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Abstract
Soil moisture gradients along hillslopes in humid watersheds, although indicated by vegetation gradients and by studies using
models, have been difficult to confirm empirically. While soil properties and topographic features are the two general physio-
graphic factors controlling soil moisture on hillslopes, studies have shown conflicting results regarding which factor is more
important. The relative importance of topographic and soil property controls was examined in an upland forested watershed at
the Coweeta Hydrologic Laboratory in the southern Appalachian mountains. Soil moisture was measured along a hillslope tran-
sect with a mesic-to-xeric forest vegetation gradient over a period spanning precipitation extremes. The hillslope transect was
instrumented with a time domain reflectometry (TDR) network at two depths. Soil moisture w-as measured during a severe
autumn drought and subsequent winter precipitation recharge. In the upper soil depth (O-30 cm), moisture gradients persisted
throughout the measurement period, and topography exerted dominant control. For the entire root zone (O-90 cm), soil mois-
ture gradients were found only during drought. Control on soil moisture was due to both topography and storage before drought.
During and after recharge, variations in soil texture and horizon distribution exerted dominant control on soil moisture content
in the root zone (O-90 cm). These results indicate that topographic factors assert more control over hillslope soil moisture dur-
ing drier periods as drainage progresses, while variations in soil water storage properties are more important during wetter
periods. Hillslope soil moisture gradients in southern Appalachian watersheds appear to be restricted to upper soil layers, with
deeper hillslope soil moisture gradients occurring only with sufficient drought.

Introduction

Soil moisture distribution and controls on hillslopes have

long been subjects of inquiry (e.g. Dreibelbis and Post,
1940; Hack and Goodlett, 1960; Helvey et al., 1972;
Dunne et al., 1975; Burt and Butcher, 1985; Boyer et al.,
1990, Afyuni et al., 1993). Two general physiographic
factors control soil moisture distribution on hillslopes:
soil properties and topographic features. The relative
importance of these controls depends on a complex set
of factors, including rainfall magnitude and frequency,
geologic structure, geomorphic history, and vegetation
type. Few studies, however, have quantified both topo-
graphic features and soil property distribution simultane-
ously; as a result it remains unclear whether topographic
features (Burt and Butcher, 1985; Petch,  1988) or soil
properties (Helvey et al., 1972; Afyuni et al., 1993) pro-
vide more control. Further, it remains unclear how these
controls operate dynamically under various rainfall
regimes.

Ecologists in the Appalachian mountains of North
America have inferred the existence of hillslope soil mois-
ture gradients from hillslope distributions of forest vegeta-
tion (Whittaker, 1956; Hack and Goodlett, 1960; Day and
Monk, 1974). Physical and simulation models have indi-
cated the existence of soil moisture gradients along hill-
slopes in humid temperate watersheds (Hewlett and
Hibbert, 1963; Sloan and Moore, 1984),  but field mea-
surement has not verified the existence of such moisture
gradients (Dreibelbis and Post, 1940; Helvey and Patric,
1988). Decades of measurement in the southern Blue
Ridge have been summarised: ‘We conventionally think of
cove sites as wet and upper slopes as drier, but this gen-
eralization did not hold in the study area because there was
no consistent relationship between soil moisture content
and slope position’ (Helvey and Patric, 1988).

The objectives of this study were: (1) to determine
whether significant hillslope soil moisture gradients
exist along steep hillslopes in humid upland forested
watersheds in the southern Appalachian mountains; and
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(2) to determine the relative importance of topographic
and of soil property controls on hillslope soil moisture dur-
ing both dry and wet seasonal conditions.

Methods
SITE SELECTION

The Coweeta Hydrologic Laboratory is in the Coweeta syn-
cline in the eastern part ofthe southern Appalachian Blue
Ridge. The soils of Coweeta are predominantly Ultisols and
Inceptisols underlain by a deep saprolite layer. Overall
average weathering profile thickness (depth to bedrock) is
about 6 metres (Swank and Douglass, 1975). The major
physical distinction between Ultisols and Inceptisols is
morphological, as their chemical and mineral properties at
Coweeta are very similar (Velbel, 1988).

Select ion cri ter ia  for  the experimental  s i te  were
approached using the inference made by ecologists by
selecting a hillslope with a distinct mesic-to-xeric vegeta-
tion gradient. The hillslope was further selected so that
soil moisture was isolated as the only probable environ-
mental gradient affecting vegetation distribution. Other
criteria included a hillslope with relatively continuous
slope, a lack of rock outcrops and control on environmen-
tal variables other than soil moisture that could distribute
vegetation. ,4 hillslope fitting the criteria was found on the
lower western side of Watershed 2 (WS 2), approximately
200 metres north of the weir. The selected hillslope was
fairly short at 84.7 metres in length (plan view). Visual
inspection, later confirmed by vegetation stem-mapping,
indicated that forest vegetation changed from a mesic
Rhododendron mnximzm-  T.mga canadensis-@emus  alba
association near the stream to a xeric Kalmia  latifola-Pinus
rigida-Quevcus  prims  association on the ridge. The hillslope
had an eastern aspect and an elevation change of roughly
60 metres. The slope of the study transect was relatively
smooth and possessed a steepness typical for watershed
slopes at Coweeta (Table 1). Solar radiation received dur-
ing the day was uniform from cove to ridge due to a rela-
tively low opposing hillslope. Near sunset, the ridgetop
received more solar input than the cove. With an elevation
change of just 60 metres and a nearly constant solar input,
variation in temperature along the hillslope was negligible.
Two soil series for lower WS 2 were previously identified:
Fannin (fine-loamy, micaceous, mesic Typic Hapludult)
on upper slopes and Cullasaja-Tuckasegee (fine-loamy,
oxidic, mesic  Typic Haplumbrept)  near  the s t ream
(Thomas, 1996). Both series are mostly sandy loam to
sandy clay loam and are derived from mica gneiss parent
material, so mineralogical differences that can cause vege-
tation changes (Strahler, 1972) were minimal. In summary,
other environmental gradients (temperature, incident radi-
ation, soil type) that distribute vegetation were relatively
constant. The existence of a strong vegetation gradient,
coupled with the absence of other environmental controls
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on vegetation, indicated a high probability of a soil mois-
ture gradient on this hillslope.

EXPERIMENTAL DESIGN AND SAMPLING

A transect approximately perpendicular to the stream was
established along the center of the hillslope using survey
level and rod. A time domain reflectometry (TDR) net-
work was installed vertically through two depths (O-30 cm,
(r90 cm) along the transect. The &30 cm depth was
chosen to represent upper horizons (0, A, BA) (Gaskin  et
al., 1989); the O-90 cm depth was chosen to represent the
approximate root zone (McGinty,  1976). Sample plots
were placed at 5 m intervals through the first 40 m and
then every 10 m to ridge. Sample plots were also placed
on the streambank and at the divide, giving a total of 14
plots. A plot consisted of 2 depths, each with 3 replica-
tions, for a total of 6 sample points. Three replicates have
been shown to be sufficient to estimate mean soil moisture
content for 5 m plots with no more than a 3% error
(Kamgar et al., 1993). A sample point consisted of two 3-
mm diameter stainless steel welding rods (i.e. TDR rods)
set 5 cm apart and inserted vertically. Litter was removed
during rod emplacement and then replaced. Approx-
imately 2 cm of each rod was left above the surface for
connect ion to  the  TDR meter  (Trase  6050X1,  Soil
Moisture Equipment Corporation). The TDR method
uses an empirically-determined polynomial relationship
between dielectric constant (Ku)  and water content (0) of
a soil, which is essentially independent of soil type, den-
sity, salt content, and temperature for a wide range of soils
(Topp et al., 1985). Knowing time (t) to reflection, the
dielectric constant of soil material is given by K, = (et/L)‘,
w-here c is speed of light and L is length of TDR rods
(Trase manual). Recent work has called for calibration of
TDR to individual measurement sites and for visual inter-
pretation of TDR traces to avoid automated meter inter-
pretation errors (Gray and Spies, 1995). Individual sites
were not calibrated in this work, because of studies that
have calibrated the TDR method to within 1.3% for a
wide range of soils, including sandy loams and sandy clays
loams prevalent in the Coweeta Basin (Topp et al., 1980,
1985). Recalibration for anomalous soils has sometimes
resulted in differing y-intercepts, yet it has not resulted in
significant slope differences (Gray and Spies, 1995). While
it is possible that absolute moisture contents in the present
study had errors due to not calibrating for each of the 42
sites, relative moisture changes would not have been
affected. In all cases in this study, TDR traces were inter-
preted manually by the same individual. A backup TDR
meter (Tektronix 1502s) was also used; this measured an
equivalent distance to reflection. Soil moisture using this
meter was determined by K, = (S/L)2,  where S is mea-
sured distance to reflection (F.N. Dalton, pers. comm.,
1990). Close agreement (within 1%) was found for several
comparisons between Trase and Tektronix metres.
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Table 2. Hillslope physiographic characteristics. Each value below is the mean of three independent replicates, with standard devia-
tions shown in parentheses.

Dista Slope Db
[ml [“I [g cmPa]

0 33(3.8)
5 27(7.8)

10 42(1.2)
15 28(5.7)
20 28(4.4)
25 28(2.3)
30 32(4.0)
35 34(1.2)
40 33(2.1)
50 37(3.5)
60 37(1.5)
70 33(1.5)
80 25(1.5)
85 22(6.2)

.81(.03) 20( .48) ll(1.3) 7(3.6) 1 l(6.7) lS(8.2) 17(7.1)

.86(.07) 16(5.2) 8(0.7) 6(0.0) S(2.0) 9(2.5) 23( 15.)

.89(.14) 16(1.1) 8(0.3) 7(1.0) 7(2.1) h(1.5) 7(2.1)

.85(.08) 16(1.6) 9(1.6) 7(2.5) g(2.9) lO(4.0) 32(8.7)

.91(.07) lS(1.3) 9(0.8) 6(0.6) 9(1.0) S(1.5) 22( 16.)

.94(.10) 13(1.5) S(O.5) 3(0.6) 7(0.6) 7(3.8) 68(3.1)

.94(.13) 14(2.3) 6(2.1) 6(0.6) 9(1.2) S(4.2) 36(15.)

.87( .06) 13(4.2) S(O.8) 8(1.0) S(l.5) 9(3.6) 28( 16.)

.91(.06) 12(.78) 9(0.4) lO(1.5) 6(2.3) 6(1.0) 17(8.5)

.96( .05) 16(2.6) S(O.3) 7(2.0) 7(0.0) 7(1.0) 21(7.8)

.96( .09) 17(4.9) 8(0.3) 8(1.2) S(1.0) lO(3.1) 14(5.3)

.86(.19) 27( 12.) 12(0.6) g(3.8) S(1.2) j(O.6) 9(7.4)

.92(.15) 47(8.2) 1 l(O.7) 6(1.5) 3(0.6) 4(2.0) lS(3.1)

.96(.10) 37(2.7) 1 S(2.4) 6(1.0) 3(1.2) 3(1.2) 1 l(7.5)

Distd

[ml A
Clay[%] Sand[%]

BA B BC A BA B

0 22(3.2)
5 29(3.9)

10 27(4.4)
15 26(2.2)
20 24(3.5)
25 29(2.2)
30 25( 1.7)
35 25(4.4)
40 25(1.8)
50 24(3.4)
60 21(3.2)
70 21(6.2)
80 22(3.2)
85 19(0.7)

31(3.1) 25(2.6) 26(2.1) Sj(3.5) 48(2.3) Sl(3.9)
31(4.1) 29(6.8) 27(3.3) SO(4.7) 46(2.0) 47( 1.9)
28(3.3) 30(4.2) 21(5.5) Sl(5.1) 48(4.7) 48(4.1)
27(5.7) 29( 1.6) 26(6.3) 53(3.0) 47(7.0) 45(1.7)
31(0.7) 35(1.2) 25(4.4) 54(3.1) 47(0.6) 45(3.1)
31(0.9) 34(1.3) 26(0.3) 49(3.3) 47(3.1) 44(3.5)
31(5.5) 29(0.5) 30(2.7) 52(3.5) 46(6.3) 48(0.5)
27(3.5) 29(3.9) 26(0.9) 52(3.4) 52(4.5) 53(3.0)
29( 1.3) 34(0.5) 26(5.3) 52(2.4) 49(1.5) 45(1.5)
29(2.4) 29(7.4) 26(5.0) 52(4.4) 48(3.9) 47(9.1)
24(1.3) 27(4.6) 27(2.8) 56(4.5) 53(0.6) 53(5.1)
29(3.3) 37(1.4) 24(9.4) 60(7.6) 49(3.9) 43(4.0)
29(5.3) 34(2.0) 28(5.1) 56(0.5) 47(3.8) 46(3.2)
26(2.5) 23(5.1) 22(4.0) 59(0.2) 49(3.8) SS(7.0)

Org[%] Horizon depthh[cm]
0 A 0 A BA B BC

27(25.)
30( 16.)
36(26.)
25(8.1)
39(22.)
4(4.6)
29(13.)
35(15.)
45(8.5)
46(5.9)
jl(3.8)
62(2.6)
56(6.7)
46( 14.)

BC

53( 1.7)
56( 1.4)
56(3.0)
52(3.1)
52(3.9)
SO(2.1)
49(2.2)
54(1.2)
56(2.3)
53(1.7)
52(1.9)
54( 12.)
Sl(2.2)
57(3.2)

,3 measured horizontally from stream
” measured vertically

All TDR rods were in place by 10 November, 1991; the
first sample was taken on 11 November. Samples were col-
lected intermittently depending on rainfall (16 samples in
30 days) through the period of precipitation recharge. A
collection period lasted 2-2.5 hours. With a few exceptions
due to rain or meter failure, collections were conducted
within 3 hours of noon. After recharge, collection was con-
ducted less frequently, with a final sample on 3 February,
1992.

PHYSIOGK.IPHIC  VAKIABLES

Indices of topographic and soil variation were used to con-
trast the relative importance of controls on soil moisture

distribution. For humid watersheds in relatively steep ter-
rain, topographic factors are a primary control on stream-
flow (Hewlett and Hibbert, 1967; Wood et al., 1990). Soil
moisture at a point is positively related to the cumulative
upslope  watershed area draining to that point, or upslope
source area (n). Soil moisture at a point is also inversely
related to local slope angle (tanfl.  Based on these obser-
vations, Beven and Kirkby (1979) developed an index of
topographic similarity that could be applied at any given
point on a watershed surface:

Topoguphic  Index = ln(a/lan@) (1)

Such indices that explain cumulative topographic effects
have been used to classify areas within a watershed by
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topographic similarity to predict streamflow (Hornberger
et al., 1985; Wood et al., 1990) as well as soil moisture dis-
tribution (O’Loughlin,  1986; Jackson, 1991).

Variation in soil properties affecting soil moisture may
occur vertically as soil horizons with varying water hold-
ing capacities change and laterally along hillslopes with
changing depths of soil horizons due to geomorphic
processes (Conacher and Dalyrmple, 1977; Buol et al.,
1989). Soil properties affect the shape of the soil moisture
characteristic equation. Several studies have predicted soil
moisture content at fixed matric  potentials based on tex-
ture, bulk density and/or organic matter content alone
with correlation coefficients ranging from 0.80 to 0.97
(Williams et al.,  1992). In general, the greater the clay con-
tent, the greater the water content at any particular suc-
tion, and the more gradual the slope of the curve. In
contrast, an inverse relationship is generally found
between soil moisture content and sand (Hillel, 1980;
Cosby et al., 1984). Based on these relationships, in this
study a storage index was developed to represent soil mois-
ture holding capacity integrated over a given soil depth.
The storage index accounts for the relative percentages of
clay and sand in a soil particle size distribution weighted
by horizon depth, and is calculated by:

-W?.CLjStorage Index = ~
C(D,.Sa,)

(2)

where for horizon i, D, is depth, Cl, is clay particle size
fraction and Sn, is sand particle size fraction. Organic mat-
ter content has also been correlated with soil moisture dis-
tribution (Rawls et al., 1982). To account for control by
organic matter distribution in upper horizons, a depth
weighted organic matter index was used:

Orgnnic Matter Index = .Z(D;Or,) (3)

where for horizon i, D, is depth and Or, is the organic mat-
ter fraction.

FIELD MEASUREMENTS

Soil horizons in each sample plot were determined using a
soil auger rather than soil pits to obtain a closer estimation
of soil variation near all 42 TDR sample sites and to min-
imize damage to the soil profile on the hillslope. Successive
15 cm segments were extracted to determine the depths of
each horizon down to 85 cm (auger length). Horizon deter-
mination was based on textural and colour differences, and
classified as either 0, A, BA, B, or BC (Buol et al., 1989).
Three soil cores were extracted for each plot (each within
a metre of a TDR sample point) and horizon depths were
averaged to represent the plot. To obtain sufficient sample
for textural analyses in the case of thin horizons, additional
soil was collected within a metre of each core measure-
ment. Slope angle (P, at each TDR site was measured
using a clinometer. Length for upslope  contributing area
(a) was determined by surveyed distance to the divide.
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Width for upslope  contributing area was set equal to the
widest spacing in TDR sites on any plot, 20 m, as terrain
analysis has shown this hillslope to be divergent in plan-
form (Yeakley et al., 1995). All soil samples collected for
soil property analyses were first oven dried at 105 “C for
48 hours. Particle size analysis was conducted using the
hydrometer method (Kalra and Maynard, 1991) for the
mineral horizons (n = 168: 4 horizons X 3 cores X 14
plots); at least 50 g of sample was used for each hydrom-
eter test. Bulk density, Db, was measured using a Soiltest
field density sampler (10.1 cm diameter X 11.8 cm depth).
Bulk density samples (n = 42) were extracted from the
upper 30 cm of soil, after first removing the 0 horizon.
Organic matter was determined using loss-on-ignition for
samples from the 0 and A horizons (n = 84). At least 5.00
g of sample was burned in a muffle furnace at 375 “C for
at least 16 hours (Kalra and Maynard, 1991).

ANALYSIS

Means and variances were computed for each measure-
ment period for soil moisture values by depth and by plot.
Although only directly measured soil depths (i.e., O-30 cm
and O-90 cm) were admitted for use in analyses of gradi-
ents and physiographic controls, an estimate was made of
30-90 cm layer soil moisture to contrast whole-slope
response of the O-30 cm layer with that of the 3&90  cm
layer. Each point value 83(&90  was estimated using the rela-

t i o n  %yo”&90  = &o+&o  +  @wo”dwo,  where  d is
depth. Mean soil moisture values for both the O-30 cm and
estimated 30-90 cm soil layers were areally-weighted by
plot size along the transect to determine a value for each
soil layer over the entire hillslope.

Moisture gradients were approximated by the regression
coefficient (or slope), using linear regression for both mea-
sured depths (O-30 cm, O-90 cm). For moisture gradient
determination, the independent variable was normalised
plane distance along the hillslope, varying from 0 to 1. The
dependent variable was fractional moisture content, vary-
ing from about 0.05 to 0.45. A moisture gradient could
then vary from 0% (i.e. no change along the hillslope) to
?40% (i.e., maximum change in soil moisture content
from ridge to stream). In using the regression coefficient
to represent a soil moisture gradient, no assumption was
made of a linear process distributing soil moisture or that
moisture gradients along hillslopes are best described as
linear relations. Rather, a linear approximation was just as
used as the most straightforward representation of whether
a change in soil moisture from ridge to stream was found.

Multiple regression analyses were used to determine rel-
ative importance of controls on soil moisture. Independent
variables included all primary physiographic measure-
ments (Table l), plus the topographic index, the organic
matter index and the storage index over the appropriate
depth (i.e. either O-30 or &90 cm). Stepwise  regression
was used as a screening analysis to determine which inde-



8011  moisture gradients  and controls on a southern Appalachian hillslope from drought through recharge

pendent variables were significantly correlated in partial F
tests (pc.05)  with soil moisture distribution in each mea-
sured soil layer. For those independent variables found
significantly correlated, partial regression analyses of the
appropriate order (Zar, 1984) were conducted to isolate
their relative importance in controlling soil moisture on
the study hillslope from drought through recharge. Two-
tailed t-tests were used to determine the significance level
of resulting partial correlation coefficients.

Results
S O I L  M O I S T U R E  RESPOKSE

Only 4.8 cm rain fell during September and October,
1991, 80% below the mean for those months (Fig. 1).
Shortly after the TDR network was installed, precipitation
recharge began with a 12.7 cm rain over 21-23 November,
1991. A second large storm front deposited 11.6 cm from
30 November to 3 December, 1991. Several subsequent
lighter rains occurred during the following two months.
Streamflow approximately doubled following the two
storms (Fig. 1).

Contrasting the areally-weighted mean soil moisture
response between the  O-30 cm and 30-90 cm layers
showed that before the recharge, the lower layer was about
3% higher in moisture content (18% vs. 15%). Following
the 12.7 cm event, average moisture content in the top
layer peaked one day later at 29%, while the lower layer
peaked two days later at 32%. During the second event of
11.6 cm, moisture content in both layers was near 32%
(Fig. 1). Drainage after these events followed a negative
exponential function. Sporadic rain events kept the mean
value of both layers between 25 and 30% for the remain-
der of the study period. Along the transect, peak values
corresponded to one of the two major rain events (21-23
November, 1991, and 30 November-3 December, 1991).

S O I L  M O I S T U R E  G R A D I E N T S

The period of September through October, 1991, was the
second driest two month period on the 63 year rainfall
record at Coweeta. Considering the severity of the
drought as well as the amount of rain (24.3 cm) falling
between 11 November and 2 December, 1991, these

p [cm] o.75 - .. .., .,...
I

25-.. _
Q [m3/hr]

15__

Days since Ott I,1991

Fig. 1. Precipitation (top) and streamflow (middle) j%r WS 2 fram I October, 1991, to IO February, 1992. The bottom graph shows corre-
spondq  arevage sol1 motsture  on a WS 2 hillslope at two depths: &30 cm (-•-) and 3G90  cm (-•-).
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graphs approximate the range of soil moisture response for
this hillslope profile. Soil moisture varied with position
along the transect in both the s-30 cm and &90 cm lay-
ers during the drought. Least squares regression of hills-
lope soil moisture content (Fig. 2) showed that a gradient
was apparent in both layers before recharge (-14%,  r2 =
.77, pc.01 in the &30 cm; -9%, r2 = .47, pc.01 in  the
O-90 cm). After recharge, the gradient was reduced in the
upper layer (-lo%, r2 = .55, pc.01)  and became insignifi-
c a n t  f o r  t h e  &90 c m  d e p t h  (-3%, 12 = .08, p = .33).
During sample collection,. position along the hillslope
never again explained more than 15% of the variation in
soil moisture for the &90 cm soil layer.

0.45 I , I I /

0.40 T O-30 c mc m

0 10 20 30 40 50 60 70 6010 20 30 40 50 60 70 60

II0.400.40 TT  TT O-90 cmO-90 cm -I

0.350.35 -- ii  iiTT0.300.30 -- $1$1

0.250.25 II

fy?-f-.fy?-f-.  14.14.

00 -p-p  T

0.20 0.20 ii

II

f+f+

11
11

0.150.15 -- QQ ff++  -,-,
0.100.10 II--

00 1010 2020 3030 4040 5050 6060 7070 8080

Distance from stream [m]from stream [m]

Fig. 2. Soil moisture response runges:  ,fkn drought (I I November,
1001; -e-)  through 24.3  (WI precipitution rechurge  (2 December .
1991; -v-).  Euch p&t is u meun 14‘3  measurements. Least squares
regressions of‘.wl tnok~ure content on dLstunce  ulmg hillslope in the
shullom  lu,yer  shamed  s~C~n&.unt  (p<.O.i) gmdients hefire und ujier
rechurge.  Regressrom  in the deeper lu,yer  showed u sign~jkunt  grudi-
ent durq drought, hut not gfier recharge.

PHYSIOGRAPHIC: CON?‘ROLS

Measurement of soil properties showed bulk density for
the upper 30 cm ranging from .81 to .96 g cm 3 and soil
organic matter in the A horizon ranging from 6 to 15%
along the transect (Table 1). These values were  more sim-
ilar to those reported for Cullasaja-Tuckasegee than for
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Fannin soils (Thomas, 1996). Organic matter in both the
0 and A horizons was highest near the divide. The A hori-
zon was thicker nearer the stream. The B horizon, how-
ever, was thickest in the lower midslope, 25530 m from the
stream. Soils were predominantly sandy loam and sandy
clay loam, as expected. Clay content in the A and BA hori-
zons was higher nearer the stream; however, clay content
in the B horizon was highest both near the divide (70-80
m from stream) and in the lower midslope  (20-25 m from
stream). Overall, clay content was significantly higher
(pc.01)  in the BA and B horizons than in the A and BC
horizons (Table 1).

Stepwise regression of the O-30 cm layer moisture mea-
surements on physiographic variables found three signifi-
cant independent variables: topographic index, organic
matter index, and storage index for O-30 cm. Stepwise
regression of the O-90 cm layer moisture measurements on
physiographic variables found only the storage index for
&90 cm and the topographic index significant. For the
shallow depth (O-30 cm), the topographic index was posi-
tively correlated with soil moisture in 2nd order partial
correlation analysis for the entire measurement period
(Fig. 3, top). Topography alone explained from 40 to 72%

1.0, ,1.0, , // (

0 7 14 2 1 28 35 42 49 56 63 70 77 84

Days since since Nov11,1991Nov11,1991

Pig. 3. Pig. 3. Squared purtrul correlutions  ,fiw physiogruphic zariubles vs.
soil wmsture  content &mg  the measurement period. Ph,yszographiL
zunubles  shonm ure: topographx  tndeex  (-V-), s o i l  storage  inde.z
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of the variation in soil moisture. Soil property variables
were significantly correlated during the recharge event, but
explained less variation than topography throughout the
measurement period for the O-30 cm soil layer.

For the O-90 cm depth (Fig. 3, bottom), topographic
and storage indices each explained at least 33% of the vari-
ation during drought. During recharge (22 November-2
December, 1991),  control shifted markedly to the storage
index (Fig. 3, bottom). After recharge (2 December-3
February, 1991),  the topographic index began to show
higher correlations once again, although none were statis-
tically significant. The storage index remained the only
significantly correlated control over soil moisture in the
period after recharge, explaining from 39 to 53% of the
variation in soil moisture distribution for the O-90 cm
layer.

Discussion
S O I L  M O I S T U R E  R E S P O N S E

These results suggest an extreme case for hillslope soil
moisture gradients in the southern Appalachians. This rel-
atively short hillslope exhibited a mesic-to-xeric vegetation
species gradient without significant variation in other pri-
mary controls on vegetation, such as aspect (i.e. solar radi-
ation), elevation (i.e. temperature), or soil mineralogy (i.e.
nutrient availability) (Whittaker, 1956; Strahler, 1972).
The measurement period coincided with the period of the
year that has the lowest average precipitation at Coweeta
(Swift et al.,  1988). During autumn 1991, this seasonal
drying effect was enhanced due to the unusually severe
drought, only 209/o of the longterm  average rainfall. Such
an extreme drought followed by 24 cm rain within two
weeks allowed capture of the soil moisture response range
on the instrumented hillslope over a short sampling
period.

In addition to the drought, late summer and early
autumn evapotranspiration lowered average soil moisture
content on the hillslope. Due to closed canopy forest over
the full length of the hillslope, it is unlikely that late sum-
mer transpirational differences along the slope significantly
affected the gradients found prior to recharge, particularly
in comparison with topographically-driven drainage.
Diurnal evapotranspirational effects on WS 2 streamflow
largely ended at least a month before recharge, during mid
October, 1991 (Fig. 1). The timing of the measurement
period minimized the effect of transpiration due to leaf fall
having already occurred from the dominant deciduous
canopy trees on the hillslope. Transpirational losses dur-
ing the period of recharge from the evergreen understory
were relatively insignificant, as incident solar radiation for
this eastern aspect and temperate latitude is low near win-
ter solstice (Swift et al., 1975).

These results showing that upper soils had the largest
response range (Fig. 2) correspond with the finding that

ridge soils had the greatest amount of annual variation in
soil moisture (Helvey et al., 1972). Soil moisture content
in the root zone (O-90 cm) was higher near the ridge than
on the midslope  after recharge, which also concurs with
Helvey et al. (1972). The primary difference between stud-
ies was sampling resolution. Helvey et al. (1972) took
monthly samples over a multi-year period at 3 hillslope
positions broadly designated as cove, midslope  and ridge.
In contrast, this study sampled with replication at each of
14 points along a hillslope with a roughly 2 day timestep
across the range of precipitation conditions.

This study represented the transient nature of soil mois-
ture dynamics in response to large events on a hillslope
previously drained by severe drought. Drainage due to
topographic factors from higher, steeper portions of the
hillslope has been found to have both vertical and lateral
components in Coweeta soils (Hewlett and Hibbert, 1963;
Gaskin  et nl., 1989) and may produce a moisture gradient
in upper soil layers, as shown in physical models at
Coweeta (Hewlett and Hibbert, 1963). It was found in the
present study that a soil moisture gradient persisted in
the upper 30 cm throughout the measurement period. For
the entire root zone (O-90 cm), however, a significant gra-
dient was present only during the drought. These results
indicate that root zone soil moisture gradients on steep
humid forested hillslopes are ephemeral, occurring only
with sufficient drought.

PHYSIOGRAPHIC CONTROLS

That an index of topography would be correlated with soil
moisture distribution is supported by several studies (e.g.
Anderson and Kneale, 1982; Burt and Butcher, 1988;
Boyer et al., 1990). For example, significant correlations
between the topographic index, as well as with an index of
landform  convexity (i.e. plan curvature), and soil satura-
tion depth above bedrock were found along a grass-
covered hillslope (Burt and Butcher, 1985). Neither
topographic index was entirely satisfactory, however, and
they suggested that knowledge of varying soil depths
would have been helpful. In another study of first order
basins having both forest and pasture vegetation, topo-
graphic control on soil moisture was particularly evident
on shallow slopes and in steeper areas where hillslope form
was strongly concave (Petch, 1988).

Correlation between soil moisture content and an index
of varying soil properties is also supported by others (e.g.
Parker, 1978; Pierson, 1980; Helvey and Patric, 1988).
Observations at the North Appalachian Experimental
Watershed indicated soil type had more influence on soil
moisture than relative elevation (Dreibelbis and Post,
1940). Work in the southern Appalachians showed that
mean annual soil moisture in the top 2.1 m on ridges was
comparable to that found in cove sites. Further, midslope
soil moisture content was consistently lowest (Helvey et
al.,  1972). More recent studies have shown variation in soil
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properties to be at least as important as topography in
determining soil moisture distribution (Boyer et al., 1990;
Afyuni et al., 1993).

Our measurements of soil property distribution (Table
1) correspond with various studies over both plot and
landscape scales. At the plot scale, soil clay content tends
to increase with depth through the solum, then decrease
or remain constant going from B to C horizons (Buol et
al., 1989). On the landscape scale (Gerrard, 1993),  upper
horizon thickness is generally smallest on the backslope
(i.e. upper midslope) due both to high rates of erosion and
low rates of soil profile development (Walker et al., 1968).
Summit or upland soils are less prone to erosion and are
usually more clayey, as found by Afyuni et al (1993) for
hillslopes in the North Carolina Piedmont and in studies
of road effects on erosion in the Coweeta Basin (Swift,
1984). Footslope soils show the least amount of coarse
fraction due to mechanical sorting of weathered drift into
finer components (Conacher and Dalrymple, 1977).

Topography was the dominant control in the upper
layer throughout the measurement period. The storage
index was generally not significantly correlated with mois-
ture content in the upper layer (Fig. 3, top). For the
deeper layer, however, both indices were significantly cor-
related with soil moisture content prior to recharge.
During drought and then again as drainage occurred after
recharge, the influence of topography became more impor-
tant as moisture moved deeper and downslope. The stor-
age index, however, became the only significant control
during and after recharge (Fig. 3, bottom). The higher clay
B horizon along the transect was thickest in the lower foot-
slope; also higher clay content was found in the B horizon
near the divide than on the rest of the transect (Table 1).
In other areas the more sandy BC horizon, with a lower
moisture holding capacity, occupied a larger portion of the
measured depth.

I M P L I C A T I O N S

The results of this study indicate that both topography and
soil properties play important roles in distributing soil
moisture along hillslopes in humid watersheds. Variation
in correlation between these controls is a function of
antecedent soil moisture conditions driven by the fre-
quency, intensity and duration of precipitation. Topo-
graphic factors assert more control during drier periods as
drainage progresses, while variation in soil water storage
properties is more important during and following rain
events (Fig. 3). These results suggest that spatially dis-
tributed watershed hydrology models predicting soil mois-
ture redistribution, as well as other hydrologic processes
such as evapotranspiration, at fine resolutions within
watersheds should be parameterized with plot-scale infor-
mation on soil property variation in addition to the more
standard information on topographic variation.

For the overall root zone on upland forested hillslopes,
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physical control on soil moisture gradients is suggested to
vary between drainage and storage controls, with the vari-
ation driven by temporal patterns of precipitation. The
magnitude of hillslope soil moisture gradients in this study
was a function of local slope, upslope  contributing area,
thickness of horizons with higher clay content, and depth
in the soil. Drainage due to topographic factors from
higher, steeper portions of the hillslope may produce a
moisture gradient in the upper soil layers. Deeper soils
have a lagged response due to percolation time in the
upper layers, as well as having more clay content and lower
hydraulic conductivities due to diminished macroporosity.
As a result, deeper soil layers may not show hillslope mois-
ture gradients during short duration droughts. Further,
ridge soils with more extensive clay layers than midslope
soils may retain soil moisture longer, delaying topograph-
ically driven drainage. These factors cause soil moisture
gradients along hillslopes in humid watersheds to be
ephemeral and primarily restricted to upper soil layers.
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