
United States
Department of
Agriculture

Forest Service

White Pine Site Index for the
Southern Forest Survey

Southern
Research Station

Bernard R. Parresol and John S. Vissage

Research Paper
SRS-10



The Authors:

Bernard R. Parresol is a mathematical statistician with the Southern
Forest Inventory, Monitoring, and Analysis Program (SFIMAP), U.S.
Department of Agriculture, Forest Service, Southern Research Station,
Asheville, NC 28804; and John S. Vissage is a forester with the Forest
Inventory and Analysis (FIA) unit, U.S. Department of Agriculture,
Forest Service, Southern Research Station, Starkville, MS 39760.

February 1998

Southern Research Station
P.O. Box 2680

Asheville, North Carolina 28802



White Pine Site Index for the Southern
Forest Survey

Bernard R. Parresol and John S. Vissage

Abstract Table l-Second-growth white pine age-height data a

A base-age invariant polymorphic site index equation was used to model
the white pine (Pinus  strobus L.) site-quality data provided by
Frothingham (1914). These data are the accepted standard used by the
Southern Forest Inventory and Analysis unit of the U.S. Department of
Agriculture, Forest Service. An all possible growth intervals data structure
was used, and autocorrelation parameters were incorporated into the site
index model. It has recently been been shown that these measures arc necessary
to obtain unbiased, efficient parameter estimates. The model is invertible,
hence site index can be explicitly determined without the need for a
numerical evaluation procedure. The site index model can be solved to
provide an equation for any base age, hence it is applicable regardless of
the choice of rotation age. Site index curves are graphed for base ages 25
and 50 years, and example calculations are provided.

Keywords: Autocorrelation, base-age invariant, Pinus strobus,
polymorphic.

Introduction

Forest Inventory and Analysis units of the U.S. Department
of Agriculture, Forest Service, have been estimating site
productivity since 1962 (Josephson 1962). Within the
southern forest survey, the standard for white pine (Pinus
strobus L.) site productivity is the data published by
Frothingham (19 14) for second-growth natural stands.
While these data have been used previously to fit a white
pine site index equation (Scott and Voorhis 1986),  the
equation used-a generalized form of the Chapman-
Richards model (Carmean and Hahn 198 1 thas proven
unsatisfactory. The equation is not invertible, that is, one
cannot directly solve for site index given height and age,
and iterative procedures used to solve for site index often
fail to converge to a solution. For purposes of the southern
forest survey, what is desired is a well behaved white pine
site index equation, capable of producing an estimate of
dominanticodominant average height given site index and
age; and, conversely, an estimate of site index given
dominantlcodominant height and age.

Data

Frothingham (19 14) published the results of measurements
of 196 fully stocked second-growth white pine stands in
New Hampshire. He divided the data into three site-quality

Age

Yrs

10
15
20
25
30
35
40
45
50
55
60
65
70
75
80
85
90
95
100

Site quality I Site quality II Site quality III

Heightb Height Height

Ft Ft Ft

7.2 6.0 4.0
14.5 12.0 9.0
24.5 19.5 14.5
34.5 28.0 21.0
44.0 36.5 28.5
53.0 44.5 36.0
61.0 51.5 42.5
68.0 58.0 48.5
74.5 64.0 54.0
80.5 69.5 58.0
85.5 74.5 64.0
90.5 79.0 68.0
94.5 83.0 71.5
98.0 86.5 75.0

101.0 90.0 78.0
105.0 93.0 81.0
108.0 95.5 83.0
110.5 98.0 85.5
113.0 100.0 87.0

‘Data from Frothingham (1914),  Tables 3,4,  5; p. 21-22.
b Average height of dominantkodominant trees.

classes, which he labeled quality I, II, and III (S,, S,,, S,,,).
These data are reproduced in table 1 and represent mean
values for each age and site class. It should be pointed out
that data developed in this manner do not represent the
variability in the population. Hence, for any equation fitted
to these data, parameter estimates cannot be tested for
statistical reliability and prediction confidence intervals
cannot be validly constructed. Nonetheless, unbiased
predictions can still be made, and if the data represent true
site-quality relationships in the white pine population, then a
model that can capture the relationships among the data will
give credible results in application.
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Figure l--Plot of the ratios of the site-quality data of table 1 showing
changing ratios through time for each line. This indicates a polymorphic
relationship.

Methods

Anamorphic vs. Polymorphic

Today it is generally believed that anamorphic curves do not
adequately represent site relationships (Carmean 1968,
1975; Goelz and Burk 1992). An anamorphic site index
curve is one in which the curve for a given site index is a
constant proportion of the curve for another site index. A
polymorphic curve, by contrast, is not a constant proportion
of the other curves. To see if the implicit relationships in the
data were anamorphic or polymorphic, we graphed the
ratios (S,/S,,), (S,/S,,,), and (S,,/S,,,) over age (fig. 1).
Because the ratios change over time (i.e., the lines are not
horizontal), the definition of anamorphism is not met, which
signifies that a polymorphic model should best capture the
relationships in the data. We therefore ruled out fitting an
anamorphic model to this data.

Procedures for Fitting a Site Index Equation

A height-by-age equation can be differentiated to provide an
equation for height growth rather than accumulated height.

An equation in this form is referred to as an algebraic
difference equation (ADE) and is the preferred form for
fitting site index models (Clutter and others 1983: 50-54;
Goelz and Burk 1992, 1996; Ramirez-Maldonado and
others 1988).

A crucial fact pointed out by Goelz and Burk (1992, 1996)
is that modeling height in the context of site index involves
two processes: (1) estimating site index at base age given
height at some other age, and (2) estimating height at some
desired age given height (site index) at base age. These two
processes may be modeled by individual functions, such as
was done by Carmean and others (1989). Height is assumed
to be measured without error when on the right-hand side of
the equation (dependent or Y variable), but possessing error
when on the left-hand side (independent or X variable).
This assumption causes a bias in the parameters of the
curves; neither the height-prediction equation nor the site
index prediction equation will possess a shape that
represents the true functional relationship between height
and age across levels of site index.

To simultaneously optimize the regression of Y on X and X
on Y and avoid parameter bias, Goelz and Burk (1992,
1996) recommend fitting a base-age invariant site index
model (a single equation) in the form of an ADE to an all
possible growth intervals data structure. The typical
procedure in fitting an ADE is to use forward moving first
differences. If plot height is measured at ages 15,20,25,
and 30 years, you would set up three growth intervals. You
would tit height Hz, at age A,, given the previous height H,,
at age A,, as predictor variables; that is, you would fit H2 at
A, = 20 given H, at A, = 15, then H2 at A, = 25 given H, at
A, = 20, and finally H2  at A, = 30 given H, at A, = 25. In the
all possible growth intervals data structure, you use all
possible differences in both directions. In this example,
with 4 age measurements, 12 age intervals are possible: 15-
20, 15-25, 15-30,20-25,20-30,25-30;  and 30-25,30-20,
30-15,25-20,25-15,20-15.

With the all possible growth intervals data structure, you
automatically introduce a lack of independence among
observations. With stem analysis data, you would have
temporal or autocorrelation within each tree, with
Frothingham’s plot-averaged data you should have
autocorrelation within a site-quality class. A nonlinear
model can be written

‘i = f(J 3 P> + e, (1)
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where

the error terms are assumed to be independent and
identically distributed.

Under nonindependence, the normal procedure is to expand
the error term to allow first-order autocorrelation:

Model

A number of researchers have pointed to desirable attributes
for site index equations (e.g., Bailey and Clutter 1974,
Goelz and Burk 1992, Scott and Voorhis 1986). The most
frequently listed criteria are: (1) polymorphism, (2) sigmoid
(S-shaped) growth pattern, (3) asymptote is a function of

where

site index (increases with increasing site index), and
e I = pei_l  + E, (2) (4) logical behavior (height should be zero at age zero and

equal to site index at base age). With these criteria in mind,
we examined a variety of models, selected several to fit to
the data, and finally settled on one described by Clutter and
Jones (1980). The function, in ADE format, isthe a, are now independent and identically distributed.

Goelz and Burk (1992) point out that when using all
possible growth intervals, the model is more complex:

(3)

where

Y, depicts prediction of height i by using r/ (heightj), X,
(age i), and4 (agej * i) as predictor variables.

Consequently, the error term must be further expanded:

eli = Pe ,_,, i + Ye, ,-, + Ei/ (4)

Equation (4) represents the autocorrelation structure
inherent in fitting site index models to an all possible
growth intervals data structure. The parameter p accounts
for the autocorrelation between the current residual and the
residual from estimating Yi_, using r/ as a predictor. The y
parameter accounts for the autocorrelation between the
current residual and the residual from estimating Y, using
r/-r as a predictor variable. Goelz and Burk (1992, 1996),
as well as many other modelers (e.g., Parresol 1993),  also
recommend correcting for heteroscedasticity.

A final point to be noted is that when using the all possible
growth intervals data structure, standard errors for the
parameter estimates will be too small, because the number
of observations are artificially inflated. Goelz and Burk
(1996) give a simple correction factor. Because we will not
be constructing confidence intervals, we are not concerned
with this point (for this application). In summary, to fit site
index models one should (1) use an ADE form, (2) use all
possible growth intervals, (3) account for autocorrelation
and heteroscedasticity, and (4) inflate standard errors.

where

In stands for natural logarithms, H, and A, represent the
predictor height and age, H, is the predicted height at age
A,, the /3’s are model parameters, and e is stochastic error.

This function meets most of the above criteria and, in
addition, has the benefit of being base-age invariant. Base-
age invariant curves are more general than base-age-specific
equations, because they can predict height at any age given
height at any other age. This function behaves very well for
ages 10 and greater, giving small values then increasing in a
sigmoid pattern to the asymptote value, which increases
with increasing site index.

To use model (5) to estimate average stand height (H) for
some desired age (A), given site index (S) and its associated
base age (An),  simply substitute S for H, and A, for A,:

Similarly, to estimate site index at some chosen base age,
given stand height and age, simply substitute S for H2  and A,
for A, in model (5):



Application

lA = exp[e,p-)](lnH-&$+P,) (7)

. n

+ P2d - P3

Generally, the correlation parameters can be ignored when
using equations (6) and (7) for predicting height and site
index. The quantities e,_,,, and e,,,_, will probably not be
known unless one is working repeatedly on the same plot, in
which case they could be determined and utilized to predict
a future value. Our main purpose in using the
autocorrelation error structure was to obtain unbiased,
efficient estimates of the p vector.

Results
Base Age 25 System

The data listed in table 1 were expanded into the all possible
growth intervals data structure. Because each site-quality
class has 19 age measurements, there are 19x  18 or 342 age
intervals per site-quality class, or 1,026 total observations
for fitting model (5). We first fit model (5) without the
autocorrelation parameters using ordinary nonlinear least
squares. Weighted least squares was not used because the
log transformation effectively homogenized the variance.
We tested the residuals for autocorrelation using Durbin’s t-
tests (Durbin 1970). Durbin’s &-tests  consist of regressing
the ordinary least squares residuals on the hypothesized
autoregressive error structure (in our case equation 4) and
testing the significance of the correlation parameter
estimates. The tests show the residuals to be highly
correlated, as was expected (fi= 0.33, t = 20.68, P < 0.0001;
p= 0.63, t = 36.19, P < 0.0001; R2 = 0.83). We refit model
(5),  appending the autocorrelation parameters, with the
SAS/ETS@  MODEL procedure (SAS Institute Inc. 1993),
which allows for dynamic updating of residuals. The final
fitted parameter estimates are listed in table 2. It should be
noted that model (5) is parsimonious, having only three
parameters (excluding the correlation parameters), and fits
the data as well as, or better than, other models we tried.
The R2 was 0.9994.

Table 2-Parameter estimates for model (5)

Parameter Estimate

If we choose to work with a base age of 25 years (i.e., A, =
25), then inserting the values from table 2 into equations (6)
and (7),  we obtain the following:

InAH = 0.7084 exp (8.6188/A) (ln S + 0.9022)
(8a)

- 74.7099/A  + 2.0862

ln% = 1.4116 exp(-8.6188/A)(InH+ 74.7099/A
(8b)

- 2.0862) - 0.9022

Figure 2 displays a graph of the site index curves generated
from equation (Sa).  Some example calculations follow.
Suppose we want to estimate average dominant/codominant
height at age 35 on an area where the site index (base age
25) is reported to be 30 ft. Inserting 35 for A and 30 for S
into (8a) results in

lnAH =0.7084exp  (8.6188/35)@30  +0.9022)

- 74.7099135 + 2.0862 = 3.851

therefore,

6 = exp (3.851) = 47 fI

[:

-8.6188
-74.7099

P3
-2.0862
0.3599

Y 0.6348

Now suppose we want to estimate site index in a 15-year-
old stand where the average dominanticodominant  height is
determined to be 20.7 ft. Inserting 15 for A and 20.7 for H
into (8b) gives:
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Figure 2-White pine polymorphic site index curves based on Frothingham’s data, base age 25
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lnAs = 1.4116exp  (-8.6188/15)(1n20.7  +74.7099/15

- 2.0862) - 0.9022 = 3.806

therefore,

s^ = exp (3.806) = 45 ft

Base Age 50 50 System

If we choose to work with a base age of 50 years (i.e., A, =
50), then inserting the values from table 2 into equations (6)
and (7), we obtain the following:

lnAH  = 0.8417 exp (8.6188/A) (In S - 0.5920)
(9a)

- 74.7099/A  + 2.0862

ln/\s = 1.1881 exp (-8.6188/A) (1nH +74.7099/A
(9b)

- 2.0862) + 0.5920

Figure 3 displays a graph of the site index curves generated
from equation (9a). Some example calculations follow.
Suppose we want to estimate average dominanticodominant
height at age 70 on an area where the site index (base age
50) is reported to be 80 ft. Inserting 70 for A and 80 for S
into (9a) results in

lnAH  = 0.8417exp (8.6188/70)(1n80  -0.5920)

- 74.7099170 + 2.0862 = 4.627

therefore,

l? = exp (4.627) = 102.2 ft

Now suppose we want to estimate site index in a 35-year-
old stand where the average dominant/codominant  height is
determined to be 52.6 ft. Inserting 35 for A and 52.6 for H
into (9b) gives:

lnAs  = 1.1881 exp (-8.6188/35)(1n52.6

+ 74.7099135 2.0862) + 0.5920 = 4.3 17

therefore,

s^ = exp (4.317) = 75 ft

Discussion

Developing and fitting site index equations for unbiased,
efficient estimates is an involved process, even with
relatively simple data as in this application. Goelz and
Burk (1992, 1996) have devised principles and an ad hoc
method which can be used as a guide in developing or
selecting an appropriate site index model, and for fitting
that model to obtain unbiased, efficient parameter estimates.
With the ready availability of data management and
statistical software, it is now relatively easy to restructure
data for all possible growth intervals and fit nonlinear
autoregressive site index models.

The southern forest survey has chosen to use the data of
Frothingham (1914) as the standard for white pine site
evaluation. We recognize that, because they are from a
northern latitude, these data are not ideal for representing
southern site relationships. For good or bad, the southern
survey considers Frothingham’s study to be the best source
for white pine site relationships in the Appalachians.

Previously, a base-age-specific site index function was used
to model these data; however, the current selection of a
base-age invariant site index function gives great flexibility
to accommodate changing management paradigms which
might necessitate a change in the desired base age.
Equations (6) and (7) can be solved for any base age, as
demonstrated in the Application section of this paper.
Estimates of white pine stand height and site index are
easily obtained through direct evaluation of the functions,
there is no need for iterative numerical evaluation methods.
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Figure 3-White pine polymorphic site index curves based on Frothingham’s data, base age 50
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