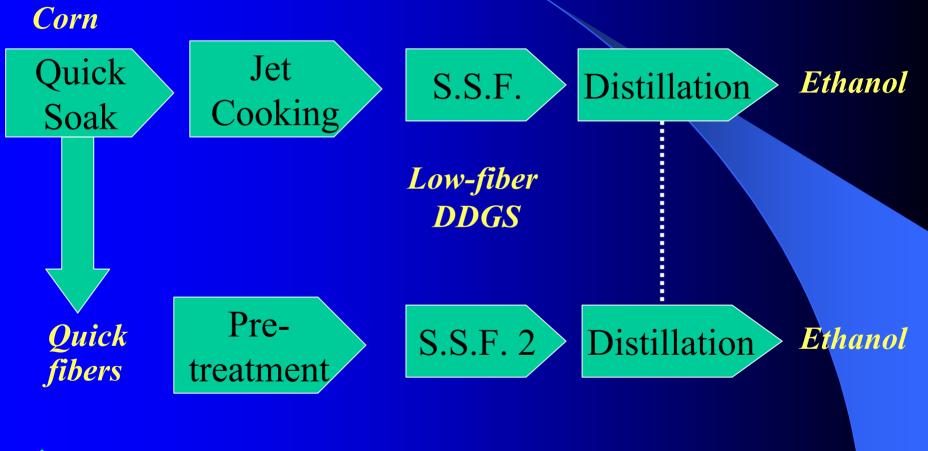
Fermentation of "Quick Fiber" Produced from a Modified Corn Milling Process into Ethanol and Recovery of Corn Fiber Oil

Nick J. Nagle^{*2}, Kelly Ibsen, Melvin P. Tucker² Bruce S. Dien^{1,}, Vijay Singh³, Robert A. Moreau⁴, Nancy N. Nichols¹, David B. Johnson⁴, Michael A. Cotta¹, Kevin B. Hicks⁴, Quang Nguyen², Sally Noll⁶ and Rodney J. Bothast⁵

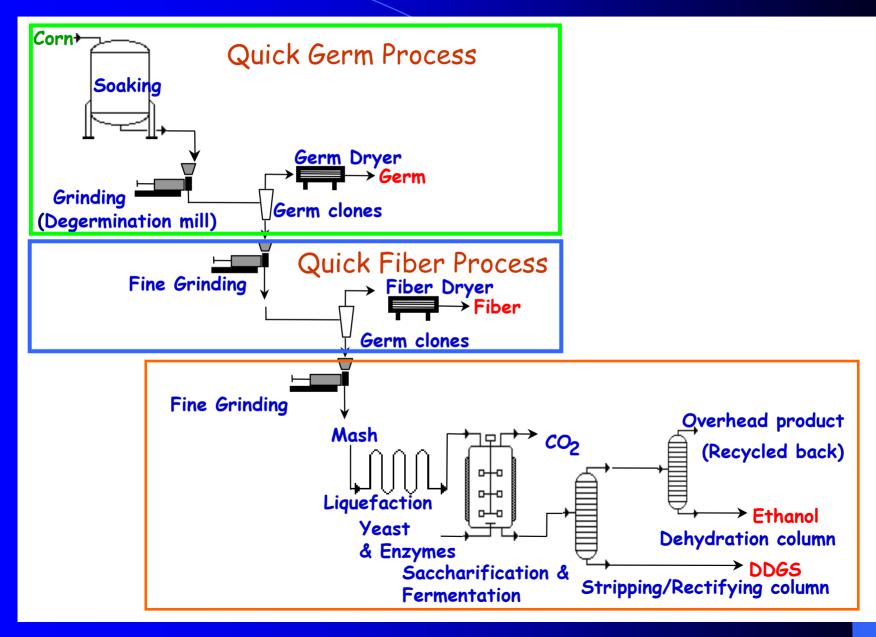
Ethanol Dry Mills

- Over two billion gallons of ethanol were produced in 2002 in the U.S.
- Projected ethanol production is expected to more than double by 2010.
- Currently, 60% of all US ethanol is produced using dry mill technology.
- Traditional starch based operation using standard S. cerevisiae cultures.


Ethanol Dry Mills cont.

- Two major co-products from the dry mill process:
 - Distillers grain (DG)
 - Carbon dioxide
- Over three million tons of DG are produced each year.
 - Used in feed formulations to replace soy bean meal for cattle.
 - Price and market concerns as DG production increases from increased ethanol production.

Quick Fiber Project Objectives


- Improve profitability of the dry mill ethanol industry.
 - Model the wet milling process with a diversity of coproducts from corn processing.
 - Increase ethanol production.
 - Produce higher quality DDG and DDGS.
 - Increase efficiency for the dry mill process

Quick Germ and Fiber Process* with Fiber to Ethanol Conversion

Developed by V.J. Singh, U of IL US patent #6,254,914
*Cereal Chem. 1999 76(6):868-872

Germ & Fiber Recovery in Dry Mill Process

Fiber Composition

Component	Corn Fiber*	Quick Fiber*
Glucose **(Starch)	11-23	15
Glucose (Cellulose)	12-18	22
Xylose	18-29	17
Arabinose	11-19	11
Protein	11-12	11
Oil	3	1

* % w/w db

•**anhydrous basis

Theoretical Ethanol Yield from a Bushel of Corn

Product
(per bu)Ethanol Yield
(gallons)Starch
Ouick Fiber*2.5-2.7
0.2

*Assumes 90% efficiency & 3.8 lb Q.F./bu One bushel of corn weighs 56 lbs One gallon of ethanol = 3.785 L = 6.58 lbs

Potential Co-Products from Quick Fiber Separation

Corn Fiber Oil

- Extracted from the pericarp, aleurone, and tip cap.
- Contains phytosterols
- Phytosterols have been recognized to lower serum cholesterol.
- Corn Fiber Gums
 - Comprised mainly of hemicellulose (arabinoxylan)
 - Can be used as a substitute for gum arabic (food emulsifier) or in industrial films and adhesives.

Experimental Protocol

- Pretreat Quick Fiber using dilute acid.
- Condition and neutralize resulting pretreatment residue and hydrolyzate.
- Determine bioconversion potential of pretreated residue using *S. cerevisiae* and the hydrolyzate using a recombinant *E. coli*.
- Extract oil from starting material, pretreatment residue and SSF residue.

Dilute Acid Pretreatment of Quick Fiber (Yeast Fermentation)

- Solids loading of Quick fiber was 10-20% dry wt. basis.
- Acid loading at 3.2 % of H₂SO₄ per dry wt. of biomass.
- Temperature: 150°C.
- Hydrolysis Time: 10 minutes.
- After hydrolysis, hydrolysate was neutralized with Ca(OH)₂.

Conditions based upon Grohmann and Bothast, 1993

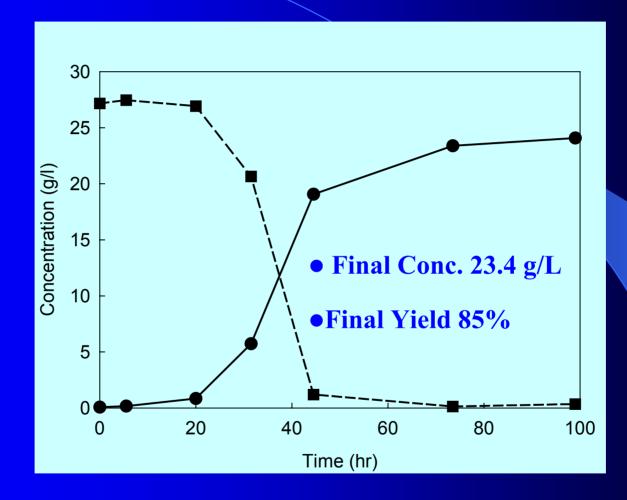
Dilute Acid Pretreatment of Quick Fiber (Bacterial Fermentation)

- Quick fiber was ground using a small grinder.
- Solids were pretreated at 121°C using 1% H₂SO₄ for one hour.
- Liquor was filtered from the solids and overlimed using Ca(OH)₂ for one hour.
- Liquor was neutralized to pH 7.0 and centrifuged to remove gypsum
- Final hydrolzate was filtered sterilized prior to fermentation

SSF Conditions

- Solids were loaded at 16.4% db.
 - Cellulase (*15 FPU/g cellulose*), β-glucosidase and glucoamylase were added.
 - Inoculated with S. cerevisiae and incubated at 32°C for 70 hr in a temperature controlled shaker at 150 rpm.
 - Ethanol, sugars and organic acids were analyzed periodically.

Bacterial Fermentation

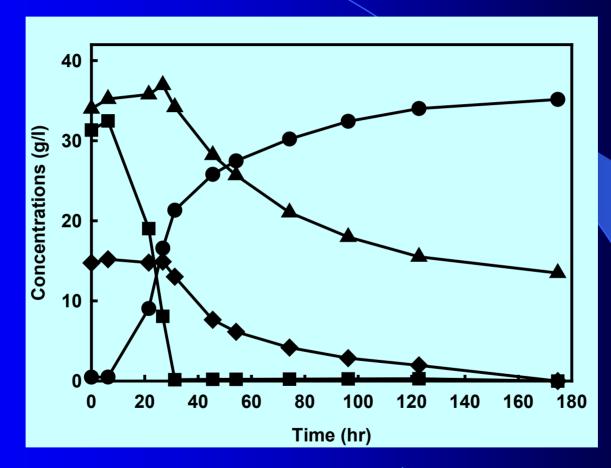

- Recombinant strain E.coli FBR5 was used to ferment all of the sugars in the hydrolyzate.
- Mini-bioreactors with pH control were used.
- No added cellulase cellulose partitioned w/ solids.
- Inoculated with E. coli FBR5 at 5% v/v inoculum.
- Fermentation held at pH 6.5, 35°C for 70 hr.
- Ethanol, sugars, and organic acids were analyzed periodically.

Pretreatment Results from the Hydrolysis of Quick Fiber Using Dilute Acid

% Acid	Glucose ^b	Xylose ^b	Arabinose b	pH ^c
Loading ^a				
0	75±0	16±0	39±0	4.41 ±0.07
0.8	92±2	50±6	77±2	2.78 ±0.00
1.6	90±1	74±9	86±3	2.12 ±0.07
3.2	92±3	98±6	98±4	1.89 ±0.07
4.8	87±4	98±8	87±0	1.56 ±0.09

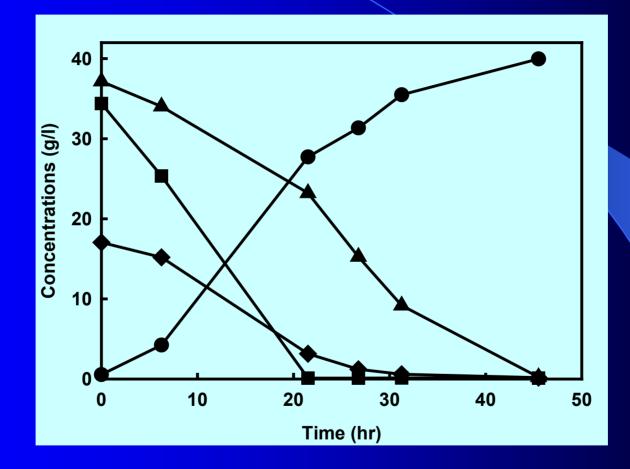
- ^a % g H₂SO₄ per g biomass
- ^b % of theoretical yield
- ^c measured following pretreatment

SSF of Pretreated Quick Fiber by S. cerevisiae


Legend: Glucose • Ethanol.

Fermentation Results For Various Fibrous Feedstock's

Using Ethanologenic Strain FBR5


	Initial Hydrolyzate Sugar Concentrations % w/v		Maximum	Ethanol	Ethanol	
Feedstock	<u>Arabinose</u>	<u>Glucose</u>	<u>Xylose</u>	<u>Ethanol</u> %w/v	Yield g/g	<u>Productivity</u> g/l/hr
Quick Fiber	1.47	3.13	3.40	3.52±0.03	0.44±0.00	0.43±0.04
DWG	0.79	1.96	1.23	2.12±0.05	0.49±0.01	0.71±0.01
Corn Fiber	2.00	2.80	3.70	3.74±0.01	0.46±0.00	0.77±0.05

Fermentation of Quick Fiber Hydrolyzate by Strain FBR5

Legend: ▲ Xylose ■ Glucose ◆ Arabinose, and •Ethanol

Fermentation of Control Sugar Mixture by Strain FBR5

Legend: ▲ Xylose ■ Glucose ◆ Arabinose, and •Ethanol

Recovery Of Corn Fiber Oil From Process Fiber Residues

Fiber Source	Total Oil % w/w	Free Sterol Yield w% oil	FPE ¹ Yield w% oil	St:E ² Yield %w oil
Pre SSF	7.9 ± 0.1	4.43 ± 0.19	3.27 ± 0.04	7.9 ± 0.1
Post SSF	1.8 ± 0.5	6.03 ± 3.74	5.82 ± 3.66	1.2 ± 0.57
Post FBR5 Ferm	12.2 ± 1.8	5.80 ± 0.79	4.29 ± 0.69	12.2 ± 1.8

¹ FPE= Ferulate Phytosterol Esters

² **St:E** = Phytosterol Fatty Acyl Esters

Conclusion

Quick Germ and Quick Fiber Process :

- Remove non-fermentable material from process stream.
- Increase fermentor capacity leading to increasing ethanol production.
- Achieve high yields of sugars resulting from pretreatment.
- Achieve high levels of bioconversion using C5 or C6 organisms.
- Lead to potential co-products from corn fiber oil and gum.
- Allow for the dry mill process to model the wet milling process using less capital investment.
- Increase profitability and efficiency of the dry mill process.

Future Work: Scale-Up Fiber Conversion *Acid Impregnation Study*

30 qt. bread dough mixer

Fiber sprayed with red dye

Scale-Up of Fiber Conversion Using Several Types of Pretreatment Reactors

Zipperclave

4 L Steam Gun

Acknowledgement

¹ National Center for Agricultural Utilization Research, USDA, Agricultural Research Service

² National Bioenergy Center, Biotechnology Division for Fuels and Chemicals, National Renewable Energy Laboratory

³Eastern Regional Research Center, Agricultural Research Service. USDA

⁴Department of Agricultural Engineering, University of Illinois, Urbana, IL

⁵ National corn to ethanol research pilot plant, SIU Edwardsville,