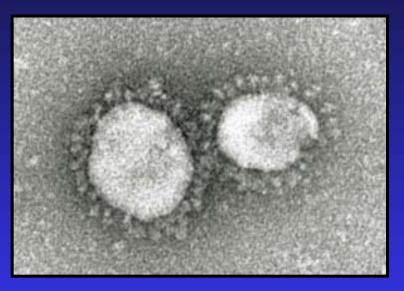
Diagnosis of Severe Acute Respiratory Syndrome (SARS)

- Clinical characteristics of illness
- Epidemiologic link to SARS, i.e. ,travel or contact
- Laboratory evidence of SARS-CoV infection
 - Type of specimen
 - Timing of specimen collection
 - Laboratory assay to detect infection

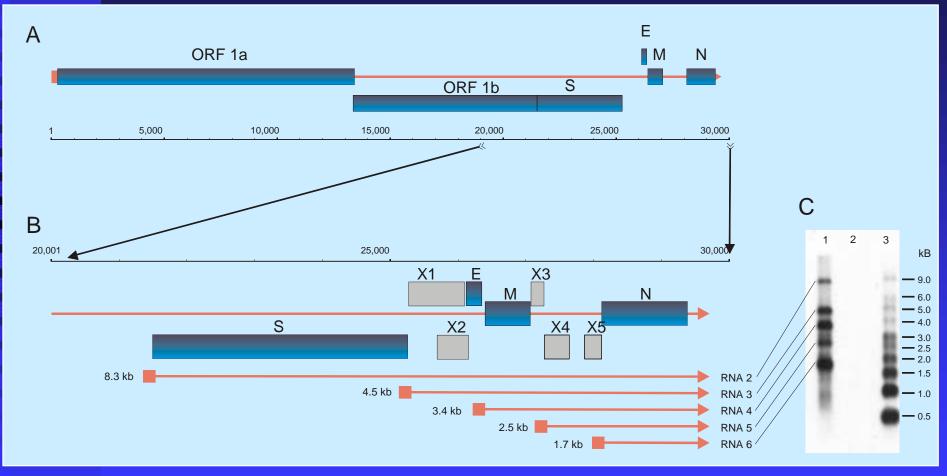
Association Between SARS-CoV and SARS Disease

Infection in SARS patients – virus and serology


- CDC
- Germany, Canada, Hong Kong, Taiwan, Singapore, France, China, Thailand, etc.
- Neg-serology in non-SARS patients (~1000 sera at CDC, 280 HK)
- Virus in lung tissue/BAL specimen
- Identical sequences different outbreaks (c/w point source)
 - US; Hong Kong, Thailand, Singapore, Taiwan, Vietnam, Canada, Germany
- Pulmonary pathology in monkey model
- Questions histopathology and rate of positivity

SARS Etiologic Agent

Order: Nidovirales Family: Coronaviridae Torovirus Coronavirus • Grp I • Grp II • Grp III



Coronaviruses, Hosts and Diseases

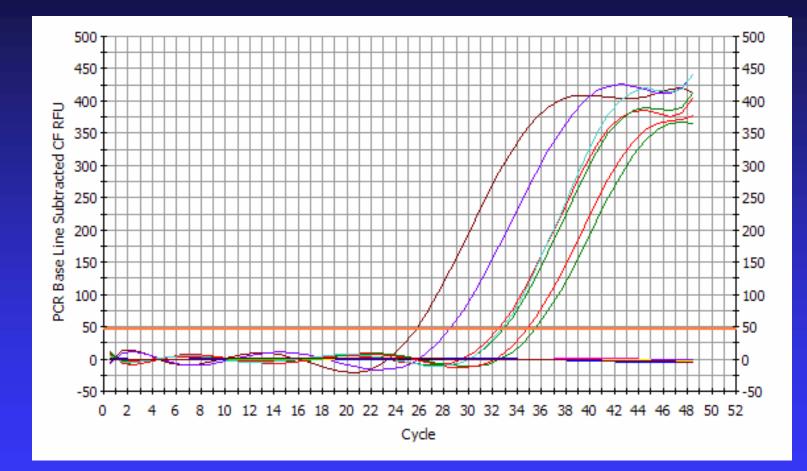
Antigenic					
<u>Group</u>	<u>Virus</u>	<u>Host</u>	<u>Respiratory</u>	<u>Enteric</u>	<u>Other</u>
I	HCoV-229E	human	X		
	TGEV	pig		X	
	PRCoV	pig	X		
	FIPV	cat	X	X	X
	FECoV	cat		X	
	CCoV	dog		X	
Ш	HCoV-OC43	human	X	??	
	MHV	mouse	X	X	X
	RCoV	rat	X		X
	HEV	pig	X		X
	BCoV	cattle	X	X	
111	IBV	chicken	X		X
	TCoV	turkey		X	

SARS-CoV Genome Organization and mRNA Synthesis

Laboratory Diagnosis of SARS Infection

- Type and timing of specimen collection (we need to know more)
- Type of assays
 - Sensitivity
 - Specificity
 - Interpretation of results

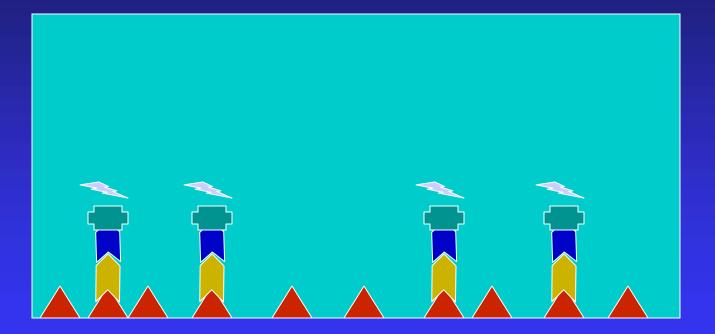
Laboratory Assays for SARS


Detection of virus

- EM in clinical specimens (CoV-like particles)
- Isolation of virus
- Detection of viral antigens (IHC for tissue, ?sensitivity of IFA or ELISA for respiratory specimens)
- Detection of viral RNA (PCR)
 - Respiratory secretions
 - Stool specimens
 - Urine specimens
 - ◆ Tissue lung and kidney
- Detection of SARS-specific antibody
 - ♦ IFA
 - ELISA
 - Neutralization

Real-Time RT-PCR (TaqMan)

Characteristics of SARS-CoV PCR


Limited experience/data

- Specimens
 - Upper respiratory maybe ~50% positivity in acute-phase specimens
 - ◆ Stool possibly higher sensitivity later in illness, e.g., 10-14 days
 - Sputum/BAL probably higher rate of positivity
 - Other specimens, urine, blood, tissues, ?
- Interpretation of Results
 - Negative -- does not rule out SARS-CoV infection
 - Positive possibility of false positive (test error/contamination)

SARS CoV Antibody Assays

Characteristics of SARS-CoV Antibody Assays

- Limited data
- Very low or absent antibody in controls and persons without acute SARS
 - Acute sera may be positive as early as 6 days after onset of sera
 - Convalescent sera should be positive by 21 days after onset
- Interpretation of results
 - Single positive sera indicative of acute infection
 - Later diagnostic rise in antibody between acute- and convalescent-phase sera or IgM antibodies may be need to diagnose acute infection
 - Convalescent-phase serum specimen collected >21 days after onset of illness is required to confirm lack of antibody response to infection
 - False positive/false negative results

Other Tests for SARS Infection

Limited data

- Tissue culture isolation
- Electron microscopy for CoV-like particles
- Immunohistologic or in situ studies of tissue specimens
- IFA or ELISA assays SARS-CoV antigens in respiratory or other specimens (? Likely to be sufficiently sensitive)

Conclusions

- SARS is a clinical and epidemiologic diagnosis
- Laboratory testing can diagnose SARS-CoV infection during the acute illness
- Laboratory testing <u>can not rule out</u> infection until the convalescent phase of illness
- Dual infections, e.g., SARS-CoV and human metapneumovirus, can occur in patients with SARS

