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Choosing a Transformation in Analyses
of Insect Counts from Contagious
Distributions with Low Means

W.D. Pepper, S.J. Zarnoch, G.L. DeBarr,
P. de Groot, and C.D. Tangren

Abstract

Guidelines based on computer simulation are suggested for choosing a
transformation of insect counts from negative binomial distributions with
low mean counts and high levels of contagion. Typical values and ranges
of negative binomial model parameters were determined by fitting the
model to data from 19 entomological field studies. Random sampling of
negative binomial distributions was simulated and ANOVA’s  were
performed on simulated data for randomized complete block designs with
treatment means corresponding to means of negative binomial
distributions. The influence of analysis variable, treatment-mean
configuration, range in treatment means, significance level of statistical
tests, level of contagion, number of blocks, and number of replications in
time on observed power and Type I error of F-tests was studied. A
computer program was developed to recompute observed power of F-tests
for any combination of these factors. The program facilitates choosing a
transformation and may also be used to evaluate tradeoffs and determine
affordable experimental factors for a future design with a given set of
statistical attributes.

Keywords: Contagious distribution, entomology, transformation,
variance-mean relationship, variance stabilization.

Introduction

Entomological studies involving the field testing of different
treatments require consideration of a number of controllable
factors in the planning and analysis phases of the work. In
the planning stage, factors common to many studies, such as
the number of replicates in space or time and the
significance level for tests, must be considered. In some
studies, the effect of low insect counts and the skewness of
their distribution must also be considered. A common
problem with insect counts is that the frequency distribution
is frequently skewed to the right, resembling a nonnormal
discrete distribution where the variance is related to the
mean. Thus, when treatments differ, heterogeneous
variance is guaranteed. Parametric analyses of such data
tend to produce too many significant results in F-tests and t-
tests (Snedecor and Co&ran  1967). Therefore, in the
analysis phase of a study, two questions must be answered:
(1) does the data require transformation, and (2) what type
of transformation is required to produce a variate with a
more stable variance and a frequency distribution that is
approximately normal? The data analyst also decides
whether to rank the response from experimental units by
treatment and perform nonparametric analyses or perform
parametric analyses on the ranks (Conover 1980). Few

guidelines are available on how to choose a transformation in
parametric analyses of data where insect counts are low or
how to determine the influence of various controllable
factors on the method of analyses. Thus, our objective was
to develop guidelines to help researchers choose a
transformation and to develop a simple program’ that
evaluates various tradeoffs and identifies an affordable
experimental design with acceptable statistical test attributes.

Methods

Field Data

Preliminary observations on frequency distributions of insect
counts were obtained from data sets collected in 19 field
studies conducted on various pheromone “treatments” for the
white pine cone beetle, Conophthorus  coniperdu  (Schwarz),
in the United States and Canada (Birgersson and others
1995, DeBarr and others 1995). These pheromone
treatments were field tested by installing a trap on a selected
tree and baiting it with a preparation (usually chemical
formulations); the procedure is replicated in additional trees
for each treatment and blocking may or may not be used.
Thus, the trap on an individual tree is the experimental or
observational unit. The traps are revisited after some period
of time and the insects are removed and counted. If the
procedure is repeated (usually), the traps are rebaited with
the same pheromone treatment and reinstalled on the same
tree, or more commonly, new random assignments of
treatments are used to reduce tree position bias. The
observational response for a treatment is the insect count at
the end of the designated time period or the mean count per

‘The computer program described i n  t h i s  p a p e r  i s  a v a i l a b l e  o n  r e q u e s t  w i t h

such as BMDP and Systat. The program (SIMPWR) is available from the
senior author upon request: W.D. Pepper, U.S. Department of Agriculture,
Forest Service, Southern Research Station, Forestry Sciences Laboratory,
320 Green Street, Athens, GA 30602.



trap where the average is calculated over several time
periods. In this paper, the observational response is the
mean count per trap per week. The range, average value of
insect counts and degree of contagion with respect to counts
were observed. Level of contagion is the degree to which
the frequencies of high counts and counts near zero exceed
those expected in a random process such as the Poisson.
The number of pheromone treatments and the number of
replications in space and time were observed to determine
typical values and ranges (table 1). These field observations
were a prerequisite to performing computer simulations
comparing alternative methods of analysis on computer-
generated data sets with attributes similar to those observed
in the 19 field studies.

Statistical Distributions and Transformations

To transform data, its true distribution must be determined.
First, a basic statistical model that fits data from a wide
range of field conditions should be identified. This model is
then used to derive a transformation for analysis. Because
ecologists almost exclusively use the negative binomial
(NB) model to describe contagious distributions (Kuno
1991),  we chose to fit this model to insect counts obtained
from the United States-Canadian field studies.

With the NB model, the probability, P,, that an
observational unit will contain x = 0, 1, 2,... insects is

Px Q -w+‘)  ,

where

P=pk,
Q = l+P,
,u = the population mean, and
k = the contagion parameter.

The NB distribution converges to other distributions as k
varies over its range (Anscombe 1949). When k is
considerably large, the counts begin to approach
randomness and a Poisson model may fit the data. Indeed,
as k becomes infinitely large, the NB distribution converges
to the Poisson distribution. When k = 1, the NB distribution
reduces to the discrete geometric distribution. Values of k
in the interval 0 < k < 1 are associated with high levels of
contagion which is characteristic of the NB distribution. As
k approaches zero, the count distribution approaches the
logarithmic series.

The population mean j.4 is estimated as the arithmetic average
per trap per experimental unit (m) where the average is
calculated over replications in time. The variance of
individual counts is

Vur (x) = p (1 + p/k) . (2)

Thus, variances associated with different treatments with a
common value of k are heterogeneous by definition. The
moment estimator for Var(x)  is the sample variance s2. The
parameter k is estimated with Anscombe’s (1949) method 2
which uses successive approximation to choose a value of l?
that makes the following expression approximately equal:

f, = (1 + m/k)“. (3)

In this expression, f, is the proportion of the total number of
traps with a zero count and (1 + r-n/ rZ)-’ is the estimated
probability of a zero count computed with the NB model.
This is the most efficient estimation method proposed by
Anscombe (1949) for estimating a single population value of
kwhenk<landl<u<lO.

Transformations of counts were discussed in reports
published over 60 years ago. Among the first were the
square root transformation (Bartlett 1936) and the
logarithmic transformation (Williams 1937). These early
derivations were based on an assumed linear relationship
between the mean (u) and variance (u 2, of x, o ’ = au, where
a is constant. From the linear relationship, a new variate, y =
f(x), was derived where the variance of y is constant. Beall
(1942) extended this relationship to the nonlinear case,

u2 =/I + bp2, (4)

which is required to describe some types of field data. This
relationship is characteristic of the NB distribution where l/b
= k, the contagion parameter in the NB model. From this
nonlinear relationship, Beall  (1942) derived the variate,

y = b -IR sinhw’(bx)w’R, (5)

where the variance of y is constant.

Thus, by estimating b in terms of the sample mean and
frequency of zero counts and applying the transformation,
one obtains the variate y that is theoretically appropriate for
use in parametric statistical analyses. It can be shown that
the square root and logarithmic transformations are special
cases of Beall’s  (1942) transformation.



Table l-Statistics from field experiment in the United States and Canada

Test
Treat- Replication
ments in space

Replication
in time m” s2/m kb Pr>X2

1 6 4
2 3 10
3 6 6
4 5 6
5 16 8
6 7 8
7a 5 8
7b 5 3
7c 5 3
7d 5 3
7e 5 3

7f 5 3
7g 5 3
8 7 8
9d 6 10
lod 5 7
lid 7 6
13d 4 6
14d 4 10

’ m is sample mean.
b IL?  is estimate of contagion parameter.
’ Every trap had 0 or 1.
d Located in Ontario, Canada.

3-5 5.7 16.7 0.57 0.27
1 4.0 34.5 .43 .14
1 2.2 4.8 .30 .22
1 1.2 3.8 .32 .87
l-9 0.5 3.2 .26 .OOl
7 .2 2.3 .20 .85
6-8 .2 1.4 .19 .14
l-6 4.5 19.6 .43 .66
l-6 .4 1.4 .49 .53
l-6 1.2 3.7 .67 .13
l-6 .04 1.1 __c c__

l-6 .2 5.5 .06 .28
l-6 7.0 25.2 .18 .02
6 .4 3.4 .16 .87
2 5.2 9.4 .33 .lO
2 2.1 18.7 .18 .70
2 7.2 17.3 .30 .21
2 3.8 13.8 .36 .62
1 1.4 2.9 .57 .04

Kuno (1991) cited several comprehensive textbooks and
review articles in a recent review of methodology for
sampling and analyzing insect populations. Work has
continued on the use of variance-mean relationships to
describe insect populations. Two types of relationships,
empirical and deductive, have been used to describe the
variance-mean relationship. One is exemplified by the
empirical power equation,

a2 = apb , (6)

where

a and b = constants.

From this, Bliss (1941) derives the variance stabilizing
transformation,

where

Y = X1-b’2  9 (7)

b = estimate from data fitted to the variance-mean model.
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A second variance-mean relationship is Iwao and Kuno’s
(1968) deductive quadratic equation,

o= = Ap + B/I= , (8)

where

A and B = parameters.

This equation includes Beall’s  (1942) formula as a special
case. The variance stabilizing transformation is also quite
similar to Beall’s  (1942) transformation. Because we were
confident that the NB model would fit our data, Beall’s
(1942) transformation seemed the most appropriate. We
saw no need for the generality of the deductive equation of
Iwao and Kuno (1968). For comparison, we chose log-
transformed counts, the power transformation, ranked
values, and untransformed counts as additional analysis
variables. Alternative approaches for optimizing power
functions are described elsewhere (Bliss 1941, Box and Cox
1964, Perry 1987).

Computer Simulation

A desirable design and analysis controls Type  I error and
has an acceptable level of power for F-tests of treatments.
Our intent was to evaluate alternative designs and
transformations with respect to these criteria. However, an
analytical solution would be very complex because it would
require deriving the distribution of a pseudo F-statistic when
the underlying transformation does not have a normal
distribution. Thus, we elected to simulate a range of
experimental and data-related conditions and compute
observed power and Type I error rates for F-tests of
treatments.

Fixed and Variable Factors

We used a randomized complete block (RCB) design to
compare alternative methods of analyses because this design
was used most often in the 19 United States-Canadian
studies . The number of treatments was constant at five
because this was a typical value. Number of blocks was
two, four, or six. It was assumed that insects were collected
and empty traps reinstalled on three separate occasions
1 week apart in each simulated experiment and on six
occasions 1 week apart in a second replication of these
experiments.

Differential treatment effects were produced in simulated
studies by generating data for a treatment or a group of
treatments from a specified NB distribution.

Random NB counts were generated by first defining a
gamma variable (Boswell and Patil 1970) with shape
parameter

a = k (9)

(the NB contagion parameter) and scale parameter

l3 = plk . (10)

where

u = the mean of the NB distribution.

Using SAS function RANGAM (SAS Institute Inc. 1988a),
we generated values of the gamma variable,

x = p * RANGAM(SEED,  a) . (11)

Subsequently, the value of x was used as the mean of a
Poisson distribution (Johnson and Kotz, 1969) and SAS
function RANPOI was used to generate a random value of

y = RANPOI(SEED,  x) . (12)

Boswell and Patil(l970)  show that y has a NB distribution
with mean p and contagion parameter k . Thus,  when
selected treatments had different means, so did the NB
distribution treatments. The parameter k was varied to
include the range of estimates obtained from analyses of the
United States-Canadian studies,

k = 0.1, 0.5, and 0.75. (13)

The likelihood of a significant F-test depends on the range
of treatment means, 6 = maximum mean-minimum mean,
and the configuration (spacing) of means within the range.
In this simulation study, we used treatment-mean
configurations described by Young and Young (1991) plus
one configuration where all means were equal (fig. 1).
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Figure l-Treatment-mean configurations used in computer simulations.
(A) Two subsets of two or more treatments-i.e., treatment means are
equal within subsets but different between subsets; number of NB
populations = 2. This configuration maximizes the power of the F-test of
treatments. (B) All treatment means equal except the smallest and largest
which differ from one another; number of NB populations = 3. This
configuration minimizes the power of the F-test of treatments. (C)  Ah
treatment means equal, except one; number of NB populations = 2. This
configuration results in intermediate power.

The smallest mean in each configuration has a value of 0.5.
This mean is intended to simulate the value of a control
treatment. For a given value of k, the control-treatment
mean will have a much smaller variance than a treatment
with a mean count of six because the variance of a mean
count is

Var(f)=p(I  +p/k)/n, (14)

where

n = number of replications.

When no contrasts involving the control treatment are
planned, some data analysts exclude the control treatment
from analysis and reduce overall heterogeneity of variance.
However, we elected to judge the performance of selected
transformations in the presence of maximum heterogeneity.

In the simulations, each configuration in figure 1 was
associated with each of the three values of k to define
hypothetical NB populations. Additional populations were
defined by using ranges of 2,4, and 6 and sampled 1,000
times for each RCB design with both 3 and 6 replications in
time.

Comparing Transformations in Analyses

Each simulated study data set was subjected to: (1) A
parametric ANOVA with SAS procedure GLM (SAS
Institute Inc. 1988b) on mean count per trap by treatment
and block with means based on untransformed data
averaged over both three and six collection dates; (2)
parametric ANOVA’s  on mean count per trap with means
based on the transformations,

y = sinh ~‘(1;/~)~~~(~)~~~ (1%

y = log (x + I) WI

where

y = xI-b/2
WC)

X = the mean count for a given trap,
h? = the estimated NB contagion parameter, and
b = the estimated parameter for the power function.

and (3) an ANOVA  on ranks by block of the mean counts
described in (1). We elected to forego classic non-
parametric analyses. Friedman’s test would be the
nonparametric method of choice, but Conover  (1980) states
that the parametric F-test on ranks performs as well or better
than Friedman’s test. Our comparisons of analysis variables
were based on the ANOVA F-tests. We conducted F-tests
at the 1 percent, 5 percent, and 10 percent levels and tallied
conclusions as correct or incorrect. When treatment sets
were completely homogenous in our simulated studies, we
computed an observed Type I error rate by calculating the
proportion of F-tests where significance was declared at the
nominal level. These observed proportions derived from the
five methods of transforming counts were compared. The
best analysis variable will yield a proportion that is the
smallest and does not exceed the nominal rate.

In simulated studies with differential treatment effects, we
computed observed power of F-tests. This is the proportion
of F-tests at 1 percent, 5 percent, and 10 percent that
correctly reject the null hypothesis and detect treatment
differences. Observed power is used as a second criterion
for comparing performance of the five analysis variables.
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Table 2-Factors studied in simulation experiment

Factors used Levels of factors

Analysis variables
Significance level for tests (a)
Contagion parameter (k)
Replication in space (B)
Replication in time (R)
Range, maximum mean-minimum mean, (6)
Treatment-mean configuration

a Untransformed counts.
b Ranked values of counts.

Y” RYb LYc BYdPYe
0.01,0.05,0.10
0.10,0.50,0.75
2,496
336
2,496
A, B, Cf

‘Logarithmic transformation, log (x+1).
d Beall’s (1942) transformation, sinh -’ (k /x)‘,’  (k)“.5.
e Power transformation, x lmb’*.
fConfigurations  A, B, and C are described in figure 1.

We judged the relative performance of each analysis
variable and checked for consistency among designs of
different size, different levels of contagion in NB
populations, different treatment-mean configurations, and
different ranges of treatment-mean values and between
different numbers of replication in time (table 2).

Results

Modeling Field Data

Table 1 shows estimates of NB population parameters p and
k for the field data. The estimated mean, (m), is defined as
the mean insect count per trap averaged over collection
dates, block, and treatments. Experimental estimates range
from slightly more than seven to less than one. Treatment
means (not shown) within experiments range from 14 to less
than 1. The low experimental estimates of k, k < 0.67,
indicate a high degree of contagion. The high variance-
mean ratios are characteristic of the NB distribution.

Goodness-of-fit tests based on Pearson’s (1900) &i-square
statistic were performed with data from each field test. This
test compares observed frequencies in count categories
0,1,2,.  . . with expected frequencies determined by the
proposed model. Categories with expected frequencies < 1
are combined (Snedecor and Co&ran  1967). The NB
model fit well, 0.10 < P 5 0.87, in 15 of the 19 field studies.
Of the remaining four tests, three had P < 0.02 and the
fourth only had two count categories, 0 and 1, prohibiting
the goodness-of-fit test.

Computer Simulation Results

Type I Error-Type I errors occurred when treatments in
the homogeneous group were declared significantly
different. Type I error rates were observed in simulated
analyses with each transformation for all combinations of
k-values, replication in time, number of blocks, and a-levels
of 0.01,0.05,  and 0.10. Results were good for all analysis
variables. For all transformations except ranks, the
observed Type I error rate never exceeded the nominal value
by more than 1 percent. Occasionally, observed rates in
analyses of ranked values exceeded the nominal value by
2 percent- still not a serious discrepancy.

Treatment Mean Configuration A-Results for
treatment-mean configuration A are shown in figures 2 to 4
for various combinations of k, replications (R) in time and
range (6) in treatment means. Figure 2 (A-F) shows
observed power versus number of blocks when testing at the
0.10 level for the highest level of contagion in the data (k =
0.1). When testing at the 0.05 level (k = 0. l), observed
power was generally well below 0.80 regardless of required
test precision (size of 6) and amount of replication (not
shown in figure 2). In these figures, graphs for ranked
values, log-transformed values, and Beall’s  (1942)
transformation generally dominate.

When k = 0.1, testing at the 0.10 level still does not result in
a satisfactory analysis in most cases. The number of blocks
needed to detect a treatment-mean difference of 6 = 2
appears to be at least 10.
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Figure 2 (A-Fj--Relationships  between observed power of F-tests and number of blocks when treatment-mean configuration = A, k = 0.1, and 01=  0.10 for
five  functions of insect counts: ranks ( . . . . .), logarithmic transformation ( - - ), power transformation ( - - - ), Beall’s  (1942) transformation
(-), and the untransformed count (- . . -. .).
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When 0.5 < k < 0.75 and a = 0.05 (figures 3 to 4), four or
five blocks are generally needed to keep observed power at
or above 0.80 regardless of amount of replication in time and
value of 6. Occasionally, three blocks suffice if 6 2 4 with
six replications in time. When testing at the 0.01 level, the
same trends are observed, but observed power shifts
downward too much.

In most comparisons, analysis variables of choice are ranks
and the log transformation. In many cases, the choice
between these two variables in terms of power is not clear,
and other factors such as relative performance with respect to
Type I error and ease of analysis must be considered.

Treatment-Mean Configuration B-Of the three
configurations tested, configuration B analyses result in the
lowest values of observed power. In figure 1, this is
intuitively clear because the range involves only two means
resulting in minimal replication. The low power poses a
serious problem to the researcher with limited resources.

When k = 0.1 and a = 0.10, the experiment with the most
replication will not provide sufficient power to detect the
largest value of 6 considered in this study.

When k = 0.50 and a = 0.05, the largest experiments do not
provide sufficient power unless R > 3,6 > 4, or both. When
R = 3,6 = 6, and B = 6, observed power is near 0.8 for tests
of all analysis variables except the untransformed count. If
we increase a to 0.10, observed power can be kept at or
above 0.8 with four to six blocks depending on values of R
and 6.

When k = 0.75 and a = 0.05, observed power can be kept
above 0.8 with four, five, or six blocks depending on values
of R and 6. If R = 6 and 6 = 6, three blocks will be
sufficient.

Treatment-Mean Configuration C-When means are in a
C configuration, observed power in analyses of treatments is
between maximum-power-A-configuration and minimum-
power-B-configuration values. However, when k = 0.1 and
a = 0.10, the experiments with the most replication provided
values of observed power below 0.8. When 0.5 < k < 0.75
and a = 0.05, observed power can be maintained at 0.8 or
better with four to six blocks depending on the value of R
and 6.

A Numerical Example with the Computer Program

We assume that users will want to know the value of
observed power for various combinations of controllable

factors. Because our tables and graphs are cumbersome, we
developed a partially interactive SAS computer program
(SIMPWR) that computes observed power for any
combination of experimental factors used in our study.
However, this is not a prediction procedure and the user
must choose input values only from those used in our
simulation studies. The program simply allows the user to
determine a tabulated entry of power without handling
volumes of computer simulation output.

The following example illustrates the use of SIMPWR with
some basic input from Test 7b data, table 1. From table 1,
we obtain and input a value of 4.5 form, the experimental
mean. We also input the proportion of traps with zero
counts, f,, = 0.35 (not shown). Finally, we must input the
values shown in figure 5. In this example, we choose to test
at the 5 percent level, a = 0.05. The values of m and f, are
used by the program to estimate k = 0.43. The program
determines that this estimate is nearer the value of k = 0.5
than 0.1 or 0.75. Thus k = 0.5 is used in the program. We
choose B = 4, the number of proposed blocks. Three
replications in time are proposed for each treatment, and we
wish to detect differences between means as close as two
units apart, 6 = 2. Furthermore, we assume that true
treatment means have the A configuration. Information
required by the window shown in figure 5 is entered, and
used to calculate the observed power. Both input values
and observed power are printed as output. In this case
POWER = 0.49 and 0.56 for the logarithmic and rank
transformations, respectively. These values are
unacceptably low and we must change experimental or test
factors to achieve POWER 2 0.8.

If the design is installed, we are restricted to changes in
statistical test attributes. In this second run, we set a =
0.10 with additional factors unchanged. This results in
POWER = 0.66 and 0.69 for the logarithmic and rank
transformations, respectively-still unacceptably low. A
third possibility is to set 6 = 4 and set other factors at the
original values. This results in POWER = 0.78 and 0.81,
respectively, for the logarithmic and rank transformations.
These values may be regarded as acceptable, but the
analysis will be less sensitive in detecting treatment-mean
differences.

Suppose we have estimates f o and m from a preliminary
sample and are at liberty to choose quantity of replication in
space and time to control power. We run SIMPWR again
with all factors at their originally proposed values except
R = 6. This results in POWER = 0.82 and 0.88 for the
logarithmic and rank transformations, respectively. Linear
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:omand ===>

WELCOME TO THE SIMULATED POWER PROGRAM FOR F-TESTS.

ENTER VALUES FOR THE VARIABLES ALPHA, FO, M, B, R, DELTA

AND CONFIGURATION. AFTER DATA IS ENTERED FOR THE LAST

VARIABLE THE SIMULATED POWER OF THE F-TEST WILL BE COMPUTED.

PRESS ENTER TO START DATA ENTRY.

CNVAR
hmmand ===>

ALPHA .05 FO .35 M 4.5 B 4

R 3 DELTA 2 CONFIGURATION A

R = C =

SIMULATED POWER PROGRAM FOR F-TESTS
THE INPUT DATA AND FOUR SETS OF OUTPUT

R DELTA POWERCONFlG TRANSFRM ALPHA FO M KHAT K B

A RANK 0.05 0.35 4.5 0.43 0.5 4 3 2 0.56237
A LOG 0.05 0.35 4.5 0.43 0.5 4 3 2 0.48549

A RANK 0.1 0.35 4.5 0.43 0.5 4 3 2 0.68612
A LOG 0.1 0.35 4.5 0.43 0.5 4 3 2 0.66366

A RANK 0.05 0.35 4.5 0.43 0.5 4 3 4 0.80943
A LOG 0.05 0.35 4.5 0.43 0.5 4 3 4 0.77834

A RANK 0.05 0.35 4.5 0.43 0.5 4 6 2 0.88025
A LOG 0.05 0.35 4.5 0.43 0.5 4 6 2 0.82186

Figure 5-Input window and four sets of output from SAS program SIMPWR.



interpolation is possible, but must be used with caution
because relationships are not linear. In this example, we
may average the values of POWER corresponding to the
rank transformation at R =3 and R = 6, (0.81 + 0.88)/2  =
0.845, which corresponds to a value of R between 3 and 6.
If POWER = 0.845 is acceptable, R = 5 would be a prudent
choice.

Discussion and Conclusions

For a given treatment-mean configuration, observed power
of the F-test for a given analysis variable is an increasing
function of a, k, number of blocks, number of replications
in time, and range in treatment means to be detected. The
volumes of graphs and tables produced with computer
simulations present a complex picture. This occurs in part
because most independent factors interact with at least one
other independent factor to exert an influence on observed
power. For instance, the effect of increasing number of
blocks depends on the level of k (figs. 2 to 4). However, the
following generalizations can be made:

The level of power relationships for all analysis variables
depends on treatment-mean configuration. For a given
relationship, configuration A produces maximum power.
For the same relationship, configuration B produces
minimum power and configuration C intermediate power.
All three configurations occur in pheromone field tests.
However, if a researcher cannot predict which
configuration will occur, we recommend using
configuration B. This is a conservative approach and
should help the researcher avert an overestimation of
power for a proposed experiment.

Regardless of other factors, the analysis variables
corresponding to rank, logarithmic, and Beall’s  (1942)
transformations generally dominate the other two with
respect to observed power relationships. The
transformation of choice is generally between ranked
values and log-transformed values and in many cases,
choosing will depend on how one views ease of analysis.
It is not surprising that the logarithmic transformation has
a stabilizing effect on x. The discrete variable x has a
frequency distribution which is skewed to the right and
resembles the lognormal distribution of the continuous
variable z where log (z) has a normal distribution and the
estimator for the mean of z is,

p, = e’ + A2 )
(16)

12

where

Z:  = the sample mean, and
? = the sample variance (Johnson and Kotz 1970).

This estimator should be used for the discrete variable x,

p, = em + s=t2 ) (17)

where

m = a treatment mean, and
ti = the ANOVA error mean square on the log scale.

Beall’s  (1942) transformation was not competitive as a
function of k. This transformation will perform best when
the true value of k is known, which never occurs in practice.
So, even though we knew the value of k for our
distributions, we estimated the parameter with our data. We
believe this estimation error in k causes Beall’s  (1942)
transformation to be less competitive. In our initial
simulations, we inadvertently used the true value of k and
Beall’s  (1942) transformation performed well.

Ranked values competed well for several reasons. These
NB distributions have a lot of positive skewness which
results in low power for the parametric F-test on raw counts.
Skewness is not as much an issue with ranked values
because the test statistic is not a function of the raw data,
which reflect the magnitude of the skewness directly. Test
statistics may be identical with normally distributed data or
with highly skewed data as long as the ranks are identical,
so power is increased by using the rank transformation,
which apparently alleviates the problem of skewness as well
as log transformation.

l The level of contagion in the data has a dramatic effect on
observed power. This is explained by the influence of k
on the variance of individual NB counts for a given mean,

Var (4 = u(l + p/k) , (18)

and the inverse relationship between power and the
variance. For k = 0.1, 0.5, and 0.75, the variance of x is
respectively p + 10 u*. p + 2u2,  and p + 4~~13.  When k i
0.1, maintaining a satisfactory level of power is difficult
without making compromises such as increasing the level of
significance for testing, increasing 6 = maximum mean
difference to be detected, or increasing replication.



As shown in the numerical example, SIMPWR can be used
to facilitate the choice of analysis for existing data.
Furthermore, if preliminary estimates f, and m are
available, the program can be used to evaluate tradeoffs and
determine affordable experimental factors for a future
design with a given set of statistical test attributes.
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The use of trade or firm names in this publication is for reader information and does not imply
endorsement by the U.S. Department of Agriculture of any product or service.

This publication reports research involving pesticides. It does not contain recommendations for
their use, nor does it imply that the uses discussed here have been registered. All uses of
pesticides must be registered by appropriate State and/or Federal agencies before they can be
recommended.

CAUTION: Pesticides can be injurious to humans, domestic animals, desirable plants, and fish
or other wildlife-if they are not handled or applied properly. Use all herbicides selectively and
carefully. Follow recommended practices for the disposal of surplus pesticides and their
containers.
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Guidelines based on computer simulation are suggested for choosing a transformation of insect counts
from negative binomial distributions with low mean counts and high levels of contagion. Typical values
and ranges of negative binomial model parameters were determined by fitting the model to data from
19 entomological tield studies. Random sampling of negative binomial distributions was simulated and
ANOVA’s  were performed on simulated data for randomized complete blocks designs with treatment
means corresponding to means of negative binomial distributions. The influence of analysis variable,
treatment-mean configuration, range in treatment means, significance level of statistical tests, level of
contagion, number of blocks, and number of replication in time on observed power and Type I error of
F-tests was studied. A computer program was developed to recompute observed power of F-tests for any
combination of these factors. The program facilitates choosing a transformation and may also be used to
evaluate tradeoffs and determine affordable experimental factors for a future design with a given set of
statistical attributes,

Keywords: Contagious distribution, entomology, transformation, variance-mean relationship, variance
stabilization.
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