor of pyrene to quantify)

Total Analytes per Sample (n= 4 SPMDs)

Site # 2 EPA # 79 12157 House # 672867A

OC-Pesticides	ng	PAHs	μg
НСВ	15	Naphthalene	<mdl< td=""></mdl<>
PCA	110	Acenaphthylene	<mdl< td=""></mdl<>
α-BHC	87	Acenaphthene	<mql< td=""></mql<>
β-ВНС	23	Fluorene	<mdl< td=""></mdl<>
δ-BHC	<mdl< td=""><td>Phenanthrene</td><td>2.1</td></mdl<>	Phenanthrene	2.1
Lindane	100	Anthracene	<mql< td=""></mql<>
Dacthal	<mdl< td=""><td>Fluoranthene</td><td><mql< td=""></mql<></td></mdl<>	Fluoranthene	<mql< td=""></mql<>
Heptachlor	160	Pyrene	1.3
Heptachlor Epoxide	57	Benz[a]anthracene	<mdl< td=""></mdl<>
Oxychlordane	<mdl< td=""><td>Chrysene</td><td><mdl< td=""></mdl<></td></mdl<>	Chrysene	<mdl< td=""></mdl<>
cis-Chlordane	160	Benzo[b]fluoranthene	<mdl< td=""></mdl<>
trans-Chlordane	290	Benzo[k]fluoranthene	<mdl< td=""></mdl<>
cis-Nonachlor	32	Benzo[a]pyrene	<mdl< td=""></mdl<>
trans-Nonachlor	61	Indeno[1,2,3-cd]pyrene	<mdl< td=""></mdl<>
o,p'-DDT	7200	Dibenz[a,h]anthracene	<mdl< td=""></mdl<>
o,p'-DDE	2000	Benzo[g,h,i]perylene	<mdl< td=""></mdl<>
o,p'-DDD	350		
p,p'-DDT	6300	Total PID Response *	260
p,p'-DDE	1500		
p,p'-DDD	920		
Dieldrin	<mql< td=""><td></td><td></td></mql<>		
Endrin	220		
Methoxychlor	<mdl< td=""><td>Additional Compounds</td><td>Ng</td></mdl<>	Additional Compounds	Ng
Mirex	0.43		
Endosulfan	130	Trifluralin	<mdl< td=""></mdl<>
Endosulfan-II	240	Diazinon	27000
Endosulfan Sulfate	<mdl< td=""><td>Chlorpyrifos</td><td>72000</td></mdl<>	Chlorpyrifos	72000
		cis-Permethrin	1100
Sum of Identified OCs	20000	trans-Permethrin	1200
Total PCBs	2700		

^{*} As pyrene (i.e. total GC-PID response using the response factor of pyrene to quantify)

Total Analytes per Sample (n= 4 SPMDs)

Site # 3 EPA # 79 12186 House # 671529A

OC-Pesticides	ng	PAHs	μg
НСВ	30	Naphthalene	<mdl< td=""></mdl<>
PCA	51	Acenaphthylene	0.33
α -BHC	3.2	Acenaphthene	<mql< td=""></mql<>
β-BHC	24	Fluorene	<mdl< td=""></mdl<>
δ-BHC	<mql< td=""><td>Phenanthrene</td><td>3.9</td></mql<>	Phenanthrene	3.9
Lindane	<mql< td=""><td>Anthracene</td><td>0.70</td></mql<>	Anthracene	0.70
Dacthal	<mql< td=""><td>Fluoranthene</td><td><mql< td=""></mql<></td></mql<>	Fluoranthene	<mql< td=""></mql<>
Heptachlor	160	Pyrene	1.1
Heptachlor Epoxide	<mql< td=""><td>Benz[a]anthracene</td><td><mdl< td=""></mdl<></td></mql<>	Benz[a]anthracene	<mdl< td=""></mdl<>
Oxychlordane	<mdl< td=""><td>Chrysene</td><td><mdl< td=""></mdl<></td></mdl<>	Chrysene	<mdl< td=""></mdl<>
cis-Chlordane	79	Benzo[b]fluoranthene	<mdl< td=""></mdl<>
trans-Chlordane	150	Benzo[k]fluoranthene	<mdl< td=""></mdl<>
cis-Nonachlor	8.6	Benzo[a]pyrene	<mdl< td=""></mdl<>
trans-Nonachlor	44	Indeno[1,2,3-cd]pyrene	<mdl< td=""></mdl<>
o,p'-DDT	18	Dibenz[a,h]anthracene	<mdl< td=""></mdl<>
o,p'-DDE	<mdl< td=""><td>Benzo[g,h,i]perylene</td><td><mdl< td=""></mdl<></td></mdl<>	Benzo[g,h,i]perylene	<mdl< td=""></mdl<>
o,p'-DDD	<mql< td=""><td></td><td></td></mql<>		
p,p'-DDT	<mdl< td=""><td>Total PID Response *</td><td>160</td></mdl<>	Total PID Response *	160
p,p'-DDE	17		
p,p'-DDD	12		
Dieldrin	110		
Endrin	<mql< td=""><td></td><td></td></mql<>		
Methoxychlor	<mdl< td=""><td></td><td></td></mdl<>		
Mirex	<mql< td=""><td></td><td></td></mql<>		
Endosulfan	39		
Endosulfan-II	20		
Endosulfan Sulfate	<mdl< td=""><td></td><td></td></mdl<>		
Sum of Identified OCs	860		
Total PCBs	1300		

^{*} As pyrene (i.e. total GC-PID response using the response factor of pyrene to quantify)

Total Analytes per Sample (n= 4 SPMDs)

Site # 4 EPA # 79 12346 House # 673697A

OC-Pesticides	ng	PAHs	μg
HCB	20	Naphthalene	2.2
PCA	56	Acenaphthylene	1.2
α-BHC	5.8	Acenaphthene	<mql< td=""></mql<>
β-ВНС	10	Fluorene	<mdl< td=""></mdl<>
δ-BHC	<mdl< td=""><td>Phenanthrene</td><td>5.4</td></mdl<>	Phenanthrene	5.4
Lindane	86	Anthracene	<mql< td=""></mql<>
Dacthal	53	Fluoranthene	4.2
Heptachlor	35	Pyrene	3.6
Heptachlor Epoxide	27	Benz[a]anthracene	<mdl< td=""></mdl<>
Oxychlordane	<mdl< td=""><td>Chrysene</td><td><mdl< td=""></mdl<></td></mdl<>	Chrysene	<mdl< td=""></mdl<>
cis-Chlordane	430	Benzo[b]fluoranthene	<mdl< td=""></mdl<>
trans-Chlordane	390	Benzo[k]fluoranthene	<mdl< td=""></mdl<>
cis-Nonachlor	36	Benzo[a]pyrene	<mdl< td=""></mdl<>
trans-Nonachlor	210	Indeno[1,2,3-cd]pyrene	<mdl< td=""></mdl<>
o,p'-DDT	460	Dibenz[a,h]anthracene	<mdl< td=""></mdl<>
o,p'-DDE	100	Benzo[g,h,i]perylene	<mdl< td=""></mdl<>
o,p'-DDD	170		
p,p'-DDT	930	Total PID Response *	140
p,p'-DDE	510		
p,p'-DDD	23		
Dieldrin	200		
Endrin	41		
Methoxychlor	<mql< td=""><td></td><td></td></mql<>		
Mirex	1.8		
Endosulfan	35		
Endosulfan-II	150		
Endosulfan Sulfate	<mdl< td=""><td></td><td></td></mdl<>		
Sum of Identified OCs	4000		
Total PCBs	2000		

^{*} As pyrene (i.e. total GC-PID response using the response factor of pyrene to quantify)

Total Analytes per Sample (n= 4 SPMDs)

Site # 5 EPA # 79 12362 House # 673697A

OC-Pesticides	ng	PAHs	μg
НСВ	9.3	Naphthalene	2.0
PCA	33	Acenaphthylene	1.3
α-BHC	8.8	Acenaphthene	<mql< td=""></mql<>
β-BHC	<mdl< td=""><td>Fluorene</td><td><mdl< td=""></mdl<></td></mdl<>	Fluorene	<mdl< td=""></mdl<>
δ-BHC	<mdl< td=""><td>Phenanthrene</td><td>1.4</td></mdl<>	Phenanthrene	1.4
Lindane	<mql< td=""><td>Anthracene</td><td><mql< td=""></mql<></td></mql<>	Anthracene	<mql< td=""></mql<>
Dacthal	<mql< td=""><td>Fluoranthene</td><td><mql< td=""></mql<></td></mql<>	Fluoranthene	<mql< td=""></mql<>
Heptachlor	11	Pyrene	<mdl< td=""></mdl<>
Heptachlor Epoxide	<mdl< td=""><td>Benz[a]anthracene</td><td><mdl< td=""></mdl<></td></mdl<>	Benz[a]anthracene	<mdl< td=""></mdl<>
Oxychlordane	<mdl< td=""><td>Chrysene</td><td><mdl< td=""></mdl<></td></mdl<>	Chrysene	<mdl< td=""></mdl<>
cis-Chlordane	93	Benzo[b]fluoranthene	<mdl< td=""></mdl<>
trans-Chlordane	91	Benzo[k]fluoranthene	<mdl< td=""></mdl<>
cis-Nonachlor	12	Benzo[a]pyrene	<mdl< td=""></mdl<>
trans-Nonachlor	57	Indeno[1,2,3-cd]pyrene	<mdl< td=""></mdl<>
o,p'-DDT	55	Dibenz[a,h]anthracene	<mdl< td=""></mdl<>
o,p'-DDE	19	Benzo[g,h,i]perylene	<mdl< td=""></mdl<>
o,p'-DDD	19		
p,p'-DDT	100	Total PID Response *	<mdl< td=""></mdl<>
p,p'-DDE	33		
p,p'-DDD	<mdl< td=""><td></td><td></td></mdl<>		
Dieldrin	<mql< td=""><td></td><td></td></mql<>		
Endrin	<mql< td=""><td></td><td></td></mql<>		
Methoxychlor	<mdl< td=""><td></td><td></td></mdl<>		
Mirex	0.77		
Endosulfan	100		
Endosulfan-II	44		
Endosulfan Sulfate	<mdl< td=""><td></td><td></td></mdl<>		
Sum of Identified OCs	690		
Total PCBs	<mdl< td=""><td></td><td></td></mdl<>		

^{*} As pyrene (i.e. total GC-PID response using the response factor of pyrene to quantify)

Total Analytes per Sample (n= 4 SPMDs)

Site # 6 EPA # 79 12391 House # 671529A

OC-Pesticides	ng	PAHs	μg
HCB	8.0	Naphthalene	2.6
PCA	24	Acenaphthylene	0.67
α-BHC	6.4	Acenaphthene	<mdl< td=""></mdl<>
β-ВНС	<mdl< td=""><td>Fluorene</td><td><mdl< td=""></mdl<></td></mdl<>	Fluorene	<mdl< td=""></mdl<>
δ-BHC	<mdl< td=""><td>Phenanthrene</td><td><mql< td=""></mql<></td></mdl<>	Phenanthrene	<mql< td=""></mql<>
Lindane	<mql< td=""><td>Anthracene</td><td><mdl< td=""></mdl<></td></mql<>	Anthracene	<mdl< td=""></mdl<>
Dacthal	<mql< td=""><td>Fluoranthene</td><td><mql< td=""></mql<></td></mql<>	Fluoranthene	<mql< td=""></mql<>
Heptachlor	10	Pyrene	<mdl< td=""></mdl<>
Heptachlor Epoxide	<mdl< td=""><td>Benz[a]anthracene</td><td><mdl< td=""></mdl<></td></mdl<>	Benz[a]anthracene	<mdl< td=""></mdl<>
Oxychlordane	<mdl< td=""><td>Chrysene</td><td><mdl< td=""></mdl<></td></mdl<>	Chrysene	<mdl< td=""></mdl<>
cis-Chlordane	28	Benzo[b]fluoranthene	<mdl< td=""></mdl<>
trans-Chlordane	42	Benzo[k]fluoranthene	<mdl< td=""></mdl<>
cis-Nonachlor	<mql< td=""><td>Benzo[a]pyrene</td><td><mdl< td=""></mdl<></td></mql<>	Benzo[a]pyrene	<mdl< td=""></mdl<>
trans-Nonachlor	19	Indeno[1,2,3-cd]pyrene	<mdl< td=""></mdl<>
o,p'-DDT	<mql< td=""><td>Dibenz[a,h]anthracene</td><td><mdl< td=""></mdl<></td></mql<>	Dibenz[a,h]anthracene	<mdl< td=""></mdl<>
o,p'-DDE	<mdl< td=""><td>Benzo[g,h,i]perylene</td><td><mdl< td=""></mdl<></td></mdl<>	Benzo[g,h,i]perylene	<mdl< td=""></mdl<>
o,p'-DDD	<mdl< td=""><td></td><td></td></mdl<>		
p,p'-DDT	<mdl< td=""><td>Total PID Response *</td><td><mdl< td=""></mdl<></td></mdl<>	Total PID Response *	<mdl< td=""></mdl<>
p,p'-DDE	0.75		
p,p'-DDD	<mdl< td=""><td></td><td></td></mdl<>		
Dieldrin	<mdl< td=""><td></td><td></td></mdl<>		
Endrin	<mql< td=""><td></td><td></td></mql<>		
Methoxychlor	<mdl< td=""><td></td><td></td></mdl<>		
Mirex	<mql< td=""><td></td><td></td></mql<>		
Endosulfan	71		
Endosulfan-II	15		
Endosulfan Sulfate	<mdl< td=""><td></td><td></td></mdl<>		
Sum of Identified OCs	230		
Total PCBs	<mdl< td=""><td></td><td></td></mdl<>		

^{*} As pyrene (i.e. total GC-PID response using the response factor of pyrene to quantify)

Total Analytes per Sample (n= 4 SPMDs)

Site # 8 EPA # 79 14212 House # 731528A

OC-Pesticides	ng	PAHs	þg
НСВ	40	Naphthalene	<mdl< td=""></mdl<>
PCA	20	Acenaphthylene	<mdl< td=""></mdl<>
α-BHC	4.8	Acenaphthene	<mql< td=""></mql<>
β-ВНС	13	Fluorene	<mdl< td=""></mdl<>
δ-BHC	<mdl< td=""><td>Phenanthrene</td><td>2.1</td></mdl<>	Phenanthrene	2.1
Lindane	20	Anthracene	<mql< td=""></mql<>
Dacthal	26	Fluoranthene	<mql< td=""></mql<>
Heptachlor	10	Pyrene	0.82
Heptachlor Epoxide	<mdl< td=""><td>Benz[a]anthracene</td><td><mdl< td=""></mdl<></td></mdl<>	Benz[a]anthracene	<mdl< td=""></mdl<>
Oxychlordane	<mdl< td=""><td>Chrysene</td><td><mdl< td=""></mdl<></td></mdl<>	Chrysene	<mdl< td=""></mdl<>
cis-Chlordane	12	Benzo[b]fluoranthene	<mdl< td=""></mdl<>
trans-Chlordane	20	Benzo[k]fluoranthene	<mdl< td=""></mdl<>
cis-Nonachlor	<mdl< td=""><td>Benzo[a]pyrene</td><td><mdl< td=""></mdl<></td></mdl<>	Benzo[a]pyrene	<mdl< td=""></mdl<>
trans-Nonachlor	11	Indeno[1,2,3-cd]pyrene	<mdl< td=""></mdl<>
o,p'-DDT	<mql< td=""><td>Dibenz[a,h]anthracene</td><td><mdl< td=""></mdl<></td></mql<>	Dibenz[a,h]anthracene	<mdl< td=""></mdl<>
o,p'-DDE	6.4	Benzo[g,h,i]perylene	<mdl< td=""></mdl<>
o,p'-DDD	<mdl< td=""><td></td><td></td></mdl<>		
p,p'-DDT	<mdl< td=""><td>Total PID Response *</td><td><mdl< td=""></mdl<></td></mdl<>	Total PID Response *	<mdl< td=""></mdl<>
p,p'-DDE	43		
p,p'-DDD	<mdl< td=""><td></td><td></td></mdl<>		
Dieldrin	<mdl< td=""><td></td><td></td></mdl<>		
Endrin	<mql< td=""><td></td><td></td></mql<>		
Methoxychlor	<mdl< td=""><td></td><td></td></mdl<>		
Mirex	<mql< td=""><td></td><td></td></mql<>		
Endosulfan	110		
Endosulfan-II	11		
Endosulfan Sulfate	<mdl< td=""><td></td><td></td></mdl<>		
Sum of Identified OCs	340		
Total PCBs	<mdl< td=""><td></td><td></td></mdl<>		

^{*} As pyrene (i.e. total GC-PID response using the response factor of pyrene to quantify)

Total Analytes per Sample (n= 4 SPMDs)

Site # 9 EPA # 79 12463 House # 671819A

OC-Pesticides	ng	PAHs	μg
HCB	13	Naphthalene	<mdl< td=""></mdl<>
PCA	40	Acenaphthylene	<mdl< td=""></mdl<>
α-BHC	3.8	Acenaphthene	<mql< td=""></mql<>
β-ВНС	<mdl< td=""><td>Fluorene</td><td><mdl< td=""></mdl<></td></mdl<>	Fluorene	<mdl< td=""></mdl<>
δ-BHC	<mdl< td=""><td>Phenanthrene</td><td>0.80</td></mdl<>	Phenanthrene	0.80
Lindane	<mdl< td=""><td>Anthracene</td><td><mql< td=""></mql<></td></mdl<>	Anthracene	<mql< td=""></mql<>
Dacthal	<mdl< td=""><td>Fluoranthene</td><td><mql< td=""></mql<></td></mdl<>	Fluoranthene	<mql< td=""></mql<>
Heptachlor	57	Pyrene	1.9
Heptachlor Epoxide	<mql< td=""><td>Benz[a]anthracene</td><td><mdl< td=""></mdl<></td></mql<>	Benz[a]anthracene	<mdl< td=""></mdl<>
Oxychlordane	<mdl< td=""><td>Chrysene</td><td><mdl< td=""></mdl<></td></mdl<>	Chrysene	<mdl< td=""></mdl<>
cis-Chlordane	92	Benzo[b]fluoranthene	<mdl< td=""></mdl<>
trans-Chlordane	160	Benzo[k]fluoranthene	<mdl< td=""></mdl<>
cis-Nonachlor	9.0	Benzo[a]pyrene	<mdl< td=""></mdl<>
trans-Nonachlor	60	Indeno[1,2,3-cd]pyrene	<mdl< td=""></mdl<>
o,p'-DDT	<mdl< td=""><td>Dibenz[a,h]anthracene</td><td><mdl< td=""></mdl<></td></mdl<>	Dibenz[a,h]anthracene	<mdl< td=""></mdl<>
o,p'-DDE	11	Benzo[g,h,i]perylene	<mdl< td=""></mdl<>
o,p'-DDD	<mdl< td=""><td></td><td></td></mdl<>		
p,p'-DDT	130	Total PID Response *	260
p,p'-DDE	120		
p,p'-DDD	<mdl< td=""><td></td><td></td></mdl<>		
Dieldrin	<mql< td=""><td></td><td></td></mql<>		
Endrin	<mdl< td=""><td></td><td></td></mdl<>		
Methoxychlor	<mdl< td=""><td>Additional Compounds</td><td>ng</td></mdl<>	Additional Compounds	ng
Mirex	<mdl< td=""><td></td><td></td></mdl<>		
Endosulfan	44	Trifluralin	23
Endosulfan-II	<mdl< td=""><td>Diazinon</td><td>660</td></mdl<>	Diazinon	660
Endosulfan Sulfate	<mdl< td=""><td>Chlorpyrifos</td><td>770</td></mdl<>	Chlorpyrifos	770
		cis-Permethrin	<mdl< td=""></mdl<>
Sum of Identified OCs	740	trans-Permethrin	<mql< td=""></mql<>
Total PCBs	1700		

^{*} As pyrene (i.e. total GC-PID response using the response factor of pyrene to quantify)

Total Analytes per Sample (n= 4 SPMDs)

Site # 10 EPA # 79 12421 House # 671587A

OC-Pesticides	ng	PAHs	μg
HCB	20	Naphthalene	<mdl< td=""></mdl<>
PCA	96	Acenaphthylene	<mdl< td=""></mdl<>
α-BHC	6.1	Acenaphthene	<mql< td=""></mql<>
β-ВНС	<mql< td=""><td>Fluorene</td><td><mdl< td=""></mdl<></td></mql<>	Fluorene	<mdl< td=""></mdl<>
δ-BHC	<mdl< td=""><td>Phenanthrene</td><td>1.1</td></mdl<>	Phenanthrene	1.1
Lindane	<mql< td=""><td>Anthracene</td><td><mql< td=""></mql<></td></mql<>	Anthracene	<mql< td=""></mql<>
Dacthal	<mql< td=""><td>Fluoranthene</td><td><mql< td=""></mql<></td></mql<>	Fluoranthene	<mql< td=""></mql<>
Heptachlor	12	Pyrene	1.1
Heptachlor Epoxide	<mdl< td=""><td>Benz[a]anthracene</td><td><mdl< td=""></mdl<></td></mdl<>	Benz[a]anthracene	<mdl< td=""></mdl<>
Oxychlordane	<mdl< td=""><td>Chrysene</td><td><mdl< td=""></mdl<></td></mdl<>	Chrysene	<mdl< td=""></mdl<>
cis-Chlordane	48	Benzo[b]fluoranthene	<mdl< td=""></mdl<>
trans-Chlordane	60	Benzo[k]fluoranthene	<mdl< td=""></mdl<>
cis-Nonachlor	<mql< td=""><td>Benzo[a]pyrene</td><td><mdl< td=""></mdl<></td></mql<>	Benzo[a]pyrene	<mdl< td=""></mdl<>
trans-Nonachlor	25	Indeno[1,2,3-cd]pyrene	<mdl< td=""></mdl<>
o,p'-DDT	22	Dibenz[a,h]anthracene	<mdl< td=""></mdl<>
o,p'-DDE	14	Benzo[g,h,i]perylene	<mdl< td=""></mdl<>
o,p'-DDD	<mdl< td=""><td></td><td></td></mdl<>		
p,p'-DDT	<mql< td=""><td>Total PID Response *</td><td><mql< td=""></mql<></td></mql<>	Total PID Response *	<mql< td=""></mql<>
p,p'-DDE	39		
p,p'-DDD	<mdl< td=""><td></td><td></td></mdl<>		
Dieldrin	<mql< td=""><td></td><td></td></mql<>		
Endrin	<mql< td=""><td></td><td></td></mql<>		
Methoxychlor	<mdl< td=""><td></td><td></td></mdl<>		
Mirex	0.89		
Endosulfan	52		
Endosulfan-II	19		
Endosulfan Sulfate	<mdl< td=""><td></td><td></td></mdl<>		
Sum of Identified OCs	410		
Total PCBs	2100		

^{*} As pyrene (i.e. total GC-PID response using the response factor of pyrene to quantify)

Total Analytes per Sample (n= 4 SPMDs)

Site # 11 EPA # 79 12529 House # 673785A

OC-Pesticides	ng	PAHs	μg
НСВ	150	Naphthalene	<mql< td=""></mql<>
PCA	110	Acenaphthylene	<mql< td=""></mql<>
α-BHC	5.6	Acenaphthene	<mql< td=""></mql<>
β-ВНС	19	Fluorene	7.4
δ-BHC	<mdl< td=""><td>Phenanthrene</td><td>15</td></mdl<>	Phenanthrene	15
Lindane	30	Anthracene	3.4
Dacthal	<mdl< td=""><td>Fluoranthene</td><td>2.6</td></mdl<>	Fluoranthene	2.6
Heptachlor	57	Pyrene	2.7
Heptachlor Epoxide	<mdl< td=""><td>Benz[a]anthracene</td><td><mdl< td=""></mdl<></td></mdl<>	Benz[a]anthracene	<mdl< td=""></mdl<>
Oxychlordane	<mdl< td=""><td>Chrysene</td><td><mdl< td=""></mdl<></td></mdl<>	Chrysene	<mdl< td=""></mdl<>
cis-Chlordane	32	Benzo[b]fluoranthene	<mdl< td=""></mdl<>
trans-Chlordane	49	Benzo[k]fluoranthene	<mdl< td=""></mdl<>
cis-Nonachlor	<mdl< td=""><td>Benzo[a]pyrene</td><td><mdl< td=""></mdl<></td></mdl<>	Benzo[a]pyrene	<mdl< td=""></mdl<>
trans-Nonachlor	16	Indeno[1,2,3-cd]pyrene	<mdl< td=""></mdl<>
o,p'-DDT	26	Dibenz[a,h]anthracene	<mdl< td=""></mdl<>
o,p'-DDE	5.4	Benzo[g,h,i]perylene	<mdl< td=""></mdl<>
o,p'-DDD	<mdl< td=""><td></td><td></td></mdl<>		
p,p'-DDT	<mql< td=""><td>Total PID Response *</td><td>310</td></mql<>	Total PID Response *	310
p,p'-DDE	22		
p,p'-DDD	<mdl< td=""><td></td><td></td></mdl<>		
Dieldrin	<mql< td=""><td></td><td></td></mql<>		
Endrin	<mdl< td=""><td></td><td></td></mdl<>		
Methoxychlor	<mdl< td=""><td></td><td></td></mdl<>		
Mirex	0.65		
Endosulfan	12		
Endosulfan-II	8.0		
Endosulfan Sulfate	<mdl< td=""><td></td><td></td></mdl<>		
Sum of Identified OCs	540		
Total PCBs	2000		

^{*} As pyrene (i.e. total GC-PID response using the response factor of pyrene to quantify)

Total Analytes per Sample (n= 4 SPMDs)

Site # 12 EPA # 79 12867 House # 172514A

OC-Pesticides	ng	PAHs	μg
HCB	22	Naphthalene	<mql< td=""></mql<>
PCA	75	Acenaphthylene	<mdl< td=""></mdl<>
α-BHC	2.8	Acenaphthene	<mql< td=""></mql<>
β-ВНС	<mdl< td=""><td>Fluorene</td><td><mdl< td=""></mdl<></td></mdl<>	Fluorene	<mdl< td=""></mdl<>
δ-BHC	<mdl< td=""><td>Phenanthrene</td><td>2.4</td></mdl<>	Phenanthrene	2.4
Lindane	110	Anthracene	<mql< td=""></mql<>
Dacthal	37	Fluoranthene	<mql< td=""></mql<>
Heptachlor	100	Pyrene	<mql< td=""></mql<>
Heptachlor Epoxide	56	Benz[a]anthracene	<mdl< td=""></mdl<>
Oxychlordane	<mdl< td=""><td>Chrysene</td><td><mdl< td=""></mdl<></td></mdl<>	Chrysene	<mdl< td=""></mdl<>
cis-Chlordane	640	Benzo[b]fluoranthene	<mdl< td=""></mdl<>
trans-Chlordane	690	Benzo[k]fluoranthene	<mdl< td=""></mdl<>
cis-Nonachlor	38	Benzo[a]pyrene	<mdl< td=""></mdl<>
trans-Nonachlor	450	Indeno[1,2,3-cd]pyrene	<mdl< td=""></mdl<>
o,p'-DDT	150	Dibenz[a,h]anthracene	<mdl< td=""></mdl<>
o,p'-DDE	76	Benzo[g,h,i]perylene	<mdl< td=""></mdl<>
o,p'-DDD	<mql< td=""><td></td><td></td></mql<>		
p,p'-DDT	250	Total PID Response *	<mql< td=""></mql<>
p,p'-DDE	210		
p,p'-DDD	7.7		
Dieldrin	<mql< td=""><td></td><td></td></mql<>		
Endrin	17		
Methoxychlor	<mql< td=""><td></td><td></td></mql<>		
Mirex	0.85		
Endosulfan	<mdl< td=""><td></td><td></td></mdl<>		
Endosulfan-II	150		
Endosulfan Sulfate	<mdl< td=""><td></td><td></td></mdl<>		
Sum of Identified OCs	3100		
Total PCBs	4400		

^{*} As pyrene (i.e. total GC-PID response using the response factor of pyrene to quantify)

Total Analytes per Sample (n= 4 SPMDs)

Site # 13 EPA # 79 12636 House # 172152A

OC-Pesticides	ng	PAHs	μg
НСВ	51	Naphthalene	<mdl< td=""></mdl<>
PCA	87	Acenaphthylene	<mql< td=""></mql<>
α-BHC	5.8	Acenaphthene	<mql< td=""></mql<>
β-ВНС	18	Fluorene	<mdl< td=""></mdl<>
δ-BHC	<mdl< td=""><td>Phenanthrene</td><td>3.0</td></mdl<>	Phenanthrene	3.0
Lindane	300	Anthracene	1.0
Dacthal	<mql< td=""><td>Fluoranthene</td><td><mql< td=""></mql<></td></mql<>	Fluoranthene	<mql< td=""></mql<>
Heptachlor	45	Pyrene	<mql< td=""></mql<>
Heptachlor Epoxide	32	Benz[a]anthracene	<mdl< td=""></mdl<>
Oxychlordane	<mdl< td=""><td>Chrysene</td><td><mdl< td=""></mdl<></td></mdl<>	Chrysene	<mdl< td=""></mdl<>
cis-Chlordane	190	Benzo[b]fluoranthene	<mdl< td=""></mdl<>
trans-Chlordane	180	Benzo[k]fluoranthene	<mdl< td=""></mdl<>
cis-Nonachlor	17	Benzo[a]pyrene	<mdl< td=""></mdl<>
trans-Nonachlor	110	Indeno[1,2,3-cd]pyrene	<mdl< td=""></mdl<>
o,p'-DDT	66	Dibenz[a,h]anthracene	<mdl< td=""></mdl<>
o,p'-DDE	34	Benzo[g,h,i]perylene	<mdl< td=""></mdl<>
o,p'-DDD	<mql< td=""><td></td><td></td></mql<>		
p,p'-DDT	140	Total PID Response *	160
p,p'-DDE	200		
p,p'-DDD	<mql< td=""><td></td><td></td></mql<>		
Dieldrin	160		
Endrin	18		
Methoxychlor	<mdl< td=""><td></td><td></td></mdl<>		
Mirex	6.7		
Endosulfan	<mql< td=""><td></td><td></td></mql<>		
Endosulfan-II	59		
Endosulfan Sulfate	<mdl< td=""><td></td><td></td></mdl<>		
Sum of Identified OCs	1700		
Total PCBs	4300		

^{*} As pyrene (i.e. total GC-PID response using the response factor of pyrene to quantify)

Total Analytes per Sample (n= 4 SPMDs)

Site # 14 EPA # 79 12548 House # 731212A

OC-Pesticides	ng	PAHs	μg
НСВ	51	Naphthalene	1.6
PCA	44	Acenaphthylene	<mdl< td=""></mdl<>
α-BHC	5.7	Acenaphthene	0.74
β-BHC	10	Fluorene	<mql< td=""></mql<>
, δ-BHC	<mdl< td=""><td>Phenanthrene</td><td>4.0</td></mdl<>	Phenanthrene	4.0
Lindane	37	Anthracene	<mql< td=""></mql<>
Dacthal	1100	Fluoranthene	1.0
Heptachlor	10	Pyrene	1.0
Heptachlor Epoxide	<mdl< td=""><td>Benz[a]anthracene</td><td><mdl< td=""></mdl<></td></mdl<>	Benz[a]anthracene	<mdl< td=""></mdl<>
Oxychlordane	<mdl< td=""><td>Chrysene</td><td><mdl< td=""></mdl<></td></mdl<>	Chrysene	<mdl< td=""></mdl<>
cis-Chlordane	72	Benzo[b]fluoranthene	<mdl< td=""></mdl<>
trans-Chlordane	89	Benzo[k]fluoranthene	<mdl< td=""></mdl<>
cis-Nonachlor	12	Benzo[a]pyrene	<mdl< td=""></mdl<>
trans-Nonachlor	55	Indeno[1,2,3-cd]pyrene	<mdl< td=""></mdl<>
o,p'-DDT	2700	Dibenz[a,h]anthracene	<mdl< td=""></mdl<>
o,p'-DDE	65	Benzo[g,h,i]perylene	<mdl< td=""></mdl<>
o,p'-DDD	140		
p,p'-DDT	9000	Total PID Response *	<mql< td=""></mql<>
p,p'-DDE	1800		
p,p'-DDD	370		
Dieldrin	330		
Endrin	46		
Methoxychlor	510		
Mirex	0.89		
Endosulfan	1200		
Endosulfan-II	240		
Endosulfan Sulfate	19		
Sum of Identified OCs	18000		
Total PCBs	<mql< td=""><td></td><td></td></mql<>		

^{*} As pyrene (i.e. total GC-PID response using the response factor of pyrene to quantify)

Total Analytes per Sample (n= 4 SPMDs)

Site # 15 EPA # 79 12593 House # 171768A

OC-Pesticides	ng	PAHs	μg
НСВ	<mdl< td=""><td>Naphthalene</td><td><mql< td=""></mql<></td></mdl<>	Naphthalene	<mql< td=""></mql<>
PCA	22	Acenaphthylene	<mdl< td=""></mdl<>
α-BHC	15	Acenaphthene	<mql< td=""></mql<>
β-BHC	<mdl< td=""><td>Fluorene</td><td><mql< td=""></mql<></td></mdl<>	Fluorene	<mql< td=""></mql<>
δ-BHC	<mql< td=""><td>Phenanthrene</td><td>6.5</td></mql<>	Phenanthrene	6.5
Lindane	41	Anthracene	0.68
Dacthal	<mdl< td=""><td>Fluoranthene</td><td>1.6</td></mdl<>	Fluoranthene	1.6
Heptachlor	<mdl< td=""><td>Pyrene</td><td>1.4</td></mdl<>	Pyrene	1.4
Heptachlor Epoxide	20	Benz[a]anthracene	<mdl< td=""></mdl<>
Oxychlordane	<mdl< td=""><td>Chrysene</td><td><mdl< td=""></mdl<></td></mdl<>	Chrysene	<mdl< td=""></mdl<>
cis-Chlordane	60	Benzo[b]fluoranthene	<mdl< td=""></mdl<>
trans-Chlordane	76	Benzo[k]fluoranthene	<mdl< td=""></mdl<>
cis-Nonachlor	18	Benzo[a]pyrene	<mdl< td=""></mdl<>
trans-Nonachlor	26	Indeno[1,2,3-cd]pyrene	<mdl< td=""></mdl<>
o,p'-DDT	84	Dibenz[a,h]anthracene	<mdl< td=""></mdl<>
o,p'-DDE	10	Benzo[g,h,i]perylene	<mdl< td=""></mdl<>
o,p'-DDD	<mdl< td=""><td></td><td></td></mdl<>		
p,p'-DDT	<mql< td=""><td>Total PID Response *</td><td>340</td></mql<>	Total PID Response *	340
p,p'-DDE	<mdl< td=""><td></td><td></td></mdl<>		
p,p'-DDD	<mdl< td=""><td></td><td></td></mdl<>		
Dieldrin	710		
Endrin	36		
Methoxychlor	<mdl< td=""><td>Additional Compounds</td><td>ng</td></mdl<>	Additional Compounds	ng
Mirex	<mdl< td=""><td></td><td></td></mdl<>		
Endosulfan	35	Trifluralin	25
Endosulfan-II	<mdl< td=""><td>Diazinon</td><td>510</td></mdl<>	Diazinon	510
Endosulfan Sulfate	<mdl< td=""><td>Chlorpyrifos</td><td>2100</td></mdl<>	Chlorpyrifos	2100
		cis-Permethrin	<mdl< td=""></mdl<>
Sum of Identified OCs	1200	trans-Permethrin	<mql< td=""></mql<>
Total PCBs	1600		

^{*} As pyrene (i.e. total GC-PID response using the response factor of pyrene to quantify)

Total Analytes per Sample (n= 4 SPMDs)

Site # 16 EPA # 79 12681 House # 731241A

OC-Pesticides	ng	PAHs	μg
НСВ	20	Naphthalene	<mql< td=""></mql<>
PCA	61	Acenaphthylene	<mdl< td=""></mdl<>
α-BHC	3.0	Acenaphthene	<mql< td=""></mql<>
β-ВНС	<mql< td=""><td>Fluorene</td><td><mdl< td=""></mdl<></td></mql<>	Fluorene	<mdl< td=""></mdl<>
, δ-BHC	<mdl< td=""><td>Phenanthrene</td><td>2.6</td></mdl<>	Phenanthrene	2.6
Lindane	35	Anthracene	<mql< td=""></mql<>
Dacthal	170	Fluoranthene	<mql< td=""></mql<>
Heptachlor	4.4	Pyrene	1.0
Heptachlor Epoxide	<mdl< td=""><td>Benz[a]anthracene</td><td><mdl< td=""></mdl<></td></mdl<>	Benz[a]anthracene	<mdl< td=""></mdl<>
Oxychlordane	<mdl< td=""><td>Chrysene</td><td><mdl< td=""></mdl<></td></mdl<>	Chrysene	<mdl< td=""></mdl<>
cis-Chlordane	12	Benzo[b]fluoranthene	<mdl< td=""></mdl<>
trans-Chlordane	25	Benzo[k]fluoranthene	<mdl< td=""></mdl<>
cis-Nonachlor	<mdl< td=""><td>Benzo[a]pyrene</td><td><mdl< td=""></mdl<></td></mdl<>	Benzo[a]pyrene	<mdl< td=""></mdl<>
trans-Nonachlor	8.7	Indeno[1,2,3-cd]pyrene	<mql< td=""></mql<>
o,p'-DDT	31	Dibenz[a,h]anthracene	<mdl< td=""></mdl<>
o,p'-DDE	10	Benzo[g,h,i]perylene	<mdl< td=""></mdl<>
o,p'-DDD	<mdl< td=""><td></td><td></td></mdl<>		
p,p'-DDT	<mql< td=""><td>Total PID Response *</td><td>92</td></mql<>	Total PID Response *	92
p,p'-DDE	190		
p,p'-DDD	<mql< td=""><td></td><td></td></mql<>		
Dieldrin	89		
Endrin	<mql< td=""><td></td><td></td></mql<>		
Methoxychlor	<mdl< td=""><td></td><td></td></mdl<>		
Mirex	3.2		
Endosulfan	360		
Endosulfan-II	42		
Endosulfan Sulfate	<mdl< td=""><td></td><td></td></mdl<>		
Sum of Identified OCs	110		
Total PCBs	4700		

^{*} As pyrene (i.e. total GC-PID response using the response factor of pyrene to quantify)

Total Analytes per Sample (n= 4 SPMDs)

Site # 17 EPA # 79 12652 House # 172194A

OC-Pesticides	ng	PAHs	μg
НСВ	15	Naphthalene	<mdl< td=""></mdl<>
PCA	20	Acenaphthylene	<mdl< td=""></mdl<>
α-BHC	20	Acenaphthene	<mql< td=""></mql<>
β-BHC	18	Fluorene	<mdl< td=""></mdl<>
δ-BHC	<mdl< td=""><td>Phenanthrene</td><td>1.7</td></mdl<>	Phenanthrene	1.7
Lindane	77	Anthracene	<mql< td=""></mql<>
Dacthal	42	Fluoranthene	<mql< td=""></mql<>
Heptachlor	14	Pyrene	<mql< td=""></mql<>
Heptachlor Epoxide	<mql< td=""><td>Benz[a]anthracene</td><td><mdl< td=""></mdl<></td></mql<>	Benz[a]anthracene	<mdl< td=""></mdl<>
Oxychlordane	<mql< td=""><td>Chrysene</td><td><mdl< td=""></mdl<></td></mql<>	Chrysene	<mdl< td=""></mdl<>
cis-Chlordane	30	Benzo[b]fluoranthene	<mdl< td=""></mdl<>
trans-Chlordane	47	Benzo[k]fluoranthene	<mdl< td=""></mdl<>
cis-Nonachlor	45	Benzo[a]pyrene	<mdl< td=""></mdl<>
trans-Nonachlor	15	Indeno[1,2,3-cd]pyrene	<mdl< td=""></mdl<>
o,p'-DDT	22	Dibenz[a,h]anthracene	<mdl< td=""></mdl<>
o,p'-DDE	7.5	Benzo[g,h,i]perylene	<mdl< td=""></mdl<>
o,p'-DDD	<mdl< td=""><td></td><td></td></mdl<>		
p,p'-DDT	<mql< td=""><td>Total PID Response *</td><td><mql< td=""></mql<></td></mql<>	Total PID Response *	<mql< td=""></mql<>
p,p'-DDE	80		
p,p'-DDD	<mql< td=""><td></td><td></td></mql<>		
Dieldrin	320		
Endrin	24		
Methoxychlor	<mdl< td=""><td>Additional Compounds</td><td>ng</td></mdl<>	Additional Compounds	ng
Mirex	1.8		
Endosulfan	49	Trifluralin	<mql< td=""></mql<>
Endosulfan-II	18	Diazinon	330
Endosulfan Sulfate	<mql< td=""><td>Chlorpyrifos</td><td>2200</td></mql<>	Chlorpyrifos	2200
		cis-Permethrin	<mql< td=""></mql<>
Sum of Identified OCs	870	trans-Permethrin	<mql< td=""></mql<>
Total PCBs	1300		

^{*} As pyrene (i.e. total GC-PID response using the response factor of pyrene to quantify)

Total Analytes per Sample (n= 4 SPMDs)

Site # 18 EPA # 79 12753 House # 731238A

OC-Pesticides	ng	PAHs	μg
НСВ	78	Naphthalene	2.1
PCA	81	Acenaphthylene	<mdl< td=""></mdl<>
α-BHC	3.9	Acenaphthene	<mql< td=""></mql<>
β-BHC	62	Fluorene	<mdl< td=""></mdl<>
δ-BHC	<mdl< td=""><td>Phenanthrene</td><td>3.9</td></mdl<>	Phenanthrene	3.9
Lindane	<mql< td=""><td>Anthracene</td><td>0.6</td></mql<>	Anthracene	0.6
Dacthal	850	Fluoranthene	1.8
Heptachlor	13	Pyrene	3.3
Heptachlor Epoxide	<mdl< td=""><td>Benz[a]anthracene</td><td><mdl< td=""></mdl<></td></mdl<>	Benz[a]anthracene	<mdl< td=""></mdl<>
Oxychlordane	<mdl< td=""><td>Chrysene</td><td><mdl< td=""></mdl<></td></mdl<>	Chrysene	<mdl< td=""></mdl<>
cis-Chlordane	43	Benzo[b]fluoranthene	<mdl< td=""></mdl<>
trans-Chlordane	40	Benzo[k]fluoranthene	<mdl< td=""></mdl<>
cis-Nonachlor	<mdl< td=""><td>Benzo[a]pyrene</td><td><mdl< td=""></mdl<></td></mdl<>	Benzo[a]pyrene	<mdl< td=""></mdl<>
trans-Nonachlor	29	Indeno[1,2,3-cd]pyrene	<mdl< td=""></mdl<>
o,p'-DDT	28	Dibenz[a,h]anthracene	<mdl< td=""></mdl<>
o,p'-DDE	<mdl< td=""><td>Benzo[g,h,i]perylene</td><td><mdl< td=""></mdl<></td></mdl<>	Benzo[g,h,i]perylene	<mdl< td=""></mdl<>
o,p'-DDD	<mdl< td=""><td></td><td></td></mdl<>		
p,p'-DDT	<mql< td=""><td>Total PID Response *</td><td>270</td></mql<>	Total PID Response *	270
p,p'-DDE	230		
p,p'-DDD	<mdl< td=""><td></td><td></td></mdl<>		
Dieldrin	450		
Endrin	44		
Methoxychlor	<mdl< td=""><td>Additional Compounds</td><td>ng</td></mdl<>	Additional Compounds	ng
Mirex	1.4		
Endosulfan	1600	Trifluralin	100
Endosulfan-II	210	Diazinon	1100
Endosulfan Sulfate	<mql< td=""><td>Chlorpyrifos</td><td>5400</td></mql<>	Chlorpyrifos	5400
		cis-Permethrin	530
Sum of Identified OCs	3800	trans-Permethrin	610
Total PCBs	1500		

^{*} As pyrene (i.e. total GC-PID response using the response factor of pyrene to quantify)

Total Analytes per Sample (n= 4 SPMDs)

Site # 19 EPA # 79 12795 House # 731254A

OC-Pesticides	ng	PAHs	μg
НСВ	52	Naphthalene	<mdl< td=""></mdl<>
PCA	87	Acenaphthylene	2.1
α-BHC	7.4	Acenaphthene	<mql< td=""></mql<>
β-BHC	13	Fluorene	<mql< td=""></mql<>
δ-BHC	140	Phenanthrene	2.8
Lindane	48	Anthracene	<mql< td=""></mql<>
Dacthal	480	Fluoranthene	1.2
Heptachlor	40	Pyrene	1.9
Heptachlor Epoxide	100	Benz[a]anthracene	<mdl< td=""></mdl<>
Oxychlordane	110	Chrysene	<mdl< td=""></mdl<>
cis-Chlordane	210	Benzo[b]fluoranthene	<mdl< td=""></mdl<>
trans-Chlordane	280	Benzo[k]fluoranthene	<mdl< td=""></mdl<>
cis-Nonachlor	<mql< td=""><td>Benzo[a]pyrene</td><td><mdl< td=""></mdl<></td></mql<>	Benzo[a]pyrene	<mdl< td=""></mdl<>
trans-Nonachlor	150	Indeno[1,2,3-cd]pyrene	<mdl< td=""></mdl<>
o,p'-DDT	130	Dibenz[a,h]anthracene	<mdl< td=""></mdl<>
o,p'-DDE	110	Benzo[g,h,i]perylene	<mdl< td=""></mdl<>
o,p'-DDD	200		
p,p'-DDT	200	Total PID Response *	190
p,p'-DDE	470		
p,p'-DDD	11		
Dieldrin	240		
Endrin	120		
Methoxychlor	<mdl< td=""><td></td><td></td></mdl<>		
Mirex	13		
Endosulfan	1100		
Endosulfan-II	140		
Endosulfan Sulfate	<mql< td=""><td></td><td></td></mql<>		
Sum of Identified OCs	4400		
Total PCBs	<mql< td=""><td></td><td></td></mql<>		

^{*} As pyrene (i.e. total GC-PID response using the response factor of pyrene to quantify)

Total Analytes per Sample (n= 4 SPMDs)

Site # 20 EPA # 79 12724 House # 171595A

OC-Pesticides	ng	PAHs	μg
НСВ	91	Naphthalene	<mql< td=""></mql<>
PCA	26	Acenaphthylene	<mql< td=""></mql<>
α-BHC	3.8	Acenaphthene	<mql< td=""></mql<>
β-ВНС	10	Fluorene	<mdl< td=""></mdl<>
δ-BHC	<mdl< td=""><td>Phenanthrene</td><td>1.9</td></mdl<>	Phenanthrene	1.9
Lindane	31	Anthracene	<mql< td=""></mql<>
Dacthal	<mql< td=""><td>Fluoranthene</td><td><mql< td=""></mql<></td></mql<>	Fluoranthene	<mql< td=""></mql<>
Heptachlor	37	Pyrene	1.8
Heptachlor Epoxide	<mdl< td=""><td>Benz[a]anthracene</td><td><mdl< td=""></mdl<></td></mdl<>	Benz[a]anthracene	<mdl< td=""></mdl<>
Oxychlordane	<mdl< td=""><td>Chrysene</td><td><mdl< td=""></mdl<></td></mdl<>	Chrysene	<mdl< td=""></mdl<>
cis-Chlordane	110	Benzo[b]fluoranthene	<mdl< td=""></mdl<>
trans-Chlordane	110	Benzo[k]fluoranthene	<mdl< td=""></mdl<>
cis-Nonachlor	9.3	Benzo[a]pyrene	<mdl< td=""></mdl<>
trans-Nonachlor	44	Indeno[1,2,3-cd]pyrene	<mdl< td=""></mdl<>
o,p'-DDT	140	Dibenz[a,h]anthracene	<mdl< td=""></mdl<>
o,p'-DDE	24	Benzo[g,h,i]perylene	<mdl< td=""></mdl<>
o,p'-DDD	<mql< td=""><td></td><td></td></mql<>		
p,p'-DDT	290	Total PID Response *	74
p,p'-DDE	140		
p,p'-DDD	11		
Dieldrin	<mql< td=""><td></td><td></td></mql<>		
Endrin	<mql< td=""><td></td><td></td></mql<>		
Methoxychlor	<mql< td=""><td></td><td></td></mql<>		
Mirex	5.1		
Endosulfan	17		
Endosulfan-II	41		
Endosulfan Sulfate	<mdl< td=""><td></td><td></td></mdl<>		
Sum of Identified OCs	1200		
Total PCBs	<mql< td=""><td></td><td></td></mql<>		

^{*} As pyrene (i.e. total GC-PID response using the response factor of pyrene to quantify)

Total Analytes per Sample (n= 4 SPMDs)

Site # 21 EPA # 79 12838 House # 172686A

OC-Pesticides	ng	PAHs	μg
HCB	200	Naphthalene	<mdl< td=""></mdl<>
PCA	40	Acenaphthylene	<mdl< td=""></mdl<>
α-BHC	4.3	Acenaphthene	<mql< td=""></mql<>
β-ВНС	<mql< td=""><td>Fluorene</td><td><mdl< td=""></mdl<></td></mql<>	Fluorene	<mdl< td=""></mdl<>
δ-BHC	<mdl< td=""><td>Phenanthrene</td><td>0.92</td></mdl<>	Phenanthrene	0.92
Lindane	27	Anthracene	<mql< td=""></mql<>
Dacthal	25	Fluoranthene	<mdl< td=""></mdl<>
Heptachlor	16	Pyrene	<mql< td=""></mql<>
Heptachlor Epoxide	<mdl< td=""><td>Benz[a]anthracene</td><td><mdl< td=""></mdl<></td></mdl<>	Benz[a]anthracene	<mdl< td=""></mdl<>
Oxychlordane	<mdl< td=""><td>Chrysene</td><td><mdl< td=""></mdl<></td></mdl<>	Chrysene	<mdl< td=""></mdl<>
cis-Chlordane	47	Benzo[b]fluoranthene	<mdl< td=""></mdl<>
trans-Chlordane	49	Benzo[k]fluoranthene	<mdl< td=""></mdl<>
cis-Nonachlor	<mql< td=""><td>Benzo[a]pyrene</td><td><mdl< td=""></mdl<></td></mql<>	Benzo[a]pyrene	<mdl< td=""></mdl<>
trans-Nonachlor	19	Indeno[1,2,3-cd]pyrene	<mdl< td=""></mdl<>
o,p'-DDT	37	Dibenz[a,h]anthracene	<mdl< td=""></mdl<>
o,p'-DDE	<mdl< td=""><td>Benzo[g,h,i]perylene</td><td><mdl< td=""></mdl<></td></mdl<>	Benzo[g,h,i]perylene	<mdl< td=""></mdl<>
o,p'-DDD	<mdl< td=""><td></td><td></td></mdl<>		
p,p'-DDT	<mql< td=""><td>Total PID Response *</td><td><mdl< td=""></mdl<></td></mql<>	Total PID Response *	<mdl< td=""></mdl<>
p,p'-DDE	27		
p,p'-DDD	<mql< td=""><td></td><td></td></mql<>		
Dieldrin	<mql< td=""><td></td><td></td></mql<>		
Endrin	<mdl< td=""><td></td><td></td></mdl<>		
Methoxychlor	<mdl< td=""><td></td><td></td></mdl<>		
Mirex	0.43		
Endosulfan	20		
Endosulfan-II	19		
Endosulfan Sulfate	<mdl< td=""><td></td><td></td></mdl<>		
Sum of Identified OCs	530		
Total PCBs	<mql< td=""><td></td><td></td></mql<>		

^{*} As pyrene (i.e. total GC-PID response using the response factor of pyrene to quantify)

Total Analytes per Sample (n= 4 SPMDs)

Site # 22 EPA # 79 12913 House # 171524A

OC-Pesticides	ng	PAHs	μg
НСВ	37	Naphthalene	<mql< td=""></mql<>
PCA	56	Acenaphthylene	<mql< td=""></mql<>
α-BHC	2.4	Acenaphthene	0.66
β-ВНС	19	Fluorene	<mdl< td=""></mdl<>
δ-BHC	<mdl< td=""><td>Phenanthrene</td><td>8.6</td></mdl<>	Phenanthrene	8.6
Lindane	56	Anthracene	2.5
Dacthal	<mql< td=""><td>Fluoranthene</td><td>4.4</td></mql<>	Fluoranthene	4.4
Heptachlor	32	Pyrene	10
Heptachlor Epoxide	<mql< td=""><td>Benz[a]anthracene</td><td><mql< td=""></mql<></td></mql<>	Benz[a]anthracene	<mql< td=""></mql<>
Oxychlordane	<mdl< td=""><td>Chrysene</td><td><mql< td=""></mql<></td></mdl<>	Chrysene	<mql< td=""></mql<>
cis-Chlordane	44	Benzo[b]fluoranthene	<mdl< td=""></mdl<>
trans-Chlordane	57	Benzo[k]fluoranthene	<mdl< td=""></mdl<>
cis-Nonachlor	<mql< td=""><td>Benzo[a]pyrene</td><td><mql< td=""></mql<></td></mql<>	Benzo[a]pyrene	<mql< td=""></mql<>
trans-Nonachlor	21	Indeno[1,2,3-cd]pyrene	<mdl< td=""></mdl<>
o,p'-DDT	38	Dibenz[a,h]anthracene	<mdl< td=""></mdl<>
o,p'-DDE	15	Benzo[g,h,i]perylene	<mdl< td=""></mdl<>
o,p'-DDD	<mql< td=""><td></td><td></td></mql<>		
p,p'-DDT	<mql< td=""><td>Total PID Response *</td><td>370</td></mql<>	Total PID Response *	370
p,p'-DDE	120		
p,p'-DDD	<mql< td=""><td></td><td></td></mql<>		
Dieldrin	<mdl< td=""><td></td><td></td></mdl<>		
Endrin	<mql< td=""><td></td><td></td></mql<>		
Methoxychlor	150		
Mirex	<mql< td=""><td></td><td></td></mql<>		
Endosulfan	18		
Endosulfan-II	18		
Endosulfan Sulfate	<mdl< td=""><td></td><td></td></mdl<>		
Sum of Identified OCs	680		
Total PCBs	<mql< td=""><td></td><td></td></mql<>		

^{*} As pyrene (i.e. total GC-PID response using the response factor of pyrene to quantify)

Total Analytes per Sample (n= 4 SPMDs)

Site # 23 EPA # 79 12939 House # 173272A

OC-Pesticides	ng	PAHs	μg
НСВ	20	Naphthalene	1.0
PCA	35	Acenaphthylene	<mdl< td=""></mdl<>
α-BHC	6.4	Acenaphthene	<mql< td=""></mql<>
β-BHC	20	Fluorene	<mdl< td=""></mdl<>
δ-BHC	<mql< td=""><td>Phenanthrene</td><td>1.2</td></mql<>	Phenanthrene	1.2
Lindane	43	Anthracene	<mql< td=""></mql<>
Dacthal	<mql< td=""><td>Fluoranthene</td><td><mql< td=""></mql<></td></mql<>	Fluoranthene	<mql< td=""></mql<>
Heptachlor	20	Pyrene	0.90
Heptachlor Epoxide	<mql< td=""><td>Benz[a]anthracene</td><td><mdl< td=""></mdl<></td></mql<>	Benz[a]anthracene	<mdl< td=""></mdl<>
Oxychlordane	<mql< td=""><td>Chrysene</td><td><mdl< td=""></mdl<></td></mql<>	Chrysene	<mdl< td=""></mdl<>
cis-Chlordane	24	Benzo[b]fluoranthene	<mdl< td=""></mdl<>
trans-Chlordane	32	Benzo[k]fluoranthene	<mdl< td=""></mdl<>
cis-Nonachlor	<mql< td=""><td>Benzo[a]pyrene</td><td><mdl< td=""></mdl<></td></mql<>	Benzo[a]pyrene	<mdl< td=""></mdl<>
trans-Nonachlor	13	Indeno[1,2,3-cd]pyrene	<mdl< td=""></mdl<>
o,p'-DDT	<mql< td=""><td>Dibenz[a,h]anthracene</td><td><mdl< td=""></mdl<></td></mql<>	Dibenz[a,h]anthracene	<mdl< td=""></mdl<>
o,p'-DDE	<mql< td=""><td>Benzo[g,h,i]perylene</td><td><mdl< td=""></mdl<></td></mql<>	Benzo[g,h,i]perylene	<mdl< td=""></mdl<>
o,p'-DDD	<mdl< td=""><td></td><td></td></mdl<>		
p,p'-DDT	<mdl< td=""><td>Total PID Response *</td><td>90</td></mdl<>	Total PID Response *	90
p,p'-DDE	<mdl< td=""><td></td><td></td></mdl<>		
p,p'-DDD	<mdl< td=""><td></td><td></td></mdl<>		
Dieldrin	<mdl< td=""><td></td><td></td></mdl<>		
Endrin	<mdl< td=""><td></td><td></td></mdl<>		
Methoxychlor	<mdl< td=""><td></td><td></td></mdl<>		
Mirex	<mql< td=""><td></td><td></td></mql<>		
Endosulfan	10		
Endosulfan-II	10		
Endosulfan Sulfate	<mdl< td=""><td></td><td></td></mdl<>		
Sum of Identified OCs	230		
Total PCBs	<mql< td=""><td></td><td></td></mql<>		

^{*} As pyrene (i.e. total GC-PID response using the response factor of pyrene to quantify)

Total Analytes per Sample (n= 4 SPMDs)

Site # 24 EPA # 79 12841 House # 172598A

OC-Pesticides	ng	PAHs	μg
НСВ	21	Naphthalene	<mdl< td=""></mdl<>
PCA	16	Acenaphthylene	<mdl< td=""></mdl<>
α-BHC	<mdl< td=""><td>Acenaphthene</td><td><mql< td=""></mql<></td></mdl<>	Acenaphthene	<mql< td=""></mql<>
β-ВНС	<mdl< td=""><td>Fluorene</td><td><mdl< td=""></mdl<></td></mdl<>	Fluorene	<mdl< td=""></mdl<>
δ-BHC	<mql< td=""><td>Phenanthrene</td><td>2.2</td></mql<>	Phenanthrene	2.2
Lindane	41	Anthracene	<mql< td=""></mql<>
Dacthal	<mdl< td=""><td>Fluoranthene</td><td><mql< td=""></mql<></td></mdl<>	Fluoranthene	<mql< td=""></mql<>
Heptachlor	82	Pyrene	0.82
Heptachlor Epoxide	25	Benz[a]anthracene	<mdl< td=""></mdl<>
Oxychlordane	96	Chrysene	<mdl< td=""></mdl<>
cis-Chlordane	200	Benzo[b]fluoranthene	<mdl< td=""></mdl<>
trans-Chlordane	200	Benzo[k]fluoranthene	<mdl< td=""></mdl<>
cis-Nonachlor	38	Benzo[a]pyrene	<mdl< td=""></mdl<>
trans-Nonachlor	110	Indeno[1,2,3-cd]pyrene	<mdl< td=""></mdl<>
o,p'-DDT	53	Dibenz[a,h]anthracene	<mdl< td=""></mdl<>
o,p'-DDE	<mdl< td=""><td>Benzo[g,h,i]perylene</td><td><mdl< td=""></mdl<></td></mdl<>	Benzo[g,h,i]perylene	<mdl< td=""></mdl<>
o,p'-DDD	<mdl< td=""><td></td><td></td></mdl<>		
p,p'-DDT	<mql< td=""><td>Total PID Response *</td><td><mql< td=""></mql<></td></mql<>	Total PID Response *	<mql< td=""></mql<>
p,p'-DDE	110		
p,p'-DDD	<mdl< td=""><td></td><td></td></mdl<>		
Dieldrin	1600		
Endrin	110		
Methoxychlor	<mdl< td=""><td>Additional Compounds</td><td>ng</td></mdl<>	Additional Compounds	ng
Mirex	0.79		
Endosulfan	<mdl< td=""><td>Trifluralin</td><td>67</td></mdl<>	Trifluralin	67
Endosulfan-II	160	Diazinon	700
Endosulfan Sulfate	<mdl< td=""><td>Chlorpyrifos</td><td>38000</td></mdl<>	Chlorpyrifos	38000
		cis-Permethrin	<mdl< td=""></mdl<>
Sum of Identified OCs	2800	trans-Permethrin	<mql< td=""></mql<>
Total PCBs	10000		

^{*} As pyrene (i.e. total GC-PID response using the response factor of pyrene to quantify)

Total Analytes per Sample (n= 4 SPMDs)

Site # 25 EPA # 79 12968 House # 171579A

OC-Pesticides	ng	PAHs	μg
НСВ	62	Naphthalene	<mql< td=""></mql<>
PCA	50	Acenaphthylene	<mql< td=""></mql<>
lpha-BHC	3.6	Acenaphthene	0.58
β-ВНС	<mdl< td=""><td>Fluorene</td><td><mdl< td=""></mdl<></td></mdl<>	Fluorene	<mdl< td=""></mdl<>
δ-BHC	<mql< td=""><td>Phenanthrene</td><td>3.0</td></mql<>	Phenanthrene	3.0
Lindane	370	Anthracene	1.0
Dacthal	<mql< td=""><td>Fluoranthene</td><td><mql< td=""></mql<></td></mql<>	Fluoranthene	<mql< td=""></mql<>
Heptachlor	80	Pyrene	<mql< td=""></mql<>
Heptachlor Epoxide	<mql< td=""><td>Benz[a]anthracene</td><td><mdl< td=""></mdl<></td></mql<>	Benz[a]anthracene	<mdl< td=""></mdl<>
Oxychlordane	<mdl< td=""><td>Chrysene</td><td><mdl< td=""></mdl<></td></mdl<>	Chrysene	<mdl< td=""></mdl<>
cis-Chlordane	180	Benzo[b]fluoranthene	<mdl< td=""></mdl<>
trans-Chlordane	200	Benzo[k]fluoranthene	<mdl< td=""></mdl<>
cis-Nonachlor	12	Benzo[a]pyrene	<mdl< td=""></mdl<>
trans-Nonachlor	110	Indeno[1,2,3-cd]pyrene	<mdl< td=""></mdl<>
o,p'-DDT	<mql< td=""><td>Dibenz[a,h]anthracene</td><td><mdl< td=""></mdl<></td></mql<>	Dibenz[a,h]anthracene	<mdl< td=""></mdl<>
o,p'-DDE	25	Benzo[g,h,i]perylene	<mdl< td=""></mdl<>
o,p'-DDD	28		
p,p'-DDT	<mdl< td=""><td>Total PID Response *</td><td>150</td></mdl<>	Total PID Response *	150
p,p'-DDE	4.6		
p,p'-DDD	<mdl< td=""><td></td><td></td></mdl<>		
Dieldrin	<mdl< td=""><td></td><td></td></mdl<>		
Endrin	40		
Methoxychlor	<mdl< td=""><td></td><td></td></mdl<>		
Mirex	<mql< td=""><td></td><td></td></mql<>		
Endosulfan	15		
Endosulfan-II	90		
Endosulfan Sulfate	<mdl< td=""><td></td><td></td></mdl<>		
Sum of Identified OCs	1300		
Total PCBs	<mql< td=""><td></td><td></td></mql<>		

^{*} As pyrene (i.e. total GC-PID response using the response factor of pyrene to quantify)

Total Analytes per Sample (n= 4 SPMDs)

Site # 26 EPA # 79 13121 House # 172152A

OC-Pesticides	ng	PAHs	μg
НСВ	17	Naphthalene	2.3
PCA	69	Acenaphthylene	<mql< td=""></mql<>
α-BHC	6.4	Acenaphthene	<mdl< td=""></mdl<>
β-BHC	<mdl< td=""><td>Fluorene</td><td><mdl< td=""></mdl<></td></mdl<>	Fluorene	<mdl< td=""></mdl<>
δ-BHC	<mdl< td=""><td>Phenanthrene</td><td>1.1</td></mdl<>	Phenanthrene	1.1
Lindane	<mql< td=""><td>Anthracene</td><td><mdl< td=""></mdl<></td></mql<>	Anthracene	<mdl< td=""></mdl<>
Dacthal	<mql< td=""><td>Fluoranthene</td><td><mdl< td=""></mdl<></td></mql<>	Fluoranthene	<mdl< td=""></mdl<>
Heptachlor	2.0	Pyrene	<mdl< td=""></mdl<>
Heptachlor Epoxide	<mdl< td=""><td>Benz[a]anthracene</td><td><mdl< td=""></mdl<></td></mdl<>	Benz[a]anthracene	<mdl< td=""></mdl<>
Oxychlordane	<mdl< td=""><td>Chrysene</td><td><mdl< td=""></mdl<></td></mdl<>	Chrysene	<mdl< td=""></mdl<>
cis-Chlordane	16	Benzo[b]fluoranthene	<mdl< td=""></mdl<>
trans-Chlordane	20	Benzo[k]fluoranthene	<mdl< td=""></mdl<>
cis-Nonachlor	<mdl< td=""><td>Benzo[a]pyrene</td><td><mql< td=""></mql<></td></mdl<>	Benzo[a]pyrene	<mql< td=""></mql<>
trans-Nonachlor	19	Indeno[1,2,3-cd]pyrene	<mql< td=""></mql<>
o,p'-DDT	<mdl< td=""><td>Dibenz[a,h]anthracene</td><td><mdl< td=""></mdl<></td></mdl<>	Dibenz[a,h]anthracene	<mdl< td=""></mdl<>
o,p'-DDE	8.3	Benzo[g,h,i]perylene	<mdl< td=""></mdl<>
o,p'-DDD	<mdl< td=""><td></td><td></td></mdl<>		
p,p'-DDT	<mdl< td=""><td>Total PID Response *</td><td><mql< td=""></mql<></td></mdl<>	Total PID Response *	<mql< td=""></mql<>
p,p'-DDE	2.2		
p,p'-DDD	<mdl< td=""><td></td><td></td></mdl<>		
Dieldrin	<mdl< td=""><td></td><td></td></mdl<>		
Endrin	<mdl< td=""><td></td><td></td></mdl<>		
Methoxychlor	<mdl< td=""><td></td><td></td></mdl<>		
Mirex	<mql< td=""><td></td><td></td></mql<>		
Endosulfan	25		
Endosulfan-II	5.0		
Endosulfan Sulfate	<mdl< td=""><td></td><td></td></mdl<>		
Sum of Identified OCs	190		
Total PCBs	<mdl< td=""><td></td><td></td></mdl<>		

^{*} As pyrene (i.e. total GC-PID response using the response factor of pyrene to quantify)

Total Analytes per Sample (n= 4 SPMDs)

Site # 27 EPA # 79 14182 House # 171393A

OC-Pesticides	ng	PAHs	μg
НСВ	35	Naphthalene	<mql< td=""></mql<>
PCA	37	Acenaphthylene	<mql< td=""></mql<>
α-BHC	3.6	Acenaphthene	<mql< td=""></mql<>
β-ВНС	17	Fluorene	<mdl< td=""></mdl<>
δ-BHC	<mdl< td=""><td>Phenanthrene</td><td>3.4</td></mdl<>	Phenanthrene	3.4
Lindane	77	Anthracene	0.72
Dacthal	<mdl< td=""><td>Fluoranthene</td><td>1.9</td></mdl<>	Fluoranthene	1.9
Heptachlor	77	Pyrene	2.8
Heptachlor Epoxide	<mdl< td=""><td>Benz[a]anthracene</td><td><mdl< td=""></mdl<></td></mdl<>	Benz[a]anthracene	<mdl< td=""></mdl<>
Oxychlordane	<mdl< td=""><td>Chrysene</td><td><mql< td=""></mql<></td></mdl<>	Chrysene	<mql< td=""></mql<>
cis-Chlordane	30	Benzo[b]fluoranthene	<mdl< td=""></mdl<>
trans-Chlordane	42	Benzo[k]fluoranthene	<mdl< td=""></mdl<>
cis-Nonachlor	<mdl< td=""><td>Benzo[a]pyrene</td><td><mdl< td=""></mdl<></td></mdl<>	Benzo[a]pyrene	<mdl< td=""></mdl<>
trans-Nonachlor	18	Indeno[1,2,3-cd]pyrene	<mdl< td=""></mdl<>
o,p'-DDT	45	Dibenz[a,h]anthracene	<mdl< td=""></mdl<>
o,p'-DDE	8.4	Benzo[g,h,i]perylene	<mdl< td=""></mdl<>
o,p'-DDD	17		
p,p'-DDT	<mql< td=""><td>Total PID Response *</td><td>170</td></mql<>	Total PID Response *	170
p,p'-DDE	73		
p,p'-DDD	<mql< td=""><td></td><td></td></mql<>		
Dieldrin	<mql< td=""><td></td><td></td></mql<>		
Endrin	<mdl< td=""><td></td><td></td></mdl<>		
Methoxychlor	<mdl< td=""><td></td><td></td></mdl<>		
Mirex	0.31		
Endosulfan	15		
Endosulfan-II	13		
Endosulfan Sulfate	<mdl< td=""><td></td><td></td></mdl<>		
Sum of Identified OCs	510		
Total PCBs	<mql< td=""><td></td><td></td></mql<>		

^{*} As pyrene (i.e. total GC-PID response using the response factor of pyrene to quantify)

Total Analytes per Sample (n= 4 SPMDs)

Site # 28 EPA # 79 13176 House # 673147A

OC-Pesticides	ng	PAHs	μg
НСВ	30	Naphthalene	<mql< td=""></mql<>
PCA	170	Acenaphthylene	<mdl< td=""></mdl<>
α-BHC	2.4	Acenaphthene	<mql< td=""></mql<>
β-BHC	<mdl< td=""><td>Fluorene</td><td><mdl< td=""></mdl<></td></mdl<>	Fluorene	<mdl< td=""></mdl<>
δ-BHC	150	Phenanthrene	1.6
Lindane	52	Anthracene	<mql< td=""></mql<>
Dacthal	160	Fluoranthene	<mql< td=""></mql<>
Heptachlor	420	Pyrene	0.76
Heptachlor Epoxide	170	Benz[a]anthracene	<mdl< td=""></mdl<>
Oxychlordane	38	Chrysene	<mdl< td=""></mdl<>
cis-Chlordane	1100	Benzo[b]fluoranthene	<mdl< td=""></mdl<>
trans-Chlordane	1400	Benzo[k]fluoranthene	<mdl< td=""></mdl<>
cis-Nonachlor	55	Benzo[a]pyrene	<mdl< td=""></mdl<>
trans-Nonachlor	730	Indeno[1,2,3-cd]pyrene	<mql< td=""></mql<>
o,p'-DDT	61	Dibenz[a,h]anthracene	<mdl< td=""></mdl<>
o,p'-DDE	120	Benzo[g,h,i]perylene	<mdl< td=""></mdl<>
o,p'-DDD	<mql< td=""><td></td><td></td></mql<>		
p,p'-DDT	<mql< td=""><td>Total PID Response *</td><td>94</td></mql<>	Total PID Response *	94
p,p'-DDE	24		
p,p'-DDD	<mql< td=""><td></td><td></td></mql<>		
Dieldrin	110		
Endrin	110		
Methoxychlor	<mdl< td=""><td></td><td></td></mdl<>		
Mirex	12.7		
Endosulfan	78		
Endosulfan-II	260		
Endosulfan Sulfate	<mdl< td=""><td></td><td></td></mdl<>		
Sum of Identified OCs	5300		
Total PCBs	8700		

^{*} As pyrene (i.e. total GC-PID response using the response factor of pyrene to quantify)

Total Analytes per Sample (n= 4 SPMDs)

Site # 29 EPA # 79 13235 House # 673831A

OC-Pesticides	ng	PAHs	μg
НСВ	26	Naphthalene	0.72
PCA	120	Acenaphthylene	<mdl< td=""></mdl<>
α-BHC	3.0	Acenaphthene	<mql< td=""></mql<>
β-ВНС	<mdl< td=""><td>Fluorene</td><td><mdl< td=""></mdl<></td></mdl<>	Fluorene	<mdl< td=""></mdl<>
δ-BHC	<mdl< td=""><td>Phenanthrene</td><td>1.9</td></mdl<>	Phenanthrene	1.9
Lindane	21	Anthracene	<mql< td=""></mql<>
Dacthal	<mql< td=""><td>Fluoranthene</td><td><mql< td=""></mql<></td></mql<>	Fluoranthene	<mql< td=""></mql<>
Heptachlor	44	Pyrene	0.88
Heptachlor Epoxide	<mql< td=""><td>Benz[a]anthracene</td><td><mdl< td=""></mdl<></td></mql<>	Benz[a]anthracene	<mdl< td=""></mdl<>
Oxychlordane	<mdl< td=""><td>Chrysene</td><td><mdl< td=""></mdl<></td></mdl<>	Chrysene	<mdl< td=""></mdl<>
cis-Chlordane	49	Benzo[b]fluoranthene	<mdl< td=""></mdl<>
trans-Chlordane	88	Benzo[k]fluoranthene	<mdl< td=""></mdl<>
cis-Nonachlor	<mql< td=""><td>Benzo[a]pyrene</td><td><mdl< td=""></mdl<></td></mql<>	Benzo[a]pyrene	<mdl< td=""></mdl<>
trans-Nonachlor	34	Indeno[1,2,3-cd]pyrene	<mql< td=""></mql<>
o,p'-DDT	430	Dibenz[a,h]anthracene	<mdl< td=""></mdl<>
o,p'-DDE	23	Benzo[g,h,i]perylene	<mdl< td=""></mdl<>
o,p'-DDD	<mql< td=""><td></td><td></td></mql<>		
p,p'-DDT	510	Total PID Response *	<mql< td=""></mql<>
p,p'-DDE	84		
p,p'-DDD	<mql< td=""><td></td><td></td></mql<>		
Dieldrin	<mql< td=""><td></td><td></td></mql<>		
Endrin	<mql< td=""><td></td><td></td></mql<>		
Methoxychlor	<mdl< td=""><td></td><td></td></mdl<>		
Mirex	0.95		
Endosulfan	37		
Endosulfan-II	28		
Endosulfan Sulfate	<mdl< td=""><td></td><td></td></mdl<>		
Sum of Identified OCs	1500		
Total PCBs	<mql< td=""><td></td><td></td></mql<>		

^{*} As pyrene (i.e. total GC-PID response using the response factor of pyrene to quantify)

Total Analytes per Sample (n= 4 SPMDs)

Site # 30 EPA # 79 13424 House # 731371A

OC-Pesticides	ng	PAHs	μg
НСВ	34	Naphthalene	<mdl< td=""></mdl<>
PCA	17	Acenaphthylene	<mdl< td=""></mdl<>
α-BHC	<mdl< td=""><td>Acenaphthene</td><td><mql< td=""></mql<></td></mdl<>	Acenaphthene	<mql< td=""></mql<>
β-ВНС	19	Fluorene	<mdl< td=""></mdl<>
δ-BHC	<mdl< td=""><td>Phenanthrene</td><td>1.2</td></mdl<>	Phenanthrene	1.2
Lindane	<mql< td=""><td>Anthracene</td><td><mql< td=""></mql<></td></mql<>	Anthracene	<mql< td=""></mql<>
Dacthal	58	Fluoranthene	<mql< td=""></mql<>
Heptachlor	3.6	Pyrene	<mql< td=""></mql<>
Heptachlor Epoxide	<mdl< td=""><td>Benz[a]anthracene</td><td><mdl< td=""></mdl<></td></mdl<>	Benz[a]anthracene	<mdl< td=""></mdl<>
Oxychlordane	<mdl< td=""><td>Chrysene</td><td><mdl< td=""></mdl<></td></mdl<>	Chrysene	<mdl< td=""></mdl<>
cis-Chlordane	<mql< td=""><td>Benzo[b]fluoranthene</td><td><mdl< td=""></mdl<></td></mql<>	Benzo[b]fluoranthene	<mdl< td=""></mdl<>
trans-Chlordane	8.9	Benzo[k]fluoranthene	<mdl< td=""></mdl<>
cis-Nonachlor	<mdl< td=""><td>Benzo[a]pyrene</td><td><mdl< td=""></mdl<></td></mdl<>	Benzo[a]pyrene	<mdl< td=""></mdl<>
trans-Nonachlor	4.1	Indeno[1,2,3-cd]pyrene	<mdl< td=""></mdl<>
o,p'-DDT	<mdl< td=""><td>Dibenz[a,h]anthracene</td><td><mdl< td=""></mdl<></td></mdl<>	Dibenz[a,h]anthracene	<mdl< td=""></mdl<>
o,p'-DDE	<mql< td=""><td>Benzo[g,h,i]perylene</td><td><mdl< td=""></mdl<></td></mql<>	Benzo[g,h,i]perylene	<mdl< td=""></mdl<>
o,p'-DDD	<mdl< td=""><td></td><td></td></mdl<>		
p,p'-DDT	<mdl< td=""><td>Total PID Response *</td><td>110</td></mdl<>	Total PID Response *	110
p,p'-DDE	16		
p,p'-DDD	<mdl< td=""><td></td><td></td></mdl<>		
Dieldrin	<mdl< td=""><td></td><td></td></mdl<>		
Endrin	22		
Methoxychlor	<mdl< td=""><td></td><td></td></mdl<>		
Mirex	<mql< td=""><td></td><td></td></mql<>		
Endosulfan	170		
Endosulfan-II	12		
Endosulfan Sulfate	<mdl< td=""><td></td><td></td></mdl<>		
Sum of Identified OCs	360		
Total PCBs	<mdl< td=""><td></td><td></td></mdl<>		

^{*} As pyrene (i.e. total GC-PID response using the response factor of pyrene to quantify)

Total Analytes per Sample (n= 4 SPMDs)

Site # 31 EPA # 79 13219 House # 673596A

OC-Pesticides	ng	PAHs	μg
НСВ	47	Naphthalene	<mql< td=""></mql<>
PCA	81	Acenaphthylene	2.3
α-BHC	3.9	Acenaphthene	<mql< td=""></mql<>
β-BHC	32	Fluorene	<mdl< td=""></mdl<>
δ-BHC	<mql< td=""><td>Phenanthrene</td><td>4.7</td></mql<>	Phenanthrene	4.7
Lindane	31	Anthracene	1.2
Dacthal	<mql< td=""><td>Fluoranthene</td><td>1.2</td></mql<>	Fluoranthene	1.2
Heptachlor	83	Pyrene	1.4
Heptachlor Epoxide	25	Benz[a]anthracene	0.88
Oxychlordane	<mdl< td=""><td>Chrysene</td><td>0.53</td></mdl<>	Chrysene	0.53
cis-Chlordane	280	Benzo[b]fluoranthene	<mdl< td=""></mdl<>
trans-Chlordane	310	Benzo[k]fluoranthene	<mdl< td=""></mdl<>
cis-Nonachlor	20	Benzo[a]pyrene	<mdl< td=""></mdl<>
trans-Nonachlor	190	Indeno[1,2,3-cd]pyrene	<mdl< td=""></mdl<>
o,p'-DDT	20	Dibenz[a,h]anthracene	<mql< td=""></mql<>
o,p'-DDE	39	Benzo[g,h,i]perylene	<mdl< td=""></mdl<>
o,p'-DDD	13		
p,p'-DDT	<mdl< td=""><td>Total PID Response *</td><td>420</td></mdl<>	Total PID Response *	420
p,p'-DDE	60		
p,p'-DDD	<mql< td=""><td></td><td></td></mql<>		
Dieldrin	140		
Endrin	21		
Methoxychlor	<mdl< td=""><td></td><td></td></mdl<>		
Mirex	<mdl< td=""><td></td><td></td></mdl<>		
Endosulfan	16		
Endosulfan-II	110		
Endosulfan Sulfate	<mql< td=""><td></td><td></td></mql<>		
Sum of Identified OCs	1500		
Total PCBs	1500		

^{*} As pyrene (i.e. total GC-PID response using the response factor of pyrene to quantify)

Total Analytes per Sample (n= 4 SPMDs)

Site # 32 EPA # 79 13482 House # 172989A

OC-Pesticides	ng	PAHs	μg
НСВ	16	Naphthalene	<mdl< td=""></mdl<>
PCA	30	Acenaphthylene	<mdl< td=""></mdl<>
α-BHC	9.2	Acenaphthene	<mql< td=""></mql<>
β-ВНС	<mdl< td=""><td>Fluorene</td><td><mdl< td=""></mdl<></td></mdl<>	Fluorene	<mdl< td=""></mdl<>
δ-BHC	<mdl< td=""><td>Phenanthrene</td><td>2.6</td></mdl<>	Phenanthrene	2.6
Lindane	<mql< td=""><td>Anthracene</td><td><mql< td=""></mql<></td></mql<>	Anthracene	<mql< td=""></mql<>
Dacthal	<mdl< td=""><td>Fluoranthene</td><td>1.3</td></mdl<>	Fluoranthene	1.3
Heptachlor	6.8	Pyrene	1.1
Heptachlor Epoxide	<mdl< td=""><td>Benz[a]anthracene</td><td><mdl< td=""></mdl<></td></mdl<>	Benz[a]anthracene	<mdl< td=""></mdl<>
Oxychlordane	<mdl< td=""><td>Chrysene</td><td><mdl< td=""></mdl<></td></mdl<>	Chrysene	<mdl< td=""></mdl<>
cis-Chlordane	<mdl< td=""><td>Benzo[b]fluoranthene</td><td><mdl< td=""></mdl<></td></mdl<>	Benzo[b]fluoranthene	<mdl< td=""></mdl<>
trans-Chlordane	<mdl< td=""><td>Benzo[k]fluoranthene</td><td><mdl< td=""></mdl<></td></mdl<>	Benzo[k]fluoranthene	<mdl< td=""></mdl<>
cis-Nonachlor	10	Benzo[a]pyrene	<mdl< td=""></mdl<>
trans-Nonachlor	<mdl< td=""><td>Indeno[1,2,3-cd]pyrene</td><td><mdl< td=""></mdl<></td></mdl<>	Indeno[1,2,3-cd]pyrene	<mdl< td=""></mdl<>
o,p'-DDT	13	Dibenz[a,h]anthracene	<mdl< td=""></mdl<>
o,p'-DDE	<mdl< td=""><td>Benzo[g,h,i]perylene</td><td><mdl< td=""></mdl<></td></mdl<>	Benzo[g,h,i]perylene	<mdl< td=""></mdl<>
o,p'-DDD	<mdl< td=""><td></td><td></td></mdl<>		
p,p'-DDT	<mdl< td=""><td>Total PID Response *</td><td>450</td></mdl<>	Total PID Response *	450
p,p'-DDE	35		
p,p'-DDD	<mdl< td=""><td></td><td></td></mdl<>		
Dieldrin	<mdl< td=""><td></td><td></td></mdl<>		
Endrin	<mdl< td=""><td></td><td></td></mdl<>		
Methoxychlor	<mdl< td=""><td>Additional Compounds</td><td>ng</td></mdl<>	Additional Compounds	ng
Mirex	<mdl< td=""><td></td><td></td></mdl<>		
Endosulfan	<mql< td=""><td>Trifluralin</td><td>65</td></mql<>	Trifluralin	65
Endosulfan-II	<mdl< td=""><td>Diazinon</td><td>490</td></mdl<>	Diazinon	490
Endosulfan Sulfate	<mdl< td=""><td>Chlorpyrifos</td><td>380</td></mdl<>	Chlorpyrifos	380
		cis-Permethrin	<mql< td=""></mql<>
Sum of Identified OCs	120	trans-Permethrin	<mql< td=""></mql<>
Total PCBs	<mql< td=""><td></td><td></td></mql<>		

^{*} As pyrene (i.e. total GC-PID response using the response factor of pyrene to quantify)

Total Analytes per Sample (n= 4 SPMDs)

Site # 33 EPA # 79 13189 House # 672434A

OC-Pesticides	ng	PAHs	μg
НСВ	22	Naphthalene	<mql< td=""></mql<>
PCA	120	Acenaphthylene	<mdl< td=""></mdl<>
α-BHC	3.7	Acenaphthene	<mql< td=""></mql<>
β-BHC	<mql< td=""><td>Fluorene</td><td><mdl< td=""></mdl<></td></mql<>	Fluorene	<mdl< td=""></mdl<>
δ-BHC	<mdl< td=""><td>Phenanthrene</td><td>2.5</td></mdl<>	Phenanthrene	2.5
Lindane	23	Anthracene	0.48
Dacthal	<mql< td=""><td>Fluoranthene</td><td>1.1</td></mql<>	Fluoranthene	1.1
Heptachlor	41	Pyrene	1.6
Heptachlor Epoxide	<mql< td=""><td>Benz[a]anthracene</td><td><mdl< td=""></mdl<></td></mql<>	Benz[a]anthracene	<mdl< td=""></mdl<>
Oxychlordane	<mql< td=""><td>Chrysene</td><td><mdl< td=""></mdl<></td></mql<>	Chrysene	<mdl< td=""></mdl<>
cis-Chlordane	54	Benzo[b]fluoranthene	<mdl< td=""></mdl<>
trans-Chlordane	87	Benzo[k]fluoranthene	<mdl< td=""></mdl<>
cis-Nonachlor	11	Benzo[a]pyrene	<mdl< td=""></mdl<>
trans-Nonachlor	41	Indeno[1,2,3-cd]pyrene	<mdl< td=""></mdl<>
o,p'-DDT	82	Dibenz[a,h]anthracene	<mdl< td=""></mdl<>
o,p'-DDE	22	Benzo[g,h,i]perylene	<mdl< td=""></mdl<>
o,p'-DDD	15		
p,p'-DDT	150	Total PID Response *	160
p,p'-DDE	78		
p,p'-DDD	8.6		
Dieldrin	290		
Endrin	<mql< td=""><td></td><td></td></mql<>		
Methoxychlor	<mdl< td=""><td></td><td></td></mdl<>		
Mirex	<mql< td=""><td></td><td></td></mql<>		
Endosulfan	24		
Endosulfan-II	22		
Endosulfan Sulfate	<mdl< td=""><td></td><td></td></mdl<>		
Sum of Identified OCs	1100		
Total PCBs	<mql< td=""><td></td><td></td></mql<>		

^{*} As pyrene (i.e. total GC-PID response using the response factor of pyrene to quantify)

Total Analytes per Sample (n= 4 SPMDs)

Site # 34 EPA # 79 13453 House # 172846A

OC-Pesticides	ng	PAHs	μg
НСВ	26	Naphthalene	<mdl< td=""></mdl<>
PCA	160	Acenaphthylene	<mdl< td=""></mdl<>
α-BHC	<mdl< td=""><td>Acenaphthene</td><td><mdl< td=""></mdl<></td></mdl<>	Acenaphthene	<mdl< td=""></mdl<>
β-BHC	13	Fluorene	<mdl< td=""></mdl<>
δ-BHC	<mql< td=""><td>Phenanthrene</td><td><mql< td=""></mql<></td></mql<>	Phenanthrene	<mql< td=""></mql<>
Lindane	45	Anthracene	<mql< td=""></mql<>
Dacthal	<mdl< td=""><td>Fluoranthene</td><td><mdl< td=""></mdl<></td></mdl<>	Fluoranthene	<mdl< td=""></mdl<>
Heptachlor	60	Pyrene	<mdl< td=""></mdl<>
Heptachlor Epoxide	<mdl< td=""><td>Benz[a]anthracene</td><td><mql< td=""></mql<></td></mdl<>	Benz[a]anthracene	<mql< td=""></mql<>
Oxychlordane	<mql< td=""><td>Chrysene</td><td><mql< td=""></mql<></td></mql<>	Chrysene	<mql< td=""></mql<>
cis-Chlordane	28	Benzo[b]fluoranthene	<mql< td=""></mql<>
trans-Chlordane	43	Benzo[k]fluoranthene	<mdl< td=""></mdl<>
cis-Nonachlor	<mdl< td=""><td>Benzo[a]pyrene</td><td><mdl< td=""></mdl<></td></mdl<>	Benzo[a]pyrene	<mdl< td=""></mdl<>
trans-Nonachlor	24	Indeno[1,2,3-cd]pyrene	<mdl< td=""></mdl<>
o,p'-DDT	<mql< td=""><td>Dibenz[a,h]anthracene</td><td><mql< td=""></mql<></td></mql<>	Dibenz[a,h]anthracene	<mql< td=""></mql<>
o,p'-DDE	<mdl< td=""><td>Benzo[g,h,i]perylene</td><td><mdl< td=""></mdl<></td></mdl<>	Benzo[g,h,i]perylene	<mdl< td=""></mdl<>
o,p'-DDD	20		
p,p'-DDT	<mdl< td=""><td>Total PID Response *</td><td>260</td></mdl<>	Total PID Response *	260
p,p'-DDE	7.3		
p,p'-DDD	<mql< td=""><td></td><td></td></mql<>		
Dieldrin	<mdl< td=""><td></td><td></td></mdl<>		
Endrin	<mdl< td=""><td></td><td></td></mdl<>		
Methoxychlor	<mdl< td=""><td></td><td></td></mdl<>		
Mirex	0.69		
Endosulfan	<mdl< td=""><td></td><td></td></mdl<>		
Endosulfan-II	16		
Endosulfan Sulfate	<mdl< td=""><td></td><td></td></mdl<>		
Sum of Identified OCs	440		
Total PCBs	1400		

^{*} As pyrene (i.e. total GC-PID response using the response factor of pyrene to quantify)

Total Analytes per Sample (n= 4 SPMDs)

Site # 35 EPA # 79 14153 House # 732387A

OC-Pesticides	ng	PAHs	μg
НСВ	32	Naphthalene	<mql< td=""></mql<>
PCA	25	Acenaphthylene	<mdl< td=""></mdl<>
α-BHC	3.0	Acenaphthene	<mql< td=""></mql<>
β-ВНС	6.3	Fluorene	<mdl< td=""></mdl<>
δ-BHC	<mdl< td=""><td>Phenanthrene</td><td>3.4</td></mdl<>	Phenanthrene	3.4
Lindane	<mql< td=""><td>Anthracene</td><td>0.7</td></mql<>	Anthracene	0.7
Dacthal	<mql< td=""><td>Fluoranthene</td><td>1.3</td></mql<>	Fluoranthene	1.3
Heptachlor	5.9	Pyrene	1.8
Heptachlor Epoxide	<mdl< td=""><td>Benz[a]anthracene</td><td><mdl< td=""></mdl<></td></mdl<>	Benz[a]anthracene	<mdl< td=""></mdl<>
Oxychlordane	<mdl< td=""><td>Chrysene</td><td><mdl< td=""></mdl<></td></mdl<>	Chrysene	<mdl< td=""></mdl<>
cis-Chlordane	17	Benzo[b]fluoranthene	<mdl< td=""></mdl<>
trans-Chlordane	26	Benzo[k]fluoranthene	<mdl< td=""></mdl<>
cis-Nonachlor	<mdl< td=""><td>Benzo[a]pyrene</td><td><mdl< td=""></mdl<></td></mdl<>	Benzo[a]pyrene	<mdl< td=""></mdl<>
trans-Nonachlor	13	Indeno[1,2,3-cd]pyrene	<mdl< td=""></mdl<>
o,p'-DDT	12	Dibenz[a,h]anthracene	<mdl< td=""></mdl<>
o,p'-DDE	<mql< td=""><td>Benzo[g,h,i]perylene</td><td><mdl< td=""></mdl<></td></mql<>	Benzo[g,h,i]perylene	<mdl< td=""></mdl<>
o,p'-DDD	<mdl< td=""><td></td><td></td></mdl<>		
p,p'-DDT	<mdl< td=""><td>Total PID Response *</td><td><mql< td=""></mql<></td></mdl<>	Total PID Response *	<mql< td=""></mql<>
p,p'-DDE	86		
p,p'-DDD	<mdl< td=""><td></td><td></td></mdl<>		
Dieldrin	<mql< td=""><td></td><td></td></mql<>		
Endrin	<mdl< td=""><td></td><td></td></mdl<>		
Methoxychlor	<mdl< td=""><td></td><td></td></mdl<>		
Mirex	1.0		
Endosulfan	130		
Endosulfan-II	25		
Endosulfan Sulfate	<mdl< td=""><td></td><td></td></mdl<>		
Sum of Identified OCs	380		
Total PCBs	<mql< td=""><td></td><td></td></mql<>		

^{*} As pyrene (i.e. total GC-PID response using the response factor of pyrene to quantify)

Total Analytes per Sample (n= 4 SPMDs)

Site # 37 EPA # 79 13264 House # 172383A

OC-Pesticides	ng	PAHs	μg
НСВ	120	Naphthalene	<mql< td=""></mql<>
PCA	56	Acenaphthylene	<mdl< td=""></mdl<>
α-BHC	2.0	Acenaphthene	<mql< td=""></mql<>
β-ВНС	<mdl< td=""><td>Fluorene</td><td><mdl< td=""></mdl<></td></mdl<>	Fluorene	<mdl< td=""></mdl<>
δ-BHC	<mql< td=""><td>Phenanthrene</td><td>2.9</td></mql<>	Phenanthrene	2.9
Lindane	26	Anthracene	0.58
Dacthal	<mql< td=""><td>Fluoranthene</td><td><mql< td=""></mql<></td></mql<>	Fluoranthene	<mql< td=""></mql<>
Heptachlor	110	Pyrene	1.0
Heptachlor Epoxide	69	Benz[a]anthracene	<mdl< td=""></mdl<>
Oxychlordane	<mdl< td=""><td>Chrysene</td><td><mdl< td=""></mdl<></td></mdl<>	Chrysene	<mdl< td=""></mdl<>
cis-Chlordane	490	Benzo[b]fluoranthene	<mdl< td=""></mdl<>
trans-Chlordane	520	Benzo[k]fluoranthene	<mdl< td=""></mdl<>
cis-Nonachlor	40	Benzo[a]pyrene	<mdl< td=""></mdl<>
trans-Nonachlor	280	Indeno[1,2,3-cd]pyrene	<mdl< td=""></mdl<>
o,p'-DDT	230	Dibenz[a,h]anthracene	<mdl< td=""></mdl<>
o,p'-DDE	78	Benzo[g,h,i]perylene	<mdl< td=""></mdl<>
o,p'-DDD	<mql< td=""><td></td><td></td></mql<>		
p,p'-DDT	350	Total PID Response *	150
p,p'-DDE	130		
p,p'-DDD	11		
Dieldrin	<mdl< td=""><td></td><td></td></mdl<>		
Endrin	30		
Methoxychlor	<mdl< td=""><td></td><td></td></mdl<>		
Mirex	0.77		
Endosulfan	34		
Endosulfan-II	260		
Endosulfan Sulfate	<mdl< td=""><td></td><td></td></mdl<>		
Sum of Identified OCs	2800		
Total PCBs	2300		

^{*} As pyrene (i.e. total GC-PID response using the response factor of pyrene to quantify)

Total Analytes per Sample (n= 4 SPMDs)

Site # 38 EPA # 79 13714 House # 173285A

OC-Pesticides	ng	PAHs	μg
НСВ	14	Naphthalene	<mql< td=""></mql<>
PCA	240	Acenaphthylene	<mql< td=""></mql<>
α-BHC	9.5	Acenaphthene	<mql< td=""></mql<>
β-BHC	<mdl< td=""><td>Fluorene</td><td><mql< td=""></mql<></td></mdl<>	Fluorene	<mql< td=""></mql<>
δ-BHC	<mdl< td=""><td>Phenanthrene</td><td>8.1</td></mdl<>	Phenanthrene	8.1
Lindane	81	Anthracene	1.3
Dacthal	<mdl< td=""><td>Fluoranthene</td><td>1.2</td></mdl<>	Fluoranthene	1.2
Heptachlor	41	Pyrene	1.4
Heptachlor Epoxide	<mdl< td=""><td>Benz[a]anthracene</td><td><mdl< td=""></mdl<></td></mdl<>	Benz[a]anthracene	<mdl< td=""></mdl<>
Oxychlordane	<mdl< td=""><td>Chrysene</td><td><mdl< td=""></mdl<></td></mdl<>	Chrysene	<mdl< td=""></mdl<>
cis-Chlordane	60	Benzo[b]fluoranthene	<mdl< td=""></mdl<>
trans-Chlordane	86	Benzo[k]fluoranthene	<mdl< td=""></mdl<>
cis-Nonachlor	<mql< td=""><td>Benzo[a]pyrene</td><td><mdl< td=""></mdl<></td></mql<>	Benzo[a]pyrene	<mdl< td=""></mdl<>
trans-Nonachlor	30	Indeno[1,2,3-cd]pyrene	<mdl< td=""></mdl<>
o,p'-DDT	180	Dibenz[a,h]anthracene	<mdl< td=""></mdl<>
o,p'-DDE	<mdl< td=""><td>Benzo[g,h,i]perylene</td><td><mdl< td=""></mdl<></td></mdl<>	Benzo[g,h,i]perylene	<mdl< td=""></mdl<>
o,p'-DDD	<mdl< td=""><td></td><td></td></mdl<>		
p,p'-DDT	92	Total PID Response *	350
p,p'-DDE	510		
p,p'-DDD	8.9		
Dieldrin	<mql< td=""><td></td><td></td></mql<>		
Endrin	<mql< td=""><td></td><td></td></mql<>		
Methoxychlor	<mdl< td=""><td>Additional Compounds</td><td>ng</td></mdl<>	Additional Compounds	ng
Mirex	0.67		
Endosulfan	10	Trifluralin	<mdl< td=""></mdl<>
Endosulfan-II	14	Diazinon	4000
Endosulfan Sulfate	<mdl< td=""><td>Chlorpyrifos</td><td>58</td></mdl<>	Chlorpyrifos	58
		cis-Permethrin	<mql< td=""></mql<>
Sum of Identified OCs	1400	trans-Permethrin	<mql< td=""></mql<>
Total PCBs	<mql< td=""><td></td><td></td></mql<>		

^{*} As pyrene (i.e. total GC-PID response using the response factor of pyrene to quantify)

Total Analytes per Sample (n= 4 SPMDs)

Site # 39 EPA # 79 13147 House # 671369A

OC-Pesticides	ng	PAHs	μg
HCB	27	Naphthalene	3.1
PCA	100	Acenaphthylene	<mdl< td=""></mdl<>
α-BHC	4.7	Acenaphthene	<mql< td=""></mql<>
β-BHC	<mdl< td=""><td>Fluorene</td><td><mql< td=""></mql<></td></mdl<>	Fluorene	<mql< td=""></mql<>
δ-BHC	<mql< td=""><td>Phenanthrene</td><td>2.6</td></mql<>	Phenanthrene	2.6
Lindane	200	Anthracene	<mql< td=""></mql<>
Dacthal	12	Fluoranthene	1.9
Heptachlor	40	Pyrene	1.4
Heptachlor Epoxide	29	Benz[a]anthracene	2.6
Oxychlordane	<mdl< td=""><td>Chrysene</td><td><mdl< td=""></mdl<></td></mdl<>	Chrysene	<mdl< td=""></mdl<>
cis-Chlordane	260	Benzo[b]fluoranthene	<mdl< td=""></mdl<>
trans-Chlordane	270	Benzo[k]fluoranthene	<mql< td=""></mql<>
cis-Nonachlor	16	Benzo[a]pyrene	<mdl< td=""></mdl<>
trans-Nonachlor	84	Indeno[1,2,3-cd]pyrene	<mql< td=""></mql<>
o,p'-DDT	390	Dibenz[a,h]anthracene	<mdl< td=""></mdl<>
o,p'-DDE	100	Benzo[g,h,i]perylene	<mdl< td=""></mdl<>
o,p'-DDD	30		
p,p'-DDT	710	Total PID Response *	290
p,p'-DDE	810		
p,p'-DDD	18		
Dieldrin	260		
Endrin	19		
Methoxychlor	<mql< td=""><td></td><td></td></mql<>		
Mirex	7.4		
Endosulfan	11		
Endosulfan-II	130		
Endosulfan Sulfate	<mdl< td=""><td></td><td></td></mdl<>		
Sum of Identified OCs	3500		
Total PCBs	3100		

^{*} As pyrene (i.e. total GC-PID response using the response factor of pyrene to quantify)

Total Analytes per Sample (n= 4 SPMDs)

Site # 40 EPA # 79 14241 House # 172716A

OC-Pesticides	ng	PAHs	μg
HCB	22	Naphthalene	<mql< td=""></mql<>
PCA	120	Acenaphthylene	<mdl< td=""></mdl<>
α-BHC	4.7	Acenaphthene	<mql< td=""></mql<>
β-ВНС	<mdl< td=""><td>Fluorene</td><td><mdl< td=""></mdl<></td></mdl<>	Fluorene	<mdl< td=""></mdl<>
δ-BHC	<mdl< td=""><td>Phenanthrene</td><td>4.7</td></mdl<>	Phenanthrene	4.7
Lindane	180	Anthracene	0.94
Dacthal	<mql< td=""><td>Fluoranthene</td><td>1.6</td></mql<>	Fluoranthene	1.6
Heptachlor	9.2	Pyrene	2.0
Heptachlor Epoxide	29	Benz[a]anthracene	0.64
Oxychlordane	<mdl< td=""><td>Chrysene</td><td><mdl< td=""></mdl<></td></mdl<>	Chrysene	<mdl< td=""></mdl<>
cis-Chlordane	340	Benzo[b]fluoranthene	<mdl< td=""></mdl<>
trans-Chlordane	350	Benzo[k]fluoranthene	<mdl< td=""></mdl<>
cis-Nonachlor	24	Benzo[a]pyrene	<mdl< td=""></mdl<>
trans-Nonachlor	130	Indeno[1,2,3-cd]pyrene	<mql< td=""></mql<>
o,p'-DDT	540	Dibenz[a,h]anthracene	<mdl< td=""></mdl<>
o,p'-DDE	120	Benzo[g,h,i]perylene	<mdl< td=""></mdl<>
o,p'-DDD	31		
p,p'-DDT	730	Total PID Response *	230
p,p'-DDE	170		
p,p'-DDD	49		
Dieldrin	300		
Endrin	47		
Methoxychlor	<mql< td=""><td></td><td></td></mql<>		
Mirex	0.79		
Endosulfan	11		
Endosulfan-II	170		
Endosulfan Sulfate	<mdl< td=""><td></td><td></td></mdl<>		
Sum of Identified OCs	3400		
Total PCBs	<mql< td=""><td></td><td></td></mql<>		

^{*} As pyrene (i.e. total GC-PID response using the response factor of pyrene to quantify)

Total Analytes per Sample (n= 4 SPMDs)

Site # 41 EPA # 79 13596 House # 172178A

OC-Pesticides	ng	PAHs	μg
HCB	54	Naphthalene	1.7
PCA	19	Acenaphthylene	3.7
α-BHC	<mql< td=""><td>Acenaphthene</td><td>0.5</td></mql<>	Acenaphthene	0.5
β-ВНС	<mdl< td=""><td>Fluorene</td><td><mql< td=""></mql<></td></mdl<>	Fluorene	<mql< td=""></mql<>
δ-BHC	<mdl< td=""><td>Phenanthrene</td><td>7.8</td></mdl<>	Phenanthrene	7.8
Lindane	50	Anthracene	2.3
Dacthal	<mql< td=""><td>Fluoranthene</td><td>1.1</td></mql<>	Fluoranthene	1.1
Heptachlor	15	Pyrene	2.3
Heptachlor Epoxide	<mdl< td=""><td>Benz[a]anthracene</td><td>0.52</td></mdl<>	Benz[a]anthracene	0.52
Oxychlordane	<mdl< td=""><td>Chrysene</td><td><mql< td=""></mql<></td></mdl<>	Chrysene	<mql< td=""></mql<>
cis-Chlordane	17	Benzo[b]fluoranthene	<mdl< td=""></mdl<>
trans-Chlordane	21	Benzo[k]fluoranthene	<mql< td=""></mql<>
cis-Nonachlor	<mdl< td=""><td>Benzo[a]pyrene</td><td><mdl< td=""></mdl<></td></mdl<>	Benzo[a]pyrene	<mdl< td=""></mdl<>
trans-Nonachlor	10	Indeno[1,2,3-cd]pyrene	<mdl< td=""></mdl<>
o,p'-DDT	25	Dibenz[a,h]anthracene	<mdl< td=""></mdl<>
o,p'-DDE	<mql< td=""><td>Benzo[g,h,i]perylene</td><td><mdl< td=""></mdl<></td></mql<>	Benzo[g,h,i]perylene	<mdl< td=""></mdl<>
o,p'-DDD	<mdl< td=""><td></td><td></td></mdl<>		
p,p'-DDT	<mdl< td=""><td>Total PID Response *</td><td>380</td></mdl<>	Total PID Response *	380
p,p'-DDE	26		
p,p'-DDD	<mdl< td=""><td></td><td></td></mdl<>		
Dieldrin	<mdl< td=""><td></td><td></td></mdl<>		
Endrin	<mdl< td=""><td></td><td></td></mdl<>		
Methoxychlor	<mdl< td=""><td></td><td></td></mdl<>		
Mirex	15		
Endosulfan	19		
Endosulfan-II	6.8		
Endosulfan Sulfate	<mdl< td=""><td></td><td></td></mdl<>		
Sum of Identified OCs	280		
Total PCBs	<mql< td=""><td></td><td></td></mql<>		

^{*} As pyrene (i.e. total GC-PID response using the response factor of pyrene to quantify)

Total Analytes per Sample (n= 4 SPMDs)

Site # 42 EPA # 79 13932 House # 672421A

OC-Pesticides	ng	PAHs	μg
НСВ	15	Naphthalene	<mql< td=""></mql<>
PCA	76	Acenaphthylene	<mql< td=""></mql<>
α-BHC	2.3	Acenaphthene	<mql< td=""></mql<>
β-ВНС	<mdl< td=""><td>Fluorene</td><td><mdl< td=""></mdl<></td></mdl<>	Fluorene	<mdl< td=""></mdl<>
δ-BHC	<mdl< td=""><td>Phenanthrene</td><td>1.7</td></mdl<>	Phenanthrene	1.7
Lindane	15	Anthracene	<mql< td=""></mql<>
Dacthal	<mql< td=""><td>Fluoranthene</td><td><mql< td=""></mql<></td></mql<>	Fluoranthene	<mql< td=""></mql<>
Heptachlor	460	Pyrene	1.7
Heptachlor Epoxide	<mdl< td=""><td>Benz[a]anthracene</td><td><mdl< td=""></mdl<></td></mdl<>	Benz[a]anthracene	<mdl< td=""></mdl<>
Oxychlordane	<mdl< td=""><td>Chrysene</td><td><mdl< td=""></mdl<></td></mdl<>	Chrysene	<mdl< td=""></mdl<>
cis-Chlordane	17	Benzo[b]fluoranthene	<mdl< td=""></mdl<>
trans-Chlordane	22	Benzo[k]fluoranthene	<mdl< td=""></mdl<>
cis-Nonachlor	<mdl< td=""><td>Benzo[a]pyrene</td><td><mdl< td=""></mdl<></td></mdl<>	Benzo[a]pyrene	<mdl< td=""></mdl<>
trans-Nonachlor	10	Indeno[1,2,3-cd]pyrene	<mdl< td=""></mdl<>
o,p'-DDT	15	Dibenz[a,h]anthracene	<mdl< td=""></mdl<>
o,p'-DDE	<mql< td=""><td>Benzo[g,h,i]perylene</td><td><mdl< td=""></mdl<></td></mql<>	Benzo[g,h,i]perylene	<mdl< td=""></mdl<>
o,p'-DDD	<mdl< td=""><td></td><td></td></mdl<>		
p,p'-DDT	<mdl< td=""><td>Total PID Response *</td><td>180</td></mdl<>	Total PID Response *	180
p,p'-DDE	66		
p,p'-DDD	<mdl< td=""><td></td><td></td></mdl<>		
Dieldrin	<mdl< td=""><td></td><td></td></mdl<>		
Endrin	<mdl< td=""><td></td><td></td></mdl<>		
Methoxychlor	<mdl< td=""><td></td><td></td></mdl<>		
Mirex	1.1		
Endosulfan	<mql< td=""><td></td><td></td></mql<>		
Endosulfan-II	6.9		
Endosulfan Sulfate	<mdl< td=""><td></td><td></td></mdl<>		
Sum of Identified OCs	710		
Total PCBs	3800		

^{*} As pyrene (i.e. total GC-PID response using the response factor of pyrene to quantify)

Total Analytes per Sample (n= 4 SPMDs)

Site # 43 EPA # 79 13626 House # 173139A

OC-Pesticides	ng	PAHs	μg
НСВ	26	Naphthalene	220
PCA	93	Acenaphthylene	1.7
α-BHC	6.1	Acenaphthene	<mql< td=""></mql<>
β-ВНС	<mdl< td=""><td>Fluorene</td><td><mql< td=""></mql<></td></mdl<>	Fluorene	<mql< td=""></mql<>
δ-BHC	<mdl< td=""><td>Phenanthrene</td><td>7.3</td></mdl<>	Phenanthrene	7.3
Lindane	17	Anthracene	1.0
Dacthal	<mql< td=""><td>Fluoranthene</td><td>8.5</td></mql<>	Fluoranthene	8.5
Heptachlor	42	Pyrene	35
Heptachlor Epoxide	<mql< td=""><td>Benz[a]anthracene</td><td><mql< td=""></mql<></td></mql<>	Benz[a]anthracene	<mql< td=""></mql<>
Oxychlordane	<mdl< td=""><td>Chrysene</td><td><mql< td=""></mql<></td></mdl<>	Chrysene	<mql< td=""></mql<>
cis-Chlordane	580	Benzo[b]fluoranthene	<mdl< td=""></mdl<>
trans-Chlordane	850	Benzo[k]fluoranthene	<mql< td=""></mql<>
cis-Nonachlor	55	Benzo[a]pyrene	<mql< td=""></mql<>
trans-Nonachlor	360	Indeno[1,2,3-cd]pyrene	<mdl< td=""></mdl<>
o,p'-DDT	110	Dibenz[a,h]anthracene	<mdl< td=""></mdl<>
o,p'-DDE	83	Benzo[g,h,i]perylene	<mql< td=""></mql<>
o,p'-DDD	<mdl< td=""><td></td><td></td></mdl<>		
p,p'-DDT	100	Total PID Response *	1400
p,p'-DDE	110		
p,p'-DDD	<mql< td=""><td></td><td></td></mql<>		
Dieldrin	260		
Endrin	120		
Methoxychlor	<mdl< td=""><td>Additional Compounds</td><td>ng</td></mdl<>	Additional Compounds	ng
Mirex	14		
Endosulfan	39	Trifluralin	280
Endosulfan-II	210	Diazinon	14000
Endosulfan Sulfate	<mdl< td=""><td>Chlorpyrifos</td><td>43000</td></mdl<>	Chlorpyrifos	43000
		cis-Permethrin	46
Sum of Identified OCs	3100	trans-Permethrin	<mql< td=""></mql<>
Total PCBs	1900		

^{*} As pyrene (i.e. total GC-PID response using the response factor of pyrene to quantify)

Total Analytes per Sample (n= 4 SPMDs)

Site # 44 EPA # 79 13684 House # 173197A

OC-Pesticides	ng	PAHs	μg
НСВ	57	Naphthalene	<mql< td=""></mql<>
PCA	120	Acenaphthylene	<mql< td=""></mql<>
α-BHC	25	Acenaphthene	<mql< td=""></mql<>
β-BHC	45	Fluorene	<mdl< td=""></mdl<>
δ-BHC	<mql< td=""><td>Phenanthrene</td><td>2.6</td></mql<>	Phenanthrene	2.6
Lindane	<mdl< td=""><td>Anthracene</td><td>1.2</td></mdl<>	Anthracene	1.2
Dacthal	<mdl< td=""><td>Fluoranthene</td><td><mql< td=""></mql<></td></mdl<>	Fluoranthene	<mql< td=""></mql<>
Heptachlor	97	Pyrene	0.84
Heptachlor Epoxide	<mdl< td=""><td>Benz[a]anthracene</td><td><mdl< td=""></mdl<></td></mdl<>	Benz[a]anthracene	<mdl< td=""></mdl<>
Oxychlordane	<mdl< td=""><td>Chrysene</td><td><mdl< td=""></mdl<></td></mdl<>	Chrysene	<mdl< td=""></mdl<>
cis-Chlordane	<mdl< td=""><td>Benzo[b]fluoranthene</td><td><mdl< td=""></mdl<></td></mdl<>	Benzo[b]fluoranthene	<mdl< td=""></mdl<>
trans-Chlordane	260	Benzo[k]fluoranthene	<mdl< td=""></mdl<>
cis-Nonachlor	<mdl< td=""><td>Benzo[a]pyrene</td><td><mdl< td=""></mdl<></td></mdl<>	Benzo[a]pyrene	<mdl< td=""></mdl<>
trans-Nonachlor	130	Indeno[1,2,3-cd]pyrene	<mdl< td=""></mdl<>
o,p'-DDT	<mdl< td=""><td>Dibenz[a,h]anthracene</td><td><mdl< td=""></mdl<></td></mdl<>	Dibenz[a,h]anthracene	<mdl< td=""></mdl<>
o,p'-DDE	<mdl< td=""><td>Benzo[g,h,i]perylene</td><td><mdl< td=""></mdl<></td></mdl<>	Benzo[g,h,i]perylene	<mdl< td=""></mdl<>
o,p'-DDD	<mdl< td=""><td></td><td></td></mdl<>		
p,p'-DDT	100	Total PID Response *	220
p,p'-DDE	14		
p,p'-DDD	<mdl< td=""><td></td><td></td></mdl<>		
Dieldrin	180		
Endrin	17		
Methoxychlor	220		
Mirex	<mql< td=""><td></td><td></td></mql<>		
Endosulfan	<mdl< td=""><td></td><td></td></mdl<>		
Endosulfan-II	<mdl< td=""><td></td><td></td></mdl<>		
Endosulfan Sulfate	<mdl< td=""><td></td><td></td></mdl<>		
Sum of Identified OCs	1300		
Total PCBs	<mdl< td=""><td></td><td></td></mdl<>		

^{*} As pyrene (i.e. total GC-PID response using the response factor of pyrene to quantify)

Total Analytes per Sample (n= 4 SPMDs)

Site # 45 EPA # 79 13642 House # 172123A

OC-Pesticides	ng	PAHs	μg
НСВ	32	Naphthalene	<mql< td=""></mql<>
PCA	20	Acenaphthylene	<mdl< td=""></mdl<>
α-BHC	2.0	Acenaphthene	<mql< td=""></mql<>
β-ВНС	<mdl< td=""><td>Fluorene</td><td><mdl< td=""></mdl<></td></mdl<>	Fluorene	<mdl< td=""></mdl<>
δ-BHC	<mdl< td=""><td>Phenanthrene</td><td>14</td></mdl<>	Phenanthrene	14
Lindane	14	Anthracene	1.6
Dacthal	<mql< td=""><td>Fluoranthene</td><td>1.5</td></mql<>	Fluoranthene	1.5
Heptachlor	16	Pyrene	1.1
Heptachlor Epoxide	<mdl< td=""><td>Benz[a]anthracene</td><td><mql< td=""></mql<></td></mdl<>	Benz[a]anthracene	<mql< td=""></mql<>
Oxychlordane	<mdl< td=""><td>Chrysene</td><td><mql< td=""></mql<></td></mdl<>	Chrysene	<mql< td=""></mql<>
cis-Chlordane	11	Benzo[b]fluoranthene	<mql< td=""></mql<>
trans-Chlordane	12	Benzo[k]fluoranthene	<mql< td=""></mql<>
cis-Nonachlor	<mdl< td=""><td>Benzo[a]pyrene</td><td><mdl< td=""></mdl<></td></mdl<>	Benzo[a]pyrene	<mdl< td=""></mdl<>
trans-Nonachlor	6.9	Indeno[1,2,3-cd]pyrene	<mdl< td=""></mdl<>
o,p'-DDT	<mql< td=""><td>Dibenz[a,h]anthracene</td><td><mql< td=""></mql<></td></mql<>	Dibenz[a,h]anthracene	<mql< td=""></mql<>
o,p'-DDE	<mql< td=""><td>Benzo[g,h,i]perylene</td><td><mdl< td=""></mdl<></td></mql<>	Benzo[g,h,i]perylene	<mdl< td=""></mdl<>
o,p'-DDD	<mdl< td=""><td></td><td></td></mdl<>		
p,p'-DDT	<mdl< td=""><td>Total PID Response *</td><td>430</td></mdl<>	Total PID Response *	430
p,p'-DDE	130		
p,p'-DDD	<mdl< td=""><td></td><td></td></mdl<>		
Dieldrin	<mdl< td=""><td></td><td></td></mdl<>		
Endrin	<mdl< td=""><td></td><td></td></mdl<>		
Methoxychlor	<mdl< td=""><td></td><td></td></mdl<>		
Mirex	0.35		
Endosulfan	13		
Endosulfan-II	3.7		
Endosulfan Sulfate	<mdl< td=""><td></td><td></td></mdl<>		
Sum of Identified OCs	260		
Total PCBs	1100		

^{*} As pyrene (i.e. total GC-PID response using the response factor of pyrene to quantify)

Total Analytes per Sample (n= 4 SPMDs)

Site # 46 EPA # 79 13583 House # 732374A

OC-Pesticides	ng	PAHs	μg
HCB	47	Naphthalene	1.9
PCA	58	Acenaphthylene	<mdl< td=""></mdl<>
α-BHC	5.9	Acenaphthene	<mql< td=""></mql<>
β-ВНС	<mdl< td=""><td>Fluorene</td><td><mql< td=""></mql<></td></mdl<>	Fluorene	<mql< td=""></mql<>
δ-BHC	<mdl< td=""><td>Phenanthrene</td><td>9.2</td></mdl<>	Phenanthrene	9.2
Lindane	47	Anthracene	1.2
Dacthal	<mql< td=""><td>Fluoranthene</td><td>1.7</td></mql<>	Fluoranthene	1.7
Heptachlor	17	Pyrene	1.4
Heptachlor Epoxide	<mdl< td=""><td>Benz[a]anthracene</td><td><mdl< td=""></mdl<></td></mdl<>	Benz[a]anthracene	<mdl< td=""></mdl<>
Oxychlordane	<mdl< td=""><td>Chrysene</td><td><mdl< td=""></mdl<></td></mdl<>	Chrysene	<mdl< td=""></mdl<>
cis-Chlordane	250	Benzo[b]fluoranthene	<mdl< td=""></mdl<>
trans-Chlordane	250	Benzo[k]fluoranthene	<mdl< td=""></mdl<>
cis-Nonachlor	13	Benzo[a]pyrene	<mdl< td=""></mdl<>
trans-Nonachlor	130	Indeno[1,2,3-cd]pyrene	<mdl< td=""></mdl<>
o,p'-DDT	210	Dibenz[a,h]anthracene	<mdl< td=""></mdl<>
o,p'-DDE	59	Benzo[g,h,i]perylene	<mdl< td=""></mdl<>
o,p'-DDD	<mql< td=""><td></td><td></td></mql<>		
p,p'-DDT	200	Total PID Response *	420
p,p'-DDE	150		
p,p'-DDD	<mql< td=""><td></td><td></td></mql<>		
Dieldrin	120		
Endrin	<mql< td=""><td></td><td></td></mql<>		
Methoxychlor	<mdl< td=""><td>Additional Compounds</td><td>ng</td></mdl<>	Additional Compounds	ng
Mirex	<mql< td=""><td></td><td></td></mql<>		
Endosulfan	130	Trifluralin	42
Endosulfan-II	90	Diazinon	840
Endosulfan Sulfate	<mdl< td=""><td>Chlorpyrifos</td><td>49</td></mdl<>	Chlorpyrifos	49
		cis-Permethrin	160
Sum of Identified OCs	1800	trans-Permethrin	92
Total PCBs	1400		

^{*} As pyrene (i.e. total GC-PID response using the response factor of pyrene to quantify)

Total Analytes per Sample (n= 4 SPMDs)

Site # 47 EPA # 79 13873 House # 731935A

OC-Pesticides	ng	PAHs	μg
НСВ	40	Naphthalene	<mql< td=""></mql<>
PCA	82	Acenaphthylene	<mdl< td=""></mdl<>
α-BHC	2.2	Acenaphthene	0.82
β-BHC	<mdl< td=""><td>Fluorene</td><td><mdl< td=""></mdl<></td></mdl<>	Fluorene	<mdl< td=""></mdl<>
δ-BHC	<mdl< td=""><td>Phenanthrene</td><td>0.82</td></mdl<>	Phenanthrene	0.82
Lindane	13	Anthracene	<mql< td=""></mql<>
Dacthal	37	Fluoranthene	<mdl< td=""></mdl<>
Heptachlor	18	Pyrene	<mql< td=""></mql<>
Heptachlor Epoxide	<mdl< td=""><td>Benz[a]anthracene</td><td><mdl< td=""></mdl<></td></mdl<>	Benz[a]anthracene	<mdl< td=""></mdl<>
Oxychlordane	<mdl< td=""><td>Chrysene</td><td><mdl< td=""></mdl<></td></mdl<>	Chrysene	<mdl< td=""></mdl<>
cis-Chlordane	<mdl< td=""><td>Benzo[b]fluoranthene</td><td><mdl< td=""></mdl<></td></mdl<>	Benzo[b]fluoranthene	<mdl< td=""></mdl<>
trans-Chlordane	19	Benzo[k]fluoranthene	<mdl< td=""></mdl<>
cis-Nonachlor	<mdl< td=""><td>Benzo[a]pyrene</td><td><mdl< td=""></mdl<></td></mdl<>	Benzo[a]pyrene	<mdl< td=""></mdl<>
trans-Nonachlor	15	Indeno[1,2,3-cd]pyrene	<mdl< td=""></mdl<>
o,p'-DDT	<mql< td=""><td>Dibenz[a,h]anthracene</td><td><mdl< td=""></mdl<></td></mql<>	Dibenz[a,h]anthracene	<mdl< td=""></mdl<>
o,p'-DDE	<mdl< td=""><td>Benzo[g,h,i]perylene</td><td><mdl< td=""></mdl<></td></mdl<>	Benzo[g,h,i]perylene	<mdl< td=""></mdl<>
o,p'-DDD	<mdl< td=""><td></td><td></td></mdl<>		
p,p'-DDT	<mdl< td=""><td>Total PID Response *</td><td>160</td></mdl<>	Total PID Response *	160
p,p'-DDE	110		
p,p'-DDD	<mdl< td=""><td></td><td></td></mdl<>		
Dieldrin	<mdl< td=""><td></td><td></td></mdl<>		
Endrin	<mdl< td=""><td></td><td></td></mdl<>		
Methoxychlor	<mql< td=""><td></td><td></td></mql<>		
Mirex	<mdl< td=""><td></td><td></td></mdl<>		
Endosulfan	<mdl< td=""><td></td><td></td></mdl<>		
Endosulfan-II	<mdl< td=""><td></td><td></td></mdl<>		
Endosulfan Sulfate	100		
Sum of Identified OCs	430		
Total PCBs	<mdl< td=""><td></td><td></td></mdl<>		

^{*} As pyrene (i.e. total GC-PID response using the response factor of pyrene to quantify)

Total Analytes per Sample (n= 4 SPMDs)

Site # 48 EPA # 79 13916 House # 674124A

OC-Pesticides	ng	PAHs	μg
НСВ	31	Naphthalene	20
PCA	19	Acenaphthylene	<mql< td=""></mql<>
α-BHC	1.8	Acenaphthene	<mql< td=""></mql<>
β-ВНС	<mdl< td=""><td>Fluorene</td><td><mdl< td=""></mdl<></td></mdl<>	Fluorene	<mdl< td=""></mdl<>
δ-BHC	<mdl< td=""><td>Phenanthrene</td><td>3.2</td></mdl<>	Phenanthrene	3.2
Lindane	<mql< td=""><td>Anthracene</td><td><mql< td=""></mql<></td></mql<>	Anthracene	<mql< td=""></mql<>
Dacthal	23	Fluoranthene	1.2
Heptachlor	40	Pyrene	1.7
Heptachlor Epoxide	<mdl< td=""><td>Benz[a]anthracene</td><td><mql< td=""></mql<></td></mdl<>	Benz[a]anthracene	<mql< td=""></mql<>
Oxychlordane	<mdl< td=""><td>Chrysene</td><td><mdl< td=""></mdl<></td></mdl<>	Chrysene	<mdl< td=""></mdl<>
cis-Chlordane	<mql< td=""><td>Benzo[b]fluoranthene</td><td><mdl< td=""></mdl<></td></mql<>	Benzo[b]fluoranthene	<mdl< td=""></mdl<>
trans-Chlordane	7.8	Benzo[k]fluoranthene	<mdl< td=""></mdl<>
cis-Nonachlor	<mdl< td=""><td>Benzo[a]pyrene</td><td><mdl< td=""></mdl<></td></mdl<>	Benzo[a]pyrene	<mdl< td=""></mdl<>
trans-Nonachlor	<mql< td=""><td>Indeno[1,2,3-cd]pyrene</td><td><mdl< td=""></mdl<></td></mql<>	Indeno[1,2,3-cd]pyrene	<mdl< td=""></mdl<>
o,p'-DDT	<mdl< td=""><td>Dibenz[a,h]anthracene</td><td><mql< td=""></mql<></td></mdl<>	Dibenz[a,h]anthracene	<mql< td=""></mql<>
o,p'-DDE	<mdl< td=""><td>Benzo[g,h,i]perylene</td><td><mdl< td=""></mdl<></td></mdl<>	Benzo[g,h,i]perylene	<mdl< td=""></mdl<>
o,p'-DDD	<mdl< td=""><td></td><td></td></mdl<>		
p,p'-DDT	<mdl< td=""><td>Total PID Response *</td><td>250</td></mdl<>	Total PID Response *	250
p,p'-DDE	150		
p,p'-DDD	<mdl< td=""><td></td><td></td></mdl<>		
Dieldrin	<mdl< td=""><td></td><td></td></mdl<>		
Endrin	<mdl< td=""><td></td><td></td></mdl<>		
Methoxychlor	<mdl< td=""><td></td><td></td></mdl<>		
Mirex	2.5		
Endosulfan	52		
Endosulfan-II	<mql< td=""><td></td><td></td></mql<>		
Endosulfan Sulfate	<mdl< td=""><td></td><td></td></mdl<>		
Sum of Identified OCs	330		
Total PCBs	1400		

^{*} As pyrene (i.e. total GC-PID response using the response factor of pyrene to quantify)

Total Analytes per Sample (n= 4 SPMDs)

Site # 49 EPA # 79 13815 House # 671978A

OC-Pesticides	ng	PAHs	μg
НСВ	20	Naphthalene	1.0
PCA	96	Acenaphthylene	<mdl< td=""></mdl<>
α-BHC	3.3	Acenaphthene	<mql< td=""></mql<>
β-BHC	<mdl< td=""><td>Fluorene</td><td><mdl< td=""></mdl<></td></mdl<>	Fluorene	<mdl< td=""></mdl<>
δ-BHC	<mdl< td=""><td>Phenanthrene</td><td>2.3</td></mdl<>	Phenanthrene	2.3
Lindane	31	Anthracene	<mql< td=""></mql<>
Dacthal	<mql< td=""><td>Fluoranthene</td><td><mql< td=""></mql<></td></mql<>	Fluoranthene	<mql< td=""></mql<>
Heptachlor	970	Pyrene	1.1
Heptachlor Epoxide	26	Benz[a]anthracene	<mdl< td=""></mdl<>
Oxychlordane	<mdl< td=""><td>Chrysene</td><td><mdl< td=""></mdl<></td></mdl<>	Chrysene	<mdl< td=""></mdl<>
cis-Chlordane	260	Benzo[b]fluoranthene	<mdl< td=""></mdl<>
trans-Chlordane	260	Benzo[k]fluoranthene	<mdl< td=""></mdl<>
cis-Nonachlor	26	Benzo[a]pyrene	<mdl< td=""></mdl<>
trans-Nonachlor	140	Indeno[1,2,3-cd]pyrene	<mdl< td=""></mdl<>
o,p'-DDT	87	Dibenz[a,h]anthracene	<mdl< td=""></mdl<>
o,p'-DDE	52	Benzo[g,h,i]perylene	<mdl< td=""></mdl<>
o,p'-DDD	<mdl< td=""><td></td><td></td></mdl<>		
p,p'-DDT	88	Total PID Response *	120
p,p'-DDE	540		
p,p'-DDD	<mql< td=""><td></td><td></td></mql<>		
Dieldrin	290		
Endrin	15		
Methoxychlor	<mdl< td=""><td></td><td></td></mdl<>		
Mirex	1.7		
Endosulfan	15		
Endosulfan-II	80		
Endosulfan Sulfate	<mdl< td=""><td></td><td></td></mdl<>		
Sum of Identified OCs	3000		
Total PCBs	3400		

^{*} As pyrene (i.e. total GC-PID response using the response factor of pyrene to quantify)

Total Analytes per Sample (n= 4 SPMDs)

Site # 50 EPA # 79 13785 House # 732592A

OC-Pesticides	ng	PAHs	μg
НСВ	44	Naphthalene	<mql< td=""></mql<>
PCA	110	Acenaphthylene	<mdl< td=""></mdl<>
α-BHC	2.5	Acenaphthene	0.52
β-ВНС	170	Fluorene	<mql< td=""></mql<>
δ-BHC	50	Phenanthrene	4.6
Lindane	45	Anthracene	1.1
Dacthal	<mql< td=""><td>Fluoranthene</td><td><mql< td=""></mql<></td></mql<>	Fluoranthene	<mql< td=""></mql<>
Heptachlor	47	Pyrene	<mql< td=""></mql<>
Heptachlor Epoxide	<mdl< td=""><td>Benz[a]anthracene</td><td><mdl< td=""></mdl<></td></mdl<>	Benz[a]anthracene	<mdl< td=""></mdl<>
Oxychlordane	<mdl< td=""><td>Chrysene</td><td><mdl< td=""></mdl<></td></mdl<>	Chrysene	<mdl< td=""></mdl<>
cis-Chlordane	840	Benzo[b]fluoranthene	<mdl< td=""></mdl<>
trans-Chlordane	1400	Benzo[k]fluoranthene	<mdl< td=""></mdl<>
cis-Nonachlor	76	Benzo[a]pyrene	<mdl< td=""></mdl<>
trans-Nonachlor	470	Indeno[1,2,3-cd]pyrene	<mdl< td=""></mdl<>
o,p'-DDT	610	Dibenz[a,h]anthracene	<mdl< td=""></mdl<>
o,p'-DDE	180	Benzo[g,h,i]perylene	<mdl< td=""></mdl<>
o,p'-DDD	<mql< td=""><td></td><td></td></mql<>		
p,p'-DDT	950	Total PID Response *	160
p,p'-DDE	280		
p,p'-DDD	22		
Dieldrin	1200		
Endrin	120		
Methoxychlor	<mdl< td=""><td></td><td></td></mdl<>		
Mirex	5.5		
Endosulfan	41		
Endosulfan-II	250		
Endosulfan Sulfate	<mdl< td=""><td></td><td></td></mdl<>		
Sum of Identified OCs	6900		
Total PCBs	2900		

^{*} As pyrene (i.e. total GC-PID response using the response factor of pyrene to quantify)

Total Analytes per Sample (n= 4 SPMDs)

Site # 51 EPA # 79 13974 House # 732143A

OC-Pesticides	ng	PAHs	μg
HCB	79	Naphthalene	1.3
PCA	62	Acenaphthylene	<mql< td=""></mql<>
α-BHC	2.2	Acenaphthene	0.60
β-ВНС	<mdl< td=""><td>Fluorene</td><td><mdl< td=""></mdl<></td></mdl<>	Fluorene	<mdl< td=""></mdl<>
δ-BHC	<mdl< td=""><td>Phenanthrene</td><td>5.9</td></mdl<>	Phenanthrene	5.9
Lindane	38	Anthracene	2.0
Dacthal	190	Fluoranthene	<mql< td=""></mql<>
Heptachlor	37	Pyrene	1.8
Heptachlor Epoxide	21	Benz[a]anthracene	<mql< td=""></mql<>
Oxychlordane	30	Chrysene	<mdl< td=""></mdl<>
cis-Chlordane	100	Benzo[b]fluoranthene	<mdl< td=""></mdl<>
trans-Chlordane	200	Benzo[k]fluoranthene	<mdl< td=""></mdl<>
cis-Nonachlor	<mql< td=""><td>Benzo[a]pyrene</td><td><mdl< td=""></mdl<></td></mql<>	Benzo[a]pyrene	<mdl< td=""></mdl<>
trans-Nonachlor	69	Indeno[1,2,3-cd]pyrene	<mdl< td=""></mdl<>
o,p'-DDT	32	Dibenz[a,h]anthracene	<mdl< td=""></mdl<>
o,p'-DDE	16	Benzo[g,h,i]perylene	<mdl< td=""></mdl<>
o,p'-DDD	<mql< td=""><td></td><td></td></mql<>		
p,p'-DDT	<mdl< td=""><td>Total PID Response *</td><td>400</td></mdl<>	Total PID Response *	400
p,p'-DDE	160		
p,p'-DDD	<mdl< td=""><td></td><td></td></mdl<>		
Dieldrin	<mql< td=""><td></td><td></td></mql<>		
Endrin	<mql< td=""><td></td><td></td></mql<>		
Methoxychlor	<mdl< td=""><td></td><td></td></mdl<>		
Mirex	0.45		
Endosulfan	370		
Endosulfan-II	30		
Endosulfan Sulfate	<mdl< td=""><td></td><td></td></mdl<>		
Sum of Identified OCs	1400		
Total PCBs	1200		

^{*} As pyrene (i.e. total GC-PID response using the response factor of pyrene to quantify)

Total Analytes per Sample (n= 4 SPMDs)

Site # 52 EPA # 79 13538 House # 731456A

OC-Pesticides	ng	PAHs	μg
НСВ	130	Naphthalene	0.90
PCA	110	Acenaphthylene	<mdl< td=""></mdl<>
α-BHC	2.4	Acenaphthene	<mql< td=""></mql<>
β-ВНС	<mdl< td=""><td>Fluorene</td><td><mdl< td=""></mdl<></td></mdl<>	Fluorene	<mdl< td=""></mdl<>
δ-BHC	<mdl< td=""><td>Phenanthrene</td><td>3.7</td></mdl<>	Phenanthrene	3.7
Lindane	39	Anthracene	0.86
Dacthal	140	Fluoranthene	1.0
Heptachlor	10	Pyrene	<mdl< td=""></mdl<>
Heptachlor Epoxide	<mdl< td=""><td>Benz[a]anthracene</td><td><mql< td=""></mql<></td></mdl<>	Benz[a]anthracene	<mql< td=""></mql<>
Oxychlordane	<mdl< td=""><td>Chrysene</td><td><mql< td=""></mql<></td></mdl<>	Chrysene	<mql< td=""></mql<>
cis-Chlordane	34	Benzo[b]fluoranthene	<mdl< td=""></mdl<>
trans-Chlordane	57	Benzo[k]fluoranthene	<mql< td=""></mql<>
cis-Nonachlor	<mql< td=""><td>Benzo[a]pyrene</td><td><mdl< td=""></mdl<></td></mql<>	Benzo[a]pyrene	<mdl< td=""></mdl<>
trans-Nonachlor	24	Indeno[1,2,3-cd]pyrene	<mdl< td=""></mdl<>
o,p'-DDT	88	Dibenz[a,h]anthracene	<mdl< td=""></mdl<>
o,p'-DDE	27	Benzo[g,h,i]perylene	<mdl< td=""></mdl<>
o,p'-DDD	<mql< td=""><td></td><td></td></mql<>		
p,p'-DDT	<mql< td=""><td>Total PID Response *</td><td>390</td></mql<>	Total PID Response *	390
p,p'-DDE	73		
p,p'-DDD	<mql< td=""><td></td><td></td></mql<>		
Dieldrin	<mql< td=""><td></td><td></td></mql<>		
Endrin	<mql< td=""><td></td><td></td></mql<>		
Methoxychlor	<mdl< td=""><td></td><td></td></mdl<>		
Mirex	<mdl< td=""><td></td><td></td></mdl<>		
Endosulfan	270		
Endosulfan-II	11		
Endosulfan Sulfate	<mdl< td=""><td></td><td></td></mdl<>		
Sum of Identified OCs	1000		
Total PCBs	<mql< td=""><td></td><td></td></mql<>		

^{*} As pyrene (i.e. total GC-PID response using the response factor of pyrene to quantify)

Total Analytes per Sample (n= 4 SPMDs)

Site # 53 EPA # 79 13512 House # 732619A

OC-Pesticides	ng	PAHs	μg
НСВ	30	Naphthalene	<mql< td=""></mql<>
PCA	46	Acenaphthylene	<mql< td=""></mql<>
α -BHC	3.4	Acenaphthene	<mql< td=""></mql<>
β-ВНС	<mdl< td=""><td>Fluorene</td><td><mql< td=""></mql<></td></mdl<>	Fluorene	<mql< td=""></mql<>
δ-BHC	<mdl< td=""><td>Phenanthrene</td><td>7.8</td></mdl<>	Phenanthrene	7.8
Lindane	66	Anthracene	2.1
Dacthal	120	Fluoranthene	<mql< td=""></mql<>
Heptachlor	14	Pyrene	1.9
Heptachlor Epoxide	77	Benz[a]anthracene	<mql< td=""></mql<>
Oxychlordane	<mdl< td=""><td>Chrysene</td><td><mdl< td=""></mdl<></td></mdl<>	Chrysene	<mdl< td=""></mdl<>
cis-Chlordane	16	Benzo[b]fluoranthene	<mdl< td=""></mdl<>
trans-Chlordane	24	Benzo[k]fluoranthene	<mdl< td=""></mdl<>
cis-Nonachlor	<mdl< td=""><td>Benzo[a]pyrene</td><td><mdl< td=""></mdl<></td></mdl<>	Benzo[a]pyrene	<mdl< td=""></mdl<>
trans-Nonachior	14	Indeno[1,2,3-cd]pyrene	<mql< td=""></mql<>
o,p'-DDT	<mql< td=""><td>Dibenz[a,h]anthracene</td><td><mdl< td=""></mdl<></td></mql<>	Dibenz[a,h]anthracene	<mdl< td=""></mdl<>
o,p'-DDE	8.5	Benzo[g,h,i]perylene	<mdl< td=""></mdl<>
o,p'-DDD	<mdl< td=""><td></td><td></td></mdl<>		
p,p'-DDT	<mdl< td=""><td>Total PID Response *</td><td>650</td></mdl<>	Total PID Response *	650
p,p'-DDE	14		
p,p'-DDD	<mdl< td=""><td></td><td></td></mdl<>		
Dieldrin	<mdl< td=""><td></td><td></td></mdl<>		
Endrin	<mdl< td=""><td></td><td></td></mdl<>		
Methoxychlor	<mdl< td=""><td></td><td></td></mdl<>		
Mirex	3.3		
Endosulfan	110		
Endosulfan-II	5.0		
Endosulfan Sulfate	<mdl< td=""><td></td><td></td></mdl<>		
Sum of Identified OCs	550		
Total PCBs	1800		

^{*} As pyrene (i.e. total GC-PID response using the response factor of pyrene to quantify)

Total Analytes per Sample (n= 4 SPMDs)

Site # 54 EPA # 79 13831 House # 672841A

OC-Pesticides	ng	PAHs	μg
НСВ	15	Naphthalene	<mdl< td=""></mdl<>
PCA	60	Acenaphthylene	<mdl< td=""></mdl<>
α-BHC	2.1	Acenaphthene	<mql< td=""></mql<>
β-ВНС	<mdl< td=""><td>Fluorene</td><td><mdl< td=""></mdl<></td></mdl<>	Fluorene	<mdl< td=""></mdl<>
δ-BHC	<mdl< td=""><td>Phenanthrene</td><td>2.3</td></mdl<>	Phenanthrene	2.3
Lindane	18	Anthracene	<mql< td=""></mql<>
Dacthal	<mql< td=""><td>Fluoranthene</td><td><mql< td=""></mql<></td></mql<>	Fluoranthene	<mql< td=""></mql<>
Heptachlor	410	Pyrene	<mql< td=""></mql<>
Heptachlor Epoxide	<mdl< td=""><td>Benz[a]anthracene</td><td><mdl< td=""></mdl<></td></mdl<>	Benz[a]anthracene	<mdl< td=""></mdl<>
Oxychlordane	<mdl< td=""><td>Chrysene</td><td><mdl< td=""></mdl<></td></mdl<>	Chrysene	<mdl< td=""></mdl<>
cis-Chlordane	11	Benzo[b]fluoranthene	<mdl< td=""></mdl<>
trans-Chlordane	33	Benzo[k]fluoranthene	<mdl< td=""></mdl<>
cis-Nonachlor	<mdl< td=""><td>Benzo[a]pyrene</td><td><mdl< td=""></mdl<></td></mdl<>	Benzo[a]pyrene	<mdl< td=""></mdl<>
trans-Nonachlor	7.6	Indeno[1,2,3-cd]pyrene	<mdl< td=""></mdl<>
o,p'-DDT	<mdl< td=""><td>Dibenz[a,h]anthracene</td><td><mdl< td=""></mdl<></td></mdl<>	Dibenz[a,h]anthracene	<mdl< td=""></mdl<>
o,p'-DDE	<mql< td=""><td>Benzo[g,h,i]perylene</td><td><mdl< td=""></mdl<></td></mql<>	Benzo[g,h,i]perylene	<mdl< td=""></mdl<>
o,p'-DDD	<mdl< td=""><td></td><td></td></mdl<>		
p,p'-DDT	<mdl< td=""><td>Total PID Response *</td><td>320</td></mdl<>	Total PID Response *	320
p,p'-DDE	160		
p,p'-DDD	<mdl< td=""><td></td><td></td></mdl<>		
Dieldrin	<mdl< td=""><td></td><td></td></mdl<>		
Endrin	<mql< td=""><td></td><td></td></mql<>		
Methoxychlor	<mdl< td=""><td>Additional Compounds</td><td>ng</td></mdl<>	Additional Compounds	ng
Mirex	5.1		
Endosulfan	92	Trifluralin	<mql< td=""></mql<>
Endosulfan-II	7.0	Diazinon	390
Endosulfan Sulfate	<mdl< td=""><td>Chlorpyrifos</td><td>220</td></mdl<>	Chlorpyrifos	220
		cis-Permethrin	<mdl< td=""></mdl<>
Sum of Identified OCs	820	trans-Permethrin	<mql< td=""></mql<>
Total PCBs	4200		

^{*} As pyrene (i.e. total GC-PID response using the response factor of pyrene to quantify)

Total Analytes per Sample (n= 4 SPMDs)

Site # 55 EPA # 79 13743 House # 731472A

OC-Pesticides	ng	PAHs	μg
НСВ	31	Naphthalene	<mql< td=""></mql<>
PCA	79	Acenaphthylene	<mql< td=""></mql<>
α-BHC	9.4	Acenaphthene	<mql< td=""></mql<>
β-ВНС	<mdl< td=""><td>Fluorene</td><td><mdl< td=""></mdl<></td></mdl<>	Fluorene	<mdl< td=""></mdl<>
δ-BHC	110	Phenanthrene	2.3
Lindane	<mql< td=""><td>Anthracene</td><td><mql< td=""></mql<></td></mql<>	Anthracene	<mql< td=""></mql<>
Dacthal	25	Fluoranthene	1.1
Heptachlor	20	Pyrene	0.84
Heptachlor Epoxide	<mdl< td=""><td>Benz[a]anthracene</td><td><mdl< td=""></mdl<></td></mdl<>	Benz[a]anthracene	<mdl< td=""></mdl<>
Oxychlordane	<mql< td=""><td>Chrysene</td><td><mdl< td=""></mdl<></td></mql<>	Chrysene	<mdl< td=""></mdl<>
cis-Chlordane	1100	Benzo[b]fluoranthene	<mdl< td=""></mdl<>
trans-Chlordane	1500	Benzo[k]fluoranthene	<mdl< td=""></mdl<>
cis-Nonachlor	130	Benzo[a]pyrene	<mql< td=""></mql<>
trans-Nonachlor	600	Indeno[1,2,3-cd]pyrene	<mdl< td=""></mdl<>
o,p'-DDT	160	Dibenz[a,h]anthracene	<mdl< td=""></mdl<>
o,p'-DDE	<mdl< td=""><td>Benzo[g,h,i]perylene</td><td><mdl< td=""></mdl<></td></mdl<>	Benzo[g,h,i]perylene	<mdl< td=""></mdl<>
o,p'-DDD	<mdl< td=""><td></td><td></td></mdl<>		
p,p'-DDT	280	Total PID Response *	1300
p,p'-DDE	110		
p,p'-DDD	29		
Dieldrin	<mdl< td=""><td></td><td></td></mdl<>		
Endrin	140		
Methoxychlor	560	Additional Compounds	ng
Mirex	14.0		
Endosulfan	1300	Trifluralin	190
Endosulfan-II	490	Diazinon	780
Endosulfan Sulfate	<mql< td=""><td>Chlorpyrifos</td><td>1600</td></mql<>	Chlorpyrifos	1600
		cis-Permethrin	47
Sum of Identified OCs	6600	trans-Permethrin	<mql< td=""></mql<>
Total PCBs	<mql< td=""><td></td><td></td></mql<>		

^{*} As pyrene (i.e. total GC-PID response using the response factor of pyrene to quantify)

Total Analytes per Sample (n= 4 SPMDs)

Site # 56 EPA # 79 13958 House # 732345A

OC-Pesticides	ng	PAHs	μg
НСВ	41	Naphthalene	<mql< td=""></mql<>
PCA	40	Acenaphthylene	<mql< td=""></mql<>
α-BHC	3.1	Acenaphthene	<mql< td=""></mql<>
β-BHC	<mdl< td=""><td>Fluorene</td><td><mdl< td=""></mdl<></td></mdl<>	Fluorene	<mdl< td=""></mdl<>
δ-BHC	<mdl< td=""><td>Phenanthrene</td><td>4.6</td></mdl<>	Phenanthrene	4.6
Lindane	28	Anthracene	1.1
Dacthal	130	Fluoranthene	1.3
Heptachlor	34	Pyrene	1.7
Heptachlor Epoxide	<mdl< td=""><td>Benz[a]anthracene</td><td><mql< td=""></mql<></td></mdl<>	Benz[a]anthracene	<mql< td=""></mql<>
Oxychlordane	<mdl< td=""><td>Chrysene</td><td><mdl< td=""></mdl<></td></mdl<>	Chrysene	<mdl< td=""></mdl<>
cis-Chlordane	14	Benzo[b]fluoranthene	<mdl< td=""></mdl<>
trans-Chlordane	47	Benzo[k]fluoranthene	<mdl< td=""></mdl<>
cis-Nonachlor	<mdl< td=""><td>Benzo[a]pyrene</td><td><mdl< td=""></mdl<></td></mdl<>	Benzo[a]pyrene	<mdl< td=""></mdl<>
trans-Nonachlor	20	Indeno[1,2,3-cd]pyrene	<mdl< td=""></mdl<>
o,p'-DDT	<mql< td=""><td>Dibenz[a,h]anthracene</td><td><mdl< td=""></mdl<></td></mql<>	Dibenz[a,h]anthracene	<mdl< td=""></mdl<>
o,p'-DDE	<mdl< td=""><td>Benzo[g,h,i]perylene</td><td><mdl< td=""></mdl<></td></mdl<>	Benzo[g,h,i]perylene	<mdl< td=""></mdl<>
o,p'-DDD	<mql< td=""><td></td><td></td></mql<>		
p,p'-DDT	<mdl< td=""><td>Total PID Response *</td><td>550</td></mdl<>	Total PID Response *	550
p,p'-DDE	240		
p,p'-DDD	70		
Dieldrin	120		
Endrin	15		
Methoxychlor	<mdl< td=""><td></td><td></td></mdl<>		
Mirex	1.3		
Endosulfan	300		
Endosulfan-II	88		
Endosulfan Sulfate	<mdl< td=""><td></td><td></td></mdl<>		
Sum of Identified OCs	1200		
Total PCBs	3000		

^{*} As pyrene (i.e. total GC-PID response using the response factor of pyrene to quantify)

Total Analytes per Sample (n= 4 SPMDs)

Site # 57 EPA # 79 14137 House # 672854A

OC-Pesticides	ng	PAHs	μg
НСВ	220	Naphthalene	3.8
PCA	65	Acenaphthylene	<mql< td=""></mql<>
α-BHC	2.0	Acenaphthene	<mql< td=""></mql<>
β-BHC	<mql< td=""><td>Fluorene</td><td><mdl< td=""></mdl<></td></mql<>	Fluorene	<mdl< td=""></mdl<>
δ-BHC	<mdl< td=""><td>Phenanthrene</td><td>3.5</td></mdl<>	Phenanthrene	3.5
Lindane	56	Anthracene	0.94
Dacthal	180	Fluoranthene	1.1
Heptachlor	2000	Pyrene	1.3
Heptachlor Epoxide	<mql< td=""><td>Benz[a]anthracene</td><td>0.52</td></mql<>	Benz[a]anthracene	0.52
Oxychlordane	<mql< td=""><td>Chrysene</td><td><mql< td=""></mql<></td></mql<>	Chrysene	<mql< td=""></mql<>
cis-Chlordane	150	Benzo[b]fluoranthene	<mdl< td=""></mdl<>
trans-Chlordane	230	Benzo[k]fluoranthene	1.1
cis-Nonachlor	13	Benzo[a]pyrene	<mdl< td=""></mdl<>
trans-Nonachlor	130	Indeno[1,2,3-cd]pyrene	<mql< td=""></mql<>
o,p'-DDT	31	Dibenz[a,h]anthracene	<mdl< td=""></mdl<>
o,p'-DDE	21	Benzo[g,h,i]perylene	<mdl< td=""></mdl<>
o,p'-DDD	28		
p,p'-DDT	<mdl< td=""><td>Total PID Response *</td><td>290</td></mdl<>	Total PID Response *	290
p,p'-DDE	230		
p,p'-DDD	10		
Dieldrin	170		
Endrin	25		
Methoxychlor	<mdl< td=""><td></td><td></td></mdl<>		
Mirex	1.2		
Endosulfan	590		
Endosulfan-II	82		
Endosulfan Sulfate	24		
Sum of Identified OCs	4200		
Total PCBs	6400		

^{*} As pyrene (i.e. total GC-PID response using the response factor of pyrene to quantify)

Table XIII

Comparison of Inside/Outside Levels of Contaminants at House 673697A

OC-Pesticides	Site # 4 Inside ng	Site # 5 Outside ng	PAHs	Site # 4 Inside µg	Site # 5 Outside µg
HCB	20	9.3	Naphthalene	2.2	2.0
PCA	56	33	Acenaphthylene	1.2	1.3
α-BHC	5.8	8.8	Acenaphthene	<mql< td=""><td><mql< td=""></mql<></td></mql<>	<mql< td=""></mql<>
β-ВНС	10	<mdl< td=""><td>Fluorene</td><td><mdl< td=""><td><mdl< td=""></mdl<></td></mdl<></td></mdl<>	Fluorene	<mdl< td=""><td><mdl< td=""></mdl<></td></mdl<>	<mdl< td=""></mdl<>
δ-BHC	<mdl< td=""><td><mdl< td=""><td>Phenanthrene</td><td>5.4</td><td>1.4</td></mdl<></td></mdl<>	<mdl< td=""><td>Phenanthrene</td><td>5.4</td><td>1.4</td></mdl<>	Phenanthrene	5.4	1.4
Lindane	86	<mql< td=""><td>Anthracene</td><td><mql< td=""><td><mql< td=""></mql<></td></mql<></td></mql<>	Anthracene	<mql< td=""><td><mql< td=""></mql<></td></mql<>	<mql< td=""></mql<>
Dacthal	53	<mql< td=""><td>Fluoranthene</td><td>4.2</td><td><mql< td=""></mql<></td></mql<>	Fluoranthene	4.2	<mql< td=""></mql<>
Heptachlor	35	11	Pyrene	3.6	<mdl< td=""></mdl<>
Heptachlor Epoxide	27	<mdl< td=""><td>Benz[a]anthracene</td><td><mdl< td=""><td><mdl< td=""></mdl<></td></mdl<></td></mdl<>	Benz[a]anthracene	<mdl< td=""><td><mdl< td=""></mdl<></td></mdl<>	<mdl< td=""></mdl<>
Oxychlordane	<mdl< td=""><td><mdl< td=""><td>Chrysene</td><td><mdl< td=""><td><mdl< td=""></mdl<></td></mdl<></td></mdl<></td></mdl<>	<mdl< td=""><td>Chrysene</td><td><mdl< td=""><td><mdl< td=""></mdl<></td></mdl<></td></mdl<>	Chrysene	<mdl< td=""><td><mdl< td=""></mdl<></td></mdl<>	<mdl< td=""></mdl<>
cis-Chlordane	430	93	Benzo[b]fluoranthene	<mdl< td=""><td><mdl< td=""></mdl<></td></mdl<>	<mdl< td=""></mdl<>
trans-Chlordane	390	91	Benzo[k]fluoranthene	<mdl< td=""><td><mdl< td=""></mdl<></td></mdl<>	<mdl< td=""></mdl<>
cis-Nonachlor	36	12	Benzo[a]pyrene	<mdl< td=""><td><mdl< td=""></mdl<></td></mdl<>	<mdl< td=""></mdl<>
trans-Nonachlor	210	57	Indeno[1,2,3-cd]pyrene	<mdl< td=""><td><mdl< td=""></mdl<></td></mdl<>	<mdl< td=""></mdl<>
o,p'-DDT	460	55	Dibenz[a,h]anthracene	<mdl< td=""><td><mdl< td=""></mdl<></td></mdl<>	<mdl< td=""></mdl<>
o,p'-DDE	100	19	Benzo[g,h,i]perylene	<mdl< td=""><td><mdl< td=""></mdl<></td></mdl<>	<mdl< td=""></mdl<>
o,p'-DDD	170	19			
p,p'-DDT	930	100	Total PID Response *	140	<mdl< td=""></mdl<>
p,p'-DDE	510	33			
p,p'-DDD	23	<mdl< td=""><td></td><td></td><td></td></mdl<>			
Dieldrin	200	<mql< td=""><td></td><td></td><td></td></mql<>			
Endrin	41	<mql< td=""><td></td><td></td><td></td></mql<>			
Methoxychlor	<mql< td=""><td><mdl< td=""><td></td><td></td><td></td></mdl<></td></mql<>	<mdl< td=""><td></td><td></td><td></td></mdl<>			
Mirex	1.8	0.77			
Endosulfan	35	100			
Endosulfan-II	150	44			
Endosulfan Sulfate	<mdl< td=""><td><mdl< td=""><td></td><td></td><td></td></mdl<></td></mdl<>	<mdl< td=""><td></td><td></td><td></td></mdl<>			
Sum of Identified OCs	4000	690			
Total PCBs	2000	<mdl< td=""><td></td><td></td><td></td></mdl<>			

^{*} As pyrene (i.e. total GC-PID response using the response factor of pyrene to quantify)

Table XIV

Comparison of Inside/Outside Levels of Contaminants at House 671529A

OC-Pesticides	Site # 3 Inside ng	Site # 6 Outside ng	PAHs	Site # 3 Inside µg	Site # 6 Outside µg
НСВ	30	8.0	Naphthalene	<mdl< td=""><td>2.6</td></mdl<>	2.6
PCA	51	24	Acenaphthylene	0.3	0.7
α-BHC	3.2	6.4	Acenaphthene	<mql< td=""><td><mdl< td=""></mdl<></td></mql<>	<mdl< td=""></mdl<>
β-BHC	24	<mdl< td=""><td>Fluorene</td><td><mdl< td=""><td><mdl< td=""></mdl<></td></mdl<></td></mdl<>	Fluorene	<mdl< td=""><td><mdl< td=""></mdl<></td></mdl<>	<mdl< td=""></mdl<>
δ-BHC	<mql< td=""><td><mdl< td=""><td>Phenanthrene</td><td>3.9</td><td><mql< td=""></mql<></td></mdl<></td></mql<>	<mdl< td=""><td>Phenanthrene</td><td>3.9</td><td><mql< td=""></mql<></td></mdl<>	Phenanthrene	3.9	<mql< td=""></mql<>
Lindane	<mql< td=""><td><mql< td=""><td>Anthracene</td><td>0.7</td><td><mdl< td=""></mdl<></td></mql<></td></mql<>	<mql< td=""><td>Anthracene</td><td>0.7</td><td><mdl< td=""></mdl<></td></mql<>	Anthracene	0.7	<mdl< td=""></mdl<>
Dacthal	<mql< td=""><td><mql< td=""><td>Fluoranthene</td><td><mql< td=""><td><mql< td=""></mql<></td></mql<></td></mql<></td></mql<>	<mql< td=""><td>Fluoranthene</td><td><mql< td=""><td><mql< td=""></mql<></td></mql<></td></mql<>	Fluoranthene	<mql< td=""><td><mql< td=""></mql<></td></mql<>	<mql< td=""></mql<>
Heptachlor	160	10	Pyrene	1.1	<mdl< td=""></mdl<>
Heptachlor Epoxide	<mql< td=""><td><mdl< td=""><td>Benz[a]anthracene</td><td><mdl< td=""><td><mdl< td=""></mdl<></td></mdl<></td></mdl<></td></mql<>	<mdl< td=""><td>Benz[a]anthracene</td><td><mdl< td=""><td><mdl< td=""></mdl<></td></mdl<></td></mdl<>	Benz[a]anthracene	<mdl< td=""><td><mdl< td=""></mdl<></td></mdl<>	<mdl< td=""></mdl<>
Oxychlordane	<mdl< td=""><td><mdl< td=""><td>Chrysene</td><td><mdl< td=""><td><mdl< td=""></mdl<></td></mdl<></td></mdl<></td></mdl<>	<mdl< td=""><td>Chrysene</td><td><mdl< td=""><td><mdl< td=""></mdl<></td></mdl<></td></mdl<>	Chrysene	<mdl< td=""><td><mdl< td=""></mdl<></td></mdl<>	<mdl< td=""></mdl<>
cis-Chlordane	79	28	Benzo[b]fluoranthene	<mdl< td=""><td><mdl< td=""></mdl<></td></mdl<>	<mdl< td=""></mdl<>
trans-Chlordane	150	42	Benzo[k]fluoranthene	<mdl< td=""><td><mdl< td=""></mdl<></td></mdl<>	<mdl< td=""></mdl<>
cis-Nonachlor	8.6	<mql< td=""><td>Benzo[a]pyrene</td><td><mdl< td=""><td><mdl< td=""></mdl<></td></mdl<></td></mql<>	Benzo[a]pyrene	<mdl< td=""><td><mdl< td=""></mdl<></td></mdl<>	<mdl< td=""></mdl<>
trans-Nonachlor	44	19	Indeno[1,2,3-cd]pyrene	<mdl< td=""><td><mdl< td=""></mdl<></td></mdl<>	<mdl< td=""></mdl<>
o,p'-DDT	18	<mql< td=""><td>Dibenz[a,h]anthracene</td><td><mdl< td=""><td><mdl< td=""></mdl<></td></mdl<></td></mql<>	Dibenz[a,h]anthracene	<mdl< td=""><td><mdl< td=""></mdl<></td></mdl<>	<mdl< td=""></mdl<>
o,p'-DDE	<mdl< td=""><td><mdl< td=""><td>Benzo[g,h,i]perylene</td><td><mdl< td=""><td><mdl< td=""></mdl<></td></mdl<></td></mdl<></td></mdl<>	<mdl< td=""><td>Benzo[g,h,i]perylene</td><td><mdl< td=""><td><mdl< td=""></mdl<></td></mdl<></td></mdl<>	Benzo[g,h,i]perylene	<mdl< td=""><td><mdl< td=""></mdl<></td></mdl<>	<mdl< td=""></mdl<>
o,p'-DDD	<mql< td=""><td><mdl< td=""><td></td><td></td><td></td></mdl<></td></mql<>	<mdl< td=""><td></td><td></td><td></td></mdl<>			
p,p'-DDT	<mdl< td=""><td><mdl< td=""><td>Total PID Response *</td><td>160</td><td><mdl< td=""></mdl<></td></mdl<></td></mdl<>	<mdl< td=""><td>Total PID Response *</td><td>160</td><td><mdl< td=""></mdl<></td></mdl<>	Total PID Response *	160	<mdl< td=""></mdl<>
p,p'-DDE	17	0.8			
p,p'-DDD	12	<mdl< td=""><td></td><td></td><td></td></mdl<>			
Dieldrin	110	<mdl< td=""><td></td><td></td><td></td></mdl<>			
Endrin	<mql< td=""><td><mql< td=""><td></td><td></td><td></td></mql<></td></mql<>	<mql< td=""><td></td><td></td><td></td></mql<>			
Methoxychlor	<mdl< td=""><td><mdl< td=""><td></td><td></td><td></td></mdl<></td></mdl<>	<mdl< td=""><td></td><td></td><td></td></mdl<>			
Mirex	<mql< td=""><td><mql< td=""><td></td><td></td><td></td></mql<></td></mql<>	<mql< td=""><td></td><td></td><td></td></mql<>			
Endosulfan	39	71			
Endosulfan-II	20	15			
Endosulfan Sulfate	<mdl< td=""><td><mdl< td=""><td></td><td></td><td></td></mdl<></td></mdl<>	<mdl< td=""><td></td><td></td><td></td></mdl<>			
Sum of Identified OCs	860	230			
Total PCBs	1300	<mdl< td=""><td></td><td></td><td></td></mdl<>			

^{*} As pyrene (i.e. total GC-PID response using the response factor of pyrene to quantify)

Table XV

Comparison of Inside/Outside Levels of Contaminants at House 172152A

OC-Pesticides	Site # 13 Inside ng	Site # 26 Outside ng	PAHs	Site # 13 Inside µg	Site # 26 Outside µg
HCB	51	17	Naphthalene	<mdl< td=""><td>2.3</td></mdl<>	2.3
PCA	87	69	Acenaphthylene	<mql< td=""><td><mql< td=""></mql<></td></mql<>	<mql< td=""></mql<>
α-BHC	5.8	6.4	Acenaphthene	<mql< td=""><td><mdl< td=""></mdl<></td></mql<>	<mdl< td=""></mdl<>
β-ВНС	18	<mdl< td=""><td>Fluorene</td><td><mdl< td=""><td><mdl< td=""></mdl<></td></mdl<></td></mdl<>	Fluorene	<mdl< td=""><td><mdl< td=""></mdl<></td></mdl<>	<mdl< td=""></mdl<>
δ-BHC	<mdl< td=""><td><mdl< td=""><td>Phenanthrene</td><td>3.0</td><td>1.1</td></mdl<></td></mdl<>	<mdl< td=""><td>Phenanthrene</td><td>3.0</td><td>1.1</td></mdl<>	Phenanthrene	3.0	1.1
Lindane	300	<mql< td=""><td>Anthracene</td><td>1.0</td><td><mdl< td=""></mdl<></td></mql<>	Anthracene	1.0	<mdl< td=""></mdl<>
Dacthal	<mql< td=""><td><mql< td=""><td>Fluoranthene</td><td><mql< td=""><td><mdl< td=""></mdl<></td></mql<></td></mql<></td></mql<>	<mql< td=""><td>Fluoranthene</td><td><mql< td=""><td><mdl< td=""></mdl<></td></mql<></td></mql<>	Fluoranthene	<mql< td=""><td><mdl< td=""></mdl<></td></mql<>	<mdl< td=""></mdl<>
Heptachlor	45	2.0	Pyrene	<mql< td=""><td><mdl< td=""></mdl<></td></mql<>	<mdl< td=""></mdl<>
Heptachlor Epoxide	32	<mdl< td=""><td>Benz[a]anthracene</td><td><mdl< td=""><td><mdl< td=""></mdl<></td></mdl<></td></mdl<>	Benz[a]anthracene	<mdl< td=""><td><mdl< td=""></mdl<></td></mdl<>	<mdl< td=""></mdl<>
Oxychlordane	<mdl< td=""><td><mdl< td=""><td>Chrysene</td><td><mdl< td=""><td><mdl< td=""></mdl<></td></mdl<></td></mdl<></td></mdl<>	<mdl< td=""><td>Chrysene</td><td><mdl< td=""><td><mdl< td=""></mdl<></td></mdl<></td></mdl<>	Chrysene	<mdl< td=""><td><mdl< td=""></mdl<></td></mdl<>	<mdl< td=""></mdl<>
cis-Chlordane	190	16	Benzo[b]fluoranthene	<mdl< td=""><td><mdl< td=""></mdl<></td></mdl<>	<mdl< td=""></mdl<>
trans-Chlordane	180	20	Benzo[k]fluoranthene	<mdl< td=""><td><mdl< td=""></mdl<></td></mdl<>	<mdl< td=""></mdl<>
cis-Nonachlor	17	<mdl< td=""><td>Benzo[a]pyrene</td><td><mdl< td=""><td><mql< td=""></mql<></td></mdl<></td></mdl<>	Benzo[a]pyrene	<mdl< td=""><td><mql< td=""></mql<></td></mdl<>	<mql< td=""></mql<>
trans-Nonachlor	110	19	Indeno[1,2,3-cd]pyrene	<mdl< td=""><td><mql< td=""></mql<></td></mdl<>	<mql< td=""></mql<>
o,p'-DDT	66	<mdl< td=""><td>Dibenz[a,h]anthracene</td><td><mdl< td=""><td><mdl< td=""></mdl<></td></mdl<></td></mdl<>	Dibenz[a,h]anthracene	<mdl< td=""><td><mdl< td=""></mdl<></td></mdl<>	<mdl< td=""></mdl<>
o,p'-DDE	34	8.3	Benzo[g,h,i]perylene	<mdl< td=""><td><mdl< td=""></mdl<></td></mdl<>	<mdl< td=""></mdl<>
o,p'-DDD	<mql< td=""><td><mdl< td=""><td></td><td></td><td></td></mdl<></td></mql<>	<mdl< td=""><td></td><td></td><td></td></mdl<>			
p,p'-DDT	140	<mdl< td=""><td>Total PID Response *</td><td>160</td><td><mql< td=""></mql<></td></mdl<>	Total PID Response *	160	<mql< td=""></mql<>
p,p'-DDE	200	2.2			
p,p'-DDD	<mql< td=""><td><mdl< td=""><td></td><td></td><td></td></mdl<></td></mql<>	<mdl< td=""><td></td><td></td><td></td></mdl<>			
Dieldrin	160	<mdl< td=""><td></td><td></td><td></td></mdl<>			
Endrin	18	<mdl< td=""><td></td><td></td><td></td></mdl<>			
Methoxychlor	<mdl< td=""><td><mdl< td=""><td></td><td></td><td></td></mdl<></td></mdl<>	<mdl< td=""><td></td><td></td><td></td></mdl<>			
Mirex	6.7	<mql< td=""><td></td><td></td><td></td></mql<>			
Endosulfan	<mql< td=""><td>25</td><td></td><td></td><td></td></mql<>	25			
Endosulfan-II	59	5.0			
Endosulfan Sulfate	<mdl< td=""><td><mdl< td=""><td></td><td></td><td></td></mdl<></td></mdl<>	<mdl< td=""><td></td><td></td><td></td></mdl<>			
Sum of Identified OCs	1700	190			
Total PCBs	4300	<mdl< td=""><td></td><td></td><td></td></mdl<>			

^{*} As pyrene (i.e. total GC-PID response using the response factor of pyrene to quantify)

Table XVI
Summary of Analysis Results for Current Use Pesticides

	Trifluralin	Diazinon	Chlorpyrifos	cis-Permethrin	trans-Permethrin
	Total ng in	Total ng in	Total ng in	Total ng in	Total ng in
	4 SPMDs	4 SPMDs	4 SPMDs	4 SPMDs	4 SPMDs
Site # 2	<mdl< td=""><td>27000</td><td>72000</td><td>1100</td><td>1200</td></mdl<>	27000	72000	1100	1200
Site # 9	23	660	770	<mdl< td=""><td><mql< td=""></mql<></td></mdl<>	<mql< td=""></mql<>
Site # 15	25	510	2100	<mdl< td=""><td><mql< td=""></mql<></td></mdl<>	<mql< td=""></mql<>
Site # 17	<mql< td=""><td>330</td><td>2200</td><td><mql< td=""><td><mql< td=""></mql<></td></mql<></td></mql<>	330	2200	<mql< td=""><td><mql< td=""></mql<></td></mql<>	<mql< td=""></mql<>
Site # 18	100	1100	5400	530	610
Site # 24	67	700	38000	<mdl< td=""><td><mql< td=""></mql<></td></mdl<>	<mql< td=""></mql<>
Site # 32	65	490	380	<mql< td=""><td><mql< td=""></mql<></td></mql<>	<mql< td=""></mql<>
Site # 38	<mdl< td=""><td>4000</td><td>58</td><td><mql< td=""><td><mql< td=""></mql<></td></mql<></td></mdl<>	4000	58	<mql< td=""><td><mql< td=""></mql<></td></mql<>	<mql< td=""></mql<>
Site # 43	280	14000	43000	46	<mql< td=""></mql<>
Site # 46	42	840	49	160	92
Site # 54	<mql< td=""><td>390</td><td>220</td><td><mdl< td=""><td><mql< td=""></mql<></td></mdl<></td></mql<>	390	220	<mdl< td=""><td><mql< td=""></mql<></td></mdl<>	<mql< td=""></mql<>
Site # 55	190	780	1600	47	<mql< td=""></mql<>

Table XVII $\label{eq:stimated}$ Estimated Airborne Concentrations of Select Contaminants $\text{At Representative Sample Sites (ng/m}^3)$

	Site # 2	Site # 43	Site # 46
Total PAHs*	590	3200	960
Total PCBs	23	16	12
Chlordanes	1.4	3.7	1.5
Nonachlors	0.31	1.4	0.47
Endosulfans	1.7	1.1	0.99
Trifluralin	<mdl< td=""><td>1.3</td><td>0.19</td></mdl<>	1.3	0.19
Diazinon	240	130	7.6
Chlorpyrifos	650	390	0.44
Permethrins	10	0.21	1.1
o,p'-DDT	33	0.50	0.95
o,p'-DDE	6.0	0.25	0.18
o,p'-DDD	1.2	<mdl< td=""><td><mdl< td=""></mdl<></td></mdl<>	<mdl< td=""></mdl<>
p,p'-DDT	28	0.44	0.88
p,p'-DDE	4.0	0.29	0.40
p,p'-DDD	2.7	<mdl< td=""><td><mdl< td=""></mdl<></td></mdl<>	<mdl< td=""></mdl<>

^{*} As pyrene (i.e. total GC-PID response using the response factor of pyrene to quantify)

Table XVIII

Estimated Airborne Concentrations of Select Contaminants

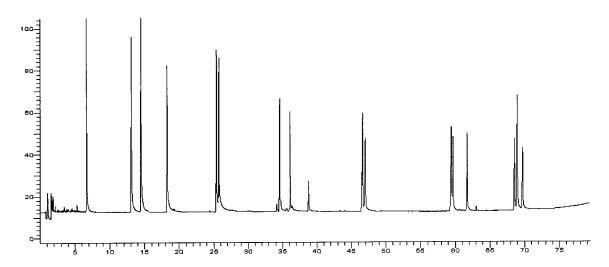
At Representative Sample Sites (ng/L)

	Site # 2	Site # 43	Site # 46
Total PAHs*	0.59	3.2	0.96
Total PCBs	0.023	0.016	0.012
Chlordanes	0.0014	0.0037	0.0015
Nonachlors	0.00031	0.0014	0.00047
Endosulfans	0.0017	0.0011	0.00099
Trifluralin	<mdl< td=""><td>0.0013</td><td>0.00019</td></mdl<>	0.0013	0.00019
Diazinon	0.24	0.13	0.0076
Chlorpyrifos	0.65	0.39	0.00044
Permethrins	0.010	0.00021	0.0011
o,p'-DDT	0.033	0.00050	0.00095
o,p'-DDE	0.0060	0.00025	0.00018
o,p'-DDD	0.0011	<mdl< td=""><td><mdl< td=""></mdl<></td></mdl<>	<mdl< td=""></mdl<>
p,p'-DDT	0.028	0.00044	0.00088
p,p'-DDE	0.0040	0.00029	0.00040
p,p'-DDD	0.0027	<mdl< td=""><td><mdl< td=""></mdl<></td></mdl<>	<mdl< td=""></mdl<>

^{*} As pyrene (i.e. total GC-PID response using the response factor of pyrene to quantify)

Table XIX

Estimated Airborne Concentrations of Select Contaminants

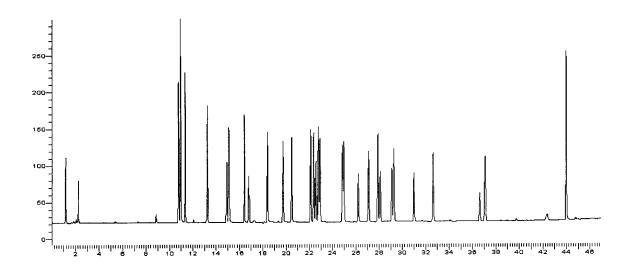

At Representative Sample Sites (ng/g)

	Site # 2	Site # 43	Site # 46
Total PAHs*	0.50	2.7	0.81
Total PCBs	0.019	0.013	0.0099
Chlordanes	0.0011	0.0031	0.0013
Nonachlors	0.00026	0.0012	0.00040
Endosulfans	0.0014	0.00095	0.00084
Trifluralin	<mdl< td=""><td>0.0011</td><td>0.00016</td></mdl<>	0.0011	0.00016
Diazinon	0.21	0.11	0.0064
Chlorpyrifos	0.55	0.33	0.00038
Permethrins	0.0088	0.00018	0.00096
o,p'-DDT	0.028	0.00042	0.00080
o,p'-DDE	0.0051	0.00021	0.00015
o,p'-DDD	0.00097	<mdl< td=""><td><mdl< td=""></mdl<></td></mdl<>	<mdl< td=""></mdl<>
p,p'-DDT	0.024	0.00037	0.00075
p,p'-DDE	0.0034	0.00025	0.00034
p,p'-DDD	0.0023	<mdl< td=""><td><mdl< td=""></mdl<></td></mdl<>	<mdl< td=""></mdl<>

^{*} As pyrene (i.e. total GC-PID response using the response factor of pyrene to quantify)

Figure 1

GC-PID Analysis of PAH Standards

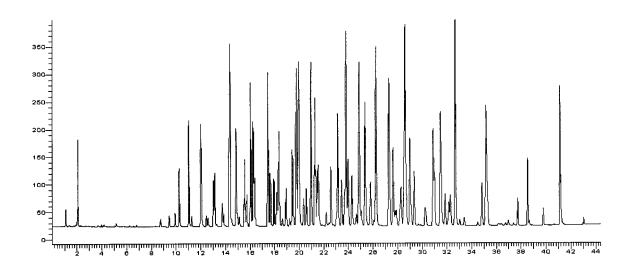


 $8.0\,\mu\text{g/mL}$ PAH mixed standard. See Table XI for component list and retention times.

Note: Hewlett Packard 5890 series gas chromatograph (GC) equipped with a DB-5 (30 m x 0.25 mm i.d x 0.25 μm film thickness.) capillary column (J&W Scientific, Folsom, CA) with the following temperature program: injection at 60°C, then 15°C/min to 165°C, followed by 2.5°C/min to 250°C, then 10°C/min to 320°C and held at 320°C for 1 min.

Figure 2

GC-ECD Analysis of OC-Pesticide Standards

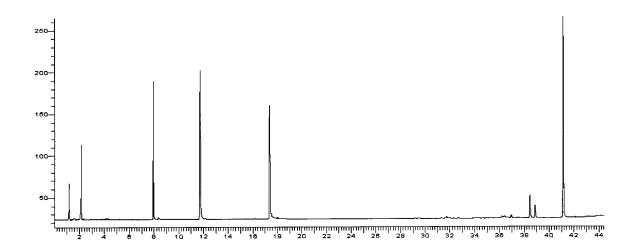


40 ng/mL OC-Pesticide mixed standard. See Table XI for component list and retention times.

Note: Hewlett Packard 5890 series gas chromatograph (GC) equipped with a DB-35MS (30 m x 0.25 mm i.d. x 0.25 μ m film thickness) capillary column (J&W Scientific, Folsom, CA) with the following temperature program: injection at 90°C; then 15°C/min to 165°C; followed by 2.5°C/min to 250°C; then at 10°C/min to 320°C. The electron capture detector (ECD) was maintained at 330°C (Hewlett Packard, Inc., Palo Alto, CA).

Figure 3

GC-ECD Analysis of PCB Standard



4,000 total ng/mL 1:1:1:1 mixture of Aroclor® (1242:1248:1254:1260) standard. See Table XI for component list and retention times.

Note: Hewlett Packard 5890 series gas chromatograph (GC) equipped with a DB-35MS (30 m x 0.25 mm i.d. x 0.25 μ m film thickness) capillary column (J&W Scientific, Folsom, CA) with the following temperature program: injection at 90°C; then 15°C/min to 165°C; followed by 2.5°C/min to 250°C; then at 10°C/min to 320°C. The electron capture detector (ECD) was maintained at 330°C (Hewlett Packard, Inc., Palo Alto, CA).

Figure 4

GC-ECD Analysis of Current Use Pesticide Standard

Standard mixture of current use pesticides (800 ng/mL of diazinon and 80 ng/mL each of the rest). See Table XI for component list and retention times.

Note: Hewlett Packard 5890 series gas chromatograph (GC) equipped with a DB-35MS (30 m x 0.25 mm i.d. x 0.25 μ m film thickness) capillary column (J&W Scientific, Folsom, CA) with the following temperature program: injection at 90°C; then 15°C/min to 165°C; followed by 2.5°C/min to 250°C; then at 10°C/min to 320°C. The electron capture detector (ECD) was maintained at 330°C (Hewlett Packard, Inc., Palo Alto, CA).

Figure 5

Total Analytes per Sample (n=4 SPMDs)

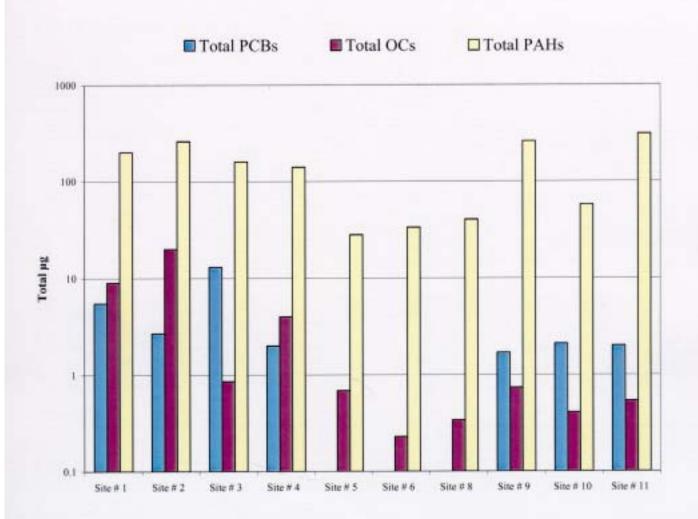


Figure 5 (Continued)

Total Analytes per Sample (n=4 SPMDs)

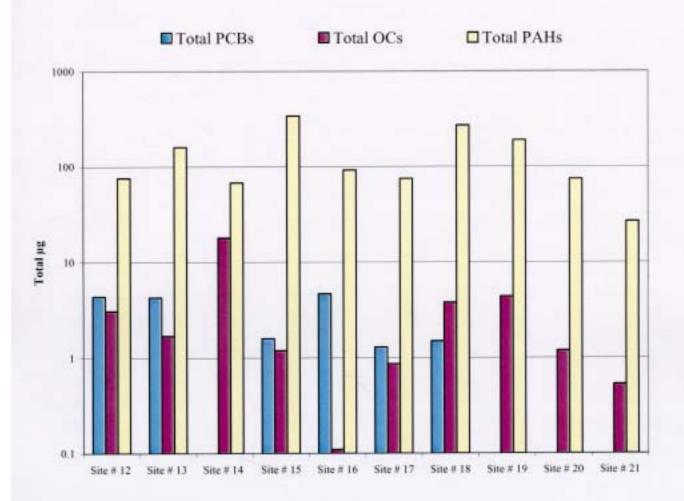


Figure 5 (Continued)

Total Analytes per Sample (n=4 SPMDs)

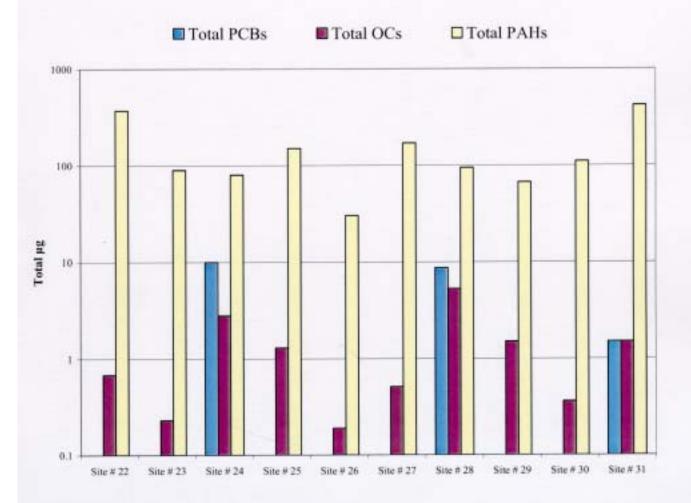


Figure 5 (Continued)

Total Analytes per Sample (n=4 SPMDs)

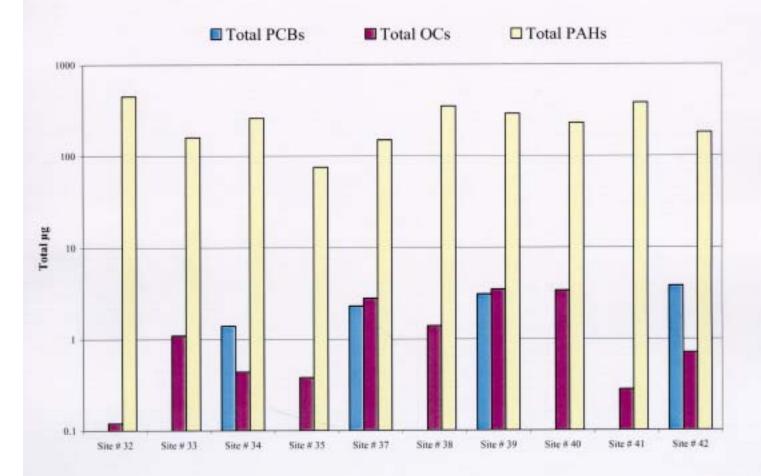


Figure 5 (Continued)

Total Analytes per Sample (n=4 SPMDs)

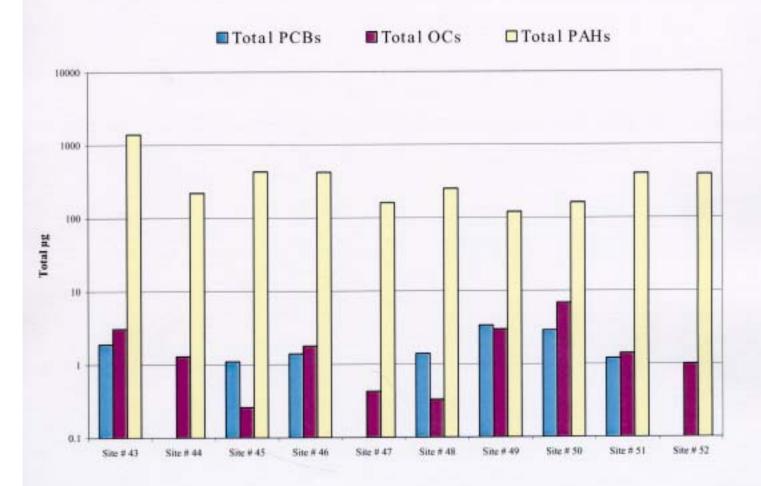


Figure 5 (Continued)

Total Analytes per Sample (n=4 SPMDs)

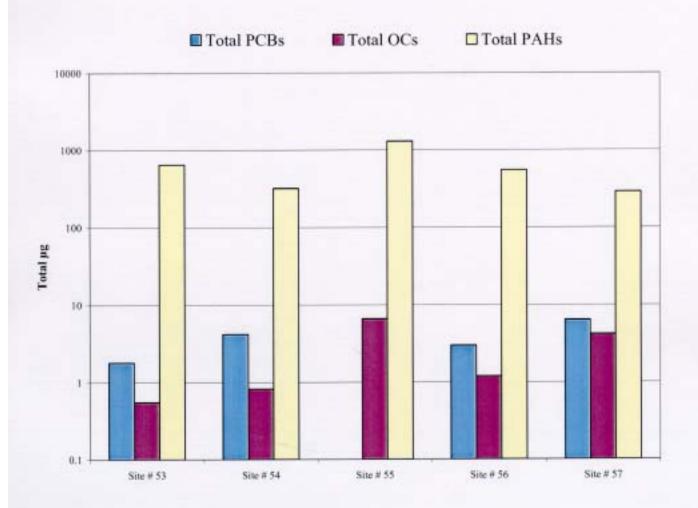


Figure 6

Total Analytes per Sample (n=4 SPMDs)

Inside/Outside Sampling

Figure 7

Total Analytes per Sample (n=4 SPMDs)

Current Use Pesticides

Figure 7 (Continued)

Total Analytes per Sample (n=4 SPMDs)

Current Use Pesticides

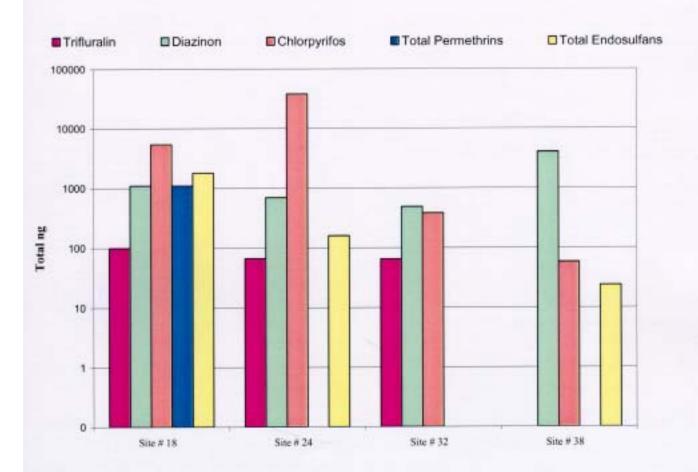
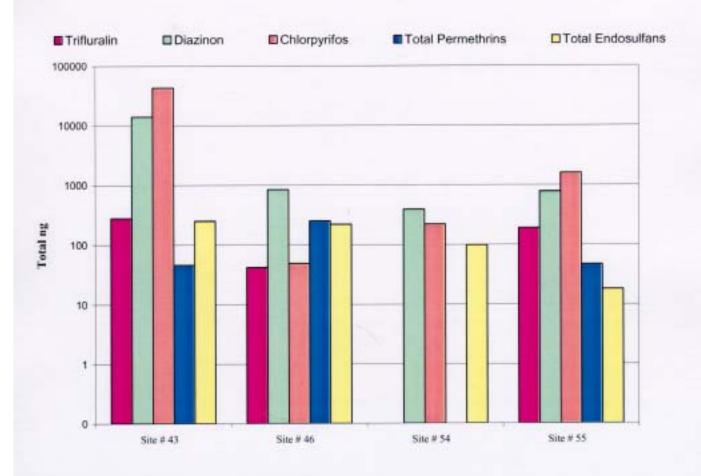
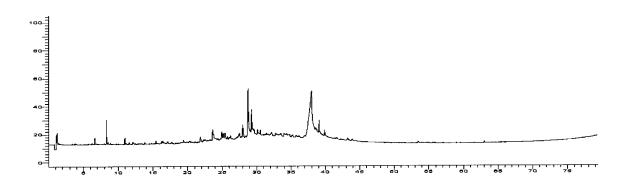
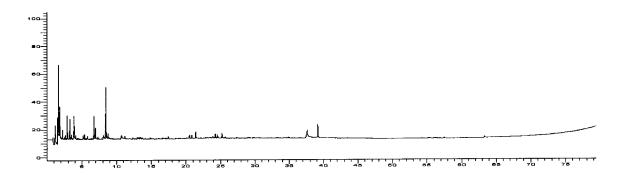


Figure 7 (Continued)

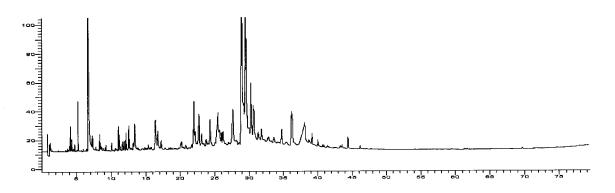
Total Analytes per Sample (n=4 SPMDs)

Current Use Pesticides

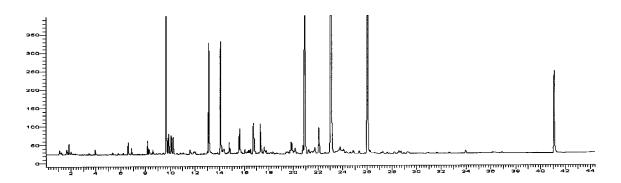

Figure 8

Representative GC-PID Profiles of

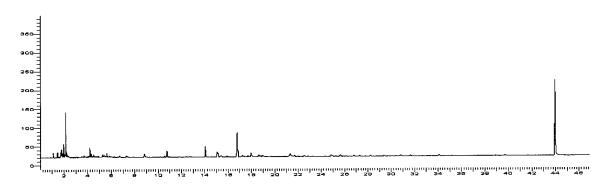

PAH Fractions

Site # 2

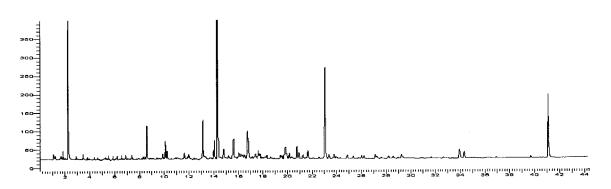
Site # 6



Site # 43

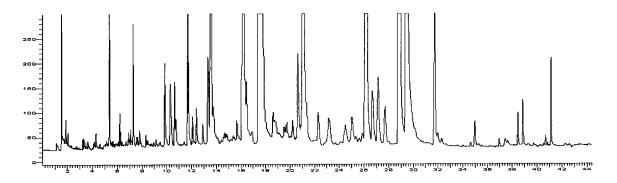

Figure 9

Representative GC-ECD Profiles of

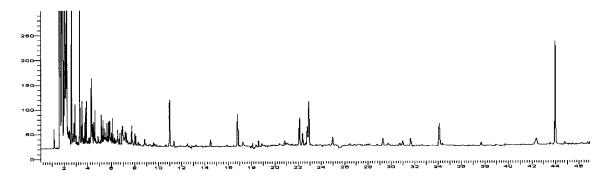

PCB Fractions

Site # 2

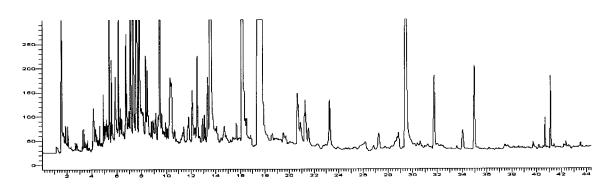
Site # 6



Site # 43


Figure 10

Representative GC-ECD Profiles of


OC-Pesticide Fractions

Site # 2

Site #6

Site # 43