•

- •
- •
- •
- •
- •
- •
- •

EFFECTS OF RENAL DISEASE ON PHARMACOKINETICS

Arthur J. Atkinson, Jr., M.D. Senior Advisor in Clinical Pharmacology Clinical Center, NIH

TIMING OF PK & PD STUDIES

FDA GUIDANCE FOR INDUSTRY

PHARMACOKINETICS IN PATIENTS WITH IMPAIRED RENAL FUNCTION - STUDY DESIGN DATA ANALYSIS, AND IMPACT ON DOSING AND LABELING

AVAILABLE AT: http://www.fda.gov/cder/guidance/index.htm

PATIENT CHARACTERISTICS IMPACT DRUG RESPONSE

PATHOPHYSIOLOGIC FACTORS NOT ACCOUNTED FOR IN DRUG DOSING*

* Lesar TS, Briceland L, Stein DS. JAMA 1997;277:312-7.

GOALS OF RENAL DISEASE EFFECTS LECTURE

- DOSE ADJUSTMENT IN PATIENTS WITH RENAL IMPAIRMENT
- EFFECT OF RENAL DISEASE ON RENAL ELIMINATION
- EFFECT OF RENAL DISEASE ON DRUG METABOLISM
- EFFECT OF RENAL DISEASE ON DRUG DISTRIBTION
- EFFECT OF RENAL DISEASE ON DRUG ABSORPTION

STEADY STATE CONCENTRATION

CONTINUOUS INFUSION:

$$C_{SS} = \frac{I}{CL_{E}}$$

INTERMITTENT DOSING:

$$\overline{C}_{ss} = \frac{DOSE/\tau}{CL_{E}}$$

ADDITIVITY OF CLEARANCES

$\mathbf{CI}_{\mathbf{E}} = \mathbf{CI}_{\mathbf{R}} + \mathbf{CI}_{\mathbf{NR}}$

 \bullet

CL_RVS. CL_{CR} IS LINEAR

* From: Stec GP, et al. Clin Pharmacol Ther 1979;26:618-28.

ADDITIVITY OF CLEARANCES

$\mathbf{CI}_{\mathbf{E}} = \mathbf{CI}_{\mathbf{R}} + \mathbf{CI}_{\mathbf{NR}}$

 \bullet

NOMOGRAM FOR CIMETIDINE DOSING*

*From: Atkinson AJ Jr, Craig RM. Therapy of peptic ulcer disease.

•

KEY ASSUMPTIONS OF DETTLI METHOD

• CL_{NR} REMAINS CONSTANT WHEN RENAL FUNCTION IS IMPAIRED

 \bullet

• CL_R DECLINES IN LINEAR FASHION WITH CL_{CR}

LABELING FOR CIMETIDINE*

- <u>DOSAGE ADJUSTMENT</u>
 1/2 NORMAL DOSE IF CL_{CR} < 30 mL/min
- <u>PHARMACOKINETICS</u> FOLLOWING I.V. OR I.M. ADMINISTRATION, "75% OF DRUG IS RECOVERED FROM THE URINE AFTER 24 hr AS PARENT COMPOUND

* Physician's Desk Reference. 54th edition, 2000.

NOMOGRAM FOR CIMETIDINE DOSING*

*From: Atkinson AJ Jr, Craig RM. Therapy of peptic ulcer disease.

•

ELIMINATION HALF-LIFE

ullet

 \bullet

 \bullet

igodol

۲

 \bullet

MECHANISMS OF RENAL ELIMINATION

I. GLOMERULAR FILTRATION

- AFFECTS ALL DRUGS & METABOLITES OF APPROPRIATE MOLECULAR SIZE
- INFLUENCED BY PROTEIN BINDING (f = FREE FRACTION) DRUG FILTRATION RATE = GFR x f x [DRUG]

II. RENAL TUBULAR SECRETION

- NOT INFLUENCED BY PROTEIN BINDING
- MAY BE AFFECTED BY COMPETITION WITH OTHER DRUGS, ETC. *EXAMPLES:*

ACTIVE DRUGS:

METABOLITES:

ACIDS – PENICILLIN BASES – PROCAINE AMIDE GLUCURONIDES, HIPPURATES, ETC.

III. REABSORPTION BY NON-IONIC DIFFUSION

- AFFECTS WEAK ACIDS & WEAK BASES
- ONLY IMPORTANT IF EXCRETION OF FREE DRUG IS MAJOR ELIMINATION PATH *EXAMPLES*:

WEAK ACIDS: WEAK BASES: PHENOBARBITAL QUINIDINE

IV. ACTIVE REABSORPTION

• AFFECTS IONS, NOT PROVED FOR OTHER DRUGS EXAMPLES: HALIDES: ELUC

HALIDES: ALKALINE METALS: FLUORIDE, BROMIDE LITHIUM

RESTRICTIVE VS. NONRESTRICTIVE ELIMINATION

<u>RESTRICTIVE</u>:

CLEARANCE DEPENDS ON PROTEIN BINDING ($CL = f_U \circ CL_{int}$)

NONRESTRICTIVE:

CLEARANCE INDEPENDENT OF PROTEIN BINDING (CL = Q)

GOALS OF RENAL DISEASE EFFECTS LECTURE

• EFFECT OF RENAL DISEASE ON DRUG METABOLISM

• EXAMPLES: PROCAINIMIDE - ACETYLATION PHENYTOIN - HYDROXYLATION

EFFECT OF RENAL DISEASE ON DRUG METABOLISM

	EXAMPLE	METABOLIC CLEARANCE
I. OXIDATIONS	PHENYTOIN	NORMAL OR INCREASED
II. REDUCTIONS	HYDROCORTISONE	SLOWED
III. HYDROLYSES		
PLASMA ESTERASE	PROCAINE	SLOWED
PLASMA PEPTIDASE	ANGIOTENSIN	NORMAL
• TISSUE PEPTIDASE	INSULIN	SLOWED
IV SYNTHESES		
GLUCURONIDE FORMATION	HDYROCORTISONE	NORMAL
• ACETYLATION	PROCAINAMIDE	SLOWED
GLYCINE CONJUGATION	PAS	SLOWED
• O-METHYLATION	METHYLDOPA	NORMAL
• SULFATE CONJUGATION	ACETAMINOPHEN	NORMAL

PROCAINAMIDE ACETYLATION

N-ACETYLPROCAINAMIDE (NAPA)

PROCAINAMIDE KINETICS IN NORMAL SUBJECTS *

* From: Gibson TP. Kidney Int 1977;12:422-9.

•

PROCAINAMIDE KINETICS IN DIALYSIS PATIENTS*

* From: Gibson TP. Kidney Int 1977;12:422-9.

۲

PROCAINAMIDE KINETICS IN DIALYSIS PATIENTS*

NORMALS **UREMIC PATIENTS SLOW** FAST **SLOW** FAST 1.95 1.41 1.93 $V_{d(ss)}$ (L/kg) 1.93 $T_{1/2}$ (hr) 2.6 12.2 17.0 3.5 CL_{F} (L/kg) 809 600 118 94 CL_{R} (L/kg) 426 357 $\mathbf{0}$

CL_{NR} (L/kg) 383 243 118 94

* From: Gibson TP. Kidney Int 1977;12:422-9.

PHENYTOIN HYDROXYLATION

 \bullet

PHENYTOIN

p - HPPH

PHENYTOIN KINETICS IN DIALYSIS PATIENTS*

NORMALS UREMIC PATIENTS % UNBOUND (f) 12% 26% V_{d(AREA)} 0.64 L/kg 1.40 L/kg CL_H 2.46 L/hr 7.63 L/hr CL_{int} 20.3 L/hr 29.9 L/hr

* From: Odar-Cederlöf I, Borgå O: Eur J Clin Pharmacol 1974;7:31-7.

 \bullet

RESTRICTIVE VS. NONRESTRICTIVE ELIMINATION

<u>RESTRICTIVE</u>:

CLEARANCE DEPENDS ON PROTEIN BINDING ($CL = f_U \circ CL_{int}$)

NONRESTRICTIVE:

CLEARANCE INDEPENDENT OF PROTEIN BINDING (CL = Q)

EFFECT OF BINDING CHANGES ON APPARENT DISTRIBUTION VOLUME*

$\mathbf{V}_{d} = \mathbf{E}\mathbf{C}\mathbf{F} + \boldsymbol{\varphi}\mathbf{f}_{u}(\mathbf{T}\mathbf{B}\mathbf{W} - \mathbf{E}\mathbf{C}\mathbf{F})$

* Atkinson AJ Jr, et al. Tremds Pharmacol Sci 1991;12:96-101.

GOALS OF RENAL DISEASE EFFECTS LECTURE

- EFFECT OF RENAL DISEASE ON DRUG
 DISTRIBTION
 - PLASMA PROTEIN BINDING

EXAMPLE: PHENYTOIN

- TISSUE BINDING

EXAMPLE: DIGOXIN

EFFECT OF RENAL DISEASE ON BINDING TO PLASMA PROTEINS*

BASIC OR NEUTRAL DRUGS:

NORMAL OR SLIGHTLY REDUCED

ACIDIC DRUGS:

REDUCED FOR MOST

* From: Reidenberg MM, Drayer DE: Clin Pharmacokinet 1984;9(Suppl. 1):18-26.

EFFECT OF RENAL DISEASE ON PHENYTOIN PROTEIN BINDING

FREE AND TOTAL PHENYTOIN LEVELS

۲

THERAPEUTIC RANGE OF PHENYTOIN LEVELS IN DIALYSIS PATIENTS

BASED ON TOTAL LEVELS: $5 - 10 \mu g/mL$

BASED ON "FREE" LEVELS: 0.8 - 1.6 µg/mL

PRIMARY DIFFICULTIES IN PHENYTOIN DOSE ADJUSTMENT

• NONLINEAR ELIMINATION KINETICS

• VARIATION IN BINDING TO PLASMA PROTEINS

NONCANCER DRUGS CAUSING ADR'S*

PHENYTOIN PREDNISONE DIGOXIN** AMIODARONE ASPIRIN** CO-TRIMOXAZOLE** PENTAMIDINE

CARBAMAZEPINE CODEINE** LITHIUM** **THEOPHYLLINE** DESIPRAMINE** DEXAMETHASONE GENTAMICIN****

* 1988 NMH DATA (CLIN PHARMACOL THER 1996;60:363-7)
** DRUGS FOR WHICH PLASMA LEVELS ARE AVAILABLE

IMPAIRED RENAL FUNCTION REDUCES DIGOXIN DISTRIBUTION VOLUME*

$V_{d} = 3.84 \cdot wt(kg) + 3.12 CL_{CR}(ml/min)$

* Sheiner LB, et al. J Pharmacokinet Biopharm 1977;5:445-79.

EFFECT OF RENAL DISEASE ON BIOAVAILABILITY

UNCHANGED BIOAVAILABILITY: CIMETIDINE DIGOXIN **DECREASED BIOAVAILABILITY: D-XYLOSE** FUROSEMIDE **INCREASED BIOAVAILABILITY: PROPRANOLOL** DEXTROPROPOXYPHENE

۲

CRITERIA FOR NORMAL D-XYLOSE ABSORPTION

5-hr URINE RECOVERY> 4 g[SERUM] 1 hr AFTER DOSE $\geq 0.2 \text{ mg/mL}$ % DOSE ABSORBED> 42%k_a> 0.37 hr⁻¹

 \bullet

KINETIC MODEL USED TO ANALYZE D-XYLOSE ABSORPTION*

* From Worwag EM, et al. Clin Pharmacol Ther 1987;41:351-7.

 \bullet

۲

 \bullet

۲

۲

 \bullet

CALCULATION OF BIOAVAILABILITY FROM FIRST-ORDER ABSORPTION MODEL

D-XYLOSE ABSORPTION WITH MODERATE RENAL IMPAIRMENT*

* From Worwag EM, et al. Clin Pharmacol Ther 1987;41:351-7.

 \bullet

•

EFFECT OF RENAL DISEASE ON D-XYLOSE ABSORPTION*

PATIENT GROUP	k _a (hr ⁻¹)	k _o (hr ⁻¹)	% DOSE ABSORBED
NORMALS	1.03 ± 0.33	0.49 ± 0.35	69.4 ± 13.6
MODERATE	0.64 ± 0.28	0.19 ± 0.15	77.4 ± 14.8
DIALYSIS	0.56 ± 0.42	0.67 ± 0.61	48.6 ± 13.3

* From: Worwag EM et al. Clin Pharmacol Ther 1987;41:351-7.

FUROSEMIDE

ullet

 \bullet

igodol

igodol

igodol

 \bullet

igodol

FUROSEMIDE ABSORPTION WITH ADVANCED RENAL IMPAIRMENT*

* From Huang CM, et al. Clin Pharmacol Ther 1974;16:659-66.

۲

RELATIONSHIP BETWEEN FUROSEMIDE ka AND F*

۲

•

FACTORS AFFECTING RATE AND EXTENT OF DRUG ABSORPTION

SIMULTANEOUS ADMINISTRATION OF ORAL NAPA AND IV NAPA-C^{13*}

* From Atkinson AJ Jr, et al. Clin Pharmacol Ther 1989;46:182-9.