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ABSTRACT. There is considerable interest today  in estimating the biomass of trees and forests for
both practica1 forestry issues and scientific purposes. New techniques and procedures  are brought
together along with the more traditional approaches to estimating woody biomass. General model
forms and weighted analysis are reviewed, along with statistics for evaluating and comparing biomass
models. Additivity and harmonization are addressed, and weight-ratio and density-integral approaches
are discussed. Subsampling methods on trees to derive unbiased weight estimates are examined., and
ratio and difference sampling estimators are considered in detail. Errorcomponents forstand biomass
estimates are examined. This paper reviews quantitative principles and gives specific examples for
prediction of tree biomass. The examples should prove useful  for understanding the principles involved
and for instructional purposes. FOR. SCI. 45(4):  573-593.
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T HERE IS CONSIDERABLE INTERESTTODAY  in estimating
the biomass of forests for both practica1 forestry
issues and scientifíc purposes. Forest biomass is

important for commercial  uses (e.g., fuelwood and fiber) and
for national development planning, as well as for scientific
studies of ecosystem productivity, energy and nutrient flows,
and for assessing the contribution of changes in forestlands
(especially tropical) to the global carbon  cycle. Thus, it is not
surprising that during the past four decades,  research on
biomass production by forests has steadily grown in impor-
tance (Zeide 1987, Waring and Running 1998). As early as
1950 weight’ as a measure  of wood quantity was used by
many of the larger companies in North America  and northern
Europe (Taras 1967). With the increasing value of wood and

* The term “weight”  is  commonly used for mass, but strictly speaking  this
is incorrect.  Mass is the measure  of the amount of matter present in  abody;
whereas the weight of a body is  the forte  exerted  on its mass by gravity.
To know whether mass or forte  is  being measured, the SI uses two units:
the kilogram  for mass and the newton for forte.

the realization of the shortcomings of traditional volume
measurement, that is, the myriad log rules in use, interest in
and use of weight for measurement and valuation of trees has
rapidly grown (Guttenberg 1973, Husch et al. 1982, Avery
and Burkhart 1994). The use of end-product units as a
measure  of the amount of raw material is rare outside the
forest products  industry. Raw cotton is not bought and sold in
“shirt” or other similar units, nor is crude  oil marketed with
liters of gasoline as the measurement unit. Of course, a shirt
cannot be identified out in a cotton field, but a veneer log or
a sawlog can be identified in a forest. Hence volume measure-
ment will continue  to be essential. Nonetheless, the current
trend is toward decreasing the usage  of end-product units as
expressions of stem content.  The interest in complete tree
utilization (roots, stumps, branches, etc.), the use of residues
from the manufacture of forest products,  fuel quantity in
relation to forest fire conditions, and other issues has in-
creased the use and importance of biomass measurement
(Husch et al. 1982, Philip 1994).
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A review of past practices  by Cunia (1988) showed that
in some instances estimates of biomass content  were
obtained by ocular means based on  intuition and past
experience. Later, this was supplemented by (1) measure-
ments performed on  subjectively selected samples of trees
or plots and (2) results obtained from subjectively de-
signed experiments. Today, forest inventory methods are
based on  sound statistical designs (de Vries 1986). The
bias, if any,  is  largely reduced, and the error of estimates
can be quantified in probabilistic terms. Indeed, research
foresters and statisticians have  come to recognize the
various error components  of forest biomass inventory
estimates and to develop techniques to account for them.
Great progress has been  made in the last few decades  in the
methodology of selection of sample trees and plots and
estimation of forest parameters of interest. New and excit-
ing developments in sampling theory, such  as importance
and randomized branch sampling, have  changed the way
we view forest inventory (Schreuder et al. 1993). These
modern procedures  of error components  and sampling
techniques have  provided considerable gains in reliability
and efficiency by improving forecasts and corresponding
inferences and by reducing the number of samples re-
quired and the costs  involved.

Remote  sensing, geographic information systems, and
photogrammetry are powerful interrelated tools for forest
resource assessment, as evidenced by the scope  of presen-
tations at the First International Conference  on  Geospatial
Information in Agriculture  and Forestry (Petoskey 1998).
Biomass estimation by using such  tools is  a fascinating
and intricate subject in  itself and will not be considered
here. Statistical methodologies, such  as the expectation-
maximization or EM algorithm and its extensions, mul-
tiple imputation, and Markov chain Monte Carlo (Rubin
1987, Schafer 1997),  are starting to be applied to inventory
data as an  alternative to growth and yield models for
forecasting (Van Deusen  1997). Again, these related meth-
odologies and their use in calculation of biomass consti-
tute a topic needing its own review and development. This
article  focuses  on  modeling and sampling procedures,
because  these have  been  the main avenues of biometrical
research and development on  biomass.

The critique starts with general model forms and statis-
tics  useful  for comparing models.  The issue of
heteroscedasticity is  addressed, and the theory of esti-
mated generalized least squares is  presented. 1 elaborate
on  the three general procedures  to handle the additivity
problem and follow with specific illustrative examples.
The next three sections deal with bole biomass and the
techniques of harmonization, the ratio approach, and den-
sity integrals. The next part of the article  deals with
sampling-ratio-type estimators, randomized branch and
importance sampling, and difference sampling. Estima-
tion with a ratio estimator and difference sampling are
demonstrated. The article  continues  with a section on  error
of inventory estimates and concludes  with a look at past
and present studies and general thoughts on  application
and future  directions of research.
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1 Biomass Estimation Techniques

The basic management unit is  the forest stand. However,
any  stand is  an  aggregation of trees, and the stand biomass is
defined as the sum of the biomass of  the individual  t rees that
comprise the s tand.  Al1 methods for  est imating s tand biomass
must therefore involve,  at  least  in  their  developmental  s tages,
a  predict ion of  individual  t ree biomass and the summation of
these quanti t ies  to obtain per-hectare s tand biomass.

1.1 Regression Modeling
The most common procedure for estimating tree biomass

is  through the use of regression. Trees are chosen  through an
appropriate selection procedure for destructive  sampling,
and the weights or mass  of the components  of each  tree are
determined and related by regression to one or more dimen-
sions of the standing tree.  The tree is  normally separated into
three aboveground components:  (1) bole  or main stem, (2)
bole  bark, and (3) crown  (branches and foliage). Occasion-
ally,  a fourth component,  belowground biomass,  which is  the
stump and major roots within a fixed distance, is  considered.
See  Karizumi (1977),  Lossaint and Rapp (1978),  Satoo  and
Sassa (1979),  Deans et al. (1996),  Kurz et al. (1996),  and
Reed et al. (1996) for examples on  sampling and estimation
of belowground biomass.  Other tree component  schemes are
possible and are usually devised based on  the milling and
pulping technologies of the users for the population of trees
of interest. The fresh weight of an  individual tree may be
determined by weighing al1 components  using f ie ld  scales  or
by sampling. For large trees, weighing of the entire tree can
be qui te  t ime consuming and laborious.  Sampling procedures
as an  alternative to direct weighing of an  entire component
will be considered  later. The process  of collecting data and
developing biomass relationships falls  under the subject of
allometry,  the measure and study of growth or size of a part
in relation to an  entire organism. West et al. (1997) provide
a general theory of allometric scaling laws based on  fractal
networks of branching tubes,  and Broad (1998) gives a theory
of multivariate allometry.

1.1.1 General Model Forms
Researchers have  used  a variety of regression models for

estimating total-tree and tree-component biomass. Earlier
reviews of biomass studies (e.g., Pardé 1980, Baldwin 1987,
Clark 1987, Pelz 1987) indicate that prediction equations
generally have  been  developed utilizing one of the following
three forms:

Linear (additive error): Y = Po  +&Xi  +...+BjXj+ E (1)

Nonlinear (additive error): Y = B,XpX$  . ..Xy+  E (2)

Nonlinear (multiplicative):  Y = B,X~X~  . ..Xl E (3)

where Y = total or component  biomass, Xi = tree dimension
variable, pj  = model parameter, and E = error term. Some
commonly used  tree dimension variables are diameter at  breast
height (D),  D2, total height (H),  D2H, age,  and live crown  lengtb



@CL).  Diameter at  the base of the l ive crown has been  proven
to be one of the best predictor variables for crown weight (Clark
1982). On  the basis  of  the pipe model  theory (Shinozaki  et  a l .
1964a,  1964b),  many  researchers have  used  sapwood area
(active conducting t issue) measured at  vat ious heights  in  the
stem as apredictorof foliage  weight and surface area  (e.g.,  Snell
and Brown 1978, Rogers and Hinckley 1979, Kaufmann and
Troendle 1981, Waring et al. 1982, Robichaud and Methven
1992). An  innovative approach for predicting seedling and
sapling biomass has used  projected area  of the seedling or
sapling (as measured by computer-based image analysis)  as an
explanatory variable.  Studies have  shown that  projected area
alone can explain more than 97% of the variation in  seedling or
sapl ing mass  (Suh and Miles 1988, Norgren et  al .  1995).  Model
(1) produces multiple linear regressions that can be fitted  by
standard least  squares estimation procedures.  Model (2) pro-
duces nonlinear regression equations that require use of iterative
procedures  for parameter est imation.

Normally,  biomass data exhibi t  heteroscedast ici ty;  that  is,
the error variance  is  not constant  over  all observations. If
Models (1) and (2) are fitted  to such  data, then weighted
analysis, typically involving additional parameters, is  neces-
sary to achieve minimum variance  parameter estimates (as-
suming al1 other regression assumptions are met: e.g.,
uncorrelated errors). A statistical model consists  jointly of a
part that specifies the mean X’b  and a part describing varia-
tion around the mean, and the lat ter  may well  need more than
one parameter (02) to be adequate. A weighted analysis
procedure, based on  modeling the error structure,  will be
described  shortly.

Model (3) nonlinear regression equations are usually
transformed into linear (additive error) regression equations
by taking the logarithm of both sides  of the equation. In this
form,  the equation parameters can easily be estimated by least
squares procedures.  Typically, the variance of Y is  not uni-
form across the domain of one or more of the Xj’s;  however,
when transformed to logarithms, Model (3) generally has
homoscedastic variance. The logarithmic form is

lnY=ln~O+~,lnX,+...+~jlnXi+ln~ (44

where In is  the natural logarithm. Al1 common goodness-of-
fit statistics relate to the transformed equation only and are
not directly comparable with the same  statistics produced
through use of ei ther Models (1) or (2) .  When the logari thmic
transfonnation is  used,  it is  usually desirable to express
estimated values of Y in arithmetic (i.e., untransformed)
units. However, the conversion  of the unbiased logarithmic
estimates of the mean and variance  to arithmetic units is  not
direct.  The antilogarithm of In Y yields the median of the
skewed ari thmetic distr ibution rather than the mean. If  û  = íñ?
and ô2 = sample variance  of the logarithmic equation, then

f G exp(b  + 02/  2)

6; k exp(2ô2 + 26)  - exp(ô2 + 2@) (4b)

where Y is  the estimated value in arithmetic units and ôi  is
the estimated variance of Y in arithmetic units (Flewelling

and Pienaar 1981, Yandle and Wiant 1981, Sprugel 1983).
There is  some  evidente  that  these corrections tend to overes-
timate the true bias (Madgwick and Satoo  1975, Hepp and
Brister 1982). Snowdon (1985),  working with Pinus radiata
D. Don, showed that the square-root transformation was a
viable alternative to the logarithmic transformation if curvi-
lineari ty between the untransformed predictors and biomass
was low. To correct for bias under the square-root transform,
add ¿?  from the regression to the biomass estimate (Kilkki
1979). A list of commonly used  equation forms for biomass
estimation can be found in Clutter et al. (1983, p. 8).

1.1.2 Comparing Alternat ive Models
Schlaegel(l982) recommends the reporting of a series of

statistics for evaluating goodness-of-fit and for use in com-
paring alternative biomass models. The first, an  R2  statistic,
is  called the fit index (Fr). Kvålseth (1985) examined eight
alternative R2  statistics; FI corresponds  to his Rf  , which is
the one he recommended. Model predictions,  if  not already in
original units, are transformed back to the original units,
correcting for any  bias if needed. The total sum of squares
(ES)  and the residual  sum of squares (RSS) are calculated as

i=l i=l

where u  = arithmetic mean of Y (total or  component  biom-
ass)  and IZ  = number of sample observations. The fit index is

FI = 1 - (RSS / TSS) ( 5 )

The second stat is t ic  is  the standard error of estimate in  actual
units (S,). It is  calculated as

s,=@Eqiq (6)

where p = number of model parameters. The third statistic,
useful  for making quick comparisons between models, is  the
coefficient of variation (CV) expressed as a percent:

cv=(s,/Y)x100 (7)

The fourth statistic that Schlaegel recommends is  one pro-
posed  by Furnival(1961)  based on  normal likelihood func-
tions. The general formula for Furnival’s index (r) is

Z = [f’(Y)]-’ x RMSE (8)

where f’(Y) is  the derivative of the dependent variable with
respect  to biomass, the brackets signify the geometric mean, and
RMSE is  the root mean square error of the fitted  equation.  The
index reduces to the usual estimate  of the standard error about the
curve when the dependent variable is  biomass.  When the depen-
dent variable is  some  function of biomass, the index may be
regarded as an  average standard error transformed to units of
biomass.  The way Furnival  derived tbe  index puts  i t  in  inverse
order as compared  to likelihood, that  is, a large  value indicates
apoor fit and vice-versa. The fifth  stat is t ic ,  suggested by Meyer
(1938) and recommended by Schlaegel,  is  the percent standard
error [S(%)].  Knowledge can be obtained about  the model  by
calculating the ith  residual’s size relative to q , all values being
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in  actual  biomass uni ts .  For  each  residual,  the percent standard
error is  S( = [I q - 8 I /q]  x 100. This statistic indicates  the
size of error as a percent of the mean of the distribution of Yi.  The
expec!ed  value of S( = 0 because  the expected value of
q - &  = 0. Thus, if al1 S(%)ts  are nearly 0, the equation is  very
precise. Naturally, the S(%)i’s  usually fluctuate widely. For
report ing purposes,  1 recommend taking al1 residuals  into ac-
count to form a composite stat ist ic ,  the mean percent standard
error ( s(%))  of predictions, defined as

The sixth statistic is  the percent error (P,).  It is  a precision
index using the percent standard error and the chi-square  t es t .
Let P, represent the relative difference in percent of the
estimate of tree or component  weight to its true value. This
stat is t ic  computes the value of  P, that  would be necessary to
assure a nonsignificant  x2 test.  The percent error is  defined as

where the a  = 0.05 value for x2 with v degrees of freedom is
approximated by

x;,>  = 0.853 + v + 1.645(2v  - l)t’*

For derivation of this statistic see  Schlaegel(l982). Finally,
Schlaegel advocates reporting the necessary information for
the construction of prediction confidente  intervals. This
usually involves reporting the model mean square error
(MS& and the sums of squares and cro_ss  products  matrix, i .e.,
(XIy)-’  or more generally the Cov(p).

To summarize, statistics useful  for model evaluation and
comparison are: (1) fit index (FI), (2) standard error of
estimate in biomass units (S,), (3) coefficient of variation
based on  S, (CQ,  (4) Furnival’s index (0,  (5) mean percent
standard error ( S(%)), (6) percent error (P,)  of the residuals,
and (7) information needed for building prediction confí-
dente intervals.  Another useful  model  select ion procedure-
prevalent in  the statistics literature-is  the Akaike Informa-
tion Criterion (AIC). For a description and discussion of the
AIC, see  Judge et al. (1988, p. 848).

A number of researchers have  published accounts of
comparisons of  al ternative biomass regression models.  Crow
(1971) used  FZ as a means  with which to compare models.
Although the transformed allometric equation [Model (4)]
proved  superior,  Model(1)  was found to be almost  as  rel iable
when there was arelatively small  range in  tree sizes. Schreuder
andSwank(1971,1976)used  FIandZtocompareaweighted
linear model with six other models based on  the family of
power transformations defined by Box and Cox (1964). They
found that  the FZcriterion could give misleading resul ts ,  but
that Furnival’s index was a useful  tool in  comparison of
models for estimating biomass. Crow and Laidly (1980) also
used the likelihood  approach to show that weighted linear

[weighted Model (l)] and weighted nonlinear [weighted
Model (2)] equations were acceptable  alternatives to the
transformed allometric model. Jacobs  and Monteith (198 1)
obtained similar results. The maximum likelihood approach,
or Furnival’s  index,  reflects  not  only the magnitude of  residu-
als  but  also  possible departures from assumptions of  normal-
ity and homogeneity of variance.  These f indings lead to two
conclusions:  (1) Furnival’s index can generally be recom-
mended as one of the most  useful  s tat is t ics  for  evaluat ing and
comparing biomass models,  and (2) weighted regressions are
important  and often necessary for developing biomass mod-
els  of high precision.

1.1.3 Weighting Biomass Models
Forest modelers are typically faced  with multiplicative

heteroscedastici ty in  their  data (Parresol 1993).  I t  is  often the
case that the error variance  (or disturbance) is  functionally
related to predictor variables in regression. Harvey (1976)
and Judge et al. (1988) have  shown that if the error variance
is  a function of a small number of unknown parameters, and
if these parameters can be consistently estimated, then esti-
mated generalized least squares (EGLS) estimation will
provide  asymptotically efficient estimates of the model pa-
rameters.

In the general linear statistical model y = Xp + E, X is
a (T x ZQ  observable nonstochastic matrix, p is  a (K x 1)
vector of parameters to be estimated, y is  a (T x 1)
observable random vector, and the error vector, E , is  a (T
x 1) unobservable random vector with properties E[E  ] = 0
and E[EÉ]  = Q>= 0~1,  where Y is  a (T x T) diagonal
matrix. Heteroscedasticity exists when the diagonal ele-
ments of Y are not  al1  identical.  In the general
heteroscedastic specification @= diag($,oz,...,oc).  If
we assume that each of  is  an  exponential function of P
explanatory variables then

Efe:] = 0: = exp[zfa] t = 1,2,...,T (11)

where zj = (z,~z,~... ztp ) is  a (1 x P) vector containing the rth
observation on  P nonstochastic explanatory variables and
a=(a,a,...a,)‘is  a (P x 1) vector of unknown coeffi-
cients. The first element inzris  taken as unity ( z,, = l), and
the other z’s could be identical to, or functions of, the x’s.
The normal convention is  to parameterize the scale factor
õ2 as exp(at),  or a - In õ2. This means the expression in
(11) can be writtentai

0: = o*  exp[zf’a*] (12)

where z;’  = (zt2..+,) and a*  = (cx*...a,,)‘.  The covariance
matrix can now be written as

I

,

îxp(z;á*)

exp(z2’d  )
. .

exp(zTá*)
(13)

A
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In order to  estimate a  we f irs t  take logari thms of  Equation
(ll) to  obtain

In 0: = q!a (14)

Since the 0: are not known, we use instead the squares of the
ordinary least squares (OLS) residuals.  These residuals
(denoted et)  are likely to reflect  the size of o:,  that  is,  large
when of  is  large and small when oFis  small. Adding In et2
to  both sides  of Equation (14) yields

o r

lnef  =z(a +vr (15)

where vr = Inef  -Ino: = ln(e:  / 0:).  In matrix notation,
Model(15) can be written as q = Za + v where the vector q
= (ln el ln e2..  . ln &)  . One way to estimate a is  to  apply OLS
to Model (15) which yields & = (Z’Z)-‘Z’q  . Harvey (1976)
showed that  if the E~‘S  are normally distributed then the
intercept al will not be consistently estimated, but the re-
maining elements in & will be consistent  or unbiased.

Substituting &* for a* in expression  (13), we obtain the
estimated covariance matrix Q, = ô*yI. The EGLS estimator
is  formed as

fi= (x’~-‘x)-‘x’&‘~  = (x~~‘x>-‘x+‘~ (16)

Fortunately, b only depends on  the consistently estimated
elements of â,  since  â, can be factored  o$  as a proportion-
ality constant.  The covariance matrix of fi is

where ô2 = (y - Xfi)‘Y”  (y - Xfi) / T - K)
(17)

The usual  hypothesis  tests  and interval  estimates  are based on
this matrix. For prediction intervals on  some  future value yO
the sampling error is  estimated by

ô2&) +x;X’FX)-‘x,

where \îl,,is  the scaler exp(zi’&*)
(18)

To test  the hypothesis of homoscedastic errors  versus
heteroscedastic errors  you  simply test  &:a*=  0 against
H, :a*  # 0. Let R be the  matrix ( 2’2 )-’ with its first row and
first column removed. If the ~t>s  are normally distributed
then â* - N[a*,  4.9348R]  (Harvey 1976) and the following
statistic  (Judge et al. 1988, p. 370), based on  the distribution
of quadratic forms in normal variables, tests  the  above  null
hypothes is :

â*‘R-‘â”
4.9348 - &l> (19)

2 Some statisticians, such as Carroll and Rupert  (1988, p. 79-82),  suggest
that better performance  can be obtained using absolute residuals over
squared  residuals.

Note that  the numerator is  the regression (or explained) sum
of squares obtained when estimating a and that  this test  is
asymptotically equivalent to  the F test  for testing that  all
coefficients, except the intercept, are 0.

Gregoire and Dyer (1989) and Williams and Gregoire
(1993) advocate the use of maximum likelihood (ML) with a
specified error structure  for fitting weighted regressions.
Carroll and Ruppert (1988) discuss the  increased efficiency
of maximum likelihood (under normality) over  generalized
least  squares,  with increases  of about 8% being common. The
ML procedure requires solving for both  first and second
partial derivatives and results in  a simultaneous system  of
nonlinearequations.  In contrast,  theEGLS  estimator is  s imp le
and direct, requires no special  software to implement, and is
almost as efficient as ML. If iterated,  the EGLS procedure
converges to the  ML estimates under normality.

1.1.4  Biomass  Addi t iv i ty
A desirable feature of tree component  regression equa-

tions is  that the predictions for the  componen&  sum to the
prediction for the  total tree. Kozak (1970),  Chiyenda and
Kozak (1984),  and Cunia and Briggs (1984, 1985a) have
discussed the problem of forcing additivity on  a set of tree
biomass functions. The means  to  forcing additivity can be
grouped into three different procedures  depending on  how
the individual componen@  are aggregated.

In procedure 1, the  total biomass sample regression func-
tion is  defined as the sum of the individually calculated best
regression funct ions of  the biomass of  i ts  k components:

(20)

Reliability (i.e., confidente  intervals) of the total biomass
prediction can be determined from variance  properties of
linear combinations:

Var(~,,)=CVar(~i)+2CC  Cov<ji,jj> (21)
i=l

where

P,,  = correlation between q and 5

In procedure 2,  the addit ivity of the componen&  is  ensured
by using the same  independent variables (and the same
weight  function) in  the (weighted) least  squares l inear regres-
s ions of  the biomass of  each  component  and that  of  the  to ta l .
Under this method, one can compute the regression coeffi-
cients  of  the total  equat ion simply by summing the regression
coefficients of the (assumed independent) component  equa-
tions (the b,  vectors), that  is,
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j, =x’b,

j2  = x’b,

jk = x’bk

ytota,  =x’[bl  +b,  +...+b,]

(22)

This result holds only under the restrictive assumption that
the k components yi  (i = 1, . . . , k) are independent, which
impliesthattheEj(i=l,..., k) are uncorrelated. Regression
stat is t ics  and rel iabi l i ty  of  est imates can be computed  for the
total equation (see  Chiyenda and Kozak 1984). Under inde-
pendence, the variance  of jtotal  is  simply the sum of the
variances of the yi’s, the covariance terms drop out of
Equation (21), thus

i=l

Procedure 2 allows no flexibility for using different compo-
nent equation forms. Chiyenda and Kozak (1984),  however,
generalized procedure 2 using restricted least squares to
allow for different equation forms.

Procedure 3 is  the most general and flexible method and
the most  diff icul t  to  employ.  Stat is t ical  dependencies  among
sample data are accounted for using generalized least squares
regression with dummy variables techniques to calculate a
set of regression functions such  that: (1) each  component
regression contains its own independent variables, and the
total-tree regression is  a function of al1 independent variables
used;  (2) each  regression can use i ts  own weight  function;  and
(3)  the addi t ivi ty  is  ensured by sett ing constraints ( i .e. ,  l inear
restrictions) on  the regression coefficients. The Cunia and
Briggs (1984, 1985a) procedure 3 is  the same  as using joint-
generalized least squares, also  called “seemingly unrelated
regressions” (SUR), for a set of contemporaneously corre-
lated l inear  s tat is t ical  models  with cross-equat ion constraints .
The structural  equat ions for  the system of  models  of  biomass
additivity can be specilied as

Yl =fiwl>+  9

Y,  =.MX2)+  l 2

Y,  = fk(xk)+ Ek

y,,l  = .&,,  (4 7 x2 7..  .*  xk  )+  %tal

and redundant columns  inftotal are eliminated. When the
stochastic properties of the error vectors  are specified,
along with the linear restrictions, the structural equations
become  a statistical model for efficient parameter esti-
mates and reliable prediction intervals. The procedure 3,
or SUR, method is  preferable to procedures  1 and 2 for
severa1 reasons. Procedure 2 requires the assumption of
independence among components on  the same tree, which
is  unrealistic. Another consideration against procedure 2
is thatloading the same predictor variables in al1 equations

permits the very  real possibility of multicollinearity. This
can cause unstable parameter estimates and inflated stan-
dard errors. In fact,  applying joint-generalized least squares
to the set of equations in (22) is  of no benefit because  the
covariances between the equations get concentrated out
when each  equation has identical explanatory variables
(Srivastava and Giles  1987). Thus, it is  as if the equations
are independent, and the same results are obtained as when
applying least squares to each  equation separately. If
disturbances or errors  in  the different equations are corre-
lated (contemporaneous correlation), then procedure 1
[formulation in (20)]  is  inferior to procedure 3 [formula-
tion in (23)]  because  SUR takes into account the contem-
poraneous correlations and results in lower variance. With
the ready availability of econometric software, such  as
SAS/ETSB  (SAS Institute Inc., SAS  Campus Drive, Cary,
NC 27513),  complicated statistical procedures  like SUR
can easily be implemented. A comprehensive referente  on
SUR is  Srivastava and Giles  (1987).

1.1.5  Example
At this juncture, an  example is  in  order to demonstrate

equation selection, weighted analysis, equation additivity,
and goodness-of-fit statistics. Consider the sample of 39
willow oak (Quercus  phellos  L.) trees in Table 1. Trees for
destructive  sampling were selected from 10 natural bottom-
land hardwood stands  in  Mississippi. Trees were felled,
separatedintocomponents of bolewood, bolebark,  andcrown,
and weighed in the field. The 39 trees given in Table 1 are a
subset of a larger dataset  from a biomass study by Schlaegel
(198 l), used  here  for  i l lustrat ive purposes.  Scat terplots  of  the
data, a stepwise regression procedure, and residual analyses
were used  to  select  the  fol lowing individual ly  “best”  biomass
component  equat ions:

f&od =b,,+b,D2H

fbak = b, + b, D2 (24)

fmvn =b,+b,
D2HxLCL+b  H

1000 2

For total tree biomass, the best individual equation was

total = b,, + b,D2H (25)

Scatterplots of the residuals over  D2H for Ywood  and Ytotal
(Figure IA) and over  D2  for Ybark revealed similar fan
patterns of increasing error variance. This type of
heteroscedasticity is  common and is  usually modeled as a
power function, that is,  0: = 02Xk where X is  D2H or D2.
Hence,  the following variance  funct;on  was fitted to the OLS
residuals from the bolewood, bolebark, and total biomass
regressions:

e2 = exp[a,  + a2 In X]

o r

lne2 =a, +a,!lnX (26)
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Table 1. Green weight data for willow oak trees from the state  of Mississi~~i,  USA.

Tree Dbh (cm) Height LCL Age  (yr) Wood
Green weight

Bark Crown Tree

1
2
3
4
5
6
7
8
9

10
11
1 2
1 3
14
1 5
1 6
1 7
1 8
1 9
20
21
2 2
2 3
24
2 5
2 6
27
2 8
29
3 0
31
3 2
3 3
3 4
3 5
3 6
3 7
3 8
3 9

73.2
30.5
48.3
69.6
28.7
53.1
45.7
46.5
33.8
55.4
30.5
70.1
41.9
42.9
66.3
40.6
28.7
80.5
66.5
61.2
21.8
29.0
49.8
34.3
43.2
25.1
29.7
34.8
38.6
49.8
36.1
37.1
33.0
57.7
53.8
57.9
75.4
57.2

. . . . . . . . . . . . . . . . .

29.0
18.3
22.9
27.4
19.8
32.0
32.0
30.5
25.9
30.5
24.4
30.5
24.4
25.9
35.1
25.9
21.3
32.0
33.8
29.0
25.9
24.4
27.4
27.4
27.4
24.4
25.9
25.9
27.4
22.9
25.9
21.3
21.3
25.9
25.9
27.4
27.4
25.9

16.2

(m) . . . . . . . . . . . . . . . .

10.4
ll.9
18.3
ll.6
14.9
17.7
17.4
10.1
13.1

9.1
13.4
12.2
13.7
17.7
ll.6
9.8

17.4
16.8
17.1
ll.3
8.8

16.2
10.4
15.5
8.8

13.7
13.1
13.4
14.3
16.5
11.0
9.8

18.6
12.2
10.1
13.7
12.2

9 3
40
6 9
7 4
3 8
7 8
7 9
8 3
6 8
70
7 5
81
7 9
76
81
64
7 5
9 3

106
71
3 5
3 5
3 5
3 7
4 1
3 8
40
40
4 1
40
3 4
67
6 7
84
87
8 9
9 1
8 6

. . . . . . . . . . . . . .
4,463.4

550.7
1,689.2
3,441.5

482.2
2,281.6
1,771.3
1,611.6

861.8
2,952.9

679.9
3,867.8
1,289.l
1,495.5
4,091.o
1,264.2
485.8

5,782.0
4,085.l
2,621.4

292.6
616.4

1,757.2
902.2

1,251.5
437.7
704.4
906.7

1,309.5
1,497.3

794.3
846.9
635.5

2,545.l
2,275.7
2,822.3
3,782.l
2,055.7

572.9
83.9

225.0
435.5
75.3

307.5
230.4
228.2
122.5
367.4
125.2
546.1
185.5
201.4
413.2
175.5
67.6

657.7
524.4
225.4
51.7
94.3

220.0
144.7
212.3
63.5
89.4

117.5
148.8
160.1
116.6
120.7
89.8

371.0
359.3
379.2
579.2
362.0
498.1

186.4
44.9
93.4

178.3
45.4
57.2
24.9
17.2
20.0
65.3
17.7
79.4
36.7
71.7
99.3
12.7
19.1

186.9
112.0
82.6
5.0

21.8
63.5
21.8
20.9
6.4

10.0
23.1
26.8
49.0
20.9
26.8
27.7
70.3
32.7
61.2
61.7
45.4
87.1

5,222.7
679.5

2,007.6
4,055.3

602.9
2,646.3
2,026.6
1,857.0
1,004.3
3,385.6

822.8
4,493.3
1,511.3
1,768.6
4,603.5
1,452.4

572.5
6,626.6
4,72 1.5
2,929.4

349.3
732.5

2,040.7
1,068.7
1,484.7

507.6
803.8

1,047.3
1,485.l
1,706.4
931.8
994.4
753.0

2,986.4
2,667.7
3,262.7
4,423.0
2,463.l

69.1 27.4 14.6 8 7 3,618.4 4,203.6

N O T E : D B H  is d i a m e t e r  b r e a s t  h e i g h t  a n d  L C L  is live  c r o w n  l e n g t h .

For the crown model, variance  was assumed proportional to
a power of D*H x (LCLAOOO)  based on  a fan  pattern of
increasing variance. With increasing tree height, however,
variance  appeared to expand then decrease  (Figure lB),
suggesting a negative quadratic trend or  uf =  o2 exp[-kHt2].
Combining these two heteroscedastic trends into one
mutiplicative error model results in

In e*  = a, + u2 In
D*Hx LCLAa H2

1000 3 (27)

Table 2 gives the coefficients, weight functions, and
heteroscedasticity tests [Equation (19)] from the EGLS fit of
the three willow oak component  biomass functions and the
total tree function. As readily seen  in  Table 2, al1 the
heteroscedasticity tests are significant,  indicating the need
for modeling the error structure.  The statistics [Equations
(5)-(  lO)]recommended  by Schlaegel (1982) are shown in
Table 3 for each  of the four equations.3  The mean percent

3 A S  AS program  is  available from the author  for computing these statistics.

standard error is  around 8% to 11% for the wood, bark, and
total  t ree regressions but  over  32% for the crown regression;
and the fit index is  lowest for the crown regression, which
also  has the highest coefficient of variation and percent error.
All in  al1 this shows (not surprisingly!) that crown biomass
has greater variability than wood, bark, or total biomass.

Under procedure 1 for additivity, total tree biomass is
simply the sum of the components.  For example, using the
coefficients in  Table 2 and the set  of  equations in  (24), a tree
with D = 3(!  cm, H = 18 m, and FCL  = 10 m, gives: Ywood  =
468.2 kg, Ybark  = 91.8 kg, and Y,,,, = 43.4 kg; therefore,

i&, = 468.2 + 91.8 + 43.4 = 603.4 kg

The sampling error for each  componept  prediction is  com-
putedusing  Equation (18);  giuing: Var( ?w,,d)  = 2028.89,
Var(Y,,) =221.19,  and Var(Y,,,,,) = 139.45.Thecorrela-
tions between the (weighted) biomass components  are:

r; j,wdy,,ark  = 0.26, $,woodYmown  = 0.31md(jYbtiYcrawn  = 0.14;

therefore, using Equation (2 1) we obtain
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Figure 1. Scatterplots of ordinary least squares residualsfrom (A)
total tree willow oak biomass regression showing fan pattern of
increasing variance, and (B) willow oak crown biomass regression
showing negative quadratic trend in variance.

V^ar(î;,,)=2028.89+221.19+139.45

+2.0.26~/2028.89.221.19

+2.0.31.42028.89.139.45

+2.0.14.-\j221.19-139.45

=3116.84

Prediction confidence intervals are constructed as

,.
Yq,,,,  Viir(4

For an  approximate 95% prediction limit, we will use

f2 &iiGG giving

603.4 kg f ll 1.7 kg (28)
From Equation (25), the best individual equation for tree
biomass, we obtain an  alternate value of

txsl = 557.6 kg with &r  ($,t,,)  = 2644.3 1;

hence  an  approximate 95% prediction interval is

557.6 kg + 102.8 kg (29)

In considering the prediction intervals in  (28) and (29), one
can see  that the price for additivity using procedure 1 is  an
expanded interval (&  ll 1.7 VS. &  102.8), indicating a loss  of
efficiency.

Suppose we wish to consider a set of linear models
whereby we allow statistical dependence among compo-
nents and the total tree biomass. A set or system of linear
models whose parameters are estimated by SUR with
linear restrictions should result in  efficient estimates and
additive predictions. Reasonable equations and variance
functions for the willow oak sample data are:

ywood =b,o+b,,D2H;
62 = (&+95

gark  = b20  + b2,D2H,
62 = (~2~f.745

trown =b3o+bx
D2H x LCL

1000
+ b2H;

62=[  “H$y ‘JN x exp[-0.00406H2]

Ll =b4,+b4,D2H+b4,
D2H x LCL

1000
+ b,,H;

(30)

Table 2. Coefficients, weight functions, and heteroscedasticity tests from best individual component  and total tree
regressions for willow oak biomass sample data (n = 39).

Model * bo
Wood 25.149477
Bark -0.515317
Crown 117.19517s

Total 46.380555

l Model forms:

b,
0.0273 10
0.102529
0.057502

0.031558

b,

-4.616870

Weight function
90

g2:’

(dH  x LCL/1,000)‘.646
x exp[-0.00406H2]

(D’H) 2 084

x2 P
18.1 <o.ooo  1
12.7 0.0004

9.4 0.009 1

20.7 <0.0001

Y woo,j = Po +B@H+ E.Ybark  = Po +B,@+ 5

Yc,own=~o+~,D*HXLCL/1000+~2H+E,

Ytota1 = Po +WH+ EI
where D is diameter breast height, H is tree height, and LCL is live crown length.
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Table 3. Goodness-of-fit statistics for the individually best willow oak component  and total tree biomass equations.

Model FI se CV 1 S(%) Pt?
Wood 0.98 182.32 9.50 134.83 7.47 15.76
Bark 0.94 41.01 16.08 30.48 11.00 31.19
Crown 0.81 21.15 38.67 15.33 32.15 80.32
Total 0.98 217.37 9.76 279.40 7.80 16.34

N O T E : FI  is f i t  i n d e x ,  S, is s tandard error  ocestimate in  a c t u a l  b i o m a s s  u n i t s .  CVis coef f ic ien t  o f  var ia t ion  expressed  f rom actua l
b i o m a s s  u n i t s ,  /  is Furnival’s  I n d e x ,  S(s)  is mean  percen t  s tandard  e r ro r  o f  p red ic t ions ,  and  P, is percent  er ror .  See t e x t  f o r
d e f i n i t i o n s .

where b4. = blo + bzo  + b3,,  b4, = bll + b2,,  b,42  = b,,,  and
b,, = b,,. For system parsimony, 1 altered the Ybark  equation
from that used  in  (24). Note that a separate variance
function is  specified for each  equation in the set. The
coefficients for the variance  functions were determined by
regressing on  the OLS residuals [Model (15)]  from the
four equations. A brief explanation of fitting these equa-
tions by SUR follows.

The system of four equations in (30) can be written in the
usual matrix algebra notation as

YI=X,P,+E1

Yz=X,P,+E,

Y3=X3P3+Ej~

Y4=X4B4+Eq
Combining al1 equations into one big model yields

(4Txl) (4Txll) ( 1 1 x 1 )  (4Tx1)

or alternatively

Y =f(m=xS+E

where T is  number of observations (39 for this data). The
matrix of weights can be written as

Y=

-y 0 0 0

0 Y2 0 0

0 0 Y3 0

0 0 0 Y4 1
(4Tx4T)

where Yi  is  defined as in Equation (13), and let A = &P-’  .
The implicit assumptions for Model(31)  are: E[ei]  = 0 and
E[Ai EiE; A>] = o,Z;  i, j= 1,2,3,4,  andZis  a Tdimensional
identity matrix.

The variances and covariances of Model (31) are un-
known and must be estimated. To estimate the crii, we first
estimate each  equation by EGLS [Equation (16)] and obtain
the residuals ei  = yi - Xi bi.  Consistent estimates of the
variances and covariances are then given by

where the degrees-of-freedom corrections Ki and  Kj are
the number of coefficients per equation. If we define x as the
matrix containing the estimates ô,from  (32),  then the
unrestricted SUR estimator for p can be written as

where @  denotes the Kronecker or direct  product.  The
reAstricied  SUR estimator  i;  obtained by minimizing
(Ay-AXfi)‘(I;-‘@Z)(Ay-AXB)  subject to the linear

restrictions RB = r. It is  given by

where

s* =fi+¿?~y~?R')-'(r-~fi) (34)

t = [x’íiyi-’ @ozI)âxp

and B is  from (33). The linear restrictions b40  = b,, + b,,  +
b,,,  b,,  = b,, + b,,, b,,  = b,,,  and b43 = b,,,  can be written
alternatively as b,,  + b,,  + b,,  - b,,  = 0, b,,  + b,,  - b,,  = 0,
b,,  - b42 = 0, and b,, - b,, = 0. Writing these restrictions in
the format R/3 = r yields

‘ 1 0 10 1 0 0 -1 0 0 0

0 1 0 1 0 0 0 0 -1 0 0

0 0 0 0 0 1 0 0 0 -1 0

0 0 0 0 0 0 1 0 0 0 -1

310
P l l

P 20

P 2 1

P 30

P 3 1

P 32

P40

P 41

P 42

P 43.

=

‘0
0

.l
0
0

The covariance matrix of the restricted parameter estimates
is  calculated as follows

iB'=&¿k(~CRí)-'~C (35)
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One can construct the biomass tables and the associated (1 - a)
confidente  intervals for the predicted mean value and for a
predicted value of an  individual (new) ‘outcome  by the
formulas:

= biomass estimate  from ith system equation (364

y + t(,,*)
d-

Si = mean value confidente  limits (36b)

j f t(,,,)
4

,$ + ô2ôii@ = confidente limits
(36~)

for an  individual prediction

wherexjis  thevectorfortheithsystemequation, $ =.x;&~
= variance  of j, ô2 is  the estimated variance  of Model & 1)
(i.e., e’k($-‘@  z)î\e  / df,,, ), and ôiiw  is  the estimate of
the conditional  va$ance of the ith  system equat ion [  ôii  is  the
i, ith element of X  re Equation (32) and \y is  the estimated
weight]. Table 4 gives coefficients and their standard errors
from the unweighted (each  w = 1) restricted SUR fit (RSUR)
and the weighted restricted SUR fit (WRSUR).4  Note how
weighting reduces the majority of standard errors,  dramati-
cally for some  (three of the coefficients had standard errors
reduced  in  excess  of 50%), and hence  achieves more efficient
parameter estimates.

Using the coefficients in  Table 4, if D = 30 cm, H = 18 m,
LCL = 10 m, and i = 4 (total biomass), we have  from (36a):

~~=[00000001  16200 162 181

a n d

j = fi&  + 16200fi4, + l62fi4,  + 18fi;  = 583.8 kg

The predict ion l imits  for  th is  point  estimate can be calculated
from (36~). For this example we have

4 A SASIIML and a GAUSS matrix language program are available from the
author for fitting Model(31).

S.; = 279.895, ô2 = 0.832,

044  = 3.99 x 10e5,  and

i+i = 57855638,

for an  approximate 95% prediction interval (t  = 2) of

583.8 kg  f 93.8 kg (37)

The SUR prediction interval on  toml  in (37)is narrower
than the least squares prediction interval on  ytotal  in (29).
One might expect the individually best regression on  Total
to have  the smallest variance, because  it is  the best estima-
tor that is  a linear unbiased function of ytotal.  However,
because  of the existence of contemporaneous correlations,
it is  possible to obtain a better linear unbiased estimator
that is  a  function  of ywood,y  ybarkl  ycrown,  and  ytotal  . Thus,
even  under the constraint of additivity, the SUR estimator
can achieve lower variance  and be a more efficient estima-
tor. Clearly, procedure 3, the SUR estimator, is  the method
of choice for additivity.

1.1.6 Bole  Biomass  and Harmonization
Often the biomass of chief interest is  just the tree bole,

particularly for dry weight yield. What is  frequently needed
is  a means to predict  bole biomass for different merchant-
ability limits. For example, bole biomass components  can
be defined in the following nested fashion. The first
component, the entire  bole, contains in its entirety the
second component, the bole to a 10 cm top diameter, which
in turn contains the entire  thi rd  component, the tree bole  up
to a 15 cm top, and so on.  When calculating a separate
regression function for each  component, the problem that
usually arises is  that the regression lines may cross  each
other; consequently, the estimate  of the biomass of a
nested component  may exceed  that of the next larger
component. The process  of forcing severa1 simultaneous
regressions to behave logically with respect to each  other
is  known as harmonization. Jacobs  and Cunia (1980) and
Cunia and Briggs (1985b) solved  the intersection problem
by (1) using the same model form for al1 components  and
(2) making al1 regressions parallel by restricting the slopes
to be identical. Further, they controlled the spacing be-
tween consecutive regressions to follow a reasonable pat-
tern. They reasoned that the difference between the inter-

Table 4. Flesults from fitting the wíllow  oak data wíth seemingly unrelated regressions.

RSUR WRSUR Reduction in
Estimate S E Estimate S E SEa %

l3 10 59.186526 48.243531 29.634908 19.354063 60
4, 0.026598 0.000558 0.027190 0.000587 -5
l3 20 29.651015 10.383880 17.612412 4.406701 58
R

21
0.003225 0.000120 0.003435 0.000124 -3

l3
30

133.106587 26.624556 106.065804 17.471978 34
l-3

31
0.061543 0.005081 0.056544 0.004325 1 5

B
32

-5.336039 1.114125 -4.153695 0.730026 34
ho 221.944128 62.183373 153.313124 28.802732 54
D 41 0.029824 0.000623 0.030624 0.000643 -3
l3

42
0.061543 0.005081 0.056544 0.004325 1 5

R,, -5.336039 1.114125 -4.153695 0.730026 34

NOTE: R S U R  is r e s t r i c t e d  s e e m i n g l y  u n r e l a t e d  r e g r e s s i o n s ,  a n d  W R S U R  is we igh ted  res t r i c ted  seemingly  unre la ted  regress ions.
a Camputed  as (std err(RSUR)  - std err(WRSUR)l  / std err(RSUR)  x 100.
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cepts  is a function of both squared log (that is, top)
diameters and the length of the log, which is a function of
top diameter. Hence,  the intercepts of the various regres-
sions should be related as

pio = a, + qq + azzf (38)

where zi is the top diameter of the ith component. Cunia
and Briggs (1985b) recognized that the harmonized re-
gression functions were serially correlated because  the
various components were not independent, being mea-
sured on the same trees. As with the additivity problem,
Cunia and Briggs put forth a procedure that allowed the
estimation of the covariance matrix of the sample biomass
values and circumvented the problem of storing and in-
verting large  covariance matrices. They constructed a
giant size regression with dummy variables that contained
al1 of the individual component regressions, and they
estimated the parameters with generalized least squares.
Again, as with the additivity problem, their procedure is
equivalent to using joint-generalized least squares with
cross-equation constraints. With the proper software, such
as the GAUSSTM matrix language (Aptech Systems, Inc.,
23804 S.E. Kent-Kangley Road, Maple Valley, WA 98038),
SUR is easy to implement.

Though the harmonization technique solves the intersec-
tion problem of nested component bole  regressions and
logically spaces the intercepts, it is based on assumptions of
parallelism and precise spacing between consecutive  regres-
sions, assumptions which may or may not be true for any
particular tree population. Another drawback is that each
standard of utilization requires another equation to be added
to the set of regressions. Two techniques that do not require
these assumptions and minimize the number of equations are
(1) the weight-ratio approach and (2) the density-integral
approach. Both approaches provide  a system to calculate
total bole  biomass and merchantable bole  biomass to any
standard of utilization expressed as a function of stump
height, and of top diameter or section height.

1.1.7 Weight-Ratio Approach
To circumvent the equation cross-over  problem, Honer

(1964) devised a two-step method to calculate merchantable
volume to any utilization specification. First, he developed
an equation to predict  total tree volume. Second, he devel-
oped an equation to predict the proportion or ratio of mer-
chantable  volume to total volume given the merchantability
limits. When attention shifted to estimating tree biomass, it
was natural to apply the ratio approach thus avoiding similar
problems encountered in tree volume estimation (Williams
1982).

The weight-ratio approach uses the following relation-
ship:

+=jj* (39)

where w is merchantable weight, W is total weight, and R is
w/w.  Interested persons may refer to Honer (1964),  Burkhart
(1977),  and Van Deusen et al. (198 1) for the early develop-
mental work on the ratio approach. Parresol  et al. (1987)

reviewed a number of ratio models  from the forestry litera-
ture. Parresol and Thomas (1989) compared the density-
integral approach against the weight-ratio approach and
concluded that the density-integral approach gave more pre-
cise estimates of sectional and total bole  weight.

1.1.8 Density-Integral Approach
Parresol  and Thomas (1989) introduced  the density-inte-

gral methodology. The generalized density-integral model
for stem biomass is

I
X”

w=H lxx)f(xW+ E (40)
-9

where H is total tree height, x is relative height, p(x) is a
function giving density or stem specific gravity at x&) is an
equation expressing stem profile in cross-sectional area as a
function ofx, w is bole  dry mass of wood between limits x/and
xu,  and E is stochastic error. For a specific biomass model,
one needs to define p andf.  See Tasissa and Burkhart (1998)
for recent work on modeling specific gravity and Maguire
and Batista (1996) for a review of taper models. For the
derivation of the generalized density-integral model and
examples of its use see the articles by Parresol  and Thomas
(1989, 1996), and Thomas et al. (1995).

One could fit stem profile If(x)]  and density [p(x)] inde-
pendently and place them into Model (40) for prediction of
biomass. However, as with the additivity problem and the
harmonization problem, it is important to recognize that the
data for stem profile (i.e., volume), density, and mass are not
independent, coming  from the same trees. One would expect
mass, density, and volume to be correlated at the same
measurement bolt on the tree. This contemporaneous corre-
lation, if not accounted for, leads to inefficient estimates of
the parameters. In addition, observed stem mass should be
incorporated into the fitting process. Joint-generalized least
squares or SUR, as previously outlined, takes into account
contemporaneous correlations and leads to efficient esti-
mates. Parresol  and Thomas (1996) showed that parameter
estimates (Bi ‘s) from SUR estimation of the simultaneous
equations from the density integral had smaller standard
errors  than from OLS estimation 0fJT.x)  and p(x).

1.2 Sampling  on the Tree
The process  of physically collecting biomass data can be

very labor intensive. In short rotation woody biomass pro-
grams, trees usually do not attain large  sizes, and field
weighing of the entire  tree to measure  fresh weight is not
overly difficult. The various tree components, as determined
by the scheme used, can be measured directly as soon as they
are separated from the tree. The only possible error may be
due to faulty measurement instruments or methods. How-
ever, if biomass expressed as dry weight is required, direct
measurement may be too expensive and time consuming for
the larger components such as the bole. The only practica1
alternative is subsampling. Small samples are selected from
the tree component by some usually random procedure.
Green and ovendry weights of these samples are determined
in the laboratory and the results are used to estimate  the entire
tree component. Note that the “measurement” of biomass is
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defined as the process of direct  determination of the biomass
of the entire  tree component  of interest,  whereas the “estima-
tion”  of  biomass is  defined as the process of determination of
the  b iomass  by subsampl ing.

1.2.1 Ratio-Type Estimators
Briggs et al. (1987) described  a procedure they used  to

measure  the green weight and to estimate, by subsampling,
the dry weight of the aboveground components  of ran-
domly selected sugar maple (Acer saccharum Marsh.)
trees. Foliage  and branch dry weights were determined by
direct measurement. Bole  wood and bole bark dry weight
were estimated by stratified subsampling and subsequent
application of ratio-type estimators. A brief description of
their procedure follows. After measurement of diameter
and total height, each tree was felled, and ten plastic sheets
were placed on  the ground surrounding the tree. Beginning
at the base of the crown and working towards the top, the
tree branches with their leaves  attached were removed and
separated into ten piles such  that each  pile had a similar
distribution of branches and foliage  with respect to weight
and point of origin from the crown. For each  of the ten
piles, al1 of the foliage  was picked from the branches and
placed in paper bags. Foliage  and branches were weighed
for green weight and then sent to a laboratory for oven
drying and direct measurement of dry weight. The bole of
each  sample tree was divided into three sections of equal
length. For each  section, three integers were randomly
selected from 1 to 100. Each of these numbers was multi-
plied (as a decimal number) by the section length to obtain
the location of a sample disk for the determination of the

fresh and dry weight. For example, if the random number
was 24 and the section length was 5.0 m, then a disk would
be located at 0.24 x 5.0 = 1.2 m from the base of that
section. Each of the three bole sections was cut into logs of
various lengths and weighed on  a 90 kg capacity field
scale. Disks approximately 5 cm in width were removed
from the bole at the randomly selected locations, weighed,
and transported to the laboratory. Foliage,  branches, and
disks were placed in forced  air kilns at 65°C until constant
weights were obtained. The ovendry weight was deter-
mined individually for each  pile of branches and foliage,
as well as for each  disk of each  individual sample tree. The
bark was removed from each  disk, dried at 65°C and its
weight was recorded.

The three bole sections can be considered  as strata,  and
three disks are selected at random from each  section, hence
the method of disk selection is  stratified random sampling.
Because  the green weight of the entire bole,  individual
sections,  and disks are known, and the ovendry weights of the
sample disks are measured, one can estimate ovendry weight
of the bole  by a stratified ratio estimator. Notation and
definitions for the ratio estimator are shown in Exhibit A.

Because  the D,‘s are independent random variables, the
ovendry weight of the bole  and i ts  error can be estimated by

D = ;rDh = stratified ratio estimator of the dry weight of

wood and bark of the bole

B = ZB,,  = estimator of the bias of D

Si = ZS&  = estimator of the variance  of D

(42)

G,, = green weight of section h

Exhibit A

g,,  = green weight of wood and bark of disk k in  stratum h
dhk = ovendry weight of wood and bark of disk k in  stratum h

m,  = 3 = number of sample disks per strata

!th  =  %k  / mh

dh=a,&/mh

IV,, = Gh / &,  = conceptual number of disks of weight gh  in  section h

u = finite population correction factor of section h
Mh (41)

Si*  = Z(dhk  - &)2 / (m,, - 1) = sample variance  of the m,, dry disk values within section h

s;h  = %h, - & j2 / ( mh - 1) = sample variance  of the mh green disk values within section h

Sdhgh = C(dhk  - ¿&)(ghk  - &J / (mh  - 1) = sample covariance

rh = dh  / & = ratio estimator of ovendry weight to green weight of section h

D,, = G,,r, = Mhdh  = ratio estimator of ovendry weight of section h

Bh = (Mh  - mh)(q,Sih - &,)  / (m,&)  = estimator of the bias of D,,

$i,, =Mh(Mh  -mh)@ih  -2$%,,gh + riS;J  / m,,  = estimator of the variance  of D,,
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Table 5. Morphological data for the four example sweetgum trees.

Tree Dbh (cm)
Green weight of bole (wood + bark)

Total hei ht Bole  len th Bottom Middle

1 15.5
. . . . . . . ;46.t...(m)

2417

. . . . . . ;;.;F...

24:0

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
57.5

. . . . . . . . (kg)  . . . . . . Tu::  . . . . . . . . . . . . . . . . . . . ?“! . . . . .

162:8
7.6 90.3

2 33.0 435.1 24.0 621.9
3 48.8 29.9 28.4 1,447.l 805.5 92.5 2,345.l
4 67.8 34.4 29.8 2,785.0 1,707.g 403.3 4,896.1

N O T E : T h e  strata  ( b o t t o m ,  m i d d l e ,  t o p )  a r e  o f  e q u a l  l e n g t h ,  b e i n g  1 / 3 x  bole  l e n g t h .

If we define d - ovendry weight of wood of disk k in
stratum h andhjw -hk  b  = ovendry weight of bark of disk k in
stratum h:and  if th&se  values are substituted for dhkin (41),
then one can define the estimators D, andD,,,  the stratified
ratio estimators of the ovendry weight of wood and bark,
respectively, of the tree bole, as well as the corresponding
estimators of their errors. Briggs et al. (1987) give ex-
amples of calculations for three sugar maple trees. Tables
5 and 6 present morphological data and disk weights from
four sweetgum (Liquidambar styruc$!ua  L.) trees from a
stand in West-central Mississippi. Tables 7 and 8 show the
calculations for the stratified ratio estimator. These trees
are part of a larger dataset  that was used  to develop weight
tables for sweetgum (Schlaegel 1984).

Kleinn and Pelz (1987) in Germany estimated both
green and dry weight of the bole including bark by simple
ratio estimates of volume/green weight and green weight/
dry weight on  the basis of five disks that were selected
with a probability proportional to estimated volume. That
is, random numbers between 0 and 1 were drawn, and
proportional cumulative  volumes up the stem were esti-
mated and disks removed from the tree at these points. For
example, say  0.333 is  randomly drawn, then a disk is
removed at the point on  the stem where it is  estimated one-
third cumulative  volume occurs. For crown  green and dry
weight, a few branches were selected and weighed and a
regression of the form

@=b,,+b,D’L (43)

was fitted, where W is  branch weight, D is  branch base
diameter, and L is  branch length. Al1 branches on  the tree
were subsequently measured for D and L,  then weights were
estimated and summed for total crown  weight. Branches
were chosen  for  weighing as fol lows.  Within the crown  of the
tree, five locations along the main stem were determined
randomly with a probability proportional to stem diameter.
For each  location the nearest (unselected) node  of branches
was selected, and from this node  a branch was randomly
chosen  for measurement. Error of estimates can be deter-
mined based on  formulas given earlier for ratio estimators
and regession variance.

Valentine et al. (1984),  as well as Cunia (1979),  point out
the well-known fact  that ratio estimators are biased. Indeed,
Briggs et al.( 1987) acknowledge this but argue that in  their
procedure, bole  biomass is  based on  nine disks, so bias is
expected to be negligible. Ratio-type estimators have  the
advantage of being simple to understand and apply. How-
ever,  efficient,  unbiased techniques are available which typi-
cally involve only two to four sample disks. These will be
discussed next .

1.2.2 Randomized  Brunch and Importance Sumpling
Valentine et al. (1984) and Gregoire et al. (1995b) de-

scribe two procedures,  randomized branch sampling (RBS)
and importance sampling, for selecting sample paths to
obtain unbiased est imates  of  the biomass content  of the tree.
A sample path-from which bole  disks, crown branches, and
foliage are selected-extends from the butt to a terminal bud
and has select ion probabil i t ies  associated with i t .  The path is

Table 6. Green and dry weights of the three randomly selected disks per stratum for the four example sweetgum
trees.

Disk 1 Disk 2 Disk 3
location” location location

Tree Stratum (m) ¿?hl d
o:586 (kg)  _......  h’...

Cm) ¿?h, d Cm) gh3 d
. . . . . . . . . . . . (kg)  . . . . . h!..

1 Bottom 2.0 0.269 2.6 OS40..(kg&.;;..
0.271 0:129

3.6 0.461 0.238
1 Middle 2.2 0.280 0.133 2.4 2.9 0.246 0.119
1 Top 0.0 0.176 0.095 2.4 0.081 0.028 4.3 0.012 0.009
2 Bottom 3.1 2.408 1.083 3.5 2.286 1.008 6.4 1.832 0.810
2 Middle 4.5 1.018 0.470 4.9 0.888 0.431 5.7 0.720 0.341
2 Top 1.0 0.325 0.139 6.2 0.036 0.016 7.0 0.020 0.015
3 Bottom 3.0 8.157 3.444 3.2 8.092 3.426 9.2 6.000 2.670
3 Middle 2.7 5.744 2.754 4.4 5.281 2.395 5.6 4.160 1.938
3 Top 1.5 0.998 0.499 2.2 0.815 0.410 3.5 0.545 0.259
4 Bottom 4.7 13.254 6.162 7.5 12.554 6.003 8.0 12.251 5.828
4 Middle 2.0 9.995 4.693 6.0 8.192 3.902 7.4 7.149 3.544
4 Top 1.2 4.399 2.355 2.6 3.045 1.639 9.8 0.601 0.299

N O T E : ghk  is t h e  g r e e n  w e i g h t  o f  d i s k  k  in  s t ra tum h  a n d  dhkis t h e  d r y  w e i g h t  o f  d i s k  k in  s t r a t u m  h .  Each  d isk  is a p p r o x i m a t e l y  5
cm th ick .

a W i t h i n  a  s t r a t u m ,  t h e  b a s e  o f  a  d i s k  w a s  r a n d o m l y  i o c a t e d  b y  g e n e r a t i n g  a  u n i f o r m  r a n d o m  (0,l)  n u m b e r  a n d  m u l t i p l y i n g  i t  b y
t h e  s t r a t u m  l e n g t h .
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Table 7. Statistics associated with the estimation of the bole ovendry weight for the three sections  of the four
example sweetgum trees.

Stratum dh i?h Sdh %a, ”  rh  Dh  B,,

. . . . . . . . . . . . (kg) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (k$) . . . . . . . . . . . . . . . :h..

%h
. . . . . . . . (kg) . . . . . . . . . . . (ks2)

Tree 1
Bottom 0.255 0.529 0.00025 0.00099 0.00400 0.482 21.72 0.062 0.8346
Middle 0.127 0.266 0.00005 0.00013 0.00031 0.478 12.05 0.002 0.0043
TOP 0.044 0.090 0.00204 0.00363 0.00678 0.491 3.73 -0.092 0.2567

Tree 2
Bottom 0.967 2.175 0.01989 0.04271 0.09213 0.445 193.41 -0.053 1.6051
Middle 0.414 0.875 0.00438 0.00977 0.02232 0.473 77.00 0.055 1.4357
Top 0.057 0.127 0.00508 0.01223 0.02947 0.446 10.71 0.448 0.428 1

Tree 3
Bottom 3.180 7.416 0.19516 0.54204 1.50556 0.429 620.49 0.894 89.03 15
Middle 2.362 5.064 0.16726 0.32861 0.66467 0.467 375.79 a.190 44.0265
Top 0.389 0.786 0.01472 0.02763 0.05193 0.495 45.82 -0.093 0.4082

Tree 4
Bottom 5.998 12.686 0.02791 0.08322 0.26464 0.473 1,316.65 0.238 132.6241
Middle 4.046 8.445 0.34567 0.84494 2.07306 0.479 818.24 1.166 159.8811
Top 1.431 2.682 1.08923 2.00885 3.70521 0.534 215.21 -0.580 2.6900

N O T E : dh  is mean dry  disk weight of stratum h,  5,  is mean wet disk weight of stratum h, S& is the variance  of d,,,  S,,,,  is the

covar iance,  Si,, i s t h e  variance  o f  g,,,  r,,isthe r a t i o  e s t i m a t o r o f  dryto  g r e e n  w e i g h t  o f  s t r a t u m  h ,  D,is  ra t io  es t ima to ro f  d ry

2weight of stratum h, 8,  is the bias of D,,,  and SDh is the varìance  of Oh  See text for details.

a series of connected branch segments or internodes, where
a branch is  defined as the entire stem system that develops
from a single bud. A segment is  a part of a branch between
two consecutive  nodes.  The butt, by definition, is  the first
node  and has selection probability q1 = 1. The second node
occurs at the point of live tree limbs. To continue  the path, a
selection probability is  assigned to each  branch emanating
from the second node,  and one is  chosen  at  random. Valentine
et  al .  suggest  assigning a select ion probabil i ty as  the product
of the squared diameter and length for a branch, divided by
the sum of these products  for al1 branches at the node.  The
second segment of  the path has select ion probabil i ty q2.  The
path continues  to  the next  node,  where a branch is  selected by
RBS with probability q3 and so on  until a terminal shoot is
reached with probability q,.  The qi’s are conditional  prob-
abilities. The unconditional probability of selection for the
kth segment in the path is

Qk =fiqr (44)
r=l

Al1 material that is  not part of the path can be discarded.
This is  a big advantage of RBS; as a result, researchers can
significantly reduce project  t ime and labor costs.  Aboveground

Table 8. Summary statistics for the four example sweetgum
trees.

95%
Confidence  limits

Tree . . . . . . (kg).!!.?.:.. S2, Lower U er
. . . . (b?) . . . . . . . . P:: . . . . .

1 43.49 -0.027 1.0957 $ï-.p)  45.58
2 281.12 0.449 3.4689 277.40 284.84
3 1,042.10  0 . 6 1 1 133.4661 1,018.99  1,065.21
4 2,350.ll  0 . 8 2 4 295.1952 2,315.75  2,384.47

N O T E : D  is the stratìfied ratio estimate of the bole  dry weight (wood  +
bark)  and SA is the estimate of the variance  of D  used  for
constructing confidente  intervals.
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biomass can be est imated from a single path,  but  two or more
paths are needed to compute a standard error of the estimate.
Estimation of the green weight of the tree involves the
weights of each  of the n segments of the path. Denote the
weight  of  the kth segment as  b, ,  then an  unbiased estimate of
tree weight is

(45)

where Qk is  defined in Equation*(44).  For an  unbiased
estimate of green foliage weight, f, substitute fk for b, in
Equation (43,  where fk is  the weight of the foliage attached
to the kth  segment .

Valentine et al. (1984) developed a procedure based on
importance sampling (a technique of Monte Carlo integra-
t ion) for  select ing disks that  produces unbiased est imates of
dry weight. To begin, each  segment in the selected path is
enlarged by the inflation factor l/Q,,  so the enlarged stem
represents the entire  tree.  Visualize the inflated path as being
composed  of thin disks of constant  thickness and known
volume. One of these disks is  selected at random with
probability proportional to its volume. If the dry weight of
that inflated disk is  measured and divided by its selection
probability, the result  is  an  unbiased estimate of the dry
weight of the tree.

In practice,  Valentine et al. (1984) used  a continuous
(segmented l inear)  interpolat ion function to predict the cross-
sect ional  area  (volume per  uni t  length)  of  al1 points  along the
path.  They measured diameter at  numerous points along the
path for this purpose. Denote the diameter of the stem at a
distance  LS from the butt as D(L,), and define a quantity
proportional to the inflated cross-sectional area as

A(L,  1 = @L,  )=  / Qk (46)

Now the interpolation function, S(L), is  fitted to the values
A(L,) and integrated over  the length, li, of the path to approxi-



mate the inflated woody volume of the path, that is, H - h  a
v(h )=V-V -

( )H - k (52)

V(h) = 1; S(L)dL (47) where k is  stump height. Differentiating Equation (52) gives

A point, 0, for cutting a disk is  randomly selected with u(h) = aV( H - h),-l (H - k)-a (53)
probability proportional to S(L). The point is  chosen  which
satisfies V(e)  = UV(~), where u  is  a random number from a Using the same  functional  form for mass  gives

uniform (0,l) distribution. Next, determine the dry weight
per unit  thickness (Valentine et  al .  used  lo-cm-thick  disks)  of

6’(h)  = BW(H  - h)P-‘(H - k)+ (54)

the disk cut at L = 0 as B(9). The inflated weight per unit Dividing Equation (54) by Equation (53), as indicated in
thickness of the disk is Equation (5 l), and simplifying results in

B*  (0)  = B(0)  / Qk (48)

where k is  the index of the path segment in which 8 occurs.
Finally, the unbiased estimate of the true woody dry weight
of the tree is  computed  as

& = B* @V(h)  / S(e) (49)

If multiple paths are selected on  the tree from RBS, obtain a
disk from each  path and use Equation (49) to compute an
estimate from each  disk, then average the estimates to pro-
duce one combined estimate. For further details and ex-
amples on  RBS and importance sampling, see  the papers by
Valentine and Hilton (1977),  Valentine et al. (1984),  Gregoire
et al. (1986),  de Gier (1989),  and Gregoire et al. (1995b).

1.2.3 Bole Mas  by DifSerence  Sampling
This section describes an  innovative technique for ob-

taining an  unbiased estimate  of tree bole biomass. Gregoire
et al. (1986) showed how to unbiasedly estimate  bole
volume by importance sampling. Van Deusen and Baldwin
(1993) used  importance sampling in conjunction with the
density-integral concept of Parresol  and Thomas (1989) to
obtain an  unbiased estimate  of tree bole dry mass. The
procedure requires obtaining increment  cores  at breast
height and another randomly selected height. The specific
gravity of the cores  and their associated cross-sectional
areas  are then used  to unbiasedly estimate  bole mass.

In the densi ty-integral  model  the bole  woody mass  to  some
height h is

where a(x)  is  the cross-sectional area at height x. If dx
represents disk thickness,  then a(x)  dr is  volume,  and volume
times density yields mass.  Thus p(x) is  the ratio of mass  to
volume. Taking the derivat ive with respect  to  h and rearrang-
ing gives

p(h) = w’(h) / u(h) (51)

A reasonable function for p(h) depends on  the properties of
w(h) and the volume function, v(h), which is  the integral of
a(h). Both functions increase  monotonically up the stem
start ing from 0 at  the base and going to total  woody mass  W,
and total volume V, at total height H. For volume to height h,
Van Deusen  and Baldwin (1993) used

(55)

It  should be pointed out  that  any  funct ion that  g ives  volume
to some  height h, as does  Equation (52), can be used  for
approximating p(h).

Importance sampling is  used  for estimating the value of
any  definite integral. Since Equation (50) (the density-inte-
gral  model) describes bole  woody mass  as a defini te integral ,
a sampling scheme that utilizes the above  equations can be
developed. Van Deusen  and Baldwin (1993) devised a scheme
to  estimate the difference between the model and actual bole
biomass. This approach, called “difference sampling,” com-
bines importance sampling and control  variate  methods.  The
desired difference can be written as

w(h) - G(h) = ji w’(x;;xj’(x)  f(x) dx (56)

wheref(x)  is  a probability density function (PDF). Equa-
tion (56) conveys  that we can draw a height, Xi,  from the
PDF,f(x),  and measure  w’(XJ to contrast with the model-
based estimate  í?(Xj) for an  unbiased estimate  of the
difference, w(h)- G(h). Hence, a procedure based on
difference sampling for obtaining unbiased estimates of
bole mass  would use

W,(h)  = W(h) + ;$ w’cxi;;x;‘(x”
(57)

1=l

A PDF should be chosen  that will lead to most of the
measurements being low on  the stem, where much of the
wood mass  occurs and where measurement cost  is  low.
Define r = (h - x)/h,  the relative distance  from the upper
height limit of interest on  the bole.  Note that total height H is
just a special  case. A simple cumulative density function
(CDF) for r is

F(r) = ry, OIr (58)

Using the inverse transform method, a random height in
terms of x is  drawn as

Xi = h(l- @) (59)

where ui is  a uniform random variate, ui-  U(O,l). Differenti-
ating (58) gives the PDF in terms of x as
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f(x)  = y-’  = y

Substituting (60) into Equation (57) yields the suggested
difference sampling formula

w,(h)=  G(h)  ; hY-l  2 w’(xi)-“(x¿)(61)
“ln i=l (h-Xi)‘-’

To implement the procedure defined by (61), first recall
that Equation (54) provides  a model for í?(h), and Equation
(52) gives a model for í$(h)  after changing the v’s to w’s.
Second, generate  a uniform random variate, up  and  subs t i tu te
this  in to  Equat ion (59)  to  generate  a measurement height,  Xi.
Third,  measure  the cross-sectional area,  a(XJ,  on  the tree and
takeacoretoobtain p(X,) since  w’(Xi)=p(X,)a(Xi).They-
parameter in  Equation (59) influentes  the probability of
where Xi occurs on  the bole.  Based on  simulations, Van
Deusen  and Baldwin (1993) showed that  a value of y= 3 kept
measurement heights low (nearly 90% of the time less  than
half tree height,  and 60% of the t ime less  than one-quarter tree
height) while minimizing poor predictions on  individual
trees.

The only remaining element needed is  an  estimate of total
woody mass  Wfor use in Equations (52) and (54). Note that
one can easily obtain w’ (1.3) by taking a core  at  breast  height
to  determine densi ty  and then by mult ip lying this  densi ty  by
the measured basal area a( 1.3). The following equation is
derived from Equation (54) by let t ing = 1.3 m and rearrang-
ing terms:

&w’(l.3)(&1.3)‘-P (H-k)P
P

(62)

If this estimate of W  is  used,  then W’(h) is  constrained to
predict the measured value at 1.3 m regardless of p.

Difference sampling can be used  to provide  an  unbiased
estimate of the biomass of a stand of trees.  The procedure can
be applied to each  tree on  a sample plot to give an  unbiased
estimate of  the plot  mass.  These plot-mass  est imates can then
be used  in  the usual  way to produce sample est imates of  stand
biomass. To illustrate the above  procedure, consider  again
the 39 willow oak trees in Table 2. Let us  estimate the total
bole  woody mass,  excluding bark, of eachtree (above  stump),
hence  h = H.  One random height only will be drawn (n  = l),
and we will set y= 3, p = 3, and k = 0.5 in the formulas. In the
willow oak dataset,  a measure of specific gravity occurs
every 1.5 m along the stem, so the random height will be
adjusted to the nearest  height where cross-sectional area and
specific gravity measurements were recorded.  Also,  w’ (1.5)
will be used  instead of w’ (1.3) to determine W  of Equation
(62). Results are given in Table 9. The total woody mass  for
the 39 trees is  40,987 kg, whereas the difference sampling
estimate is  39,099 kg, a difference of only 4.6%. In this
example, only one random height per tree was drawn, but in
practice  usually two to four random heights may be drawn
and measurements taken at  those points  along the bole.  Th i s ,
of course,  should improve the accuracy and precision  of

wgo.
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2 The Error of Forest Biomass
Inventory Estimates

Historically, attempts have  been  made to estimate forest
biomass using “mean tree” techniques. For example, the
weight of the tree of average girth would be determined and
multiplied by the number of trees (Attiwill and Ovington
1968).  This generally proved  unsatisfactory and today  large-
scale  inventories based on  sound statistical designs are in
place in many parts of the world. Most sampling designs of
forest inventory consist  of two principal phases. In the first
phase, a relatively large  sample of trees is  selected, and tbe
trees are measured for diameter, height, and possibly other
characteristics. The sample trees are usually in clusters de-
fined in terms of sample plots of fixed area or horizontal
(Bitterlich) sample points. These trees are not measured for
biomass. In the second phase, a relatively small sample of
trees is  selected, and the trees are measured for biomass and
the same  characteristics as the first  phase trees.  The second
phase trees are used  to estimate  a relationship between tree
characteristics (diameter, height, age,  etc.) and biomass,
usually, tbough  not always, expressed as a regression func-
t ion.  This  re la t ionship is  then applied to the trees of  the f irst
phase sample to calculate forest  inventory est imates of aver-
age  biomass per unit area.  When previously constructed
biomass regressions are available,  the second phase sample is
no longer necessary. However,  a crit ica1 assumption is  being
made that  the tree population for which the regression func-
t ion was calculated and the tree populations currently being
inventoried are very  similar. Some recent  studies dealing
with forest biomass estimates from inventory data include
Brown et al. (1989) and Brown and Lugo (1992) in the
neotropics,  Brown et  al .  (1991) in  South and Southeast  Asia ,
and Monserud et al. (1996) in Russia. Two excellent refer-
ences  on  forest inventory methodology are de Vries (1986)
and Schreuder et al. (1993).

The error of the forest inventory estimates has two main
components.  First is  the component  due to the random
selection of the sample units of the first phase. Successive
applications of the same  selection procedure to the same
forest area result in  different sets  of sample trees and, thus,
different sets  of estimates. The size of this component  is
greatly affected by (1) the sampling design of the first  phase,
(2) the sample size, (3) the type of estimator used  (for given
sample data and required parameter to estimate, there are
generally severa1 estimators,  each  having i ts  own precision),
and (4) the inherent variation between the sample units .  The
second component  is  associated with the sample of the
second phase, that is,  with the error  of  the biomass regression.
The size of this component  is  affected by (1) the sampling
design used  to select  these trees, (2) the sample size, (3) the
estimation procedure, and (4) the inherent variation of the
tree biomass values about the regression function.  These two
components  constitute  what is  known as the sampling error.

An  approach proposed by Cunia (1965, 1987a) can be
used  to combine the error from the first phase sample plots
with the error from the second phase sample trees. This
approach requires that the estimators be of the form



Table 9. Comparison of actual bole wood dry mass  with difference sampling estimate  for willow oak trees from the state of Mississippi,
USA.

Tree
True

H mass P(l.5) a( 1 S) ti X PO aO w’(X) W’(X) WdW

1
2
3
4
5
6
7
8
9

10
l l
1 2
1 3
1 4
1 5
1 6
1 7
1 8
1 9
20
2 1
22
23
24
2s
26
27
28
29
30
3 1
32
33
34
35
36
37
38
39

Cm) (W
29.0 2,493.4
18.3 309.4
22.9 941.7
27.4 1,772.7
19.8 277.1
32.0 1,301.4
32.0 1,000.6
30.5 885.4
25.9 464.9
30.5 1,558.l
24.4 376.5
30.5 2,117.g
24.4 721.7
25.9 802.9
35.1 2,290.2
25.9 662.7
21.3 272.2
32.0 3,029.l
33.8 2,147.3
29.0 1,438.8
25.9 171.0
24.4 365.6
27.4 1,009.7
27.4 523.5
27.4 667.2
24.4 240.4
25.9 394.2
25.9 510.8
27.4 732.1
22.9 836.9
25.9 440.0
21.3 468.6
21.3 356.5
25.9 1,385.7
25.9 1,240.6
27.4 1,530.4
27.4 2,056.6
25.9 1,208.4
27.4 1,984.S

5 9 6
613
536
608
585
554
544
573
564
574
580
580
SS1
593
588
578
582
568
560
600
617
607
603
564
589
606
580
591
606
584
526
580
561
587
567
560
464
567

Cm’)
0.361
0.061
0.173
0.364
0.053
0.177
0.161
0.146
0.073
0.234
0.064
0.312
0.112
0.133
0.327
0.123
0.058
0.471
0.268
0.261
0.032
0.061
0.189
0.087
0.131
0.042
0.062
0.090
0.104
0.177
0.084
0.094
0.074
0.270
0.20s
0.245
0.359
0.243
0.329

(kd
2,152.S

243.4
869.7

1,886.8
229.4

1,160.g
996.1
852.5
383.6

1,413.7
316.6

2,309.8
566.2
672.3

2,370.g
665.3
256.6

3,072.S
1,796.3
1,491.g

178.5
328.3

1,108.2
507.2
716.5
214.5
347.1
477.0
592.3
878.4
451.8
377.2
329.2

1,391.7
1,102.s
1,345.o
1,942.o
1,034.6
1,807.O

(m)
18.0

3.0
3.0
3.0
9.0
6.0
4.5

19.5
6.0

10.5
12.0
4.5
1.5
9.0
1.5
4.5
6.0
1.5
1.5

15.0
3.0
9.0
7.5

16.5
9.0
6.0

13.5
0.5
4.5
4.5
3.0
1.5
3.0
4.5
1.5
4.5

12.0
12.0
9.0

599
601
530
613
605
565
567
590
582
575
575
580
557
593
582
607
582
568
603
600
647
692
630
591
596
640
590
602
612
584
526
588
560
587
562
543
576
585

Cm21
0.092
0.052
0.143
0.273
0.028
0.125
0.114
0.037
0.056
0.143
0.03 1
0.230
0.112
0.091
0.327
0.095
0.037
0.471
0.268
0.071
0.026
0.03 1
0.112
0.03 1
0.064
0.030
0.024
0.152
0.080
0.130
0.067
0.094
0.060
0.236
0.20s
0.193
0.191
0.131
0.241

. . . . . . . . . . . . . . . . . . . . . . (kg)  . . . . . . . . . . . . . . . . . . . . . . .
SS.69
30.96
85.95

144.55
17.01
75.56
64.42
21.2s
32.96
83.23
17.73

132.19
65.25
50.68

193.86
55.35
22.75

274.33
152.25

42.54
15.33
19.9s
77.85
19.42
37.57
17.91
15.44
89.48
48.43
79.39
39.14
49.30
35.40

132.39
120.17
108.28
103.55

75.65
140.87

33.7s 2,203.3
30.3 1 243.7
91.93 867.0

173.13 1,874.8
11.16 235.9
75.33 1,161.l
72.31 992.6
ll.46 877.6
27.81 386.5
62.83 1,429.S
10.70 325.7

173.49 2,290.8
65.25 566.2
35.15 684.4

193.86 2,370.g
55.77 665.0
20.02 258.3

274.33 3,072.S
152.25 1,796.3

37.90 1,498.6
17.14 177.8
17.11 330.6
67.63 1,114.6

9.29 528.5
37.39 716.6
15.96 215.6

9.77 355.4
56.34 488.5
47.87 592.6
79.38 878.4
43.38 450.0
49.30 377.2
36.76 328.6

116.68 1,399.4
120.17 1,102,s
108.71 1,344.8

70.98 1,976.4
36.59 1,079.8
94.29 1,841.4

SUM 40,986.8 39,099.3

N O T E : ~(1.5) is ra$o  of mass to volume  at height 1.5 m (i.e.,  specific gravity measured at height 1.5 m x 1000). a(1.5) is bote cross-sectional area
at 1.5 m, W is  estimate  of bole  dry mass via Equation (62). Xis  a random height generated from Equation (591,  w’(Xj  is  p(XJa(X), k’(X)  is
a model- based estimate  of w’(Nvia  Equation (541,  and W,,(/f)  is  the difference sampling estimate  of bole  biomass via  Equation (61).

i?=b,z,  +b2z2  +...+b,,,z,  =b’z (63)

where b is the coefficient vector from the biomass regression
function andz is a vector of statistics calculated from tbe data of
the sample points or plots. It is assumed that (1) tbe regression
oftree biomassonXisofthelinearformy=Xj3+E  ,(2) thevector
z is delined so that G is an unbiased estimate of the parameter
of interest lt, that is,

p = B’p, = E[bl’E[zl

and (3) the vectors  b and z are statistically independent. The
variance  of w is calculated as

S,,,,,,  = b’S,b  + z’S,,z (64)

where Su and Sbb are the covariance matrices of z and b.
The first term of S,,,, is the variance component associated
with the error of the sample plots, and the second term is
the variance  component associated with the biomass re-
gression. The definition of z depends on (1) the sampling
design by which the plots or points are chosen,  (2) the
specific parameter lt one wishes to estimate, and (3) the
variables x’ used in the biomass regression function.

Cunia (1987a,b,c,d,e,f),  in a series of papers, described in
detail the steps of the above approach for combining the first and
second phase error components  when the parameter p of interest
is the average biomass per hectare and the sampling designs
were: (1) simple random sampling, (2) stratified sampling, (3)
two-stage sampling, (4) double sampling, (5) Continuous Forest
Inventory (CFI) without Sampling with Partial Replacement
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(SPR), and (6) CFI with SPR. Details and examples on  al1 these
designs are provided in  Cunia’s  papers.

3 Discussion

In earlier drafts of this article, 1 was chided by reviewers
for using the terms weight  and mass interchangeably. Weight
and mass,  though related, are not the same  (see  footnote 1).
1 have  made an  effort  throughout this  retrospection to refer  to
either weight or mass  as appropriate, and to use the term
weight  with those techniques,  such  as the rat io-type est ima-
tors of 1.2.1,  that deal  with weight  est imation,  and to use the
term mass  with those techniques,  such  as the density-integral
model of 1.1.8, that truly deal  with estimation of mass.  This
is  as i t  should be, and researchers in  the future should properly
dis t inguish  the  two.

Research on  estimating biomass components  of trees
and forests has a long tradition. Information on  many
species  for different sites and stand structures  is  available.
Of historical  interest are the volumes put out by the
IUFRO working group that was initiated by Harold Young:
Forest biomass studies 1971, IUFRO biomass studies
1973, and Oslo biomass studies 1976. These volumes were
published by the University of Maine at Orono. Two
important books on  biomass are Satoo (1982),  dealing
primarily with Japanese efforts to systematize forest bio-
mass  data and estimation, and Madgwick (1994),  a com-
prehensive work dealing with the single species  Pinus
radiata  D. Don. A short list of current articles  dealing with
biomass estimation is: Korsmo (1995) on  seven  hardwood
species  in Norway; Usol’Tev and Vanclay (1995) on  Scots
pine (Pinus sylvestris  L.) in Kazakhstan; Wang et al.
(1995) on  aspen (Poplus  tremuloides Michx.)  in  British
Columbia; Tahvanainen (1996) on  seven  Salix  clones in
Finland; Bartelink (1997) on  beech (Fagus  sylvatica L.) in
the Netherlands; and in the People’s Republic of China, Li
et al. (1996) on  Japanese red pine (Pinus densiflora  Sieb.
and Zucc.), and Zhou et al. (1997) on  Manglietia
hainanensis Dandy.

There are many  ways to determine tree biomass. Ratio-
type estimators, difference sampling estimators, and others
are appropriate if  one only needs est imates of the total  woody
biomass of the tree (or bole). If, however, one wants to
develop weight-rat io or density-integral  type models,  a  more
intensive sampling scheme on  the bole  (such  as systematic
sampling) would be more appropriate. Under short-rotation
woody biomass programs,  t rees typical ly do not  at tain a large
size,  so development of  weight-rat io or  density-integral  models
is  probably not labor efficient or cost  effective. Older planta-
tions and trees that attain a large size might yield a mix of
products  in  the bole  such  as pulpwood, fuelwood, and small
dimensional lumber. For these plantations and trees, devel-
opment of prediction systems for merchandizing tree boles
would be advantageous,  and intensive sampling schemes to
develop such  prediction systems would be cost  effective in
the long run.

Modeling tree biomass has been  a wide-ranging effort in
forestry  . It is  important  to be cognizant of the error structure

to achieve efficient  est imates and to construct  valid standard
errors  and confidente  regions. New research is  showing that
spatial and temporal correlation is  common in al1 types of
forestry data,  and modeling these correlations in  tree and plot
data can provide  considerable gains in  efficiency and estima-
tion (Gregoire et al. 1995a, Goelz and Burk 1996, Gregoire
and Schabenberger 1996).  Future efforts in  modeling tree and
stand biomass and updat ing inventory est imates  should take
into account these correlat ions.  Further,  normally distr ibuted
errors  are almost always assumed and rarely verified. Will-
iams and Schreuder (1996) have  looked at the normality
assumption with volume models and offer alternative error
distributions that could well be applied to biomass models.

As al luded to in  the introduct ion,  remote sensing wi l l  play
an  ever increasing role in  s tand biomass est imation and forest
productivity in general (de Gier and Sakouhi 1995, Gholz et
al. 1997), with much research being needed in this area.
Large-scale  forest inventories, such  as those conducted by
state  and federal  agencies,  are looking to methodologies such
as imputation for updating current biomass. Tree and stand
biomass modeling and sampling may well be supplanted by
remote sensing and multivariate statistical analysis or, pref-
erably, linked with them in the future.
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