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early stage of development where they could be modified to alleviate unintentional damages.
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small components of the system separately.
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EXECUTIVE SUMMARY

The U.S. Department of Energy (DOE) is
using the total fuel cycle analysis (TFCA)
methodology to evaluate energy choices.
The National Energy Strategy (NES)
identifies TFCA as a tool to describe and
quantify the environmental, social, and
economic costs and benefits associated with
energy alternatives. A TFCA should
quantify inputs and outputs, their impacts
on society, and the value of those impacts
that occur from each activity involved in
producing and using fuels, cradle-to-grave.
New fuels and energy technologies can be
consistently evaluated and compared using
TFCA, providing a sound basis for ranking
policy options that expand the fuel choices
available to consumers.

This study is limited to creating an
inventory of inputs and outputs for three
transportation fuels: (1) reformulated
gasoline (RFG) that meets the standards of
the Clean Air Act Amendments of 1990
(CAAA) using methyl tertiary butyl ether
(MTBE); (2) gasohol (E10), a mixture of 10%
ethanol made from municipal solid waste
(MSW) and 90% gasoline; and (3) E95, a
mixture of 5% gasoline and 95% ethanol
made from energy crops such as grasses
and trees.

The ethanol referred to in this study is
produced from lignocellulosic
material—trees, grass, and organic
wastes—called biomass. The biomass is
converted to ethanol using an experimental
technology described in more detail later.
Corn-ethanol is not discussed in this report.

This study is limited to estimating an
inventory of inputs and outputs for each
fuel cycle, similar to a mass balance study,
for several reasons: (1) to manage the size of
the project; (2) to provide the data required

for others to conduct site-specific impact
analysis on a case-by-case basis; (3) to
reduce data requirements associated with
projecting future environmental baselines
and other variables that require an
internally consistent scenario.

The E10 and RFG fuel cycles are compared
for the year 2000; E95 and RFG fuel cycles
are compared in 2010. Based on recent
technological advances, ethanol-from-waste
technology may be commercial by 2000;
further advances should make ethanol-from-
energy crops commercial by 2010. Ethanol
will continue to be used as an additive to
gasoline in the near future (e.g., the year
2000). By 2010, dedicated vehicles should
be commercially available that run entirely
off pure or nearly pure ethanol fuels such as
E95. The fuels are consumed in light-duty
passenger vehicles that reflect technology
advances that are possible by 2000 or 2010.

When this study was initiated, 10% ethanol
blends were common for financial reasons.
Recent policy changes make the use of
blends of less than 10% equally attractive
financially and likely for environmental
reasons. We chose to examine 10% blends
because emission data were available. The
fuel cycle results are presented in a format
that the reader can use to examine other
likely blends.

Five regional E95 fuel cycles were examined
to evaluate the impact of different feedstock
mixes on inventory input and output levels.
The technology of producing ethanol from
biomass was based on engineering designs,
research trends, past industrial experience,
and expert opinion. Projections of future
crude oil mixes, refining product outputs,
and organizational structure were used to
characterize the future RFG industry.
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Each fuel cycle is represented by a flow
chart of activities based on a model
industry. From this, an inventory of inputs
(electricity, chemicals, materials, etc.) and
outputs (fuel, emissions, wastes, etc.) was
created for each fuel cycle. Only the
operational phase of the fuel cycles was
examined (Figure 1). Ranges are not
provided for the estimated inputs and
outputs because the model industry
assumes that all firms have identical
resources and technologies. Therefore, the
results presented are point estimates that
describe selected scenarios and are not

projections of future industrial performance.

The industrial activities for each fuel cycle
are divided into five stages: feedstock
production, feedstock transportation, fuel
production, fuel distribution, and end use.
This convention is used to describe the fuel
cycles and the results. All of the activities
in a stage are detailed, with respect to
equipment efficiency, capacity, and

operating parameters that are common to
the industry, or are expected to be
technically feasible by 2000 or 2010.

Preconstruction and decommissioning
phases of the fuel cycles are not included in
this study. The discussion of results focuses
on the gaseous, solid, and liquid fuel cycle
emissions because environmental
implications are the major issues influencing
fuel use today (CAAA 1990, NES 1991).

Each fuel cycle accounts for all of the
inventory characteristics associated with
producing enough fuel to travel 1 billion
vehicle miles (VMT). One billion VMT the
data to be presented in common units, such
as tons or gallons. To put one billion miles
into perspective, Americans drove their pas-
senger vehicles more than 1,769 billion VMT
in 1990 and are expected to drive 2,177
billion VMT by 2000 and 2,814 billion VMT
by 2010 (NES2 1991). The results are
discussed in grams per mile as these are the
standard units used by the industry.

Figure 1. Fuel cycle boundaries
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The conclusions drawn from this study are:

Research and development towards
reducing vehicle emissions can produce
substantial benefits because the majority
of fuel cycle emissions are produced in
the end use stage

RFG 2000 and 2010 emissions are
underestimated because the fuel cycle
emissions from producing MTBE were
excluded, therefore, actual emissions
would be higher than those shown in this
report

The E10 fuel cycle produces less carbon
monoxide (CO), carbon dioxide (CO,),
and sulfur dioxide (SO,), and creates
substantial reductions in MSW sent to
landfills compared to RFG 2000

E95 fuel cycles produce 90% fewer CO,,
67% less SO,, and 14% less volitile
organic carbon (VOC) emissions
compared to the RFG fuel cycle

When emissions associated with
electricity production are included in the
fuel cycle inventory for every kwh
consumed or produced, E95 fuel cycles
produce less of every criteria air emission
except CO compared with RFG 2010

Ethanol fuels can extend our fossil fuel
resources in the transportation sector
because they require fewer resources per
Btu of fuel to produce

This study can be used to rank fuels
based on selected criteria, such as CO,
emissions, but impact and valuation
analysis is required to conclude that one
fuel is preferred to another.

Most of the gaseous emissions are generated
in the end-use and transportation stages.
Improvements in engine performance,
catalytic converters, and other vehicle

vii

emission controls will benefit both fuels.
The CAAA set standards for vehicle
emissions that will play a central role in
determining the emission characteristics of
fuel cycles because most of the emissions
are produced by vehicles or stationary
sources (fuel production facilities). Because
of the lack of data on ethanol vehicle
emissions, end-use emission estimates are
based on the assumption that fuel and auto
manufacturers will design systems to meet
regulations. Thus, these regulations are
critical focal points of the analysis.

There are only small differences between
E10 and RFG inventory characteristics in
2000, because both RFG 2000 and E10 are
composed of roughly 90% gasoline and the
fuel cycle inventory associated with the
gasoline is included in the E10 fuel cycle
(Figure 2). If the emissions from producing
MTBE were included in the RFG fuel cycles,
E10 may produce fewer criteria air
emissions than RFG.

E10 fuel cycles produce slightly less CO,
50,, and CO, than RFG because of the
ethanol component, but E10 also creates
slightly more VOC, PM, NOx, and waste-
water. Some emission reductions may offer
valuable solutions to urban air quality in the
short term. A major benefit of E10 is the
opportunity to combine waste reduction
with oxygenated fuel use in urban areas.
Nearly 22 grams of MSW is diverted from
landfills for every mile travelled on E10.

E95 fuel cycles produce less CO,, SO,, and
nonbiogenic VOCs than the RFG 2010 fuel
cycle (Figure 3). Biogenic VOCs are
produced by growing plants during
photosynthesis. The differences between
E95 and RFG 2010 could be larger for some
emissions shown because the emissions
from producing MTBE have been omitted.
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Figure 2. Fuel cycle emissions for E10 and RFG, 2000:
(a) air emissions; (b) liquid and soild wastes
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From this study, we can conclude that
replacing a portion of the transportation fuel
market with ethanol fuels can reduce global
CO, emissions. Fossil fuel combustion
accounts for all of the CO, produced in the
E95 fuel cycles. E95 fuel cycles produce
only 9% of the net CO, produced by the
RFG fuel cycle.

Estimates of soil carbon accumulation are
provided but not included in the fuel cycle
inventory because they were treated as a
long-term investments rather than a short-
term operational characteristics. During the
30-year period required for soil carbon
accumulation to reach an equilibrium, an
average of 15.4 g/mi of CO, is sequestered
in the soil each year. If annual soil carbon
accumulation is included in the E95 fuel
cycles, E95 produces only 4% of the total
CO, produced by the RFG fuel cycle.

Generating electricity produces gaseous,
liquid, and solid wastes. A sensitivity
analysis examined the effect of including
selected emissions from electricity
generation or offsets. Electricity
consumption creates emissions that are
added to the appropriate stages of the fuel
cycles. The ethanol production facility is a
cogeneration plant, producing both ethanol
and electricity. In the electricity sensitivity
analyses, the ethanol fuel cycles are credited
for the emissions that would be avoided if
the utility purchased the ethanol company’s
electricity, rather than use their own fossil
fuel capacity (emission per kWh x kWh
sold). The ethanol fuels cycles were not
allocated for the electricity sensitivity
analysis (see section 3 for more details on
allocations).

The addition of electricity emissions does
not significantly change the results of the
2000 fuel cycles. However, significant
changes occur when electricity emissions are
included in the 2010 fuel cycles. E95 fuel
cycles reduce all air emissions except CO.

The differences could have been larger if the
emissions from producing MTBE were
included in the RFG 2010 fuel cycle.

The average E95 fuel cycle produces only
6.6 grams of CO, for every mile travelled. If
E95 is substituted for RFG, E95 fuels could
prevent the release of 301 g/mi of CO,. In
addition, producing electricity from ethanol
plants offsets 32 mg/mi of SO,. If E95 is
substituted for RFG, the U.S. production of
SO, would fall by 163 mg/mi.

Similarly, NOx, particulates, and VOC
emissions are reduced by the electricity
credit provided to the E95 fuel cycles. It is
clear that E95 fuels provide substantial
environmental benefits in emission
reductions. This sensitivity analysis shows
how the indirect impacts associated with a
fuel cycle can be significant.

An energy analysis evaluated the non-
renewable fossil fuel inputs required to
produce each fuel. We found that one Btu
of E10 requires 1.23 Btu of fossil fuel inputs
while one Btu of RFG 2000 requires 1.25 Btu
of fossil energy (Figure 4). One Btu of E95
requires only 0.25 Btu of fossil fuel energy
to produce compared to 1.27 Btu to produce
one Btu of RFG 2010.

The use of a renewable transportation fuel
could extend our fossil fuel supplies over a
longer period of time. During that time,
other solutions could be developed to
replace dependence on a declining resource.

In conclusion, the TFCA methodology can
be used as a tool for ranking technological
options for the DOE, even when the
technology considered is experimental or
the industry considered is distant in time.
Information can be collected and organized
in a manner that provides useful insights
concerning both the technological
development and its environmental
implications.
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1.0 INTRODUCTION

The National Energy Strategy (NES 1991)
presents a road map of policies that could
lead to reduced dependence on imported
fuels, more efficient use of domestic
resources, economic growth, and a cleaner
environment. To help reach these goals, the
NES recommended using the total fuel cycle
analysis (TFCA) as the methodology for the
Department of Energy (DOE) and its
agencies to use for evaluating fuels and
energy technologies.

Motivating our technology and resource
choices must be an improved understanding
of total fuel cycle costs of all energy sources.
Total fuel cycle costs are the entire costs of
producing, transporting, dispensing, and
using a given energy resource, including the
costs of health and environmental impacts.
Existing analytical tools are not capable of
doing this with any reasonable precision;
however, developing and sharing the
capability to make total fuel cycle cost

assessments is an NES priority (NES 1991, p.

17).

The NES proposes the following actions to
better harmonize energy and environmental
objectives:

Use market mechanisms

Increase efficiency

Increase the use of natural gas
Develop cost-competitive, renewable
energy supplies

Develop and use alternative
transportation fuels

Develop and use clean coal technologies
Improve energy impact assessments
Improve siting processes

Minimize wastes.

[ ] e o o o

The DOE is committed to using TFCA to
evaluate these actions and supporting

initiatives. One of the specific options,
"Enhanced Transportation Biofuels
Production R&D," proposes to accelerate the
research and development of biofuel
technologies in the hope that they may
become commercial sooner, and thus,
provide more benefits to the American
public. The DOE’s Office of Energy
Efficiency and Renewable Energy (EERE)
which funds Biofuels development, wants to
enhance its ability to conduct credible
evaluations of alternative fuel options by
applying TFCA to biomass-ethanol and
RFG. This report summarizes the findings
of the TFCA for these fuels.

These fuel cycle analyses focused on
measuring the amounts of inputs and
outputs produced by three transportation
fuels: E10, a blend of gasoline and 10%
ethanol; E95, a blend of ethanol and 5%
gasoline; and RFG made with MTBE. The
ethanol is made from lignocellulosic
feedstocks—trees, grasses, and organic
wastes—that are converted to ethanol using
an experimental technology. Industries that
support the production and use of these
fuels were assumed to exist by 2000 for E10
and by 2010 for E95. The RFG industry was
modeled for both years. Ethanol made from
corn is not discussed in this report.

The fuel cycles examined are a snapshot in
time. Technology and industry are
constantly changing. The technologies used
to model the biomass-ethanol industry
represent researchers’ best assumptions
about how this industry might function.
These concepts changed between the time
the study was initiated and completed,
similar to how industries change over time.
Technological progress can make the
estimates provided in this paper obsolete;
however, they provide us with a standard
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we can use today to measure progress and
compare various options that could occur in
the future.

These fuel cycle analyses provided us with a
number of benefits:

1. Helped formulate future research

agendas to answer questions that arose

during this study and to provide data

that did not exist for this study

Organized existing information

Improved the existing engineering design

for biomass-ethanol production

4. Created a better understanding of how
the biomass-ethanol industry may
operate

5. Communicated what we know about
biomass-ethanol to the public

6. Created a data base of emissions for site-
specific impact studies

7. Established a basis for future cost-benefit
studies.

@ N

These fuel cycle analyses focused on
measuring the inputs and outputs of three
fuel cycles, similar to a mass and energy
balance. This report provides the
information necessary to rank fuels by
specific criteria, such as CO, emissions and
also provides the information required to
conduct impact studies. It does not include
impact studies or estimates of the costs
associated with impacts.

Impact studies require site-specific
information. Environmental and social
impacts are site specific and cannot be
extrapolated to other situations with a high
degree of accuracy. It is our hope that the
data provided in this report can be used by
other researchers to simulate site-specific
impacts on a case-by-case basis. Local
environmental policy, such as state
incentives for fuel switching or vehicle
conversion, should be based on site-specific
data in order to correctly estimate the local
benefit that could result from substituting

fuels. This report contains the data that
could be used to support such a study.

The remainder of the report is divided into
several sections. Section 2 discusses the
TFCA methodology and its implementation
(including the rationale behind the choices
of fuels evaluated). Section 3 briefly
describes the industrial systems and
technologies used to produce, deliver, and
utilize the fuels. Section 4 discusses data
quality. Section 5 presents the findings of
the TFC analysis. Section 6 presents the
conclusions drawn from this TFC analysis
and discusses the implications. Section 7
lists some recommendations for future
analysis and Section 8 lists the technical
reviewers. Tables A through M present
data summarizing the results of the fuel
cycle analyses; they can be found at the end
of this report.

The data presented are the tables and
figures are reported or calculated data. The
degrees of significance of the data is not
reflected by the number of significant digits.
These numbers have not been rounded so
reviewers and other interested parties can
verify these estimates by retracing the
methodology and assumptions.

Appendices A through I, in Volume II,
provide detailed descriptions of the
technologies, industrial systems, data
sources, and estimates used to support the
information in this report. Appendices A
through F summarize information relating
one or more of the stages of the fuel cycles:
feedstock production, feedstock
transportation, fuel production, fuel
transportation, and end-use. Appendix G
describes the common assumptions used to
coordinate emissions from transportation
modes, and Appendix H describes the
methodology developed to examine the
secondary impacts of electricity production.
Appendix I describes the assumptions and
procedure used for the energy analyses.
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Because of their length, Appendices A
through I are available separately in Volume
I1: Fuel Cycle Evaluations of Biomass Ethanol
and Reformulated Gasoline: Appendices.

Please contact Dr. Tyson at the National
Renewable Energy Laboratory for a copy.
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2.0 TOTAL FUEL CYCLE ANALYSIS METHODOLOGY

Total fuel cycle analysis (TFCA) provides a
systematic approach for evaluating fuel
resources and technologies. The fuel cycle
analysis is defined by the following steps:

1. Define the fuels or fuel cycles to be
analyzed

2. Define the fuel cycle boundaries that will
limit the analysis

3. Define the types of fuel cycle impacts to
be analyzed (social, economic,
technological, and environmental)

4. Define the data quality, sources, and
management tools used in the fuel cycle.

Once the fuel cycle is defined and the
information is collected, the results should
be presented in a report for peer review.

The following discussion of boundary
conditions and assumptions is critical to
understanding how the information
provided in this report should be used, and
for understanding the lessons learned from
applying TFCA.

2.1 Fuel Cycles

The DOE/EERE chose transportation fuels
for the first fuel cycle study—specifically,
ethanol fuels derived from biomass (organic
lignocellulosic material) and reformulated
gasoline fuels. Four fuel cycles selected
were:

e E10 (gasohol), a blend of gasoline and
10% ethanol made from municipal solid
waste (MSW) in 2000

e E95, 95% ethanol manufactured from
energy crops in 2010 with 5% gasoline
denaturant

e Reformulated gasoline (RFG) with 11%
MTBE (methy! tertiary butyl ether) in
2000 and 2010.

DOE/EERE chose ethanol and RFG fuels
because of their prominence in policies
proposed by DOE and the Environmental
Protection Agency (EPA).

One of the initiatives identified in the NES,
"Enhanced Transportation Biofuels
Production R&D," is an action that would
stimulate production of alternative motor
fuels from biomass. Biomass used to
produce biofuels includes wood and wood
wastes, agricultural residues and cellulosic
energy crops, organic residues contained in
MSW, and other types of organic wastes
from industrial and food processing
facilities. Biofuels can include ethano],
methanol, gasoline, diesel, or hydrogen.

Biomass-ethanol is identified in the NES as
a cost-competitive, renewable energy supply
that will play an increasingly important role
over time as a viable alternative to gasoline
from imported oil supplies. The NES
projects that biofuels, primarily ethanol,
could displace 200,000 barrels of oil per day
by 2010 and displace 1.8 million barrels per
day (MMBD) by 2030. By 2030, ethanol
fuels could provide 14% of our
transportation fuel needs (NES2, p. 51).

Producing ethanol from lignocellulosic
biomass is not a commercial technology
today. However, by 2000 a number of
facilities could operate using low-cost
feedstocks such as MSW. By 2010, cellulosic
crop technologies, often referred to as
energy crops, should be commercially
available. In addition, the biomass-ethanol
industry will rely on energy crops as its
primary source of feedstock because the
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unused supply of cellulosic waste materials
may dwindle as demand for these materials
increases (recycled paper, electric power,
ethanol, etc.).

The ethanol referred to in this study is
produced from biomass—trees, grasses, and
organic wastes—using an experimental
technology. Corn-ethanol is not discussed
in this report.

The NES projected that nearly all gasolines
will be reformulated by 2000 (NES2 1991, p.
35). RFG using MTBE was selected because
it is the most common RFG produced today.
An RFG fuel cycle is developed for both
2000 and 2010 for comparisons with E10 and
E95. ARCO EC-X is used as the prototype
RFG for 2000 and 2010.

The CAAA require the use of RFG
containing oxygenates (Title II, Part C) and
clean fuels in fleets in serious, severe, and
extreme ozone nonattainment areas and in
serious CO nonattainment areas. Deadlines
for adopting and using these fuels depend
on the specific area and fuel considered.
Specific clean fuels are not mandated but
several alternative fuels are listed, including
natural gas, methanol, ethanol (if the
methanol and ethanol content of the fuel
equals or exceeds 85% by volume),
electricity, liquified petroleum gas, RFG or
reformulated diesel, and hydrogen.

The EPA has issued regulations that will
require all fuels in the year 2000 to meet
CAAA Tier I standards in motor vehicles.
Any fuel selected for this fuel cycle study
should be one that could be designed to
meet these standards. Gasohol and RFG
were selected for the fuel cycle analysis
because these fuels are available today and
could meet the future standards with
available technology. E10 is technically an
RFG; the ethanol provides 3.7% oxygen
compared with the 2.0% provided by MTBE.

E10 can meet the CAAA standards on VOC
emissions and Reid vapor pressure (RVP) if
the ethanol is blended with a gasoline stock
designed to produce a blended product with
the desired properties. Thus, the fuel cycle
for 2000 assumes that the lignocellulosic
portion of MSW will be used to produce
ethanol that will be consumed in
conventional gasoline vehicles as an
oxygenated fuel, E10.

The RFG fuel cycle was assumed to be
substantially similar to a fuel cycle for the
special gasoline base that would be mixed
with ethanol to produce E10. (A study
would be needed to evaluate the accuracy of
this assumption.) The RFG fuel cycle
characteristics are used to describe the fuel
cycle for the gasoline base used in E10. The
E10 fuel cycle will include both the RFG fuel
cycle characteristics per gallon of gasoline
and the characteristics associated with
producing and using the ethanol portion of
the fuel.

By 2010, Tier Il standards will be
promulgated with stricter limitations on air
emissions from vehicles. Cleaner burning
fuels will be required and ethanol is listed
in the CAAA as a clean fuel alternative.
Thus, the fuel cycle for 2010 assumes that
ethanol is produced from energy crops and
is consumed as a denatured fuel in
dedicated ethanol vehicles.

E95 is ethanol denatured with 5% gasoline;
neat ethanol has to be denatured according
to existing regulations of the Bureau of
Alcohol, Tobacco and Firearms, to control
the collection of taxes on alcohol purchased
for consumption and to discourage human
consumption of fuel ethanol. Gasoline is a
common denaturant today, although other
denaturants are available.

All fuels are consumed by light-duty
passenger vehicles. E10 and RFG are
consumed in vehicles with conventional
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gasoline engines. E95 is consumed in
dedicated ethanol vehicles with optimized
technology; dedicated ethanol and methanol
vehicles are assumed to be available by
2010, according to the NES and other
industry sources. In 2010, ethanol vehicles
get 28.25 miles per gallon (mpg) and
conventional vehicles using RFG get 35.6
mpg; the gap between E10 and RFG is
smaller—30.2 compared to 30.8 mpg,
respectively.

The results of this study—the fuel cycle
inventories—are presented in tons or gallons
of inputs and outputs for every billion miles
traveled by a light-duty passenger vehicle
(billion VMT). The inventories are
presented in Tables A through K at the end
of this report.

Owing to the small values of some of the
inputs and outputs on a per-mile basis, the
inventories summed over 1 billion VMT
create uniform units, in most cases tons
(2,000 pounds). This is not to say that one
light-duty passenger vehicle travels 1 billion
VMT, but that many similar, if not identical
vehicles, could travel a total of 1 billion
VMT during the year.

The data inventory was managed by the
Total Emission Model for Integrated
Systems (TEMIS). TEMIS is an accounting
tool and does not optimize or project
variables. It does allow for a wide array of
sensitivity analyses by altering major
parameters such as engine efficiencies or
crop yields to determine the effects on the
total inventories.

No attempt was made to optimize
technologies or markets represented by the
fuel cycles based on economic or social
criteria. Future economic parameters, such
as costs and profits, will be affected by
environmental issues, costs of environmental
controls, and regulations. The industry
structure examined is reasonable given what

we know today about existing or similar
industrial structures.

2.2 Fuel Cycle Boundaries

Only the operational phase of a fuel cycle
(e.g., activities associated with producing
and consuming the fuels) is documented in
this study (Figure 1, p. vi). Emissions
associated with construction and
decommissioning of the infrastructure
required to produce, deliver, or consume the
fuels are not included in the inventories.
Drilling and other activities associated with
exploration for crude oil are not included in
the fuel cycle analysis because these
activities are generally one-time occurrences
that resemble construction and development
more than daily operational activities.

We examined a number of previous studies
to determine the effect of excluding pre- and
post-operational phases. Deluchi (1992)
constructed ethanol and RFG fuel cycles to
estimate energy consumption and
greenhouse gas emissions. His analysis
showed that 10 to 15% of fuel cycle energy
inputs are used to produce the materials
used in constructing vehicles and their
infrastructure.

Deluchi assumed that 2 to 3% of the energy
content of the end-use fuel is used in
exploration, production, and drilling for
onshore and offshore oil. The DOE
Handbook (1983) estimates that the energy
used to produce onshore oil in the lower 48
states is 1.5% of the energy in the crude
produced, with about half of that used in
development drilling and half for oil
production.

The exclusion of construction activities may
be a significant issue but would require
more information on future biomass-ethanol
industrial development than is currently
available. The future size and location of
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Table 1. Fuel Cycle Stages and Activities

Fuel Cycle
Stage (Year)

E10
(2000)

E95
(201

RFG
(2000 & 2010)

Feedstock
production

Collect curbside MSW,
deliver MSW to transfer
stations; transport from
station to sorting
facility; sort and
separate organics from
recyclables.

Prepare land for
planting; plant, tend,
and harvest biomass
crops and store on farm.
Biomass Crops:
perennial grasses
annual grasses
short rotation trees

Crude oil production
from domestic sites, on-
site processing and
storage; imported crude
oil production same as
domestic.

By-products: natural
gas

Feedstock
transportation

Load and transport
sorted organic MSW to
ethanol conversion plant
via rail; store at
conversion facility.

Average distance: 100
mi

Load biomass into
trucks, rail, or barge for
transportation to ethanol
conversion facility;
unload.

Average distance: 100
mi

Transport crude oil via
truck, pipeline, barge,
and tanker in U.S.
boundary waters to
storage facilities; store;
deliver crude to
refineries via pipeline,
barge, and tanker;
unload and store at
refinery.

Fuel production

Convert organic MSW
into E95 using 2000
technology. Gasoline
fuel cycle inventory
included (for 5%

denaturant) in this stage.

By-product: electricity

Lignocellulosic crops
converted to E95 using
2010 technology.
Gasoline fuel cycle
inventory included (5%

denaturant) in this stage.

By-product: electricity

Crude oil converted to
reformulated gasoline
and other products.
MTBE production is
excluded; MTBE is
treated as input.

By-products: non-
gasoline products

Fuel
distribution

E95 is stored at
conversion plant, loaded
into railcars, transported
to Chicago region,
blended to E10 at local
bulk terminals. E10 is
transported by tank
trucks to retailers.
Gasoline fuel cycle
inventory included for
gasoline blended. E10
stored at retailers and
pumped into passenger
cars,

E95 stored at conversion
plant, loaded into
railcars, transported to
dedicated bulk tanks in
bulk terminals at major
metro areas in region
and unloaded, loaded
into tank trucks and
delivered to retailers,
unloaded and stored at
retail facilities, pumped
into dedicated vehicles.

Reformulated gasoline
is transported in
pipelines, barges, tank
trucks, and tankers to
bulk terminals, stored,
loaded into tank trucks
for retail delivery,
unloaded into retail
storage, and pumped
into passenger vehicles.

End use

Combustion in a light-
duty passenger car,
conventional gasoline
engine.

Combustion in a light-
duty passenger car,
dedicated ethanol
engine.

Combustion in a light-
duty passenger car,
conventional gasoline
engine.
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Biomass-Ethanol as E95
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Does not include construction, exploration, and decommissioning

Figure 5. Fuel Cycle Stages

the biomass-ethanol industry have yet to be
established and are highly controversial.
This study was limited to the operational
phase because it can be defined based on
engineering principals and published
information.

The operational phase of the fuel cycle is
divided into five stages: feedstock
production, feedstock transportation, fuel
production, fuel distribution, and end-use,
which is primarily the combustion of fuels
in light-duty passenger vehicles (Figure 5).
Table 1 summarizes the major activities
included in each stage of the fuel cycles
examined in this report. Figures 6 and 7
provide a flow diagram for each of the four
fuel cycles, showing how the outputs from
one activity become the inputs to the next.
Detailed descriptions of the fuel cycle and
related data are reported in Volume II: Fuel
Cycle Evaluations of Biomass Ethanol and
Reformulated Gasoline: Appendices.

The data reported in the appendices have
not been allocated between co-products in
most cases. The results reported Tables A
through K and described in Sections 5 and 6
in this document have been allocated
between coproducts. The descriptions of the
fuel cycles themselves, in Section 3, go into
more detail on allocation assumptions.

This study uses a three-part approach to
evaluate a fuel cycle: (1) present detailed
descriptions of the engineering systems that
produce, transport, convert, and consume
feedstocks and fuels; (2) construct a model
industry that incorporates the activities
defined in (1); and (3) build inventory of
inputs and outputs for the four fuel cycles.

Estimates of fuel cycle inputs and outputs
are based on theoretical engineering designs
of the four fuel cycles studied. The future
petroleum industry is assumed to be nearly
identical to the existing petroleum industry.
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The biomass-ethanol industry is created
from a hypothetical set of assumptions
based on existing agricultural practices,
transportation infrastructure, and
engineering designs. Outputs include
estimates of air pollutants, solid wastes,
water effluent, and energy products such as
fuel, electricity, and heat. Inputs include
labor, electricity, feedstocks (crude oil and
biomass), chemicals, water, fuels, and
equipment. Tables A through K, at the end
of this report, provide the reader with a
clear picture of what information was
collected for this study.

The fuel cycle scenarios are limited to
characterizing the domestic industry,
although the RFG fuel cycles include
imported crude oil. We have assumed that
imported crude has the same production
emission characteristics as domestic crude
oil production. This assumption can over-
or underestimate actual inputs and outputs
associated with international oil production,
but the scope of estimating actual values is
beyond this study (see Section 3.3 for more
detail).

The emissions from transporting imported
crude from the 200-mile economic trade
boundary to U.S. ports are included but the
emissions that occur before the oil reaches
the 200-mile boundary are not included.
The lack of readily available data and the
modeling requirements involved to simulate
crude oil transportation limited our
treatment of this activity.

The location and volumes of domestic crude
oil production are taken from NES pro-
jections, and refining and fuel consumption
are assumed to be similar to patterns that
exist today. All biomass and ethanol
production is assumed to occur in the
United States.

Eight fuel cycles were created. These base
cases consist of one MSW-E10 for 2000, five
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energy crop-E95 fuel cycles for 2010, and
reformulated gasoline fuel cycles for 2000
and 2010.

Only one site, the Chicago/Cook County
area of Illinois, was selected to develop a
fuel cycle for MSW-ethanol for 2000. MSW
contains high amounts of cellulosic waste
that can be converted into ethanol. Waste
provides a number of benefits, such as low
or negative costs, that make attractive
feedstocks for the first facilities.

Very few sites generate enough waste to
supply a large ethanol facility that produces
50 million gallons per year. A recent
analysis revealed that only 20 potential
ethanol sites could support a 50 million
gallon per year facility (Tyson, 1993). The
Chicago area provides a large volume of
MSW, faces declining landfill capacity, and
is a large urban area that could provide the
necessary demand for E10.

Five sites for biomass-ethanol production
were examined because we lacked infor-
mation on what site characteristics, if any,
affect the level of inputs and outputs of the
biomass-ethanol fuel cycle (Figure 8). These
five sites were chosen to reflect charac-
teristics found in the surrounding regions.
Regional variation in energy crop
production inputs and outputs is very
likely. Climate, soil characteristics, and
other natural parameters affect which crops
are produced, their yields, and agronomic
practices and thus, affect the level of inputs
and outputs required from biomass
production. Different mixes of energy crops
affect the yield of ethanol and thus, affect
the inputs and outputs of the fuel
production stage.

The five sites selected are: Peoria, IL;
Lincoln, NE; Tifton, GA; Rochester, NY; and
Portland, OR. Biomass production and
conversion (fuel production) are located in
the vicinity of these cities. Fuel was



Portland, Oregon

Hybrid Cottonwood (80%)
Red Alder (20%) p

Lincoln, Nebraska

Switchgrass (60%}
Wheatgrass (40%)

Peoria, lllinois

Hybrid Poplar (16%)
Silver Maple {9.6%)
Black Locust (6.4%)
Switchgrass (39%)

Reed Canarygrass {13%)
Sorghum (16%)

Rochester, New York

Switchgrass (34%)
Reed Canarygrass (34%)
H brid Poptar ge .2%)

Black Locust (6.4%)
Willow (6.4%)

Sweelgum (23%)
Sycamore (16.4%)
Back Locust (4.6%)
Switchgrass (44%)
25 Erergy Cane (10%)

Figure 8. Ethanol fuel cycle locations

assumed to be consumed in the local area
surrounding these cities. Future vehicle
stocks (inventories) were not modelled.

2.3 Level of Impacts

This study creates an inventory of inputs
and outputs that arise directly from the
activities in the eight fuel cycles. This study
does not examine any impacts, such as
health or environmental damages or
changes in urban air quality. Nor does this
study attempt to quantify the emissions
from manufacturing inputs consumed in the
manufacture, transportation, or use of the
ethanol and reformulated gasoline fuel (with
a few exceptions). This study does not
attempt to estimate the value of
externalities. Analysts quantified inputs
(e.g., electricity, fertilizers) and outputs (e.g.,
tons of 5O, and cycloparaffins) but mainly
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excluded emissions produced from facilities
that manufacture fertilizers and chemicals
and the impacts the fuel industry is
responsible for.

Other studies have examined the effects of
including electricity and fertilizer
production (Ho 1989 and 1990; Deluchi
1992). Fertilizer manufacturing and
electricity generation have been identified as
potentially significant activities, which, if
included in a fuel cycle study, can have
major effects on the results. In order to
correctly identify and quantify the values
associated with inputs, each input (such as
fertilizer and electricity) should be the
subject of a product life cycle analysis. The
results from those analyses can then be used
in fuel analyses such as this one.
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To examine the effect of omitting these
important secondary effects, published
values for selected emissions from the
regional production of electricity were
incorporated into the fuel cycles in
sensitivity analyses. These emission factors
are not fuel cycle estimates; they only
include the generation of electricity and not
the mining or other activities that would
also be involved in fossil fuel production.
In addition, they do not reflect future
technologies or the technologies that would
be used to produce electricity.

The secondary emissions (other than energy
requirements) associated with fertilizer are
not estimated in this study; however,
Deluchi’s (1992) estimates of the energy
required to mine, transport raw materials,
and produce fertilizers are included in the
discussion on energy balances. Fertilizer
and electricity production emissions
completely offset each other in a wood-
ethanol fuel cycle examined by Deluchi.
The electricity produced by the ethanol
plant offsets fossil fuel-fired electricity,
creating a reduction in fuel cycle emissions,
which creates a savings that cancels out the
fertilizer production emissions. For the fuel
cycles examined in this study, electricity is
also expected to offset all of the secondary
emissions of fertilizer use.

If all of the emissions associated with major
inputs (electricity, diesel, fertilizer,
chemicals, concrete, steel, equipment,
vehicles, etc.) to the fuel cycle are
considered, fuel cycle estimates could
increase by 10-15% (Deluchi 1992).

2.4 Data Quality and Sources

Published data are the foundation of the
fuel cycle inventories. But because the
biomass-ethanol fuel cycle is theoretical,
there is a dearth of published information
on the inputs and outputs of the fuel cycle.
This report relies heavily on the expert

opinion of researchers in these fields and on
theoretical designs. That kind of data
require verification through experimental
design and operation of large-scale
experimental biomass farms and ethanol
production facilities. The data provided for
the RFG fuel cycles were collected from
existing publications. The existing crude
oil/gasoline industry is a highly developed,
complex, and diversified industry. To make
the analysis manageable, a highly
generalized version of the industry structure
was created, one that is significantly less
complex than the existing industry. As a
result of this generalization, a degree of
technical accuracy has been lost; however,
this loss should not affect the major
conclusions of this report.

Using published data creates a risk of
overestimating future environmental
emissions from both fuel cycles, because
environmental regulations will drive
pollution control equipment improvements,
causing future environmental emissions to
decline over time. The authors of this
report believe that the fuel cycle inventories
presented probably overestimate future
environmental outputs. The bias probably
affects all eight base case fuel cycles. The
alternative approach is to project future
environmental regulations and pollution
control equipment efficiencies. This
approach creates controversy that could
detract from the value of the product and
creates its own risk of under- or
overestimating environmental emissions.
Thus, it was not employed.

If published estimates of future
characteristics are not available, information
from the current industry is used. For
example, particulate emission estimates
from the boiler in the ethanol production
facility are based on emission estimates
from existing wood-fired power plant
boilers. If published forecasts, projections,
and regulations provide guidance on future



inputs, outputs, and characteristics, they are
used. For example, if reformulated gasoline
used in light-duty passenger vehicles must
meet specific tail pipe standards by 2003
according to the CAAA 1990, then these
standards are assumed to be met. Estimates
of future oil production technologies and
volumes are provided by the NES.

Occasionally trends are used to extrapolate
future technology or emission
characteristics. For example, the
characterization of future ethanol
production efficiencies and biomass yields is
based on current trends shown in biomass
production trials.

In many cases, the estimates of outputs,
especially airborne emissions of nitrous
oxide (NOx), sulfur dioxide (SO,), VOC, and
other criteria pollutants, are based on air
emission standards regulated by the EPA. If
all vehicles must produce no more than 0.2
g/mi of NOx, then both the dedicated
ethanol vehicle using E95 and the standard
gasoline vehicle using RFG will emit 0.2
g/mi of NOx. Therefore, no uncertainty
surrounds these estimates and no variation
exists among fuels; the only uncertainty
concerning the accuracy of the estimates
whether vehicles and fuels will be designed
that meet these standards. Stationary source
emissions were handled in a similar way.
Often, the basis for the estimates of air
pollutants was based on EPA estimates from
AP-42. Future improvements in pollution
control equipment were not specifically
forecasted. Thus, some improvements from
the estimates provided in this report are
possible.

The data in the appendices, in Volume II,
are presented in familiar units, such as tons
per year of solid wastes and units per
million Btu of inputs processed. The
information gathered and presented in the
appendices was compiled so that the results
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could be easily aggregated and presented on
a VMT basis.

An assessment of data quality is provided in
the author’s notes before each appendix in
Volume II. Many estimates of the inputs
and outputs of the biomass-ethanol and the
reformulated gasoline fuel cycles are point
estimates, the result of engineering designs
or factors published by government agencies
(EPA/AP-42, NES, etc.). Although there is
uncertainty associated with any estimate,
and uncertainty in applying those estimates
to an industry that is either simplified (RFG)
or does not exist (biomass-ethanol), the level
of uncertainty was not quantified in this
study.

2.5 Coordination and Peer Review

Fuel cycle stages were assigned to research
teams based on expertise and common
elements associated with activities or stages.
Meridian Corporation studied MSW
feedstock production. Oak Ridge National
Laboratories (ORNL) analyzed energy crop
production and transportation. NREL
analyzed ethanol production. E. A. Mueller
described ethanol and gasoline trans-
portation and distribution for both 2000 and
2010 because the same infrastructure was
assumed for both scenarios (with slight
modifications). ]. E. Sinor Consultants, Inc.
characterized ethanol and RFG end use for
2000 and 2010. E. A. Mueller described
crude oil production, transportation, and
refining for both 2000 and 2010, assuming
minor changes to industrial structure would
occur between 2000 and 2010. Each team
produced one report that is presented as an
appendix in Volume IL

Pacific Northwest Laboratories (PNL)
prepared two additional appendices
documenting cross-cutting assumptions in
the transportation sectors and assumptions
made concerning the sensitivity study of
secondary electricity emissions.
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Appendices A and B cover energy crop
production and MSW processing,
respectively; ethanol production is
summarized in Appendix C; ethanol
distribution is described in Appendix D; and
the end use characteristics of reformulated
gasoline and ethanol fuels are found in
Appendix E. Crude oil production, trans-
portation, refining, and the distribution of
reformulated gasoline are covered in
Appendix F. Appendix G summarizes the
transportation assumptions used for both
fuel cycle analyses. The assumptions for
vehicle efficiencies and emissions were
coordinated to ensure consistent usage by
the many analysts. Appendix H describes
the assumptions and methodology used to
estimate secondary electricity emissions.
Appendix I summarizes the assumptions
and methodology used to estimate energy
balances.

Each team divided the assigned stages into
linear flows of activities and focused on
documenting the inputs and outputs
associated with each activity (see Figures 6
and 7). These fuel cycle inventories can be
characterized as material and energy
balances. Water, natural resources,
chemical, electricity, and other energy
inputs are quantified. Similarly, the outputs
of fuel production (electricity, water, air
emissions, and solid wastes) are quantified.
Environmental outputs are often reported as
raw and treated wastes to account for the
efficiency of pollution control equipment
that may be required or employed in the
future. Products of one stage of the fuel
cycle are inputs into the next stage.

Each appendix has undergone a technical
review process by experts in relevant
scientific disciplines. A list of technical
reviewers is provided in Section 8. In some
cases, the data provided by the assigned
teams are inadequate for the purposes of
this study, or have been used in a manner
that is not fully described in the appendix.
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When this occurs, an author’s note will
appear before the main body of the
appendix.

All the team members, NREL, and
DOE/EERE management, and invited
technical experts, met monthly for a
problem-solving and coordination meeting.
These meetings refined the direction of the
ongoing analyses, ensured consistent
assumptions across the entire project, and
promoted the level of coordination and
cooperation required to produce a report
made from many people’s contributions.

This report has undergone a thorough peer
review, consisting of industry leaders in
both the ethanol and petroleum industry,
government offices in the EPA, OTA, USDA,
and DOE, and respected scientists that are
involved in the transportation industry.
Their comments were extremely helpful and
mostly supportive; they have been
integrated into this report whenever
possible. A complete list of reviewers is
available in Section 8.
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This section summarizes the major activities
of the eight base case fuel cycles and their
variations. The eight base cases are:

¢ E10 made with ethanol produced from
MSW in Peoria/Chicago area in 2000

¢ RFG industry in 2000

* E95 made with ethanol produced from
energy crops in Tifton, GA, in 2010

¢ E95 made with ethanol produced from
energy crops in Peoria, IL, in 2010

* E95 made with ethanol produced from
energy crops in Rochester, NY, in 2010

¢ E95 made with ethanol produced from
energy crops in Portland, OR, in 2010

¢ E95 made with ethanol produced from
energy crops in Lincoln, NE, in 2010

* RFG industry in 2010.

Because the actual fuel cycles are complex,
involve numerous assumptions, and
generate a large amount of information that
cannot be presented in summary form,
readers should familiarize themselves with
the appendices in Volume 1I. Figures 6 and
7 (on pages 8 and 9, respectively) depict the
ethanol and reformulated fuel cycles used
for the years 2000 and 2010, respectively.

Sections 3.1 and 3.2 provide a discussion of
the activities associated with the feedstock
production, transportation, fuel production,
and fuel distribution stages of the biomass-
ethanol and reformulated gasoline fuel
cycles, respectively. The end-use stage of
the fuels will be discussed separately in
Section 3.3. The sensitivity analyses are
summarized in Section 3.4.

3.1 Biomass-Ethanol Fuel Cycles

The six biomass-ethanol scenarios are
differentiated by feedstock, location, and
year: one MSW feedstock scenario for the
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FUEL CYCLE SCENARIOS

year 2000 and five regional energy crop
scenarios for the year 2010. The feedstocks
and plant locations are designed to bracket
a range of potential scenarios that could
lead to variations in environmental outputs
from feedstock production, transportation,
and conversion. The major differences
between the 2000 and 2010 scenarios are the
choice of feedstock—MSW or dedicated
energy crops—and the type of fuel
produced—E10 or E95.

We assumed each bioethanol production
facility requires 2,000 dry tons of feedstock
per day (tpd) to provide consistent scenarios
for comparative purposes. The ethanol
plant in 2000 produces 71.8 million gallons
of E95 and 681 million gallons of E10. The
ethanol plants in 2010 produce between 78
and 85 million gallons of E95. The ethanol
yields vary according to feedstock
composition.

Fuel distribution varies between scenarios;
ethanol fuels are distributed among regional
cities based on a weighted average of
population distribution in the region.

The feedstock production and transportation
stages of the fuel cycle are described first,
followed by a summary of biomass-ethanol
conversion and fuel distribution. MSW and
energy crop production are described
separately because there are significant
differences in the activities used to produce
these feedstocks.

3.1.1 MSW Feedstock Supply

By 2000, the first ethanol facilities may
locate where low-cost waste feedstocks, such
as MSW, crop and forest residues, and other
organic waste streams are abundant. The
first facility was assumed to use MSW



{}N'\‘EL

feedstocks because large amounts of
cellulosic material are present in MSW,
tipping fees provide a monetary incentive,
and an ethanol facility may be a socially
acceptable solution to the waste disposal
problem.

The Chicago/Cook County area was
selected as a representative site for the MSW
scenario in 2000. The area produces more
than 1 million dry tons of MSW per year
from a 50-mile radius, has a declining
landfill capacity, a large population, and is
an ozone nonattainment area (Chicago)
where cleaner-burning fuels may be

required to meet the requirements of the
CAAA.

Most of the inputs associated with acquiring
MSW consists of the feedstock itself and
diesel fuel used in the collection and
transportation vehicles. A block flow
diagram of the entire MSW collection and
sorting process is provided in Figure 9. The
MSW is collected as curbside garbage using
compaction garbage trucks. Approximately
3,540 wet tons of MSW per day will be
collected from residential and commercial
establishments. The MSW will be
transported an average of 4 miles in
Chicago or 6 miles in Cook County to
transfer stations where it will be
consolidated and compacted into larger
loads. After compaction it will be
transported in semi-tractor trailers or rail
cars 50 miles to a sorting/preparation
facility. Operations at the transfer facility
include unloading collection vehicles,
compacting MSW, and loading semi-trailers.
Equipment use produces the bulk of air
emissions.

In the base case, all of the activities that
occur before the MSW leaves the transfer
facility are eliminated from the fuel cycle
because these activities would occur in the
absence of an ethanol industry (Figure 10).
The inclusion of these activities was
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considered as a sensitivity analysis. A full
account of all of the activities involved in
MSW collection is available in Appendix B,
MSW Collection, Transportation and
Separation, in Volume II.

Nearly 71% (by dry weight) of the material
entering the sorting/preparation facility is
wastepaper and other lignocellulosic
material suitable for ethanol production.
The remainder of the material is recycled or
taken to a landfill for disposal. We prefer to
believe that markets for these materials will
be available in the future, and these
materials can be recycled. In either case,
this study did not include the activities of
handling the non-organic wastes leaving the
sorting facility. We recognize that these
studies are important, but characterizing the
variety of options for disposing or recycling
non-organic wastes were beyond the scope
and resources available for this work.

The input/output inventory associated with
operating the sorting facility is prorated
between the two output streams: ligno-
cellulosic biomass, and recyclable products
and wastes. Only 71% of all of the inputs
(such as electricity and fuel consumed by
the sorting facility) are allocated to the
biomass; similarly, 71% of all the emissions
from the facility are associated with the
biomass produced. A sensitivity analysis
was conducted to consider the effects of
allocating all of the sorting emissions to the
cellulosic fraction of the sorted waste. This
last case would be appropriate if the wastes
were disposed in local landfills.

The cellulosic waste is loaded onto rail cars
and transported 100 miles to the ethanol
facility. Rail is the most likely
transportation option between the
preparation facility and the ethanol
production plant in Peoria, given the
available infrastructure. Rail cars also
provide an advantage of short-term storage



Figure 9. Process flowchart for MSW collection, sorting, and preparation
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at the preparation facility or at the ethanol
production plant.

Nearly 315,400 tons of organic carbon are
sequestered in the cellulose delivered to the
ethanol facility. If the organic material is
transformed into ethanol, all of the carbon is
released during the ethanol manufacturing
process and the combustion of the fuel
ethanol. Most of the cellulose is paper, food
wastes, and yard wastes that are produced
and consumed within a year. The trees to
make paper and the plants that produce
food sequester atmospheric carbon during
their growing cycle, representing an offset of
1.15 million tons of CO, per year.

3.1.2 Dedicated Energy Crop Supply

In 2010, waste markets could be limited by
expanding recycling industries, waste
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reduction technologies, and other energy
industries that consume wastes for
feedstocks. The biomass-ethanol industry of
2010 will rely primarily on energy crops.
Improved varieties of energy crops will
probably be available by 2010.

Biomass production, transportation,
conversion, fuel distribution, and end use
were assumed to occur in the vicinity of the
five locations selected: Peoria, IL; Lincoln,
NE; Tifton, GA; Rochester, NY; and
Portland, OR (Figure 8, p. 12). Biomass
crops produced at each location were
selected based on soil characteristics,
climate, harvesting time schedules, storage
characteristics, and available data from field
trials. Data from field trials were projected
to 2010 based on recent trends. These
projections involved yield estimates, input
requirements, and cultural practices possible
by 2010. Researchers assumed that farmers



will be employing more low-impact,
environmental practices by 2010.

Crop establishment, cultural management,
harvesting, and storage operations vary
among the three broad classes of cellulosic
energy crops: woody crops, perennial
herbaceous crops, and annual herbaceous
crops. Farmers in different regions were
assumed to use similar practices for each
type of crop.

The land available for energy crop
production includes the counties within a
100-mile radius of each of the five ethanol
manufacturing facilities, with the conversion
facilities located in the approximate center
of the areas. The total acreage used for
energy crops is limited to a maximum of 7%
of the "suitable” land (defined in Appendix
A, Energy Crop Production, Storage, and
Transportation, Volume 1I), across all land
quality designations. This assumption
would make energy crop production the
fifth most important crop in each area. This
approach minimizes land competition. An
alternative approach, not used in this report,
is to minimize transportation distance and
increase the concentration of biomass crop
acreage close to the facility. Transportation
emissions would be lower under the second
methodology.

Energy crop yields were expected to grow
over time as scientists select and breed
energy crops for desirable traits, and
hybridize and propagate exceptional plant
material (genetic research). Moreover,
breeding superior crops is also expected to
reduce management requirements; faster
growth will reduce the frequency of weed
control, and greater tolerance to stresses will
reduce the need for pest control. Estimates
of future yields were solicited from energy
crop researchers in several regions. These
estimates are believed to be conservative
and based on expert opinion.
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Soil conservation practices, such as reduced
tillage methods (plowing), are assumed to
be sufficiently advanced so that biomass
crops maintain high survival rates and
yields. Reduced tillage will minimize soil
erosion in the early years of tree crop
establishment and reduce soil losses
associated with annual crops. The major
assumptions regarding the establishment,
management, and harvesting of each major
class of energy crops can be found in
Appendix A.

A unique characteristic of energy crop
production systems is that they capture
carbon dioxide from the atmosphere, release
oxygen, and convert much of the carbon to
useable energy feedstocks. Some of the
carbon sequestered is returned to the
atmosphere through the decomposition of
the biomass—harvesting residues, storage
losses, leaf litter, and small roots that die
each year. Some of the carbon initially
captured by the growing biomass is
accumulated as organic matter in the soil
until an equilibrium condition is reached,
which may take 30 to 50 years. The net
change of carbon in the soil and in
aboveground tree stems and branches
(which are not yet used for fuel production)
represent pools of carbon that are
"sequestered” or removed from the
atmosphere for relatively longer periods of
time, and thus represent a benefit of the
biofuels system. Soil carbon is not included
in the base cases; however, we will describe
the effects of including soil carbon on the
final analysis.

Harvested energy crops are stored on the
farm until they are transported to an
ethanol facility. Trees and thin-stemmed
grasses are baled and can be stored covered
or uncovered. Thick-stem grasses are
harvested as forage and stored in silage
facilities. Varying harvest schedules allow
energy crops to be delivered to the ethanol
facility year-round, minimizing conflicts
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with local demands for harvesting
equipment and labor. Storage losses are
accounted for in the transportation stage of
the fuel cycle.

Transportation distances depend on the
distribution of cropland, geography, and
available routes. Where bulk commodity
transportation modes, such as rail and
barge, are available, it is assumed that
biomass is transported an average of 25
miles to the rail terminal or port and
loaded. The extensive network of canals
near Rochester, NY, allows for barge
transportation. The geographical
distribution of energy cropland in the
Portland location suggests that rail
transportation is a rational alternative. The
other sites rely on truck transportation.
Truck transportation distances were
calculated by proportional relationships
between the acreage required and the
amount of land available in a radius from
the ethanol production facility.

3.1.3 Ethanol Production

The conceptual design for the lignocellulosic
biomass-to-ethanol production process is
based on research and process development
work sponsored by the DOE Ethanol
Program. The major drawback in this
design is the lack of actual experimental
data that would support the estimates of
processing inputs, system efficiency, and
system outputs. The inventory
characteristics used in this study are the
result of a mass-and-energy engineering
balance, which scales processes and
requirements using conversion factors.
Experimental data are used for specific
assumptions or to model specific processes;
however, the effects of running the process
on a totally integrated basis (i.e., running all
the process steps in series using effluent
from one step as the feed to the next step)
are uncertain. More information will be
available when the experimental process
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development unit (scaled to 1 tpd) starts up
in late 1993. A large-scale process
development unit may be operating soon
after. If these experimental units are
successful, the biomass-ethanol conversion
technology should be commercial by 2000.

A block flow diagram of the process and a
map of the inputs, outputs, and
environmental releases is provided in Figure
11. Further detail on the process is available
in Volume II, Appendix C, Biomass
Conversion. The overall process is very
similar for both 2000 and 2010. Feedstock
compositions and the material and energy
balance consequences cause the major
differences.

The compositions of the various feedstocks,
the organic fraction of MSW, and the 13
energy crops were estimated based on data
from the literature. For some of the
feedstocks, full composition information was
not available in the literature. In these
cases, estimates were made, which then
became part of the design basis for the
conversion facilities.

Energy crops or wastes enter the plant and
are stored and processed in the feedstock
handling area. After size reduction, the
biomass is treated with a dilute sulfuric acid
solution. This step increases the digestibility
of the cellulose fraction and hydrolyzes the
hemicellulosic fraction into sugars. This
solution is neutralized and prepared for
fermentation. Enzymes are used to
hydrolyze the cellulose into glucose, then
microorganisms ferment the sugars to
ethanol and carbon dioxide. The hydro-
lization and fermentation is combined into
one system, called the simultaneous
saccharification and fermentation process, a
new technological advancement, which is
the foundation of this engineering design.
Other designs are possible, and modifica-
tions to this design were suggested by the
results of this study. Each different design
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would produce different fuel cycle
inventories.

Ethanol produced from the fermentation
steps is recovered, dehydrated, denatured
with 5% (by volume) gasoline, and sold as
fuel grade ethanol. The fuel cycle inventory
associated with gasoline production is
added to the ethanol inventories in this
stage. Thus, inventory characteristics for the
ethanol production stage shown in Tables A,
C, D, E, F, and G include full fuel cycle
inventory characteristics for gasoline. A
limited amount of on-site storage is
included in the design. Tank cars (railroad)
provide an alternative short-term storage
mechanism.

Solid wastes from fermentation and ethanol
recovery are dewatered and sent to a
fluidized bed boiler where high pressure
steam is generated. The recovered solids
are mostly lignin and insoluble protein that
entered the plant as part of the feedstock.
These components have substantial heating
value and are a major source of fuel for the
boiler. Other liquid and gaseous waste
streams are also sent to the boiler for energy
recovery. The high pressure steam is let
down through a steam turbine, which
generates electricity for the plant and
provides lower pressure steam for internal
process users. Excess electricity is produced
and sold to the local utility grid in all six
base cases. The capacity of the cogeneration
facilities ranges from 13-21 MW for the
energy crop cases and equals 8.2 MW in the
MSW case.

Liquid separated from the solids after
ethanol recovery is processed in a
wastewater treatment system. The
wastewater is assumed to be treated to the
standards required for industrial wastewater
pretreatment; effluent is assumed to be sent
to a publicly owned treatment works
(POTW). The exact nature of the effluent is
unknown, although it is believed to be
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substantially similar to effluent from corn-
ethanol plants.

Ash and uncombusted material recovered
from the boiler are solid wastes that require
disposal. The solid waste is assumed to be
nonhazardous and suitable for disposal in a
licensed landfill. The ash from the five base
cases using energy crops should be similar
to ash from power plants fired by wood and
agricultural residues. The ash produced
from the MSW feedstocks is assumed to be
nonhazardous because the MSW feedstock
has been sorted to remove plastics and other
contaminates. Even refuse derived fuels
(RDF) have higher levels of plastics that
increase fuel heating values, and thus, ash
from RDF-fired and MSW-fired power
plants are not comparable to ash from the
ethanol facilities. Ash from biomass-fired
power plants is generally alkaline and can
be used to control acid formation in
landfills.

Sludge, the other source of solid waste, is
produced in the wastewater treatment
system. In the MSW case, this material is
dewatered and sent to the boiler as a low-
value fuel. In the five energy crop cases,
the sludge is assumed to be either land
applied as a soil amendment or disposed in
a landfill on site.

For each of the six cases evaluated, a
detailed material and energy balance was
estimated, complete with utility summaries
and chemical summaries. A boiler
manufacturer provided performance data
and emissions estimates for all cases. Steam
turbine performance was estimated by a
steam turbine manufacturer. An
engineering company provided design and
performance information for the wastewater
treatment system for each of the cases.

In all six scenarios (five energy crop
scenarios and one MSW scenario), the
biomass production, transportation, and
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Figure 12. E95 fuel cycle allocation diagram

conversion inventory inputs and outputs
were divided between two products:
ethanol and electricity. This apportionment
varied in each case; on the average, 80% of
all the inputs and outputs of the conversion
stage and the previous stages was allocated
to the ethanol product and 20% was
allocated to the electricity product (Figure
10, p. 19 and Figure 12). Similar
methodology is used for the refinery
allocation in the reformulated gasoline
scenarios to account for the fact that only a
fraction of a barrel of oil actually ends up in
the final liquid fuel product (Figure 15, p.
30). The data provided in Appendix C,
Volume I, are not allocated. The results of
the base cases (Tables A through K, at the
end of this report) include the allocation.
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3.1.4 Ethanol Fuel Distribution

The MSW-ethanol facility in Peoria, IL,
produces 71.8 million gallons per year of
E95. The five ethanol facilities modeled in
2010 produce between 78 and 85 million
gallons of E95 per year. An average of the
five E95 base cases were used for general
comparisons between E95 and RFG fuel
cycles.

A complete account of the original
assumptions used to characterize ethanol
transportation is available in Volume II,
Appendix D, Ethanol Fuel Transportation
and Distribution. As explained in the
authors’ notes to appendix D and in this
section, many changes were made to the
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Figure 13. Flow diagram of ethanol fuel distribution

original assumptions. Only those
assumptions actually used to characterize
ethanol fuel distribution are described here.

We have assumed that the gasoline
transportation and storage facilities could be
used for ethanol with minor modifications.
To simplify the types of transportation
available and types of fuels used in them,
all locomotives and trucks are assumed to
be identical and use #2 diesel fuel. Ocean
tankers and barges use #6 diesel. However,
ocean tankers and barges were not used to
distribute ethanol fuels. Fuel pumps at bulk
facilities and retail terminals are assumed to
be all electric. While we recognize that the
industry is more complex and uses a variety
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of equipment and fuels, these simplifications
are necessary for this analysis.

Transportation mode efficiencies are based
on published statistics. Vapor losses from
storage tanks are based on an assumption of
uniform tank design and size. All storage
tanks are equipped with vapor recovery
systems.

The distribution stage begins at the ethanol
plant when the E95 is loaded onto rail cars
(Figure 13). In all six cases (one MSW case
and five energy crop cases), railroad tank
cars transport E95 from the ethanol plant.
The ethanol plants are located in regions
that support a railroad infrastructure



allowing the E95 fuel to be transported to
the surrounding major cities by rail. A
major city was defined as a population
center of 50,000 or more.

E95 is stored at the ethanol plant by loading
it into waiting rail cars. In 2000, E95 will be
transported 157 miles to Chicago’s bulk
terminals for blending to produce E10. The
rail cars unload the E95 at a bulk storage
plant located at or near the rail line.

Storage tank designs are assumed to be
similar to those of today. Vapor recovery
systems reduce VOC emissions from the
tank cars while in transit, during unloading,
and on the storage tanks during refilling.
Only minor modifications will be needed for
transporting E95 in tank cars as E95 is
transported in rail cars today.

In each major city, the storage tanks used
for E95 are assumed to be dedicated to that
purpose to avoid contamination with water
and petroleum products. The number of
times the tanks are refilled depends on the
volume of the tanks, the capacity of a bulk
facility, and the amount of fuel transported
to each major city.

In 2000, E95 is blended with a gasoline base
designed to produce an E10 that meets
CAAA requirements. The fuel cycle
inventory associated with the gasoline
added to the E95 to produce E10 is added to
the E10 fuel cycle in the distribution stage
(compare Tables A, ], and K at the end of
this report).

Quality and vapor pressure control were
ensured by assuming that E95 and the
gasoline base was pumped into tank trucks
using a metered commingling of the two
fuels during the loading of tank trucks.

Tank trucks loaded with E10 travel an
average round-trip distance of 50 miles to
retail and commercial stations. Evaporative
VOC emissions are controlled with vapor
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recovery systems during loading of the tank
truck and refilling retail storage tanks.
Evaporative VOC emissions from E10 were
assumed to be equal to those from RFG.
The constituents of the emission vapors
would be different but that information was
not available. Ethanol spills are based on
recent spill data for gasoline.

In 2010, the E95 is transported to major
cities located in a 200-mile radius around
the ethanol plant. Table 2 is an extract from
Appendix D, Ethanol Fuel Transportation
and Distribution, in Volume II, that shows
how the distribution of ethanol is allocated
regionally. The amount of E95 delivered to
each major metropolitan area depends on
the ratio of the number of people in that
city to the total number of people in the
200-mile radius. This mechanism was used
to approximate a regional distribution
system.

E95 is not blended in 2010; it is used as a
fuel in dedicated ethanol-fuel vehicles.
From the storage tanks, the E95 is loaded
into tank trucks and delivered directly to
retail stations. The average truck travels 50
miles round-trip between the bulk plant and
the retail stations. Rural accounts and
commercial storage are also included in the
analysis.

Both E10 and E95 are unloaded into retail or
commercial storage tanks, where they are
pumped on demand into customers’ cars.
All pumps are assumed to be electric.
Electricity estimates may include electricity
used to support retail building requirements
as well as the pumps.

3.2 Reformulated Gasoline Fuel
Cycles

The NES assumes that RFG will be the
primary fuel used by 2000. The RFG fuel
cycle constructed for this study assumes
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Table 2. E95 distribution for Rochester, NY

E95 Percent of Distance Transport

delivered production transported mode
Destination (mil. gal/yr) (%) (miles)
Rochester, NY 18.1 23.1 0 —_
Buffalo, NY 26.7 34.1 69 rail
Niagara Falls, NY 53 6.8 74 rail
Syracuse, NY 12.7 16.2 77 rail
Erie, PA 8.9 114 150 rail
Scranton, PA 6.5 8.4 170 rail
Totals 78.2 100.0 72! rail

L

! weighted average of transportation distance

that the future gasoline industry is
substantially similar to the gasoline industry
today. The RFG in these fuel cycles has a
composition that is consistent with CAAA
standards for an RFG containing 2% oxygen
by weight (11% MTBE). MTBE is the
oxygenate used in the RFG fuel cycle.
Technically, E10 qualifies as an RFG.
However, the desired benchmark to
compare with biomass-ethanol fuels is a
100% fossil fuel-based product, in this case,
RFG with MTBE additives.

This fuel cycle study assumes that RFG is
the only gasoline produced by the
petroleum industry, despite contrary
projections. We did not attempt to model
the future petroleum industry with all of its
infinite variations. This study creates a fuel
cycle inventory for one particular fuel, an
MTBE-based RFG.

The NES provides a recent forecast of the
petroleum oil industry for the years 2000

and 2010. The strategy scenario, used for
this fuel cycle study, includes advances in
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petroleum production and utilization
technologies, and enough information to
construct hypothetical slates of crude oil
qualities and refinery characteristics.

Most of the existing infrastructure and
industrial practices are assumed to remain
unchanged for 2010. No substantial
difference exists between 2010 and 2000
RFG fuel cycles, except the characteristics of
the crude and product slates. Figure 14
depicts a schematic of the proposed RFG
industry described in the following sections
3.2.1 through 3.2.4.

3.2.1 Crude Oil Production

Crude oil production begins with the
wellhead. Exploration and drilling are
assumed to be pre-operation activities and
are not included in the fuel cycle.
Conventional crude oil production
technology will remain essentially similar to
current technologies through 2010.
Speculative resources, such as oil shale or
gas hydrates, are not included because their
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economic exploitation is considered unlikely
by 2010, given the expected economic
conditions and anticipated technological
development. The NES assumption that
controversial resources (such as the Arctic
National Wildlife Refuge and Outer
Continental Shelf areas) will be developed
and producing by 2000 or 2010 is
incorporated into this analysis.

The techniques that produce crude oil vary
according to the properties of the crude, the
geology of the underground reservoir, the
age of the field, and its location (onshore or
offshore). Most of the current domestic
production of crude oil is from onshore oil
fields using primary recovery technologies.
However, these methods are expected to
shift toward secondary and tertiary
techniques as fields age. Secondary and
tertiary techniques are more energy
intensive than primary ones and employ
gases, steam, and mechanical means of
enhancing the flow of crude oil from the
reservoir as the field becomes depleted. By
2000 and 2010, heavier crudes will be
produced and secondary and tertiary
production methods will account for a
larger portion of the total production. Thus,
the characteristics of the hypothetical slate
of crude oil available to refineries and the
inputs and outputs associated with crude oil
production are projected to change over
time.

The inputs and outputs associated with
crude oil production are allocated between
the two coproducts produced from a well-
head (natural gas and crude oil) on a
contained-Btu basis (Figure 15). Therefore,
only 58% of the emissions created during
crude oil production are assigned to the
crude oil that is transported to the refinery.
A sensitivity analysis assigned 100% of the
wellhead emissions to the crude oil to
evaluate the influence of this assumption on
the results. See the refinery description for

a description of other allocation
assumptions.

Imported crude oil characteristics are added
to the fuel cycle production stage. Even
with the domestic oil production incentives
present in the NES, more than 44% of the
oil demanded by refineries will be imported
in 2000, falling to 37% in 2010. Estimating
foreign oil production characteristics is the
best approach to the RFG fuel cycle
inventory; however, collecting this
information was beyond the scope of this
study.

The base case constructed for the RFG fuel
cycle assumes that imported oil is assigned
the same production characteristics as
domestically produced oil. A sensitivity
analysis tested the alternative assumption
that imports should be assigned a zero
inventory balance to determine how
sensitive the fuel cycle inventory totals are
to the inclusion or exclusion of imported oil
emissions.

3.2.2 Crude Oil Transportation

Domestic crude oil is stored in tankage near
the wellhead; then it is transported via
pipeline, barge, (ocean) tanker, rail car, or
truck to crude storage tanks at the
refineries. Offshore and Alaskan crude is
assumed to be transported by pipeline to a
marine tank storage facility; from there it is
transported by ocean tanker to coastal
refineries or to refinery storage facilities.
Current transportation patterns are assumed
to be relatively stable throughout the next
two decades. National average statistics of
the portion of crude oil transported in each
mode are used to derive weighted average
transportation estimates. Specific
transportation assumptions are detailed in
Volume II, Appendix F.

Only the characteristics associated with
transporting imported crude oil from the
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Figure 15. RFG fuel cycle allocation diagram, 2010

200-mile economic boundary to the port are 3.2.3 Refining
included in the fuel cycle study.

Transportation characteristics for the The petroleum refining industry provides
beginning of the journey are not included. the link between crude oil and finished
Imported crude oil is unloaded into storage products. The major variables that affect
tanks at existing port facilities. The majority refinery operations (with respect to the
of the imported oil is transported by production of RFG) are: (1) crude oil
pipeline to refineries. Because most characteristics, (2) crude oil refining
refineries that depend on imported crude oil  technology, and (3) RFG specifications. The
are located at ports, imported crude oil is characteristics of the hypothetical crude oil
not transported the same distances as slate available to refineries will influence
domestic crude oil. U.S. refinery operations. Similarly, the
specifications for the major refinery outputs
The inventory characteristics for crude oil (gasoline and diesel) will certainly affect
transportation are subject to an allocation refinery operations.
assumption, which is described in detail in
the following section on refining. For the purposes of this study, a simplifying

assumption was made that the U.S. crude
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refining system can be characterized by two
geographical components: one east of the
Rocky Mountains that encompasses crude
oils processed in the Petroleum
Administration for Defense Districts
(PADDs) I through IV; and the other west of
the Rockies encompassing refining in PADD
V. API (refers to standard grades defined
by the American Petroleum Institute)
gravities and sulfur contents were forecast
for both geographical regions. These values
are in Table F-18 of Appendix F, Volume II.
Four refinery scenarios were investigated:

* West Coast (PADD V), average crude
slate, year 2000

* West Coast (PADD V), average crude
slate, year 2010

¢ United States less West Coast (PADDs |
through IV), average crude slate, year
2000

* United States less West Coast (PADDs |

through IV), average crude slate, year
2010.

The second step was to define the RFG
product specifications. The following list
describes the average RFG composition and
property characteristics expected in the
years 2000 and 2010.

Aromatic content: 25% by volume
Benzene content: 1.0% by volume
Olefin content: 15% by volume

Oxygen content: 2.0% by weight
Summer RVP (Reid vapor pressure): 8.5
psi

¢ Sulfur content: 100 ppm.

The study’s approach formulates the
gasoline pool to meet these specifications on
a nationwide average basis, using a
plausible scenario based mainly on changes
to catalytic reforming operations. MTBE is
assumed to be the oxygenate in the U.S.
gasoline pool in the years 2000 and 2010.
Eleven percent MTBE corresponds to 2%
oxygen by weight. MTBE may be

manufactured in a refinery; but for purposes
of this study, MTBE is considered a separate
input to the gasoline refining process, and
no environmental releases associated with
its production were calculated. As a result,
the fuel cycle inventory provided in Tables
B and H, at the end of this report,
underestimate total fuel cycle inputs and
outputs.

National average refining and blending
scenarios are developed based on the four
individual refinery scenarios listed
previously, along with projected crude
production rates, API gravities, sulfur
content, and reformulated gasoline product
specifications. The scenarios developed
assumed that more than 98% of the fuel is
produced by complex/integrated refineries.
The scenarios proposed are not an attempt
to achieve the optimum, but are intended to
be plausible on an average nationwide basis.
In reality, each refinery will try to achieve
an optimum strategy for its individual
situation. The refining scenarios evaluated
in this study include

* Reducing reformate severity and
therefore reformate volume

¢ Reducing alkylate and butane volumes in
the pool

¢ Diverting butanes to maximize
production of isobutylene, used to make
MTBE

* Increasing FCC light olefins production
in 2010. (Up to that date, the United
States may be able to import worldwide
supplies of isobutylene or MTBE.)

* Extracting benzene from reformate

* Eliminating deliberate blending of other
aromatics

* Increasing the manufacture of hydrogen
to make up for reduced production of
catalytic reforming hydrogen.

At the same time, the scenarios include
increased vacuum distillation and coking
volumes to contend with the trend toward
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heavier crude oils, and include increased
hydrotreating and caustic washing to
contend with higher sulfur contents of crude
oils. A simplified block flow diagram of a
typical complex refinery is provided in
Figure 16.

The annual charge volumes of each refining
process are quantified for 2000 and 2010,
with West Coast (PADD V) vacuum
distillation, coking, and crude oil gravity
distinguished from the rest of the United
States (PADDs I through IV). Table F-17, in
Appendix F, shows annual U.S. refinery unit
operation charges for both years.

Environmental releases (air emissions, water
releases, and solid wastes) are based on
published factors (release/barrel
throughput). Environmental releases are
calculated by multiplying the annual
throughput volumes for each refining step
by the emission factors. Major inputs to the
refinery includes the crude oil, natural gas,
electricity, and MTBE for blending with the
final gasoline product. Although there are
many different types of chemical inputs in
refining, they were not included in this
study because characterization was difficult.
Maijor outputs include RFG and "other
refinery products,” such as LPG (liquid
petroleum gas), aviation gasoline, benzene,
kerosene, jet fuel, heating oil, diesel fuel,
fuel oil, coke, and miscellaneous specialty
oils and wanxes.

All the fuel cycle characteristics for the
crude oil production, transportation, and
refining stages reported in the base cases are
weighted by the ratio of the gasoline base
(gasoline without MTBE) to total refinery
product based on the Btu content of the
product streams (Figure 15, p. 30). In 2000,
35% of the fuel cycle characteristics
associated with crude oil production,
transportation, and refining are assigned to
RFG; 30% are assigned in 2010. Only a
fraction of a barrel of oil ultimately becomes
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RFG; the remaining fraction becomes other
petroleum products. The allocation of the
crude oil production, transportation, and
refining characteristics reflects the fraction of
crude oil used to produce gasoline. As the
characteristics of the crude oil slate and the
product slate change, the ratio of gasoline to
total refinery output changes. U.S.
production of gasoline is projected to fall
from 7 million barrels per day (bpd) in 2000
to 6.3 million bpd in 2010; whereas, crude
oil demand increases from 12.3 million bpd
to 13.7 million bpd between 2000 and 2010
(NES2, p.121).

Air emissions are estimated using factors for
criteria pollutants, aldehydes, and ammonia
obtained from AP-42 (EPA 1985) and
modified when appropriate to include
control technologies expected to be in place
by 2000. Emission factors for 2000 are
assumed to be the same through year 2010,
except for adjustments required by
regulations. The emission factors for
greenhouse gases (such as carbon dioxide
and methane) are derived from energy
consumption and combustion data.
Mandatory data reporting requirements
under California legislation AB2588 for air
toxics and the EPA Toxic Release Inventory
System are used to help quantify toxics.

3.2.4 RFG Distribution

The RFG transportation infrastructure in
2010 is expected to resemble the existing
infrastructure because major changes are not
considered in the NES. The volume of RFG
transported declines from 7 million bpd in
2000 to 6.3 million bpd in 2010. Therefore,
the percentage of fuel that travels through
one or another mode of transportation is
assumed to remain constant.

RFG can be transported via pipeline, barge,
rail, and truck from the refinery to bulk
terminals or marine terminals. From bulk
terminals the fuel is usually transported to



S hmezL

— WELL‘HEAD
Crude Ol FIELD PROCESSING
Producti AND STORAGE (- Slorage
uction
L. ; O Transport
CRUDE OIL TANKAGE
MARINE TERMINAL TANKER
Crude O“ o TANK TRUCK CRUDE TANKAGE IMPORTS
Transportation
CRUDE OIL TANKAGE
T
1
Crude Qil REFINERY
Refining .
!
REFORMULATED
GASOLINE
I TANKAGE
- / \~\\'-. ST
' ~ T mancer
PIPELINE '( T |
Reformulated S~
Gasoline ’
Distribution
PIPELINE INLAND/COASTAL
TERAMINAL MARINE TERMINAL
PRODUCT TANKAGE \/TA_NK\ PRODUCT TANKAGE
TRUCK
1 /\
BULK PLANT L TANK )
\_TAUCK
~
1 1
AETAIL SERVICE ‘ COMMERCIALY l
STATION ' AURAL '

Figure 16. Simplified flow chart of a complex refinery

33



Chnezw

bulk plants in local metropolitan areas using
tanker trucks. Trucks are used to transport
the fuel from bulk plants to retail outlets.
Fuel consumption for transporting gasoline
is reported for the nation as a whole. Thus,
it is not necessary to develop detailed
estimates of how much gasoline is
transported by each mode for any given
distance. The lack of distances could be
confusing, but keep in mind that if national
estimates of fuel use in gasoline
transportation are available, they are
preferred to detailed modeling of a complex
system in the time period allotted.

Number 2 diesel is assumed to be the only
fuel used in trucks, rail, and inland barges.
Number 6 diesel is assumed to be the only
fuel used in ocean tankers and barges.
Pipeline pumps and pumps at storage
facilities are assumed to be all electrically
driven.

The primary sources of emissions are
vehicle emissions, primarily from rail and
trucks because pipeline pumps are assumed
to be electric. Stage I and II vapor recovery
controls are assumed to be universally
employed by 2000, with a recovery
efficiency of 95% by 2000. Vapor recovery
systems are assumed to be used at the
pumps in all retail stations. National data
on spills (as a fraction of throughput) are
assumed to remain constant over time.

3.3 Fuel End Use Characteristics

E10, E95, and RFG are consumed in light-
duty, spark-ignition passenger vehicles that
represent technology available in 2000 and
2010. The end-use characteristics used for
vehicles and fuels are presented in
Appendix E, Ethanol and Reformulated Fuel
End Use.

Information on other fuels and vehicles used
in the fuel cycle are provided in Volume II,
Appendix G, Accounting of Transportation

Emissions. The assumptions used
throughout these fuel cycle analyses
concerning vehicle and equipment
performance, fuels, and emissions were
coordinated with assumptions and
guidelines provided in Volume II, Appendix
G.

Fuel composition and vehicle performance
are estimated for the years 2000 and 2010
using an engineering analysis based on the
technical literature. The emission values are
generated from published EPA data.
Changes in emission levels expected from
vehicles using ethanol fuels are projected
from identified changes in emissions from
vehicles using reformulated gasoline.
Ethanol vehicle performance is based on a
theoretical analysis of the physical and
chemical property differences between RFG
and ethanol fuels. The theoretical analysis
is then supported through a comparison
with empirical data on actual engine
performance measurements presented in the
literature.

Vehicle emissions from RFG are based on a
scenario of proposed Tier | standards being
met by 2000 and proposed Tier II standards
being met by 2010. Evaporative emission
standards have not been proposed by EPA
for either year, and therefore, they are
projected to equal the exhaust VOC levels as
currently observed. Carbon dioxide and
sulfur dioxide emissions are based on fuel
carbon and sulfur content, respectively, and
on projected fuel economy for each fuel.
Projections of toxic VOC emissions are
based on relative reductions in total VOC
emissions from data published for recent
years.

The fuel economy projections are based on
NES estimates for a compact vehicle. Fuel
economy projections for RFG are based on
changes in fuel energy content resulting
from the hydrocarbon distribution in an
RFG.



3.3.1 E10

E10 is assumed to be sold in 2000 in exactly
the same way it is today—as an
undifferentiated product for use by any
standard gasoline-burning vehicle.
Widespread vehicle technology changes,
such as the use of variable valve timing,
may be adopted but would not experience
different effects for different fuels. Variable
compression engines would be able to
derive additional benefits from ethanol, but
are less likely to be widespread by 2000. By
2000, 95.7% of new autos will use fuel
injection systems rather than carburetion.

When E10 is burned in a gasoline-optimized
engine, the only large efficiency effects
should be the increase in volume of
combustion products and the effect of
charge-air cooling. The charge-air cooling
effect of 12" F should produce about 2% to
3% more power from a given engine, but
would have a much smaller effect on
thermal efficiency. The increased volume of
combustion products should increase
efficiency about 1%. In total, the theoretical
expectation would be for about a 1% to 2%
increase in miles per million Btu when
switching from gasoline to E10.

Generally speaking, the enleanment effect of
oxygen in E10 or RFG reduces CO emissions
while slightly increasing NOx emissions.
The effect is greater for CO than for NOx
and therefore, NOx emission differences
between E10 and RFG with MTBE are
expected to be negligible. All light-duty
passenger vehicles are assumed to meet
future Tier [ federal standards by 2000.
Therefore, the level of vehicle NOx
emissions are predicted to be near the Tier [
targets while also recognizing available
benefits of the respective fuel formulations
for hydrocarbons and CO emissions.

Rath F10 and RET (writh MTREY hawvra

gasoline, and vehicles achieve fewer miles
per gallon with these fuels. Light-duty
passenger vehicles using E10 are projected
to get similar mileage, 30.2 miles per gallon
of E10 and 30.8 miles per gallon of RFG
2000.

3.3.2 E95

By the year 2010, fully optimized engines
for ethanol fuels should be available. They
could take the form of dedicated-fuel, high-
compression engines designed to run
specifically on E85 or E95, or they could be
variable-fuel, variable-compression engines
with highly sophisticated engine control
systems able to optimize engine
performance for a variety of fuels.

The theoretical analysis suggests a 15%
efticiency advantage for ethanol over
gasoline, including the effect of greater tank
and fuel weight. On a proportional basis
this would translate to a 13% advantage for
E85 and a 14% advantage for E95. Not
enough experimental data are available to
contirm these percentages. On a constant
compression ratio basis, the theoretical
advantage for ethanol would be 7%. The
available data indicates an assumption that
a 15% advantage for an optimized engine is
a reasonable estimate of future potential.
This theoretical value is assumed as the
correct measure of potential by 2010.

Because of its lower energy density, light-
duty passenger vehicles are assumed to get
28.25 miles per gallon on E95 and 35.6 miles
per gallon on reformulated gasoline.

3.3.3 RFG

The CAAA require that RFG be sold in the
nine worst ozone nonattainment areas
starting in 1995. Other cities can elect to be
included. States or cities can also elect to

camn I b il T Al Al mciiman man ]



goals. The NES projects that RFG will
replace conventional gasoline by 2000
(NES2, p. 35). RFG with MTBE is assumed
to be the predominate fuel in 2000 and 2010.

Future vehicle efficiency projections are
based on the NES projections of new car
efficiency ratings for the years 2000 and
2010—32.1 and 37.1 miles per gallon,
respectively. These projections are based on
1990 gasoline composition (see Table E-17 in
Volume II, Appendix E). The estimated
energy density of RFG containing 15%
MTBE, plus enough added alkylate to
replace aromatics and olefins, is
approximately 4% less than the energy
density of conventional gasoline today.
Converting the NES data points to miles per
million Btu yields a fleet average mileage
projection of 30.8 miles per gallon in 2000
and 35.6 miles per gallon in 2010 using
RFG. This corresponds to 194 and 244 miles
per million Btu, respectively.

3.4 Sensitivity Analyses

Two types of sensitivity analyses are
examined: (1) different fuel cycle
boundaries and (2) allocation
methodologies. The fuel cycle boundary
analyses evaluate the changes that occur
when specific activities are included or
excluded from the inventories and changes
that occur from including or excluding
secondary emissions from input production.
Including or excluding oil imports or MSW
collection are examples of activities;
including or excluding emissions from
electricity generation are examples of
treatment of secondary emissions.

An allocation methodology divides the fuel
cycle inventory for a stage or an activity
between multiple products; e.g., ethanol and
electricity, gasoline and other petroleum
products. For example, emissions from an
ethanol production facility are divided
between ethanol and electricity based on the
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energy value of the outputs. A list of
sensitivity studies and their variations
appears in Table 3.

3.4.1 Boundary Analysis

We sifted through the various assumptions
that had to be made about which activities
to include, how to handle secondary
emissions, and how to allocate the
inventories between coproducts to develop a
set of eight base cases. The rationale and
the assumptions made for the base cases are
described in Sections 2 and 3 and in Table 3
as R1 through R8. In this section we
identify some opportunities to alter our
assumptions to test alternative theories.
There are two questions asked about the
base cases: (1) How did the boundaries
definitions affect the fuel cycle results; and
(2) Should secondary emissions from input
manufacturing be included? The first
question arose from the treatment of
imported oil and garbage collection
activities. The second arose from a general
concern that limiting a fuel cycle to
quantifying primary inputs and outputs
overlooked secondary characteristics of
potential significance, namely, emissions
from manufacturing electricity and gasoline
used in ethanol fuels. The following
discussions of sensitivity analyses were
designed to examine these questions.

Oil Import Boundary Treatment. In the
RFG base cases (2000 and 2010), imported
oil was assigned the same inventory
characteristics (on a per barrel and per Btu
basis) as domestic crude oil production.
Alternatively, foreign oil production
characteristics could be ignored and the fuel
cycle could be restricted to characterizing
domestic activities. Nearly half of the crude
oil used in domestic refineries is imported
and the composition of the imported oil
influences how U.S. refineries operate.
Without the data to characterize foreign oil
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Table 3. Descriptions of Fuel Cycle Base Case and Sensitivity Analyses

Ref.
No.

Year

Base Case
Descriptions

R1

2000

RFG with inputs/outputs of crude oil production, transportation,
and refining allocated between RFG and other products. Imported
crude oil is assigned the same inputs/outputs as domestic crude oil
production.

R2

2000

E10 from MSW with inputs/outputs of sorting allocated between
cellulose and other recyclables. Includes inputs/outputs of R1 for
90% gasoline content. Fuel cycle begins as MSW leaves the transfer
station. Inputs/outputs associated with sorting, transporting, and
converting lignocellulose to E95 and electricity allocated between
ethanol and electricity.

R3

2010

RFG with inputs/outputs of crude oil production, transportation,
and refining allocated between RFG and other products. Imported
crude oil is assigned the same inputs/outputs as domestic crude oil
production.

R4

2010

E95 from Tifton biomass, includes inputs/outputs of R3 for the 5%
gasoline content. Feedstock conversion, transportation, and
production characteristics allocated between ethanol and electricity
products.

R5

2010

E95 from Peoria biomass, includes inputs/outputs of R3 for the 5%
gasoline content. Feedstock conversion, transportation, and
production characteristics allocated between ethanol and electricity
products.

R6

2010

E95 from Lincoln biomass, includes inputs/outputs of R3 for the 5%
gasoline content. Feedstock conversion, transportation, and
production characteristics allocated between ethanol and electricity
products.

R7

2010

E95 from Portland biomass, includes inputs/outputs of R3 for the
5% gasoline content. Feedstock conversion, transportation, and
production characteristics allocated between ethanol and electricity
products.

R8

2010

E95 from Rochester biomass, includes inputs/outputs of R3 for the
5% gasoline content. Feedstock conversion, transportation, and
production characteristics allocated between ethanol and electricity
products.
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Table 3. continued

! Ref.
No.

Year

Sensitivity Cases
Description

R9

2000

RFG with the inputs/outputs of crude oil production,
transportation, and refining allocated between RFG and other
products. Imported crude oil production activities are assigned
zero inputs/outputs values.

R10

2000

RFG with inputs/outputs of crude oil production, transportation,
and refining allocated between RFG and other products.
Imported crude oil is assigned the same inputs/outputs as
domestic crude oil production. Emissions associated with
electricity production and use in the fuel cycle are included.

R11

2000

RFG is assigned all of the emissions associated with production,
transportation, and refining of crude oil. By-products and
coproducts are "free” of emissions. Imported crude oil is
assigned the same emissions as domestic crude oil production.

R12

2000

E10 from MSW with inputs/outputs of sorting, transporting, and
converting lignocellulosic material allocated between ethanol and
electricity. Includes inputs/outputs of R1 for 90% gasoline
content. Fuel cycle begins with curbside garbage collection.

R13

2000

E10 from MSW with inputs/outputs of sorting, transporting, and
converting lignocellulosic material assigned 100% to ethanol.
Recyclables from sorting and electricity are "free" of emissions.
Includes inputs/outputs of R1 for 90% gasoline content. Fuel
cycle begins as MSW leaves the transfer station.

R14

2000

E10 from MSW with inputs/outputs of sorting, transporting, and
converting lignocellulosic material assigned 100% to ethanol.
Recyclables from sorting and electricity are "free” of emissions.
Includes inputs/outputs of R1 for 90% gasoline content. Fuel
cycle begins with curbside garbage collection.

R15

2000

E10 from MSW with inputs/outputs of sorting, transporting, and
converting lignocellulosic material allocated between ethanol and
electricity. Excludes inputs/outputs of R1 for 90% gasoline
content. Fuel cycle begins as MSW leaves the transfer station.
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Table 3. continued

Ref.
No.

Year

Sensitivity Cases
Description

R16

2000

E10 from MSW with inputs/outputs of sorting, transporting, and
converting lignocellulosic material allocated between ethanol and
electricity. Excludes inputs/outputs of R1 for 90% gasoline
content. Fuel cycle begins with curbside garbage collection.

R17

2010

RFG with the inputs/outputs of crude oil production,
transportation, and refining crude oil allocated between RFG and
other products. Imported crude oil production activities are
assigned zero inputs/outputs values.

R18

2010

RFG with inputs/outputs of crude oil production, transportation,
and refining crude oil allocated between RFG and other products.
Imported crude oil is assigned the same inputs/outputs as
domestic crude oil production. Emissions associated with
electricity production and use in the fuel cycle are included.

R19

2010

RFG is assigned all of the emissions associated with production,
transportation, and refining crude oil. By-products and
coproducts are "free” of emissions. Imported crude oil is
assigned the same emissions as domestic crude oil production.

S1

2010

One case that inventories the inputs/outputs associated with the
5% of gasoline in E95. Subtracting these data from R4, R5, R6,
R7, and R8 will provide inventories for the E95 cases, excluding
inputs/outputs associated with the fuel cycle of the gasoline
contained in the E95.

R25

2010

E95 from Tifton biomass, includes inputs/outputs of R3 for the
5% gasoline content; feedstock production, transportation, and
conversion inputs/outputs allocated between ethanol and
electricity; and emissions credits/debits for electricity
generation/use.




Table 3. continued

Ref.
No.

Year

Sensitivity Cases
Description

R26

2010

E95 from Peoria biomass, includes inputs/outputs of R3 for the
5% gasoline content; feedstock production, transportation, and
conversion inputs/outputs allocated between ethanol and
electricity; and emissions credits/debits for electricity
generation/use.

R27

2010

E95 from Lincoln biomass, includes inputs/outputs of R3 for the
5% gasoline content; feedstock production, transportation, and
conversion inputs/outputs allocated between ethanol and
electricity; and emissions credits/debits for electricity
generation/use.

R28

2010

E95 from Portland biomass, includes inputs/outputs of R3 for the
5% gasoline content; feedstock production, transportation, and
conversion inputs/outputs allocated between ethanol and
electricity; and emissions credits/debits for electricity
generation/use.

R29

2010

E95 from Rochester biomass, includes inputs/outputs of R3 for
the 5% gasoline content; feedstock production, transportation,
and conversion inputs/outputs allocated between ethanol and
electricity; and emissions credits/debits for electricity
generation/use.

S2

2000

One case that inventories the difference between the
input/output inventories of R3 and R19 for the 5% of gasoline in
E95. Subtracting these data from cases R4, R5, R6, R7, and R8
will provide inventories for the E95 cases, reflecting gasoline fuel
cycle inputs and outputs for gasoline content of E95 that are not
allocated on a product basis in the RFG fuel cycle.

R45

2000

E10 from MSW with inputs/outputs of sorting, transporting, and
converting lignocellulosic material allocated between ethanol and
electricity. Includes inputs/outputs of R1 for 90% gasoline
content. Fuel cycle begins as MSW leaves the transfer station.
Includes emission debits/credits for electricity used and
produced in the fuel cycle.

40




hne=L

production, the initial decision was to assign
imported oil zero input and output values;
e.g., foreign oil did not have any emissions
or energy inputs associated with production.
On further reflection, this approach was
abandoned because it diluted the production
emissions for all crude oil used in domestic
refineries, obscuring the actual resource and
emission costs. Lacking better data,
imported crude oil production activities
were assigned the same characteristics as
domestic oil production. This is an
imperfect proxy; this fuel cycle analysis
could be improved by better charac-
terization of foreign oil production
characteristics.

Two sensitivity analyses examined the
effects of setting the foreign oil production
inventory to zero for the two reformulated
gasoline base cases (see descriptions of R9
and R17 in Table 3).

Curbside Collection of MSW Boundary
Treatment. Initially, all the activities that
contributed to E10 production were
identified and characterized. This included
quantifying inputs and outputs associated
with collecting curbside garbage, taking it to
a transfer station for compaction, then
delivering it to a sorting facility. As the
analysis progressed, it became clear that
some of these activities would occur
whether an ethanol industry existed or not;
the only difference is the compacted garbage
would be taken to a landfill, rather than a
sorting facility. The base case for E10
begins at the transfer station, ignoring the
activities to bring the MSW to that point. A
sensitivity analysis includes curbside
collection (R12).

Secondary Emissions Boundaries. In a
strictly defined fuel cycle inventory, all of
the inputs and outputs associated with each
activity are quantified to the extent possible.
Emissions associated with producing inputs
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are not quantified. Using this strict
definition, the ethanol used to produce E10
would be considered an input and the
number of gallons involved would be
estimated, but none of the fuel cycle
characteristics associated with the
production of ethanol would be included in
the E10 fuel cycle. Similarly, the fuel cycle
emissions associated with the gasoline in
E95 would not be considered in the ethanol
fuel cycle. This approach does not
accurately reflect the cost to society for
producing E10 (e.g., cost in terms of
amounts of resources consumed and wastes
produced).

This brings up a difficult issue to resolve: if
the production emissions (secondary
emissions) associated with one input (10%
ethanol or 5% gasoline) are included, then
the secondary emissions for all inputs
should be included for consistency. This
approach requires information of the life-
cycle emissions for every input to a fuel
cycle. This approach becomes an
unbounded problem with an infinite and
expanding amount of analysis. The most
common alternative is to limit the
boundaries to include secondary emissions
associated with the production of inputs, if
those emissions are large relative to the
primary emissions of the total fuel cycle. If
the analyst bases the inclusion of secondary
emissions on this methodology, how does
the analyst know in advance if an input has
major secondary emissions associated with
its production without performing a fuel
cycle analysis on every input?

The approach taken here is based on recent
fuel cycle analyses (Deluchi 1992) and other
environmental assessments (Ho 1989).
Diesel fuel, electricity, and fertilizer have
been identified as inputs whose production
emissions significantly affect analytical
conclusions. The only published data on
emissions from fertilizer manufacturing
facilities are uncontrolled emission estimates
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from AP-42 (EPA 1985). Because fertilizer
production facilities use emission controls,
these data would have overestimated
fertilizer emissions. For this reason,
fertilizer emissions were not incorporated
into this report. Deluchi (1992) found that
greenhouse gas emissions from fertilizer and
electricity production cancelled each other
out in a study of a wood-ethanol fuel cycle.

The emissions from the RFG fuel cycle are
added to the E10 and E95 fuel cycles based
on the amount of gasoline used because
data would be available from this report.
Secondary emissions from electricity are also
examined.

Secondary Emissions: Electricity.
Electricity emissions depend on the fuel and
the technology used to produce electricity,
which vary regionally as a result of resource
endowments and environmental regulation.
We have assumed that the regional mix of
electric generating resources will determine
the quantities of emissions associated with
producing electricity. The activities that
consume or produce electricity in each stage
of the fuel cycles have to be characterized
regionally for the electricity sensitivity
analysis. The methodology and
assumptions used in the electricity
sensitivity analyses are summarized below.
More detail is provided in Volume II,
Appendix H, Environmental Factors
Associated with Electricity.

Analysts examined two types of fuel cycles:
national fuel cycles for the RFG and regional
fuel cycles for the ethanol fuels. All of the
activities associated with the ethanol fuel
cycles are limited to one region. In the RFG
fuel cycles, the regional concentration of fuel
cycle activities are more complex. Some
stages of the national fuel cycle are
regionally concentrated (crude oil
production), whereas others are spread
more uniformly over the country (fuel
distribution).
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The current regional distribution of oil-
related activities—crude oil production,
transportation, refining, and fuel
distribution—are regionally characterized
based on existing infrastructure patterns.
Crude oil production occurs in many states,
but the bulk of crude oil production is
concentrated in the Texas-Louisiana-
Oklahoma area, the north central U.S.
(Kansas, Wyoming, Colorado), and the West
Coast, including California, Washington,
and Alaska. Refinery capacity is
concentrated in similar regions. Crude
transportation is obviously related to the
location of crude oil producing areas and
refineries, whereas fuel distribution is a
more dispersed activity. National data on
existing capacity and throughput were
coupled with NES projections on oil
production estimates to develop estimates of
future regional activities. Census data were
used to develop estimates on population
concentrations and regional distribution
throughput.

Only five emissions were assigned to
electricity use: CO,, NOx, SO,, total
suspended solids (TSP or particulates), and
solid waste. Other emissions were not as
thoroughly documented and were not used
for this study. Emission estimates are
derived from published sources (described
in Appendix H). These estimates depend
on the type of fossil fuel used to produce
electricity and the mix of fossil fuel-
generating capacity available in each federal
region in the future.

Regional estimates of the amount of
electricity consumed or produced in each
stage of the fuel cycle are developed based
on what portion of each production stage
occurs in each region. The electricity used
(or produced) in each region is assigned a
debit (or credit) based on the regional
electricity-generating characteristics and
their emissions. The regional emissions are
weighted and averaged based on the
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portion of the total activities occurring in a
particular region.

All eight base cases were evaluated for their
sensitivity to secondary electricity emissions
(see Table 3: R10, R18, R25, R26, R27, R28,
R29, and R45).

Secondary Emissions: RFG. The emis-
sions associated with the 5% of gasoline in
E95 were isolated to evaluate how their
inclusion affects the E95 fuel cycles (R20-
R24). Similarly, the emissions associated
with the 90% gasoline in E10 were also
isolated to evaluate just the emissions
associated with producing ethanol as a
gasoline additive (R15).

Secondary Emissions: Diesel Fuel. A
diesel fuel cycle has the same initial stages
and activities as a gasoline fuel cycle: crude
oil production, imports, transportation, and
refining. The activities associated with
diesel fuel distribution are not significantly
different from those of gasoline. Emissions
from the combustion of diesel fuel in
transportation vehicles and other engines
are included in the base cases. Because the
allocation methodology was based on the
ratio of Btus in gasoline compared to the
total product of a refinery, the data
provided in the base cases can be adjusted
to reflect the addition of fuel cycle
characteristics for diesel consumed in the
fuel cycle.

This analysis was not conducted due to time
limitations. However, by assigning 100% of
the crude oil production, transportation, and
refining emissions to RFG (e.g., other
refinery products are not associated with
production emissions), an upper bound on
the possible effects of including the fuel
cycle emissions associated with diesel
production can be calculated. This
procedure is described in the following
section.

3.4.2 Allocation Methodology

Fuel cycle characteristics for a stage or
activity were divided among the coproducts
of that stage or activity in four areas: MSW
sorting facility, crude oil production, crude
oil refining, and ethanol production. In
addition, prior activities were also subject to
the allocation (Figures 10, p. 19; Figure 12,
p- 23; and Figure 15, p. 28). Analysts
assigned inventory characteristics on the
basis of the ratio of energy in the final
product compared to the energy of the total
outputs or dry weight of final product
compared to the dry weight of the total
outputs, whichever is most reasonable for
the case examined.

MSW Sorting Facility Allocation. When
MSW is sorted, two streams of products
issue: lignocellulosic organic waste and
nonorganic wastes. Many of the nonorganic
wastes can be sold to recyclers: glass, metal,
plastic, etc. Regardless of their disposition,
the emissions associated with separating
MSW should be divided among the
coproducts (lignocellulosic material and
wastes). In the MSW-E10 base case fuel
cycle, 71% of the input/output inventory
from sorting MSW is assigned to the ligno-
cellulosic output; the remainder (29%), is
allocated to the coproduct recyclables. The
allocation was based on dry weights. This
allocation would apply to MSW collec-tion
and transportation activities in sensitivity
cases in which they are included. A
sensitivity analysis evaluated the effect of
assigning 100% of the sorting, transpor-
tation, and conversion characteristics to the
lignocellulosic feedstock.

Coproduction of Crude Oil and Natural
Gas. Natural gas is often produced with
crude oil. It is referred to as associated gas.
If the input/output inventory from
producing crude oil is assigned to crude oil,
the natural gas produced is "free" to society;
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there are no inputs or outputs associated
with its production. The RFG base cases
(2000 and 2010) assume that the inventory
associated with crude oil production is
divided between the natural gas and crude
oil, on a Btu basis. In 2010, crude oil is
assigned 58% of the production charac-
teristics and natural gas is assigned the
remaining 42%. A sensitivity study
examined unallocated emissions; e.g.,
assigning all the inputs and outputs
associated with crude oil production,
transportation, and refining to RFG (Table 3,
analyses R11 and R19).

Coproduction of Multiple Refinery
Products. Only a fraction of a barrel of
crude oil is transformed into RFG; the
remainder is transformed into diesel,
propane, chemicals, plastics, coke, asphalt,
and other products. In the RFG base cases
(R1 and R3), the refinery characteristics are
divided between RFG and "all other
products” based on a Btu equivalent value
of total output. In 2000, 35% of the refinery
emissions are assigned to RFG; by 2010 that
percentage falls to 30% (less gasoline
produced in product slate).

The characteristics of the crude oil
production and transportation stages are
similarly allocated; only a portion of the
barrel of crude produced and transported
becomes RFG. The remaining crude oil
production, transportation, and refining
inventory characteristics are assigned to
"other petroleum products.”" Therefore, only
35% of the transportation emissions in 2000
and 30% in 2010 are assigned to RFG in the
base cases; only 20% of the crude oil
production inventory is reflected in the RFG
fuel cycle in 2000 (0.58 x 0.35), falling to
17.4% (0.58 x 0.30) in 2010 (Figure 15 on
page 28).

The sensitivity analysis of crude oil
allocation examined the effect of assigning
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all of the refinery emissions (and thus 100%
of the transportation emissions and 100% of
the crude oil production emissions) to RFG.

Biomass-Ethanol Conversion Process.
The biomass conversion facility yields two
products: E95 and electricity. Based on
economic value, these products are
considered coproducts. The characterization
of the activities that produce, transport, and
convert biomass needs to reflect only the
portion that actually contributes to ethanol
production, rather than electricity.
Therefore, the base cases reflect an
allocation of the characteristics of feedstock
production, transportation, and conversion
based on the ratio of energy content in the
ethanol to that of the total products. Each
regional case is slightly different, because
different feedstocks yield different
proportions of ethanol and electricity. The
average of the allocation characteristics of
the five 2010 cases is 80% to ethanol, 20% to
electricity.

The sensitivity analyses reexamine the six
biomass-ethanol base cases without any
allocation.
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4.0

4.1 Data Sheets

Each research team that was responsible for
preparing an appendix for the fuel cycle was
asked to assess the quality of the data used
for their report. A generic format was
developed to ensure consistency. Data
assessment sheets (Figures 17 - 19) provided
a qualitative assessment of the data quality.

In general, the quality of the data could be
improved with additional work; however, the
improvements may not significantly change
the conclusions of the analysis. The
experimental data used to characterize the
ethanol fuel cycles can be verified through
research and development trials. The
experimental results could improve the
engineering design used in this study. It is
important to remember that this fuel cycle
analysis documents the characteristics of one
combination of technological designs among
many possible combinations. Each different
combination of technologies will result in
different fuel cycle inventories.

The quality of data used to characterize the
existing and future petroleum industry could
be substantially improved. Future regulations
and trends could be characterized, improving
the accuracy of the projections made in this
report. Data from selected processes indicate
that improvements in technologies, such as
waste minimization, are very likely.
However, these data were not used to
characterize the future industry because
evaluating the myriad of technologies used in
the industry was beyond the scope of the
work. Researchers were directed to collect
published data that best characterized the
industry. Published data that typifies an
industry, or attempts to project some
"average" operating parameter, underestimate
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DATA QUALITY

the achievements of progressive firms that
have surpassed average levels.

Analysts recognized these limitations in the
quality of data collected from published
sources and theoretical engineering designs
but decided to use the available information
in this fuel cycle study because it could be
documented. Once the implications of fuel
cycle results are assessed, the cost of investing
in better data can be weighed against the
projected benefits.

4.2 Appendices

Information provided by team participants
and contractors that appear in Volume II, Fuel
Cycle Evaluations of Biomass-Ethanol and
Reformulated Gasoline:  Appendices, has been

substantially modified in some cases. Because
of the preliminary nature of this fuel cycle
analysis—the first of its kind with respect to
the level of detail—it was not believed to be
cost effective to have either the team members
or the consultants make major modifications
to their methodology or data sources until the
whole project could be evaluated.

The appendices that were modified the most
were: Appendix D, Ethanol Transportation;
Appendix B, MSW Collection, Transportation,
and Separation; Appendix F, the Benchmark
Reformulated Gasoline Fuel Cycle; and
Appendix C, Biomass Conversion. Authors’
notes appear before each Appendix,
describing how the information contained in
the appendix was used or altered in the
TFCA. A brief description of the major
changes is provided here.

In Appendix D, Ethanol Transportation, the
authors assumed that only the differences
between the environmental emissions
associated with transporting gasoline and
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pure ethanol were required. The fuel cycle

actually examines the environmental
emissions associated with transporting
specific fuels—in this case E10 and

E95—neither of which is pure ethanol
Incremental emissions from transporting pure
ethanol cannot be added to the emissions of
transporting RFG because of the differences in
the distribution network for the regional
biomass and national RFG scenarios.

Although there were several errors in the
formulas provided—generally wusing
parameters for crude or RFG instead of those
for E10, E95, or pure ethanol—the basic
formulas were not in error. Therefore, the
formulas were reconstructed on a spread
sheet, and the environmental emissions
associated with distributing E10 and E95 were
recalculated. = The recalculated numbers
shown in the authors notes at the beginning
of Appendix D were used as input to the
ethanol fuel cycle scenarios.

Appendix D characterized ethanol distribution
as an average of five sites; it did not
characterize each site. Also, the inputs and
outputs reported for ethanol distribution were
calculated on a net basis, e.g., the incremental
emissions from distributing pure ethanol
compared to distributing RFG. Distribution
and emissions characteristics were
recalculated for each site and for each fuel.

In Appendix B, MSW Collection,
Transportation, and Separation, the toxic air
emissions reported in Table B-15 were for a
small facility operating 8 hours per day.
Analysts prorated these estimates to reflect a
larger facility operating 24 hours per day.
The sorting allocation, the treatment of
curbside collection and garbage truck
movements, and the derived allocation of
conversion characteristics (between ethanol
and electricity) were not described in
Appendix B. However, they were introduced
into the TEMIS accounting framework.
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In many cases, the information provided in
Appendix F, Benchmark Reformulated
Gasoline Fuel Cycle, is not allocated between
coproducts. The information provided for
crude oil production is prorated between
crude oil and associated gas. The refinery
information is also allocated between gasoline
base (RFG without MTBE) and other
petroleum products. However, the refinery
allocation was not applied to the
characterization of crude oil production,
transportation, or imports. The allocation was
performed on the data in the TEMIS
accounting framework.

In Appendix C, Biomass Conversion, the
particulate emission levels did not reflect the
available pollution control equipment that
might be required by 2000 and 2010, only that
pollution control equipment required today.
Specifically, the engineering design included
a baghouse for boiler emissions and a cyclone
separator for emissions from the feedstock
preparation and handling systems. The
emissions reported from the engineering
design could be reduced through the use of
available technology such as electrostatic
precipitators for the boiler emissions, which
have an average efficiency of 90%, and a wet
scrubber on the feedstock preparation system.
If both of these technologies are employed in
the conversion facility, particulate emissions
could be reduced by as much as 90%
compared to the value reported in Appendix
C. The values used in the ethanol base cases
assumed that additional pollution control
equipment is employed and PM emissions are
reduced by 90%.

Also, Appendix C does not discuss the
allocation of characteristics between ethanol
and electricity products. This allocation was
applied to the data produced by the TEMIS
system.
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4.3 Fuel Cycles Inconsistencies

As a result of variations in approaches
adopted by each team and gaps in
transferring information among teams, some
minor variations occur in the accounting of
volumes or fuel characteristics among reports
for the stages of the fuel cycles.

¢ The RFG fuel cycle was based on national
averages, with some disaggregation to
capture regional differences in crude oil
and refinery characteristics.

¢ The biomass feedstock analyses were site
specific, accounting for land distribution,
transportation networks, and
infrastructure. An average of the biomass
production scenarios was calculated to
compare biomass-ethanol estimates with
the national RFG estimates.

¢ Minor variations (1%) in reported biomass
feedstock volumes occurred; the outputs of
the feedstock production analyses (MSW
and crops) did not exactly match the input
volumes at the conversion facility. No
significant effects were anticipated from
this mismatch.

* The refinery and gasoline distribution
analysis assumed that RFG would have an
RVP of 9 psi, whereas the end-use stage
assumed an RFG with an RVP of 6.7. As
a result, the environmental emissions and
required input to the refinery stage that
would occur to produce low-RVP fuels
were not accurately reflected in the fuel
cycle. Differences in refinery emissions
could be significant.

¢ During the transformation of TEMIS data
into spreadsheets, inconsistencies in the
data have been introduced. The most
obvious inconsistency can be seen in the
end use emissions for E95 fuels, the values
for CO, NOx, SOx, PM, etc., should all be
equal because E95 fuel is being used to
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drive one mile in each case (or a billion
VMT if Tables C through G are examined).
The variation is generally less than 1
percent, but it is clear that no variation
should occur. PNL was unable to correct
the errors in the time available. Therefore,
we have to assume that similar variations
occur in the remaining data and we have
found several instances of this effect. In
general then, the values reported are close
approximations of the actual figures that
should result from calculations but
probably vary 1% to 5% from the true
value. NREL has concluded from this
exercise that TEMIS and PNL’s
proceedures should be improved and this
inconsistency issue resolved before any it is
used for future fuel cycle analysis.

The values provided in the spreadsheets have
been checked against the original data in
every case. Extensive data verification was
enlisted and NREL believes that the data
provided in Tables A through M at the end of
this report provides an accurate
representation of fuel cycle inputs and
emissions, given the 1% to 5% variation
described above.
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5.0

The TEMIS accounting framework stores,
manipulates, and displays the data presented
here. Tables A through H, at the end of this
report, provide summary data for the eight
base cases. The tables summarize all of the
inputs and outputs that would occur to
produce enough fuel to travel 1 billion VMT.
Each ethanol plant produced between 78 and
85 million gallons of E95, enough fuel for 2.21
to 2.41 billion VMT (assuming it is used in
light-duty passenger vehicles). One billion
VMT is 40 to 45% of the total mileage possible
from the fuel produced from each ethanol
plant in 2010, 4.5% of the total amount of E10
produced. The standard (1 billion VMT) was
created to compare different fuels and
different vehicle efficiencies on a common
basis of mobility. One billion VMT is only
0.045% of the 2,177 billion passenger. vehicle
miles projected for 2000, or 0.036% of the
2,814 billion VMT projected by 2010 (NES
1991).

The fuel cycle data reported in Tables A
through ] have been adjusted by the
efficiencies of the vehicles consuming a
particular fuel. The reader cannot multiply
the gasoline fuel cycle by 0.90 to estimate the
portion of the gasoline fuel cycle that is
implicit in the E10 fuel cycle. The vehicle
efficiencies of each type of fuel must be
considered separately and will adjust the
inventory estimates on a miles traveled basis.

The eight base cases—two RFG cases and six
biomass-ethanol cases—and several sensitivity
analyses are described in Section 3. Further
details are available in the appendices in
Volume II. The base cases include:

* RFG fuel cycles for the years 2000 and 2010

* E10 base case for 2000, transforming sorted
MSW into ethanol that is used to produce
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FINDINGS

E10, a blend of 10% ethanol and 90%
gasoline

* Five regional biomass-ethanol scenarios in
2010, assuming E95 (95% ethanol and 5%
gasoline) is used in dedicated ethanol
vehicles.

RFG 2000 and E10 are used in conventional
gasoline engines.

The discussion of results focuses on the
gaseous, solid, and liquid emissions because
environmental implications are the major
issues revolving around fuel use today
(CAAA 1990, NES 1991). The inventories of
all of the activities involved with producing
enough fuel to power a car for 1 billion VMT
are aggregated into totals for each stage of the
fuel cycle and for the fuel cycle as a whole.
Secondary emissions, when they are included
in the base cases (e.g., for the gasoline
fractions of ethanol fuels) or in the sensitivity
cases (electricity generation emissions), are
reflected in the stages of the fuel cycles where
these inputs are consumed (or outputs
produced). For example, E10 blending occurs
in the distribution stage; denaturing ethanol
with gasoline occurs in the ethanol production
stage.

5.1 E10 and Reformulated Gasoline
Fuel Cycles: 2000

Both E10 and RFG 2000 produce more of
some emissions and less of others when
compared to each other (Table 4 and Tables A
and B at the end of the report). The benefit of
one fuel compared to the other needs to be
based on which emissions are important.
Both fuels consist of roughly 90% gasoline
and therefore, emissions levels are similar
because the fuel cycle emissions associated
with gasoline are reflected in both fuel cycles.
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(mg/mi unless noted)

Table 4. 2000: MSW-E10 and RFG fuel cycle emissions

Emission | Fuel | End Use Fuel Fuel Feedstock Feedstock Total
Distrib. Prod. Transport. Prod.
cO E10 2,097 38° 9.6° 0.8 0.8 2,145.6
RFG 2,195 45 8.1 136 7.3 2,229.0
NOx E10 399 163? 6.4° 24 1.6 572.0
RFG 400 8.1 61.7 30.8 454 546.1
PM E10 0P 4.5° 0.5° 0.0 0.0 5.0
RFG ob 0.3 21 15 0.5 44
SO, E10 408 44.7° 2.6° 0.0 0.0 88.2
RFG 499 03 399 09 2.7 93.8
COyf E10 |[262515 46,244* 258.0° 157.8 236.7 309411.0
RFG 279,690 1,179 25,764.5 4,263.8 12,973.0 323,870.0
voc? E10 380 116* 1.7 0.0 0.0 497.6
RFG | 380 43 81 145 13.6 459.0
Waste- E10 n/a 1782 61.3 n/a 13.7 253.3
water RFG n/a 0 52.1 — 122.7 174.8
ml/mi
Solid E10 n/a 740.2° 5,055.0° n/a -27,624.0 -21,828.8
Waste RFG n/a n/a 635.1 n/a 90.7 725.8
“Includes gasoline fuel cycle emissions for gasoline added to ethanol in this stage.
PParticulate emissions from passenger vehicles not available for E10 or reformulated gasoline.
“Fossil CO,, does not include CO, sequestered in biomass or released from fermentation or
ethanol combustion.
‘Biogenic VOC emissions.

52




‘I:}N'\’E'.

Gasoline-related emissions are accounted for in
two stages of the E10 fuel cycle: when 5%
gasoline is added at the conversion facility to
denature the ethanol, and when the balance of the
gasoline is blended with E95 to make E10 in the
distribution stage. Thus, the distribution stage of
the E10 fuel cycle reflects the gasoline-related
inputs and outputs and overshadows any
transportation emissions associated with
distributing E10. When the gasoline fuel cycle
emissions are excluded from the E10 fuel cycle
(Table ] at the end of the report), distribution
emissions for E10 are similar to those for RFG.

The E10 fuel cycle produces 4% less CO than RFG,
6% less 50, and 4.5% less CO, (the organic
portions of MSW were assumed to have been
sequestered from atmospheric CO,). E10 also
produces 5% more NOx than RFG, 14% more PM,
and 8% more VOCs. Although these differences
may seem small, substituting E10 for RFG can
provide signficant benefits in terms of CO, CO,,
and S0, reductions in regional air quality basins.

5.1.1 Carbon monoxide emissions (CO)

Nearly 98% of the CO emissions originate
from the tail pipes of light-duty passenger
cars for both fuels in 2000 (Figure 20). Both
RFG and E10 are oxygenated fuels, and as
such, produce lower CO emissions than
conventional gasoline. Analysts assumed that
vehicle emissions equal 2.2 grams per mile for
RFG and 2.1 grams per mile for E10. This
assumption was the largest single factor
contributing to the end result that E10
produces 4% less CO than RFG.

Generally speaking, vehicles using E10
produce 4.5% less CO emissions than
conventional gasoline, but NOx emissions
increase by 2.9%. The differences between
E10 and RFG made with MTBE are expected
to be smaller because both fuels contain
oxygenates that provide similar benefits. The
benefit of CO reduction is slightly higher for
E10 because of the higher oxygen content of
the fuel, 3.7% versus 2.0; E10 should burn
more completely. The effect of increasing the
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oxygen content of gasoline has a larger impact
on CO emissions than on NOx emissions.
Thus, a slight benefit is assumed for CO
emissions while the difference in NOx end
use emissions is assumed to be negligible.

5.1.2 Nitrogen oxide emissions (NOx)

Roughly 70% of the NOx in the year 2000 is
produced from the passenger vehicles, the
end-use stage (Figure 21). Crude oil
production, transportation, and refining
contribute 30% of the NOx emissions to the
RFG fuel cycle, while E10 distribution seems
to produce 28% of the NOx generation in the
E10 fuel cycle. However, approximately 90%
of the NOx emissions from distribution and
production in the E10 fuel cycle are emissions
from the crude oil production, transport and
refining and the distribution of gasoline; this
distorts the true emissions associated with E10
distribution activities. Only 13.6 mg/mi of
NOx are produced by vehicles transporting
E95 to blending facilities and E10 to retailers.
Less than 1% of the NOx emissions produced
in the E10 fuel cycle stages, excluding end
use, are generated during MSW collection,
sorting, and transportation.

5.1.3 Sulfur dioxide emissions (SO,)

Passenger vehicles (the end use stage) are a
major source of SO, from both fuel cycles
(Figure 22). Gasoline contains sulfur, but
pure ethanol does not. Blending 10% ethanol
into gasoline reduces SO, emissions
proportionately. New research shows that
reducing the sulfur content of RFG also
reduces CO, NOx, nonmethane hydrocarbons,
and selected air toxics emissions from
passenger vehicles (CRC, 3-92). Regulations
that will cause reductions in the sulfur
content of #2 diesel fuel were not reflected in
this study. However, the impact of the low-
sulfur diesel will reduce the fuel cycle
estimates of SO, emissions in the
transportation and distribution stages. The
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primary sources of SO, in these stages are
heavy-duty trucks and trains that use diesel
#2 and #6, respectively.

Only 2.6% of the SO, emissions from the E10
fuel cycle are produced by ethanol-related
activities (Table ] at the end of this report).
The majority of SO, emissions are created by
train engines hauling feedstock to the
conversion plant and trucks that distribute
fuel. Most of the SO, emissions reflected in
the E10 fuel cycle are emissions associated
with the gasoline that is blended with E95 in
the distribution stage.

5.1.4 Particulate matter emissions (PM)

Nearly 50% of the PM emissions in the RFG
fuel cycle are produced during refining
(Figure 23). The remaining emissions are
produced by transportation vehicles using
diesel fuels. In the E10 fuel cycle, 90% of the
PM emissions are attributed to the gasoline
fuel cycle emissions associated with the
gasoline used in E10. The remaining PM
emissions are created by the ethanol
production facility (Table | at the end of the
report). Not enough data were available to
determine the composition of the particulates
produced in either fuel cycle or to estimate
emissions from passenger vehicles.

5.1.5 Volatile organic compounds
(VvOoC)

E10 fuel cycles create about 8% more VOCs
than RFG fuel cycles for two reasons (Figure
24). First, not only must the gasoline travel
through its regular distribution system, but
there is an additional burden of heavy-duty
vehicle emissions caused by moving the E95
to the blender’s location. Second, E10 is a
more volatile fuel than RFG and the
evaporative VOC losses from tank trucks and
retail storage will be higher for E10 compared
to RFG. There are also the evaporative and
fugitive emissions associated with moving the
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E95 to the blenders and storing it there.
Different blends of ethanol, now economically
feasible, should be evaluated in the future.

Roughly 80% of the fuel cycle VOC emissions
in the year 2000 are created in the end use
stage—engine exhaust and evaporation losses.
Once again, the analysts assumed the
emissions were identical for both fuels since
vehicle and fuel manufacturers will attempt to
meet CAAA standards. Not enough data
were available to provide detailed
composition of the VOCs produced in either
fuel cycle. Detailed VOC compositions were
available for some stages or activities,
unavailable for others, and for yet others, only
reported as an aggregate sum of VOCs
without any detail.

5.1.6 Carbon dioxide emissions (CO,)

Although 10% of E10 is made from a
renewable fuel (lignocellulose), the E10 fuel
cycle creates 4.5% less CO, emissions than
RFG (Figure 25). The lignocellulosic material
in the organic fraction of MSW was created
by trees and other plants that sequestered
CO,. Trees are used to make paper and
lumber, vegetables are grown to make food,
grass produces lawn clippings, etc. Because
fossil fuel is used to collect and process MSW
feedstocks, and transport E95, the E10 fuel
cycle emissions are only 4.5% less than those
for the RFG fuel cycle, instead of the full 10%
fraction of ethanol in the fuel.

5.1.7 Wastewater emissions

Because the contaminants in the wastewater
produced are not strictly comparable (grease,
salts, metals, etc), only the quantities of
wastewater can be compared (Figure 26). The
Appendices in Volume II provide more detail
on the composition of effluent streams.
Liquid wastes were only produced in two
stages of the fuel cycles—fuel production and
crude oil production. Fuel spills were
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mg/mi

E10 RFG E95 E95 E95 E95 E95 E95 RFG

MSW | 2000 Tifton | Peoria [Rochester Portland | Lincoln Avg 2010

Feedstock Production 0 13.6 9.2 9.7 104 9.7 11.3 10.1 12.7
Feedstock Transpornt 0 14.5 23 1.5 22 2.6 1.5 2 11.8
Fuel Production 1.7 8.1 18 18.6 17.8 215 18 18.8 3.6
Fuel Transport 115.7 42.6 17.2 17.2 172 17.2 17.2 172 354

Fuel End Use 380.1 | 380.1 159.7 | 159.7 | 1597 | 159.6 | 1597 159.7 | 179.6

Fuel Transport FHH  Fuel Production

@ Feedstock Production

I Fucl End Use
Feedstock Transport

Figure 24. Fuel cycle emissions of volatile organic compounds, base cases
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negligible and not included in wastewater
estimates.

Most of the process water from ethanol
production can be treated by city sanitation
plants to produce potable water.  The
wastewater stream produced by the ethanol
production facility is an optimal environment
for growing organisms and is perfectly suited
to agricultural uses, such as irrigation. Waste-
water produced by the MSW sorting facility is
treated to standards necessary to dispose of
the water in POTWs. Roughly 90% of the
wastewater produced in the RFG fuel cycle is
reflected in the E10 distribution stage, creating
the appearance of substantial water use and
disposal in a stage where water is not used.

Almost 70% of the liquid effluent produced in
the RFG fuel cycle is formation water—water
produced with the crude oil—which contains
a wide variety of salts, metals, and
radionuclides. Most of the formation water is
reinjected into the oil bearing formation or
other zones. Water that is used in enhanced
oil recovery (EOR) processes and formation
water that is reinjected is not considered to be
wastewater. If they were, estimated
wastewater produced during crude oil
production would be approximately 20 times
higher than reported. Pollution caused by
abandoned wells is not included in this study.

5.1.8 Solid wastes

The E10 fuel cycle actually reduces solid
wastes that would otherwise be discarded
into landfills by turning it into ethanol and
ash (Figure 27). Gypsum is produced in the
pretreatment stage from neutralizing sulfuric
acid used to pretreat the cellulosic material.
Approximately 15% of the solid waste
produced in the fuel production stage is
gypsum; the remainder is ash from the
combustion of the nonfermentable portions of
the MSW feedstock. The fraction of MSW
that is diverted to the ethanol plant reduces
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the amount of MSW sent to landfills by 71%,
creating a potential benefit for local landfills.
The entire facility reduced the amount of
MSW by 720,000 tons per year, or 21.8 g/mi
on a net basis, including solid wastes created
during the production of ethanol.

Depending on the amounts of foreign
constituents in the biomass ash, most of the
solid waste produced in the ethanol fuel cycle
should be relatively innocuous. On the other
hand, nearly half of the solid waste produced
in the RFG fuel cycle is composed of
dangerous (hazardous, toxic, carcinogenic,
mutagenic, etc.) materials (see Table B at the
end of this report). The dangerous wastes in
the E10 fuel cycle are those associated with
producing the gasoline fraction of E10.

5.2 E95 and RFG Fuel Cycles: 2010

One RFG and five regional E95 fuel cycles
were evaluated for 2010. With a few
exceptions, there is little difference in
emission characteristics from each stage of the
five E95 fuel cycles (Table 5 and Tables C
through H at the end of the report). Different
emission characteristics that occur among the
E95 cases are caused by different types of
feedstocks and different feedstock
transportation characteristics.

CO emissions are 6% to 8% higher for E95
compared with RFG. NOx emissions for E95
range from -4% to +4% of NOx emissions
from RFG, and SO, emissions are 60% to 80%
lower for E95 fuels. Particulate emissions are
100% to 146% higher for E95, and VOC
emissions (excluding biogenic emissions) are
13% to 15% less than RFG. E95 produces
only 9% of the CO, emissions that RFG
produces. If soil carbon accumulation is
included in the E95 fuel cycles, E95 produces
only 4% of the CO, produced in the RFG fuel
cycle. All of the emissions associated with
producing and transporting feedstocks and
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producing ethanol have been allocated
between the two products produced—ethanol
and electricity. The base cases only reflect the
emissions associated with ethanol production.
Similarly, only emissions associated with the
RFG fraction of a barrel of crude are shown
here.

5.2.1 Carbon monoxide emissions (CO)

As with the fuel cycles examined for the year
2000, 91% of the CO emissions from the E95
fuel cycles and 98% of the CO emissions from
the RFG fuel cycle come from passenger
vehicles, in the end-use stage (Figure 20, p.
53). Vehicle emissions are 1.7 grams of CO
per mile for both fuels. Analysts have
assumed that vehicles and fuels will be
designed for cars to ensure that the proposed
Tier Il standards of the CAAA are met.
Technologies, such as improved catalytic
convertors and other pollutant traps, could
benefit both fuels.

E95 fuel cycles produce 6% to 8% more CO
than the RFG fuel cycle because of the
combustion of solid wastes in the boiler of the
ethanol production facility. Refineries were
assumed to purchase excess power needs, and
the emissions associated with that electricity
are not included in the base cases; however,
they are included in the electricity sensitivity
cases (discussed later). Although biomass
combustion is perceived as a mature
technology, many technological advances in
boiler efficiency are being examined by NREL
and others. More efficient biomass boilers
could be developed by 2010, which could
diminish boiler emissions.

5.2.2 Nitrogen oxides emissions (NOx)

There is no significant difference in the
amount of NOx produced by either fuel cycle
(Figure 21, p. 54). Surprisingly, the emissions
from the average E95 fuel cycle and the RFG
fuel cycle for 2010 are roughly the same for
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each stage. NOx emissions for crude oil
transportation are higher than those of
biomass transportation because of the longer
distances involved.

The passenger vehicles, in the end-use stage,
produce about 61% of the NOx emissions in
both fuel cycles. Vehicle emissions were 0.2
g/mi NOx for both fuels. Analysts assumed
that both fuels and vehicles are designed to
meet the proposed Tier Il standards of the
CAAA.

Fuel production is the second largest NOx
source for both fuel cycles, producing 20% of
the total emissions. NOx is produced during
the combustion of the waste biomass in the
ethanol plants’ boilers and the combustion of
petroleum by-products in the refinery.
Analysts assumed that ammonia injection is
used to control NOx emissions from the
ethanol plant’s boiler. The NOx emissions
from the boilers are a combination of thermal
NOx from the air consumed in the boiler,
unreacted ammonia, and the combustion of
the protein content in the waste biomass.

The other major NOx source is feedstock
production. NOx emissions are produced by
farm vehicles using diesel fuel. Farm vehicle
use is correlated with biomass yields—lower
yields require more land under cultivation
and more diesel fuel, and the types of
biomass grown—some management and
harvesting activities are more energy intensive
than others. Because land quality affects
biomass yields and the management practices
required, it is difficult to draw any
conclusions about specific crops having a
major influence on the volume of NOx
emissions. The variability in NOx emissions
for the feedstock transportation stage is due
to different modes of transportation (truck,
rail, and barge). NOx emissions are higher
when rail and barge are used to move
feedstocks (Portland, OR, and Rochester, NY,
respectively). The other cases relied on truck
transportation.



Table 5. 2010: E95 and RFG Fuel Cycle Emissions
(mg/mi unless noted)
Emission | Fuel | End Use Fuel Fuel Feedstock Feedstock Total
Distrib. Prod. Transport. Prod.
CcO E95 | 1,695.9 22 99.4* 7.2 43.7 1,848.2
RFG | 1,700.0 27 7.3 9.1 64 1,7255
NOx E95 1994 6.5 68.3 11.1 437 329.0
RFG 199.6 4.5 65.3 20.9 37.2 3275
PM E95 0.0° 0.1 45° 0.1 45 9.2
RFG 0.0° 0.2 21 1.0 0.7 3.9
SO, E95 3.7 0.2 21.1° 0.8 2.0 27.8
RFG 40.0 0.3 399 0.9 45 85.6
COy E95 | 15,124.0 889.0 3,612.00 24700 5,810.0 27,905.0
RFG |243,039.0 998.0 26,944.0 4,082.0 14,697.0 289,760.0
voc! E95 160 17.2 18.8° 2.0 10.1 207.8
RFG 180 354 3.6 11.8 12.7 243.1
vOC: E95 n/a n/a n/a n/a 1,629.2 1,629.2
RFG n/a n/a n/a n/a n/a n/a
Waste- | E95 n/a — 490.0° n/a 0.0 490.0
water | RFG n/a — 56.5 — 91.5 148.0
ml/mij
Solid E95 n/a n/a 16,009.0° n/a 0.0 16,009.0
Wastes | RFG n/a n/a 5443 n/a 90.7 635.0
“Includes gasoline fuel cycle emissions for gasoline added to ethanol in this stage.
"Particulate emissions from passenger vehicles not available for E95 or reformulated gasoline.
“Fossil CO,, does not include CO, sequestered in biomass or released from fermentation or
ethanol combustion.
“VOC totals, excluding biogenic emissions.
‘Biogenic VOC emissions.
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5.2.3 Sulfur dioxide emissions (SO,)

SO, is produced from two sources:
transportation vehicle emissions (diesel-fueled
and passenger) and stationary sources, such
as the conversion facility and the refinery
(Figure 22, p. 55). Even if the level of sulfur
in RFG is reduced from 350 to 50 ppm,
reducing emissions in the end-use stage by
86%, total fuel cycle SO, emissions from the
RFG fuel cycle will still exceed those from E95
fuel cycles.

Pure ethanol does not contain sulfur;
however, the denaturant gasoline contains
sulfur. Since the denaturant represents only
5% by volume, E95 provides a significant
reduction in SO, emissions from passenger
vehicle exhaust over RFG.

More than 75% of the SO, produced in the
E95 fuel cycles results from combusting
organic wastes at the conversion facility. The
proteins in biomass contain sulfur, which is
the source of SO, emissions from the boiler.
Most of the regional variation in SO,
production in the E95 fuel cycles is the result
of differences in the protein content of the
feedstocks used. The Portland, OR,
conversion facility produces the least SO,
because wood feedstocks do not contain high
levels of protein (100% wood feedstocks at
Portland); the Lincoln, NE, plant produces the
most SO, because grass feedstocks contain
relatively high levels of protein (100% grass
feedstocks at Lincoln). SO, emissions from
the conversion facility boilers at other facilities
fall between these extremes because
feedstocks are composed of both wood and
grass biomass.

Air emissions from future ethanol facilities
would be controlled by New Source
Performance Standards (NSPS). If an ethanol
facility is located in an attainment area, the
facility design would typically be required to
apply best available control technology
(BACT) under a prevention of significant
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deterioration (PSD) new source review. The
design of the ethanol production facility used
in this study meets current NSPS PSD new
source review requirements. Facilities that
are proposed in nonattainment areas may
have to purchase SO, credits for PSD new
source review approval.

Sulfur contained in the crude oil is the source
of SO, emissions from the refinery. Refineries
may be required to reduce their SO, emissions
in the future if CAAA regulations affecting
electric utility plants are expanded to include
major industrial facilities. Major retooling of
refinery operations that would be required to
produce RFG may require NSPS review of
existing facilities. =~ Therefore, future SO,
emissions from refineries could be less than
those presented in this study.

Feedstock production and transportation
activities create SO, from diesel fuel used in
tractors, trucks, and other equipment.
Reducing sulfur content of diesel will affect
the total SO, emissions from both fuel cycles
in direct proportion to the amount of diesel
fuel consumed in both fuel cycles.

5.2.4 Particulate matter emissions (PM)

Approximately half of the particulates
produced in the E95 fuel cycles are tail pipe
emissions from diesel-fueled farm and
feedstock transportation vehicles; the other
half are emissions from the conversion facility
(Figure 23, p. 57). In the RFG fuel cycle, 53%
of the particulates are produced from the
refinery, followed by another 25% from crude
oil transportation (diesel use in tankers,
railroads, etc.) and the remainder produced
from production and processing equipment at
the wellhead. Data on the quantity and
composition of particulates from passenger
vehicles fueled by E95 or RFG were not
available.

The particulate emissions from the conversion
facility are divided equally between boiler fly
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ash emissions and dust from the feedstock
handling and preparation activities. The fly
ash emissions are a function of the total
heating value of the material fed to the boiler.
Higher particulate emissions from the
Portland plant are the result of the high lignin
content of wood and higher levels of waste
fed to the boiler.

Particulate emissions from feedstock and fuel
transportation are positive but very low. In
most cases, these estimates are shown as zero.
The exception of the E95 Portland fuel cycle is
caused by transporting biomass feedstock by
rail, which is responsible for the relatively
high levels of particulate emissions in the
feedstock transportation stage.

If airborne soil erosion, fertilizers, and
pesticides are included in the accounting of
particulates, total particulate emissions in the
E95 fuel cycles would increase by many
thousandfold. Particulate emissions increase
to 0.86 g/mi in the Portland E95 fuel cycle;
1.8 g/mi in the Tifton fuel cycle, 4.6 g/mi in
the Rochester fuel cycle; 148 g/mi in the
Peoria fuel cycle; and 39.1 g/mi in the Lincoln
fuel cycle. This compares with only 3.9
mg/mi for the RFG fuel cycle. An impact
analysis is required to determine if some or
all of these airborne farm emissions would
have occurred in the absence of a biomass-
ethanol industry, and if so, how much of
these emissions are the direct result of the
biomass-ethanol industry.

5.2.5 Volatile organic compound
emissions (VOC)

VOC emissions were divided into two source
categories: (1) biogenic VOC emissions
produced by growing organisms and (2)
nonbiogenic VOC emissions produced during
the use or combustion of fossil fuels and
volatile chemicals. This allows us to compare
the quantities of nonbiogenic VOC emissions
of the two types of fuel cycles—E95 and RFG.
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RFG fuel cycles do not produce any biogenic
VOC emissions.

Approximately 75% of the nonbiogenic VOC
emissions produced from the E95 and RFC
fuel cycles are evaporative and exhaust
emissions from the passenger vehicles used in
the end-use stage (Figure 24, p. 58). Exhaust
emissions were assumed to be identical for
both fuels (0.09 g/mi). Evaporative engine
losses were less for E95 (0.07 grams per mile)
compared to RFG (0.09 grams per mile). This
difference caused end-use emissions from
dedicated passenger vehicles using E95 to be

11% less than emissions from vehicles using
RFG.

The remaining VOC emissions are produced
from the combustion of diesel fuel in
equipment used to produce and transport
feedstocks and fuels. VOC emissions from
the biomass conversion processes also
produce significant amounts of VOCs from
the utility boilers.

If biogenic VOC emissions are included in the
VOC accounting framework, total VOC
emissions in the E95 fuel cycles increase 600
to 1600%, depending on the proportion of
trees produced in the biomass feedstock mix
(Figure 28). Deciduous trees produce nearly
10 times more biogenic VOCs than any other
agricultural crop except corn (Figure 29).
Analysts assumed that herbaceous biomass
crops did not produce biogenic VOC
emissions, although it is likely that these
emissions will be produced in small
quantities.

Not enough information was available to

characterize biogenic emissions from
herbaceous crops. The thin-stemmed
herbaceous biomass crops, such as
switchgrass, may produce quantities of

biogenic VOCs similar to other grass-type
crops, such as wheat, alfalfa, hay, pasture,
and small grains. Energy sorghum may
produce biogenic emissions similar to grain
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Figure 29. Biogenic volatile organic compound emissions, by source

sorghum, although with the growth rate
envisioned these emissions may be as high as
those from corn crops. The estimates of
biogenic VOC emissions for short-rotation
woody crops are probably in the range of
those for deciduous trees, but exact values for
these types of crops are not known with
certainty. Corn produces more VOCs than
most deciduous trees. The extent that tree
crops displace corn and other crops will
determine the net changes in localized
biogenic VOC emissions. This net analysis
should be undertaken in the future.

Not enough data exist to completely define
the components of the biogenic and
nonbiogenic VOC emissions in sufficient
detail to perform ozone impact studies. Each
specific VOC compound has a different
reactivity and chemical signature in the
atmosphere. Some decompose rapidly and
others have complex reaction chains. The
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differences in the composition of VOC
emissions will influence the timing,
persistence, and impacts of ozone creation in
a locality.

5.2.6 Carbon dioxide emissions (CO,)

E95 fuel cycles produce 30 g/mi of fossil CO,,
on the average; the RFG fuel cycle produces
290 g/mi of CO, (Figure 25, p. 59). CO,
emissions from the E95 fuel cycles are positive
because diesel vehicles that burn fossil fuel
are used in transportation, farming, and other
minor activities, and because 5% of E95
consists of RFG. Thus, a portion of the RFG
fuel cycle is added to the E95 fuel cycle,
reflecting the fuel cycle emissions associated
with the denaturant.

On average, 16 g/mi of CO, are sequestered
annually as soil carbon over a 30-year period.
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At some point, the oxidation of soil carbon
becomes equal to the net annual additions to
soil carbon, and sequestration ceases.
Analysts assumed 30 years would be required
for equilibrium to be attained for the soils
used to produce biomass. If the soil carbon
sequestered each year in the 30-year period is
included in the E95 fuel cycle base cases, E95
would produce only 4% of the CO, produced
by the RFG fuel cycle.

Displacing gasoline with ethanol fuels is a
policy option that appears to have a
substantial impact on transportation-related
CO, emissions. More than 90% of the CO,
emissions associated with RFG can be avoided
by replacing gasoline with E95.

5.2.7 Wastewater emissions

The E95 fuel cycles produce 490 ml/mi of
wastewater, on average, compared with only
148 ml/mi in the RFG fuel cycle (Figure 26, p.
60). The wastewater rroduced in the E95 fuel
cycle comes from the conversion facility,
except for the water that is reflected in the 5%
gasoline contained in E95. The wastewater in
ethanol plants could be reduced by as much
as 60% with more sophisticated water
recycling designs.

The process water from ethanol production
can be treated by city sanitation plants to
produce potable water. The wastewater
stream is an optimal environment for growing
organisms and as such is perfectly suited to
other agricultural uses.

Most of the wastewater produced in the RFG
fuel cycle is formation water that is produced
during oil production. It commonly contains
salts, metal, oil, radionuclides, and other
hazardous materials. Most of the formation
water is reinjected into the oil reservoir or
other geological zones. The formation water
reinjected and the process water that is used
for EOR is not considered wastewater. If they
were, estimated wastewater produced during
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crude oil production would be approximately
20 times higher than reported. Pollution
caused by abandoned wells is not included in
this study. -

5.2.8 Solid waste emissions

The E95 fuel cycles produce 16 g/mi of solid
waste; of this waste, half is gypsum produced
from neutralizing sulfuric acid used in the
pretreatment process and half is the ash
remaining after the organic wastes and
nonfermentable residues are combusted
(Figure 27, p. 62). If another method of
biomass pretreatment could be used that did
not require acid prehydrolysis, solid waste
production could be cut in half. The solid
waste produced by an ethanol plant is not
considered hazardous. Currently, biomass
ash from combustion boilers is in demand as
a landfill amendment to control acidity. It
can also be used as a soil amendment.

Approximately half of the 0.6 g/mi of solid
waste produced in the RFG fuel cycle is
considered dangerous——hazardous, toxic,
cancerogenic, etc. (see Table H at the end of
this report). Future waste reduction
technologies, high-temperature combustion,
and other alternatives are being explored that
could reduce petroleum industry wastes.

5.3 Sensitivity Studies

These sensitivity studies provide information
about the impacts of boundary assumptions
and allocation methodologies, and the effects
of fuel substitution on total fuel cycle
inventories. The sensitivity analyses are
described in Section 3.4. Allocation
methodologies had significant impacts on the
all the fuel cycle results. The inclusion or
exclusion of activities relating to feedstock
sources (curbside collection of MSW or oil
imports) had minor impacts on the E10 fuel
cycle results. The substitution of E95 for
diesel fuel for vehicles entering or leaving the
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ethanol plant had negligible impacts on the
E95 fuel cycle results. Including secondary
electricity emissions had very significant
effects on all the fuel cycles.

5.3.1 Impact of including garbage
collection and transportation to the
transfer facility and the activities that
occur at the transfer facility in the MSW
base case

Curbside garbage collection and the
transportation of the MSW to a transfer
station where it is unloaded, compacted, and
reloaded into larger vehicles was excluded
from the E10 base case (Figure 10, p. 19).
These activities were excluded because they
would occur, relatively unchanged, whether
the MSW was delivered to a landfill or an
ethanol facility. Less than a 1% increase in
emissions results from including these
activities in the base case fuel cycle, except for
NOx and SO,, which increase 2.3%, and 1.9%,
respectively.

Only about 10% of the emissions in the MSW
base case scenario are directly derived from
the ethanol fuel cycle; the rest are emissions
from the RFG fuel cycle. If the emissions
from the ethanol-related activities are isolated
(delete RFG fuel cycle emissions from the E10
fuel cycle [see Table ] at the end of this
report]), the effect of including the activities
that occur before the MSW leaves the transfer
station causes a 70% increase in CO and NOx
emissions, a 180% increase in CO, emissions,
and a 20% increase in VOC emissions. If a
fuel cycle of E95 from MSW was constructed,
excluding emissions from the activities prior
to the MSW leaving the transfer station, total
emissions would be underestimated.

5.3.2 Impact of excluding inventory
characteristics for foreign o0il
production from RFG fuel cycles for
2000 and 2010
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In the base cases, analysts assigned foreign oil
imports the same inventory characteristics for
the production stage as domestic crude oil.
The projected effect of excluding foreign oil
emissions (treating them as "free" goods) was
to dilute the environmental characteristics of
oil production by spreading the domestic oil
production emissions over a larger pool of oil
delivered to the refineries. Thus, it was no
surprise that when the environmental
inventories for foreign oil are excluded from
the analysis, the emissions for crude oil
production fall roughly by half (approxi-
mately half of the future oil supply will be
imported to meet the demands of domestic
refineries).

Environmental emissions (air emissions) from
crude oil production are only a fraction of the
total fuel cycle emissions, because end use
creates the bulk of the emissions (see Table 4,
p- 51 and Table 5, p. 64). However, when
end-use emissions are disregarded, crude oil
production creates 20% to 30% of total
emissions. By assuming that imported oil has
no emission characteristics, fuel cycle
emissions (excluding end use) are reduced by
10% to 15%, compared with the same
emissions in the base case.

5.3.3 Impact of assigning 100% of the
inventory characteristics from crude oil
production, transportation, and refining
to the RFG fuel cycles for 2000 and
2010

In the RFG base cases, crude oil production
emissions were allocated between natural gas
and crude oil (42% and 58%, respectively). In
addition, the refinery emissions were
allocated between RFG and all other products.
In 2000, 35% of the refinery emission
characteristics were allocated to RFG. By 2010
this portion fell to 30% because of changes in
the quality of crude oils and the mix of
products produced. The refinery emission
allocation accounts for the fact that only a



fraction of a barrel of crude becomes RFCG
(Figure 15, p. 30).

Using this logic, only a fraction of the crude
production and transportation emissions
should be allocated to gasoline production;
the remainder should be allocated to the
production of other petroleum products.
Only 20.3% of crude oil production emissions
in 2000 were allocated to the RFG fuel cycle
(0.58 x 0.35); 17.4% of production emissions
were allocated to RFG in 2010. Similarly, only
35% and 30% of the crude oil transportation
and refining emissions were represented in
the RFG base cases for 2000 and 2010,
respectively.

The alternative is to assign 100% of the crude
oil production, transportation, and refining
emissions to the RFG fuel cycle because
gasoline is the driving economic force of the
industry, and the coproducts such as
associated natural gas and diesel are free
goods. Predictably, this causes the refinery
emissions to increase by 180% (1/0.35) in 2000
and 233% (1/0.30) in 2010. Similar increases
occur for crude oil transportation emissions.
Crude oil production emissions increase 400%
in 2000 and nearly 500% in 2010 (1/0.203 and
1/0.174, respectively).

CO emissions only increased by 2.9% because
end-use emissions dominated total CO
emissions. By excluding end-use emissions
from the total, CO emissions rose 200% when
a 100% allocation system was used.

Total NOx, PM, SOx, CO, and VOC
emissions, from the 2000 RFG base case, rose
66%, 198%, 95%, 33%, and 21%, respectively.
Slightly higher increases were observed for
the 2010 scenario. If end-use emissions are
excluded, NOx emissions increased 245% over
the base case, SOx emissions increased 205%,
CO, emissions increased 245%, and VOC
emissions increased 117%.
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If the refinery and crude oil production
allocations had not been made, RFG would
create two to three times more air pollutants
than ethanol fuel cycles, even when ethanol
fuel cycle characteristics are not allocated
between products (ethanol and electricity)
themselves. Only 20% of the feedstock
production, transportation, and conversion
emissions are assigned to electricity produced
from the biomass conversion facility. Thus,
ethanol fuel cycle emissions from pre-fuel
distribution stages would only increase 25%
on the average (1/0.8) if 100% of all the fuel
cycle emissions were assigned to the ethanol
produced.

This sensitivity analysis shows that different
assumptions for allocating emissions among
by-products and activities can significantly
affect the outcome of the fuel cycle analysis.
The conclusions drawn from a fuel cycle
analysis are more often a function of the
allocation methodology than anything else.
The key to evaluating the conclusions and the
methodology is the reasonableness of the
assumptions and allocation method selected.
Although this is an obvious conclusion, it is
worth pointing out the differences in
outcomes that could occur under different
assumptions.

5.3.4 Impact of excluding the RFG fuel
cycle inventory characteristics from the
E95 and E10 base cases

Table I, at the end of this report, provides the
data that are included in the E95 base case
scenarios to account for the fuel cycle
activities of producing and using RFG as a
denaturant in ethanol production. These
emissions are added to the stages of ethanol
fuel cycles when gasoline is mixed with
ethanol. Levels of toxic air, land, and water
emissions that are uniquely associated with
gasoline fall to zero when the emissions
associated with RFG are removed from the
fuel cycle. In the future, another denaturant



may be found that does not produce toxic
emissions.

Obviously, excluding what essentially is 90%
of the fuel in the MSW-E10 scenario would be
misleading. Table ], at the end of this report,
shows the E10 fuel cycle emission that can be
attributed to the ethanol portion of the fuel.

5.3.5 Impact of adding the secondary
emissions associated with electricity
consumption/production to the
appropriate fuel cycle stages

If one assumes that the by-product electricity
sold by the ethanol plant offsets or partially
eliminates the need for a utility company to
produce electricity, then the avoided
emissions can be viewed as emission "credits"
for the electricity produced from the ethanol
plant. Similarly, when electricity is consumed
in a fuel cycle, the emissions associated with
producing that electricity should be included
in the fuel cycle (debits).

For the eight base cases, NOx, SO, CO,,
particulates, and solid waste emissions per
kWh were subtracted as credits when
electricity was produced and added to the
fuel cycle inventories when kWhs were
consumed. The allocations between ethanol
and electricity had to be removed to account
for the emissions and inputs associated with
the co-product electricity in the E95 fuel
cycles.  The incremental changes to the
basecases shown in Table 6 includes the
emissions  associated with producing
electricity from the ethanol plant and the
debits and credits associated with electricity
consumption and production.

The ethanol fuel cycles are regional. Some
stages of the RFG fuel cycle have activities in
them that are regionally concentrated (like
refining and oil production), whereas other
stages are national in character (fuel
distribution).  Utilities also have regional
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characteristics, depending on local resource
endowments and environmental air quality
regulations. Therefore, analysts estimated
regional electricity generation emissions
characteristics for each federal region.

Characteristic electricity generation emissions
for a region where an ethanol fuel cycle is
located are added to the fuel cycle when
electricity is consumed and credited against
emissions when it is produced. For crude oil
production, transportation, and refining, the
activities are apportioned to various regions,
depending on where they occur today. Thus,
the emission debits and credits for these
stages of the fuel cycle were weighted by the
proportion of the activity that occurred in
each region. Appendix H, Environmental
Factors Associated with Electricity Inputs, in
Volume I, describes the weighting process
and the emission values.

National average emissions are applied to
electricity consumption in the RFG fuel cycles
for fuel distribution. This may not accurately
portray actual emissions if specific electric
usage for distribution fuel is examined
regionally. However, since national average
statistics were used to estimate electricity
consumption in fuel distribution, using
national average electric generation emissions
was appropriate for this study.

E10 and RFG 2000 both show increases in all
emissions considered in the electricity
sensitivity study because both fuel cycles
consume large amounts of electricity. Only
5% of the electricity produced by the ethanol
plant is reflected in the E10 fuel cycle because
only 10% of E10 is ethanol. The one ethanol
plants produces enough ethanol for 20.6
billion miles.

All the emissions considered in the electricity
sensitivity analysis of the E95 fuel cycles are
reduced because more electricity is produced
by the ethanol facility than is consumed in the
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Table 6. Electricity Sensitivity Analysis

(Add these emissions to the respective base cases®)

{mg/mi unless noted)

Emission Fuel Fuel Fuel Feedstock Feedstock Total
Cycle Distribution Production Transport | Production Change
NO, E10 82.0 - 75 04 33 78.1
RFG 2000 31.8 73 11.8 64 57.2
E95 23.6 - 709 0.0 0.0 -47.4
RFG 2010 28.1 45 10.0 45 47.2
50, E10 99.2 -10.9 1.0 5.1 945
RFG 2000 445 7.3 8.2 45 64.4
E95 227 -82.8 0.0 0.0 -60.1
RFG 2010 30.8 54 64 2.7 45.4
CO, E10 28,86() - 2,529 229 1,266 27,825
RFG 2000 11,430 2,722 4,264 2,177 20,593
E95 7,584 -28,561 0 0 -21,277
RFG 2010 10,160 2,449 3,901 1,996 18,507
PM E10 6.1 -0.9 0 0 5.2
RFG 2000 2.8 05 0.8 0.5 4.6
E95 1.8 -5.3 0 0 -34
RFC 2010 23 0.5 0.7 04 3.8
Solid E10 5,063 192 0 205 5,461
Waste | RFG 2000 1,995 454 635 363 3,447
E95 1,433 -3,169 0 0 -1,735
RFG 2010 1,905 363 635 272 3,175
“The numbers shown should be added to the values presented in Tables 4 and 5 to calculated
TFC emissions for these sensitivity analyses.
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entire fuel cycle. In some cases, the electricity
production credit offsets more than the total
amount of SO, and CO, produced throughout
the entire fuel cycle, including emissions
associated with the electricity consumed.

All the emissions examined in the electricity
sensitivity analysis of RFG 2010 increase
because a large amount of electricity is
consumed in refining and fuel distribution
and no electricity is produced. Most of the
increase occurs in fuel distribution in which a
large amount of electricity is consumed to
pump gasoline into and out of storage tanks.
Total NOx emissions increase 14%, SO, and
PM emissions double, solid waste emissions
increase 500%, and CO, emissions increase
6%.

If E95 is substituted for RFG, it will offset all
of the RFG fuel cycle CO, emissions--308
g/mi-while only creating 7 g/mi of CO,. This
is a savings of 301 g/mi, which could
signficantly reduce atmospheric accumulation.

When the results of the electricity sensitivity
cases are compared for E95 and RFG, E95
provides a net benefit to society by
significantly reducing the amount of air
pollutants produced by its fuel cycle
compared with RFG. This type of analysis is
the primary reason that TFCA is important to
policy makers because it provides a
mechanism in which the many costs and
benefits associated with a fuel can be
compared equally. This comparison is limited
to an inventory of selected physical inputs
and outputs. Economic and social impacts
should be included in the future for a
complete analysis.

5.3.6 Impact of replacing emission
characteristics of diesel with those for
E95 used in heavy-duty transportation
trucks to evaluate the effect of fuel
substitution within the E95 fuel cycles
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Because transporting biomass and fuels (E95
and E10) on diesel trucks contributes such a
small percentage of the total fuel cycle
emissions  (generally less than 10%),
substituting E95 for diesel in heavy-duty
engines was not expected to produce large
benefits. The emissions from heavy duty
diesel trucks using E95 and #2 diesel
(presented in Tables G-5 and G-8 in Volume
II, Appendix G, Accounting of Transportation
Emissions), are summarized in Table 7. Other
information that supports these assumptions
and summarizes existing data and tests are
presented in Volume II, Appendix E, Ethanol
and Reformulated Fuel End Use. From the
data presented it appears that if E95 was
substituted for #2 diesel fuel in trucks that
transport biomass and E95, total PM, SO,, CO,
and NOx would be reduced, whereas VOC
emissions would increase considerably. The
CO, produced is recycled as organic matter;
CO, emissions should be considered zero in
the end-use stage of the heavy-duty truck
emission cycles.

Only one E95 scenario was examined. The
results confirmed that the benefits of
substituting E95 for diesel in heavy-duty
trucks used in the fuel cycle were positive;
however, the end-use stage emissions from
the passenger vehicles still obscured changes
in the feedstock and fuel transportation
stages.

5.4 Energy Efficiency

There are many different ways to evaluate
energy efficiency. This study uses three
methods to address the issues of process
efficiency, fossil fuel wuse (depletable
resources), and total energy efficiency (Table
8). Throughout the energy analysis, lower
heating values are assumed for all the fuels
except for biomass. Biomass heating values
are estimated on a dry weight basis. The heat
rate of 10,400 Btu per kWh for electricity
captured the efficiencies of electricity
production.
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Table 7. Emission Assumptions for High-Speed, Heavy-Duty Trucks
for the year 2010, (g/bhp-hr)*

#2 Diesel’ E95°
Exhaust VOCs? 0.5 3.0
Aldehydes n/a 0.05
Evaporative VOCs nil 1.0
CO 20 1.2
NOx 2.0 15
Total PM 0.08 0.04
Cco, 1448 1447
SO, 045 0.002

industry (SRI 1991).

on a quantitative basis.

*Grams per brake-horse power hour.
PProjections based on emissions data in EPA
Report AP-42, future heavy-duty diesel engine
standards, and research goals now set by engine

“Year 2010 truck with catalytic converter.

“Poly Nuclear Aromatic (PNA) compounds are
components of diesel exhaust emissions, but they
have not been sufficiently characterized to report

Energy embodied in fertilizer, chemicals, MTBE,
and electricity is included. Tables L and M at the
end of this report contain more detailed
information on the energy balances.

5.4.1 Process Energy Requirements

Process energy includes diesel, electricity,
natural gas, chemicals (including fertilizer),
and additives used in the fuel cycle of each
fuel. The end-use stage is not included in this
category since the only operation that occurs
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in that stage is the combustion of the fuel to
provide mobility; it is shown below under
Fuel energy. Process energy does not include
feedstocks (not even the feedstocks consumed
to provide process energy in refineries and
ethanol production facilities—e.g., shrinkage).
Feedstocks are shown seperately.

The E10 fuel cycle consumes 20% less process
energy compared to the RFG fuel cycle. The
differences is mostly caused by redundant
fuel transportation requirements, transporting



Table 8. Total Energy Cycles

Base Cases
E10 RFG 2000 E95 RFG 2010

LProcess energy inputs (Btu/mji)
Feedstock production 16.6 38.6 167.8 34.8
Feedstock transportation 44 126.4 31.3 121.5
Fuel production 7.2 546.6 81.0 484.2
Fuel distribution 714.2 2263 150.7 1949
Subtotal process energy inputs 7423 937.9 4309 835.4
Feedstock energy inputs (Btu/mi)
Biomass feedstock 372.8 n/a 4,659.6 n/a
Crude oil feedstock 3,632.5 3,540.4 2454 3,105.8
Subtotal feedstock energy 4,005.3 3,540.0 4,905.0 3,105.8
Fuel energy (Btu/mi)
End-use fuel energy value 3,546.3 3,594.5 2,751.6 3,107.9
Energy ratios
Process energy inputs/fuel output 0.21 0.26 0.16 0.27
Total fossil inputs/fuel output 1.23 1.25 0.25 1.27
Total inputs/fuel output 1.34 1.25 1.94 1.27
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both the ethanol and the gasoline blended with the
ethanol. E95 fuel cycles are more efficient than
RFG 2010, consuming fewer Btus of process
energy inputs per Btu of output (Figure 30(a)). On
the whole, the differences in process energy
consumed per Btu of energy output is relatively
similar for the three fuels considered; however,
some interesting differences among the stages are
noteworthy.

Feedstock production is almost three times more
energy intensive (Btu of energy consumed per Btu
of energy feedstock produced) for both E95 and
the ethanol component of E10 than for RFG. This
is the result of producing a relatively diffuse, low-
Btu fuel. Half of the energy required in feedstock
production for E95 is used to fuel farm equipment
(diesel) and half is embodied in the production of
nitrogen fertilizer. Most of the energy used in
biomass production in the E10 fuel cycle is
electricity to operate the MSW sorting facility.
Because ethanol is only 10% of the fuel, this
number is low compared to the energy required to
produce and process crude oil. If MSW was the
feedstock for an E95 fuel cycle, the energy
consumed in the feedstock production stage would
be similar to energy crop production (eg.,
approximately ten times higher).

The energy consumed in feedstock transportation
is four to five times higher for RFG than for
ethanol fuels on basis of Btu of energy consumed
per Btu of feedstock moved. Nearly 60% of the
energy requirements in crude transportation are
electricity inputs for pipeline transportation. The
remainder is diesel for tanker, barge, rail, and
truck transportation. Crude oil is transported
longer distances (average 615 miles) compared
with biomass (26 to 48 miles), which offsets any
benefits of moving a more condensed energy
product.

Crude oil refining is more energy intensive per
Btu of final product than biomass conversion to
E100 (pure ethanol without denaturants) when
only the process energy inputs are considered.

Neither analysis included shrinkage or combustion
of biomass as process energy for fuel production.

Almost 85% of the energy inputs reported in the
E10 distribution stage are the energy consumed in
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the fuel cycle activities for producing RFG, which
is blended with E95 in the distribution stage. The
remainder is the energy required to transport E95
to the blenders and deliver E10 to local retailers.
When the energy required to distribute RFG is
combined with the energy required to distribute
E95 to the bulk facilities and E10 to retail users,
total energy consumed in the E10 distribution
stage is 3 times higher than for RFG distribution
alone.

The E95 fuel cycles consume less energy in the
distribution stage compared with the RFG fuel
cycles, because RFG distribution is based on
national average transportation distances and E95
distribution is based on regional distribution
infrastructure patterns.

5.4.2 Fossil fuel energy

Focusing on fossil fuel inputs provides an
insight into the effects of an ethanol fuel
industry on our depletable resources. The
total impact of consuming fossil fuels is
examined by adding the crude feedstocks to
the process energy; this includes the crude
feedstocks that are transformed into gasoline
and added to the ethanol fuel cycles in the
conversion and distribution stages. Figure
30(b) provides a breakdown of process energy
inputs and outputs by stage with crude oil
feedstocks as a separate input.

E10 provides a small benefit compared with
RFG in 2000; one Btu of process energy can
produce 4.76 Btu of E10 or 3.85 Btu of RFG.
In 2010, only 0.25 Btu of fossil energy is
required to produce 1 Btu of E95, whereas
1.27 Btu of fossil energy is required to
produce 1 Btu of RFG. Clearly, a biomass-
ethanol industry could extend our fossil fuel
supply over a longer period of time if the
ethanol is used as a dedicated fuel to
augment or displace future gasoline demand.
The energy balance for RFG in 2010 shows
some improvement over the ratio of the fuel
in 2000, but it still requires more fossil energy
input than output produced.
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5.4.3 All energy sources

The third method of calculating energy ratios
reflects the sum of all of the inputs (fossil and
organic) associated with fuel production.
Ethanol fuel cycles appear to be less efficient
than RFG fuel cycles. One Btu of input
produces 0.52 Btu of E95 or 0.79 Btu of RFG
2010. The difference is that over 80 percent of
the Btu input for E95 is renewable energy.

In Table 8, only a fraction of total energy
inputs are shown in each of the fuel
cycles—the portion required to produce,
transport, and convert feedstocks into liquid
fuel. The allocations discussed in Section 3,
and revisited in some of the previous
sensitivity analyses, have been applied to the
the base case scenarios. The excluded energy
inputs are transformed into other products,
like diesel, electricity, or asphalt. If the
electricity produced from the ethanol plant
and the other refinery products are included
in the fuel cycle analysis, the feedstocks and
other inputs are not allocated among
coproducts. Table 9 shows the unallocated
energy inputs, energy contained in the by-
products, and resulting energy ratios. The
energy required to distribute coproducts or
byproducts is not included.

Including all of the feedstock inputs and all of
the resulting coproducts does not significantly
alter the energy balances reported in Table 8.
The ratio of inputs to outputs changes very
little when the fuel production allocations are
removed, because the allocations are based on
the ratio of energy in the fuel (ethanol, RFG)
to the energy contained in the coproducts.
Thus, both the inputs and the outputs
increase in similar proportions when the
allocations are removed. The slight changes
are due to the fact that the allocations are not
applied to the distribution stage.
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Table 9. Total Energy Cycles
Without Coproduct Allocations

E95 RFG 2010

Process energy inputs (Btu/mi)
Feedstock production 204.8 116.1
Feedstock transportation 39.2 405.0
Fuel production 93.3 929.1
Fuel distribution 150.7 194.9
Subtotal process energy inputs 488.1 1,645.2
Feedstock energy inputs (Btw/mi)

Biomass feedstock 5,811 n/a
Crude oil feedstock 2454 10,352
Subtotal feedstock energy: 6,056.4 10,352
Fuel and other outputs (Btu/mi)

End-use fuel energy value 2,751.6 3,107.9
Electricity 655.1 n/a
Other petroleum refinery products n/a 7,251.7

Subtotal energy value of outputs 3,406.7 10,359.6

Energy ratios

Process energy inputs/energy outputs 0.14 0.16
Total fossil inputs/energy outputs 0.22 1.16
Total energy inputs/energy outputs 1.92 1.16

81




S premL

6.0

This study presents data on environmental
emissions produced by four fuel cycles: E10,
E95, RFG 2000, and RFG 2010 that can be
used to support impact studies, cost/benefit
studies, and economic analyses. Providing
the best possible estimates of the quantities of
emissions created by an industry is necessary
to conduct credible and useful studies of
environmental impacts and their benefits or
costs. Without quality data, impact studies
are either worthless or misleading. This
study focuses on providing quality
information for further analysts.

The results of this work, presented in Tables
A through M and described in the previous
sections, can be used to evaluate limited
policy objectives. If decision makers need to
reduce a particular emission, such as carbon
monoxide, then this report provides
information that can be used to evaluate the
benefits of substituting gasoline for E10, E95,
and RFG. For example, this report indicates
that E95 reduces CO, emissions, which could
reduce or forestall global warming, if
substituted for RFG. However, we have only
quantified CO,, and not necessarily included
other greenhouse gases such as N,O (nitrous
oxide) and methane.  This information
contained in this report and the appendices in
Volume II are powerful tools, but not the only
tools needed to evaluate policy options for
transportation.

Each fuel examined in this report has some
advantages that the other fuels do not have;
e.g, reduces CO, VOC, or other emissions.
No one fuel examined can be characterized as
better or worse than its alternatives based on
the results of this study alone, because
benefits of reducing some emissions are offset
by increases in other emissions. Future
analysis of economic, environmental, and
health impacts of the volumes of emissions
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CONCLUSIONS AND DISCUSSION

reported are required to support this type of
conclusion.

This study revealed a number of interesting
results:

¢ Vehicle emissions create the bulk of most
of the gaseous emissions.

* Increasing our use of E95 is a promising
option for reducing CO, emissions from
the transportation sector because E95 fuel
cycles produce 4 to 10% of the CO,
emissions produced by the RFG fuel cycle.

* When emissions from electricity generation
are added to the fuel cycle analysis, E95
fuels produce significantly less NOx, SO,,
particulates, and CO, emissions than RFG.

¢ Ethanol fuels can extend our fossil fuel
resources in the transportation sector until
a permanent solution is found for our
dependency on petroleum, since ethanol
fuels use fewer fossil fuel resources in their
production than RFG.

¢ Assumptions concerning technology
performance, particularly emission control
equipment, environmental regulation, and
allocation assumptions, heavily influence
the results of this study.

These conclusions are not new; this study
reaffirms these conclusions and provides
supporting documentation.

Vehicle emissions dominated total fuel cycle
gaseous emissions in all the fuel cycles.
Improvements in engine performance,
catalytic converters, and other vehicle
emission controls will benefit both fuels.
CAAA standards for vehicle emissions will
play a central role in determining the
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emission characteristics of the fuel cycles
because most of the emissions are either
vehicle emissions or point-source emissions
(fuel production facilities). Because of the
lack of data on ethanol fuel emissions, many
emission estimates are based on the
assumption that fuel and auto manufactures
will design systems to meet regulations.
Thus, these regulations are critical focal points
of the analysis.

E95 fuels are promising options for reducing
CO, emissions from the transportation sector.
Used in sufficient quantitites, fuel substitution
policies can be effective policy tools for
mitigating global warming because most of
the CO, produced from the ethanol fuel cycle
is recycled each year in new growth of trees
and grasses. The positive balance of CO,
emissions for E95 fuel cycles reflects CO,
produced by fossil fuel inputs.

There are further benefits of E95 substitution
when the electricity from the ethanol facility
is considered and soil carbon accumulation is
included. Soil carbon accumulation was not
accounted for in the base cases because it was
treated as a long-term investment, rather than
a short-term operational characteristic.
During the 30-year period required for soil
carbon accumulation to reach an equilibrium,
approximately 159 g/mi of CO, is
sequestered in the soil annually. If annual
soil carbon accumulation is included in the
E95 fuel cycles, E95 produces only 4% of the
total CO, produced by the RFG fuel cycle. If
electricity offsets are included in the analysis,
E95 fuel cycles produce only 6.6 g/mi of CO,.

[f E95 vehicles captured 10% of the passenger
vehicle market by 2010, U.S. CO, emissions
could be reduced by 35 million tons per year.
This reduction level would require the
construction and operation of 122 ethanol
plants. In order for these CO, benefits to be
realized, the production of gasoline would
have to fall; U.S. refineries cannot be selling
the excess gasoline overseas.
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In addition, E95 can reduce the production of
50, emissions in the utility sector by 32.3
mg/mi. If E95 is substituted for RFG, the
U.S. production of SO, will fall 163 mg/mi.
Similarly, when E95 is substituted for RFG,
NOx, particulates, and solid waste emissions
are also reduced. It is clear that E95 fuels
provide substantial environmental benefits in
emission reductions once the electricity
produced from the ethanol facility is factored
into the analysis.

This last result further emphasizes the impact
of assumptions on fuel cycle estimates.
Excluding secondary emissions, such as the
emissions from producing electricity, can
underestimate the total impact a fuel creates
on society. The readers should keep this in
mind and recall that the emissions of other
inputs, such as fertilizer and MTBE, are not
included in this study. Previous work by
Deluchi indicates that electricity credits and
fertilizer emissions offset each other in
biomass-ethanol fuel cycles (Deluchi only
examined greenhouse gases). If this remains
true, then the base cases shown in this report
are the most accurate estimates of emission
inventories.

Approximately 80% of the energy inputs used
to make E95 are renewable. The fossil fuel
energy consumed in the E95 fuel cycle is
equal to 25% of the fuel energy produced.
Regardless of the end use of E95—as a
dedicated fuel or blended with gasoline to
produce E10—ethanol fuels can prolong our
limited petroleum resources and reduce
dependence on imported oil.

Each year the world’s consumption of
petroleum increases and the exhaustable
reserves shrink. Someday, in our lifetime, we
could see the effects of rationed supplies of
petroleum. Therefore, the fact that ethanol
made from crops and trees does not require
large amounts of fossil fuels to produce, and
is made from a renewable resource will
become a large benefit in the future. A



S pesL

renewable resource is not limitless; our future
production of ethanol will be limited by land
use policies. However, this country will be
able to produce a constant amount of fuel,
whether it is 10% or 50% of the gasoline
demand, year after year after year. The
availability of a fuel that can be substitutued
for gasoline could be very important for our
future generations.

The issues at stake often become obscured by
more immediate concerns, clean air, more fuel
efficient vehicles, testing and demonstration
of new technologies, and current economic
conditions. Information is needed to address
all these concerns, and provide a basis for
tradeoffs. = The TFCA methodology has
proven to be a useful analytical tool for the
DOE to the extent that it can be used to
develop detailed estimates of emission
inventories. This information can be used to
rank future technologies or fuels in a
consistent manner based on specific emission
criteria.

In addition, the TFCA demonstrated that
useful information can be collected and
organized in a manner that provides insights
concerning both the development of new
technologies and their environmental
implications. The process in which scientists
and engineers were asked to develop their
best estimate of one specific combination of
technologies needed to produce ethanol from
biomass, and estimate the required inputs and
wastes produced, led to many questions
concerning the technologies selected and
several improvements in the overall design.
Several new lines of research were developed
as a result of this work.

This study describes only one unique
combination of technologies used to produce
ethanol from biomass. Many others are
possible. Because the biomass-ethanol
technology has been examined in minute
detail, changes to the process can be
integrated into the data base developed for
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this project, and the impacts of new
technologies or engineering designs can be
examined in the future.

Readers who would like to examine the fuel
cycle inventories for E10, E95, RFG, or other
combinations of ethanol and gasoline can use
the basic framework and detailed information
provided in this document and Volume II,
The Appendices, to create their own fuel cycle
inventories.

We believe that the TFCA methodology has
been a useful tool for the DOE and will
provide the type of environmental
information needed to assess future
technologies and energy fuels.



pre=L

7.0

This study is a starting point for future
analyses that could take many directions.
Only a limited portion of a total fuel cycle
analysis was examined; pre- and post-
operational phases need to be defined and
included. Different fuel mixes could be
examined. The lifecycle emissions of
materiais used to produce fuels could be
included. Social, environmental, and
economic impacts need to be estimated in a
way that will assist political leaders in making
well informed decisions. Comparisons
between the total net value of alternative fuels
can hopefully provide answers to policy
questions. However, much remains to be
done. Future research should continue to
expand our understanding of how renewable
energy technologies impact society.

Future fuel cycle analyses would benefit from
characterizing future environmental control
technology and regulations. = We based
emissions on published data that in turn are
based on the efficiency of existing pollution
control equipment.  These figures over-
estimate emissions because future
environmental regulation and pollution
control equipment will probably reduce
emissions.

Technological systems can be designed to
meet environmental standards. The
environmental standards projected for the
future will influence the design of the
renewable energy "technologies and their
impact on the environment. Thus, a well-
defined set of potential regulations and
standards for air emissions, water quality, and
waste disposal will be required for future fuel
cycle analysis to ensure consistency among
the studies. These regulations and standards
should be provided to the scientists and
researchers directly involved in technology
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RECOMMENDATIONS FOR THE FUTURE

design so the technology meets the challenge
of the future.

In the process of estimating inventory
characteristics and evaluating the fuel cycle
results, potential research areas needing more
attention were discovered. For example, once
the results of the E95 fuel cycles were
compiled and reviewed, it became clear that
the ethanol conversion facility used 12 times
more nitrogen fertilizer than the amount used
in biomass farming.

The research staff reexamined nitrogen
fertilizer (ammonia and urea) needs in the
ethanol facility. Ammonia is used for three
major purposes: (1) pH control of xylose
fermentation, (2) nitrogen source (fertilizer)
for microorganisms, and (3) NOx control of
boiler emissions. The largest portion of the
total ammonia used is for pH control (80 to
95%). The amount of ammonia required for
pH control is a function of the quantity of
organic acids produced by the xylose
fermenting organisms (E. coli). The organic
acid production assumed for this study was
high, based on existing organisms available to
NREL. Future research could produce highly
specific organisms that minimize acidic levels.
The research design was reevaluated, and
analysts assumed that existing strains of
organisms that did not produce acidic effluent
would be cultivated and utilized. A research
program is under way in this area today.

Similar revelations occurred with respect to
water recycling in conversion facility. Our
initial facility design did not use existing
technology that could reduce water demand
and effluent through more efficient recycling
systems. Solid waste produced from the
ethanol facility could be cut in half if a
pretreatment step was developed that does
not use acids during pretreatment or that
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increases the efficiency of recycling acids.
Land used for biomass production could have
been modeled differently. = The existing
system assumes that the land is dispersed in
the area around the ethanol plant. A more
realistic ~version may have been an
assumption that a trade-off between lower
transportation costs and higher profits would
encourage farmers in the immediate vicinity
of the plant to produce biomass, concentrating
biomass directly around the ethanol plant.
The activity of performing a fuel cycle
analysis of such detail improved the technical
understanding of processes and systems
involved in fuel production.

A better characterization of the refinery stage
of the reformulated gasoline fuel cycle is
needed. By improving the environmental
model of refinery activities, estimates of diesel
fuel cycles, and a better inventory of the
environmental characteristics of reformulated
gasoline production can be produced.

Diesel characterization also is needed because
diesel consumption is a major source of air
emissions in both fuel cycles and should be
characterized the same way as electricity or
the gasoline inputs to the fuel cycles. The
characterization of fuel cycle emissions
associated with the production and use of
other inputs (fertilizer, MTBE, etc.) into the
fuel cycle should also be considered.

The bulk of the future research should focus
on the environmental and economic questions
that will arise from this work. The regional
implications of the fuel cycle inventories and
the relative changes that would occur if
ethanol fuels displaced gasoline fuels have
far-reaching policy impacts. This study does
not go far enough to address these questions
directly from the inventories produced.

The logical extension of this study is to apply
the data to baseline environmental
concentrations, determine the changes, and
estimate how these changes will affect human
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and environmental systems. The costs and
benefits of those changes need to be valued to
provide a conclusion about the benefit of a
particular fuel.
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Table A. Fuel Cycle Inventory: EI10

R10/
End- E95 E95 MSW MSW MSW Grand
Inputs or Outputs Units Use Dist. Prodtn. Trans Sort Collctn Total
Inputs
Crude oil bbls [¢] 681360 4008 4] 0 0 685368
Diesel gallons 0 94120 4386 16530 6090 18270 139396
Diesel (No. 6) gallons 0 442680 2268 0 0 4] 444948
Ethanol-10 gallons 33100000 0 1] 0 0 0 33100000
Ethanol-95 gallons 0 3484210 0 0 V] 0 3484210
Gasocline gallons 0 29615790 174210 0 o] 0 29790000
Insecticides tons 0 0 0 0 0 0 0
MTBE gallons 0 4] 21678 0 0 1] 21678
Natural gas mmscf 0 163.2 0.96 0 0 0 164.16
Refinery Products gallons 0 0 0 0 0 0 0
Water gallons 0 143820 30829296 0 0 0 30973116
Electricity kWh 0 45962400 -3406200 214890 1295430 0 44066520
Herbicides tons 0 0 0 0 0 0 0
K20-Fertilizer tons 0 0 0 0 0 0 0
N-Fertilizer tons 0 0 0 0 0 0 0
P205-Fertilizer tons 0 0 0 0 0 0 0
Antifoam tons 0 ] 3.48 0 0 0 3.48
CS Liquor tons 1] 4] 57.42 [ 0 0 57.42
Glucose tons 0 0 69.6 0 0 o 69.6
H2S04 tons 0 0 522 0 0 0 522
Lime tons 0 0 382.8 0 0 0 382.8
Limestone tons 0 0 78.3 0 0 0 78.3
NH3 tons 0 o] 84 [ 0 0 84
Nutrients tons 0 0 16.53 0 0 0 16.53
BFW Chemicals 0 0 0 0 0 0
Amine tons 0 0 0.0609 0 [ 4] 0.0609
Bydrazine tons 0 0 0.174 0 o] 0 0.174
Na2P04 tons 4] 0 0.0174 0 0 0 0.0174
CW Chemicals 0 0 0 [0} 0 0
orthophosphate tons o} 0 0.2001 0 0 0 0.2001
Phosphonate tons 0 0 0.0609 0 0 0 0.0609
Polyphosphate tons 0 0 0.2001 0 0 0 0.2001
gilicate tons 1] 4] 0.1653 - 0 0 ] 0.1653
Zinc tons 1] 4] 0.087 0 0 0 0.087
WWT Chemicals (] 0 4] 0 0 0
Phosphate tons 0 0 10.8 0 v} 0 10.8
Polymer tons 0 0 0 0 0 0 0
Urea tons 0 0 28 0 0 0 28
0 ] 0
Air Releases 0 0 0
co tons 2311 41.74 10.632 0.87 0 0.87 2365.112
NOx tons 440 179.22 7.002 2.61 0.87 0.87 630.572
PM (total) tons 0 4.998 0.54948 0 0 0 5.54748
sox tons 45 49.3476 2.898 0 0 0 97.2456
CO, Fossil tons 289368 50974 284.4 174 87 174 341061.4
CO, Organic tons 17432 0 30798 0 0 0 48230

Note: These numbers are subject to change as revisions or refinements proceed. These numbers are derived from calcuations shown in the
appendices and modified as described in the author’s notes and the main body of the report. These values do not necessarily reflect the
degree of signficance implied by the number of digits. These numbers are reported as derived in order to emable the interested person to
recalculate and thus verify calculations made.
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Table B. Fuel Cycle Inventory: Reformulated Gasoline, 2000

End- Gas Crude Crude Crude Grand
Input or Output Units Use Dist. Refining Trans Prod. Total
Inputs
Crude oil bbls 0 0 0 0 668000 668000
Diesel gallons 0 50000 0 6000 0 56000
Diesel (No. 6) gallons 0 56000 0 378000 0 434000
Ethanol-10 gallons 0 0 0 0 0 0
Ethanol-95 gallons 0 0 0 0 0 o}
Gasoline gallons 28925000 0 0 0 0 0
Insecticides tons 0 1] 0 0 0 [¢]
MTBE gallons 3610000 0 3.61E+06 0 0 3.61E+06
Natural gas mmscf 0 [] 160 0 0 160
Refinery Products gallons 0 0 0 0 0 0
Water gallons 0 0 0 0 141000 141000
Electricity kwWh 0 2.04E+07 4.52E+06 7.08E+06 3.71E+06 3.57B+07
Herbicides tons 0 0 0 0 0 0
K20~Fertilizer tons 0 (] 0 0 0 0
N-Fertilizer tons 0 ] 0 0 0 0
P205-Fertilizer tons 0 0 0 0 0 0
Antifoam tons 0 0 0 0 0 0
CS Liquor tons 0 [o] 0 0 0 0
Glucose tons 0 0 0 0 0 0
H2S04 tons 0 0 [4] 0 0 0
Lime tons 0 0 0 0 0 0
Limestone tons 1] 0 0 0 0 0
NH3 tons 0 0 0 0 0 0
Nutrients tons 1] 0 0 [¢] 0 0
BFW Chemicals
Amine tons 0 0 0 [¢] 0 0
Hydrazine tons ] 0 (o} 0 0 0
Na2Po4 tons 0 0 [ 0 [ 0
CW Chemicals 0
Orthophosphate tons 0 a 0 0 0 0
Phosphonate tons 0 0 0 0 0 0
Polyphosphate tons 0 0 0 0 0 0
Silicate tons 0 0 0 0 0 0
Zinc tons 0 0 0 0 0 0
WWT Chemicals
Phosphate tons 0 0 0 0 0 (o}
Polymer tons 0 0 0 0 0 0
Urea tons 0 0 0 0 0 0
Air Releases
co tons 2420 5 9 15 8 2457
NOx tons 441 9 68 34 50 602
PM (total) tons 0 0.32 2.32 1.68 0.58 4.9
SOx tons 55 0.38 44 1 3 103.38
CO, Fossil tons 308300 1300 28400 4700 14300 357000
CO, Oorgamic tons 1} 0 0 0 0 0

Note: These numbers are subject to change as revisions or refinements proceed. These numbers are derived from calcuations shown in the
appendices and modified as described in the author’s notes and the main body of the report. These values do not necessarily reflect the
degree of signficance implied by the number of digits. These numbers are reported as derived in order to enable the interested person to
recalculate and thus verify calculations made.
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Table G. Fuel Cycle Inventory: E95 Lincoln, NE

End- ESS E95 Fdstk Aggregate Grass Tree Cane Grand
Inputs or Outputs Units Use Dist. Prodtn. S&T Fdstk Fdstk Fdstk Fdstk Total
Inputs
Crude oil bbls 0 o} 46294 0 0 0 0 4} 46294
Diesel gallons 0 92000 195876.75 166000 650720 650720 0 0 1104596.7
Diesel (No. 6) gallons 0 0 27966 0 0 0 0 0 27966
Ethanol-10 gallons g 0 0 [} 0 0 0 0 0
Ethanol-95 gallons 35400000 0 0 0 0 0 0 0 35400000
Gasoline gallons 0 0 1973000 0 0 0 0 0 1973000
Insecticides tons 0 0 0 0 0.747 0.747 0 0 0.747
MTBE gallons 0 0 o] o] 0 0 0 0 0
Natural gas mmscf 0 0 11.85 0 0 0 0 0 11.85
Refinery Products gallons 0 0 0 0 0 0 0 0 0
Water gallons 0 0 226708087 0 0 4] 0 0 226708087
Electricity kWh 0 13375000 -50484950 0 0 ] [0} 0 -37109990
Herbicides tons 4] 0 0 0 3.652 3.652 0 0] 3.652
K20-Fertilizer tons v} o} 0 0 2365.5 2365.5 0 V] 2365.5
N-Fertilizer tons 0 1] 0 0 2124.8 2124.8 0 o} 2124.8
P205-Fertilizer tons 0 ] 0 0 1577 1577 0 0 1577
Antifoam tons 0 0 14.94 0 0 0 0 o] 14.94
CS Liquor tons 0 0 239.04 0 0 (¢} [¢} o] 239.04
Glucose tons 0 0 473.1 0 0 0 0 0 473.1
H2S804 tons 0 0 4399 0 0 0 0 0 4399
Lime tons 0 0 3245.3 0 0 0 0 0 3245.3
Limeatone tons 0 0 813.4 0 0 0 0 0 813.4
NH3 tons 0 0 601.00 0 0 0 0 0 601
Nutrients tons 0 0 68.89 0 0 0 0 0 68.89
BFW Chemicals
Amine tons 0 0 0.5395 0 0 o 0 0.5395
Hydrazine tons 0 0 1.826 0 0 1] 0 0 1.826
Na2pod tons 1] 1] 0.1826 0 0 0 0 0 0.1826
CW Chemicals
orthophosphate tons 0 0 1.4525 0 0 0 0 o] 1.4525
Phosphonate tons 0 0 0.4316 0 0 0 0 0 0.4316
Polyphosphate tons 0 0 1.4525 0 0 0 0 0 1.4525
Silicate tons 0 0 1.162 0 0 0 0 0 1.162
Zine tons 0 0 0.747 0 0 o] 0 0 0.747
WWT Chemicals
Phosphate tons 0 0 214.00 0 0 0 0 0 214
Polymer tons 0 0 0 0 0 0 0 0 0
Urea tons 0 0 544.00 0 0 0 0 0 544
Air Releases
co tons 1871 3 101.575 S.81 55.61 55.61 0 0 2036.995
NOx tons 220 8 79.634 5.81 55.61 55.61 (4} 0 369.054
PM (total) tons 0 0.2 4.89206 0 5.81 5.81 0 0 10.90206
SOx tons 3.9 0.3 29.68 0.83 2.49 2,49 0 0 37.2
CO, Fossil tons 16672 1000 3981.6 1826 7387 7387 Q 0 30866.6
CO, Organic tons 214028 0 280955 174881 -631796 -631796 0 0 38068

Note: These numbers are subject to change as revisions or refinements proceed. These numbers are derived from calcuations shown in the
appendices and modified as described in the author’s notes and the main body of the report. These values do not necessarily reflect the
degree of signficance implied by the number of digits. These numbers are reported as derived in order to enable the interested person to

recalculate and thus verify calculations made.
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Table K. Fuel Cycle Inventory: Gasoline Fuel Cycle Inventory added to the R10 Fuel Cycle Inventory

End- Gas Crude Crude Crude Grand
Inputs or Outputs Units Use Dist. Refining Trans Prod. Total
Inputs

Crude oil bbls 0 681360 4008 0 0 685368
Diesel gallons Q 57120 36 [ 0 57156
Diesel (No. 6) gallons 0 442680 2268 0 0 4449438
Ethancl-10 gallons 0 0 0 0 0 0
Ethanol-95 gallons 0 0 0 [ 0
Gascline gallons 0 o] 0 0 0 0
Insecticides tons 0 0 0 0 0 0
MTBE gallons 0 0 21678 0 0 21678
Natural gas mmscf 0 163.2 0.96 0 0 164.16
Refinery Products gallons 0 0 [+} [¢] [+} Q
Watex gallons 0 143820 846 0 0 144666
Electricity kWh 0 36383400 91800 0 0 36475200
Herbicides tons 0 0 0 0 0 0
K20-Fartilizer tons 0 0 0 0 0 0
N-Fertilizer tons 1] 0 [4} [ 4] 0
P205-Fertilizer tons 0 [+} 0 0 0 0
Antifoam tons 0 0 0 0 0 0
CS Ligquor tons 0 0 0 [ 0 0
Glucose tons 0 0 0 0 0 0
H2804 tons 0 0 0 0 0 0
Lime tons 4] 0 4] 0 Q 0
Limestone tons 0 0 4] 0 0 0
NH3 tons 0 0 0 0 0 0
Nutrients tons 0 0 0 0 0 4]
BFW Chemicals 0 0 4] 0 0 0
Amine tons 0 0 0 0 0 0
Hydrazine tons 0 0 0 0 0 0
Na2pPo4d tons [4] 0 o] 0 0 0
CW Chemicals 0 0 o] 0 Q 0
Orthophosphate tons 0 0 0 0 0 0
Phoaphonate tons 0 0 0 0 0 0
Polyphosphate tons 0 0 0 0 0 0
Silicate tons 0 0 0 0 0 0
Zinc tons 0 0 0 0 0 0
WWT Chemicals 0 0 0 0 0 0
Phoaphate tons 0 0 0 0 0 0
Polymer tons 0 [+] 0 0 [ 0
Urea tons 0 0 0 0 0 0
4] 0 0 0 0 0
Alr Releases 4] ] 0 0 0 ]
co tons 0 37.74 0.192 4] [ 37.932
NOx tons 0 164.22 0.912 0 0 165.132
PM (total) tons 0 4.998 0.02748 0 0 5.02548
sox tons 0 49.3476 0.288 0 0 49.6356
CO, Fossil tons 0 49674 284.4 0 0 48958.4
CO, Organic tons 0 0 V] 0 0 1]

Note: These numbers are subject tc change as revisions or refinements proceed. These numbers are derived from calcuations shown in the
appendices and modified as described in the author‘s notes and the main body of the report. These values do not necegsarily reflect the
degree of signficance implied by the number of digits. These numbers are reported as derived in order to enable the interested person to
recalculate and thus verify calculations made.
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Table L. Energy Balances Base Cases

E95 MsSwW REFORM REFORM.

Averages GASOLINE GASOLINE
INPUTS AND OUTPUTS PEORIA 2000 2010

UNITS/ MMBTU/ UNITS/ MMBTU/ UNITS/ MMBTU/ UNITS/ MMBTU /

UNITS 1049VMT 10A9vVMT 1049VMT 1049VMT 1049vMT 1049VMT 10A9VMT 1049VMT

FEEDSTOCK PRODUCTION
DIESEL #2 GAL 567046 72978.820 24,360 3,135 o 0 0 0
DIESEL #6 GAL 0 0 0 0 0 0 0 0
ELECTRICITY KWHR 0 0 1,295,430 13,472 3.710E+06 38,584 3.350E+06 34,840
NATURAL GAS MMSCF 0 0 0 0 0 0 0 0
N-FERTILIZER TONS 1,625 81264 0 0 0 0 0
K20 FERTILIZER TONS 1,336 8014.2 0 0 0 0 0
P205 FERTILIZER TONS 929 5576.52 0 0 0 0
SUBTOTAL 167833.54 16,608 38,584 34,840
FEEDSTOCK TRANSPORT
DIESEL #2 GAL 243358 31320.174 16,530 2,127 6,000 772 6,000 772
DIESEL #6 GAL 0 0 0 0 378,000 51,975 354,000 48,675
ELECTRICITY KWHR 0 0 214,890 2,235 7.080B+06 73,632 6.930E+06 72,072
NATURAL GAS MMSCPF [¢] 4] 0 0 0 v} 0 0
SUBTOTAL 31320.174 4,362 126,379 121,519
FUEL PRODUCTION
DIESEL #2 GAL 82,150 11,860 4,386 564 0 0 0 0
DIRSEL #6 GAL 27,966 3,845 2,268 312 0 0 0 0
ELECTRICITY EWHR 1,121,010 11,659 91,800 955 4.520E+06 47,008 3.910B+06 40,664
NATURAL GAS MMSCF 11.85 11850 1.0 960 160 160,000 150 150,000
MTBE GAL 0 0 0 0 3610000 339,600 3120000 283,505
AMMONIA TONS 655 26,971 84 3,459 0 0 [ 0
UREA TONS 448 13,801 28 862 0 0 0 0
PHOSPHATE TONS 174 1,042 10.8 65 0 0 0 0
SUBTOTAL 0 81,028 7,177 546,608 484,169
FUEL DISTRIBUTION
DIESEL #2 GAL 88,200 11,351 94,120 12,113 50,000 6,435 41,000 5,277
DIESEL #6 GAL 0 0 442,680 60,869 56,000 7,700 48,000 6,600
ELECTRICITY KWHR 13,402,400 139,385 4.596B+07 478,009 2.040B+07 212,160 1.760E+07 183,040
NATURAL GAS MMSCF 0 0 163.2 163,200 0 0 0 0
SUBTOTAL 150,736 714,191 226,295 194,917
TOTAL CYCLE
DIESEL #2 GAL 990,754 127,510 139,396 17,940 56,000 7,207 47,000 6,049
DIESEL #6 GAL 27,966 3,845 444,948 61,180 434,000 59,675 402,000 55,278
ELECTRICITY KWHR 14,523,410 151,043 47,564,520 494,671 35,710,000 371,384 31,790,000 330,616
NATURAL GAS MMSCF 12 11,850 164.2 164,160 160.0 160,000 150.0 150,000
MTBE GAL 0 0 0.0 0 3610000 339,600 3120000 293,505
N-FERTILIZER TONS 1,625 81,264 ] 0 0 0 0 0
K20 FERTILIZER TONS 1,336 8,014 0 0 0 0 0 0
P205 FERTILIZER TONS 929 5,577 0 0 0 o] 0 o
AMMONIA TONS 655 26,971 84 3,459 0 0 0 0
UREA TONS 448 13,801 28 862 0 0 0 0
PHOSPHATE TONS 174 1,042 11 65 0 0 0 0

Note: These numbers are subject to change as revisions or refinements proceed. These numbers are derived from calcuations shown in the
appendices and modified as described in the author’s notes and the main body of the report. These values do not necessarily reflect the
degree of signficance implied by the number of digits. These numbers are reported as derived in order to enable the interested person to
recalculate and thus verify calculations made.
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Table M.

TOTAL ENERGY INPUTS (MMBTU)
Crude oil inputs BBLS
Biomass inputs TONS

FUEL PRODUCTION
COPRODUCT PRODUCTION
Ratio of jinputs/outputs
Process efficiency

Fossil fuel efficiency
Total Bfficiency

Note:

488,089
46,294 245,358
387400 5,811,000

35,400,000 2,751,642

62,994,800 655,146
(KWHR)
In/Out
0.14
0.22
1.92

recalculate and thus verify calculations made.

Energy Balances, Unallocated Fuel Cycles continued

685,368
35,000

33,100,000
3,498,000
{(KWHR)

746
3,632
525

3,546
36

In/Out

(316
+450
,000

,334
/379

0.21
1.22
1.37

These numbers are subject to change as revisions or refinements proceed.
appendices and modified as described in the author‘s notes and the main body of the report.
degree of signficance implied by the number of digits.

1,628,670 1,645,165
1,908,571 10,115,429 1,953,333 10,352,667
0 0 o] 0
32,500,000 3,594,500 28,100,000 3,107,860
6,675,500 7,251,673
ALL OTHER REFINERY PRODUCTS, Btu Equivalents
In/Cut In/Out
0.16 0.16
1.14 1.16
1.14 1.16

These numbers are derived from calcuations shown in the
These values do not necessarily reflect the
These numbers are reported as derived in order to enable the interested person to
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