

Total Ownership Cost

Presentation to NARSOC

10 December 1998

Mr. Ron Rosenthal

OUTLINE

- DoN Weapon System Cost Reduction Program
 - R-TOC Approach and Planning/Analysis Process
 - Understanding Weapon System Costs
 - Standard Templates for Establish R-TOC Plans
- Examples of Specific Cost Reduction Accomplishments
 - Detailed Overview of H-60 Program R-TOC Process
 - Detailed Overview of CVX Program R-TOC Process
- Logistics and Infrastructure Reductions
- DoN Process Focus
- Challenges
- Conclusions

Don WEAPON SYSTEM TOTAL OWNERSHIP COST PROGRAM

- ASN(RD&A) Direction Establish Total Ownership Goals for each Program
 - Use NAVAIR's "Affordable Readiness" Effort As Model and Adapt to All Major Acquisition SYSCOMs/related PEO Programs
- Establishing TOC Objective and Thresholds in Acquisition Program Baseline documents
 - > ACAT I/II 31 Dec 98
 - > ACAT III/IV 30 June 99
- Implementation Guidance Issued, including Standardized <u>Templates</u> to:
 - > Establish Program Baseline
 - > Summarize Initiatives
 - > Identify Investment Requirements and Cost Avoidance/Savings
 - > Break out Investment by Appropriation and Cost Avoidance/Savings by Element

R-TOC APPROACH

Current TOA

INVENTORY MANPOWER INFRASTRUCTURE TECHNICAL DATA SUSTAIN SAFETY AND READINESS REDUCE LIFE CYCLE SUPPORT COSTS

- ★ Innovative Support Solutions
- ★ Reliability Investments
- ★ Single Process Initiatives
- ★ Partnerships w/ Industry
- ★ Technology Insertion
- ★ Reliability Warranties
- ★ Reinvention Initiatives
- ★ In-Service RCM, Data Collection, Analysis, and Maintenance Adjustments
- ★ Reduced Cycle Time

R-TOC PLANNING PROCESS

Know Your Costs: "Minimize TOC by better utilizing information..."

R-TOC PLAN Establishing New Targets

H-60 Program TOC Reduction in Action

- Operations and Support Cost History/Trends
- Identification of Cost Drivers/Affordable Readiness Degraders
- Process Used To Determine Cost Reduction Candidates Which Are Economically Viable
- Helicopter Master Plan as a Top Level Initiative to Provide a Cost-Effective Helicopter Fleet
- Examples of Current O&S Cost Reduction Initiatives

H-60 PROGRAM 5 YR TEAM GÖALS PRODUCT

- Reduce the mishap rate for H60 aircraft by an order of magnitude
- Reduce program development time for completion 40%
- Eliminate MMH/FH for aircraft and avionics support 30%
- Reduce the "Total Cost per Flight Hour" for H60 aircraft by 25% (and again by 25% within the following 5 years)
- Increase "Total Availability" FMC (all assets) 30% or a minimum of 88% (whichever is less)
- Remove non-operational support infrastructure requirements 50%
 - Increase Foreign Military Sales business base by 100%

* Excerpt from PMA-299 Program Goals of 7Nov97

Metrics Fleet Cost of Ownership

VAMOSC H-60 O&S COST

Top Affordable Readiness Degraders

Data Source: NALDA Type Aircraft: SH-60B, SH-60F, & HH-60H Reporting Period: October 1996 through September 1997

Ň	ge CT	VUC			READINESS			SUPPORTABIL				AFFORDABILITY			
[Y]	/era % o :FFE		SYSTEM DESCRIPTION	NMC/PMC			O-LEVEL			I-LEVEL		MAINTENANCE COST			ST
H	A E	1		TOTAL	MAINT	SUPPLY	OAR	CANN	RMVL	I-RFI	I-BCM	O-MHRS	I-MHRS	AFM	AVDLR
1	2.92%	03000	MAINTENANCE INSPECTION	1.65%	2.40%	0.00%	0.00%	0.00%	0.00%	1.22%	0.00%	25.60%	0.71%	0.00%	0.00%
2	1.74%	42110	SEAT WELL BATTERY INSTALLATION	0.24%	0.21%	0.32%	0.27%	0.90%	5.63%	3.98%	0.12%	0.24%	5.14%	0.91%	0.00%
3	1.67%	15122	MAIN ROTOR HEAD HUB ASSEMBLY	2.26%	2.34%	2.09%	2.77%	1.27%	2.48%	1.21%	2.91%	1.02%	1.49%	1.26%	0.04%
4	1.51%	1513F	ELASTOMERIC BEARING ASSEMBLY	0.50%	0.45%	0.61%	0.00%	0.31%	1.11%	0.56%	1.32%	0.27%	0.73%	9.57%	0.71%
5	1.47%	15135	MAIN ROTOR HEAD DAMPER ASSEMBLY	1.11%	1.38%	0.52%	0.49%	0.90%	1.71%	1.94%	2.30%	0.28%	2.48%	0.22%	3.24%
6	1.41%	13161	SHOCK STRUT ASSEMBLY	1.31%	1.27%	1.39%	1.51%	0.72%	1.59%	2.69%	1.24%	0.51%	1.80%	1.81%	0.92%
7	1.37%	04000	CORROSION PREVENTION	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	13.54%	0.17%	0.00%	0.00%
8	1.18%	13111	MAIN LANDING GEAR ASSEMBLY	0.50%	0.55%	0.39%	1.41%	0.35%	1.89%	3.86%	0.35%	0.41%	1.87%	1.10%	0.07%
9	1.14%	22100	T700-GE-401() TURBOSHAFT ENGINE	1.11%	1.26%	0.79%	0.28%	0.97%	0.80%	2.67%	0.55%	0.58%	4.45%	0.00%	0.00%
10	1.12%	564A1	SBK11A/A24G26 DISPL GYROSCOPE	0.38%	0.34%	0.47%	0.00%	1.58%	1.51%	0.16%	2.47%	0.11%	0.36%	0.00%	4.66%
11	1.00%	42X13	BB716/A STORAGE BATTERY	0.00%	0.00%	0.00%	0.11%	0.27%	2.19%	4.09%	0.14%	0.11%	2.81%	0.28%	0.00%
12	0.97%	13191	MAIN/PROBE/RAST/ASSEMBLY	0.93%	0.94%	0.90%	0.29%	0.66%	0.85%	1.20%	0.94%	0.19%	1.43%	1.08%	2.18%
13	0.97%	14711	SWASHPLATE LINKAGE ASSEM BLY	2.35%	2.53%	1.96%	0.48%	1.27%	1.15%	1.73%	1.20%	0.35%	0.92%	0.00%	0.28%
14	0.96%	11000	AIRFRAME	1.09%	1.39%	0.45%	4.97%	0.14%	0.13%	0.64%	0.00%	2.19%	0.44%	0.00%	0.00%
15	0.95%	738BJ	TR348/AQS13F SONAR TRANSDUCER	0.49%	0.25%	0.99%	0.00%	1.21%	0.50%	0.40%	0.72%	0.14%	0.72%	2.96%	2.38%
16	0.91%	111J3	CENTER STABILATOR ASSEMBLY	1.12%	1.20%	0.94%	0.48%	0.80%	0.42%	0.92%	0.52%	0.28%	1.03%	0.12%	3.38%
17	0.89%	15410	MAIN ROTOR BLADE ASSEM BLY	1.08%	1.32%	0.58%	0.36%	0.97%	0.37%	0.00%	0.62%	0.21%	0.11%	0.00%	5.14%
18	0.87%	57R1G	STABILATOR ACTUATOR ASSEM BLY	0.93%	0.96%	0.86%	0.14%	1.56%	1.01%	0.75%	1.03%	0.31%	0.67%	1.74%	0.58%
19	0.86%	49353	RESCUE HOIST ASSEM BLY	1.07%	1.11%	0.98%	0.58%	0.97%	0.44%	0.15%	0.50%	0.23%	0.25%	0.42%	4.01%
20	0.84%	15540	TAIL ROTOR BLADE ASSEMBLY	0.42%	0.44%	0.38%	0.67%	0.53%	0.31%	0.00%	0.58%	0.24%	0.09%	0.00%	5.54%
21	0.82%	51H71	EAK13/A37J10 ENG TORQUE-ROTOR SP	0.00%	0.00%	0.24%	0.00%	0.58%	0.99%	3.36%	0.55%	0.06%	1.14%	1.20%	0.35%
22	0.78%	72R15	WAVEGUIDE PRSRZ SYSTEM INSTL (APS	0.14%	0.00%	0.23%	0.26%	0.14%	1.41%	2.68%	1.27%	0.10%	0.89%	0.37%	0.58%
23	0.69%	15171	MAIN ROTOR BLADE ASSEM BLY	1.31%	1.45%	1.01%	0.53%	0.68%	1.40%	0.00%	2.23%	0.27%	0.18%	0.25%	0.00%
24	0.64%	15136	PITCH LOCK ASSEMBLY	1.14%	1.33%	0.72%	0.46%	0.97%	0.78%	0.33%	0.79%	0.22%	0.34%	1.31%	0.09%
25	0.56%	26184	TAILCONE DISCONNECT COUPLING ASSE	0.92%	0.67%	1.47%	0.39%	0.78%	0.35%	1.11%	0.72%	0.19%	0.64%	0.20%	0.25%
	27.0%		TOTAL PERCENT OF EFFECT	22.0%	23.8%	18.3%	16.5%	18.5%	29.0%	35.7%	23.1%	47.7%	30.9%	24.8%	34.4%

Determining Top Affordable Readiness Degraders

Helicopter Master Plan Cost Analysis

Overview:

- Initiated as business case of Helicopter Master Plan
- Uses Operation and Support Costs and Out Year Force Structure Requirement Costs.
- Takes Into Consideration Inflation and Aging Factors as Applicable To the Various Cost Factors.
- Used as a basis for LCC/program decisions.

HMP Roadmap

Corrosion Preventative Compounds

- Corrosion #1 driver for unscheduled maintenance.
- External application of CPC's has been developed.
- Two SH-60Bs are being used in comparison test, one with Dynol and one with Fluid Film. Inspection results will be reported at each 112 day inspection for a minimum of one year.
- The prevention and early detection of corrosion will significantly reduce MMHR/FLTHR as well as \$/FLTHR

FUNDING STATUS: PROGRAM SELF FINANCED

Interactive Electronic Technical Manuals(IETMS)

- By Consolidating Publications and Training Content we will reduce Net Development Costs for both by 20%, And Realize Lower Configuration Management Costs In Out Years.
- Eliminate Technical Manual "Paper Ready" Preparation Costs.
- Eliminate Paper Distribution Infrastructure
- Automate Technical Manual Management Tasks At User Level
- Minimize Change Incorporation Errors
- Incorporate Expert Systems Fault Diagnosis In IETMS To Reduce, Mean Time To Diagnose Faults, Maintenance Induced Maintenance, Unnecessary Maintenance And Incorrect Component Removals.

FUNDING STATUS: FUNDED NAVAIR O&MN

Health and Usage Monitoring System(HUMS)

- Usage monitoring and improved rotor track and balance
- Investigating leasing of HUMS system.
- Savings only account for reduction of non-revenue producing flights and decrease in AVDLR due to usage monitoring.
- Does not account for increased avionics life due to reduced vibration, reduction in personnel costs, increased dynamic component lives from monitoring.

FUNDING STATUS: NRE - FY98 COSSI RECURRING - OM&N LEASE

(OR APN-1)

Integrated Maintenance Concept

- Preventative maintenance concept vice restorative maintenance.
- Avoids 300+ day unavailability during SDLM.
- Keeps aircraft in better material condition.
- 3 week IMC phase every year increases availability.
- Integrates O, I and D level preventative maintenance.

FY	1998	1999	2000	2001	2002	2003	2004	2005	2006	2007	То	Total
											Comp	
IMC	Start Date	FY1999		End Date:	2015	Break Even Date: FY2000						
Investment	3,414	17,267	19,501	18,738	16,626	18,193	15,374	16,325	19,878	22,336	169,740	(337,691
Projected Savings	-	15,064	17,623	16,156	22,817	16,723	17,766	17,766	17,766	20,521	329,007	491,208
Projected Cost Avoidance	-	102,000	105,000	119,000	120,000	120,000	127,000	131,000	142,000	148,000	1,400,000	2 ,514,000
Cumulative Net	-3,714	81,020	166,518	266,780	370,154	471,961	583,588	698,263	820,385	946,049	2,176,309	\square
						-	INVEST	MENT		\$33/IVI		
I ROI: 8	3.92					SAVINGS/COST						

FUNDING STATUS: OM&N/AVDLR

AVOIDANCE

\$3,005M

Resultant H-60 TOC Reduction*

*If all initiatives remain fully funded

NARSOC Briefing - 12/10/98

H-60 Conclusion

- H-60 Program has an Ongoing Aggressive Cost Reduction Program With Funded and Unfunded Initiatives Identified
- Some Initiatives Represent both Savings and Avoidance of Unbudgeted Yet Real Out-Year Requirement Costs
- In Order to Achieve the "Stretch Objective" of 20% Reduction in Costs Per Flight Hour by 2005 Significant Additional Investments Must Be Made Along with Cultural Modifications to "Business as Usual"
- A Stable Helicopter Master Plan Initiative Will Provide Substantial Additional Savings to Those Described

"First Seek to Understand," then... What are the costs?

Nimitz Class Life Cycle Cost per Hull

Level 1 SWBS* CVN Life Cycle Cost Breakdown

Nimitz Class Life Cycle Cost Drivers 2 - Digit SWBS Breakout

Constant 99 \$ Billion

Note (1) Design Tools & Processes Addresses most of the Top LCC Drivers

Logistics and Infrastructure Reductions

- Regional Maintenance (FY99-08) \$1.6B*
- Infrastructure (FY98-05) \$8.0B*

SMART BASE	\$0.3B
Regionalization	\$1.0B
Competition	\$5.0B
Other (Utilities, Local Initiatives, etc.)	\$1.7B

- Naval Wholesale Inventory (FY98-03) \$2.9B
 - FY(89-97) Reduced Inventory Holdings \$11B
 - Reductions Caused by Removing Obsolete Parts and Implementing Readiness Based Sparing
- * Savings reflected in POM 98

DoN Process Focus

- DoN is actively pursuing implementation of Activity Based Costing / Management (ABC/M)
- Many Navy program/project specific efforts are underway
 - Naval Air Systems Command Business Process Re-engineering (BPR) Effort Field Activities and Warfare Centers
 - > San Diego Regionalization Initiative
 - > Naval Shipyards
 - Fleet Industrial Supply Center (FISC)
 - > Norfolk Information Technology Pilot
 - Naval Surface Warfare Center, Dahlgren Division
- Many USMC program/project specific efforts underway
 - Installations ABC project covering nine sites
 - > HMMWV total cost analysis pilot
 - > 29 Palms Enhanced Equipment Allowance Pool (EEAP) TOC pilot

Challenges

- Improving Availability of Investment Resources
- Incentivizing Program Teams Is Key to the Success of Reducing TOC
- Cost Reporting Systems (e.g., VAMOSC) Must Be Improved to Insure Timeliness and Completeness
- Top Management Commitment Is Critical for ABC/M Successful Enterprise Wide Implementation
- Reduction of Total Ownership Cost Must be Expanded Beyond the Acquisition Community

CONCLUSION

- DoN Reducing Total Ownership Program In Place
 - Establishing Baselines
 - Defining Specific Initiatives
 - Results Drive Ownership Cost Targets
 - > Tracking Execution
- Programs That Have Gone to Milestone Decisions over the Last Year Have Included Major TOC Reductions in their Baselines
- Innovative Approaches Are Being Used
 - > Support Concepts
 - > Technology Insertion
 - > Process Improvement
- We Have Changed Our "Corporate" THINKING!
 - Reducing Ownership Cost is a Primary Goal of Every Program Manager