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ABSTRACT. There is considerable interest today in estimating the biomass of trees and forests for
both practical forestry issues and scientific purposes. New techniques and procedures are brought
together along with the more traditional approaches to estimating woody biomass. General model
forms and weighted analysis are reviewed, along with statistics for evaluating and comparing biomass
models. Additivity and harmonization are addressed, and weight-ratio and density-integral approaches
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Additional Key Words: Model forms, weighting, selection criteria, subsampling, error components.

the biomass of forests for both practical forestry

issues and scientific purposes. Forest hiomass is
important for commercial uses (e.g., fuelwood and fiber) and
for nationad development planning, as well as for scientific
studies of ecosystem productivity, energy and nutrient flows,
and for assessing the contribution of changes in forestlands
(especially tropical) to the global carbon cycle. Thus, it is not
surprising that during the past four decades, research on
biomass production by forests has steadily grown in impor-
tance (Zeide 1987, Waring and Running 1998). As early as
1950 weight' as a measure Of wood quantity was used by
many Of the larger companies in North America and northern
Europe (Taras 1967). With the increasing value of wood and

T HERE IS consi DERABLE INTEREST TODAY in estimating

' The term “weight” is commonly used for mass, but strictly speaking this
is incorrect. Mass is the measure of the anount of matter present in abody;
whereas the weight of a body is the force exerted on its mass by gravity.
To know whether mass or force is being measured, the Sl uses two units:
the kilogram for mass and the newton for force.

the redlization of the shortcomings of traditional volume
measurement, that is, the myriad log rules in use, interest in

and use of weight for measurement and valuation of trees has
rapidly grown (Guttenberg 1973, Husch et a. 1982, Avery

and Burkhart 1994). The use of end-product units as a
measure Of the amount of raw material is rare outside the
forest products industry. Raw cotton is not bought and sold in

“shirt” or other similar units, nor is crude oil marketed with

liters of gasoline as the measurement unit. Of course, a shirt
cannot be identified out in a cotton field, but a veneer log or
asawlog can beidentified in aforest. Hence volume measure-

ment will continue to be essential. Nonetheless, the current
trend is toward decreasing the usage of end-product units as
expressions of stem content. The interest in complete tree
utilization (roots, stumps, branches, €tc.), the use of residues

from the manufacture of forest products, fuel quantity in
relation to forest fire conditions, and other issues has ip-
creased the use and importance of biomass measurement
(Husch et . 1982, Philip 1994).
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A review of past practices by Cunia (1988) showed that
in some instances estimates of biomass content were
obtained by ocular means based on intuition and past
experience. Later, this was supplemented by (1) measure-
ments performed on subjectively selected samples of trees
or plots and (2) results obtained from subjectively de-
signed experiments. Today, forest inventory methods are
based on sound stetistical designs (de Vries 1986). The
bias, if any, is largely reduced, and the error of estimates
can be quantified in probabilistic terms. Indeed, research
foresters and statisticians have come to recognize the
various error components of forest biomass inventory
estimates and to develop techniques to account for them.
Great progress hasbeen madein the last few decades in the
methodology of selection of sample trees and plots and
estimation of forest parameters of interest. New and excit-
ing developments in sampling theory, such as importance
and randomized branch sampling, have changed the way
we view forest inventory (Schreuder et al. 1993). These
modern procedures of error components and sampling
techniques have provided considerable gains in reliability
and efficiency by improving forecasts and corresponding
inferences and by reducing the number of samples re-
quired and the costs involved.

Remote sensing, geographic information systems, and
photogrammetry are powerful interrelated tools for forest
resource assessment, as evidenced by the scope of presen-
tations at the First International Conference on Geospatial
Information in Agriculture and Forestry (Petoskey 1998).
Biomass estimation by using such tools is a fascinating
and intricate subject in itself and will not be considered
here. Statistical methodologies, such as the expectation-
maximization or EM algorithm and its extensions, mul-
tiple imputation, and Markov chain Monte Carlo (Rubin
1987, Schafer 1997), are starting to be applied to inventory
data as an alternative to growth and yield models for
forecasting (Van Deusen 1997). Again, these related meth-
odologies and their use in calculation of biomass consti-
tute atopic needing its own review and development. This
article focuses on modeling and sampling procedures,
because these have been the main avenues of biometrical
research and development on biomass.

The critique starts with general model forms and statis-
tics useful for comparing models. The issue of
heteroscedasticity is addressed, and the theory of esti-
mated generalized least squares is presented. 1 elaborate
on the three general procedures to handle the additivity
problem and follow with specific illustrative examples.
The next three sections deal with bole biomass and the
techniques of harmonization, the ratio approach, and den-
sity integrals. The next part of the article deals with
sampling-ratio-type estimators, randomized branch and
importance sampling, and difference sampling. Estima-
tion with a ratio estimator and difference sampling are
demonstrated. The article continues with a section on error
of inventory estimates and concludes with a look at past
and present studies and general thoughts on application
and future directions of research.
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1 Biomass Estimation Techniques

The basic management unitis the forest stand. However,
any dand is an aggregation of trees and the stand biomass is
defined as the sum of the biomass of the individual trees that
comprise the stand. Al1 methods for estimating stand hiomass
must therefore involve, at least in their developmental stages,
a prediction of individual tree biomass and the summation of
these quantities to obtain per-hectare stand hiomass.

1.1 Regression Modeling

The most common procedure for estimating tree biomass
is through the use of regression. Trees are chosen through an
appropriate selection procedure for destructive sampling,
and the weights or mass of the components of each tree are
determined and rel ated by regression to one or more dimen-
sions of the standing tree. The tree is normally separated into
three aboveground components: (1) bole or main stem, (2)
bole bark, and (3) crown (branches and foliage). Occasion-
ally, a fourth component, belowground biomass, which is the
stump and major roots within afixed distance, is considered.
See Karizumi (1977), Lossaint and Rapp (1978), Satoo and
Sassa (1979), Deans et al. (1996), Kurz et a. (1996), and
Reed et a. (1996) for examples on sampling and estimation
of belowground biomass. Other tree component schemes are
possible and are usually devised based on the milling and
pulping technologies of the users for the population of trees
of interest. The fresh weight of an individua tree may be
determined by weighing all components using field scales or
by sampling. For large trees, weighing of the entire tree can
be quite time consuming and laborious. Sampling procedures
as an alternative to direct weighing of an entire component
will be considered later. The process of collecting data and
devel oping biomass rel ationships falls under the subject of
allometry, the measure and study of growth or size of a part
in relation to an entire organism. West et al. (1997) provide
ageneral theory of allometric scaling laws based on fractal
networks of branching tubes, and Broad (1998) gives a theory
of multivariate allometry.

1.1.1 General Model Forms

Researchers have used a variety of regression models for
estimating total-tree and tree-component biomass. Earlier
reviews of biomass studies (e.g., Pardé 1980, Baldwin 1987,
Clark 1987, Pz 1987) indicate that prediction eguations
generally have been developed utilizing one of the following
three forms:

Linear (additive error): Y = By +B, X, +...+B;X;+ e (1)
Nonlinear (additive error): Y = BoXP1xP: . xP+e (2

Nonlinear (multiplicative): Y = [30X1B ! Xg 2, ..X?j € (3

whereY = total or component biomass, X; = tree dimension
variable, B; = model parameter, and € = error term. Some
commonly used tree dimension variables are diameter at breast
height (D), D?, totdl height (H), DH, age, ad live crown |ength




(LCL). Diameter at the base of the live crown has been proven
to be one of the best predictor variables for crown weight (Clark
1982). On the basis of the pipe model theory (Shinozaki et al.

1964a, 1964b), many researchers have used sapwood area
(active conducting tissue) measured at vatious heights in the
stem as apredictorof foliage weight and surface area (e.g., Snell
and Brown 1978, Rogers and Hinckley 1979, Kaufmann and
Troendle 1981, Waring et a. 1982, Robichaud and Methven
1992). An innovative approach for predicting seedling and
sapling biomass has used projected area of the seedling or
sapling (as measured by computer-based image analysis) as an
explanatory variable. Studies have shown that projected area
alone can explain more than 97% of the variation in seedling or
sapling mass (Suh and Miles 1988, Norgren et al. 1995). Model

(1) produces multiple linear regressions that can be fitted by
standard least squares estimation procedures. Model (2) pro-
duces nonlinear regression equations that require use of iterative
procedures for parameter estimation.

Normally, biomass data exhibit heteroscedasticity; that is,
the error variance js NOt constant over all observations. If
Models (1) and (2) are fitted to such data, then weighted
analysis, typically involving additional parameters, is neces-
sary to achieve minimum variance parameter estimates (as-
suming all other regression assumptions are met: e.g.,
uncorrelated errors). A statistical model consists jointly of a
part that specifies the mean X’B and a part describing varia-
tion around the mean, and the latter may well need more than
one parameter (62) to be adequate. A weighted analysis
procedure, based on modeling the error structure, will be
described shortly.

Model (3) nonlinear regression equations are usually
transformed into linear (additive error) regression equations
by taking the logarithm of bothsides of the equation. In this
form, the equation parameters can easily be estimated by least
squares procedures. Typically, the variance of Y is not uni-
form across the domain of one or more of the X.’s; however,
when transformed to logarithms, Model (3) generally has
homoscedastic variance. The logarithmic form is

InY=InBy+B;In X, +..+B;InX; +Ine (4a)

where Inis the natural logarithm. Al1 common goodness-of-
fit statistics relate to the transformed equation only and are
not directly comparable with the same statistics produced
through use of either Models (1) or (2). When the logarithmic
transfonnation is used, it js usually desirable to express
estimated values of Y in arithmetic (i.e., untransformed)
units. However, the conversion of the unbiased logarithmic
estimates of the mean and variance to arithmetic unitsjs not
direct. The antilogarithm of In Y yields the median of the
skewed arithmetic distribution rather than the mean. If 5 =In?
and &2 = sample variance of the logarithmic equation, then

Y Zexp(fi + 6%/ 2)

62 = exp(26? + 2(1) - exp(6? + 2fi) (4b)

where }A’ is the estimated value jn arithmetic units and 63 is
the estimated variance of Y in arithmetic units (Flewelling

and Pienaar 1981, Yandle and Wiant 1981, Sprugel 1983).
There is some evidence that these corrections tend to overes-
timate the true bias (Madgwick and Satoo 1975, Hepp and

Brister 1982). Snowdon (1985), working with Pinusradiata
D. Don, showed that the square-root transformation was a
viable alternative to the logarithmic transformation if curvi-
linearity between the untransformed predictors and biomass
was low. To correct for bias under the square-root transform,
add & from the regression to the biomass estimate (Kilkki

1979). A list of commonly ysed equation forms for biomass
estimation can be found jp Clutter et a. (1983, p. 8).

1.1.2 Comparing Alternative Models

Schlaegel (1982) recommends the reporting of a series of
statistics for eval uating goodness-of-fit and for use in com-
paring alternative biomass models. The first, an R? statistic,
is called the fit index (FI). Kvalseth (1985) examined eight
alternative R? statistics; FJ corresponds to hisR? , whichig
the one he recommended. Model predictions, if not already in
original units, are transformed back to the original units,
correcting for any bias if needed. The total sum of squares
(TSS) and the residual sum of squares (RSS) are calculated as

TSS=Y (-¥),RsS= Y (¥, - £’
i=1 i=1

where ¥ = arithmetic mean of Y (total or component biom-
ass) and n = number of sample observations. The fit index is

FI=1=-(RSS/TSS) (5)

The second statistic is the standard error of estimate in actual
units (S,). Itis calculated as

S, =RSS/(n—p) ©

where p = number of model parameters. The third statistic,
useful] for making quick comparisons between models, is the
coefficient of variation (CV) expressed as a percent:

CV=(S,/Y)x100 (7)

The fourth statistic that Schlaegel recommends is one pro-
posed by Furnival (1961) based on normal likelihood func-
tions. The general formula for Furnival’sindex (]) is

I=[F(Y)]- x RMSE ®)

where f'(Y) is the derivative of the dependent variable with
respect {0 biomass, the brackets signify the geometric mean, and
RMSE 1is the root mean square error of the fitted equation. The
index reduces to the usud estimate of the standard error about the
curve when the dependent variable is biomass. When the depen-
dent variable is some function of biomass, the index may be
regarded as an average standard error transformed to units of
biomass. The way Furnival derived the index puts it in inverse
order ascompared to likelihood, that is, alarge value indicates
apoor fit and vice-versa. The fifth statistic, suggested by Meyer
(1938) and recommended by Schlaegel, is the percent standard
error [S(%)]. Knowledge can be obtained about the model by
clculating the ith residud’s size relaive to ¥, , all values being
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in actual biomass units. For_each residual, the percent standard
error is S(%), = ||, = ¥;1/¥, | x 100. This statistic indicates the
size of eror & a percent of the mean of the distribution of Y. The

expected value of §(%), = 0 because the expected value of
Y, =Y, =0 Thus if all S(%),’s ae nealy 0, the eguation is very

precise. Naturally, the S(%);’s usually fluctuate widely. For
reporting purposes, 1 recommend taking all residuals into ac-
count to form a composite statistic, the mean percent standard
error ( S(%)) of predictions, defined as

S(%)_EZIY AN 9)

The sixth statistic is the percent error (P,). It is a precision
index using the percent standard error and the chi-square test.
Let P, represent the relative difference in percent of the
estimate of tree or component weight to its true value. This
statistic computes the value of P, that would be necessary to

€
assure a nonsignificant 2 test. The percent error is defined as

1/2

A~ 2
(196)° (x )
P = LI (10)
[X(zn—p) ; Yt J

e

where the a0 = 0.05 value for x2 with v degrees of freedom is
approximated by

X4, = 0853+ v +1.6452v =1)""?

For derivation of this statistic see Schlaegel(1982). Finaly,
Schlaegel advocates reporting the necessary information for
the construction of prediction confidence intervals. This
usually involves reporting the model mean square error
(MSE) and the sums of squares and cross products matrix, i.e.,
(X’X)™" or more generally the Cov(f).

To summarize, statistics useful for model evaluation and
comparison are: (1) fit index (FI), (2) standard error of
estimate in biomass units (S,), (3) coefficient of variation
based on S, (CV), (4) Furnival’sindex (I), (5) mean percent
standard error ( §(%)), (6) percent error (P,) of theresiduals,
and (7) information needed for building prediction confi-
dence intervals. Another useful model selection procedure—
prevalent in the statisticsliterature—is the Akaike Informa-
tion Criterion (AIC). For adescription and discussion of the
AIC, see Judge et a. (1988, p. 843).

A number of researchers have published accounts of
comparisons of alternative hiomass regression models. Crow
(1971) used FI as a means with which to compare models.
Although the transformed allometric equation [Model (4)]
proved superior, Model (1) was found to be almost as reliable
when there was arelatively small range in tree sizes. Schreuder
and Swank (1971, 1976) used FI and Ito compare a weighted
linear model with six other models based on the family of
power transformations defined by Box and Cox (1964). They
found that the FIcriterion could give misleading results, but
that Furnival’s index was a useful tool in comparison of
models for estimating biomass. Crow and Laidly (1980) also
used the likelihood approach to show that weighted linear
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[weighted Model (1)] and weighted nonlinear [weighted
Model (2)] equations were acceptable alternatives to the
transformed allometric model. Jacobs and Monteith (198 1)
obtained similar results. The maximum likelihood approach,
or Furnival’s index, reflects not only the magnitude of residu-
als but also possible departures from assumptions of normal-
ity and homogeneity of variance. These findings lead to two
conclusions: (1) Furnival’s index can generally be recom-
mended as one of the most useful statistics for evaluating and
comparing biomass models, and (2) weighted regressions are
important and often necessary for developing biomass mod-
els of high precision.

1.1.3 Weighting Biomass Models

Forest modelers are typically faced with multiplicative
heteroscedasticity in their data (Parresol 1993). It is often the
case that the error variance (or disturbance) is functionally
related to predictor variables in regression. Harvey (1976)
and Judge et al. (1988) have shown that if the error variance
is afunction of a small number of unknown parameters, and
if these parameters can be consistently estimated, then esti-
mated generalized least squares (EGLS) estimation will
provide asymptotically efficient estimates of the model pa-
rameters.

In the general linear statistical model y = XB + €, X is
a (T x K) observable nonstochastic matrix, B is a (K X 1)
vector of parameters to be estimated, y is a (T x 1)
observable random vector, and the error vector, €, is a(T
X 1) unobservable random vector with properties E[e]=0
and Ele€’] = @= ¢°¥, where ¥ is a (T x T) diagonal
matrix. Heteroscedasticity exists when the diagonal ele-
ments of ¥ are not all identical. In the general
heteroscedastic specification ¢ = diag(o'lz,og,...,c%). If
we assume that each 6,2 is an exponential function of P
explanatory variables then

Eell=cl=explzja]l t=12,.,T (11)

where z; = (z,,2,..-zp) Is @(1x P) vector containing the rth
observation on P nonstochastic explanatory variables and
o= (0,0,...0p) s @ (P x 1) vector of unknown coeffi-
cients. Thefirst elementinz,is taken as unity ( z;=1), and

the other z’s could be identical to, or functions of, the x’s.
The normal convention is to parameterize the scale factor
62 asexp(oi,), or & = In 62, This means the expression in
(11) can be written as

o; =c’explz, o] (12)

where z” = (z,5..-2,p) and @ = (q,..0) . The covariance
matrix can now be written as

exp(z; o)
¥ = ¢ exp(z; o)
(13

exp(zr @’




In order to estimate O we first take logarithms of Equation
() to obtain

Ino’=z/a (14)

Since the (5,2 are not known, we use instead the squares of the
ordinary least squares (OLS) residuals.? These residuals
(denoted et) are likely to reflect the S|ze of 0 that is, large
when 0‘, is large and small when G is small. Add| ng In ¢
to both sides of Equation (14) ylelds

Ine! +Inc? = zjoe+Ine?
or

lnet2 =70 +v, (15)

where v, = Ine? ~Inc? = In(e? / 67). In matrix notation,
Model(15) can be wrltten asq = Zo, + v where the vector ¢
= (Ine, Ine% IneT) Oneway to estimate ais to apply OLS
to Model (15) which yields & = (Z’Z)'2’q . Harvey (1976)
showed that if the €,’s are normally distributed then the
intercept o will not be consistently estimated, but the re-
maining elements in & will be consistent or unbiased.

Substituting & for a* in expression (13), we obtain the
estimated covariance matrix @ = 62¥. The EGLS estimator
is formed as

B= o' x)y xdly =(x"¥x) x ¥y  (16)

Fortunately, ﬁ only depends on the consistently estimated
elements of @, since &, can be factored out as a proportion-
ality constant. The covariance matrix of B is

62(X"AP_1X)_1

where 62 = ( XBy ¥ g an
=(y=AXP) (y=XB)/ T=K)

The usual hypothesis tests and interval estimates are based on
this matrix. For prediction intervals on some future value Yo
the sampling error is estimated by

&2(Yo + X, X' ¥ X) ' x,

. (18)
where {,is the scaler exp(z,’d )

To test the hypothesis of homoscedastic errors versus
heteroscedastlc errors you simply test H, :o'= 0 against
H, ;0" # 0. Let R be the matrix ( Z’°Z )~ with |tsf|rst row and
first column removed If the €’s are normally distributed
then & ~ N[at', 4.9348R] (Harvey 1976) and the following
statistic (Judge et al. 1988, p. 370), based on the distribution
of quadratic forms in normal variables, tests the above null
hypothesis:

k)

aRa
4.9348

_1,\*

X%P—l) (19)

2 Some dtatigticians, such as Carroll and Rupert (1988, p. 79-82), suggest
that better performance can be obtained using absolute residuas over
squaced residuals.

Note that the numerator is the regression (or explained) sum
of sguares obtained when estimating o and that this test is
asymptotically equivalent to the F test for testing that all
coefficients, except the intercept, are 0.

Gregoire and Dyer (1989) and Williams and Gregoire
(1993) advocate the use of maximum likelihood (ML) with a
specified error structure for fitting weighted regressions.
Carroll and Ruppert (1988) discuss the increased efficiency
of maximum likelihood (under normality) over generalized
least squares, with increases of about 8% being common. The
ML procedure requires solving for both first and second
partial derivatives and results in a simultaneous system of
nonlinearequations. In contrast, the EGLS estimator is simple
and direct, requires nospecial software to implement, and js
amost as efficient as ML. If iterated, the EGLS procedure
converges to the ML estimates under normality.

1.1.4 Biomass Additivity

A desirable feature of tree component regression equa-
tions is that the predictions for the components sum to the
prediction for the total tree. Kozak (1970), Chiyenda and
Kozak (1984), and Cunia and Briggs (1984, 1985a) have
discussed the problem of forcing additivity on a set of tree
biomass functions. The means to forcing additivity can be
grouped into three different procedures depending on how
the individual components are aggregated.

In procedure 1, the total biomasssample regression func-
tion is defined as the sum of the individually calculated best
regression functions of the biomass of its k components:

Y = fix])

Y= h(x3)

~ , 20
Ve = S (xp) 20)

Vrotal = I+ P+t

Reliahility (i.e.,, confidence intervals) of the total biomass
prediction can be determined from variance properties of
linear combinations:

Var(Poa) = ZVar(y,)+2zz Cov(§;, ;) 1)

i<j

where

Cov(Fi,3;) =Py, Var(F)Var(§))

Py, = correlation between ¥, and ¥

In procedure 2, the additivity of the components is ensured
by using the same independent variables (and the same
weight function) in the (weighted) least squares linear regres-
sions of the biomass of each component and that of the total.
Under this method, one can compute the regression coeffi-
cients of the total equation simply by summing the regression
coefficients of the (assumed independent) component equa-
tions (the b, vectors), that is,
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Y =xb
$r=xD,
5i= b, @)

j)total =x,[b1 +b2 +'+bk]

Thisresult holds only under the restrictive assumption that
the k components y;=1... . kae independent, which
implies thatthe € ;(i=1, ..., k) are uncorrelated. Regression
statistics and reliability of estimates can be computed for the
total equation (see Chiyenda and Kozak 1984). Under inde-
pendence, the variance Of ¥, is Simply the sum of the
variances of the 3,’s, the covariance terms drop out of
Equation (21), thus

k
Var(Go) = ), Var(9,)-
i=1
Procedure 2 alows no flexibility for using different compo-
nent equation forms. Chiyenda and Kozak (1984), however,
generalized procedure 2 using restricted least squares to
alow for different equation forms.

Procedure 3 is the most general and flexible method and
the most difficult to employ. Statistical dependencies among
sample data are accounted for using generalized least squares
regression with dummy variables techniques to calculate a
set of regression functions such that: (1) each component
regression contains its own independent variables, and the
total-tree regression is a function of all independent variables
used; (2) each regression can use its own weight function; and
(3) the additivity is ensured by setting constraints (i.e., linear
restrictions) on the regression coefficients. The Cunia and
Briggs (1984, 1985a) procedure 3 is the same as using joint-
generalized least squares, also called “seemingly unrelated
regressions’ (SUR), for a set of contemporaneously corre-
lated linear statistical models with cross-equation constraints.
The structural equations for the system of models of biomass
additivity can be specilied as

vi = [(X)D+ g
y=HXy)te

Ye= X+ & 23)
Yiotal = f;om] (X1, X500y X P €l

and redundant columns in f, ., are eliminated. When the
stochastic properties of the error vectors are specified,
along with the linear restrictions, the structural equations
become a statistical model for efficient parameter esti-
mates and reliable prediction intervals. The procedure 3,
or SUR, method is preferable to procedures 1 and 2 for
several reasons. Procedure 2 requires the assumption of
independence among components on the same tree, which
is unrealistic. Another consideration against procedure 2
is thatloading the same predictor variables in all equations
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permits the very real possibility of multicollinearity. This
can cause unstable parameter estimates and inflated stan-
dard errors. Infact, applying joint-generalized least squares
to the set of equations in (22) is of no benefit because the
covariances between the equations get concentrated out
when each equation has identical explanatory variables
(Srivastava and Giles 1987). Thus, it is as if the equations
are independent, and the same results are obtained as when
applying least squares to each equation separately. If
disturbances or errors in the different equations are corre-
lated (contemporaneous correlation), then procedure 1
[formulation in (20)] is inferior to procedure 3 [formula-
tion in (23)] because SUR takes into account the contem-
poraneous correlations and results in lower variance. With
the ready availability of econometric software, such as
SAS/ETS® (SAS Institute Inc., SAS Campus Drive, Cary,
NC 27513), complicated statistical procedures like SUR
can easily be implemented. A comprehensive reference on
SUR is Srivastava and Giles (1987).

1.1.5 Example

At this juncture, an example is in order to demonstrate
equation selection, weighted analysis, equation additivity,
and goodness-of-fit statistics. Consider the sample of 39
willow oak (Quercus phellos L) trees in Table 1. Trees for
destructive sampling were selected from 10 natural bottom-
land hardwood stands in Mississippi. Trees were felled,
separatedintocomponents of bolewood, bolebark, andcrown,
and weighed in the field. The 39 treesgivenin Table 1 area
subset of a larger dataset from a biomass study by Schlaegel
(198 1), used here for illustrative purposes. Scatterplots of the
data, a stepwise regression procedure, and residual analyses
were used to select the following individually “best” biomass
component equations:

Yoot = by +b,D*H

Yoark = b0 + by D? (24)
. D*Hx LCL

=by+b —
Ycrown 0 1 1000 + b2 H

For total tree biomass, the best individual equation was

Yo = by + bD*H (25)

Scatterplots of the residuals over D?H for Y 00d @A Yy
(Figure 1A) and over D? for Yy reveded smilar fan
patterns of increasing error variance. This type of
heteroscedasticity is common and is usually modeled as a
power function, that is, (5,2 =2¥* where X is D?H or D2,
Hence, the following variance function was fitted to the OLS
residuals from the bolewood, bolebark, and total biomass
regressions:

e’ = expla; + a, In X]

or

Ine* =a; +a,InX (26)




Table 1. Green weight data for willow oak trees from the gtate of Mississippi, USA.

Green weight

Tree Dbh (cm) Height LCL Age (yr) Wood Bark Crown Tree
................. (M) (Kg)emrseerererereserssnerennnn

! 73.2 29.0 16.2 93 4,463 .4 572.9 186.4 5,222.7
2 30.5 18.3 10.4 40 550.7 83.9 44.9 679.5
3 48.3 22.9 1.9 69 1,689.2 225.0 93.4 2,007.6
4 69.6 27.4 18.3 74 3,441.5 435.5 178.3 4,055.3
5 28.7 19.8 11.6 38 482.2 75.3 45.4 602.9
6 53.1 32.0 14.9 78 2,281.6 307.5 57.2 2,646.3
7 45.7 32.0 17.7 79 1,771.3 230.4 24.9 2,026.6
8 46.5 30.5 174 83 1,611.6 228.2 17.2 1,857.0
9 33.8 25.9 101 68 861.8 122.5 20.0 1,004.3
10 55.4 30.5 131 70 2,952.9 367.4 65.3 3,385.6
1 30.5 24.4 91 75 679.9 125.2 17.7 822.8
12 70.1 30.5 134 81 3,867.8 546.1 79.4 44933
13 419 24.4 122 79 1,289.1 1855 36.7 1,511.3
14 42.9 25.9 137 76 1,4955 201.4 71.7 1,768.6
15 66.3 35.1 177 81 4,091.0 413.2 99.3 4,603.5
16 40.6 25.9 1.6 64 1,264.2 1755 12.7 1,452.4
17 28.7 21.3 9.8 75 485.8 67.6 19.1 572.5
18 80.5 32.0 17.4 93 5,782.0 657.7 186.9 6,626.6
19 66.5 33.8 16.8 106 4,085.1 524.4 1120 47215
20 61.2 29.0 17.1 71 2,621.4 225.4 82.6 2,929.4
21 21.8 25.9 1.3 35 292.6 51.7 5.0 349.3
22 29.0 24.4 8.8 35 616.4 94.3 21.8 732.5
23 49.8 27.4 16.2 35 1,757.2 220.0 63.5 2,040.7
24 34.3 27.4 10.4 37 902.2 144.7 21.8 1,068.7
25 43.2 27.4 15.5 41 1,251.5 212.3 20.9 1,484.7
26 25.1 24.4 8.8 38 437.7 63.5 6.4 507.6
27 29.7 25.9 13.7 40 704.4 89.4 100 803.8
28 34.8 25.9 13.1 40 906.7 117.5 231 1,047.3
29 38.6 27.4 13.4 41 1,309.5 148.8 26.8 1,485.1
30 49.8 22.9 14.3 40 1,4973 160.1 49.0 1,706 4
31 36.1 25.9 16.5 34 794.3 116.6 20.9 931.8
32 37.1 21.3 110 67 846.9 120.7 26.8 994.4
33 33.0 21.3 9.8 67 635.5 89.8 27.7 753.0
34 57.7 25.9 18.6 84 2,545.1 371.0 70.3 2,986.4
35 53.8 25.9 2.2 87 2,275.7 359.3 32.7 2,667.7
36 57.9 27.4 101 89 2,822.3 379.2 61.2 3,262.7
37 75.4 27.4 137 91 3,782.1 579.2 61.7 4,423.0
38 57.2 25.9 122 86 2,055.7 362.0 45.4 2463.1
39 69.1 27.4 14.6 87 3,618.4 498.1 87.1 4,203.6

NoTe:  DBH is diameter breast height and LCL is live crown length.

For the crown model, variance was assumed proportional to
a power of D2H x (LCL/1000) based on a fan pattern of
increasing variance. With increasing tree height, however,
variance appeared to expand then decrease (Figure 1B),
suggesting a negative quadratic trend or 0,2 = ¢? exp[—kH,Z].
Combining these two heteroscedastic trends into one
mutiplicative error model results in

D*H x LCL ~

1000 @7

a3H2

In e2:a1+ a, In
Table 2 gives the coefficients, weight functions, and
heteroscedasticity tests [Equation (19)] from the EGL Sfit of
the three willow oak component biomass functions and the
total tree function. As readily seen in Table 2, a1l the
heteroscedasticity tests are significant, indicating the need
for modeling the error structure. The statistics [Equations

(5)~( 10)Jrecommended by Schlaegel (1982) are shown in
Table 3 for each of the four equations.3 The mean percent

3 A S AS program is available from the author for computing these statistics.

standard error is around 8% to 11% for the wood, bark, and
total tree regressions but over 32% for the crown regression;
and the fit index 1s lowest for the crown regression, which
also has the highest coefficient of variation and percent error.
All in a1 this shows (not surprisingly!) that crown biomass
has greater variability than wood, bark, or total biomass.
Under procedure 1 for additivity, total tree biomass ig
simply the sum of the components. For example, using the
coefficients in Table 2 and the set of equations 1n (24), a tree
with D =30 cm, H = 18 m, and LCL = 10 m, gives: ¥, .4 =
468.2 kg, Y4 = 91.8 kg, and ¥, = 43.4 kg; therefore,

Town

A

Yo =468.2 +91.8 +43.4 =603.4 kg

The sampling error for each component prediction is com-
puted using Equation (18), giving: Var( ¥,,,) = 202889,
Var(Y,,q ) =221.19, and Var(¥,,,) = 139.45. The correla-
tions between the (weighted) biomass components are:

=03 1’ and E’}’baxkys:m\»m

a)’woodybark =0.26 5 ‘SyWOOdYCrown =0. 14;

therefore, using Equation (2 1) we obtain
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Figure 1. Scatterplots of ordinary least squares residualsfrom (A)
total tree willow oak biomass regression showing fan pattern of
increasing variance, and (B} willow oak crown biomass regression
showing negative quadratic trend in variance.

Var(f,,)) = 2028.89 +221.19 +139.45

+2-0.26-+/2028.89-221.19

+2-0.31-4/2028.89-139.45

+2-0.14-4/221.19-139.45
=3116.84

Prediction confidence intervals are constructed as

f’iz(a,z)\/vﬁr(?).

For an approximate 95% prediction limit, we will use

12 4/3116.84 giving
603.4 kg £ Il 1.7 kg (28)

From Equation (25), the best individual equation for tree
biomass, we obtain an alternate value of

Yo = 557.6 kg with Var (T ) = 26443 1;
hence an approximate 95% prediction interval is
557.6 kg + 1028 kg (29)

In considering the prediction intervals in (28) and(29), one
can see that the price for additivity using procedure 1 is an
expanded interval (£ Il 1.7 vs. £102.8), indicating a loss of
efficiency.

Suppose we wish to consider a set of linear models
whereby we allow statistical dependence among compo-
nents and the total tree biomass. A set or system of linear
models whose parameters are estimated by SUR with
linear restrictions should result in efficient estimates and
additive predictions. Reasonable equations and variance
functions for the willow oak sample data are:

i}wood = blO + b11D2H;
62 - (DZH)LQS

. 20
Yo = b2 + by D"H;
&2 =(D2H)- 74

2
DH><LCL+

. (30)
1000 bt

X:rown = b30 + b31

Az_[DszLCL

64 X exp[0.00406 H”
1000

D*H x LCL

ﬁom] = b40 + b41D2H+ b42 + b43H,

Table 2. Coefficients, weight functions, and heteroscedasticity tests from best individual component and total tree

regressions for willow oak biomass sample data {n = 39).

Model * By b, b, Weight function X P

Wood 25140477 00273 10 (D*H)™ 181 <0.0001

Bark -0.515317 0.102529 (DY)t 127 0.0004

Crown  117.19517s 0.057502 -4.616870 (D’H x LCL/1,000)" %% 9.4 0.009 1
X exp[-0.00406H]

Tota 46.330555 0.031558 (D*HY? 20.7 <0.0001

e Model forms:

Yuwood = Bo +BiD2H+ €Yy = Po +BiD+ €,
Yerown = Bo +B1 DEH X LCL./1000 +B,H+ €,
Yiotal = Po +B1DZH+ [

where [ {g diameter breast height, H is tree height, and LCL is five crown length.
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Table 3. Goodness-of-fit statistics for the individually best willow oak component and total tree biomass equations.

Model FI S, cv I S(%) P,
Wood 0.98 182.32 950 134.83 747 15.76
Bark 0.94 41.01 16.08 30.48 11.00 3119
Crown 0.81 21.15 38.67 15.33 32.15 80.32
Totd 0.98 217.37 9.76 279.40 7.80 16.34

NoTE:

F1 is fit index, Se is standard error of estimate in actual biomass units. CVis coefficient of variation expressed from actual

biomass units, [ is Furnival’s Index, S${%) is mean percent standard error of predictions, and P, is percent error. See text for

definitions.

whereByy = byg + by + b3g: byy = by + byy, byy = by, and
1743 =D,,. For system parsimony, 1 altered the };,, equation
from that used in (24). Note that a separate variance
function is specified for each equation in the set. The
coefficients for the variance functions were determined by
regressing on the OLS residuals [Model (15)] from the
four equations. A brief explanation of fitting these equa-
tions by SUR follows.

The system of four equationsin (30) can be writtenin the
usual matrix algebra notation as

y1=X1B1+El
y2=Xsz+Ez
y3=X3B3+53\

y,=X,B,+e,
Combining al1 equations into one big model yields

3 X 0 0 o0]p €
Y2 - 0 X, 0 0]}B, + €
Y3 0 0 X, 0)B| |s 31
Y4 0 0 0 X,|B, €4
(4Tx1) (4Tx11) (11x1) (4Tx1)
or aternatively
Y=f(P)=XB+e

where T is number of observations (39 for this data). The
matrix of weights can be written as

0%, 0 O

0 0 ¥ O

v o o Y
(4Tx4T)

where ¥, is defined as jn Equation (13), and let A = Vet

The implicit assumptions for Model (31) are: E[¢;] = 0 and
E[A; €€, A}l =0,1; i, j= 1,2,3,4, and I is a Tdimensional
identity matrix.

The variances and covariances of Model (31) are un-
known and must be estimated. To estimate the o, We first
estimate each equation by EGLS [Equation (16)] and obtain
the residuals ¢; = y, = X; b, Consistent estimates of the
variances and covariances are then given by

A 1

6. = e’A’A e
y (T_Ki)1/2(T_Kj)l/2

[y iy A §

(32)

where the degrees-of-freedom corrections K; and K, are
the number of coefficients per equation. If we define "% és the
matrix containing the estimates G;from (32), then the
unrestricted SUR estimator for § can be written as

B=[X’AE'®DAXT' X’ AE DAy (33)

where ® denotes the Kronecker or direct product. The
restricted SUR estimator is obtained by minimizing
(Ay-AXBYE'®INAy-AXB) subject to the linear
rerictions RB = r. It is given by

B' =B+ CR(RCR) ' (r - RP) (34)

where

C= X AE'®DAXT!
and ﬁis from (33). Thelinear restrictionsb,, = by + by +
byg, byy =byy + 0., byy = b3y, and by = by, canbe written
dtemnatively as by + by + byg - byg =0, by + by - by = 0,
by ~ by, =0, andbs, ~ by, = 0. Writing these restrictionsin
the fomat RB = r yids

Bio
BI |
ﬁzo
By
[530
By
Ba
Bao
B
B
'343.

1
AN
o

“10 10

o o o
O O R
o O o
O O
O R O O
— O O o
o o o
o o 4L
o L oo
o o o o

The covariance matrix of the restricted parameter estimates
is calculated as follows

ié. =C-CR(RCR')"'RC (35)
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One can condruct the hiomass tables and the associated (1 — cx)
confidence intervals for the predicted mean value and for a
predicted value of an individual (new) outcome by the
formulas:

A ol
y=xB

= biomassestimate from ith system equation (362)

}‘zit(amJS; = mean value confidence limits (36b)

gt /S? + 626,y = confidence limits
Y Zhay4/9s iV (36¢)

for an individual prediction

wherex;is thevectorforthelthsystemequatlon Sy =X/ 2..X;
= var1ance of y y, 6?2 13 the estimated varjance of Model (3 1)
(e, e N(Z'® I)Ae | df o »» @ad 6, is the estimate of
the conditional variance of the jth system equat|on [ 0, is the
i, ith element of £ re Equation (32) and V is the estimated
weight]. Table 4 gives coefficients and their standard errors
from the unweighted (each y = 1) restricted SUR fit (RSUR)
and the weighted restricted SUR fit (WRSUR).# Note how
weighting reduces the majority of standard errors, dramati-
cally for some (three of the coefficients had standard errors
reduced in excess of 50%), and hence achieves more efficient
parameter estimates.
Using the coefficientsin Table 4, if D=30cm, H =18 m,

LCL =10 m, and i = 4 (total biomass), we have from (36a):

x;=[00000001 16200 162 18]
and
5 = Bap + 162008}, + 162}, + 1887, = 5838 kg

The prediction limits for this point estimate can be calculated
from (36c¢). For this example we have

4 A SAS/IML and a GAUSS matrix language program are available from the
author for fitting Model (31).

§% = 279.895, 6= 0.832,

G4 =399%107,and
W = 57855638,

for an approximate 95% prediction interval (f = 2) of
583.8 kg + 938 kg (37N

The SUR prediction interval on Yy in (37) is narrower
than the least squares prediction interval on ¥, in (29).
One might expect the individually best regression on ¥,
to have the smallest variance, because it is the best estima-
tor that is a linear unbiased function of y, .,. However,
because of the existence of contemporaneous correlations,
it is possible to obtain a better linear unbiased estimator
that is a function of ¥y,00d,» Yparks Yerowns a0 Yiorar - ThUS,
even under the constraint of additivity, the SUR estimator
can achieve lower variance and be a more efficient estima-
tor. Clearly, procedure 3, the SUR estimator, is the method
of choice for additivity.

1.1.6 Bole Biomass and Harmonization

Often the biomass of chief interest is just the tree bole,
particularly for dry weight yield. What is frequently needed
is a means to predict bole biomass for different merchant-
ability limits. For example, bole biomass components can
be defined in the following nested fashion. The first
component, the entire bole, contains in its entirety the
second component, the bole to a 10 cm top diameter, which
in turn contains the entire third component, the tree bole up
to a 15 cm top, and so on. When calculating a separate
regression function for each component, the problem that
usually arises is that the regression lines may cross each
other; consequently, the estimate of the biomass of a
nested component may exceed that of the next larger
component. The process of forcing several simultaneous
regressions to behave logically with respect to each other
is known as harmonization. Jacobs and Cunia (1980) and
Cunia and Briggs (1985b) solved the intersection problem
by (1) using the same model form for a1 components and
(2) making al1 regressions parallel by restricting the slopes
to be identical. Further, they controlled the spacing be-
tween consecutive regressions to follow a reasonable pat-
tern. They reasoned that the difference between the inter-

Table 4. Flesults from fitting the willow oak data with seemingly unrelated regressions.

RSUR WRSUR Reduction in
Estimate SE Estimate SE SE* %
B.,, 59.186526 48.243531 29.634908 19.354063 60
Byy 0.026598 0.000558 0.027190 0.000587 -5
I} 2 29.651015 10.383880 17.612412 4.406701 58
B 2 0.003225 0.000120 0.003435 0.000124 -3
1330 133.106587 26.624556 106.065804 17.471978 34
B31 0.061543 0.005081 0.056544 0.004325 15
B.. -5.336039 1.114125 -4.153695 0.730026 34
Ba 221.944128 62.183373 153.313124 28.802732 54
B a 0.029824 0.000623 0.030624 0.000643 -3
B,, 0061543 0.005081 0056544 0004325 15
[ -5.336039 1.114125 -4.153695 0.730026 34

NOTE:  RSUR is restricted seemingly unrelated regressions, and WRSUR is weighted restricted seemingly unrelated regressions.

8 Computed as [std err(RSUR) - std err(WRSURI/ std err{RSUR) x 100.
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cepts is a function of both squared log (that is, top)
diameters and the length of the log, which is a function of
top diameter. Hence, the intercepts of the various regres-
sions should be related as

BiO = ao + alzi + azZ? (38)

where z; is the top diameter of the ith component. Cunia
and Briggs (1985h) recognized that the harmonized re-

gression functions were serialy correlated because the
various components were not independent, being mea-

sured on the same trees. As with the additivity problem,

Cunia and Briggs put forth a procedure that allowed the

estimation of the covariance matrix of the sample biomass

values and circumvented the problem of storing and in-

verting large covariance matrices. They constructed a
giant size regression with dummy varigbles that contained
all of the individua component regressions, and they

estimated the parameters with generalized least squares.

Again, as with the additivity problem, their procedure is

equivalent to using joint-generalized least squares with
cross-equation condtraints. With the proper software, such
as the GAUSS™ matrix language (Aptech Systems, Inc.,

23804 SE. Kent-Kangley Road, Maple Valley, WA 98038),
SUR is easy to implement.

Though the harmonization technique solves the intersec-
tion problem of nested component bole regressions and
logically spaces the intercepts, it is based on assumptions of
parallelism and precise spacing between consecutive regres-
sions, assumptions which may or may not be true for any
particular tree population. Another drawback is that each
standard of utilization requires another equation to be added
to the set of regressions. Two techniques that do not require
these assumptions and minimize the number of equations are
(1) the weight-ratio approach and (2) the density-integral
approach. Both approaches provide a system to caculate
total bole biomass and merchantable bole biomass to any
standard of utilization expressed as a function of stump
height, and of top diameter or section height.

1.1.7 Weight-Ratio Approach

To circumvent the equation cross-over problem, Honer
(1964) devised a two-step method to calculate merchantable
volume to any utilization specification. First, he developed
an equetion to predict total tree volume. Second, he devel-
oped an equation to predict the proportion or ratio of mer-
chantable volume to total volume given the merchantability
limits. When attention shifted to estimating tree biomass, it
was natural to apply the ratio approach thus avoiding similar
problems encountered in tree volume estimation (Williams
1982).

The weight-ratio approach uses the following relation-
ship:

w=RW (39)

where w is merchantable weight, W is total weight, and R is
w/W. Interested persons may refer to Honer (1964), Burkhart

(1977), and Van Deusen €t d. (198 1) for the early develop-
mental work on the ratio approach. Parresol et al. (1987)

reviewed a number of ratio models from the forestry litera-
ture. Parresol and Thomas (1989) compared the density-
integral approach against the weight-ratio approach and
concluded that the density-integral approach gave more pre-
cise estimates of sectiona and total bole weight.

1.1.8 Densgity-Integral Approach

Parresol and Thomas (1989) introduced the density-inte-
gra methodology. The generdized density-integra model
for stem biomass is

xu
w=H p(x)f(x)dx+ e (40)

X
where H is total tree height, X is relative height, p(x) is a
function giving density or stem specific gravity at x, f{x) is an
equation expressing stem profile in cross-sectiona area as a
function ofx, w is bole dry mass of wood between limits x;and
x,, and e is stochastic error. For a specific biomass model,
one needs to define p and f. See Tasissa and Burkhart (1998)
for recent work on modeling specific gravity and Maguire
and Batista (1996) for areview of taper models. For the
derivation of the generalized density-integral model and
examples of its use see the articles by Parresol and Thomas
(1989, 1996), and Thomas et al. (1995).

One could fit stem profile [Ax)] and density [p(x)] inde-
pendently and place them into Model (40) for prediction of
biomass. However, as with the additivity problem and the
harmonization problem, it is important to recognize that the
data for stem profile (i.e., volume), density, and mass are not
independent, coming from the same trees. One would expect
mass, density, and volume to be correlated at the same
measurement bolt on the tree. This contemporaneous corre-
lation, if not accounted for, leads to inefficient estimates of
the parameters. In addition, observed stem mass should be
incorporated into the fitting process. Joint-generalized least
squares or SUR, as previously outlined, takes into account
contemporaneous correlations and leads to efficient esti-
mates. Parresol and Thomas (1996) showed that parameter
estimates (f; ‘s) from SUR estimation of the simultaneous
equations from the density integral had smaller standard
errors than from OLS estimation of f{x) and p(x).

1.2 Sampling on the Tree

The process of physicaly collecting biomass data can be
very labor intensive. In short rotation woody biomass pro-
grams, trees usually do not attain large sizes, and field
weighing of the entire tree to measure fresh weight is not
overly difficult. The various tree components, as determined
by the scheme used, can be measured directly as soon as they
are separated from the tree. The only possible error may be
due to faulty measurement instruments or methods. How-
ever, if biomass expressed as dry weight is required, direct
measurement may be too expensive and time consuming for
the larger components such as the bole. The only practical
adternative is subsampling. Small samples are selected from
the tree component by some usually random procedure.
Green and ovendry weights of these samples are determined
in the laboratory and the results are used to estimate theentire
tree component. Note that the “measurement” of biomass is
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defined as the process of direct determination of the biomass
of the entire tree component of interest, whereas the “estima-
tion” of biomass is defined as the process of determination of
the biomass by subsampling.

1.2.1 Ratio-Type Estimators

Briggs et a. (1987) described a procedure they used to
measure the green weight and to estimate, by subsampling,
the dry weight of the aboveground components of ran-
domly selected sugar maple (Acer saccharum Marsh.)
trees. Foliage and branch dry weights were determined by
direct measurement. Bole wood and bole bark dry weight
were estimated by stratified subsampling and subsequent
application of ratio-type estimators. A brief description of
their procedure follows. After measurement of diameter
and total height, each tree was felled, and ten plastic sheets
were placed on the ground surrounding the tree. Beginning
at the base of the crown and working towards the top, the
tree branches with their leaves attached were removed and
separated into ten piles such that each pile had a similar
distribution of branches andfoliage with respect to weight
and point of origin from the crown. For each of the ten
piles, al of the foliage was picked from the branches and
placed in paper bags. Foliage and branches were weighed
for green weight and then sent to a laboratory for oven
drying and direct measurement of dry weight. The bole of
each sample tree was divided into three sections of equal
length. For each section, three integers were randomly
selected from 1 to 100. Each of these numbers was multi-
plied (as a decimal number) by the section length to obtain
the location of a sample disk for the determination of the

fresh and dry weight. For example, if the random number
was 24 and the section length was 5.0 m, then a disk would

be located at 0.24 x 5.0 = 1.2 m from the base of that

section. Each of the threebole sections was cut into |ogs of
various lengths and weighed on a 90 kg capacity field
scale. Disks approximately 5 cm in width were removed
from the bole at the randomly selected locations, weighed,
and transported to the laboratory. Foliage, branches, and
disks were placed in forced air kilns at 65°C until constant
weights were obtained. The ovendry weight was deter-
mined individually for each pile of branches and foliage,
aswell as for each disk of each individual sample tree. The
bark was removed from each disk, dried at 65°C, and its
weight was recorded.

The three bole sections can be considered as strata, and
three disks are selected at random from each section, hence
the method of disk selection is stratified random sampling.
Because the green weight of the entire bole, individual
sections, and disks are known, and the ovendry weights of the
sample disks are measured, one can estimate ovendry weight
of the bole by a stratified ratio estimator. Notation and
definitions for the ratio estimator are shown in Exhibit A.

Because the D},’s are independent random variables, the
ovendry weight of the bole and its error can be estimated by

D = XD, = stratified ratio estimator of the dry weight of
wood and bark of the bole
B =3B, = estimator of the bias of D (42)

S2 = ZSIz)h = estimator of the variance of D

G, = green weight of sectionh

8 =gy [ my,
Jh=2dhk/mh

M, —m,

h

Sdhg

Exhibit A

& = green weight of wood and bark of disk k in stratum h
dy, = ovendry weight of wood and bark of disk kin stratum h
my, = 3 = number of sample disks per strata

M, =G, / g, = conceptual number of disks of weight g, in section h

= finite population correction factor of sectionh

S3 =Z(dy ~d,)* | (m, = 1) = sample variance of the m, dry disk values within sectionh
S; =3(gu =8 Y/ (my, = 1) = sample variance of the m, green disk values within sectionh
. = 2(dyy = d,)(ghe = B4) | (my, = 1) = sample covariance
L= Eh / g, = ratio estimator of ovendry weight to green weight of sectionh
D, =G,1, = M,d, = ratio estimator of ovendry weight of section h
B, =(M, = my)(5S;, =S40, | (m,8,) = estimator of the bias of D,

S5, = My(My, —m,)(S5 =208, .+ 12'S;,) | my, = estimator of the variance of D,

(41)
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Table 5. Morphological data for the four example sweetgum trees.

Green weight of bole (wood + bark)

Tree Dbh (cm) Totel dAeight  Bole length Bottom Middle Top Total
cersanssmnenn (] roemmenre s (Kg) oo
| 155 14.6 13.5 575 e 7.6 903
2 30 24.7 24:0 4351 162.8 24.0 621.9
3 48.8 29.9 28.4 1,447.1 8055 %25 2,345.1
4 67.8 34.4 29.8 2,785.0 1,707.8 4033 4,896.1

Note:  The strata (bottom, middle, top) are of equal length, being 1/3x

If we define &, ,, & ovendry weight of wood of disk k in
stratum b, and dy,; 1, = ovendry weight of bark of disk K in
stratum 4, and if these values are substituted for dhkin “n),
then one can define the estimators D, and Dy, the stratified
ratio estimators of the ovendry weight of wood and bark,
respectively, of the tree bole, as well as the corresponding
estimators of their errors. Briggs et al. (1987) give ex-
amples of calculations for three sugar maple trees. Tables
5 and 6 present morphological data and disk weights from
four sweetgum (Liquidambar styraciflua L.) trees from a
stand in West-central Mississippi. Tables 7 and 8 show the
calculations for the stratified ratio estimator. These trees
are part of alarger dataset that wasused to develop weight
tables for sweetgum (Schlaegel 1984).

Kleinn and Pelz (1987) in Germany estimated both
green and dry weight of the bole including bark by simple
ratio estimates of volume/green weight and green weight/
dry weight on the basis of five disks that were selected
with a probability proportional to estimated volume. That
is, random numbers between 0 and 1 were drawn, and
proportional cumulative volumes up the stem were esti-
mated and disks removed from the tree at these points. For
example, say 0333 is randomly drawn, then a disk is
removed at the point on the stem where it js estimated gne-
third cumulative volume occurs. For crown green and dry
weight, a few branches were selected and weighed and a
regression of the form

bole Iength.

was fitted, where W ig branch weight, D is branch base
diameter, and L is branch length. Al1 branches on the tree
were subsequently measured for D and L, then weights were
estimated and summed for total crown weight. Branches
were chosen for weighing as follows. Within the crown of the
tree, five locations along the main stem were determined
randomly with a probability proportional to stem diameter.
For each location the nearest (unsel ected) node of branches
was selected, and from this node a branch was randomly
chosen for measurement. Error of estimates can be deter-
mined based on formulas given earlier for ratio estimators
and regession variance.

Valentine et al. (1984}, aswell as Cunia (1979), point out
the well-known fact that ratio estimators are biased. Indeed,
Briggs et al.( 1987) acknowledge this but argue that in their
procedure, bole biomass is based on nine disks, so bias is
expected to be negligible. Ratio-type estimators have the
advantage of being simple to understand and apply. How-
ever, efficient, unbiased techniques are available which typi-
cally involve only two to four sample disks. These will be
discussed next.

1.2.2 Randomized Brunch and Importance Sumpling
Valentine et a. (1984) and Gregoire et al. (1995b) de-
scribe two procedures, randomized branch sampling (RBS)
and importance sampling, for selecting sample paths to
obtain unbiased estimates of the biomass content of the tree.
A sample path-from which bole disks, crown branches, and
foliage are selected-extends from the butt to a terminal bud

W =by+bD’L

3

and has selection probabilities associated with it. The path is

Table 6. Green and dry weights of the three randomly selected disks per stratum for the four example sweetgum

trees.

Disk 1 Disk 2 Disk 3
location® location location
Tree  Stratum (m) g da (m) g d (m) 8 d
.......... (Kg) e eer n “m e (Kg)
| Botom 20 058 0269 26  o..(kgo—-— 36 0461 0238
| Midde 22 0280 0138 24 0876 0J29 29 0246  0.119
| Top 0.0 0.176 0.095 2.4 0.081 0.028 4.3 0.012 0.009
2 Bottom 31 2.408 1.083 35 2.286 1.008 6.4 1.832 0.810
2 Middle 45 1.018 0.470 4.9 0.888 0.431 5.7 0.720 0.341
2 Top 10 0.325 0.139 6.2 0.036 0.016 7.0 0.020 0.015
3 Bottom 3.0 8.157 3.444 32 8.092 3.426 9.2 6.000 2.670
3 Middle 2.7 5.744 2.754 4.4 5.281 2.395 5.6 4.160 1.938
3 Top 15 0.998 0.499 2.2 0.815 0.410 35 0.545 0.259
4 Bottom 4.7 13.254 6.162 75 12.554 6.003 8.0 12.251 5.828
4 Middle 2.0 9.995 4.693 6.0 8.192 3.902 7.4 7.149 3.544
4 Top 12 4.399 2.355 2.6 3.045 1.639 9.8 0.601 0.299

NoTe:  gpy isthe green weight of disk k instratum hand dpis the dry weight of disk k in stratum h. Each disk is approximately 5

cm thick.

@ Within a stratum, the base of a disk was randomly iocated by generating a uniform random

the stratum length.

(0,1} number and multiplying it by
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Table 7. Statistics associated with the estimation of the bgle ovendry weight for the three sections of the four
example sweetgum trees.

_ 2 S2 S2
Stratum d, &k Sin - Sapep e Th Dy By Di
T i e e resaaaeaaas 2

Tl kg)oo () s (kg) (ke

Bottom 0.255 0.529 0.00025 0.00099 0.00400 0.482 21.72 0.062 0.8346

Middle 0.127 0.266 0.00005 0.00013 0.00031 0.478 12.05 0.002 0.0043

Top 0.044 0.090 0.00204 0.00363 0.00678 0.491 373 -0.092 0.2567
Tree 2

Bottom 0.967 2175 0.01989 0.04271 0.09213 0.445 19341  -0.053 1.6051

Middle 0.414 0.875 0.00438 0.00977 0.02232 0.473 77.00 0.055 14357

Top 0.057 0.127 0.00508 0.01223 0.02947 0.446 1071 0.448 0428 1
Tree 3

Bottom 3.180 7.416 0.19516 0.54204  1.50556 0.429 620.49 0.894 89.03 15

Middle 2.362 5.064 0.16726 0.32861 0.66467 0.467 371579 —0.190 44.0265

Top 0.389 0.786 0.01472 0.02763 0.05193 0.495 4582 -0.093 0.4082
Tree 4

Bottom 5.998 12.686 0.02791 0.08322 0.26464 0473 1,316.65 0.238 132.6241

Middle 4,046 8.445 0.34567 0.84494 207306 0.479 818.24 1.166 159.8811

Top 1431 2.682 1.08923 2.00885 3.70521 0534 21521  -0.580 2.6900

NoTE:

d, is mean dry disk weight of stratum h, gpis mean wet disk weight of stratum h, S;h is the variance of dj,, Sy, o, is the

covariance, S2 isthe variance of g, Tyisthe ratio estimatorof dryto green weight of stratum h, Djis ratio estimatorof dry
weight of stratum h, By, is the bias of Dy, and Sgh is the variance of Dp. See text for details.

a series of connected branch segments or internodes, where
a branch is defined as the entire stem system that develops
from asingle bud. A segment is a part of a branch between

two consecutive nodes. The butt, by definition, js the first
node and has selection probability 9= 1. The second node

occurs at the point of live tree limbs. Tocontinue the path, a
selection probability is assigned to each branch emanating
from the second node, and one is chosen at random. Valentine

et al. suggest assigning a selection probability as the product
of the squared diameter and length for a branch, divided by
the sum of these products for al1 branches at the pode. The

second segment of the path has selection probability g¢,. The
path continues to the next node, where a branch is selected by

RBS with probability g and so on until a terminal shoot js
reached with probability ¢,. The g;’s are conditional prob-
abilities. The unconditional probability of selection for the
kth segment in the pathis

(44)

Al1 material thatis not part of the path can be discarded.
This is abig advantage of RBS; as aresult, researchers can
significantly reduce project time and labor costs. Aboveground

Table 8. Summary statistics for the four example sweetgum
trees.

95%

Confidence limits
Bias 52

Tree ... &g)m D Lower ph) er
(kg)
! 4349 -0.027 10957 ... %(g) 45.58
2 281.12 0.449 3.4689 2417 440~ 284.84
3 1,042.10 0.611 1334661 1,018.99 1,065.21
4 235011 0.824 2951952 2,315.75 238447

D is the stratified ratio estimate of the bole dry weight {wood +
bark) and Sf) is the estimate of the wvariance of D used for
constructing confidence intervals.
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biomass can be estimated from a single path, but two or more
paths are needed to compute a standard error of the estimate.
Estimation of the green weight of the tree involves the
weights of each of the n segments of the path. Denote the
weight of the kth segment as b,, then an unbiased estimate of
tree weight is

(45)

where @, is defined in Equation (44). For an unbiased
estimate Of green foliage weight, f, substitute fe for by in
Equation (45), where f, is the weight of the foliage attached
to the kth segment.

Valentine et al. (1984) developed a procedure based on
importance sampling (a technique of Monte Carlo integra-
tion) for selecting disks that produces unbiased estimates of
dry weight. To begin, each segment in the selected path is
enlarged by the inflation factor 1/Q,, so the enlarged stem
represents the entire tree. Visualize the inflated path as being
composed of thin disks of constant thickness and known
volume. One of these disks is selected at random with
probability proportional to its volume. If the dry weight of
that inflated disk is measured and divided by its selection
probability, the result is an unbiased estimate of the dry
weight of the tree.

In practice, Vaentine et al. (1984) used a continuous
(segmented linear) interpolation function to predict the cross-
sectional area (volume per unit length) of all points along the
path. They measured diameter at numerous points along the
path for this purpose. Denote the diameter of the stem at a
distance L; from the butt as D(L ), and define a quantity
proportional to theinflated cross-sectional area as

A(Lg)=D(L,)* 10, (46)

Now the interpolation function, S(L), is fitted to the values
A(L,) and integrated over the length, A, of the path to approxi-




mate the inflated woody volume of the path, that is,

A
YOE jo S(L)dL @7

A point, 0, for cutting a disk is randomly selected with
probability proportional to S(L). The point is chosen which
satisfies V(@) = uV(A), where i is a random number from a
uniform (0,1) distribution. Next, determine the dry weight
per unit thickness (Valentine et al. used 10-cm-thick disks) of
the disk cut at L = 8 as B(9). The inflated weight per unit

thickness of the disk is

B'©®)=B®)/ 0, (48)

where k is the index of the path segment in which 6 occurs.
Finally, the unbiased estimate of the true woody dry weight
of the tree is computed as

W= B OV S@®) (49)

If multiple paths are selected on the tree from RBS, obtain a
disk from each path and use Equation (49) to compute an
estimate from each disk, then average the estimates to pro-
duce one combined estimate. For further details and ex-
amples on RBS and importance sampling, see the papers by
Valentine and Hilton(1977), Valentine et al. (1984), Gregoire
et a. (1986), de Gier (1989), and Gregoire et al. (1995h).

1.2.3 Bole Mass by Difference Sampling

This section describes an innovative technique for ob-
taining an unbiased estimate of tree hole biomass. Gregoire
et al. (1986) showed how to unbiasedly estimate bole
volume by importance sampling. Van Deusen and Baldwin
(1993) used importance sampling in conjunction with the
density-integral concept of Parresol and Thomas (1989) to
obtain an unbiased estimate oOf tree bole dry mass. The
procedure requires obtaining increment cores at breast
height and another randomly selected height. The specific
gravity of the cores and their associated cross-sectional
areas are then used to unbiasedly estimate bole mass.

In the density-integral model the bole woody mass to some
height h is

h
w(h) = L p(x)a(x) dx (50)

where a(x) is the cross-sectional area at height x. If dx
represents disk thickness, then g(x) dx is volume, and volume
times density yields mass. Thus p(x) is the ratio of mass to
volume. Taking the derivative with respect to h and rearrang-
ing gives

p(h) =w’(h) /u(h) (52)

A reasonable function for p(h) depends gn the properties of
w(h) and the volume function, v(h), which is the integral of
a(h). Both functions increase monotonically up the stem
starting from 0 at the base and going to total woody mass W,
and totd volume V, a totad height H. For volume to height h,
Van Deusen and Baldwin (1993) used

_ H-h)?
v(h)—V-V(-H-—-—)

— (2

where k js stump height. Differentiating Equation (52) gives

uh) = aV(H=hB)* " (H=k)™ (53)

Using the same functional form for mass gives

W(h)y=BW(H - hy*~ (H - k)P (54)

Dividing Equation (54) by Equation (53), as indicated in
Equation (5 1), and simplifying results in

A ___WE _ B-o _po-B
ph) =~ (H-h)""(H-k) (55)

It should be pointed out that any function that gives volume
to some height h, as does Equation {52), can be used for
approximating p(h).

Importance sampling is used for estimating the value of
any definite integral. Since Equation (50) (the density-inte-
gral model) describes bole woody mass as a definite integral,
a sampling scheme that utilizes the above equations can be
developed. Van Deusen and Baldwin (1993) devised a scheme
to estimate the difference between the model and actual bole
biomass. This approach, called “ difference sampling,” com-
bines importance sampling and control variate methods. The
desired difference can be written as

B w'(x)—w'(x)

w(h) = G(h) = | s

f(x) dx (56)

where f{x) is a probability density function (PDF). Equa-
tion (56) conveys that we can draw a height, X,, from the
PDF, f(x), and measure w’(X;) to contrast with the model-
based estimate w'(X;) for an unbiased estimate of the
difference, w(h)- G(h). Hence, a procedure based on
difference sampling for obtaining unbiased estimates of
bole mass would use

~ oo L W) -W(X))
Wo(h) =w(h) + — ———

D( ) ( ) n; f(x) (57)
A PDF should be chosen that will lead to most of the
measurements being low on the stem, where much of the
wood mass occurs and where measurement cost is low.
Define r = (h « x)/h, the relative distance from the upper
height limit of interest on the bole. Note that totd height H is
just a special case. A simple cumulative density function
(CDF) for ris

F=r', 0<r<l (59)

Using the inverse transform method, a random height in
terms of x is drawn as

X; = h(- w7y (59)

where u; is a uniform random variate, u,~ U(0,1). Differenti-
ating (58) gives the PDF in terms of x as
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_ h-x)!
fy=y""= v(—h——) (60)
Substituting (60) into Equation (57) yields the suggested
difference sampling formula

= aomel N WD) WX
Wo i) = )61 - 21 X

To implement the procedure defined by (61), first recall
that Equation (54) provides a model for i?(h), and Equation
(52) gives amodel for w(k) after changing the v’sto w’s.
Second, generate a uniform random variate, U and substitute
this into Equation (59) to generate a measurement height, X;.
Third, measure the cross-sectional area, a(X;), on the tree and
takeacoretoobtain p(X;) since w'(X;)=p(X;)a(X;).They-
parameter in Equation (59) influences the probability of
where X; occurs on the bole. Based on simulations, Van
Deusen and Baldwin (1993) showed that a value of y=3 kept
measurement heights low (nearly 90% of the time less than
half tree height, and 60% of the time less than one-quarter tree
height) while minimizing poor predictions on individual
trees.

The only remaining element needed is an estimate of total
woody mass Wfor use jn Equations (52) and (54). Note that
one can easily obtain w’ (1.3) by taking a core at breast height
to determine density and then by multiplying this density by
the measured basal area a( 1.3). The following equation is
derived from Equation (54) by letting = 1.3 m and rearrang-
ing terms:

W =w(1.3)(H-1.3)

1-p (H B kP 2

If this estimate of W is used, then W’(h) is constrained to
predict the measured value at 1.3 m regardless of p.

Difference sampling can be used to provide an unbiased
estimate of the biomass of a stand of trees. The procedure can
be applied to each tree opn a sample plot to give an unbiased
estimate of the plot mass. These plot-mass estimates can then
be used in the usual way to produce sample estimates of stand
biomass. To illustrate the above procedure, consider again
the 39 willow oak treesin Table 2. Let us estimate the total
bole woody mass, excluding bark, of eachtree (above stump),
hence h = H. One random height only will be drawn(n =1),
and we will sety=3,B = 3, andk =05jp theformulas. In the
willow oak dataset, a measure of specific gravity occurs
every 1.5 m along the stem, so the random height will be
adjusted to the nearest height where cross-sectional area and
specific gravity measurements were recorded. Also, W' (1.5)
will be used instead of w' (1.3) to determine W of Equation
(62). Results are givenin Table 9. The total woody mass for
the 39 trees is 40,987 kg, whereas the difference sampling
estimate is 39,099 kg, a difference of only 4.6%. In this
example, only one random height per tree was drawn, but in
practice usually two to four random heights may be drawn
and measurements taken at those points along the bole. This,
of course, should improve the accuracy and precision of
Wph).
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2 The Error of Forest Biomass
Inventory Estimates

Historically, attempts have been made to estimate forest
biomass using “mean tree” techniques. For example, the
weight of the tree of average girth would be determined and
multiplied by the number of trees (Attiwill and Ovington
1968). This generally proved unsatisfactory and today large-
scale inventories based on sound statistical designs are in
place in many parts of the world. Most sampling designs of
forest inventory consist of two principal phases. In the first
phase, arelatively large sample of treesis selected, and the
trees are measured for diameter, height, and possibly other
characteristics. The sample trees are usually in clustersde-
fined in terms of sample plots of fixed area or horizontal
(Bitterlich) sample points. These trees are not measured for
biomass. In the second phase, a relatively small sample of
trees is selected, and the trees are measured for hiomass and
the same characteristics as the first phase trees. The second
phase trees are used to estimate a relationship between tree
characteristics (diameter, height, age, etc.) and biomass,
usually, though not always, expressed as a regression func-
tion. This relationship is then applied to the trees of the first
phase sample to calculate forest inventory estimates of gver-
age biomass per unit area. When previously constructed
biomass regressions are available, the second phase sample is
no longer necessary. However, a critical assumption is being
made that the tree population for which the regression func-
tion was calculated and the tree populations currently being
inventoried are very smilar. Some recent studies dealing
with forest biomass estimates from inventory data include
Brown et a. (1989) and Brown and Lugo (1992) in the
neotropics, Brown et al. (1991) in South and Southeast Asia,
and Monserud et a. (1996) in Russia. Two excellent refer-
ences on forest inventory methodology are de Vries (1986)
and Schreuder et al. (1993).

The error of the forest inventory estimates has two main
components. First is the component due to the random
selection of the sample units of the first phase. Successive
applications of the same selection procedure to the same
forest area resultin different sets of sample trees and, thus,
different sets of estimates. The size of this component is
greatly affected by (1) the sampling design of the first phase,
(2) the sample size, (3) the type of estimator used (for given
sample data and required parameter to estimate, there are
generally several estimators, each having its own precision),
and (4) the inherent variation between the sample units. The
second component is associated with the sample of the
second phase, that is, with the error of the biomass regression.
The size of this component is affected by (1) the sampling
design used toselect these trees, (2) the sample size, (3) the
estimation procedure, and (4) the inherent variation of the
tree hiomass values about the regression function. These two
components constitute what is known as the sampling error.

An approach proposed by Cunia (1965, 1987a) can be
used to combine the error from the first phase sample plots
with the error from the second phase sample trees. This
approach requires that the estimators be of the form




Table 9. Comparison of actual bole wood dry mass with difference sampling estimate for willow oak trees from the state of Mississippi,

USA.
True .
Tree H mass p(1.5) a(15) 14 X P a(X) wiX)  W(X) W (H)
(m) (kg) (kg/nr) () (kg) (m) (kg/m’) (@) e (kg)oorreenmeninens
! 29.0 2,493.4 584 0.361 2,152.5 180 603 0.092 $5.69 33.7s  2,2033
2 183 309.4 596 0.061 2434 3.0 599 0.052 30.96 3031 2437
3 29 uL7 613 0173 869.7 3.0 601 0.143 85.95 91.93 867.0
4 27.4 1,772.7 536 0.364 1,886.8 3.0 530 0.273 144.55 17313 1,874.8
5 198 2711 608 0.053 2294 9.0 613 0.028 17.01 11.16 2359
6 320 1,301.4 585 0.177 1 1 60. 9 6.0 605 0.125 75.56 7533 1,161.1
7 320 1,000.6 554 0.161 4.5 565 0.114 64.42 7231 992.6
8 305 8854 544 0.146 852 5 195 567 0.037 21.2s 11.46 8776
9 259 464.9 573 0.073 3836 6.0 590 0.056 32.96 2781 3865
10 305 1,558.1 564 0.234 1,413.7 105 582 0.143 83.23 62.83 1,429.5
I 24.4 3765 574 0.064 3166 120 575 0031 17.73 10.70 3.7
12 305 2,117.9 580 0.312 2, 309 8 4.5 575 0.230 132.19 173.49 2,290.8
13 244 7217 580 0.112 1.5 580 0.112 65.25 65.25 566.2
14 259 8029 SS1 0.133 672 3 9.0 557 0.091 50.68 35.15 6844
15 331 2,290.2 593 0.327 2, 370 9 15 593 0.327 193.86 193.86 2,370.9
16 259 662.7 588 0.123 4.5 582 0.095 55.35 55.77 665.0
17 213 272.2 578 0.058 256 6 6.0 607 0.037 22.75 20.02 2583
18 320 3,029.1 582 0471 3,072.5 15 582 0471 274.33 274.33 3,072.5
19 38 2,147.3 568 0268  1,796.3 15 568 0.268 15225 15225 1,796.3
20 29.0 1,438.8 560 0.261 1,491.9 150 603 0.071 42.54 37.90 1,493.6
21 25.9 1710 600 0.032 1785 3.0 600 0.026 15.33 17.14 1778
22 24.4 365.6 617 0.061 3283 9.0 647 0031 19.9s 1711 3306
23 214 1,009.7 607 0.189 1,108.2 75 692 0.112 71.85 67.63 1,114.6
24 27.4 5235 603 0.087 507.2 165 630 0031 19.42 9.29 5285
2s 274 667.2 564 0131 7165 9.0 591 0.064 3757 37.39 716.6
26 24.4 2404 589 0.042 2145 60 59% 0.030 1791 15.96 2156
27 259 3%4.2 606 0.062 3471 135 640 0.024 15.44 9.77 3554
28 25.9 5108 580 0.090 477.0 05 590 0.152 89.48 56.34 4885
29 27.4 7321 591 0.104 5923 4.5 602 0.080 4843 47.87 5926
30 29 8369 606 0.177 8784 4.5 612 0.130 79.39 79.38 8784
3L 259 4400 584 0.084 4518 3.0 584 0.067 30.14 43.38 450.0
32 213 468.6 526 0.094 3712 15 526 0.094 49.30 49.30 3772
33 213 3565 580 0.074 3292 3.0 588 0.060 35.40 36.76 3286
34 25.9 1,385.7 561 0.270 1,391.7 45 560 0.236 132.39 116.68 1,399.4
35 29 1,240.6 587 0.20s 1,102.5 15 587 0.20s 120.17 120.17 1,102.5
36 27.4 1,530.4 567 0.245 1,345.0 4.5 562 0.193 108.28 108.71 1,344.8
37 27.4 2,056.6 560 0.359 1,942.0 120 543 0.191 103.55 70.98 1,976.4
38 25.9 1,208.4 464 0.243 1,034.6 120 576 0.131 75.65 36.59 1,079.8
39 27.4 1,984.5 567 0329 1,807.0 9.0 585 0.241 140.87 94.29 1,8414
SUM 40,986.8 39,099.3

NoTE: p(1 5)is ratlo of mass to volume at height 1.5 m {(i.e,, specific gravity measured at height 1.5 m x 1000). a(1.5) is bote cross-sectional area
at 1.5 m, W is estimate of hole dry mass via Equauon (62), Xis a random height generated from Equation {53}, w’{X}is p(X)a X), wiX)is
a model- based estimate of w’{X)via Equation {54}, and WD(H) is the difference sampling estimate of bole biomass yjg Equation (61).

w=bz +byz, +...+b,z, =b'z (63)

where b is the coefficient vector from the biomass regression
function andz is a vector of statistics calculated from the data of
the sample points or plots. It is assumed that (1) the regression
oftree biomass on Xis of the linear formy=XP+€ ,(2) thevector
Z is defined so that 1 is an unbiased estimate of the parameter
of interest y, that is,

u =P, = EBYE]

and (3) the vectors b and z are statisticaly independent. The
variance of W is calculated as

S = b'Spb + 7'Spy2 (64)

where § - and S, are the covariance matrices of z and b.
The first term of S is the variance component associated
with the error of the sample plots, and the second term s
the variance component associated with the biomass re-
gression. The definition of z depends on (1) the sampling
design by which the plots or points are chosen, (2) the
specific parameter u one wishes to estimate, and (3) the
variables x’ used in the biomass regression function.
Cunia (1987a,b,c.d.e,f), in a series of papers, described in
detail the steps of theabove approach for combining the first and
second phase error components When the parameter . of interest
is the average biomass per hectare and the sampling designs
were: (1) simple random sampling, (2) stratified sampling, (3)
two-stage sampling, (4) double sampling, (5) Continuous Forest
Inventory (CFI) without Sampling with Partiad Replacement
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(SPR), and (6) CFl with SPR. Details and examples on dl these
designs are provided in Cunia's papers.

3 Discussion

In earlier drafts of thisarticle, 1 was chided by reviewers
for using the terms weight and mass interchangeably. Weight
and mass, though related, are not the same (see footnote 1).
1 have made an effort throughout this retrospection to refer to
either weight or mass as appropriate, and to use the term
weight with those techniques, such as the ratio-type estima-
tors of 1.2.1, that deal with weight estimation, and to use the
term mass with those techniques, such as the density-integral
model of 1.1.8, that truly deal with estimation of mass. This
18 as it should be, and researchers in the future should properly
distinguish the two.

Research on estimating biomass components of trees
and forests has a long tradition. Information on many
species for different sites and stand structures is available.
Of historical interest are the volumes put out by the
IUFRO working group that was initiated by Harold Y oung:
Forest biomass studies 1971, IUFRO biomass studies
1973, and Oslo biomass studies 1976. These volumes were
published by the University of Maine at Orono. Two
important books on biomass are Satoo (1982), dealing
primarily with Japanese efforts to systematize forest biop-
mass data and estimation, and Madgwick (1994), a com-
prehensive work dealing with the single species Pinus
radiata D. Don. A short list of current articles dealing with
biomass estimation is: Korsmo (1995) on seven hardwood
species in Norway; Usol’Tev and Vanclay (1995) on Scots
pine (Pinus sylvestris L.) ipn Kazakhstan; Wang et al.
(1995) on aspen (Populus tremuloides Michx.) in British
Columbia; Tahvanainen (1996) on seven Salix clones in
Finland; Bartelink (1997) on beech (Fagus sylvatica L.) in
the Netherlands; and in the Peopl€e’'s Republic of China, Li
et a. (1996) on Japanese red pine (Pinus densiflora Sieb.
and Zucc), and Zhou et a. (1997) on Manglietia
hainanensis Dandy.

There are many ways to determine tree biomass. Ratio-
type estimators, difference sampling estimators, and others
are appropriate if one only needs estimates of the total woody
biomass of the tree (or bole). If, however, one wants to
develop weight-ratio or density-integral type models, a more
intensive sampling scheme on the hole (such as systematic
sampling) would be more appropriate. Under short-rotation
woody biomass programs, trees typically do not attain a large
size, so development of weight-ratio or density-integral models
is probably not labor efficient or cost effective. Older planta-
tions and trees that attain a large size might yield a mix of
products in the bole such as pulpwood, fuelwood, and small
dimensional lumber. For these plantations and trees, devel-
opment of prediction systems for merchandizing tree boles
would be advantageous, and intensive sampling schemes to
develop such prediction systems would be cost effective in
the long run.

Modeling tree biomass has been a wide-ranging effortin

forestry . It is important to be cognizant of the error structure
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to achieve efficient estimates and to construct valid standard
errors and confidence regions. New research is showing that
spatial and temporal correlation is common in al1 types of
forestry data, and modeling these correlations in tree and plot
data can provide considerable gains in efficiency and estima-
tion (Gregoire et a. 1995a, Godlz and Burk 1996, Gregoire
and Schabenberger 1996). Future efforts in modeling tree and
stand biomass and updating inventory estimates should take
into account these correlations. Further, normally distributed
errors are amost always assumed and rarely verified. Will-
iams and Schreuder (1996) have looked at the normality
assumption with volume models and offer alternative error
distributions that could well be applied to biomass models.

As alluded to in the introduction, remote sensing will play
an ever increasing role in stand biomass estimation and forest
productivity in general (de Gier and Sakouhi 1995, Gholz et
a. 1997), with much research being needed in this area.
Large-scale forest inventories, such as those conducted by
state and federal agencies, are looking to methodologies such
as imputation for updating current biomass. Tree and stand
biomass modeling and sampling may well be supplanted by
remote sensing and multivariate statistical analysis or, pref-
erably, linked with them in the future.
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