Increased Thermal Tolerance of *Τ. fusca* β-Glucosidase via Directed Evolution

Eric E. Jarvis, William S. Adney, Stephen R. Decker, John O. Baker, and Michael E. Himmel. National Bioenergy Center, Biotechnology for Fuels and Chemicals Division National Renewable Energy Laboratory Golden, CO 80401

Summary

The use of heat-tolerant enzymes can improve turnover rates and tolerance to the stresses of large-scale processes. Directed evolution with highthroughput screening was used to increase the thermal tolerance of a Family 1 β-D-glucosidase encoded by the *bglC* gene of the cellulolytic actinomycete Thermobifida fusca. The *bglC* coding sequence (provided by David Wilson, Cornell University) was mutagenized by error-prone PCR. More than 22,000 clones were picked using an Autogen Autogenesys colony picker and screened via direct temperature challenge in 384-well plates. The resulting candidates were further screened using a novel temperature gradient plate assay. At least nine candidates showed enhanced thermal tolerance and were further characterized. Pair-wise combinations were then made of some of the most promising mutations. Recombinant mutant and wild type BgIC proteins were purified from *E. coli*, and differential scanning microcalorimetry (DSC) and temperature challenge experiments were performed. One of the combinations generated a BgIC protein with an increased thermal stability of at least 5°C over wild type. This protein was demonstrated to have a ninefold increased half-life at temperatures of 62 and 64°C. Through successive rounds of mutation and screening, and additional combinations of mutations. it should be possible to further increase the thermal tolerance of this β -glucosidase.

Constructed expression library in ET26b+ (>100,000 clones)

Plated library and picked with Autogen Autogenesys system into 384-well plates (>22,000 clones) containing LB + kan + IPTG, cells grown overnight
Made replicate arrays

 Sealed plates and challenged at high temperature (65°C)
Added X-glc and observed color Picked positive clones from replicate

Secondary Screen

A secondary screen of thermal tolerance was performed on cell cultures using a gradient thermocycler. Saturated, IPTG induced E. coli cultures were dispensed into each column of a 96-well plate and challenged for 10 minutes over the temperature range indicated at the right of the figure. Remaining activity was assayed using X-gic as a substrate. Clones showing thermal tolerance significantly above that of wild type in this assay (e.g., 9A, 13B, 17A, 18A, and 19A) were examined further.

Results of Screening

Mutant	Total # Changes	# Silent Changes	CodonChange	Amino Acid Change	Protein Position	Shorthand	
9A	3	2	AAC->AGC	Asn->Ser	439	N439S	
13B	1	0	CTC->TTC	Leu->Phe	444	L444F	
17A	2	1	AAC->TAC	Asn->Tvr	317	N317Y	
18A	1	0	CTC->TTC	Leu->Phe	444	L44F (same as 13B)	
19A	2	1	AAC->TAC	Asn->Tvr	317	N317Y (same as 17A)	
15A	2	1	AGC->TGC	AGCINGC Service 319		\$319C	
164	1	0	AAC->ATC	Asn->lle	178	N178I	
2059	1	0	GCC SGTC		433	A433V	
210	2	0	GGC->CGC	Gly->Arg Ser->Thr	337 341	G337R S341T	
Com1		Combin	N317Y + N439S				
Com2		Combin	N317Y + L444F				
Com3		Combina	N317Y + L444F+ N178I				

Mutant combinations analyzed using the thermal gradient technique described above. Combined mutations Com1 and Com2 show additive effects of single mutations (at right of figure). wt = wild type. Color is reversed for enhanced visualization.

Kinetic assays were performed on purified proteins to assess protein activity over time at various temperatures. Comparison of Com2 to wild type is shown. PNPG was used as a substrate using protein loadings having equal activity at 50°C. Half-lives of proteins were derived from these curves.

Half-Life Determinations													
BgIC Mutant	Amino Acid Changes	58°C	60°C	62°C	63°C	64°C	66°C	68°C	70°C				
Wild Type	-	19.8	8.1 10.5	2.9 4.4	1.9	1.6 <3							
9A	N439S				6.9								
13B	L444F		28.1	11.7	7.4	6.0							
17A	N317Y		34.1 >45	21.2 25.7		7.7 8.2 9.7	3.7						
15A	S319C		17.1	8.6		3.5							
16A	N178I		20.8	10.2		3.9							
20F9	A433V		15.0 28.2	10.9 11.7		4.4 4.0 4.2	1.6						
21D	G337R S341T		22.4	9.5	2.8	3.7							
Com1	N317Y + N439S	Poor activity											
Com2	N317Y + L444F		>30 >45	24.8 26.0 >45	16.2	15.3 19.7 15.6 25.0	6.4 12.2	3.5 4.5	2.0				
Com4	N317Y + A433V		28.3	30.9		14.1	7.7	3.0					

in minutes: colors represent different experime

Half-Life vs. Temperature

Half-lives of Com2 and wild type proteins, as determined from kinetic assays, plotted as a function of temperature. Horizontal displacement of curves demonstrates a >5°C improvement in thermal stability in Com2 over wild type. Vertical displacement of curves shows about a nine-fold increase in half-life at temperatures of 62 and 64°C.

Differential Scanning Calorimetry

DSC assays on recombinant wild type, Com2, and the two single mutants comprising Com2. $T_{\rm max}$ values for each are indicated. A Microcal model VP-DSC was used with 50 ug/mL protein at pH 6.5, scanning at 60°C/h.

Conclusions

- Directed evolution and high-throughput screening were used successfully to identify enhanced thermal tolerance mutations in the BgIC β -glucosidase of T. fusca.
- In a screen of >22,000 clones, more than seven different mutations were identified that affected thermal tolerance.
- Combining mutations gave additive or synergistic effects
- One mutant combination, Com2, showed an increase in thermal tolerance of more than 5°C based on activity. The half-life at temperatures of 62 and 64°C increased about nine-fold
- Differential Scanning Calorimetry supported an increase in thermal stability of the Com2 protein.
- Emerging structural information on this β -glucosidase will shed light on the mechanism by which these mutations increase thermal stability.

Acknowledgements

We are grateful to David Wilson of Cornell University for supplying the *bgl*C expression plasmid. This work was funded by the Department of Energy Office of the Biomass Program, Office of Energy Efficiency and Renewable Energy.