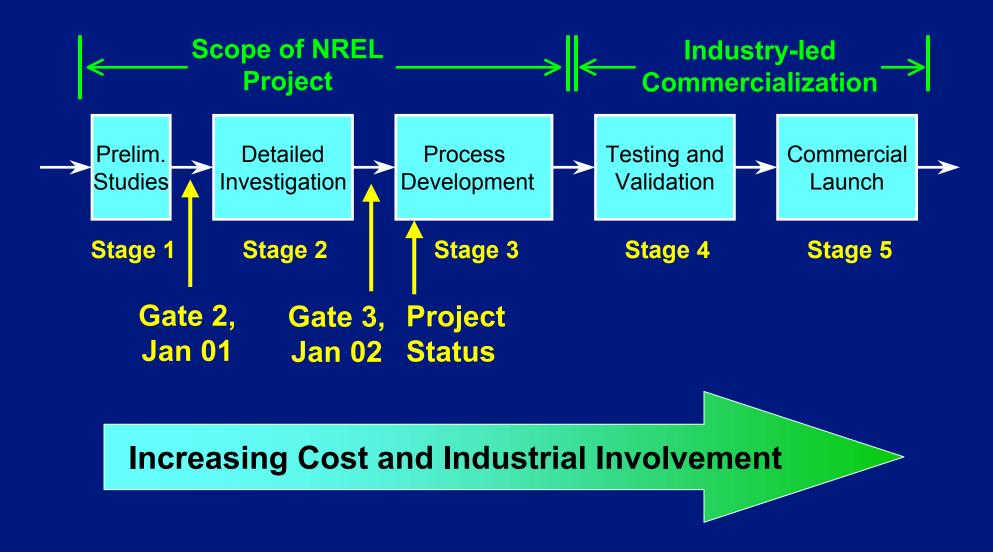
Project Goal

Objective

Develop and demonstrate economical bioethanol technology based on *enzymatic cellulose hydrolysis*

Production Volume Goal

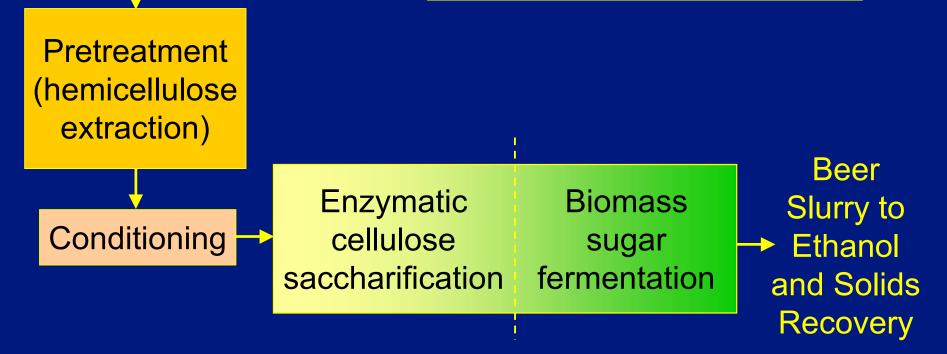
Develop the technology for an abundant biomass resource that can support production of at least **3 billion gallons** of ethanol per year

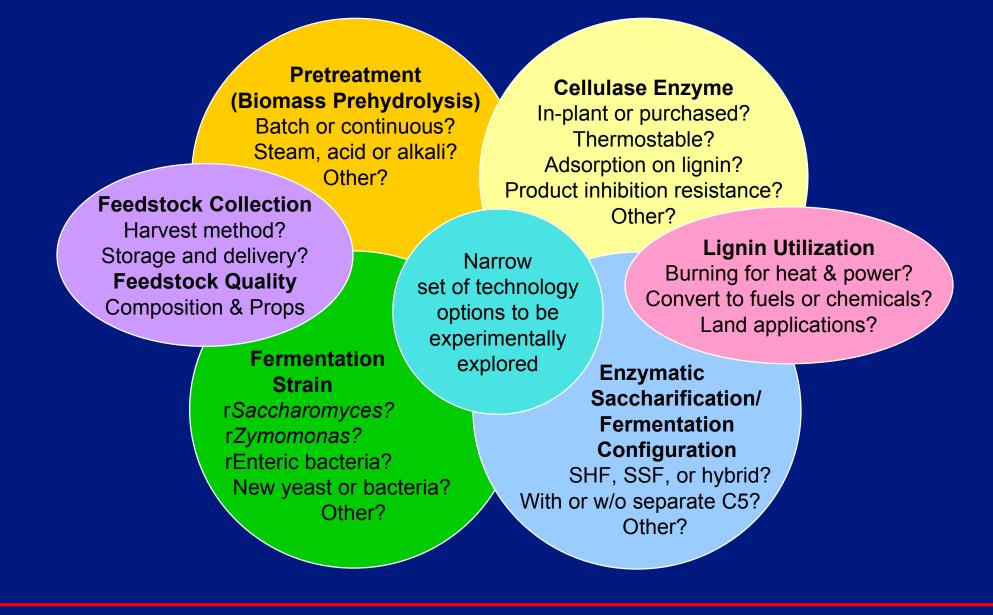

Strategic Fit

- This project plays a central role in the USDOE's Bioethanol Technical Plan
 - Largest and most integrated project
 - Builds on other major program efforts
 - Enables core biorefinery technology
 - Demonstrates environmental "life cycle" benefits

 Success of niche pioneer plants will build a commercial experience base and reduce risk

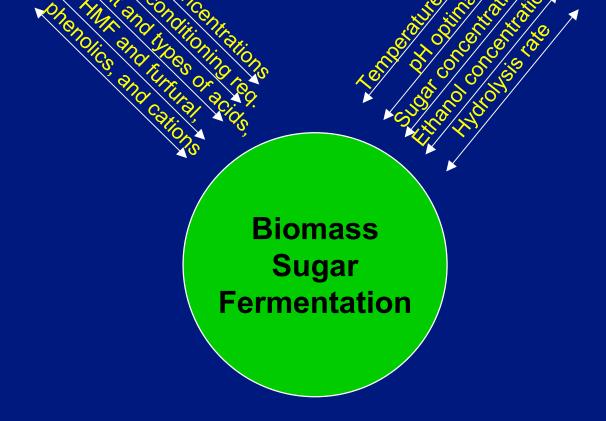
 Success of enzyme developers currently working to reduce enzyme cost will provide the key enabling technology


Project Scope


Major Steps in an Enzymatic Process

Lignocellulose **Feedstock Collection** and Delivery **Pre-processing**

Many options exist for each of these steps... ...and there are many interactions to consider


Many Process Development Options!

Key Process Interactions

Biomass Pretreatment Amount of cellulose Cellulose crystallinity Available surface area Amount and nature of lignin Type and amount of hemicellulose

Enzymatic Cellulose Saccharification

Approach — Feedstock

- Select corn stover as the model feedstock
 - Most abundant, concentrated domestic biomass resource
 - Leverage the existing corn harvesting and ethanol production infrastructure (starch-based)
- Leverage USDOE and nascent USDA-sponsored efforts to develop a feedstock collection infrastructure
 - Determine how much corn stover can be removed
 - Critical to maintain soil quality/health
 - Study collection logistics and reduce costs
 - Critical to minimize the cost of delivered feedstock

Approach — **Conversion**

- Utilize low cost enzymes now being developed by Genencor International and Novozymes Biotech through cost-shared subcontracts from the USDOE.
 - Genencor effort, 3 years, DOE share \$13.6 Million

- Novozymes effort, 3 years, DOE share \$11.8 Million

 The first generation of significantly lower cost enzymes should be available in 2003–2004

 Conversion technology should be adaptable to other lignocellulosic feedstocks, esp. agricultural residues

Timeline

			200		2002	2003	2004	2005	2006	2007 2
ID	0	Task Name	4 1 2	2 3 4	1 2 3 4	1 2 3 4	1 2 3	4 1 2 3	4 1 2 3 4	1 2 3 4 1
1		Corn Stover Collection								
2		Look for environmental showstoppers					l N	RFI		IL and
3		Refine understanding of critical environmental impacts of st						1		1 1
4		Characterize environmental impacts of candidate scenarios					ΙU	SDA	Feed	stock
5		Year 1 Coordinated USDA R&D on residue management pr					\succ			
6		Year 2 Coordinated USDA R&D on residue management pr		Ì			$\mid R$	&D		
7		Year 3 Focused R&D on critical residue management issue								
8		Identify promising options for harvesting and handling of co								
9		Develop sustainable schemes for harvesting and handling c			l T	-1-				
10		Enzyme Development								
11		Genencor Enzyme Development						Gene	encor	J
12		Benchmark and optimize enzyme productic						Novo	ozyme	
17		Develop interim improved enzyme				4	>			1
21		Develop 10x improved enzyme					(and	NREL	
25		CBH 1 Expression - Stage 2								
30		Genencor-NREL CRADA on CBH1						Enzy	vme R	X&D
33		Novozyme Enzyme Development						_		
43	2	Stage II Enzyme Sugar Platform								
44		Gate III Review		Pit.	h l					
49		Gate III Decision			09/05				ESP	
50		Stage III Enzyme Sugar Platform								_1
51	@]	Prototype Demonstration of Unit Operations							Proje Stage	CL
52		Interim Gate Review for Year 2			1	Jh			Stanc	e 2
57		Submit plan for year 2 testing				09/05			Jiaye	, 3
58	2	Preliminary Integrated Testing for Compelling			•				and 3	
59		Interim Gate Review for Year 3			_	i Vi	, an			
64		Submit plan for Year 3 development		Init	late		09/26			
65	2	Development of Design Basis and Business Pla	C	1	iate ge 3	•				
66		Gate IV Review		ota	ge 3		9			
71		Gate IV Decision						10/11		
72		Capabilities Development for Rapid Analysis			1					
73		Commercial Operation of Rice Straw to Ethanol Facility					0 -0	310		
74	2	Stage IV "Pay as you go" Demonstration						₩,		
75		Stage V Full Commercial Scale Enzyme Sugar Plat								

What Constitutes Success?

- Demonstrating integrated conversion technology with robust performance that has compelling economics and a favorable outlook for commercialization
 - Success is industry taking the lead in technology development efforts, beginning with Stage 4 process testing and validation

Critical Success Factors

- Sufficient quantities of corn stover must be available at an acceptable cost.
 - Policies and infrastructure must be developed to collect, store, transport, and deliver feedstock.
- Cost-effective cellulases must be available for

process development and scale up (i.e., to support work in Stages 3-5).

 The integrated process must be demonstrated to perform at levels commensurate with attractive economics.

Stage 2 Technology Selection

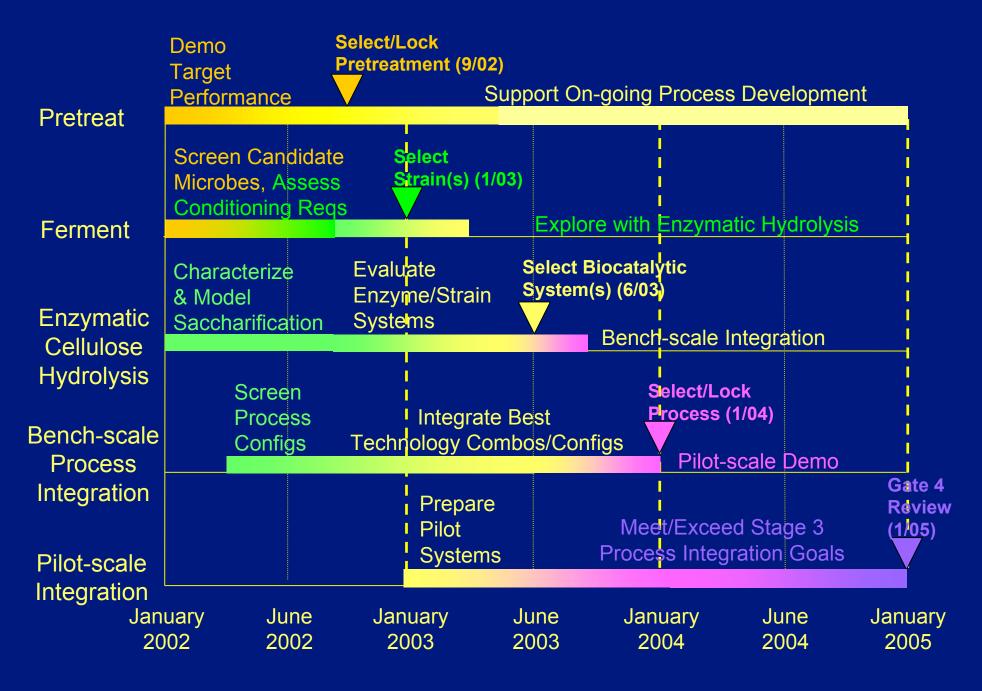
- Focus was on pretreatment and fermentation strains... since final enzyme characteristics aren't yet known
- Applied 2-step screening methodology
 - 1° screen: Reported efficacy
 - 2° screen: Quantitative performance and technology readiness

Outlook Favors Hybrid Configuration

 Anticipate using a hybrid hydrolysis and fermentation (HHF) process configuration that begins with a separate hydrolysis step and ends with simultaneous hydrolysis and fermentation.

Conditioned pretreated biomass liquids and solids

Higher temperature Mesophilic enzymatic


enzymatic cellulose saccharification hydrolysis and biomass sugar fermentation

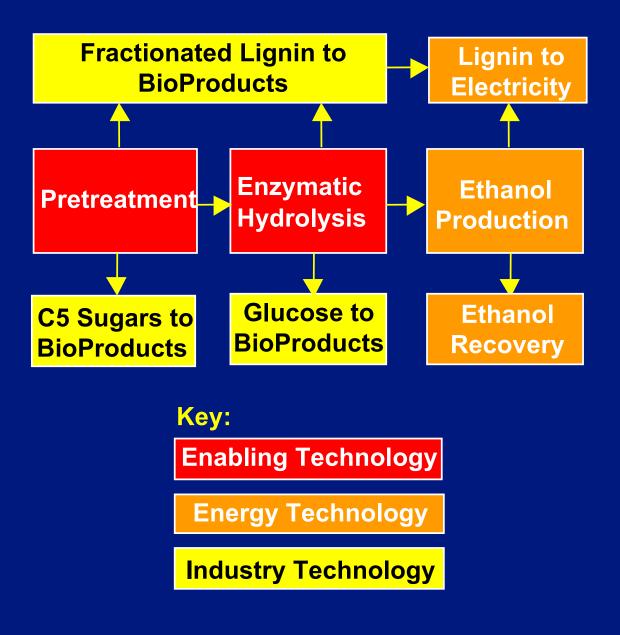
Hybrid Hydrolysis and Fermentation (HHF)

\Rightarrow *Economics will determine the route selected.*

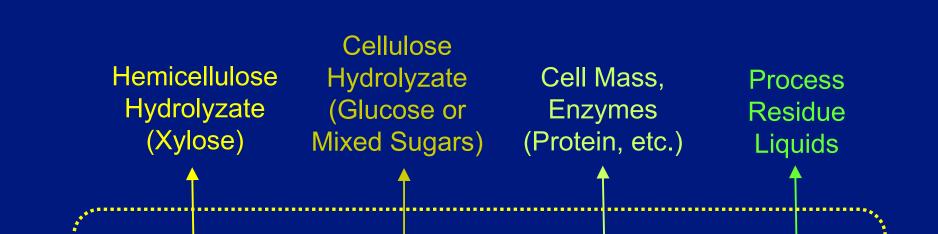
High-level Stage 3 Plan

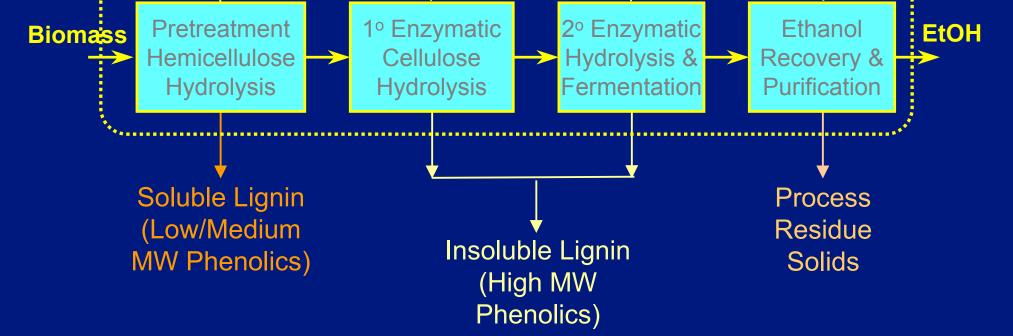
Feedback from Gate 3 Review

- Passed Gate 3 review 1/31/02
- Review panel charge:
 - Focus on core technology development, particularly pretreatment and enzymatic

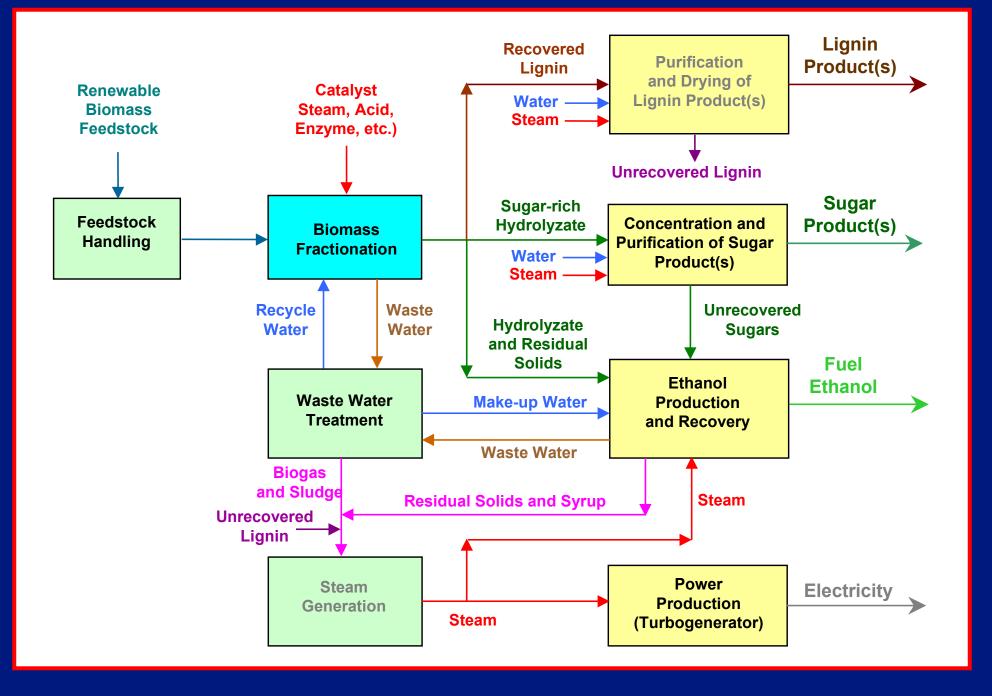

cellulose hydrolysis

 Timeline overly aggressive for available resources and should be revised/ lengthened


 Initial Stage 3 work is focused on core technology development


Strategic Fit: Enabling Lignocellulose Biorefineries

- The project demonstrates enabling technology for a lignocellulose-based biorefinery
- The project focuses on the core steps needed to produce sugars, fractionated lignin, and ethanol
- Industry is focusing on the application of this technology to make new products



Potential Process Co-products

Sugar and Lignin Platform Biorefinery

Acknowledgment

This project is funded by the Biochemical Conversion Element of the Office of Fuels Development of the U.S. Department of Energy