Severe Acute Respiratory Syndrome (SARS)

Laboratory Diagnostics

SARS Diagnostics Should we be testing for SARS?

In the absence of documented SARS transmission, diagnostic testing for SARS-CoV should NOT be considered unless there is a high index of suspicion for SARS (e.g., a strongly suggestive clinical presentation and a travel history to a previously affected SARS area) and no alternative respiratory diagnosis.

SARS Diagnostics Word on the Street

"[Labs are] not fully comfortable with the PCR assay for SARS because much about it is unknown."

APHL: Public Health News "State Public Health Laboratories Put to the Test with SARS"

SARS Diagnostics Preparedness

Performance of current diagnostic tests

- New diagnostic tools
- Optimal specimen types and timing
- Quality control
- Other respiratory pathogens "rule-out testing"

SARS Diagnostics Cell culture

BSL-3 Activity

Restricted culture range Vero E6 cells CPE:

focal

ER · HEALTHIER · PEOPL

- cell rounding
- refractile appearance

P Rollin, Special Pathogens Branch

SA

SARS Diagnostics Electron Microscopy

C Humphrey, Pathology Activity Program

Syncytial giant cell in lung of SARS patient

S Zaki, Pathology Activity Program

IHC staining of syncytial cells in coronavirus-infected Vero cells (antigenic group I antisera)

SARS Diagnostics Phylogenetic Analysis

SARS Diagnostics Antibody tests: Enzyme immunoassay

CDC

SARS Diagnostics Antibody tests: Immunofluorescence Assay

SARS Diagnostics RT-PCR – First Generation Tests

SARS Diagnostics Real-time RT-PCR

Conventional vs Real-time RT-PCR (TaqMan)

- increased sensitivity (1-10 transcript copies)
- increased speed/throughput
- quantitative
- reduced risk of amplicon contamination
- Multiple genetic targets
 - nucleocapsid and polymerase genes
 - amplification of 2 of the 3 targets required for a positive test

SARS Diagnostics Real-time RT-PCR

CDC

SARS Diagnostics Real-time RT-PCR

Conventional vs Real-time RT-PCR (TaqMan)

- increased sensitivity (1-10 transcript copies)
- increased speed/throughput
- quantitative
- reduced risk of amplicon contamination
- Multiple genetic targets
 - nucleocapsid and polymerase genes
 - amplification of 2 of the 3 targets required for a positive test

RT-PCR – Interpretation of Test Results

Potential for false negative results

- low titer virus in respiratory secretions in first few days after onset of illness
- Potential for false positive results
 - contamination from previously amplified DNA
 - cross-contamination between specimens
- All test results must be interpreted in the context of the clinical and epidemiological findings

HEALTHI

ER · PEOP

RT-PCR – Interpretation of Test Results

- Confirmation of a positive SARS RT-PCR test
 - repeat the RT-PCR using the original sample
 - have the sample tested in a second laboratory
- Positive SARS diagnostic test finding
 - at least 2 different clinical specimens
 - the same specimen collected on 2 or more days

WHO recommendations: http://who.int/csr/sars/labmethods/en/

SARS Diagnostics Serology – Current EIA

Serology appears to be highly specific

- no reactions with other documented CoV infections (OC43 and 229E)
- no reactions with "normal" blood donors (U.S. and Hong Kong populations)
- Serology can be positive in as few as 8 to 10 days after onset of symptoms
- Serology cannot be considered negative until >28 days after onset of symptoms

SARS Diagnostics Serology - New assays

Native virus vs recombinant antigens

- nucleocapsid, spike, and membrane proteins
- safety, standardization, and sensitivity
- IgM assays
 - IgM antibodies may be detectable earlier in the course of infection
 - Transient response

Neutralization and other immunological markers

SARS Diagnostics Specimen Selection and Timing

- Respiratory tract specimens
 - LRT > URT
 - sputum > aspirates > NP/OP washes > NP/OP swabs

EA

PEOP

- more sample
- multiple samples
- Others specimens
 - blood plasma
 - stool

Timing of specimen collection

Peiris et al: Lancet, May 24, 2003

Peiris: personal communication

SARS Diagnostics Specimen Selection and Timing

Specimen	<1 week post symptom onset	1 - 3 weeks post symptom onset	>3 weeks post symptom onset
Serum (separator tube)	++	++	++
Blood (EDTA)	++	+	-
Respiratory (sputum, nasal aspirate/wash, np/op swabs)	+	++	+
Stool	+	++	++

SARS Diagnostics Quality Assessment

• QA CDC

- Standardized test controls
- Internal confirmatory testing
- External WHO quality assurance study
- QA LRN & APHL
 - Identical assays performed at CDC
 - Confirmatory testing
 - Proficiency testing

Other Respiratory Pathogens – "Rule-out testing"

• Why test for other respiratory pathogens?

- may help rule out concerns about SARS
- possibility of mixed infections

When to test for other respiratory pathogens?

HEALTHI

ER · PEOP

What respiratory pathogens to test for?

• Which tests to use?

Other Respiratory Pathogens – "Rule-out testing"

Other respiratory pathogens, U.S. SARS surveillance, March-July, 2003.

M. pneumoniae	C. pneumoniae	L. pneumophila	Influenza A or B	hMPV	hPIV 1,2, 3	RSV	Adeno	Picornavirus (rhinovirus)
22/200	2/197	0/196	15/140	9/150	10/150	1/150	7/150	18/61
(11%)	(1%)	(0%)	(11%)	(6%)	(7%)	(0.7%)	(5%)	(30%)

Schrag SJ et al. SARS surveillance in the United States during the Emergency Public Heath Response, March-July, 2003. EID (In press).

Other Respiratory Pathogens – "Rule-out testing"

Provide guidance on test

- What other tests are available?
- What are their performance characteristics?
- Provide guidance on testing
 - Clinical presentation
 - Demographics (e.g., age)
 - Seasonality (NREVSS)
- Provide RT-PCR protocols

SARS Diagnostics Key Messages

- Serologic and RT-PCR assays are sensitive and specific, but may not provide definitive diagnosis early in illness
- Changes in the type, timing and quantity of specimens collected may improve detection
- Interpretation of test results must take into consideration possibility of false positives and negatives

ER·PEOP

 Confirmation of positive results by a qualified second laboratory essential when SARS is infrequent

HEALTHI

SARS Diagnostics Preparedness – Web Resources

Specimen packaging & shipping http://www.cdc.gov/ncidod/sars/packingspecimens-sars.htm Specimen handling & processing http://www.cdc.gov/ncidod/sars/sarslabguide.htm Specimen testing: RT-PCR http://www.cdc.gov/ncidod/sars/lab/rtpcr/index.htm •Specimen testing: Serology http://www.cdc.gov/ncidod/sars/lab/eia/index.htm Emerging Infectious Diseases http://www.cdc.gov/ncidod/EID/sars_links.htm

