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Abstract

Landscape. and temporal patterns of temperature were observed for local (13 station) and regional (35 station) networks in the
southern Appalachian Mountains of North America. Temperatures decreased with altitude at mean rates of 7Wkm (maximum
temperature) and 3”Ukm  (minimum temperature). Daily lapse rates depended on the method and stations used in the
calculations. Average daily temperature ranges decreased as elevation increased, from 14°C at 700 m to 7°C at 1440 m, and
daily temperature ranges were typically higher in spring and fall at any given station. Daily maximum temperatures above the
forest canopy averaged 1.4”C higher at a south-facing station relative to a comparable northwest-facing station, and above-
canopy daily minimum temperatures were depressed at a valley-bottom station. Regional regression models provided a more
accurate estimates of station temperature than either kriging or local lapse models when tested using 35 National Climatic
Data Center (NCDC)  stations in the southern Appalachians. Data-splitting tests yielded mean absolute errors (MAE) from
1.39 to 2.3O’C  for predictions of daily temperatures. Ten-year biases for an independent data set collected at four stations in
the Coweeta Basin ranged from -2.87 to 2.91”C  for daily temperatures, with regional regression performing best, on average.
However tests against another independent data set indicate regional regression and local lapse models were not significantly
different, with mean biases averaged from -2.78 to 2.91”C  for daily predicted temperatures. 0 1998 Elsevier Science B.V.
All rights reserved.

1. Introduction

The rates of most biotic processes, including
phenologies, growth, carbon fixation, and respiration
are directly affected by temperature (Cantlon, 19.53;
Lechowicz, 1984; Aber and Melillo, 1991; Waring and
Schlesinger, 1985). Organisms, species, and commu-
nities respond to changing temperatures on diurnal,
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seasonal, annual, and longer time spans. Temperature
affects plant moisture requirements and plant water
relations (Larcher, 1975; Kramer, 1983),  and interacts
with terrain, soils, and insolation, and these interac-
tions cumulatively impact tree growth, species com-
position, detrital production, and susceptibility to
disturbance (Turner and Gardner, 1991). Two over-
riding themes of forest research over the last few
decades have been a process-based understanding of
the effects of environmental variables such as tem-
perature on forest ecosystems, and the extension of
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this understanding to landscape scales. These themes
have driven the development of models that predict
important environmental parameters. such as tempera-
ture, at landscape scales (Pielke and Mehring. 1977:
Running et al., 1987).  Despite this, there are relatively
few empirical evaluations of landscape-scale tempera-
ture prediction techniques. and there have been parti-
cularly few tests of methods that predict temperature
at both high spatial resolution and temporal frequency.
We require better methods for predicting the land-
scape temperature if we are to develop landscape-
scale, process-based models of mass and energy
cycles in forest ecosystems.

A number of landscape temperature prediction
methods have been developed for the various ecosys-
tems and conditions (e.g., Leffler, 1981; Boyer, 1984;
Russo et al., 1993; Regnitre and Bolstad, 1994;
Regniere, 1996; Bolstad et al., 1997). The vertical
lapse method is perhaps the most common, particu-
larly in areas with mountainous or complex terrain.
This method adjusts for the commonly observed
decrease in temperature with an increase in elevation
(Barry, 1992). These temperature/elevation relation-
ships are applied to a known time series of tempera-
tures measured at a base station, adjusting for the
elevation difference between the base and target loca-
tion. Lapse-rates have been incorporated in many
models, and these rates may be allowed to vary with
season, month or atmospheric conditions (Running
et al., 1987; Aber and Federer, 1992). Lapse models
are most often applied to monthly averages or daily
extremes, and if finer temporal resolution is required,
hourly or finer data are often interpolated using
trigonometric or mixed trigonometric/exponential
functions (Pat-ton and Logan, 1981; Hungerford
et al., 1989).

Lapse models are attractive because they are simple
to understand and apply and require fewer data than
many other methods. However, the quality of lapse
predictions depends substantially on the stations cho-
sen and the details of the method used. Although all
regional interpolation or prediction methods are influ-
enced by the local temperature anomalies such as cold
air drainage or katabatic winds (McCutchan  and Fox,
1986; Barry, 1992) lapse models may be particularly
susceptible, causing anomalous temperatures at a
single base station to be extrapolated across large
areas. In addition, lapse (and most other) methods

by themselves do not incorporate other terrain-related
temperature effects, such as those due to the differ-
ential solar insolation (south vs. north slopes), perhaps
due to the lack of a strong theoretical foundation and
few empirical data on which to base such adjustments.

Regional regression is a second common spatial
interpolation technique. These methods employ a net-
work of temperature measurement stations and typi-
cally fit polynomial equations. The equations predict
annual, monthly, or daily mean or extreme tempera-
tures as functions of elevation and horizontal coordi-
nates (Russo et al., 1993). Regional regressions reduce
susceptibility to the anomalous behavior caused by a
single, biased base station. However, regression coef-
ficients depend on the set of stations used, and regres-
sion models may not be possible where temperature
measurement stations are sparse, as in remote moun-
tainous or unpopulated regions.

Both lapse and regional regression relationships
have been incorporated in models which predict forest
processes or events at landscape-scales (Russo et al.,
1993; RCgniere and Bolstad, 1994; Schaub et al.,
1995; Regniere, 1996; Bolstad et al., 1997). These
models use weather data from single or multiple
sources to predict a spatial field of temperature-depen-
dent phenomena, e.g., forest pest egg hatch, develop-
ment, or emergence. These modeling systems have a
number of uses, including population simulation,
analyses, and event forecasting. Forecasting applica-
tions generally incorporate both the relevant recent
temperature record and simulated future temperature
to predict the specific target events, and the application
and utility of these systems have been demonstrated
(RCgniere  and Bolstad, 1994; RCgni&re,  1996).

Geostatistical techniques are relatively new, and
have also been applied to predict environmental vat-i-
ables at landscape scales. Kriging and other geosta-
tistical techniques incorporate spatial autocorrelation,
and statistically optimize the weights when combining
regional stations (Isaaks and Srivatstava, 1989). This
process requires an assumption regarding the shape of
the spatial covariance or correlation functions. Para-
meters of the autocorrelation function are estimated
using the spatially-referenced measurement set, and
predictions at unmeasured points made from the spa-
tial covariance functions and measured data. These
methods may be particularly appropriate for tempera-
ture predictions in regions with little topographic



relief, and where there may be significant local tem-
perature effects, such as near large water bodies. In
addition. related techniques such as co-kriging may be
used when there are appropriate spatial covariates.
However, as with regional regression models, kriging
and related techniques are not useful where tempera-
ture measurement stations are sparse, and even under
the most dense samphng, station densities may not be
high enough to reflect the short-distance local terrain
effects. While geostatistical methods show promise,
they have not been well tested, particularly for pre-
dicting daily temperature.

There have been relatively few studies comparing
the relative performance of current (lapse and regional
regression) and geostatistical techniques for predict-
ing the daily maximum and minimum temperature.
The bias and precision of these regional temperature
prediction models must be determined if the models
are to be effectively applied for predicting the tem-
perature-dependent phenomena. Errors may be
derived from several sources, e.g., temperatures are
generally higher on south-facing slopes in an amount
that varies by time of year, slope position, and canopy
characteristics. and cold air drainage may depress
minima and valley bottom locations (Tajchman and
Minton, 1986: Barry, 1992). There were four objec-
tives in this study:

1.

2.

3.

4.

2.

Compare regional lapse, regional regression, and
kriging temperature prediction methods in the
mountainous terrain of eastern North America,
more completely characterize the temperature pre-
diction errors when using regional regression,
compare the spatial temperature predictions based
on local lapse and regional regression models to
field-measured air temperatures, and,
evaluate local terrain effects on local lapse and
regression predictions.

Methods

Analyses were based on three meteorological data
sets. The first was a regional set (hereafter referred to
as the ‘regional’ data), comprised of daily maximum
and minimum temperatures distributed by the
National Climatic Data Center (Earth Info, 1993,
Boulder, CO). Daily extremes were analyzed for the

Table I
Regional weather \tatton  characteristtcs

ID Station Name Elevation Latitude Longitude

184
300
301
724
843
1055
I094
I441
I564
‘102
2200
2934
3101
3106
3228
3679
3976
4055
4260
4613
4950
5158
5356
5923
6328
6271
6341
6534
6750
6805
7884
8179
8448
8868
9123

Andrews 530
Asheville AP 648
Asheville 689
Bent Creek 639
Black Mountain 694
Brevard 652
Bristol 463
Canton 806
Cataloochee 794
Coweeta Exp Stn 682
Cullowhee 663
Erwin 521
Fletcher 4E 654
Fletcher 3W 627
Franklin 630
Greeneville 400
Hendersonville 684
Highlands II63
Hot Springs 403
Jefferson City 354
Knoxville 266
Lenoir City 239
Marshall 606
Mt. Mitchell 1891
Mt. Leconte 1967
Morristown 412
Oconaluftee 618
Newport 315
Oakridge 272
Pisgah Forest 639
Rogersville 412
Sevierville 281
Swannanoa 1309
Tazewell 415
Waterviile 436

35 IZ’N 83 5O’W
35 26’N 82 33’W
35 36’N 82 32’W
35 3O’N 82 36’W
35 37’N 82 2I’W
35 l4’N 82 44’W
36 29’N 82 24lW
35 3l’N 82 5l’W
35 37’N 83 06’W
35-04’N 83 26’W
35 l9’N 83 II’W
36.08’N 82 26’W
35‘26’N 82 26’W
35 26’N 82 34’W
35 II’N 83 23’W
36.06’N 82=51/W
35’20’N 82’.27’W
35.03’N 83-I I’W
35 ‘54’N 82’49’W
36-09/N 83‘27’W
35-49/N 83-59/W
35’48’N 84’  I5’W
35’48’N 82 ‘40’W
35 ‘46’N 82’16’W
35.39’N 83’26’W
36” 12’N 83.l7’W
35”3l’N 83’ l8’W
35’59’N 83’12’W
36’01’N 84:14/W
35’16’N 82’42’W
36’25’N 82 59’W
35’52’N 83’33’W
35.34’N 82”23’W
36’28’N 83”33’W
35’46’N 83=06’W

35 stations found from 35” to 36’30’N  latitude and
82”lS to 84” 15’W longitude (Table 1). Analyses were
restricted to stations with 90% or more data for years
1986 through 1995. Station elevation ranged from 239
to 1967 m. Temperatures were measured using a
variety of instruments, most commonly with glass
thermometers, but also with thermistors or thermo-
couples. Station horizontal location was reported to
the nearest minute of arc, and elevation to the nearest
meter. Data quality and errors were identified (Reek
et al., 1992),  and adjusted as appropriate. A total of
240937 daily maximum and minimum observations
were available.
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Table 2
Characterlwu  for meteorological stations located in the Coweeta Basin

Statton  number and type

CSOI
Basin
CSl7
Basin

cs2 I
Basin
CS28
Basin
cs77
Basin
L2
Canopy
H2
Canopy
L27
Canopy
H27
Canopy

Record period Elevation (m) Terrain posttton Aspect Slope (T/c)

l / l / l986 694 Valley bottom Flat 0
12/31/1995
l/ l / l986 874 Sideslope N30- W 32
12/31/1995
l/ l / l986 848 Sideslope s2 E ‘I
12/31/1995
l/ l / l986 I202 Sideslope N90 E 43
12/31/1995
S/l/l992 1439 Ridge N2 W I8
12/3111995
I May-15 October 1992 and 1993 745 Cove-Sideslope S42 E 42

I May-15 October 1992 and 1993 830 Sideslope SS’E 22

I May-15 October 1992 and 1993 1086 Cove N55’E I5

I May-15 October 1992 and 1993 1411 Ridge shoulder N22”E 23

The second data set is comprised of a five-station
network located within the research watershed of the
Coweeta Hydrologic Lab located at 35”03’N latitude,
83”27’W  longitude, near Otto, NC (hereafter referred
to as the ‘basin’ data set). Stations represent a range of
terrain and elevation conditions, including low eleva-
tion mountain valley (Station CSOl),  low elevation
north facing (Station CS17) and south facing slopes
(Station CS21).  mid elevation east slope (Station
CS28) and a high elevation ridgetop (Station CS77)
locations. This network, established and maintained
since the early 1930s by the US Forest Service, records
hourly meteorological data (Table 2). Stations consist
of standard weather shelters located in approximately
0.2 ha clearings. Herbaceous or short woody vegetation
(co.2 m) covers the clearings, which are surrounded
by mature, closed-canopy forests. Temperatures are
measured and recorded using thermistors prior to
1992, and Copper-Consfantan  thermocouples there-
after. Temperatures were recorded to the nearest 0. lo,
with calibrated accuracy greater then OYC and typi-
cally accurate to the nearest 0.2”C.  Temperature read-
ings were checked monthly against high accuracy,
mercury-filled thermometers. Station locations were
determined with global positioning system (GPS)
receivers, differentially corrected to the nearest 5 m.
Data for the 1986 through 1995 period of record were

extracted for these analyses. All the station data were
greater than 99% complete for this interval, with the
exception of Station CS77, established in early 1992.
Data for Station CS77 were greater than 99% com-
plete for the period of record.

The third data set consists of hourly temperature
measurements for the 1992 growing season, taken
atop canopy towers (the ‘canopy’ data set). Four
towers were erected to extend above the canopy at
low elevation toeslope (L2),  low sideslope (H2), mid
elevation cove (L27),  and high elevation ridgetop
(H27) sites. Temperatures were measured in standard
weather shelters mounted at tower heights from 18 to
24 m, approximately 1 m above the local forest
canopy in all the cases. Temperatures were recorded
each minute and averaged hourly using special limits
of error Copper-Constantan  thermocouples (Omega
Engineering). Data were collected from Julian day 12 1
through 267, 1992. Thermocouple readings were cali-
brated against 0. 1°C accurate glass thermometers,
traceable to national standards.

Data sets were combined by date and as appropriate
by hour. Maximum and minimum daily temperatures
were calculated for all the three sets. Monthly average,
standard error, and variance of the daily maxima and
minima were calculated. Two-station local lapse rates
were calculated from the basin data set, comparing (a)
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valley bottom (Station CSOl)  to mid elevation (Station
CS28). (b) valley bottom (Station CSOI)  to high
elevation (Station CS77). and (c) average of the low
sideslope Stations (CS 17 and CS21)  to mid elevation
sideslope (Station CS28). and the average of the low
sideslope Stations (CS 17 and CS2 1) to high elevation
Station (CS77).  Regional lapse rates were calculated
from the regional data set via first-degree regressions
between temperature maxima/minima and station
elevation.

Three different regional temperature prediction
model forms were applied to the regional data set.
Daily models were fit for regional lapse rate, regional
regression, and kriging models to predict the daily
maxima and minima and seasonal mean temperatures.
Regional lapse rate methods predicted temperature for
a regional station based on:

T,,, = To + AZ Op., (1)

where T,., is the predicted temperature (maximum or
minimum) for the withheld station, To the temperature
measured at the nearest remaining regional station,
AZ is the elevation difference between the nearest
station and predicted regional station, and 0p.i the
regional lapse rate for variable p (maximum and
minimum temperature), and day i. Regional lapse
rates were calculated using simple linear tempera-
ture/elevation regressions:

T; = B. + O,,, . Z (2)

where T, is the daily temperature for the retained
stations and the remaining parameters are as described
above.

The regional regression predictions were based on a
second-degree polynomial:

T, = & + B, . X + 02 . X2 + P3 . Y

+~~~Y2+/3yxY+p6~z (3)

where T,‘s  are the predicted daily extreme tempera-
ture, Ss are the fit regression coefficients, and X, I: and
Z are easting, not-thing, and elevation, respectively.

Autoregressive moving average (ARIMA) models
were fit to daily deviations of regional regression
coefficients from IO-year normal values. Previous
work has documented autocotrelation among daily
minima and maxima temperature time series, and
among deviations of daily extreme temperatures from
long-term normals (Regniere and Bolstad, 1994).

ARIMA models with up to five-day lags were fit to
maximum and minimum temperature coefficients 30
through &, in regional regression models (Box and
Jenkins, 1976). and significance determined by
Durbin-Watson tests.

Kriging models were based on:

n
I; = c A; 7J

{=I

where Ti is the predicted temperature, X, are weights
from the fit variogram model (Cressie, 198.5)  and T,s
were the temperatures measured at each of the station.
Observed variograms were fit according to:

y*(h) = 2N(h) r=,
‘E -Z(& + h) - z(x;)? (5)

where y* is the semivariance, h is the lag distance, and
K and q measured temperatures.

Preliminary analyses indicated little difference
among semivariogram model forms, thus spherical
vatiogram  models were typically used although expo-
nential and Gaussian models occasionally provided
better fits. Kriging semivariance functions were fit
iteratively, manually selecting the best indicative
goodness of fit (Pannatier, 1993).

Iterative data splitting was used in all the regional
temperature prediction models to assess the relative
predictor bias and precision. Errors were determined
by successively withholding each station in the regio-
nal data set, estimating required parameters for the
various models, and calculating the difference
between the predicted and observed daily extremes
for each withheld point. By iterating through all
stations, we obtained measures of the relative perfor-
mance of each method. Manual fits placed an upper
limit on the number of ktiging  analyses which could
be performed, in that 35 kriging models, one for each
withheld station, were required for each comparison,
and the process could not be automated. Thus, ten days
were randomly selected from the regional data set.
Comparisons of daily predictions based on regional
model were restricted to these days. Bias, MAE, and
standard deviation were computed for each of the
three regional prediction methods.

Based on the results from the above studies, our
next set of analyses combined the regional, basin, and
canopy data sets to estimate errors in predicted tem-



peratures when using the regional regression and local
lapse-rate models. Our basic goal was to determine the
typical and maximum error when predicting daily
maximum and minimum temperatures using these
two methods. Daily regional regression models
(Eq. (3))  for maximum and minimum temperature
were fit for each day in 1992 using the regional data
set. Maximum and minimum temperatures were pre-
dicted for each basin and canopy station, using these
regional models and regional data set. Prediction
errors were then computed as predicted minus site-
measured maximum and minimum temperatures for
withheld sampling locations in the Coweeta basin.
Summary statistics were determined. including the
average error (bias). mean absolute error. and standard
deviation. We calculated prediction errors for the lapse
rate method in a similar fashion. Basin and canopy
data sets were used to estimate the prediction errors
when using local lapse-rate models:

T, = T,, + AZ t&, (6)

where 7; is the predicted daily maximum or minimum
temperature, Th is the corresponding daily maximum
or minimum base station temperature, AZ is the
elevation difference between the base station and
sample station, and 19d.b is the maximum or minimum
daily temperature local lapse rate between base (b) and
upper elevation (d) basin or canopy stations:

Td - Tb
0d.b  =  ~

zd - zb
(7)

Daily local lapse rates were calculated from the
low-sideslope (CS I7 and CS2 I ) to the high sidelslope
(CS28)  and ridge (CS77) sites for JD 121 through
Julian day 279. periods approximately spanning the
1992 growing season. We note that these ‘local’ lapse
rate Eqs. (6) and (7) differ from the ‘regional’ lapse
rates Eqs. (I) and (2).  in that the local models use
station pairs with a large elevation difference, and
calculate daily lapse rates by the temperature differ-
ence observed at these stations. The regional lapse
models (Eqs. ( 1) and (2)) fit a linear equation to a daily
set of observations, regressing temperature at each
station against elevation. The slope of the regression,
estimated for each day in the record, is the regional
lapse rate. Daily-determined lapse rates for Eqs. (6)
and (7) were applied to predict the maximum and
minimum temperatures for each of the canopy sta-

tions, using CS I7 and CS2 I as base stations. applying
canopy site/base station elevation differences with the
calculated lapse rates to estimate temperature. Pre-
dicted minus observed temperatures were determined
for each canopy site, and summary statistics calcu-
lated.

We emphasize that the predicted minus observed
prediction errors were based on the sets of stations not
used in fitting the daily lapse and the regional regres-
sion models. and are in that sense independent from
the models. However the prediction errors for each
station form time series which may be temporally
autocorrelated and cross-correlated between stations.
Poor or good prediction may be clustered in time, or
model performance may vary regionally, so that the
basin and canopy stations may tend to have high and
low errors in concert. Such correlations would con-
found significance tests. Autoregressive models with
up to five-day lags were fit to the prediction error time
series for the canopy and basin stations. Model para-
meters were estimated using a maximum likelihood
algorithm (SAS autoreg and pdlreg, SAS Institute,
1988) and appropriate weighted variances and sig-
nificance tests performed.

The acceptable limit of temperature prediction
errors depends on the application. For example, mod-
els which depend on monthly averages require only
that daily prediction models have low bias; processes
with a more rapid, nonlinear response to temperature,
such as respiration. will be affected by both bias and
imprecision in daily temperature predictions. Our final
set of analyses used the ‘best’ temperature prediction
method, regional regression, for predicting the two
temperature-dependent phenomena. Eq. (3) models
were fit using the regional temperature data, and
resultant models used to predict daily maximum
and minimum temperatures at each of the five stations
in the basin data set. Daily temperatures were pre-
dicted for the period 1986-1995. Bud burst for most
species begins at the accumulation of approximately
I75 degree-days, 7.5C base, and leaf expansion is
complete at 350 degree-days. Spring bud burst and
full-leaf expansion dates were predicted for each basin
station in each year, based on the observed and pre-
dicted degree-days. Growing season leaf respiration
for each of the basin stations was also predicted, using
observed canopy station data and temperatures pre-
dicted from the regional regression (Eq. (3)) models.



These temperature data were combined with local leaf
temperature/respiration functions (Vose and Bolstad,
1998)  and Coweeta average leaf biomass data to
predict the growing-season aggregate canopy respira-
tion.

3. Results and discussion

3.1. Station temperatures

As expected. temperatures typically decreased as
elevation increased (Fig: I). This trend occurred for
most temperature variables in both the canopy and
basin data sets. Daily maximum temperatures were
warmest at the lower elevations (CSOI. CS2 1, and
CSl7). and decreased for the successively higher
elevation stations (CS28 and CS77). Differences were

--o  CSl?.  N W  SIdeslope

l CS77. High Elev  , Ridge . : 5
F

1 2 3 4 5 6 7 6 9 10 11 12
Month

2 0 2 0

--o  CSf7,  N W  Sideslope
-- CS 21. South Sideslope
-R-.  CS20.  Mid. Eiev.  E. Slope

CS77. High Elev..  Ridge

1 2 3 4 5 6 7 8 9 10 11 12
Month

Fig. I. (a) (top) Daily maximum and (b) (bottom) minimum air
temperatures. averaged monthly for the period 1986-1995 for
stations at various  terrain positions within the Coweeta Basin. NC.

generally consistent across months (Fig. l(a)). Daily
minimum temperatures were more similar among
stations than daily maxima. and station rank order
for minima varied more by the time of year. Mean

daily minimum temperatures observed at the valley
bottom station, CSOI,  were generally lower than the
mean daily minima at other stations, except the high
elevation ridge station (Fig. I(b)). Mean temperatures
for station CSOl  were 0.4 to 0.9~C  lower than nearby
sideslope stations CS21  and CS17. and mean daily
minimum temperatures averaged l.8’C  lower at sta-
tion CSO I. Mean daily minima at station CSO I were
lower than those observed at the higher elevation
stations CS28 and CS77 when averaged over the entire
year and growing season (May through mid-October).
even though CSOl was at an elevation 500 to 700 m
lower. Cold air drainage, predominantly at night-time,
has been observed to cause these depressed minima in
valleys, particularly when the local topography leads
to the collection and pooling of downslope airflow
(Bergen, 1969; Kaufmann,  1984; Toritani, 1990;
Barry, 1992). Depressed minimum temperatures were
more common during nights with low windspeed
(<1.5 km/h), and were observed for all months of
the year. but were more frequent during the leaf-off
period, late October through mid-April.

Temperatures observed at low-elevation sideslope
stations indicate a small but consistent exposure-
related maximum temperature increase. Daily maxi-
mum temperatures at CS21 (southern exposure) aver-
aged 1.4YZ higher than CS17 (northwestern
exposure), a station at a similar elevation and terrain
shape. This exposure-related increase was consistent
across all the months of the year for the basin data set
(Fig. l(a)). There was little effect of exposure on the
mean above-canopy daily minimum temperature, and
average temperatures at station CS21 were 0.2’~C
lower than the comparable station CS17.

There were small but significant effects of exposure
on daily above-canopy minimum and mean tempera-
tures. These observations are quite comparable with
those of Cantlon (1953). Using the north-south expo-
sure scale, of Rlgnikre  (1996):

A = slope c {cos’(latitude)*d

+ sin’(latitude)Cos(aspect  - 15)) (8)
where latitude is in degrees North, measured clock-
wise and slope is in degrees, Q=-  I for aspects from
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135135 to 255~. and O= 1 otherwise. We calculated that
site CS 17 has a 16’ northern exposure A and site CS2 1
an I 1.7 southern exposure. Thus, our observations
represent an average minimum temperature increase
of 0.5 C per 10’ southern exposure, a value quite
similar to the observations made in the other eastern
North American and European forest canopies (see
Regniere, 1996): These exposure-related maximum
temperature differentials are small relative to observa-
tions made by several others (Pielke and Mehring,
1977; Kaufmann,  1984; Barry, 1992). Several reasons
may explain these differences. Frequent cloud cover
accompanies frequent, well distributed rainfall at the
Coweeta Basin. Insolation is attenuated by the atmo-
spheric moisture and cloud cover, and hence reduces
the potential differences in temperature due to differ-
ences in site exposure. In addition, soil moisture is
typically high for most of the growing season and all
of the dormant season. Much of the increased insola-
tion on southern-exposure sites may be converted to
latent heat, reducing exposure-related differences that
have been theoretically determined or observed in
drier climates.

Daily temperature range generally decreased as
station elevation increased, and was also influenced
by time of the year, local terrain shape, and station
exposure (Fig. 2). Temperature range was the highest
for the low elevation valley bottom station (CSOl),
particularly so during spring and fall. CS21 had the
next highest mean daily temperature ranges, due to the
elevated maxima at this south-facing station. Next
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Fig. 2. Daily air  temperature range, monthly averages for the
period 1986-1995  for stations at various terrain positions within
the Coweeta Basin. NC.

lowest temperature ranges were observed observed at the north-
east sidelope station (CS17).  and decreased succes-
sively for higher elevation stations. Decreasing daily
temperature range with increasing temperature has
been observed under a number of conditions and in
a number of continents (Lauscher, 1966; Linacre,
1982). The ranges we observed were generally similar
to those reported elsewhere in North America, but the
daily temperature ranges were lower at our upper
elevations than those reported in western North Amer-
ica, and more similar to those reported for the Eur-
opean mountains. Lauscher  (1966) suggested that
these continental differences may be due to the higher
atmospheric moisture in Europe, conditions also more
typical of eastern than western North America.

3.2. Local lapse rates

Daily lapse rates are not constant, and depended on
time of the year and stations used in the calculations
(Fig. 3). Maximum-temperature lapse rates varied
from 4” to 10°C per 1000 m and were significantly
higher in the spring than other months, (  p=O.Op=O.O 1) at
least when based on station pairs in the Coweeta Basin
data set. Maximum temperature lapse rates peaked in
the summer when using the regional data set and were
lowest in the winter. Daily maximum temperature
lapse rates based on the sideslope-to-ridge station
averaged 2°C higher than lapse rates based on valley
bottom-to-ridge comparisons (CSOl to CS77),  a dif-
ference that was consistent and statistically significant
for all the months (Fig. 3(a)). These higher lapse rates
were due to the noted lower minima observed at the
valley bottom station. Daily maximum temperature
lapse rates calculated from the regional data were
consistently lower than the basin sideslope-to-ridge
rates, and higher, the same as, or lower than basin
valley-to-ridge lapse rates. Lapse rates depend on
atmospheric moisture, temperature, and pressure
(Rosenberg et al., 1983). Our observed lapse rates
for the maximum temperature are typically below dry
adiabatic lapse rate of lo”C/km  elevation, not unex-
pected in this moist region. However dry adiabatic
lapse rates have been used in models applied to this
region, and our results indicated they should not be.
Coweeta station measurements indicate that the max-
imum temperature lapse rates are highest just prior to
the onset of meteorological spring (Schwartz, 1992),
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Fig. 3. (a)  (top) Daily maxImum  and (b) (bottom). minimum temperature lapse rates calculated from local and regional regression analyses.

when temperatures are warming but prior to increased
boundary layer thickness and increased atmospheric
water vapor concentration.

Monthly averages of the mean daily minimum-
temperature lapse rates ranged from -3.8 to 5.8”C,
and varied by time of the year and stations used in the
calculation (Fig. 3(b)). Minimum-temperature lapse
rates based on the regional data set were always higher
than lapse rates based on station pairs in the Coweeta
Basin, a difference which was consistent across all
months (Fig. 3(b)). Lapse rates including station CSOl
were negative for all months of the year, reflecting the
depressed minimum temperatures for that valley bot-
tom station. As noted above, we attribute this to the
cold air drainage, as these minimum-temperature
inverted lapse rates were larger and more consistent
on nights with lower night-time windspeed (r-test of
means, windspeed above and below 10 km/h, ~~0.05).
Minimum temperature lapse rates based on the basin
sideslope-to-ridge stations (CS17 and CS21 to CS28)
varied from 1 to 3”C/lOOO  m, significantly different
from those observed when using valley bottom station
CSOl in the lapse rate calculations (Fig. 3(b)). Mini-
mum temperature lapse rates based on the basin
stations were also more variable during winter months
and less variable during summer months, and were
consistently more variable than the corresponding
maximum temperature lapse rates (Fig. 3(a) and
(b)). Minimum temperature lapse rates based on the
non-valley stations are close to the expected wet
adiabatic lapse rates (3 to 4”Ukm) for most of the
year. We note that there were large and significant

differences between regional and basin-derived esti-
mates.

Mean temperature lapse rates for our sites are
similar to those reported by Leffler (198 1) for Appa-
lachian summits. Mean lapse rates observed for the
basin and canopy data sets are slightly higher in
summer and slightly lower in winter (~05”C/km  in
each instance) in our study. There is a good general
agreement, particularly given that Leffler used a small
set of only mountaintop stations, a much larger geo-
graphic range, and a different period of record. Our
maximum temperature lapse rates based on the side-
slope-to-ridge stations were comparable to those
reported for the western mountains (8 to 10°C vs.
7 to 9°C Barry, 1992). However, as opposed to their
reports, we observed minimum temperature lapse
rates that were significantly lower than maximum
temperature lapse rates for all the methods and months
used.

The frequency distribution and mean maximum and
minimum temperature lapse rates varied considerably
depending on the base station used, both for daily
minimum and daily maximum temperatures. Mini-
mum temperature lapse rates were often inverted (52%
of days) when using the valley station (CSOl)  as the
base. A smaller, though still substantial portion of the
minimum temperature lapse rates were inverted (35%)
when using the sideslope stations as a base. Thus, it
appears that cold air frequently pools in the valley
floor in the Coweeta Basin, and reaches to at least
150 m above. Predictions based on lapse rates calcu-
lated from these stations may in turn be biased. Taken



together. these results suggest significant. consistent
effects of terrain position on minimum and mean
temperatures at valley bottom and adjacent sideslope
locations. The use of valley bottom stations or even
sideslope stations more than 150 m above the local
valley floor for paired lapse rate calculations may lead
to signiticant  errors. particularly when predicting
minimum temperatures at higher elevations.

Because lapse- rates are not constant and depend
strongly on terrain position, models which assume
constant or long-term average lapse rates should be
used with caution. Some models (e.g., MT-CLIM and
derivatives, Running et al., 1987; Schaub et al., 1995)
use temperature measured at a single base station with
historic average lapse rates. Because lapse rates vary
temporally, by the terrain position of the base station,
and differ for maximum and minimum temperatures,
assumptions to the contrary should not be accepted
until they have been demonstrated to perform ade-
quately for the biological model of interest.

3.3. Regional temperature prediction methods

Regional regression models had the smallest and
least variable errors when predicting daily maxima
and minima for the regional data set, however there
were no significant differences in the bias for daily
maximum or minimum temperatures when comparing
the three regional temperature prediction methods
(Table 3). Mean absolute errors for both the maximum
and minimum temperatures were significantly smaller

( p=O.O5)  when predicted by regional regression than
those predicted by the kriging and regional lapse rate
methods (Table 3). Larger errors in the regional lapse
rate models may have been due to the poor selection of
the ‘base’ station from which to drive lapse calcula-
tions. Our test simply selected the nearest station as
the base. and applied the estimated regional average
lapse rate for the day. Maximum and minimum tem-
perature MAEs  were larger for the regional lapse
method when compared to kriging and regional
regression techniques. We note that these results are
based on the estimates of daily extremes for 10 days
selected randomly from the 10 years for which the
regional data were available. Three days were in
winter, four in spring, three during the summer, and
two during the fall. Approximately 35 kriging models
were fit for each day (34 on some days due to missing
data), one for each station, for a total of 338 models.
This relatively small number of days was used because
of the time required to manually fit semi-variograms
and estimate kriging parameters. A common vario-
gram model could not be used throughout, because the
best variogram model fotm differed by day and/or
station, and we know of no selection criteria and fitting
method which can be easily optimized and automated.

Regional regression models were significant in
more than 99% of the days tested, both for the subset
of 10 days used in comparing methods, and for the
complete IO-year regional data set (1986-1995). First-
degree models were most commonly appropriate
(78% of the regional regression models fit, with the

Table 3
Comparison of the temperature prediction methods, regional data set. Bias is predicted temperature minus observed temperature, mean
absolute error (MAE) is mean after all errors made positive, and standard deviation of signed errors. Models were fit for each of the IO
randomly selected days in the period 1986-1995, successively withholding each of the 35 stations. Error statistics are based on approximately
342 error observations

Temperature prediction method

Maximum temperature

Regional lapse model
Regional regression
Kriging

Minimum temperature

Regional lapse model
Regional regresston
Krigmg

Bias (‘C) Mean absolute error (‘C) Standard deviation ( C)

0.21 2.30 3.23

0.00 I .39 1.77

-0.17 I .93 2.64

0.07 2.24 3.09

0.00 1.39 1.80
-0.05 1.61 2.12



remaining models most commonly exhibiting only
one signilicant  Znd-degree parameter ( pd.05 ). Eleva-
tion parameters were signifcant (p<O.O5)  in more than
90% of the regressions. latitude parameters significant
in more than 6.5% of the regional regressions, and
longitude parameters significant in more than 30% of
the regression models. Parameters indicated a drop in
temperature with-increasing elevation or latitude, but a
substantial portion of the horizontal coefficients
showed increases in temperature with increasing lati-
tude. These positive latitude coefficients may be due to
the complex temperature patterns that occur with the
passage of frontal boundaries (Barry and Chorley,
1992). Model coefficients had frequency distributions
which were right-skew for elevation and symmetric to
slightly right-skew for latitude and longitude, however
none of these distributions were significantly different
from normal (Komolgorov-Smimov goodness-of-fit
test. p=O.O5).  All the three parameters exhibited
annual patterns, with temperature coefficients show-
ing the steepest vertical temperature declines and
smallest northward temperature declines during sum-
mer. We note that the maximum temperature vertical
lapse rates were quite similar to those reported by
Regniere and Bolstad (1994) in similar models for a
somewhat larger region extending further eastward
into the Piedmont region. However minimum tem-
perature elevation coefficients in this study showed a
significantly smaller elevation effect, here averaging
about SC/km across all months, while in Regniere
and Bolstad (1994) minimum temperature vertical
lapse rates averaged near 7.5’C/km. We attribute
the difference to more ridge-valley influence in the
present data set, with stronger air drainage effects and
hence lower temperature decreases with increasing
elevation. In all cases, coefficients had larger var-
iances in winter than in summer, similar to the results
of Regniitre  and Bolstad (1994).

Daily elevation coefficients from the regional
regressions were serially correlated, based on ARIMA
time-series models. These models estimated the serial
correlation in the regional horizontal and vertical
changes in temperature represented by the regional
regression parameters /?a through &,, Eq. (3). Previous
analyses (Regniere and Bolstad, 1994) have estab-
lished significant correlation between the daily max-
imum and minimum temperature deviations from
long-term daily normals, and significant autocorrela-

tion in daily temperature series for both maximum and
minimum temperature. Results herein indicate there is
additional temporal autocorrelation in deviations in
regional temperature structure, at least as measured
by autocorrelation in daily-tit regional regression
parameters. Partial autocorrelations  parameters for
25-year daily maxima and minima elevation para-
meters (,&) and latitude (Jj) were significant for
one-day lags, using Duncan-Watson tests ( p=O.O5).
Partial autocorrelations for two-day lags were signifi-
cant for the minimum temperature elevation and
maximum temperature latitude coefficients (p=O.O5).

Analyses of these regional temperature prediction
methods indicate that the differences among regional
temperature prediction methods are significant, and
prediction errors for daily maxima and minima are
typically within 1 to 4°C. The regional lapse method
performed poorest. Regional regressions are preferred
over kriging when a spatially distributed network of
stations is available, at least for the region studied
here. The regional regression method provides more
accurate estimates of the individual daily temperatures
at sites scattered across the region. Kriging-based
predictions show higher biases, MAE, and RMSE,
and suffer from the additional disadvantages of man-
ual selection and fitting of the variogram model, and
the difficulty in automating model estimation for daily
temperature predictions. The regional lapse models,
although easy to automate and objective in applica-
tion, exhibit even larger errors. We wish to emphasize
the distinction between regional lapse rate models,
calculated from the regressions using all stations in
our data set (Eqs. (1) and (2)). and local lapse pre-
diction methods, which typically use station pairs
(Eqs. (6) and (7)). Tests of local lapse models are
provided in the following sections.

The statistical distribution and autocorrelation
properties of regional regression coefficients indicate
that they may be easily incorporated into the regional
temperature prediction models, particularly when
used for regional forecasting or long-term simulations.
Models have been developed which incorporate maxi-
mum/minimum temperature covariance and daily
autocorrelation into a regional framework (Regniere
and Bolstad, 1994; Regniire,  1996) but which use
mean daily, monthly, or seasonal vertical or horizontal
relationships. However these models assume average
lapse rates which vary on a monthly basis. Stochastic
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deviations are applied to maximum and minimum
temperatures at the base station. and projected across
the landscape. However there is further unrepresented
stochasticity. in that the lapse rates vary from day to
day, and are serially correlated. We are currently modi-
fying and testing our models to investigate how this
may alter predictions of biological phenomena.

3.4.  Basin and canopy station temperature prediction

Regional regression predictions generally showed
negative biases (predicted minus observed) and MAE
of from 1.5 to 3’C when predicting station tempera-
tures measured within the Coweeta Basin (Table 4).
This independent test showed small positive biases in
growing season maximum temperatures for the mid-
to high-elevation canopy stations. First through fifth-
order lag autoregression show no serial correlation in
the daily error time series. Regional regression and
lapse models were fit for each day, and predictions
compared to independent stations. MAE and standard
deviations were lower for the canopy data set, which
may reflect better prediction during the growing sea-
son, but may also be due to the smaller sample size.

The largest errors for maximum temperature were
observed at CS21, a low elevation, south-facing sta-
tion (Table 4). This error may be due to a failure to
incorporate the local exposure in the regional regres-
sion models. Prediction biases were larger for mini-
mum temperatures than corresponding errors for
maximum temperature, as were mean absolute errors
and standard deviations. Minimum temperature biases
were typically negative. Regional regressions were tit
from a network of stations which may have over-
represented valley locations, and hence yielded nega-
tively biased predictions. Four of the five of the
Coweeta test stations do not receive cold air drainage
for a majority of the year, and hence were warmer than
valley locations at similar elevations and latitudes.
Valley station CSOl was an exception, where pre-
dicted temperatures were approximately 0.6 degrees
higher than that observed.

We investigated a number of variables as predictors
of inversion conditions. These include daily and night-
time average windspeed, hourly maximum windspeed
averaged for both daily and night-time periods, cloudi-
ness, and combinations of these with precipitation
data. We were unable to accurately stratify days with

Table 4
Regional regression prediction error observed at Coweeta stations. Errors are based on predicted minus observed temperatures. Observed
temperatures were measured in standard weather stations in forest clearings, predicted temperatures come from daily fits of regional, second-
degree, polynomial regression models (Eq. (3)).

Station, variable Bias (“C) Mean absolute error (‘C) Standard deviation (‘C) n (days)

Maximum temperature

CSOl,  Valley
CS17.  NE sideslope
CS21, S sideslope
CS28, high sideslope
L2, Low, sslope
H2. S sideslope
L27, high cove
H27. high ridge

Minimum temperature

-0.62 1.77 2.63 2547
-0.8 I 1.81 2.45 2544
-1.90 2.50 2.41 2547
-0.45 I .83 2.39 2515
-0.26 I.14 I .72 183

0.25 0.91 1.84 I86
0.87 1.19 1.53 I77
0.89 1.22 1.66 201

CSO I, valley 0.60 2.10 2.84 2547
CS 17, NE sideslope -2.33 2.64 2.30 2544
CSZI. S sideslope -1.89 2.31 2.53 2547
CS28. high sideslope -2.91 3.02 2.44 2515
L2. valley/S s.slope -0.57 I .43 2.03 183
H2. S stdeslope -I .50 1.82 2.11 186
L27. htgh  cove -2.21 2.06 1.99 177
H27. high ridge -2.72 2.77 I .87 201
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Table 5
Regional regrewon and lapse predictIon errors. canopy stations. Predicted minus observed daily extreme temperatures were derived from
weather \tatlons  ebtablished above the forest canopy (observed) and predicted temperatures based on daily second-degree regIona  regressions
(Eq. (3)) and local lapse models (Eqs.  (6) and (7))

Temperature variable station Bias ( C) MAE ( C) Bias ( C) MAE ( C) n (days)

Maximum temperature

L2, Valley/S r.\lope -0.26
H?. S sideslope 0.25
L27. tngh  cove 0.87
H27. high ridge 0.89

Minimum temperature

L2, valley/S ~.slope -0.57
H?. S sideslope - I .50
L27. high cove -2.21
H27. high ridge -2.72

I.14
0.9 I
1.19
1.22

I .43
1.82
2.06
2.77

0.24 1.06 183
0.2 I 0.94 186
2.12 2.87 177
2.89 2.91 201

-0.88 1.17 183
-1.41 0.66 186
-0.27 0.92 177

0.76 I .30 201

inverted from non-inverted vertical lapse rates. Stra-
tification might help, e.g., by selecting more appro-
priate or different sets of stations or models during
conditions likely to produce inverted lapse rates.

Prediction errors for the canopy data set indicate
small difference between local lapse and regional
regression models when predicting daily maximum
temperature (Table 5). They also show that the local
lapse model performed slightly better when predicting
minimum temperature. Bias and mean absolute error
for daily maximum temperatures were generally com-
parable, from 0.20 to 1.4 1 “C, with the exception of the

lapse model for the high elevation station H27, with
mean bias and mean absolute error above 2.9O”C.
Minimum temperature prediction errors for the regio-
nal regression model were generally larger than the
corresponding local lapse model predictions
(Table 5).

3.5. Phenologies and cumulative respiration

Predicted and observed canopy phenologies dif-
fered significantly (t-test, a=O.lO) at four of the five
stations (Table 6). Predicted date of budburst and

Table 6
Predicted bud burst and full leaf expansion based on temperatures observed at canopy stations and based on daily temperatures predicted from
the regional regression models (Eq. (3))

Julian day of bud burst and full canopy expansion

Station

CSO 1, Valley
CS17,  NE sideslope
CS21.  S sideslope
CS28. high sideslope
CS77. high ridge

CSO I. Valley
CS17. NE sideslope
CS2l. S sideslope
CS28, high sideslope
CS77, high ridge

Based on
observed temps.

Julian day, bud burst
106
I92
99
109
130
Julian day, full canopy expansion
129
123
120
134
157

Based on
predicted temps.

I10
116
I15
129
139

134
142
I40
155
164

p-value, t-test n (years)
obs. vs. predicted

n.s. IO
4.01 10
<o.Ol IO
<O.Ol IO
<O.lO 4

n.s. 10
<O.Ol 10
co.01 IO
<O.Ol 10
“.S. 4



171

Table 7
Prrdlcted  and observed annual whole-canopy resptratmn.  based on the daily observed and predlcted  temperatures for five htatlons  In the
Coweeta basm.  Predicted temperatures were from regional regression models tEq. 0)) fit daily to the regional  climate data. Canopy
rehpiratton  was predicted from a locally developed temperature-respiration response function

Predicted annual whole canopy resptration  (tons C /ha/year)
StatIon

Bahed  on observed temperatures Based on predicted temperatures p9 r-test on difference n (years)

CSO I. Valley 2.14 1.12 ns. 10
CS 17.  NE 4deslope 2.25 I .93 <o.os IO
CS2 I. S rideslope 2.23 I.98 <o. I 10
CS28.  high Gdeslope I .9? 1.64 co.05 IO
CS77. high ridge I.+ I .38 n.s. 4

complete canopy development were both later when
phenologies were based on the observed rather than
the predicted temperatures using the regional regres-
sion model. This is consistent with previous compar-
isons (Tables 4 and 5) where predicted temperatures,
particularly minima, were lower than the observed
station temperatures. Station CSOl shows the smallest
differences of four or five days between predicted and
observed phenologies, about 3% of the typical grow-
ing season. This difference is most likely to be the
smallest because the valley bottom station has terrain
conditions most like much of our regional network.
Inversions and cold air drainage would depress tem-
peratures at these locations relative to more upland
locations, leading to a negative bias when predicting
temperatures for stations at upland locations. Errors in
predicted vs. observed phenologies were as high as 2 1
days for upland locations, representing almost 15% of
the typical five-month growing season.

Predicted cumulative canopy respiration also dif-
fered significantly when based on predicted or
observed temperatures (Table 7). Annual respiration
was lower for all the tive stations, and significantly
lower for three of the five. As with phenologies, the
smallest difference was observed at the valley station
CSOl, with the largest difference at the south-facing
sideslope station, CS21. Differences ranged for
approximately 1% to near 15% of the annual total
respiration.

4. Synthesis and conclusions

We observed large, consistent differences in tem-
perature related to elevation, terrain position, and

exposure within the Coweeta Basin. Maximum daily
temperatures decreased with elevation. However,
minimum temperatures showed more complex rela-
tionships, and daily minima averaged approximately
2°C lower at a valley bottom location than nearby
sideslope measurement stations. Maximum tempera-
tures averaged approximately 1.4”C higher on a south-
facing slope when compared to an otherwise similar
northeast-facing slope, and there were no significant
differences between the minimum temperatures
measured at these two stations. Average daily tem-
perature range decreased with elevation, from an
average of 13°C at 700 m to 6.6’C at 1440 m. Maxi-
mum temperature lapse rates varied by method and
stations used in their calculation, showed slight sea-
sonal trends, and averaged 4 to lO”C/km Minimum
temperature lapse rates also varied by season and
method, and averaged from -3” to 5.7”C. Valley
bottom stations should not be used for estimating
the lapse rates, as there appears to be significant
cold-air drainage effects, resulting in inverted
temperatures and positive lapse rates for more than
50% of the days in this study.

We observed significant differences in the accuracy
of regional lapse, regional regression, and kriging
temperature prediction models. Regional regression
models had biases less than 1.4”C,  kriging models had
biases less than 2.O”C, and regional lapse mean abso-
lute errors less than 2.4”C. Predicted minus observed
biases were larger when we compared the regional
regression approach against an independent data set,
with averages ranging from 0.2 to 2.9’C.  Local lapse
models performed approximately as well as regional
regression models in comparisons based on a network
of stations in the Coweeta Basin. Based on these



results. the regional repression and local lapse models
are best. Based on these observations. we conclude the
regional regression model is the best for predicting the
daily maximum and minimum temperatures at land-
scape scales. It is the most accurate and precise of
those tested. and models are simple and easily fit. The
local lapse model yielded similar errors in a small test.
Although we did not test the geographic limits of local
lapse models, we recommend local lapse rate models
should not be applied much beyond the proximity of
the local stations until further investigated.

Temperature prediction errors using the ‘best’ per-
forming landscape model, regional regression, propa-
gated through other models. We observed differences
that were both biologically and statistically significant
when modeling phenology and canopy respiration.
Predictions were best in the valley bottom locations,
and errors substantially larger in upland locations.
Many models are under development and application
by which the temperature-dependent processes are
driven by spatially-explicit temperature predictions
(Aber et al., 1995; Running and Hunt, 1991). Photo-
synthesis, leaf, stem, and soil respiration, vapor pres-
sure deficit, stomata1 conductance, phenologies, and
many other biological phenomena are predicted at
landscape and larger scales. These predictions pre-
suppose accurate, spatially dense temperature predic-
tions, often at daily and finer time steps. This study
identifies a generally applicable method, regional
regression, and characterizes the errors in predicted
daily maximum and minimum temperatures.

In all, we conclude there is significant landscape
variation in temperature in the southern Appalachian
mountains which is only partially represented by
lapse. regional regression, or kriging models. Our
results indicate regional regression models are the
most appropriate of the regional temperature predic-
tion models we tested. However, they also indicate that
the local lapse models may provide comparable or
smaller temperature prediction errors than daily regio-
nal regression or kriging models, at least when suitable
base stations are chosen and when predicting over the
1 km vertical and 3 km horizontal distances in our
local network of stations. Kriging models performed
poorly relative to regional regressions, and were more
difficult and time-consuming to apply. None of these
tested models incorporate terrain position and terrain
shape which are related to the non-linear temperature

differences such as ridge-top warming or basin cool-
ing. Our results indicate that temperature varies non-
linearly between stations due to the terrain position,
and this will contribute to prediction errors in models
that assume so. None of these methods incorporate the
significant landform effects on temperatures observed
here, including both exposure-related increases in the
daily maximum temperature and airshed-related
depression of daily minima. We are aware of no other
studies which compare these three commonly applied
or proposed landscape temperature predictions meth-
ods (lapse rates, regional regression, and kriging),
particularly against a large number of independently
measured field data. Our results are significant not
only in the southern Applachians,  in that the mean
absolute errors in landscape temperature predictions
in other regions may be quite large and depend on the
method chosen. Quantitative models of terrain affects
on temperature are needed when predicting tempera-
tures in mountainous terrain, particularly cold air-
drainage effects on minima and exposure-related
increases in daily maxima.
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